diff --git a/src/Tools/RivetYODA.cc b/src/Tools/RivetYODA.cc --- a/src/Tools/RivetYODA.cc +++ b/src/Tools/RivetYODA.cc @@ -1,507 +1,507 @@ #include "Rivet/Config/RivetCommon.hh" #include "Rivet/Tools/RivetYODA.hh" #include "Rivet/Tools/RivetPaths.hh" #include "YODA/ReaderYODA.h" #include "YODA/ReaderAIDA.h" // use execinfo for backtrace if available #include "DummyConfig.hh" #ifdef HAVE_EXECINFO_H #include #endif #include #include using namespace std; namespace Rivet { template Wrapper::~Wrapper() {} template Wrapper::Wrapper(const vector& weightNames, const T & p) { _basePath = p.path(); for (const string& weightname : weightNames) { _persistent.push_back(make_shared(p)); _final.push_back(make_shared(p)); auto obj = _persistent.back(); auto final = _final.back(); if (weightname != "") { obj->setPath("/RAW" + obj->path() + "[" + weightname + "]"); final->setPath(final->path() + "[" + weightname + "]"); } } } template typename T::Ptr Wrapper::active() const { if ( !_active ) { #ifdef HAVE_BACKTRACE void * buffer[4]; backtrace(buffer, 4); backtrace_symbols_fd(buffer, 4 , 1); #endif assert(false && "No active pointer set. Was this object booked in init()?"); } return _active; } template void Wrapper::newSubEvent() { typename TupleWrapper::Ptr tmp = make_shared>(_persistent[0]->clone()); tmp->reset(); _evgroup.push_back( tmp ); _active = _evgroup.back(); assert(_active); } string getDatafilePath(const string& papername) { /// Try to find YODA otherwise fall back to try AIDA const string path1 = findAnalysisRefFile(papername + ".yoda"); if (!path1.empty()) return path1; const string path2 = findAnalysisRefFile(papername + ".aida"); if (!path2.empty()) return path2; throw Rivet::Error("Couldn't find ref data file '" + papername + ".yoda" + " in data path, '" + getRivetDataPath() + "', or '.'"); } map getRefData(const string& papername) { const string datafile = getDatafilePath(papername); // Make an appropriate data file reader and read the data objects /// @todo Remove AIDA support some day... YODA::Reader& reader = (datafile.find(".yoda") != string::npos) ? \ YODA::ReaderYODA::create() : YODA::ReaderAIDA::create(); vector aovec; reader.read(datafile, aovec); // Return value, to be populated map rtn; for ( YODA::AnalysisObject* ao : aovec ) { YODA::AnalysisObjectPtr refdata(ao); if (!refdata) continue; const string plotpath = refdata->path(); // Split path at "/" and only return the last field, i.e. the histogram ID const size_t slashpos = plotpath.rfind("/"); const string plotname = (slashpos+1 < plotpath.size()) ? plotpath.substr(slashpos+1) : ""; rtn[plotname] = refdata; } return rtn; } } namespace { using Rivet::Fill; using Rivet::Fills; using Rivet::TupleWrapper; template double get_window_size(const typename T::Ptr & histo, typename T::BinType x) { // the bin index we fall in const auto binidx = histo->binIndexAt(x); // gaps, overflow, underflow don't contribute if ( binidx == -1 ) return 0; const auto & b = histo->bin(binidx); // if we don't have a valid neighbouring bin, // we use infinite width typename T::Bin b1(-1.0/0.0, 1.0/0.0); // points in the top half compare to the upper neighbour if ( x > b.xMid() ) { size_t nextidx = binidx + 1; if ( nextidx < histo->bins().size() ) b1 = histo->bin(nextidx); } else { // compare to the lower neighbour int nextidx = binidx - 1; if ( nextidx >= 0 ) b1 = histo->bin(nextidx); } // the factor 2 is arbitrary, could poss. be smaller return min( b.width(), b1.width() ) / 2.0; } template typename T::BinType fillT2binT(typename T::FillType a) { return a; } template <> YODA::Profile1D::BinType fillT2binT(YODA::Profile1D::FillType a) { return get<0>(a); } template <> YODA::Profile2D::BinType fillT2binT(YODA::Profile2D::FillType a) { return YODA::Profile2D::BinType{ get<0>(a), get<1>(a) }; } template void commit(vector & persistent, const vector< vector> > & tuple, const vector> & weights ) { // TODO check if all the xs are in the same bin anyway! // Then no windowing needed assert(persistent.size() == weights[0].size()); for ( const auto & x : tuple ) { double maxwindow = 0.0; for ( const auto & xi : x ) { // TODO check for NOFILL here // persistent[0] has the same binning as all the other persistent objects double window = get_window_size(persistent[0], fillT2binT(xi.first)); if ( window > maxwindow ) maxwindow = window; } const double wsize = maxwindow; // all windows have same size set edgeset; // bin edges need to be in here! for ( const auto & xi : x ) { edgeset.insert(fillT2binT(xi.first) - wsize); edgeset.insert(fillT2binT(xi.first) + wsize); } vector< std::tuple,double> > hfill; double sumf = 0.0; auto edgit = edgeset.begin(); double ehi = *edgit; while ( ++edgit != edgeset.end() ) { double elo = ehi; ehi = *edgit; valarray sumw(0.0, persistent.size()); // need m copies of this bool gap = true; // Check for gaps between the sub-windows. for ( size_t i = 0; i < x.size(); ++i ) { // check equals comparisons here! if ( fillT2binT(x[i].first) + wsize >= ehi && fillT2binT(x[i].first) - wsize <= elo ) { sumw += x[i].second * weights[i]; gap = false; } } if ( gap ) continue; hfill.push_back( make_tuple( (ehi + elo)/2.0, sumw, (ehi - elo) ) ); sumf += ehi - elo; } for ( auto f : hfill ) for ( size_t m = 0; m < persistent.size(); ++m ) persistent[m]->fill( get<0>(f), get<1>(f)[m], get<2>(f)/sumf ); // Note the scaling to one single fill } } template<> void commit(vector & persistent, const vector< vector> > & tuple, const vector> & weights) {} template<> void commit(vector & persistent, const vector< vector> > & tuple, const vector> & weights) {} template double distance(T a, T b) { return abs(a - b); } template <> double distance >(tuple a, tuple b) { return Rivet::sqr(get<0>(a) - get<0>(b)) + Rivet::sqr(get<1>(a) - get<1>(b)); } } namespace Rivet { bool copyao(YODA::AnalysisObjectPtr src, YODA::AnalysisObjectPtr dst) { for (const std::string& a : src->annotations()) dst->setAnnotation(a, src->annotation(a)); if ( aocopy(src,dst) ) return true; if ( aocopy(src,dst) ) return true; if ( aocopy(src,dst) ) return true; if ( aocopy(src,dst) ) return true; if ( aocopy(src,dst) ) return true; if ( aocopy(src,dst) ) return true; if ( aocopy(src,dst) ) return true; if ( aocopy(src,dst) ) return true; return false; } bool addaos(YODA::AnalysisObjectPtr dst, YODA::AnalysisObjectPtr src, double scale) { if ( aoadd(dst,src,scale) ) return true; if ( aoadd(dst,src,scale) ) return true; if ( aoadd(dst,src,scale) ) return true; if ( aoadd(dst,src,scale) ) return true; if ( aoadd(dst,src,scale) ) return true; return false; } } namespace { /// fills is a vector of sub-event with an ordered set of x-values of /// the fills in each sub-event. NOFILL should be an "impossible" /// value for this histogram. Returns a vector of sub-events with /// an ordered vector of fills (including NOFILLs) for each sub-event. template vector< vector > > match_fills(const vector::Ptr> & evgroup, const Fill & NOFILL) { vector< vector > > matched; // First just copy subevents into vectors and find the longest vector. unsigned int maxfill = 0; // length of biggest vector int imax = 0; // index position of biggest vector for ( const auto & it : evgroup ) { const auto & subev = it->fills(); if ( subev.size() > maxfill ) { maxfill = subev.size(); imax = matched.size(); } matched.push_back(vector >(subev.begin(), subev.end())); } // Now, go through all subevents with missing fills. const vector> & full = matched[imax]; // the longest one for ( auto & subev : matched ) { if ( subev.size() == maxfill ) continue; // Add NOFILLs to the end; while ( subev.size() < maxfill ) subev.push_back(NOFILL); // Iterate from the back and shift all fill values backwards by // swapping with NOFILLs so that they better match the full // subevent. for ( int i = maxfill - 1; i >= 0; --i ) { if ( subev[i] == NOFILL ) continue; size_t j = i; while ( j + 1 < maxfill && subev[j + 1] == NOFILL && distance(fillT2binT(subev[j].first), fillT2binT(full[j].first)) > distance(fillT2binT(subev[j].first), fillT2binT(full[j + 1].first)) ) { swap(subev[j], subev[j + 1]); ++j; } } } // transpose vector>> result(maxfill,vector>(matched.size())); for (size_t i = 0; i < matched.size(); ++i) for (size_t j = 0; j < maxfill; ++j) result.at(j).at(i) = matched.at(i).at(j); return result; } } namespace Rivet { template void Wrapper::pushToPersistent(const vector >& weight) { assert( _evgroup.size() == weight.size() ); // have we had subevents at all? const bool have_subevents = _evgroup.size() > 1; if ( ! have_subevents ) { // simple replay of all tuple entries // each recorded fill is inserted into all persistent weightname histos for ( size_t m = 0; m < _persistent.size(); ++m ) for ( const auto & f : _evgroup[0]->fills() ) _persistent[m]->fill( f.first, f.second * weight[0][m] ); } else { // outer index is subevent, inner index is jets in the event vector>> linedUpXs = match_fills(_evgroup, {typename T::FillType(), 0.0}); commit( _persistent, linedUpXs, weight ); } _evgroup.clear(); _active.reset(); } template void Wrapper::pushToFinal() { for ( size_t m = 0; m < _persistent.size(); ++m ) { copyao(_persistent.at(m), _final.at(m)); if ( _final[m]->path().substr(0,4) == "/RAW" ) _final[m]->setPath(_final[m]->path().substr(4)); } } template <> void Wrapper::pushToPersistent(const vector >& weight) { for ( size_t m = 0; m < _persistent.size(); ++m ) { for ( size_t n = 0; n < _evgroup.size(); ++n ) { for ( const auto & f : _evgroup[n]->fills() ) { _persistent[m]->fill( f.second * weight[n][m] ); } } } _evgroup.clear(); _active.reset(); } template <> void Wrapper::pushToPersistent(const vector >& weight) { _evgroup.clear(); _active.reset(); } template <> void Wrapper::pushToPersistent(const vector >& weight) { _evgroup.clear(); _active.reset(); } template <> void Wrapper::pushToPersistent(const vector >& weight) { _evgroup.clear(); _active.reset(); } // explicitly instantiate all wrappers template class Wrapper; template class Wrapper; template class Wrapper; template class Wrapper; template class Wrapper; template class Wrapper; template class Wrapper; template class Wrapper; AOPath::AOPath(string fullpath) { - // First checck if This is a global system path + // First check if this is a global system path _path = fullpath; std::regex resys("^(/RAW)?/([^\\[/]+)(\\[(.+)\\])?$"); smatch m; _valid = regex_search(fullpath, m, resys); if ( _valid ) { _raw = (m[1] == "/RAW"); _name = m[2]; _weight = m[4]; return; } // If not, assume it is a normal analysis path. std::regex repath("^(/RAW)?(/REF)?/([^/:]+)(:[^/]+)?(/TMP)?/([^\\[]+)(\\[(.+)\\])?"); _valid = regex_search(fullpath, m, repath); if ( !_valid ) return; _raw = (m[1] == "/RAW"); _ref = (m[2] == "/REF"); _analysis = m[3]; _optionstring = m[4]; _tmp = (m[5] == "/TMP"); _name = m[6]; _weight = m[8]; std::regex reopt(":([^=]+)=([^:]+)"); string s = _optionstring; while ( regex_search(s, m, reopt) ) { _options[m[1]] = m[2]; s = m.suffix(); } } void AOPath::fixOptionString() { ostringstream oss; for ( auto optval : _options ) oss << ":" << optval.first << "=" << optval.second; _optionstring = oss.str(); } string AOPath::mkPath() const { ostringstream oss; if ( isRaw() ) oss << "/RAW"; else if ( isRef() ) oss << "/REF"; if ( _analysis != "" ) oss << "/" << analysis(); for ( auto optval : _options ) oss << ":" << optval.first << "=" << optval.second; if ( isTmp() ) oss << "/TMP"; oss << "/" << name(); if ( weight() != "" ) oss << "[" << weight() << "]"; return oss.str(); } void AOPath::debug() const { cout << "Full path: " << _path << endl; if ( !_valid ) { cout << "This is not a valid analysis object path" << endl << endl; return; } cout << "Check path: " << mkPath() << endl; cout << "Analysis: " << _analysis << endl; cout << "Name: " << _name << endl; cout << "Weight: " << _weight << endl; cout << "Properties: "; if ( _raw ) cout << "raw "; if ( _tmp ) cout << "tmp "; if ( _ref ) cout << "ref "; cout << endl; cout << "Options: "; for ( auto opt : _options ) cout << opt.first << "->" << opt.second << " "; cout << endl << endl; } }