diff --git a/analyses/pluginALICE/ALICE_2014_I1244523.cc b/analyses/pluginALICE/ALICE_2014_I1244523.cc --- a/analyses/pluginALICE/ALICE_2014_I1244523.cc +++ b/analyses/pluginALICE/ALICE_2014_I1244523.cc @@ -1,285 +1,279 @@ // -*- C++ -*- #include "Rivet/Projections/CentralityProjection.hh" #include "Rivet/Projections/AliceCommon.hh" #include "Rivet/Tools/AliceCommon.hh" #include "Rivet/Tools/Cuts.hh" namespace Rivet { /// @brief Identified particles in p--Pb @ 5 TeV class ALICE_2014_I1244523 : public Analysis { public: /// Constructor DEFAULT_RIVET_ANALYSIS_CTOR(ALICE_2014_I1244523); /// @name Analysis methods //@{ int profileIndex(vector cBins, double c) { int index = 100; if (c > 0 && c <= cBins[0]) return cBins.size() - 1; for (size_t i = 0; i < cBins.size() - 1; ++i) { if (c > cBins[i] && c <= cBins[i + 1]) { index = i; break; } } // Catch low fluctuation. return max(0, int(cBins.size() - index - 2)); } void scaleHisto(Histo1DPtr h) { vector& bins = h->bins(); for (vector::iterator b = bins.begin(); b != bins.end(); ++b) { b->scaleW(1./b->width()/b->xMid()); } } /// Book histograms and initialise projections before the run void init() { // The centrality projection. declareCentrality(ALICE::V0AMultiplicity(), "ALICE_2015_PPBCentrality", "V0A", "V0A"); // Define the cuts for the analysis: // pPb Collision has a centre of mass system shift of +0.465 // They study -0.5 < yCoM < 0.0 -> -0.035 < y < 0.465 const Cut& cut = Cuts::rap < 0.035 && Cuts::rap > -0.465; //const Cut& cut = Cuts::rap > -0.035 && Cuts::rap < 0.465; const ALICE::PrimaryParticles fs(cut); addProjection(fs,"FS"); // The event trigger. declare(ALICE::V0AndTrigger(), "V0-AND"); // The centrality bins centralityBins = {5.,10.,20.,40.,60.,80.,100.}; for (int i = 0; i < 4; ++i) { // First we book the invariant spectra. _histPipT[centralityBins[i]] = bookHisto1D(1, 1, 1 + i); if (i < 3) _histPipT[centralityBins[i + 4]] = bookHisto1D(2, 1, 1 + i); _histKpT[centralityBins[i]] = bookHisto1D(3, 1, 1 + i); if (i < 3) _histKpT[centralityBins[i + 4]] = bookHisto1D(4, 1, 1 + i); _histK0SpT[centralityBins[i]] = bookHisto1D(5, 1, 1 + i); if (i < 3) _histK0SpT[centralityBins[i + 4]] = bookHisto1D(6, 1, 1 + i); _histProtonpT[centralityBins[i]] = bookHisto1D(7, 1, 1 + i); if (i < 3) _histProtonpT[centralityBins[i + 4]] = bookHisto1D(8, 1, 1 + i); _histLambdapT[centralityBins[i]] = bookHisto1D(9, 1, 1 + i); if (i < 3) _histLambdapT[centralityBins[i + 4]] = bookHisto1D(10, 1, 1 + i); // The associated sow counters. - _sow[centralityBins[i]] = bookCounter("TMP/sow"); - if (i < 3) _sow[centralityBins[i + 4]] = bookCounter("TMP/sow"); + _sow[centralityBins[i]] = bookCounter("TMP/sow" + toString(i)); + if (i < 3) _sow[centralityBins[i + 4]] = bookCounter("TMP/sow" + toString(i + 4)); // Then the pi spectra going into the centrality dependent pT ratios. - _tmpPi4KpT[centralityBins[i]] = bookHisto1D("TMP/NPi4K", refData(11, 1, 1 + i)); - if (i < 3) _tmpPi4KpT[centralityBins[i + 4]] = bookHisto1D("TMP/NPi4K", refData(12, 1, 1 + i)); - _tmpPi4PpT[centralityBins[i]] = bookHisto1D("TMP/NPi4P", refData(13, 1, 1 + i)); - if (i < 3) _tmpPi4PpT[centralityBins[i + 4]] = bookHisto1D("TMP/NPi4P", refData(14, 1, 1 + i)); - _tmpK4LpT[centralityBins[i]] = bookHisto1D("TMP/NK4L", refData(15, 1, 1 + i)); - if (i < 3) _tmpK4LpT[centralityBins[i + 4]] = bookHisto1D("TMP/NK4L", refData(16, 1, 1 + i)); + _tmpPi4KpT[centralityBins[i]] = bookHisto1D("TMP/NPi4K" + toString(i), refData(11, 1, 1 + i)); + if (i < 3) _tmpPi4KpT[centralityBins[i + 4]] = bookHisto1D("TMP/NPi4K" + toString(i + 4), refData(12, 1, 1 + i)); + _tmpPi4PpT[centralityBins[i]] = bookHisto1D("TMP/NPi4P" + toString(i), refData(13, 1, 1 + i)); + if (i < 3) _tmpPi4PpT[centralityBins[i + 4]] = bookHisto1D("TMP/NPi4P" + toString(i + 4), refData(14, 1, 1 + i)); + _tmpK4LpT[centralityBins[i]] = bookHisto1D("TMP/NK4L" + toString(i), refData(15, 1, 1 + i)); + if (i < 3) _tmpK4LpT[centralityBins[i + 4]] = bookHisto1D("TMP/NK4L" + toString(i + 4), refData(16, 1, 1 + i)); // Then the rest of the spectra going into the cent. dep't pT ratios. - _tmpKpT[centralityBins[i]] = bookHisto1D("TMP/NK", refData(11, 1, 1 + i)); - if (i < 3) _tmpKpT[centralityBins[i + 4]] = bookHisto1D("TMP/NK", refData(12, 1, 1 + i)); - _tmpProtonpT[centralityBins[i]] = bookHisto1D("TMP/NP", refData(13, 1, 1 + i)); - if (i < 3) _tmpProtonpT[centralityBins[i + 4]] = bookHisto1D("TMP/NP", refData(14, 1, 1 + i)); - _tmpLambdapT[centralityBins[i]] = bookHisto1D("TMP/NL", refData(15, 1, 1 + i)); - if (i < 3) _tmpLambdapT[centralityBins[i + 4]] = bookHisto1D("TMP/NL", refData(16, 1, 1 + i)); + _tmpKpT[centralityBins[i]] = bookHisto1D("TMP/NK" + toString(i), refData(11, 1, 1 + i)); + if (i < 3) _tmpKpT[centralityBins[i + 4]] = bookHisto1D("TMP/NK" + toString(i + 4), refData(12, 1, 1 + i)); + _tmpProtonpT[centralityBins[i]] = bookHisto1D("TMP/NP" + toString(i), refData(13, 1, 1 + i)); + if (i < 3) _tmpProtonpT[centralityBins[i + 4]] = bookHisto1D("TMP/NP" + toString(i + 4), refData(14, 1, 1 + i)); + _tmpLambdapT[centralityBins[i]] = bookHisto1D("TMP/NL" + toString(i), refData(15, 1, 1 + i)); + if (i < 3) _tmpLambdapT[centralityBins[i + 4]] = bookHisto1D("TMP/NL" + toString(i + 4), refData(16, 1, 1 + i)); // Then the centrality dependent pT ratios. _ratioKPi[centralityBins[i]] = bookScatter2D(11, 1, 1 + i, true); if (i < 3) _ratioKPi[centralityBins[i + 4]] = bookScatter2D(12, 1, 1 + i, true); _ratioPPi[centralityBins[i]] = bookScatter2D(13, 1, 1 + i, true); if (i < 3) _ratioPPi[centralityBins[i + 4]] = bookScatter2D(14, 1, 1 + i, true); _ratioLK[centralityBins[i]] = bookScatter2D(15, 1, 1 + i, true); if (i < 3) _ratioLK[centralityBins[i + 4]] = bookScatter2D(16, 1, 1 + i, true); } // Mean pT vs. multiplicity class. _histLambdaMeanpT = bookProfile1D(17, 1, 1); _histProtonMeanpT = bookProfile1D(18, 1, 1); _histK0SMeanpT = bookProfile1D(19, 1, 1); _histKMeanpT = bookProfile1D(20, 1, 1); _histPiMeanpT = bookProfile1D(21, 1, 1); // Yield ratios. _histKtoPiYield = bookScatter2D(22, 1, 1, true); _histProtontoPiYield = bookScatter2D(22, 1, 2, true); _histLambdatoPiYield = bookScatter2D(22, 1, 3, true); - // Yields going into the yield ratios. - /*_histKYield = bookProfile1D("TMP/KY", refData(22,1,1)); + _histKYield = bookProfile1D("TMP/KY", refData(22,1,1)); _histProtonYield = bookProfile1D("TMP/PrY",refData(22,1,2)); _histLambdaYield = bookProfile1D("TMP/LY", refData(22,1,3)); _histPiYield = bookProfile1D("TMP/PiY",refData(22,1,1)); - _histK0SYield = bookProfile1D("TMP/KSY",refData(22,1,3)); - */ - _histKYield = bookProfile1D("KY", refData(22,1,1)); - _histProtonYield = bookProfile1D("PrY",refData(22,1,2)); - _histLambdaYield = bookProfile1D("LY", refData(22,1,3)); - _histPiYield = bookProfile1D("PiY",refData(22,1,1)); - _histPi4LYield = bookProfile1D("PiLY",refData(22,1,3)); // HepData entry is wrong -- look in the paper. + _histPi4LYield = bookProfile1D("TMP/PiLY",refData(22,1,3)); // HepData entry is wrong -- look in the paper. } /// Perform the per-event analysis void analyze(const Event& event) { const double weight = event.weight(); // Event trigger. if (!apply(event, "V0-AND")() ) vetoEvent; // Centrality const CentralityProjection& cent = apply(event,"V0A"); double c = cent(); // Find the index for the profiles. int index = profileIndex(centralityBins, c); // Find the correct histograms // all the pion histos auto pi1Itr = _histPipT.upper_bound(c); // Test the first one. if (pi1Itr == _histPipT.end()) return; auto pi2Itr = _tmpPi4KpT.upper_bound(c); auto pi3Itr = _tmpPi4PpT.upper_bound(c); // Then the rest auto kItr = _histKpT.upper_bound(c); auto k0Itr = _histK0SpT.upper_bound(c); auto krItr = _tmpKpT.upper_bound(c); auto klItr = _tmpK4LpT.upper_bound(c); auto pItr = _histProtonpT.upper_bound(c); auto prItr = _tmpProtonpT.upper_bound(c); auto lItr = _histLambdapT.upper_bound(c); auto lrItr = _tmpLambdapT.upper_bound(c); // And the sow auto sowItr = _sow.upper_bound(c); sowItr->second->fill(weight); + const ALICE::PrimaryParticles& fs = apply(event,"FS"); // Count number of particles for yields. int npi = 0, nk = 0, np = 0, nlam = 0; for(auto p : fs.particles()) { const double pT = p.pT(); const int pid = abs(p.pid()); const double nW = weight / M_PI / pT; // Dividing and multiplying by 2 because dy. if (pid == 211) { // pi+/- ++npi; pi1Itr->second->fill(pT, nW); pi2Itr->second->fill(pT, weight); pi3Itr->second->fill(pT, weight); _histPiMeanpT->fillBin(index, pT, weight); } else if (pid == 321) { // K +/- ++nk; kItr->second->fill(pT, nW); krItr->second->fill(pT, weight); _histKMeanpT->fillBin(index, pT, weight); } else if (pid == 310) { // K0S k0Itr->second->fill(pT, nW); klItr->second->fill(pT, weight); _histK0SMeanpT->fillBin(index, pT, weight); } else if (pid == 2212) { // p + pbar ++np; pItr->second->fill(pT, nW); prItr->second->fill(pT, weight); _histProtonMeanpT->fillBin(index, pT, weight); } else if (pid == 3122) { // Lambda + Lambdabar ++nlam; lItr->second->fill(pT, nW); lrItr->second->fill(pT, weight); _histLambdaMeanpT->fillBin(index, pT, weight); } } // Fill the yield profiles. _histKYield->fillBin(index, double(nk), weight); _histPi4LYield->fillBin(index, double(npi), weight); _histProtonYield->fillBin(index, double(np), weight); _histPiYield->fillBin(index, double(npi), weight); _histLambdaYield->fillBin(index, double(nlam), weight); } /// Normalise histograms etc., after the run void finalize() { // Loop over centrality classes. for (int i = 0; i < 7; i++){ // Normalize the spectra. _histPipT[centralityBins[i]]->scaleW(1./_sow[centralityBins[i]]->sumW()); _histKpT[centralityBins[i]]->scaleW(1./_sow[centralityBins[i]]->sumW()); _histK0SpT[centralityBins[i]]->scaleW(1./_sow[centralityBins[i]]->sumW()); _histProtonpT[centralityBins[i]]->scaleW(1./_sow[centralityBins[i]]->sumW()); _histLambdapT[centralityBins[i]]->scaleW(1./_sow[centralityBins[i]]->sumW()); // Make the pT ratios. divide(_tmpKpT[centralityBins[i]], _tmpPi4KpT[centralityBins[i]], _ratioKPi[centralityBins[i]]); divide(_tmpProtonpT[centralityBins[i]], _tmpPi4PpT[centralityBins[i]], _ratioPPi[centralityBins[i]]); divide(_tmpLambdapT[centralityBins[i]], _tmpK4LpT[centralityBins[i]], _ratioLK[centralityBins[i]]); } divide(_histKYield, _histPiYield, _histKtoPiYield); divide(_histProtonYield, _histPiYield, _histProtontoPiYield); divide(_histLambdaYield, _histPi4LYield, _histLambdatoPiYield); } //@} private: vector centralityBins; // pT spectra (separated by multiplicity classes) map _histPipT; map _histKpT; map _histK0SpT; map _histProtonpT; map _histLambdapT; // Associated sum of weights. map _sow; // pT spectra for ratios. map _tmpPi4KpT; map _tmpPi4PpT; map _tmpK4LpT; map _tmpKpT; map _tmpProtonpT; map _tmpLambdapT; // The acual ratios. map _ratioKPi; map _ratioPPi; map _ratioLK; // Mean pT vs. Multiplicity Profile1DPtr _histKMeanpT; Profile1DPtr _histK0SMeanpT; Profile1DPtr _histProtonMeanpT; Profile1DPtr _histLambdaMeanpT; Profile1DPtr _histPiMeanpT; // Total yields Profile1DPtr _histKYield; Profile1DPtr _histProtonYield; Profile1DPtr _histLambdaYield; Profile1DPtr _histPiYield; Profile1DPtr _histPi4LYield; // Yield ratios. Scatter2DPtr _histKtoPiYield; Scatter2DPtr _histProtontoPiYield; Scatter2DPtr _histLambdatoPiYield; }; // The hook for the plugin system DECLARE_RIVET_PLUGIN(ALICE_2014_I1244523); } diff --git a/analyses/pluginALICE/ALICE_2014_I1244523.info b/analyses/pluginALICE/ALICE_2014_I1244523.info --- a/analyses/pluginALICE/ALICE_2014_I1244523.info +++ b/analyses/pluginALICE/ALICE_2014_I1244523.info @@ -1,46 +1,48 @@ Name: ALICE_2014_I1244523 Year: 2014 Summary: Multiplicity Dependence of Pion, Kaon, Proton and Lambda Production in p--Pb Collisions at 5.02 TeV/nn Experiment: ALICE Collider: LHC SpiresID: 1244523 Status: UNVALIDATED Authors: - Johannes Bellm - Christian Bierlich - Cody B Duncan - Patrick Kirchgaesser References: - Phys.Lett. B728 (2014) 25-38 - 10.1016/j.physletb.2013.11.020 - arXiv:1307.6796 [nucl-ex] RunInfo: Hadron multiplicity studies in proton-lead collisions at $\sqrt{s} = 5.02\;\TeV$ NeedCrossSection: no Options: - cent=REF,GEN,IMP,USR Beams: [2212,1000822080] Energies: [[4000,326560]] Description: - 'This is an ALICE analysis where charged particle species have been measured - and plotted against the multiplicity of the corresponding proton-lead event.' + 'Identified baryons and mesons plotted in invariant pT spectra as well as average pT and yield ratios. + The measurements are done in centrality classes, and one must apply centrality selection by + first running the ALICE pB centrality calibration analysis and preloading the produced histograms. + No generator level cut on particle life time should be applied.' BibKey: -BibTeX: '@article{Abelev:2013haa, +BibTeX: '@article{Abelev:2013haa, author = "Abelev, Betty Bezverkhny and others", title = "{Multiplicity Dependence of Pion, Kaon, Proton and Lambda Production in p-Pb Collisions at $\sqrt{s_{NN}}$ = 5.02 TeV}", collaboration = "ALICE", journal = "Phys. Lett.", volume = "B728", year = "2014", pages = "25-38", doi = "10.1016/j.physletb.2013.11.020", eprint = "1307.6796", archivePrefix = "arXiv", primaryClass = "nucl-ex", reportNumber = "CERN-PH-EP-2013-135", SLACcitation = "%%CITATION = ARXIV:1307.6796;%%" }' ToDo: - Implement the analysis, test it, remove this ToDo, and mark as VALIDATED :-) diff --git a/analyses/pluginALICE/ALICE_2014_I1244523.plot b/analyses/pluginALICE/ALICE_2014_I1244523.plot --- a/analyses/pluginALICE/ALICE_2014_I1244523.plot +++ b/analyses/pluginALICE/ALICE_2014_I1244523.plot @@ -1,382 +1,387 @@ #BEGIN PLOT /ALICE_2014_I1244523/d01-x01-y01 Title=$\pi^{\pm} p_\perp$, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 0-5\% XLabel=$p_{\rm T}$ (GeV/$c$) #END PLOT #BEGIN PLOT /ALICE_2014_I1244523/d01-x01-y02 Title=$\pi^{\pm} p_\perp$, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 5-10\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] #END PLOT #BEGIN PLOT /ALICE_2014_I1244523/d01-x01-y03 Title=$\pi^{\pm} p_\perp$, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 10-20\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] #END PLOT BEGIN PLOT /ALICE_2014_I1244523/d01-x01-y04 Title=$\pi^{\pm} p_\perp$, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 20-40\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d02-x01-y01 Title=$\pi^{\pm} p_\perp$, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 40-60\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d02-x01-y02 Title=$\pi^{\pm} p_\perp$, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 60-80\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d02-x01-y03 Title=$\pi^{\pm} p_\perp$, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 80-100\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d03-x01-y01 Title=$K^{\pm} p_\perp$, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 0-5\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d03-x01-y02 Title=$K^{\pm} p_\perp$, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 5-10\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d03-x01-y03 Title=$K^{\pm} p_\perp$, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 10-20\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d03-x01-y04 Title=$K^{\pm} p_\perp$, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 20-40\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d04-x01-y01 Title=$K^{\pm} p_\perp$, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 40-60\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d04-x01-y02 Title=$K^{\pm} p_\perp$, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 60-80\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d04-x01-y03 Title=$K^{\pm} p_\perp$, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 80-100\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d05-x01-y01 Title=$K_{\rm S}^0 p_\perp$, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 0-5\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d05-x01-y02 Title=$K_{\rm S}^0 p_\perp$, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 5-10\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d05-x01-y03 Title=$K_{\rm S}^0 p_\perp$, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 10-20\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d05-x01-y04 Title=$K_{\rm S}^0 p_\perp$, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 20-40\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d06-x01-y01 -Title=$K_{\rm S}^0$ pT-differential yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 40-60\% +Title=$K_{\rm S}^0 p_\perp$, p-Pb,$\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 40-60\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d06-x01-y02 -Title=$K_{\rm S}^0$ pT-differential yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 60-80\% +Title=$K_{\rm S}^0 p_\perp$, p-Pb,$\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 60-80\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d06-x01-y03 -Title=$K_{\rm S}^0$ pT-differential yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 80-100\% +Title=$K_{\rm S}^0 p_\perp$, p-Pb,$\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 80-100\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d07-x01-y01 -Title=$p+\bar{p}$ pT-differential yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 0-5\% +Title=$p+\bar{p} p_\perp$, p-Pb,$\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 0-5\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d07-x01-y02 -Title=$p+\bar{p}$ pT-differential yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 5-10\% +Title=$p+\bar{p} p_\perp$, p-Pb,$\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 5-10\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d07-x01-y03 -Title=$p+\bar{p}$ pT-differential yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 10-20\% +Title=$p+\bar{p} p_\perp$, p-Pb,$\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 10-20\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d07-x01-y04 -Title=$p+\bar{p}$ pT-differential yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 20-40\% +Title=$p+\bar{p} p_\perp$, p-Pb,$\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 20-40\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d08-x01-y01 -Title=$p+\bar{p}$ pT-differential yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 40-60\% +Title=$p+\bar{p} p_\perp$, p-Pb,$\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 40-60\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d08-x01-y02 -Title=$p+\bar{p}$ pT-differential yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 60-80\% +Title=$p+\bar{p} p_\perp$, p-Pb,$\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 60-80\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d08-x01-y03 -Title=$p+\bar{p}$ pT-differential yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 80-100\% +Title=$p+\bar{p} p_\perp$, p-Pb,$\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 80-100\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d09-x01-y01 -Title=$\Lambda+\bar{\Lambda}$ pT-differential yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 0-5\% +Title=$\Lambda+\bar{\Lambda} p_\perp$, p-Pb,$\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 0-5\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d09-x01-y02 -Title=$\Lambda+\bar{\Lambda}$ pT-differential yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 5-10\% +Title=$\Lambda+\bar{\Lambda} p_\perp$, p-Pb,$\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 5-10\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d09-x01-y03 -Title=$\Lambda+\bar{\Lambda}$ pT-differential yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 10-20\% +Title=$\Lambda+\bar{\Lambda} p_\perp$, p-Pb,$\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 10-20\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d09-x01-y04 -Title=$\Lambda+\bar{\Lambda}$ pT-differential yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 20-40\% +Title=$\Lambda+\bar{\Lambda} p_\perp$, p-Pb,$\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 20-40\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d10-x01-y01 -Title=$\Lambda+\bar{\Lambda}$ pT-differential yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 40-60\% +Title=$\Lambda+\bar{\Lambda} p_\perp$, p-Pb,$\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 40-60\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d10-x01-y02 -Title=$\Lambda+\bar{\Lambda}$ pT-differential yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 60-80\% +Title=$\Lambda+\bar{\Lambda} p_\perp$, p-Pb,$\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 60-80\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d10-x01-y03 -Title=$\Lambda+\bar{\Lambda}$ pT-differential yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 80-100\% +Title=$\Lambda+\bar{\Lambda} p_\perp$, p-Pb,$\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$ mult. class 80-100\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\frac{1}{N_{\rm ev}}\frac{1}{2\pi p_{\rm T}}\frac{{\rm d}^2N}{{\rm d}p_{\rm T}{\rm d}y} $ [(GeV/$c$)$^{-2}$] END PLOT BEGIN PLOT /ALICE_2014_I1244523/d11-x01-y01 -Title=$K/\pi$ ratio yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 0-5\% +Title=$K/\pi p_\perp$ ratio, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$, mult. class 0-5\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$(K^+ + K^-)/(\pi^+ + \pi^-)$ END PLOT BEGIN PLOT /ALICE_2014_I1244523/d11-x01-y02 -Title=$K/\pi$ ratio yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 5-10\% +Title=$K/\pi p_\perp$ ratio, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$, mult. class 5-10\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$(K^+ + K^-)/(\pi^+ + \pi^-)$ END PLOT BEGIN PLOT /ALICE_2014_I1244523/d11-x01-y03 -Title=$K/\pi$ ratio yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 10-20\% +Title=$K/\pi p_\perp$ ratio, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$, mult. class 10-20\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$(K^+ + K^-)/(\pi^+ + \pi^-)$ END PLOT BEGIN PLOT /ALICE_2014_I1244523/d11-x01-y04 -Title=$K/\pi$ ratio yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 20-40\% +Title=$K/\pi p_\perp$ ratio, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$, mult. class 20-40\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$(K^+ + K^-)/(\pi^+ + \pi^-)$ END PLOT BEGIN PLOT /ALICE_2014_I1244523/d12-x01-y01 -Title=$K/\pi$ ratio yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 40-60\% +Title=$K/\pi p_\perp$ ratio, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$, mult. class 40-60\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$(K^+ + K^-)/(\pi^+ + \pi^-)$ END PLOT BEGIN PLOT /ALICE_2014_I1244523/d12-x01-y02 -Title=$K/\pi$ ratio yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 60-80\% +Title=$K/\pi p_\perp$ ratio, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$, mult. class 60-80\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$(K^+ + K^-)/(\pi^+ + \pi^-)$ END PLOT BEGIN PLOT /ALICE_2014_I1244523/d12-x01-y03 -Title=$K/\pi$ ratio yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 80-100\% +Title=$K/\pi p_\perp$ ratio, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$, mult. class 80-100\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$(K^+ + K^-)/(\pi^+ + \pi^-)$ END PLOT BEGIN PLOT /ALICE_2014_I1244523/d13-x01-y01 -Title=$p/\pi$ ratio yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 0-5\% +Title=$p/\pi p_\perp$ ratio, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$, mult. class 0-5\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$(p + \bar{p})/(\pi^+ + \pi^-)$ END PLOT BEGIN PLOT /ALICE_2014_I1244523/d13-x01-y02 -Title=$p/\pi$ ratio yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 5-10\% +Title=$p/\pi p_\perp$ ratio, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$, mult. class 5-10\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$(p + \bar{p})/(\pi^+ + \pi^-)$ END PLOT BEGIN PLOT /ALICE_2014_I1244523/d13-x01-y03 -Title=$p/\pi$ ratio yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 10-20\% +Title=$p/\pi p_\perp$ ratio, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$, mult. class 10-20\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$(p + \bar{p})/(\pi^+ + \pi^-)$ END PLOT BEGIN PLOT /ALICE_2014_I1244523/d13-x01-y04 -Title=$p/\pi$ ratio yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 20-40\% +Title=$p/\pi p_\perp$ ratio, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$, mult. class 20-40\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$(p + \bar{p})/(\pi^+ + \pi^-)$ END PLOT BEGIN PLOT /ALICE_2014_I1244523/d14-x01-y01 -Title=$p/\pi$ ratio yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 40-60\% +Title=$p/\pi p_\perp$ ratio, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$, mult. class 40-60\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$(p + \bar{p})/(\pi^+ + \pi^-)$ END PLOT BEGIN PLOT /ALICE_2014_I1244523/d14-x01-y02 -Title=$p/\pi$ ratio yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 60-80\% +Title=$p/\pi p_\perp$ ratio, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$, mult. class 60-80\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$(p + \bar{p})/(\pi^+ + \pi^-)$ END PLOT BEGIN PLOT /ALICE_2014_I1244523/d14-x01-y03 -Title=$p/\pi$ ratio yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 80-100\% +Title=$p/\pi p_\perp$ ratio, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$, mult. class 80-100\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$(p + \bar{p})/(\pi^+ + \pi^-)$ END PLOT BEGIN PLOT /ALICE_2014_I1244523/d15-x01-y01 -Title=$\Lambda/K_{\rm S}^0$ ratio yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 0-5\% +Title=$\Lambda/K_{\rm S}^0 p_\perp$ ratio, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$, mult. class 0-5\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\Lambda/K_{\rm S}^0$ END PLOT BEGIN PLOT /ALICE_2014_I1244523/d15-x01-y02 -Title=$\Lambda/K_{\rm S}^0$ ratio yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 5-10\% +Title=$\Lambda/K_{\rm S}^0 p_\perp$ ratio, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$, mult. class 5-10\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\Lambda/K_{\rm S}^0$ END PLOT BEGIN PLOT /ALICE_2014_I1244523/d15-x01-y03 -Title=$\Lambda/K_{\rm S}^0$ ratio yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 10-20\% +Title=$\Lambda/K_{\rm S}^0 p_\perp$ ratio, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$, mult. class 10-20\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\Lambda/K_{\rm S}^0$ END PLOT BEGIN PLOT /ALICE_2014_I1244523/d15-x01-y04 -Title=$\Lambda/K_{\rm S}^0$ ratio yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 20-40\% +Title=$\Lambda/K_{\rm S}^0 p_\perp$ ratio, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$, mult. class 20-40\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\Lambda/K_{\rm S}^0$ END PLOT BEGIN PLOT /ALICE_2014_I1244523/d16-x01-y01 -Title=$\Lambda/K_{\rm S}^0$ ratio yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 40-60\% +Title=$\Lambda/K_{\rm S}^0 p_\perp$ ratio, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$, mult. class 40-60\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\Lambda/K_{\rm S}^0$ END PLOT BEGIN PLOT /ALICE_2014_I1244523/d16-x01-y02 -Title=$\Lambda/K_{\rm S}^0$ ratio yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 60-80\% +Title=$\Lambda/K_{\rm S}^0 p_\perp$ ratio, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$, mult. class 60-80\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\Lambda/K_{\rm S}^0$ END PLOT BEGIN PLOT /ALICE_2014_I1244523/d16-x01-y03 -Title=$\Lambda/K_{\rm S}^0$ ratio yield in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ in multiplicity class 80-100\% +Title=$\Lambda/K_{\rm S}^0 p_\perp$ ratio, p-Pb, $\sqrt{s} = 5.02$~TeV, $|y_{\rm CMS}| < 0.5$, mult. class 80-100\% XLabel=$p_{\rm T}$ (GeV/$c$) YLabel=$\Lambda/K_{\rm S}^0$ END PLOT BEGIN PLOT /ALICE_2014_I1244523/d17-x01-y01 -Title=Mean $p_{\rm T}$ of $\Lambda$ in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ -XLabel=$\langle{\rm d}N_{\rm ch}/{\rm d}\eta_{\rm lab}\rangle_{|\eta_{rm lab} < 0.5} $ +Title=$\langle p_{\rm T} \rangle$ of $\Lambda$, p-Pb, $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ +XLabel=Event class (\%) YLabel=$\langle p_{\rm T}\rangle$ (GeV/$c$) +LogY=0 END PLOT BEGIN PLOT /ALICE_2014_I1244523/d18-x01-y01 -Title=Mean $p_{\rm T}$ of $p$ in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ -XLabel=$\langle{\rm d}N_{\rm ch}/{\rm d}\eta_{\rm lab}\rangle_{|\eta_{rm lab} < 0.5} $ +Title=$\langle p_{\rm T} \rangle$ of $p$, p-Pb, $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ +XLabel=Event class (\%) YLabel=$\langle p_{\rm T}\rangle$ (GeV/$c$) +LogY=0 END PLOT BEGIN PLOT /ALICE_2014_I1244523/d19-x01-y01 -Title=Mean $p_{\rm T}$ of $K_{\rm S}^0$ in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ -XLabel=$\langle{\rm d}N_{\rm ch}/{\rm d}\eta_{\rm lab}\rangle_{|\eta_{rm lab} < 0.5} $ +Title=$\langle p_{\rm T} \rangle$ of $K_{\rm S}^0$, p-Pb, $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ +XLabel=Event class (\%) YLabel=$\langle p_{\rm T}\rangle$ (GeV/$c$) +LogY=0 END PLOT BEGIN PLOT /ALICE_2014_I1244523/d20-x01-y01 -Title=Mean $p_{\rm T}$ of $K^{\pm}$ in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ -XLabel=$\langle{\rm d}N_{\rm ch}/{\rm d}\eta_{\rm lab}\rangle_{|\eta_{rm lab} < 0.5} $ +Title=$\langle p_{\rm T} \rangle$ of $K^{\pm}$, p-Pb, $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ +XLabel=Event class (\%) YLabel=$\langle p_{\rm T}\rangle$ (GeV/$c$) +LogY=0 END PLOT BEGIN PLOT /ALICE_2014_I1244523/d21-x01-y01 -Title=Mean $p_{\rm T}$ of $\pi^{\pm}$ in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ -XLabel=$\langle{\rm d}N_{\rm ch}/{\rm d}\eta_{\rm lab}\rangle_{|\eta_{rm lab} < 0.5} $ +Title=$\langle p_{\rm T} \rangle$ of $\pi^{\pm}$, p-Pb $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ +XLabel=Event class (\%) YLabel=$\langle p_{\rm T}\rangle$ (GeV/$c$) +LogY=0 END PLOT BEGIN PLOT /ALICE_2014_I1244523/d22-x01-y01 -Title=Integrated production ratio for $K/\pi$ in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ +Title=Integrated yield ratio $K/\pi$, p-Pb, $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ XLabel=Event class (\%) YLabel=$K/\pi$ END PLOT BEGIN PLOT /ALICE_2014_I1244523/d22-x01-y02 -Title=Integrated production ratio for $p/\pi$ in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ +Title=Integrated yield ratio $p/\pi$, p-Pb, $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ XLabel=Event class (\%) YLabel=$p/\pi$ END PLOT BEGIN PLOT /ALICE_2014_I1244523/d22-x01-y03 -Title=Integrated production ratio for $\Lambda/\pi$ in p-Pb collisions at $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ +Title=Integrated yield ratio, $\Lambda/\pi$, p-Pb, $\sqrt{s} = 5.02$~TeV in $|y_{\rm CMS}| < 0.5$ XLabel=Event class (\%) YLabel=$\Lambda/K_{\rm S}^0$ END PLOT diff --git a/analyses/pluginALICE/ALICE_2015_PPBCentrality.cc b/analyses/pluginALICE/ALICE_2015_PPBCentrality.cc new file mode 100644 --- /dev/null +++ b/analyses/pluginALICE/ALICE_2015_PPBCentrality.cc @@ -0,0 +1,82 @@ +// -*- C++ -*- +#include "Rivet/Projections/ImpactParameterProjection.hh" +#include "Rivet/Analysis.hh" +#include "Rivet/Projections/AliceCommon.hh" + + +namespace Rivet { + + +/// Generic analysis looking at various distributions of final state particles +class ALICE_2015_PPBCentrality : public Analysis { + +public: + + DEFAULT_RIVET_ANALYSIS_CTOR(ALICE_2015_PPBCentrality); + + /// Book histograms and initialise projections before the run + void init() { + + // One projection for the actual observable, and one for the + // generated impact parameter. + declare(ALICE::V0AMultiplicity(), "V0A"); + declare(ImpactParameterProjection(), "IMP"); + declare(ALICE::V0AndTrigger(), "Trigger"); + + // The calibration histogram: + _calib = bookHisto1D("V0A", 100, 0.0, 500.0); + + // If histogram was pre-loaded, the calibration is done. + _done = ( _calib->numEntries() > 0 ); + + // The alternative histogram based on impact parameter. Note that + // it MUST be named the same as the histogram for the experimental + // observable with an added _IMP suffix. + _impcalib = bookHisto1D("V0A_IMP", 400, 0.0, 20.0); + + + } + + /// Perform the per-event analysis + void analyze(const Event& event) { + + if ( _done ) return; + + const double weight = event.weight(); + + // The alternative centrality based on generated impact + // parameter, assumes that the generator does not describe the + // full final state, and should therefore be filled even if the + // event is not triggered. + _impcalib->fill(apply(event, "IMP")(), weight); + + if ( !apply(event, "Trigger")() ) vetoEvent; + + _calib->fill(apply(event, "V0A")(), weight); + + } + + /// Finalize + void finalize() { + + _calib->normalize(); + _impcalib->normalize(); + + } + +private: + + /// The calibration histograms. + Histo1DPtr _calib; + Histo1DPtr _impcalib; + + /// Safeguard from adding to a pre-loaded histogram. + bool _done; + +}; + + +// The hook for the plugin system +DECLARE_RIVET_PLUGIN(ALICE_2015_PPBCentrality); + +} diff --git a/analyses/pluginALICE/ALICE_2015_PPBCentrality.info b/analyses/pluginALICE/ALICE_2015_PPBCentrality.info new file mode 100644 --- /dev/null +++ b/analyses/pluginALICE/ALICE_2015_PPBCentrality.info @@ -0,0 +1,32 @@ +Name: ALICE_2015_PPBCentrality +Summary: ALICE proton-lead centrality calibration analysis. +Status: UNVALIDATED +Authors: + - Christian Bierlich +NumEvents: 50000 +References: + - Phys.Lett.B728(2014)25-38,arXiv:1307.6796 +RunInfo: Any! +Description: + 'Calibration analysis for ALICE pPb centrality. The centrality measure + is multiplicity in VO-A ie. in the lead direction. No reference data + is given, as the spectrum is not possible to unfold.' + +BibKey: Abelev:2013haa +BibTeX: '@article{Abelev:2013haa, + author = "Abelev, Betty Bezverkhny and others", + title = "{Multiplicity Dependence of Pion, Kaon, Proton and Lambda + Production in p-Pb Collisions at $\sqrt{s_{NN}}$ = 5.02 + TeV}", + collaboration = "ALICE", + journal = "Phys. Lett.", + volume = "B728", + year = "2014", + pages = "25-38", + doi = "10.1016/j.physletb.2013.11.020", + eprint = "1307.6796", + archivePrefix = "arXiv", + primaryClass = "nucl-ex", + reportNumber = "CERN-PH-EP-2013-135", + SLACcitation = "%%CITATION = ARXIV:1307.6796;%%" +}'