diff --git a/include/Rivet/Analysis.hh b/include/Rivet/Analysis.hh --- a/include/Rivet/Analysis.hh +++ b/include/Rivet/Analysis.hh @@ -1,1082 +1,1084 @@ // -*- C++ -*- #ifndef RIVET_Analysis_HH #define RIVET_Analysis_HH #include "Rivet/Config/RivetCommon.hh" #include "Rivet/AnalysisInfo.hh" #include "Rivet/Event.hh" #include "Rivet/Projection.hh" #include "Rivet/ProjectionApplier.hh" #include "Rivet/ProjectionHandler.hh" #include "Rivet/AnalysisLoader.hh" #include "Rivet/Tools/Cuts.hh" #include "Rivet/Tools/Logging.hh" #include "Rivet/Tools/ParticleUtils.hh" #include "Rivet/Tools/BinnedHistogram.hh" #include "Rivet/Tools/RivetMT2.hh" #include "Rivet/Tools/RivetYODA.hh" /// @def vetoEvent /// Preprocessor define for vetoing events, including the log message and return. #define vetoEvent \ do { MSG_DEBUG("Vetoing event on line " << __LINE__ << " of " << __FILE__); return; } while(0) namespace Rivet { // Forward declaration class AnalysisHandler; /// @brief This is the base class of all analysis classes in Rivet. /// /// There are /// three virtual functions which should be implemented in base classes: /// /// void init() is called by Rivet before a run is started. Here the /// analysis class should book necessary histograms. The needed /// projections should probably rather be constructed in the /// constructor. /// /// void analyze(const Event&) is called once for each event. Here the /// analysis class should apply the necessary Projections and fill the /// histograms. /// /// void finalize() is called after a run is finished. Here the analysis /// class should do whatever manipulations are necessary on the /// histograms. Writing the histograms to a file is, however, done by /// the Rivet class. class Analysis : public ProjectionApplier { /// The AnalysisHandler is a friend. friend class AnalysisHandler; public: /// @name Standard constructors and destructors. //@{ // /// The default constructor. // Analysis(); /// Constructor Analysis(const std::string& name); /// The destructor. virtual ~Analysis() {} //@} public: /// @name Main analysis methods //@{ /// Initialize this analysis object. A concrete class should here /// book all necessary histograms. An overridden function must make /// sure it first calls the base class function. virtual void init() { } /// Analyze one event. A concrete class should here apply the /// necessary projections on the \a event and fill the relevant /// histograms. An overridden function must make sure it first calls /// the base class function. virtual void analyze(const Event& event) = 0; /// Finalize this analysis object. A concrete class should here make /// all necessary operations on the histograms. Writing the /// histograms to a file is, however, done by the Rivet class. An /// overridden function must make sure it first calls the base class /// function. virtual void finalize() { } //@} public: /// @name Metadata /// Metadata is used for querying from the command line and also for /// building web pages and the analysis pages in the Rivet manual. //@{ /// Get the actual AnalysisInfo object in which all this metadata is stored. const AnalysisInfo& info() const { assert(_info && "No AnalysisInfo object :O"); return *_info; } /// @brief Get the name of the analysis. /// /// By default this is computed by combining the results of the experiment, /// year and Spires ID metadata methods and you should only override it if /// there's a good reason why those won't work. virtual std::string name() const { return (info().name().empty()) ? _defaultname : info().name(); } - // get name of reference data file, which could be different from plugin name - virtual std::string getRefDataName() const { - return (info().getRefDataName().empty()) ? _defaultname : info().getRefDataName(); - } - - // set name of reference data file, which could be different from plugin name - virtual void setRefDataName(const std::string& ref_data="") { - info().setRefDataName(!ref_data.empty() ? ref_data : name()); - } - /// Get the Inspire ID code for this analysis. virtual std::string inspireId() const { return info().inspireId(); } /// Get the SPIRES ID code for this analysis (~deprecated). virtual std::string spiresId() const { return info().spiresId(); } /// @brief Names & emails of paper/analysis authors. /// /// Names and email of authors in 'NAME \' format. The first /// name in the list should be the primary contact person. virtual std::vector authors() const { return info().authors(); } /// @brief Get a short description of the analysis. /// /// Short (one sentence) description used as an index entry. /// Use @a description() to provide full descriptive paragraphs /// of analysis details. virtual std::string summary() const { return info().summary(); } /// @brief Get a full description of the analysis. /// /// Full textual description of this analysis, what it is useful for, /// what experimental techniques are applied, etc. Should be treated /// as a chunk of restructuredText (http://docutils.sourceforge.net/rst.html), /// with equations to be rendered as LaTeX with amsmath operators. virtual std::string description() const { return info().description(); } /// @brief Information about the events needed as input for this analysis. /// /// Event types, energies, kinematic cuts, particles to be considered /// stable, etc. etc. Should be treated as a restructuredText bullet list /// (http://docutils.sourceforge.net/rst.html) virtual std::string runInfo() const { return info().runInfo(); } /// Experiment which performed and published this analysis. virtual std::string experiment() const { return info().experiment(); } /// Collider on which the experiment ran. virtual std::string collider() const { return info().collider(); } /// When the original experimental analysis was published. virtual std::string year() const { return info().year(); } /// The luminosity in inverse femtobarn virtual std::string luminosityfb() const { return info().luminosityfb(); } /// Journal, and preprint references. virtual std::vector references() const { return info().references(); } /// BibTeX citation key for this article. virtual std::string bibKey() const { return info().bibKey(); } /// BibTeX citation entry for this article. virtual std::string bibTeX() const { return info().bibTeX(); } /// Whether this analysis is trusted (in any way!) virtual std::string status() const { return (info().status().empty()) ? "UNVALIDATED" : info().status(); } /// Any work to be done on this analysis. virtual std::vector todos() const { return info().todos(); } /// Return the allowed pairs of incoming beams required by this analysis. virtual const std::vector& requiredBeams() const { return info().beams(); } /// Declare the allowed pairs of incoming beams required by this analysis. virtual Analysis& setRequiredBeams(const std::vector& requiredBeams) { info().setBeams(requiredBeams); return *this; } /// Sets of valid beam energy pairs, in GeV virtual const std::vector >& requiredEnergies() const { return info().energies(); } /// Get vector of analysis keywords virtual const std::vector & keywords() const { return info().keywords(); } /// Declare the list of valid beam energy pairs, in GeV virtual Analysis& setRequiredEnergies(const std::vector >& requiredEnergies) { info().setEnergies(requiredEnergies); return *this; } /// Return true if this analysis needs to know the process cross-section. /// @todo Remove this and require HepMC >= 2.06 bool needsCrossSection() const { return info().needsCrossSection(); } /// Declare whether this analysis needs to know the process cross-section from the generator. /// @todo Remove this and require HepMC >= 2.06 Analysis& setNeedsCrossSection(bool needed=true) { info().setNeedsCrossSection(needed); return *this; } //@} /// @name Internal metadata modifying methods //@{ /// Get the actual AnalysisInfo object in which all this metadata is stored (non-const). AnalysisInfo& info() { assert(_info && "No AnalysisInfo object :O"); return *_info; } //@} /// @name Run conditions //@{ /// Incoming beams for this run const ParticlePair& beams() const; /// Incoming beam IDs for this run const PdgIdPair beamIds() const; /// Centre of mass energy for this run double sqrtS() const; //@} /// @name Analysis / beam compatibility testing //@{ /// Check if analysis is compatible with the provided beam particle IDs and energies bool isCompatible(const ParticlePair& beams) const; /// Check if analysis is compatible with the provided beam particle IDs and energies bool isCompatible(PdgId beam1, PdgId beam2, double e1, double e2) const; /// Check if analysis is compatible with the provided beam particle IDs and energies bool isCompatible(const PdgIdPair& beams, const std::pair& energies) const; //@} /// Set the cross section from the generator Analysis& setCrossSection(double xs); //, double xserr=0.0); /// Access the controlling AnalysisHandler object. AnalysisHandler& handler() const { return *_analysishandler; } + // get name of reference data file, which could be different from plugin name + virtual std::string getRefDataName() const { + return (info().getRefDataName().empty()) ? _defaultname : info().getRefDataName(); + } + + // set name of reference data file, which could be different from plugin name + virtual void setRefDataName(const std::string& ref_data="") { + info().setRefDataName(!ref_data.empty() ? ref_data : name()); + } + + + protected: /// Get a Log object based on the name() property of the calling analysis object. Log& getLog() const; /// Get the process cross-section in pb. Throws if this hasn't been set. double crossSection() const; /// Get the process cross-section per generated event in pb. Throws if this /// hasn't been set. double crossSectionPerEvent() const; /// @brief Get the number of events seen (via the analysis handler). /// /// @note Use in the finalize phase only. size_t numEvents() const; /// @brief Get the sum of event weights seen (via the analysis handler). /// /// @note Use in the finalize phase only. double sumW() const; /// Alias double sumOfWeights() const { return sumW(); } /// @brief Get the sum of squared event weights seen (via the analysis handler). /// /// @note Use in the finalize phase only. double sumW2() const; protected: /// @name Histogram paths //@{ /// Get the canonical histogram "directory" path for this analysis. const std::string histoDir() const; /// Get the canonical histogram path for the named histogram in this analysis. const std::string histoPath(const std::string& hname) const; /// Get the canonical histogram path for the numbered histogram in this analysis. const std::string histoPath(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) const; /// Get the internal histogram name for given d, x and y (cf. HepData) const std::string mkAxisCode(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) const; /// Alias /// @deprecated Prefer the "mk" form, consistent with other "making function" names const std::string makeAxisCode(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) const { return mkAxisCode(datasetId, xAxisId, yAxisId); } //@} /// @name Histogram reference data //@{ /// Get reference data for a named histo /// @todo SFINAE to ensure that the type inherits from YODA::AnalysisObject? template const T& refData(const string& hname) const { _cacheRefData(); MSG_TRACE("Using histo bin edges for " << name() << ":" << hname); if (!_refdata[hname]) { MSG_ERROR("Can't find reference histogram " << hname); throw Exception("Reference data " + hname + " not found."); } return dynamic_cast(*_refdata[hname]); } /// Get reference data for a numbered histo /// @todo SFINAE to ensure that the type inherits from YODA::AnalysisObject? template const T& refData(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) const { const string hname = makeAxisCode(datasetId, xAxisId, yAxisId); return refData(hname); } //@} /// @name Counter booking //@{ /// Book a counter. CounterPtr bookCounter(const std::string& name, const std::string& title=""); // const std::string& valtitle="" /// Book a counter, using a path generated from the dataset and axis ID codes /// /// The paper, dataset and x/y-axis IDs will be used to build the histo name in the HepData standard way. CounterPtr bookCounter(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId, const std::string& title=""); // const std::string& valtitle="" //@} /// @name 1D histogram booking //@{ /// Book a 1D histogram with @a nbins uniformly distributed across the range @a lower - @a upper . Histo1DPtr bookHisto1D(const std::string& name, size_t nbins, double lower, double upper, const std::string& title="", const std::string& xtitle="", const std::string& ytitle=""); /// Book a 1D histogram with non-uniform bins defined by the vector of bin edges @a binedges . Histo1DPtr bookHisto1D(const std::string& name, const std::vector& binedges, const std::string& title="", const std::string& xtitle="", const std::string& ytitle=""); /// Book a 1D histogram with non-uniform bins defined by the vector of bin edges @a binedges . Histo1DPtr bookHisto1D(const std::string& name, const std::initializer_list& binedges, const std::string& title="", const std::string& xtitle="", const std::string& ytitle=""); /// Book a 1D histogram with binning from a reference scatter. Histo1DPtr bookHisto1D(const std::string& name, const Scatter2D& refscatter, const std::string& title="", const std::string& xtitle="", const std::string& ytitle=""); /// Book a 1D histogram, using the binnings in the reference data histogram. Histo1DPtr bookHisto1D(const std::string& name, const std::string& title="", const std::string& xtitle="", const std::string& ytitle=""); /// Book a 1D histogram, using the binnings in the reference data histogram. /// /// The paper, dataset and x/y-axis IDs will be used to build the histo name in the HepData standard way. Histo1DPtr bookHisto1D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId, const std::string& title="", const std::string& xtitle="", const std::string& ytitle=""); //@} /// @name 2D histogram booking //@{ /// Book a 2D histogram with @a nxbins and @a nybins uniformly /// distributed across the ranges @a xlower - @a xupper and @a /// ylower - @a yupper respectively along the x- and y-axis. Histo2DPtr bookHisto2D(const std::string& name, size_t nxbins, double xlower, double xupper, size_t nybins, double ylower, double yupper, const std::string& title="", const std::string& xtitle="", const std::string& ytitle="", const std::string& ztitle=""); /// Book a 2D histogram with non-uniform bins defined by the /// vectors of bin edges @a xbinedges and @a ybinedges. Histo2DPtr bookHisto2D(const std::string& name, const std::vector& xbinedges, const std::vector& ybinedges, const std::string& title="", const std::string& xtitle="", const std::string& ytitle="", const std::string& ztitle=""); /// Book a 2D histogram with non-uniform bins defined by the /// vectors of bin edges @a xbinedges and @a ybinedges. Histo2DPtr bookHisto2D(const std::string& name, const std::initializer_list& xbinedges, const std::initializer_list& ybinedges, const std::string& title="", const std::string& xtitle="", const std::string& ytitle="", const std::string& ztitle=""); /// Book a 2D histogram with binning from a reference scatter. Histo2DPtr bookHisto2D(const std::string& name, const Scatter3D& refscatter, const std::string& title="", const std::string& xtitle="", const std::string& ytitle="", const std::string& ztitle=""); /// Book a 2D histogram, using the binnings in the reference data histogram. Histo2DPtr bookHisto2D(const std::string& name, const std::string& title="", const std::string& xtitle="", const std::string& ytitle="", const std::string& ztitle=""); /// Book a 2D histogram, using the binnings in the reference data histogram. /// /// The paper, dataset and x/y-axis IDs will be used to build the histo name in the HepData standard way. Histo2DPtr bookHisto2D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId, const std::string& title="", const std::string& xtitle="", const std::string& ytitle="", const std::string& ztitle=""); //@} /// @name 1D profile histogram booking //@{ /// Book a 1D profile histogram with @a nbins uniformly distributed across the range @a lower - @a upper . Profile1DPtr bookProfile1D(const std::string& name, size_t nbins, double lower, double upper, const std::string& title="", const std::string& xtitle="", const std::string& ytitle=""); /// Book a 1D profile histogram with non-uniform bins defined by the vector of bin edges @a binedges . Profile1DPtr bookProfile1D(const std::string& name, const std::vector& binedges, const std::string& title="", const std::string& xtitle="", const std::string& ytitle=""); /// Book a 1D profile histogram with non-uniform bins defined by the vector of bin edges @a binedges . Profile1DPtr bookProfile1D(const std::string& name, const std::initializer_list& binedges, const std::string& title="", const std::string& xtitle="", const std::string& ytitle=""); /// Book a 1D profile histogram with binning from a reference scatter. Profile1DPtr bookProfile1D(const std::string& name, const Scatter2D& refscatter, const std::string& title="", const std::string& xtitle="", const std::string& ytitle=""); /// Book a 1D profile histogram, using the binnings in the reference data histogram. Profile1DPtr bookProfile1D(const std::string& name, const std::string& title="", const std::string& xtitle="", const std::string& ytitle=""); /// Book a 1D profile histogram, using the binnings in the reference data histogram. /// /// The paper, dataset and x/y-axis IDs will be used to build the histo name in the HepData standard way. Profile1DPtr bookProfile1D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId, const std::string& title="", const std::string& xtitle="", const std::string& ytitle=""); //@} /// @name 2D profile histogram booking //@{ /// Book a 2D profile histogram with @a nxbins and @a nybins uniformly /// distributed across the ranges @a xlower - @a xupper and @a ylower - @a /// yupper respectively along the x- and y-axis. Profile2DPtr bookProfile2D(const std::string& name, size_t nxbins, double xlower, double xupper, size_t nybins, double ylower, double yupper, const std::string& title="", const std::string& xtitle="", const std::string& ytitle="", const std::string& ztitle=""); /// Book a 2D profile histogram with non-uniform bins defined by the vectorx /// of bin edges @a xbinedges and @a ybinedges. Profile2DPtr bookProfile2D(const std::string& name, const std::vector& xbinedges, const std::vector& ybinedges, const std::string& title="", const std::string& xtitle="", const std::string& ytitle="", const std::string& ztitle=""); /// Book a 2D profile histogram with non-uniform bins defined by the vectorx /// of bin edges @a xbinedges and @a ybinedges. Profile2DPtr bookProfile2D(const std::string& name, const std::initializer_list& xbinedges, const std::initializer_list& ybinedges, const std::string& title="", const std::string& xtitle="", const std::string& ytitle="", const std::string& ztitle=""); /// Book a 2D profile histogram with binning from a reference scatter. Profile2DPtr bookProfile2D(const std::string& name, const Scatter3D& refscatter, const std::string& title="", const std::string& xtitle="", const std::string& ytitle="", const std::string& ztitle=""); /// Book a 2D profile histogram, using the binnings in the reference data histogram. Profile2DPtr bookProfile2D(const std::string& name, const std::string& title="", const std::string& xtitle="", const std::string& ytitle="", const std::string& ztitle=""); /// Book a 2D profile histogram, using the binnings in the reference data histogram. /// /// The paper, dataset and x/y-axis IDs will be used to build the histo name in the HepData standard way. Profile2DPtr bookProfile2D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId, const std::string& title="", const std::string& xtitle="", const std::string& ytitle="", const std::string& ztitle=""); //@} /// @name 2D scatter booking //@{ /// @brief Book a 2-dimensional data point set with the given name. /// /// @note Unlike histogram booking, scatter booking by default makes no /// attempt to use reference data to pre-fill the data object. If you want /// this, which is sometimes useful e.g. when the x-position is not really /// meaningful and can't be extracted from the data, then set the @a /// copy_pts parameter to true. This creates points to match the reference /// data's x values and errors, but with the y values and errors zeroed... /// assuming that there is a reference histo with the same name: if there /// isn't, an exception will be thrown. Scatter2DPtr bookScatter2D(const std::string& name, bool copy_pts=false, const std::string& title="", const std::string& xtitle="", const std::string& ytitle=""); /// @brief Book a 2-dimensional data point set, using the binnings in the reference data histogram. /// /// The paper, dataset and x/y-axis IDs will be used to build the histo name in the HepData standard way. /// /// @note Unlike histogram booking, scatter booking by default makes no /// attempt to use reference data to pre-fill the data object. If you want /// this, which is sometimes useful e.g. when the x-position is not really /// meaningful and can't be extracted from the data, then set the @a /// copy_pts parameter to true. This creates points to match the reference /// data's x values and errors, but with the y values and errors zeroed. Scatter2DPtr bookScatter2D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId, bool copy_pts=false, const std::string& title="", const std::string& xtitle="", const std::string& ytitle=""); /// @brief Book a 2-dimensional data point set with equally spaced x-points in a range. /// /// The y values and errors will be set to 0. Scatter2DPtr bookScatter2D(const std::string& name, size_t npts, double lower, double upper, const std::string& title="", const std::string& xtitle="", const std::string& ytitle=""); /// @brief Book a 2-dimensional data point set based on provided contiguous "bin edges". /// /// The y values and errors will be set to 0. Scatter2DPtr bookScatter2D(const std::string& hname, const std::vector& binedges, const std::string& title, const std::string& xtitle, const std::string& ytitle); //@} public: /// @name Analysis object manipulation /// @todo Should really be protected: only public to keep BinnedHistogram happy for now... //@{ /// Multiplicatively scale the given counter, @a cnt, by factor @s factor. void scale(CounterPtr cnt, double factor); /// Multiplicatively scale the given counters, @a cnts, by factor @s factor. /// @note Constness intentional, if weird, to allow passing rvalue refs of smart ptrs (argh) /// @todo Use SFINAE for a generic iterable of CounterPtrs void scale(const std::vector& cnts, double factor) { for (auto& c : cnts) scale(c, factor); } /// @todo YUCK! template void scale(const CounterPtr (&cnts)[array_size], double factor) { // for (size_t i = 0; i < std::extent::value; ++i) scale(cnts[i], factor); for (auto& c : cnts) scale(c, factor); } /// Normalize the given histogram, @a histo, to area = @a norm. void normalize(Histo1DPtr histo, double norm=1.0, bool includeoverflows=true); /// Normalize the given histograms, @a histos, to area = @a norm. /// @note Constness intentional, if weird, to allow passing rvalue refs of smart ptrs (argh) /// @todo Use SFINAE for a generic iterable of Histo1DPtrs void normalize(const std::vector& histos, double norm=1.0, bool includeoverflows=true) { for (auto& h : histos) normalize(h, norm, includeoverflows); } /// @todo YUCK! template void normalize(const Histo1DPtr (&histos)[array_size], double norm=1.0, bool includeoverflows=true) { for (auto& h : histos) normalize(h, norm, includeoverflows); } /// Multiplicatively scale the given histogram, @a histo, by factor @s factor. void scale(Histo1DPtr histo, double factor); /// Multiplicatively scale the given histograms, @a histos, by factor @s factor. /// @note Constness intentional, if weird, to allow passing rvalue refs of smart ptrs (argh) /// @todo Use SFINAE for a generic iterable of Histo1DPtrs void scale(const std::vector& histos, double factor) { for (auto& h : histos) scale(h, factor); } /// @todo YUCK! template void scale(const Histo1DPtr (&histos)[array_size], double factor) { for (auto& h : histos) scale(h, factor); } /// Normalize the given histogram, @a histo, to area = @a norm. void normalize(Histo2DPtr histo, double norm=1.0, bool includeoverflows=true); /// Normalize the given histograms, @a histos, to area = @a norm. /// @note Constness intentional, if weird, to allow passing rvalue refs of smart ptrs (argh) /// @todo Use SFINAE for a generic iterable of Histo2DPtrs void normalize(const std::vector& histos, double norm=1.0, bool includeoverflows=true) { for (auto& h : histos) normalize(h, norm, includeoverflows); } /// @todo YUCK! template void normalize(const Histo2DPtr (&histos)[array_size], double norm=1.0, bool includeoverflows=true) { for (auto& h : histos) normalize(h, norm, includeoverflows); } /// Multiplicatively scale the given histogram, @a histo, by factor @s factor. void scale(Histo2DPtr histo, double factor); /// Multiplicatively scale the given histograms, @a histos, by factor @s factor. /// @note Constness intentional, if weird, to allow passing rvalue refs of smart ptrs (argh) /// @todo Use SFINAE for a generic iterable of Histo2DPtrs void scale(const std::vector& histos, double factor) { for (auto& h : histos) scale(h, factor); } /// @todo YUCK! template void scale(const Histo2DPtr (&histos)[array_size], double factor) { for (auto& h : histos) scale(h, factor); } /// Helper for counter division. /// /// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target. void divide(CounterPtr c1, CounterPtr c2, Scatter1DPtr s) const; /// Helper for histogram division with raw YODA objects. /// /// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target. void divide(const YODA::Counter& c1, const YODA::Counter& c2, Scatter1DPtr s) const; /// Helper for histogram division. /// /// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target. void divide(Histo1DPtr h1, Histo1DPtr h2, Scatter2DPtr s) const; /// Helper for histogram division with raw YODA objects. /// /// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target. void divide(const YODA::Histo1D& h1, const YODA::Histo1D& h2, Scatter2DPtr s) const; /// Helper for profile histogram division. /// /// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target. void divide(Profile1DPtr p1, Profile1DPtr p2, Scatter2DPtr s) const; /// Helper for profile histogram division with raw YODA objects. /// /// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target. void divide(const YODA::Profile1D& p1, const YODA::Profile1D& p2, Scatter2DPtr s) const; /// Helper for 2D histogram division. /// /// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target. void divide(Histo2DPtr h1, Histo2DPtr h2, Scatter3DPtr s) const; /// Helper for 2D histogram division with raw YODA objects. /// /// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target. void divide(const YODA::Histo2D& h1, const YODA::Histo2D& h2, Scatter3DPtr s) const; /// Helper for 2D profile histogram division. /// /// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target. void divide(Profile2DPtr p1, Profile2DPtr p2, Scatter3DPtr s) const; /// Helper for 2D profile histogram division with raw YODA objects /// /// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target. void divide(const YODA::Profile2D& p1, const YODA::Profile2D& p2, Scatter3DPtr s) const; /// Helper for histogram efficiency calculation. /// /// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target. void efficiency(Histo1DPtr h1, Histo1DPtr h2, Scatter2DPtr s) const; /// Helper for histogram efficiency calculation. /// /// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target. void efficiency(const YODA::Histo1D& h1, const YODA::Histo1D& h2, Scatter2DPtr s) const; /// Helper for histogram asymmetry calculation. /// /// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target. void asymm(Histo1DPtr h1, Histo1DPtr h2, Scatter2DPtr s) const; /// Helper for histogram asymmetry calculation. /// /// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target. void asymm(const YODA::Histo1D& h1, const YODA::Histo1D& h2, Scatter2DPtr s) const; /// Helper for converting a differential histo to an integral one. /// /// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target. void integrate(Histo1DPtr h, Scatter2DPtr s) const; /// Helper for converting a differential histo to an integral one. /// /// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target. void integrate(const Histo1D& h, Scatter2DPtr s) const; //@} public: /// List of registered analysis data objects const vector& analysisObjects() const { return _analysisobjects; } protected: /// @name Data object registration, retrieval, and removal //@{ /// Register a data object in the histogram system void addAnalysisObject(AnalysisObjectPtr ao); /// Get a data object from the histogram system template const std::shared_ptr getAnalysisObject(const std::string& name) const { foreach (const AnalysisObjectPtr& ao, analysisObjects()) { if (ao->path() == histoPath(name)) return dynamic_pointer_cast(ao); } throw Exception("Data object " + histoPath(name) + " not found"); } /// Get a data object from the histogram system (non-const) template std::shared_ptr getAnalysisObject(const std::string& name) { foreach (const AnalysisObjectPtr& ao, analysisObjects()) { if (ao->path() == histoPath(name)) return dynamic_pointer_cast(ao); } throw Exception("Data object " + histoPath(name) + " not found"); } /// Unregister a data object from the histogram system (by name) void removeAnalysisObject(const std::string& path); /// Unregister a data object from the histogram system (by pointer) void removeAnalysisObject(AnalysisObjectPtr ao); /// Get a named Histo1D object from the histogram system const Histo1DPtr getHisto1D(const std::string& name) const { return getAnalysisObject(name); } /// Get a named Histo1D object from the histogram system (non-const) Histo1DPtr getHisto1D(const std::string& name) { return getAnalysisObject(name); } /// Get a Histo1D object from the histogram system by axis ID codes (non-const) const Histo1DPtr getHisto1D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) const { return getAnalysisObject(makeAxisCode(datasetId, xAxisId, yAxisId)); } /// Get a Histo1D object from the histogram system by axis ID codes (non-const) Histo1DPtr getHisto1D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) { return getAnalysisObject(makeAxisCode(datasetId, xAxisId, yAxisId)); } /// Get a named Histo2D object from the histogram system const Histo2DPtr getHisto2D(const std::string& name) const { return getAnalysisObject(name); } /// Get a named Histo2D object from the histogram system (non-const) Histo2DPtr getHisto2D(const std::string& name) { return getAnalysisObject(name); } /// Get a Histo2D object from the histogram system by axis ID codes (non-const) const Histo2DPtr getHisto2D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) const { return getAnalysisObject(makeAxisCode(datasetId, xAxisId, yAxisId)); } /// Get a Histo2D object from the histogram system by axis ID codes (non-const) Histo2DPtr getHisto2D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) { return getAnalysisObject(makeAxisCode(datasetId, xAxisId, yAxisId)); } /// Get a named Profile1D object from the histogram system const Profile1DPtr getProfile1D(const std::string& name) const { return getAnalysisObject(name); } /// Get a named Profile1D object from the histogram system (non-const) Profile1DPtr getProfile1D(const std::string& name) { return getAnalysisObject(name); } /// Get a Profile1D object from the histogram system by axis ID codes (non-const) const Profile1DPtr getProfile1D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) const { return getAnalysisObject(makeAxisCode(datasetId, xAxisId, yAxisId)); } /// Get a Profile1D object from the histogram system by axis ID codes (non-const) Profile1DPtr getProfile1D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) { return getAnalysisObject(makeAxisCode(datasetId, xAxisId, yAxisId)); } /// Get a named Profile2D object from the histogram system const Profile2DPtr getProfile2D(const std::string& name) const { return getAnalysisObject(name); } /// Get a named Profile2D object from the histogram system (non-const) Profile2DPtr getProfile2D(const std::string& name) { return getAnalysisObject(name); } /// Get a Profile2D object from the histogram system by axis ID codes (non-const) const Profile2DPtr getProfile2D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) const { return getAnalysisObject(makeAxisCode(datasetId, xAxisId, yAxisId)); } /// Get a Profile2D object from the histogram system by axis ID codes (non-const) Profile2DPtr getProfile2D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) { return getAnalysisObject(makeAxisCode(datasetId, xAxisId, yAxisId)); } /// Get a named Scatter2D object from the histogram system const Scatter2DPtr getScatter2D(const std::string& name) const { return getAnalysisObject(name); } /// Get a named Scatter2D object from the histogram system (non-const) Scatter2DPtr getScatter2D(const std::string& name) { return getAnalysisObject(name); } /// Get a Scatter2D object from the histogram system by axis ID codes (non-const) const Scatter2DPtr getScatter2D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) const { return getAnalysisObject(makeAxisCode(datasetId, xAxisId, yAxisId)); } /// Get a Scatter2D object from the histogram system by axis ID codes (non-const) Scatter2DPtr getScatter2D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) { return getAnalysisObject(makeAxisCode(datasetId, xAxisId, yAxisId)); } //@} private: /// Name passed to constructor (used to find .info analysis data file, and as a fallback) string _defaultname; /// Pointer to analysis metadata object unique_ptr _info; /// Storage of all plot objects /// @todo Make this a map for fast lookup by path? vector _analysisobjects; /// @name Cross-section variables //@{ double _crossSection; bool _gotCrossSection; //@} /// The controlling AnalysisHandler object. AnalysisHandler* _analysishandler; /// Collection of cached refdata to speed up many autobookings: the /// reference data file should only be read once. mutable std::map _refdata; private: /// @name Utility functions //@{ /// Get the reference data for this paper and cache it. void _cacheRefData() const; //@} /// The assignment operator is private and must never be called. /// In fact, it should not even be implemented. Analysis& operator=(const Analysis&); }; } // Include definition of analysis plugin system so that analyses automatically see it when including Analysis.hh #include "Rivet/AnalysisBuilder.hh" /// @def DECLARE_RIVET_PLUGIN /// Preprocessor define to prettify the global-object plugin hook mechanism. #define DECLARE_RIVET_PLUGIN(clsname) Rivet::AnalysisBuilder plugin_ ## clsname /// @def DECLARE_ALIASED_RIVET_PLUGIN /// Preprocessor define to prettify the global-object plugin hook mechanism, with an extra alias name for this analysis. // #define DECLARE_ALIASED_RIVET_PLUGIN(clsname, alias) Rivet::AnalysisBuilder plugin_ ## clsname ## ( ## #alias ## ) #define DECLARE_ALIASED_RIVET_PLUGIN(clsname, alias) DECLARE_RIVET_PLUGIN(clsname)( #alias ) /// @def DEFAULT_RIVET_ANALYSIS_CONSTRUCTOR /// Preprocessor define to prettify the manky constructor with name string argument #define DEFAULT_RIVET_ANALYSIS_CONSTRUCTOR(clsname) clsname() : Analysis(# clsname) {} /// @def DEFAULT_RIVET_ANALYSIS_CTOR /// Slight abbreviation for DEFAULT_RIVET_ANALYSIS_CONSTRUCTOR #define DEFAULT_RIVET_ANALYSIS_CTOR(clsname) DEFAULT_RIVET_ANALYSIS_CONSTRUCTOR(clsname) #endif