diff --git a/src/InputHandler/GENIEInputHandler.cxx b/src/InputHandler/GENIEInputHandler.cxx index 699ee50..a47498f 100644 --- a/src/InputHandler/GENIEInputHandler.cxx +++ b/src/InputHandler/GENIEInputHandler.cxx @@ -1,545 +1,560 @@ // Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret /******************************************************************************* * This file is part of NUISANCE. * * NUISANCE is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * NUISANCE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NUISANCE. If not, see . *******************************************************************************/ #ifdef __GENIE_ENABLED__ #include "GENIEInputHandler.h" #include "InputUtils.h" #ifdef __DUNERWT_ENABLED__ #include "systematicstools/utility/ParameterAndProviderConfigurationUtility.hh" #include "fhiclcpp/make_ParameterSet.h" #endif +#ifdef __GENIE_ENABLED__ +#pragma push_macro("ERROR") +#pragma push_macro("LOG") +#undef ERROR +#undef LOG +#include "Messenger/Messenger.h" +#undef ERROR +#undef LOG +#pragma pop_macro("LOG") +#pragma pop_macro("ERROR") +#endif + GENIEGeneratorInfo::~GENIEGeneratorInfo() { DeallocateParticleStack(); } void GENIEGeneratorInfo::AddBranchesToTree(TTree *tn) { tn->Branch("GenieParticlePDGs", &fGenieParticlePDGs, "GenieParticlePDGs/I"); } void GENIEGeneratorInfo::SetBranchesFromTree(TTree *tn) { tn->SetBranchAddress("GenieParticlePDGs", &fGenieParticlePDGs); } void GENIEGeneratorInfo::AllocateParticleStack(int stacksize) { fGenieParticlePDGs = new int[stacksize]; } void GENIEGeneratorInfo::DeallocateParticleStack() { delete fGenieParticlePDGs; } void GENIEGeneratorInfo::FillGeneratorInfo(NtpMCEventRecord *ntpl) { Reset(); // Check for GENIE Event if (!ntpl) return; if (!ntpl->event) return; // Cast Event Record GHepRecord *ghep = static_cast(ntpl->event); if (!ghep) return; // Fill Particle Stack GHepParticle *p = 0; TObjArrayIter iter(ghep); // Loop over all particles int i = 0; while ((p = (dynamic_cast((iter).Next())))) { if (!p) continue; // Get PDG fGenieParticlePDGs[i] = p->Pdg(); i++; } } void GENIEGeneratorInfo::Reset() { for (int i = 0; i < kMaxParticles; i++) { fGenieParticlePDGs[i] = 0; } } GENIEInputHandler::GENIEInputHandler(std::string const &handle, std::string const &rawinputs) { LOG(SAM) << "Creating GENIEInputHandler : " << handle << std::endl; + genie::Messenger::Instance()->SetPriorityLevel("ReW",pFATAL); + genie::Messenger::Instance()->SetPriorityLevel("GHepUtils",pFATAL); + // Run a joint input handling fName = handle; // Setup the TChain fGENIETree = new TChain("gtree"); fSaveExtra = FitPar::Config().GetParB("SaveExtraGenie"); fCacheSize = FitPar::Config().GetParI("CacheSize"); fMaxEvents = FitPar::Config().GetParI("MAXEVENTS"); // Loop over all inputs and grab flux, eventhist, and nevents std::vector inputs = InputUtils::ParseInputFileList(rawinputs); for (size_t inp_it = 0; inp_it < inputs.size(); ++inp_it) { // Open File for histogram access TFile *inp_file = new TFile( InputUtils::ExpandInputDirectories(inputs[inp_it]).c_str(), "READ"); if (!inp_file or inp_file->IsZombie()) { THROW("GENIE File IsZombie() at : '" << inputs[inp_it] << "'" << std::endl << "Check that your file paths are correct and the file exists!" << std::endl << "$ ls -lh " << inputs[inp_it]); } // Get Flux/Event hist TH1D *fluxhist = (TH1D *)inp_file->Get("nuisance_flux"); TH1D *eventhist = (TH1D *)inp_file->Get("nuisance_events"); if (!fluxhist or !eventhist) { ERROR(FTL, "Input File Contents: " << inputs[inp_it]); inp_file->ls(); THROW("GENIE FILE doesn't contain flux/xsec info." << std::endl << "Try running the app PrepareGENIE first on :" << inputs[inp_it] << std::endl << "$ PrepareGENIE -h"); } // Get N Events TTree *genietree = (TTree *)inp_file->Get("gtree"); if (!genietree) { ERROR(FTL, "gtree not located in GENIE file: " << inputs[inp_it]); THROW("Check your inputs, they may need to be completely regenerated!"); throw; } int nevents = genietree->GetEntries(); if (nevents <= 0) { THROW("Trying to a TTree with " << nevents << " to TChain from : " << inputs[inp_it]); } // Register input to form flux/event rate hists RegisterJointInput(inputs[inp_it], nevents, fluxhist, eventhist); // Add To TChain fGENIETree->AddFile(inputs[inp_it].c_str()); } // Registor all our file inputs SetupJointInputs(); // Assign to tree fEventType = kGENIE; fGenieNtpl = NULL; fGENIETree->SetBranchAddress("gmcrec", &fGenieNtpl); // Libraries should be seen but not heard... StopTalking(); fGENIETree->GetEntry(0); StartTalking(); #ifndef __DUNERWT_ENABLED__ // Create Fit Event fNUISANCEEvent = new FitEvent(); fNUISANCEEvent->SetGenieEvent(fGenieNtpl); if (fSaveExtra) { fGenieInfo = new GENIEGeneratorInfo(); fNUISANCEEvent->AddGeneratorInfo(fGenieInfo); } fNUISANCEEvent->HardReset(); #else std::vector HandlerOpts = Config::QueryKeys("GENIEInputHandler"); fUseCache = HandlerOpts.size() && HandlerOpts.front().Has("UseCache") && HandlerOpts.front().GetB("UseCache"); DUNERwtCachedResponseReader = nullptr; HaveCachedResponseReader = false; if (fUseCache && (inputs.size() == 1)) { std::vector DuneRwtCacheParams = Config::QueryKeys("DUNERwtResponseCache"); for (nuiskey &key : DuneRwtCacheParams) { if (key.Has("Input") && (key.GetS("Input") == inputs.front()) && key.Has("CacheFile") && key.Has("ParameterFHiCL")) { fhicl::ParameterSet ps = fhicl::make_ParameterSet(key.GetS("ParameterFHiCL")); fhicl::ParameterSet syst_providers = ps.get( "generated_systematic_provider_configuration"); systtools::param_header_map_t configuredParameterHeaders = systtools::BuildParameterHeaders(syst_providers); DUNERwtCachedResponseReader = std::make_unique>( InputUtils::ExpandInputDirectories(key.GetS("CacheFile")), "resp_tree", configuredParameterHeaders.size()); HaveCachedResponseReader = true; break; } } } else { fNUISANCEEvent = new FitEvent(); fNUISANCEEvent->SetGenieEvent(fGenieNtpl); if (fSaveExtra) { fGenieInfo = new GENIEGeneratorInfo(); fNUISANCEEvent->AddGeneratorInfo(fGenieInfo); } fNUISANCEEvent->HardReset(); } #endif }; GENIEInputHandler::~GENIEInputHandler() { // if (fGenieGHep) delete fGenieGHep; // if (fGenieNtpl) delete fGenieNtpl; // if (fGENIETree) delete fGENIETree; // if (fGenieInfo) delete fGenieInfo; } void GENIEInputHandler::CreateCache() { if (fCacheSize > 0) { // fGENIETree->SetCacheEntryRange(0, fNEvents); fGENIETree->AddBranchToCache("*", 1); fGENIETree->SetCacheSize(fCacheSize); } } void GENIEInputHandler::RemoveCache() { // fGENIETree->SetCacheEntryRange(0, fNEvents); fGENIETree->AddBranchToCache("*", 0); fGENIETree->SetCacheSize(0); } FitEvent *GENIEInputHandler::GetNuisanceEvent(const UInt_t entry, const bool lightweight) { if (entry >= (UInt_t)fNEvents) return NULL; #ifdef __DUNERWT_ENABLED__ // Reduce memory pressure from the cache by clearing out the last entry each // time. if (entry && rwEvs[entry - 1].NParticles()) { rwEvs[entry - 1].DeallocateParticleStack(); } #endif // Read Entry from TTree to fill NEUT Vect in BaseFitEvt; fGENIETree->GetEntry(entry); #ifdef __DUNERWT_ENABLED__ if (entry >= rwEvs.size()) { rwEvs.push_back(FitEvent()); if (HaveCachedResponseReader) { rwEvs.back().DUNERwtPolyResponses = DUNERwtCachedResponseReader->GetEventResponse(entry); rwEvs.back().HasDUNERwtPolyResponses = true; } } rwEvs[entry].SetGenieEvent(fGenieNtpl); fNUISANCEEvent = &rwEvs[entry]; #endif // Run NUISANCE Vector Filler if (!lightweight) { CalcNUISANCEKinematics(); } #ifdef __PROB3PP_ENABLED__ else { // Check for GENIE Event if (!fGenieNtpl) return NULL; if (!fGenieNtpl->event) return NULL; // Cast Event Record fGenieGHep = fGenieNtpl->event; if (!fGenieGHep) return NULL; TObjArrayIter iter(fGenieGHep); genie::GHepParticle *p; while ((p = (dynamic_cast((iter).Next())))) { if (!p) { continue; } // Get Status int state = GetGENIEParticleStatus(p, fNUISANCEEvent->Mode); if (state != genie::kIStInitialState) { continue; } fNUISANCEEvent->probe_E = p->E() * 1.E3; fNUISANCEEvent->probe_pdg = p->Pdg(); break; } } #endif // Setup Input scaling for joint inputs fNUISANCEEvent->InputWeight = GetInputWeight(entry); return fNUISANCEEvent; } int GENIEInputHandler::GetGENIEParticleStatus(genie::GHepParticle *p, int mode) { /* kIStUndefined = -1, kIStInitialState = 0, / generator-level initial state / kIStStableFinalState = 1, / generator-level final state: particles to be tracked by detector-level MC / kIStIntermediateState = 2, kIStDecayedState = 3, kIStCorrelatedNucleon = 10, kIStNucleonTarget = 11, kIStDISPreFragmHadronicState = 12, kIStPreDecayResonantState = 13, kIStHadronInTheNucleus = 14, / hadrons inside the nucleus: marked for hadron transport modules to act on / kIStFinalStateNuclearRemnant = 15, / low energy nuclear fragments entering the record collectively as a 'hadronic blob' pseudo-particle / kIStNucleonClusterTarget = 16, // for composite nucleons before phase space decay */ int state = kUndefinedState; switch (p->Status()) { case genie::kIStNucleonTarget: case genie::kIStInitialState: case genie::kIStCorrelatedNucleon: case genie::kIStNucleonClusterTarget: state = kInitialState; break; case genie::kIStStableFinalState: state = kFinalState; break; case genie::kIStHadronInTheNucleus: if (abs(mode) == 2) state = kInitialState; else state = kFSIState; break; case genie::kIStPreDecayResonantState: case genie::kIStDISPreFragmHadronicState: case genie::kIStIntermediateState: state = kFSIState; break; case genie::kIStFinalStateNuclearRemnant: case genie::kIStUndefined: case genie::kIStDecayedState: default: break; } // Flag to remove nuclear part in genie if (p->Pdg() > 1000000) { if (state == kInitialState) state = kNuclearInitial; else if (state == kFinalState) state = kNuclearRemnant; } return state; } #endif #ifdef __GENIE_ENABLED__ int GENIEInputHandler::ConvertGENIEReactionCode(GHepRecord *gheprec) { // Electron Scattering if (gheprec->Summary()->ProcInfo().IsEM()) { if (gheprec->Summary()->InitState().ProbePdg() == 11) { if (gheprec->Summary()->ProcInfo().IsQuasiElastic()) return 1; else if (gheprec->Summary()->ProcInfo().IsMEC()) return 2; else if (gheprec->Summary()->ProcInfo().IsResonant()) return 13; else if (gheprec->Summary()->ProcInfo().IsDeepInelastic()) return 26; else { ERROR(WRN, "Unknown GENIE Electron Scattering Mode!" << std::endl << "ScatteringTypeId = " << gheprec->Summary()->ProcInfo().ScatteringTypeId() << " " << "InteractionTypeId = " << gheprec->Summary()->ProcInfo().InteractionTypeId() << std::endl << genie::ScatteringType::AsString( gheprec->Summary()->ProcInfo().ScatteringTypeId()) << " " << genie::InteractionType::AsString( gheprec->Summary()->ProcInfo().InteractionTypeId()) << " " << gheprec->Summary()->ProcInfo().IsMEC()); return 0; } } // Weak CC } else if (gheprec->Summary()->ProcInfo().IsWeakCC()) { // CC MEC if (gheprec->Summary()->ProcInfo().IsMEC()) { if (pdg::IsNeutrino(gheprec->Summary()->InitState().ProbePdg())) return 2; else if (pdg::IsAntiNeutrino(gheprec->Summary()->InitState().ProbePdg())) return -2; // CC OTHER } else { return utils::ghep::NeutReactionCode(gheprec); } // Weak NC } else if (gheprec->Summary()->ProcInfo().IsWeakNC()) { // NC MEC if (gheprec->Summary()->ProcInfo().IsMEC()) { if (pdg::IsNeutrino(gheprec->Summary()->InitState().ProbePdg())) return 32; else if (pdg::IsAntiNeutrino(gheprec->Summary()->InitState().ProbePdg())) return -32; // NC OTHER } else { return utils::ghep::NeutReactionCode(gheprec); } } return 0; } void GENIEInputHandler::CalcNUISANCEKinematics() { // Reset all variables fNUISANCEEvent->ResetEvent(); // Check for GENIE Event if (!fGenieNtpl) return; if (!fGenieNtpl->event) return; // Cast Event Record fGenieGHep = fGenieNtpl->event; if (!fGenieGHep) return; // Convert GENIE Reaction Code fNUISANCEEvent->Mode = ConvertGENIEReactionCode(fGenieGHep); // Set Event Info fNUISANCEEvent->fEventNo = 0.0; fNUISANCEEvent->fTotCrs = fGenieGHep->XSec(); fNUISANCEEvent->fTargetA = 0.0; fNUISANCEEvent->fTargetZ = 0.0; fNUISANCEEvent->fTargetH = 0; fNUISANCEEvent->fBound = 0.0; fNUISANCEEvent->InputWeight = 1.0; //(1E+38 / genie::units::cm2) * fGenieGHep->XSec(); // Get N Particle Stack unsigned int npart = fGenieGHep->GetEntries(); unsigned int kmax = fNUISANCEEvent->kMaxParticles; if (npart > kmax) { fNUISANCEEvent->ExpandParticleStack(npart); } // Fill Particle Stack GHepParticle *p = 0; TObjArrayIter iter(fGenieGHep); fNUISANCEEvent->fNParticles = 0; // Loop over all particles while ((p = (dynamic_cast((iter).Next())))) { if (!p) continue; // Get Status int state = GetGENIEParticleStatus(p, fNUISANCEEvent->Mode); // Remove Undefined if (kRemoveUndefParticles && state == kUndefinedState) continue; // Remove FSI if (kRemoveFSIParticles && state == kFSIState) continue; if (kRemoveNuclearParticles && (state == kNuclearInitial || state == kNuclearRemnant)) continue; // Fill Vectors int curpart = fNUISANCEEvent->fNParticles; fNUISANCEEvent->fParticleState[curpart] = state; // Mom fNUISANCEEvent->fParticleMom[curpart][0] = p->Px() * 1.E3; fNUISANCEEvent->fParticleMom[curpart][1] = p->Py() * 1.E3; fNUISANCEEvent->fParticleMom[curpart][2] = p->Pz() * 1.E3; fNUISANCEEvent->fParticleMom[curpart][3] = p->E() * 1.E3; // PDG fNUISANCEEvent->fParticlePDG[curpart] = p->Pdg(); // Add to N particle count fNUISANCEEvent->fNParticles++; // Extra Check incase GENIE fails. if ((UInt_t)fNUISANCEEvent->fNParticles == kmax) { ERR(WRN) << "Number of GENIE Particles exceeds maximum (Max: " << kmax << ", GHEP: " << fGenieGHep->GetEntries() << ", Added: " << fNUISANCEEvent->fNParticles << ")!" << std::endl; ERR(WRN) << "Extend kMax, or run without including FSI particles!" << std::endl; break; } } // Fill Extra Stack if (fSaveExtra) fGenieInfo->FillGeneratorInfo(fGenieNtpl); // Run Initial, FSI, Final, Other ordering. fNUISANCEEvent->OrderStack(); FitParticle *ISNeutralLepton = fNUISANCEEvent->GetHMISParticle(PhysConst::pdg_neutrinos); if (ISNeutralLepton) { fNUISANCEEvent->probe_E = ISNeutralLepton->E(); fNUISANCEEvent->probe_pdg = ISNeutralLepton->PDG(); } return; } void GENIEInputHandler::Print() {} #endif diff --git a/src/Reweight/GENIEWeightEngine.cxx b/src/Reweight/GENIEWeightEngine.cxx index 511d8ca..52b433f 100644 --- a/src/Reweight/GENIEWeightEngine.cxx +++ b/src/Reweight/GENIEWeightEngine.cxx @@ -1,283 +1,267 @@ #include "GENIEWeightEngine.h" #ifdef __GENIE_EMP_MECRW_ENABLED #include "ReWeight/GReWeightXSecEmpiricalMEC.h" #endif -#ifdef __GENIE_ENABLED__ -#pragma push_macro("ERROR") -#pragma push_macro("LOG") -#undef ERROR -#undef LOG -#include "Messenger/Messenger.h" -#undef ERROR -#undef LOG -#pragma pop_macro("LOG") -#pragma pop_macro("ERROR") -#endif - GENIEWeightEngine::GENIEWeightEngine(std::string name) { #ifdef __GENIE_ENABLED__ - - genie::Messenger::Instance()->SetPriorityLevel("ReW",pFATAL); - genie::Messenger::Instance()->SetPriorityLevel("GHepUtils",pFATAL); - // Setup the NEUT Reweight engien fCalcName = name; LOG(FIT) << "Setting up GENIE RW : " << fCalcName << std::endl; // Create RW Engine suppressing cout StopTalking(); fGenieRW = new genie::rew::GReWeight(); // Get List of Vetos (Just for debugging) std::string rw_engine_list = FitPar::Config().GetParS("FitWeight_fGenieRW_veto"); bool xsec_ncel = rw_engine_list.find("xsec_ncel") == std::string::npos; bool xsec_ccqe = rw_engine_list.find("xsec_ccqe") == std::string::npos; bool xsec_coh = rw_engine_list.find("xsec_coh") == std::string::npos; bool xsec_nnres = rw_engine_list.find("xsec_nonresbkg") == std::string::npos; bool xsec_nudis = rw_engine_list.find("nuclear_dis") == std::string::npos; bool xsec_resdec = rw_engine_list.find("hadro_res_decay") == std::string::npos; bool xsec_fzone = rw_engine_list.find("hadro_intranuke") == std::string::npos; bool xsec_intra = rw_engine_list.find("hadro_fzone") == std::string::npos; bool xsec_agky = rw_engine_list.find("hadro_agky") == std::string::npos; bool xsec_qevec = rw_engine_list.find("xsec_ccqe_vec") == std::string::npos; bool xsec_dis = rw_engine_list.find("xsec_dis") == std::string::npos; bool xsec_nc = rw_engine_list.find("xsec_nc") == std::string::npos; bool xsec_ccres = rw_engine_list.find("xsec_ccres") == std::string::npos; bool xsec_ncres = rw_engine_list.find("xsec_ncres") == std::string::npos; bool xsec_nucqe = rw_engine_list.find("nuclear_qe") == std::string::npos; bool xsec_qeaxial = rw_engine_list.find("xsec_ccqe_axial") == std::string::npos; #ifdef __GENIE_EMP_MECRW_ENABLED bool xsec_empMEC = rw_engine_list.find("xsec_empMEC") == std::string::npos; #endif // Now actually add the RW Calcs if (xsec_ncel) fGenieRW->AdoptWghtCalc("xsec_ncel", new genie::rew::GReWeightNuXSecNCEL); if (xsec_ccqe) { fGenieRW->AdoptWghtCalc("xsec_ccqe", new genie::rew::GReWeightNuXSecCCQE); // (dynamic_cast (fGenieRW->WghtCalc("xsec_ccqe"))) // ->SetXSecModel( FitPar::Config().GetParS("GENIEXSecModelCCQE") ); } #ifdef __GENIE_EMP_MECRW_ENABLED if (xsec_empMEC) { fGenieRW->AdoptWghtCalc("xsec_empMEC", new genie::rew::GReWeightXSecEmpiricalMEC); } #endif if (xsec_coh) { fGenieRW->AdoptWghtCalc("xsec_coh", new genie::rew::GReWeightNuXSecCOH()); // (dynamic_cast (fGenieRW->WghtCalc("xsec_coh"))) // ->SetXSecModel( FitPar::Config().GetParS("GENIEXSecModelCOH") ); } if (xsec_nnres) fGenieRW->AdoptWghtCalc("xsec_nonresbkg", new genie::rew::GReWeightNonResonanceBkg); if (xsec_nudis) fGenieRW->AdoptWghtCalc("nuclear_dis", new genie::rew::GReWeightDISNuclMod); if (xsec_resdec) fGenieRW->AdoptWghtCalc("hadro_res_decay", new genie::rew::GReWeightResonanceDecay); if (xsec_fzone) fGenieRW->AdoptWghtCalc("hadro_fzone", new genie::rew::GReWeightFZone); if (xsec_intra) fGenieRW->AdoptWghtCalc("hadro_intranuke", new genie::rew::GReWeightINuke); if (xsec_agky) fGenieRW->AdoptWghtCalc("hadro_agky", new genie::rew::GReWeightAGKY); if (xsec_qevec) fGenieRW->AdoptWghtCalc("xsec_ccqe_vec", new genie::rew::GReWeightNuXSecCCQEvec); #if __GENIE_VERSION__ >= 212 if (xsec_qeaxial) fGenieRW->AdoptWghtCalc("xsec_ccqe_axial", new genie::rew::GReWeightNuXSecCCQEaxial); #endif if (xsec_dis) fGenieRW->AdoptWghtCalc("xsec_dis", new genie::rew::GReWeightNuXSecDIS); if (xsec_nc) fGenieRW->AdoptWghtCalc("xsec_nc", new genie::rew::GReWeightNuXSecNC); if (xsec_ccres) { #if __GENIE_VERSION__ < 213 fGenieRW->AdoptWghtCalc("xsec_ccres", new genie::rew::GReWeightNuXSecCCRES); #else fGenieRW->AdoptWghtCalc( "xsec_ccres", new genie::rew::GReWeightNuXSecCCRES( FitPar::Config().GetParS("GENIEXSecModelCCRES"), "Default")); #endif } if (xsec_ncres) fGenieRW->AdoptWghtCalc("xsec_ncres", new genie::rew::GReWeightNuXSecNCRES); if (xsec_nucqe) fGenieRW->AdoptWghtCalc("nuclear_qe", new genie::rew::GReWeightFGM); if (xsec_ccqe) { GReWeightNuXSecCCQE *rwccqe = dynamic_cast(fGenieRW->WghtCalc("xsec_ccqe")); rwccqe->SetMode(GReWeightNuXSecCCQE::kModeMa); } if (xsec_ccres) { // Default to include shape and normalization changes for CCRES (can be // changed downstream if desired) GReWeightNuXSecCCRES *rwccres = dynamic_cast(fGenieRW->WghtCalc("xsec_ccres")); std::string marestype = FitPar::Config().GetParS("GENIEWeightEngine_CCRESMode"); if (!marestype.compare("kModeNormAndMaMvShape")) { rwccres->SetMode(GReWeightNuXSecCCRES::kModeNormAndMaMvShape); } else if (!marestype.compare("kModeMaMv")) { rwccres->SetMode(GReWeightNuXSecCCRES::kModeMaMv); } else { THROW("Unkown MARES Mode in GENIE Weight Engine : " << marestype); } } if (xsec_ncres) { // Default to include shape and normalization changes for NCRES (can be // changed downstream if desired) GReWeightNuXSecNCRES *rwncres = dynamic_cast(fGenieRW->WghtCalc("xsec_ncres")); rwncres->SetMode(GReWeightNuXSecNCRES::kModeMaMv); } if (xsec_dis) { // Default to include shape and normalization changes for DIS (can be // changed downstream if desired) GReWeightNuXSecDIS *rwdis = dynamic_cast(fGenieRW->WghtCalc("xsec_dis")); rwdis->SetMode(GReWeightNuXSecDIS::kModeABCV12u); // Set Abs Twk Config fIsAbsTwk = (FitPar::Config().GetParB("setabstwk")); } // allow cout again StartTalking(); #else ERR(FTL) << "GENIE RW NOT ENABLED" << std::endl; #endif }; void GENIEWeightEngine::IncludeDial(std::string name, double startval) { #ifdef __GENIE_ENABLED__ // Get First enum int nuisenum = Reweight::ConvDial(name, kGENIE); // Setup Maps fEnumIndex[nuisenum]; // = std::vector(0); fNameIndex[name]; // = std::vector(0); // Split by commas std::vector allnames = GeneralUtils::ParseToStr(name, ","); for (uint i = 0; i < allnames.size(); i++) { std::string singlename = allnames[i]; // Get RW genie::rew::GSyst_t rwsyst = GSyst::FromString(singlename); // Fill Maps int index = fValues.size(); fValues.push_back(0.0); fGENIESysts.push_back(rwsyst); // Initialize dial std::cout << "Registering " << singlename << " from " << name << std::endl; fGenieRW->Systematics().Init(fGENIESysts[index]); // If Absolute if (fIsAbsTwk) { GSystUncertainty::Instance()->SetUncertainty(rwsyst, 1.0, 1.0); } // Setup index fEnumIndex[nuisenum].push_back(index); fNameIndex[name].push_back(index); } // Set Value if given if (startval != -999.9) { SetDialValue(nuisenum, startval); } #endif }; void GENIEWeightEngine::SetDialValue(int nuisenum, double val) { #ifdef __GENIE_ENABLED__ std::vector indices = fEnumIndex[nuisenum]; for (uint i = 0; i < indices.size(); i++) { fValues[indices[i]] = val; fGenieRW->Systematics().Set(fGENIESysts[indices[i]], val); } #endif } void GENIEWeightEngine::SetDialValue(std::string name, double val) { #ifdef __GENIE_ENABLED__ std::vector indices = fNameIndex[name]; for (uint i = 0; i < indices.size(); i++) { fValues[indices[i]] = val; fGenieRW->Systematics().Set(fGENIESysts[indices[i]], val); } #endif } void GENIEWeightEngine::Reconfigure(bool silent) { #ifdef __GENIE_ENABLED__ // Hush now... if (silent) StopTalking(); // Reconf fGenieRW->Reconfigure(); fGenieRW->Print(); // Shout again if (silent) StartTalking(); #endif } double GENIEWeightEngine::CalcWeight(BaseFitEvt *evt) { double rw_weight = 1.0; #ifdef __GENIE_ENABLED__ // Skip Non GENIE if (evt->fType != kGENIE) return 1.0; // Make nom weight if (!evt) { THROW("evt not found : " << evt); } if (!(evt->genie_event)) { THROW("evt->genie_event not found!" << evt->genie_event); } if (!(evt->genie_event->event)) { THROW("evt->genie_event->event GHepRecord not found!" << (evt->genie_event->event)); } if (!fGenieRW) { THROW("GENIE RW Not Found!" << fGenieRW); } rw_weight = fGenieRW->CalcWeight(*(evt->genie_event->event)); // std::cout << "Returning GENIE Weight for electron scattering = " << // rw_weight << std::endl; #endif // Return rw_weight return rw_weight; }