diff --git a/src/Core/AnalysisHandler.cc b/src/Core/AnalysisHandler.cc --- a/src/Core/AnalysisHandler.cc +++ b/src/Core/AnalysisHandler.cc @@ -1,596 +1,598 @@ // -*- C++ -*- #include "Rivet/Config/RivetCommon.hh" #include "Rivet/AnalysisHandler.hh" #include "Rivet/Analysis.hh" #include "Rivet/Tools/ParticleName.hh" #include "Rivet/Tools/BeamConstraint.hh" #include "Rivet/Tools/Logging.hh" #include "Rivet/Projections/Beam.hh" #include "YODA/IO.h" namespace Rivet { AnalysisHandler::AnalysisHandler(const string& runname) : _runname(runname), _eventcounter("/_EVTCOUNT"), _xs(NAN), _xserr(NAN), _initialised(false), _ignoreBeams(false), _dumpPeriod(0), _dumping(0) { } AnalysisHandler::~AnalysisHandler() - { } + { + static bool printed = false; + // Print out MCnet boilerplate + if (!printed && getLog().getLevel() <= 20) { + cout << endl; + cout << "The MCnet usage guidelines apply to Rivet: see http://www.montecarlonet.org/GUIDELINES" << endl; + cout << "Please acknowledge plots made with Rivet analyses, and cite arXiv:1003.0694 (http://arxiv.org/abs/1003.0694)" << endl; + printed = true; + } + } Log& AnalysisHandler::getLog() const { return Log::getLog("Rivet.Analysis.Handler"); } void AnalysisHandler::init(const GenEvent& ge) { if (_initialised) throw UserError("AnalysisHandler::init has already been called: cannot re-initialize!"); setRunBeams(Rivet::beams(ge)); MSG_DEBUG("Initialising the analysis handler"); _eventcounter.reset(); // Check that analyses are beam-compatible, and remove those that aren't const size_t num_anas_requested = analysisNames().size(); vector anamestodelete; for (const AnaHandle a : analyses()) { if (!_ignoreBeams && !a->isCompatible(beams())) { //MSG_DEBUG(a->name() << " requires beams " << a->requiredBeams() << " @ " << a->requiredEnergies() << " GeV"); anamestodelete.push_back(a->name()); } } for (const string& aname : anamestodelete) { MSG_WARNING("Analysis '" << aname << "' is incompatible with the provided beams: removing"); removeAnalysis(aname); } if (num_anas_requested > 0 && analysisNames().empty()) { cerr << "All analyses were incompatible with the first event's beams\n" << "Exiting, since this probably wasn't intentional!" << endl; exit(1); } // Warn if any analysis' status is not unblemished for (const AnaHandle a : analyses()) { if ( a->info().preliminary() ) { MSG_WARNING("Analysis '" << a->name() << "' is preliminary: be careful, it may change and/or be renamed!"); } else if ( a->info().obsolete() ) { MSG_WARNING("Analysis '" << a->name() << "' is obsolete: please update!"); } else if (( a->info().unvalidated() ) ) { MSG_WARNING("Analysis '" << a->name() << "' is unvalidated: be careful, it may be broken!"); } } // Initialize the remaining analyses for (AnaHandle a : analyses()) { MSG_DEBUG("Initialising analysis: " << a->name()); try { // Allow projection registration in the init phase onwards a->_allowProjReg = true; a->init(); //MSG_DEBUG("Checking consistency of analysis: " << a->name()); //a->checkConsistency(); } catch (const Error& err) { cerr << "Error in " << a->name() << "::init method: " << err.what() << endl; exit(1); } MSG_DEBUG("Done initialising analysis: " << a->name()); } _initialised = true; MSG_DEBUG("Analysis handler initialised"); } void AnalysisHandler::analyze(const GenEvent& ge) { // Call init with event as template if not already initialised if (!_initialised) init(ge); assert(_initialised); // Ensure that beam details match those from the first event (if we're checking beams) if ( !_ignoreBeams ) { const PdgIdPair beams = Rivet::beamIds(ge); const double sqrts = Rivet::sqrtS(ge); if (!compatible(beams, _beams) || !fuzzyEquals(sqrts, sqrtS())) { cerr << "Event beams mismatch: " << PID::toBeamsString(beams) << " @ " << sqrts/GeV << " GeV" << " vs. first beams " << this->beams() << " @ " << this->sqrtS()/GeV << " GeV" << endl; exit(1); } } // Create the Rivet event wrapper /// @todo Filter/normalize the event here bool strip = ( getEnvParam("RIVET_STRIP_HEPMC", string("NOOOO") ) != "NOOOO" ); Event event(ge, strip); // Weights /// @todo Drop this / just report first weight when we support multiweight events _eventcounter.fill(event.weight()); MSG_DEBUG("Event #" << _eventcounter.numEntries() << " weight = " << event.weight()); // Cross-section - + #if defined ENABLE_HEPMC_3 if (ge.cross_section()) { //@todo HepMC3::GenCrossSection methods aren't const accessible :( RivetHepMC::GenCrossSection gcs = *(event.genEvent()->cross_section()); _xs = gcs.xsec(); _xserr = gcs.xsec_err(); } #elif defined HEPMC_HAS_CROSS_SECTION if (ge.cross_section()) { _xs = ge.cross_section()->cross_section(); _xserr = ge.cross_section()->cross_section_error(); } #endif // Run the analyses for (AnaHandle a : analyses()) { MSG_TRACE("About to run analysis " << a->name()); try { a->analyze(event); } catch (const Error& err) { cerr << "Error in " << a->name() << "::analyze method: " << err.what() << endl; exit(1); } MSG_TRACE("Finished running analysis " << a->name()); } if ( _dumpPeriod > 0 && numEvents()%_dumpPeriod == 0 ) { MSG_INFO("Dumping intermediate results to " << _dumpFile << "."); _dumping = numEvents()/_dumpPeriod; finalize(); writeData(_dumpFile); _dumping = 0; } } void AnalysisHandler::analyze(const GenEvent* ge) { if (ge == nullptr) { MSG_ERROR("AnalysisHandler received null pointer to GenEvent"); //throw Error("AnalysisHandler received null pointer to GenEvent"); } analyze(*ge); } void AnalysisHandler::finalize() { if (!_initialised) return; // First we make copies of all analysis objects. map backupAOs; for (auto ao : getData(false, true, false) ) backupAOs[ao->path()] = AnalysisObjectPtr(ao->newclone()); // Now we run the (re-entrant) finalize() functions for all analyses. MSG_INFO("Finalising analyses"); for (AnaHandle a : analyses()) { a->setCrossSection(_xs); try { if ( !_dumping || a->info().reentrant() ) a->finalize(); else if ( _dumping == 1 ) MSG_INFO("Skipping finalize in periodic dump of " << a->name() << " as it is not declared reentrant."); } catch (const Error& err) { cerr << "Error in " << a->name() << "::finalize method: " << err.what() << endl; exit(1); } } // Now we copy all analysis objects to the list of finalized // ones, and restore the value to their original ones. _finalizedAOs.clear(); for ( auto ao : getData(false, false, false) ) _finalizedAOs.push_back(AnalysisObjectPtr(ao->newclone())); for ( auto ao : getData(false, true, false) ) { // TODO: This should be possible to do in a nicer way, with a flag etc. if (ao->path().find("/FINAL") != std::string::npos) continue; auto aoit = backupAOs.find(ao->path()); if ( aoit == backupAOs.end() ) { AnaHandle ana = analysis(split(ao->path(), "/")[0]); if ( ana ) ana->removeAnalysisObject(ao->path()); } else copyao(aoit->second, ao); } // Print out number of events processed const int nevts = _eventcounter.numEntries(); MSG_INFO("Processed " << nevts << " event" << (nevts != 1 ? "s" : "")); // // Delete analyses // MSG_DEBUG("Deleting analyses"); // _analyses.clear(); - - // Print out MCnet boilerplate - if (getLog().getLevel()<=20){ - cout << endl; - cout << "The MCnet usage guidelines apply to Rivet: see http://www.montecarlonet.org/GUIDELINES" << endl; - cout << "Please acknowledge plots made with Rivet analyses, and cite arXiv:1003.0694 (http://arxiv.org/abs/1003.0694)" << endl; - } } AnalysisHandler& AnalysisHandler::addAnalysis(const string& analysisname, std::map pars) { // Make an option handle. std::string parHandle = ""; for (map::iterator par = pars.begin(); par != pars.end(); ++par) { parHandle +=":"; parHandle += par->first + "=" + par->second; } return addAnalysis(analysisname + parHandle); } AnalysisHandler& AnalysisHandler::addAnalysis(const string& analysisname) { // Check for a duplicate analysis /// @todo Might we want to be able to run an analysis twice, with different params? /// Requires avoiding histo tree clashes, i.e. storing the histos on the analysis objects. string ananame = analysisname; vector anaopt = split(analysisname, ":"); if ( anaopt.size() > 1 ) ananame = anaopt[0]; AnaHandle analysis( AnalysisLoader::getAnalysis(ananame) ); if (analysis.get() != 0) { // < Check for null analysis. MSG_DEBUG("Adding analysis '" << analysisname << "'"); map opts; for ( int i = 1, N = anaopt.size(); i < N; ++i ) { vector opt = split(anaopt[i], "="); if ( opt.size() != 2 ) { MSG_WARNING("Error in option specification. Skipping analysis " << analysisname); return *this; } if ( !analysis->info().validOption(opt[0], opt[1]) ) { MSG_WARNING("Cannot set option '" << opt[0] << "' to '" << opt[1] << "'. Skipping analysis " << analysisname); return *this; } opts[opt[0]] = opt[1]; } for ( auto opt: opts) { analysis->_options[opt.first] = opt.second; analysis->_optstring += ":" + opt.first + "=" + opt.second; } for (const AnaHandle& a : analyses()) { if (a->name() == analysis->name() ) { MSG_WARNING("Analysis '" << analysisname << "' already registered: skipping duplicate"); return *this; } } analysis->_analysishandler = this; _analyses[analysisname] = analysis; } else { MSG_WARNING("Analysis '" << analysisname << "' not found."); } // MSG_WARNING(_analyses.size()); // for (const AnaHandle& a : _analyses) MSG_WARNING(a->name()); return *this; } AnalysisHandler& AnalysisHandler::removeAnalysis(const string& analysisname) { // std::shared_ptr toremove; // for (const AnaHandle a : _analyses) { // if (a->name() == analysisname) { // toremove = a; // break; // } // } // if (toremove.get() != 0) { MSG_DEBUG("Removing analysis '" << analysisname << "'"); if (_analyses.find(analysisname) != _analyses.end()) _analyses.erase(analysisname); // } return *this; } ///////////////////////////// void AnalysisHandler::addData(const std::vector& aos) { for (const AnalysisObjectPtr ao : aos) { string path = ao->path(); if ( path.substr(0, 5) != "/RAW/" ) { _orphanedPreloads.push_back(ao); continue; } path = path.substr(4); ao->setPath(path); if (path.size() > 1) { // path > "/" try { const string ananame = split(path, "/")[0]; AnaHandle a = analysis(ananame); a->addAnalysisObject(ao); /// @todo Need to statistically merge... } catch (const Error& e) { MSG_TRACE("Adding analysis object " << path << " to the list of orphans."); _orphanedPreloads.push_back(ao); } } } } void AnalysisHandler::stripOptions(AnalysisObjectPtr ao, const vector & delopts) const { string path = ao->path(); string ananame = split(path, "/")[0]; vector anaopts = split(ananame, ":"); for ( int i = 1, N = anaopts.size(); i < N; ++i ) for ( auto opt : delopts ) if ( opt == "*" || anaopts[i].find(opt + "=") == 0 ) path.replace(path.find(":" + anaopts[i]), (":" + anaopts[i]).length(), ""); ao->setPath(path); } void AnalysisHandler:: mergeYodas(const vector & aofiles, const vector & delopts, bool equiv) { vector< vector > aosv; vector xsecs; vector xsecerrs; vector sows; set ananames; _eventcounter.reset(); // First scan all files and extract analysis objects and add the // corresponding anayses.. for ( auto file : aofiles ) { Scatter1DPtr xsec; CounterPtr sow; // For each file make sure that cross section and sum-of-weights // objects are present and stor all RAW ones in a vector; vector aos; try { /// @todo Use new YODA SFINAE to fill the smart ptr vector directly vector aos_raw; YODA::read(file, aos_raw); for (AnalysisObject* aor : aos_raw) { AnalysisObjectPtr ao = AnalysisObjectPtr(aor); if ( ao->path().substr(0, 5) != "/RAW/" ) continue; ao->setPath(ao->path().substr(4)); if ( ao->path() == "/_XSEC" ) xsec = dynamic_pointer_cast(ao); else if ( ao->path() == "/_EVTCOUNT" ) sow = dynamic_pointer_cast(ao); else { stripOptions(ao, delopts); string ananame = split(ao->path(), "/")[0]; if ( ananames.insert(ananame).second ) addAnalysis(ananame); aos.push_back(ao); } } if ( !xsec || !sow ) { MSG_ERROR( "Error in AnalysisHandler::mergeYodas: The file " << file << " did not contain weights and cross section info."); exit(1); } xsecs.push_back(xsec->point(0).x()); xsecerrs.push_back(sqr(xsec->point(0).xErrAvg())); _eventcounter += *sow; sows.push_back(sow); aosv.push_back(aos); } catch (...) { //< YODA::ReadError& throw UserError("Unexpected error in reading file: " + file); } } // Now calculate the scale to be applied for all bins in a file // and get the common cross section and sum of weights. _xs = _xserr = 0.0; for ( int i = 0, N = sows.size(); i < N; ++i ) { double effnent = sows[i]->effNumEntries(); _xs += (equiv? effnent: 1.0)*xsecs[i]; _xserr += (equiv? sqr(effnent): 1.0)*xsecerrs[i]; } vector scales(sows.size(), 1.0); if ( equiv ) { _xs /= _eventcounter.effNumEntries(); _xserr = sqrt(_xserr)/_eventcounter.effNumEntries(); } else { _xserr = sqrt(_xserr); for ( int i = 0, N = sows.size(); i < N; ++i ) scales[i] = (_eventcounter.sumW()/sows[i]->sumW())*(xsecs[i]/_xs); } // Initialize the analyses allowing them to book analysis objects. for (AnaHandle a : analyses()) { MSG_DEBUG("Initialising analysis: " << a->name()); if ( !a->info().reentrant() ) MSG_WARNING("Analysis " << a->name() << " has not been validated to have " << "a reentrant finalize method. The result is unpredictable."); try { // Allow projection registration in the init phase onwards a->_allowProjReg = true; cerr << "sqrtS " << sqrtS() << endl; a->init(); //MSG_DEBUG("Checking consistency of analysis: " << a->name()); //a->checkConsistency(); } catch (const Error& err) { cerr << "Error in " << a->name() << "::init method: " << err.what() << endl; exit(1); } MSG_DEBUG("Done initialising analysis: " << a->name()); } _initialised = true; // Get a list of all anaysis objects to handle. map current; for ( auto ao : getData(false, true, false) ) current[ao->path()] = ao; // Go through all objects to be merged and add them to current // after appropriate scaling. for ( int i = 0, N = aosv.size(); i < N; ++i) for ( auto ao : aosv[i] ) { if ( ao->path() == "/_XSEC" || ao->path() == "_EVTCOUNT" ) continue; auto aoit = current.find(ao->path()); if ( aoit == current.end() ) { MSG_WARNING("" << ao->path() << " was not properly booked."); continue; } if ( !addaos(aoit->second, ao, scales[i]) ) MSG_WARNING("Cannot merge objects with path " << ao->path() <<" of type " << ao->annotation("Type") ); } // Now we can simply finalize() the analysis, leaving the // controlling program to write it out some yoda-file. finalize(); } void AnalysisHandler::readData(const string& filename) { vector aos; try { /// @todo Use new YODA SFINAE to fill the smart ptr vector directly vector aos_raw; YODA::read(filename, aos_raw); for (AnalysisObject* aor : aos_raw) aos.push_back(AnalysisObjectPtr(aor)); } catch (...) { //< YODA::ReadError& throw UserError("Unexpected error in reading file: " + filename); } if (!aos.empty()) addData(aos); } vector AnalysisHandler:: getData(bool includeorphans, bool includetmps, bool usefinalized) const { vector rtn; // Event counter rtn.push_back( make_shared(_eventcounter) ); // Cross-section + err as scatter YODA::Scatter1D::Points pts; pts.insert(YODA::Point1D(_xs, _xserr)); rtn.push_back( make_shared(pts, "/_XSEC") ); // Analysis histograms vector aos; if (usefinalized) aos = _finalizedAOs; else { for (const AnaHandle a : analyses()) { // MSG_WARNING(a->name() << " " << aos.size()); for (const AnalysisObjectPtr ao : a->analysisObjects()) { aos.push_back(ao); } } } for (const AnalysisObjectPtr ao : aos) { // Exclude paths from final write-out if they contain a "TMP" layer (i.e. matching "/TMP/") /// @todo This needs to be much more nuanced for re-entrant histogramming if ( !includetmps && ao->path().find("/TMP/" ) != string::npos) continue; rtn.push_back(ao); } // Sort histograms alphanumerically by path before write-out sort(rtn.begin(), rtn.end(), [](AnalysisObjectPtr a, AnalysisObjectPtr b) {return a->path() < b->path();}); if ( includeorphans ) rtn.insert(rtn.end(), _orphanedPreloads.begin(), _orphanedPreloads.end()); return rtn; } void AnalysisHandler::writeData(const string& filename) const { vector out = _finalizedAOs; set finalana; for ( auto ao : out) finalana.insert(ao->path()); out.reserve(2*out.size()); vector aos = getData(false, true, false); if ( _dumping ) { for ( auto ao : aos ) { if ( finalana.find(ao->path()) == finalana.end() ) out.push_back(AnalysisObjectPtr(ao->newclone())); } } for ( auto ao : aos ) { ao = AnalysisObjectPtr(ao->newclone()); ao->setPath("/RAW" + ao->path()); out.push_back(ao); } try { YODA::write(filename, out.begin(), out.end()); } catch (...) { //< YODA::WriteError& throw UserError("Unexpected error in writing file: " + filename); } } std::vector AnalysisHandler::analysisNames() const { std::vector rtn; for (AnaHandle a : analyses()) { rtn.push_back(a->name()); } return rtn; } AnalysisHandler& AnalysisHandler::addAnalyses(const std::vector& analysisnames) { for (const string& aname : analysisnames) { //MSG_DEBUG("Adding analysis '" << aname << "'"); addAnalysis(aname); } return *this; } AnalysisHandler& AnalysisHandler::removeAnalyses(const std::vector& analysisnames) { for (const string& aname : analysisnames) { removeAnalysis(aname); } return *this; } bool AnalysisHandler::needCrossSection() const { bool rtn = false; for (const AnaHandle a : analyses()) { if (!rtn) rtn = a->needsCrossSection(); if (rtn) break; } return rtn; } AnalysisHandler& AnalysisHandler::setCrossSection(double xs, double xserr) { _xs = xs; _xserr = xserr; return *this; } bool AnalysisHandler::hasCrossSection() const { return (!std::isnan(crossSection())); } AnalysisHandler& AnalysisHandler::addAnalysis(Analysis* analysis) { analysis->_analysishandler = this; // _analyses.insert(AnaHandle(analysis)); _analyses[analysis->name()] = AnaHandle(analysis); return *this; } PdgIdPair AnalysisHandler::beamIds() const { return Rivet::beamIds(beams()); } double AnalysisHandler::sqrtS() const { return Rivet::sqrtS(beams()); } void AnalysisHandler::setIgnoreBeams(bool ignore) { _ignoreBeams=ignore; } }