diff --git a/src/FitBase/Measurement1D.cxx b/src/FitBase/Measurement1D.cxx
index 5140ffd..4772c92 100644
--- a/src/FitBase/Measurement1D.cxx
+++ b/src/FitBase/Measurement1D.cxx
@@ -1,1904 +1,1900 @@
 // Copyright 2016 L. Pickering, P. Stowell, R. Terri, C. Wilkinson, C. Wret
 
 /*******************************************************************************
 *    This ile is part of NUISANCE.
 *
 *    NUISANCE is free software: you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation, either version 3 of the License, or
 *    (at your option) any later version.
 *
 *    NUISANCE is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with NUISANCE.  If not, see <http://www.gnu.org/licenses/>.
 *******************************************************************************/
 #include "Measurement1D.h"
 
 
 //********************************************************************
 Measurement1D::Measurement1D(void) {
 //********************************************************************
 
   // XSec Scalings
   fScaleFactor = -1.0;
   fCurrentNorm = 1.0;
 
   // Histograms
   fDataHist = NULL;
   fDataTrue = NULL;
 
   fMCHist = NULL;
   fMCFine = NULL;
   fMCWeighted = NULL;
 
   fMaskHist = NULL;
 
   // Covar
   covar = NULL;
   fFullCovar = NULL;
   fShapeCovar = NULL;
 
   fCovar  = NULL;
   fInvert = NULL;
   fDecomp = NULL;
 
   // Fake Data
   fFakeDataInput = "";
   fFakeDataFile  = NULL;
 
   // Options
   fDefaultTypes = "FIX/FULL/CHI2";
   fAllowedTypes =
     "FIX,FREE,SHAPE/FULL,DIAG/CHI2/NORM/ENUCORR/Q2CORR/ENU1D/MASK/NOWIDTH";
 
   fIsFix = false;
   fIsShape = false;
   fIsFree = false;
   fIsDiag = false;
   fIsFull = false;
   fAddNormPen = false;
   fIsMask = false;
   fIsChi2SVD = false;
   fIsRawEvents = false;
   fIsNoWidth = false;
   fIsDifXSec = false;
   fIsEnu1D = false;
 
   // Inputs
   fInput = NULL;
   fRW = NULL;
 
   // Extra Histograms
   fMCHist_Modes = NULL;
 
 }
 
 //********************************************************************
 Measurement1D::~Measurement1D(void) {
 //********************************************************************
 
   if (fDataHist)   delete fDataHist;
   if (fDataTrue)   delete fDataTrue;
   if (fMCHist)     delete fMCHist;
   if (fMCFine)     delete fMCFine;
   if (fMCWeighted) delete fMCWeighted;
   if (fMaskHist)   delete fMaskHist;
   if (covar)       delete covar;
   if (fFullCovar)  delete fFullCovar;
   if (fShapeCovar) delete fShapeCovar;
   if (fCovar)      delete fCovar;
   if (fInvert)     delete fInvert;
   if (fDecomp)     delete fDecomp;
 
 }
 
 //********************************************************************
 void Measurement1D::FinaliseSampleSettings() {
 //********************************************************************
 
   MeasurementBase::FinaliseSampleSettings();
 
   // Setup naming + renaming
   fName = fSettings.GetName();
   fSettings.SetS("originalname", fName);
   if (fSettings.Has("rename")) {
     fName = fSettings.GetS("rename");
     fSettings.SetS("name", fName);
   }
 
   // Setup all other options
   LOG(SAM) << "Finalising Sample Settings: " << fName << std::endl;
 
   if ((fSettings.GetS("originalname").find("Evt") != std::string::npos)) {
     fIsRawEvents = true;
     LOG(SAM) << "Found event rate measurement but using poisson likelihoods."
              << std::endl;
   }
 
   if (fSettings.GetS("originalname").find("XSec_1DEnu") != std::string::npos) {
     fIsEnu1D = true;
     LOG(SAM) << "::" << fName << "::" << std::endl;
     LOG(SAM) << "Found XSec Enu measurement, applying flux integrated scaling, "
              << "not flux averaged!" << std::endl;
   }
 
   if (fIsEnu1D && fIsRawEvents) {
     LOG(SAM) << "Found 1D Enu XSec distribution AND fIsRawEvents, is this "
              "really correct?!"
              << std::endl;
     LOG(SAM) << "Check experiment constructor for " << fName
              << " and correct this!" << std::endl;
     LOG(SAM) << "I live in " << __FILE__ << ":" << __LINE__ << std::endl;
     exit(-1);
   }
 
   if (!fRW) fRW = FitBase::GetRW();
   if (!fInput and !fIsJoint) SetupInputs(fSettings.GetS("input"));
 
   // Setup options
   SetFitOptions(fDefaultTypes); // defaults
   SetFitOptions(fSettings.GetS("type")); // user specified
 
   EnuMin = GeneralUtils::StrToDbl(fSettings.GetS("enu_min"));
   EnuMax = GeneralUtils::StrToDbl(fSettings.GetS("enu_max"));
 
   if (fAddNormPen) {
     if (fNormError <= 0.0) {
       ERR(WRN) << "Norm error for class " << fName << " is 0.0!" << std::endl;
       ERR(WRN) << "If you want to use it please add fNormError=VAL" << std::endl;
       throw;
     }
   }
 }
 
 //********************************************************************
 void Measurement1D::CreateDataHistogram(int dimx, double* binx) {
 //********************************************************************
 
   if (fDataHist) delete fDataHist;
 
   fDataHist = new TH1D( (fSettings.GetName() + "_data").c_str(), (fSettings.GetFullTitles()).c_str(),
                         dimx, binx) ;
 
 }
 
 
 //********************************************************************
 void Measurement1D::SetDataFromTextFile(std::string datafile) {
 //********************************************************************
 
   LOG(SAM) << "Reading data from text file: " << datafile << std::endl;
   fDataHist = PlotUtils::GetTH1DFromFile(datafile,
                                          fSettings.GetName() + "_data",
                                          fSettings.GetFullTitles());
 }
 
 //********************************************************************
 void Measurement1D::SetDataFromRootFile(std::string datafile,
                                         std::string histname) {
 //********************************************************************
 
   LOG(SAM) << "Reading data from root file: " << datafile << ";" << histname << std::endl;
   fDataHist = PlotUtils::GetTH1DFromRootFile(datafile, histname);
   fDataHist->SetNameTitle((fSettings.GetName() + "_data").c_str(),
                           (fSettings.GetFullTitles()).c_str());
 
   return;
 };
 
 //********************************************************************
 void Measurement1D::SetEmptyData(){
 //********************************************************************
 
   fDataHist = new TH1D("EMPTY_DATA","EMPTY_DATA",1,0.0,1.0);
 }
 
 //********************************************************************
 void Measurement1D::SetPoissonErrors() {
 //********************************************************************
 
   if (!fDataHist) {
     ERR(FTL) << "Need a data hist to setup possion errors! " << std::endl;
     ERR(FTL) << "Setup Data First!" << std::endl;
     throw;
   }
 
   for (int i = 0; i < fDataHist->GetNbinsX() + 1; i++) {
     fDataHist->SetBinError(i + 1, sqrt(fDataHist->GetBinContent(i + 1)));
   }
 }
 
 //********************************************************************
 void Measurement1D::SetCovarFromDiagonal(TH1D* data) {
 //********************************************************************
 
   if (!data and fDataHist) {
     data = fDataHist;
   }
 
   if (data) {
     LOG(SAM) << "Setting diagonal covariance for: " << data->GetName() << std::endl;
     fFullCovar = StatUtils::MakeDiagonalCovarMatrix(data);
     covar      = StatUtils::GetInvert(fFullCovar);
     fDecomp    = StatUtils::GetDecomp(fFullCovar);
   } else {
     ERR(FTL) << "No data input provided to set diagonal covar from!" << std::endl;
 
   }
 
   // if (!fIsDiag) {
   //   ERR(FTL) << "SetCovarMatrixFromDiag called for measurement "
   //            << "that is not set as diagonal." << std::endl;
   //   throw;
   // }
 
 }
 
 //********************************************************************
 void Measurement1D::SetCovarFromTextFile(std::string covfile, int dim) {
 //********************************************************************
 
   if (dim == -1) {
     dim = fDataHist->GetNbinsX();
   }
 
   LOG(SAM) << "Reading covariance from text file: " << covfile << std::endl;
   fFullCovar = StatUtils::GetCovarFromTextFile(covfile, dim);
   covar      = StatUtils::GetInvert(fFullCovar);
   fDecomp    = StatUtils::GetDecomp(fFullCovar);
 
 }
 
 
 //********************************************************************
 void Measurement1D::SetCovarFromMultipleTextFiles(std::string covfiles, int dim) {
 //********************************************************************
 
   if (dim == -1) {
     dim = fDataHist->GetNbinsX();
   }
 
   std::vector<std::string> covList = GeneralUtils::ParseToStr(covfiles, ";");
 
   fFullCovar = new TMatrixDSym(dim);
   for (uint i = 0; i < covList.size(); ++i){
     LOG(SAM) << "Reading covariance from text file: " << covList[i] << std::endl;
     TMatrixDSym* temp_cov = StatUtils::GetCovarFromTextFile(covList[i], dim);
     (*fFullCovar) += (*temp_cov);
     delete temp_cov;
   }
   covar      = StatUtils::GetInvert(fFullCovar);
   fDecomp    = StatUtils::GetDecomp(fFullCovar);
 
 }
 
 
 //********************************************************************
 void Measurement1D::SetCovarFromRootFile(std::string covfile, std::string histname) {
 //********************************************************************
 
   LOG(SAM) << "Reading covariance from text file: " << covfile << ";" << histname << std::endl;
   fFullCovar = StatUtils::GetCovarFromRootFile(covfile, histname);
   covar      = StatUtils::GetInvert(fFullCovar);
   fDecomp    = StatUtils::GetDecomp(fFullCovar);
 
 }
 
 //********************************************************************
 void Measurement1D::SetCovarInvertFromTextFile(std::string covfile, int dim) {
 //********************************************************************
 
   if (dim == -1) {
     dim = fDataHist->GetNbinsX();
   }
 
   LOG(SAM) << "Reading inverted covariance from text file: " << covfile << std::endl;
   covar       = StatUtils::GetCovarFromTextFile(covfile, dim);
   fFullCovar  = StatUtils::GetInvert(covar);
   fDecomp     = StatUtils::GetDecomp(fFullCovar);
 
 }
 
 //********************************************************************
 void Measurement1D::SetCovarInvertFromRootFile(std::string covfile, std::string histname) {
 //********************************************************************
 
   LOG(SAM) << "Reading inverted covariance from text file: " << covfile << ";" << histname << std::endl;
   covar      = StatUtils::GetCovarFromRootFile(covfile, histname);
   fFullCovar = StatUtils::GetInvert(covar);
   fDecomp    = StatUtils::GetDecomp(fFullCovar);
 
 }
 
 //********************************************************************
 void Measurement1D::SetCorrelationFromTextFile(std::string covfile, int dim) {
 //********************************************************************
 
   if (dim == -1) dim = fDataHist->GetNbinsX();
   LOG(SAM) << "Reading data correlations from text file: " << covfile << ";" << dim << std::endl;
   TMatrixDSym* correlation = StatUtils::GetCovarFromTextFile(covfile, dim);
 
   if (!fDataHist) {
     ERR(FTL) << "Trying to set correlations from text file but there is no data to build it from. \n"
              << "In constructor make sure data is set before SetCorrelationFromTextFile is called. \n" << std::endl;
     throw;
   }
 
   // Fill covar from data errors and correlations
   fFullCovar = new TMatrixDSym(dim);
   for (int i = 0; i < fDataHist->GetNbinsX(); i++) {
     for (int j = 0; j < fDataHist->GetNbinsX(); j++) {
       (*fFullCovar)(i, j) = (*correlation)(i, j) * fDataHist->GetBinError(i + 1) * fDataHist->GetBinError(j + 1) * 1.E76;
     }
   }
 
   // Fill other covars.
   covar   = StatUtils::GetInvert(fFullCovar);
   fDecomp = StatUtils::GetDecomp(fFullCovar);
 
   delete correlation;
 }
 
 //********************************************************************
 void Measurement1D::SetCorrelationFromMultipleTextFiles(std::string corrfiles, int dim) {
 //********************************************************************
 
   if (dim == -1) {
     dim = fDataHist->GetNbinsX();
   }
 
   std::vector<std::string> corrList = GeneralUtils::ParseToStr(corrfiles, ";");
 
   fFullCovar = new TMatrixDSym(dim);
   for (uint i = 0; i < corrList.size(); ++i){
     LOG(SAM) << "Reading covariance from text file: " << corrList[i] << std::endl;
     TMatrixDSym* temp_cov = StatUtils::GetCovarFromTextFile(corrList[i], dim);
 
     for (int i = 0; i < fDataHist->GetNbinsX(); i++) {
       for (int j = 0; j < fDataHist->GetNbinsX(); j++) {
 	(*temp_cov)(i, j) = (*temp_cov)(i, j) * fDataHist->GetBinError(i + 1) * fDataHist->GetBinError(j + 1) * 1.E76;
       }
     }
 
     (*fFullCovar) += (*temp_cov);
     delete temp_cov;
   }
   covar      = StatUtils::GetInvert(fFullCovar);
   fDecomp    = StatUtils::GetDecomp(fFullCovar);
 
 }
 
 
 //********************************************************************
 void Measurement1D::SetCorrelationFromRootFile(std::string covfile, std::string histname) {
 //********************************************************************
 
   LOG(SAM) << "Reading data correlations from text file: " << covfile << ";" << histname << std::endl;
   TMatrixDSym* correlation = StatUtils::GetCovarFromRootFile(covfile, histname);
 
   if (!fDataHist) {
     ERR(FTL) << "Trying to set correlations from text file but there is no data to build it from. \n"
              << "In constructor make sure data is set before SetCorrelationFromTextFile is called. \n" << std::endl;
     throw;
   }
 
   // Fill covar from data errors and correlations
   fFullCovar = new TMatrixDSym(fDataHist->GetNbinsX());
   for (int i = 0; i < fDataHist->GetNbinsX(); i++) {
     for (int j = 0; j < fDataHist->GetNbinsX(); j++) {
       (*fFullCovar)(i, j) = (*correlation)(i, j) * fDataHist->GetBinError(i + 1) * fDataHist->GetBinError(j + 1) * 1.E76;
     }
   }
 
   // Fill other covars.
   covar   = StatUtils::GetInvert(fFullCovar);
   fDecomp = StatUtils::GetDecomp(fFullCovar);
 
   delete correlation;
 }
 
 
 //********************************************************************
 void Measurement1D::SetCholDecompFromTextFile(std::string covfile, int dim) {
 //********************************************************************
 
   if (dim == -1) {
     dim = fDataHist->GetNbinsX();
   }
 
   LOG(SAM) << "Reading cholesky from text file: " << covfile << std::endl;
   TMatrixD* temp = StatUtils::GetMatrixFromTextFile(covfile, dim, dim);
 
   TMatrixD* trans = (TMatrixD*)temp->Clone();
   trans->T();
   (*trans) *= (*temp);
 
   fFullCovar  = new TMatrixDSym(dim, trans->GetMatrixArray(), "");
   covar       = StatUtils::GetInvert(fFullCovar);
   fDecomp     = StatUtils::GetDecomp(fFullCovar);
 
   delete temp;
   delete trans;
 
 }
 
 //********************************************************************
 void Measurement1D::SetCholDecompFromRootFile(std::string covfile, std::string histname) {
 //********************************************************************
 
   LOG(SAM) << "Reading cholesky decomp from root file: " << covfile << ";" << histname << std::endl;
   TMatrixD* temp = StatUtils::GetMatrixFromRootFile(covfile, histname);
 
   TMatrixD* trans = (TMatrixD*)temp->Clone();
   trans->T();
   (*trans) *= (*temp);
 
   fFullCovar  = new TMatrixDSym(temp->GetNrows(), trans->GetMatrixArray(), "");
   covar       = StatUtils::GetInvert(fFullCovar);
   fDecomp     = StatUtils::GetDecomp(fFullCovar);
 
   delete temp;
   delete trans;
 }
 
 void Measurement1D::SetShapeCovar(){
 
   // Return if this is missing any pre-requisites
   if (!fFullCovar) return;
   if (!fDataHist) return;
 
   // Also return if it's bloody stupid under the circumstances
   if (fIsDiag) return;
 
   fShapeCovar = StatUtils::ExtractShapeOnlyCovar(fFullCovar, fDataHist);
   return;
 }
 
 //********************************************************************
 void Measurement1D::ScaleData(double scale) {
 //********************************************************************
   fDataHist->Scale(scale);
 }
 
 
 //********************************************************************
 void Measurement1D::ScaleDataErrors(double scale) {
 //********************************************************************
   for (int i = 0; i < fDataHist->GetNbinsX(); i++) {
     fDataHist->SetBinError(i + 1, fDataHist->GetBinError(i + 1) * scale);
   }
 }
 
 
 
 //********************************************************************
 void Measurement1D::ScaleCovar(double scale) {
 //********************************************************************
   (*fFullCovar) *= scale;
   (*covar) *= 1.0 / scale;
   (*fDecomp) *= sqrt(scale);
 }
 
 
 //********************************************************************
 void Measurement1D::SetBinMask(std::string maskfile) {
 //********************************************************************
 
   if (!fIsMask) return;
   LOG(SAM) << "Reading bin mask from file: " << maskfile << std::endl;
 
   // Create a mask histogram with dim of data
   int nbins = fDataHist->GetNbinsX();
   fMaskHist =
     new TH1I((fSettings.GetName() + "_BINMASK").c_str(),
              (fSettings.GetName() + "_BINMASK; Bin; Mask?").c_str(), nbins, 0, nbins);
   std::string line;
   std::ifstream mask(maskfile.c_str(), std::ifstream::in);
 
   if (!mask.is_open()) {
     LOG(FTL) << " Cannot find mask file." << std::endl;
     throw;
   }
 
   while (std::getline(mask >> std::ws, line, '\n')) {
     std::vector<int> entries = GeneralUtils::ParseToInt(line, " ");
 
     // Skip lines with poorly formatted lines
     if (entries.size() < 2) {
       LOG(WRN) << "Measurement1D::SetBinMask(), couldn't parse line: " << line
                << std::endl;
       continue;
     }
 
     // The first index should be the bin number, the second should be the mask
     // value.
     int val = 0;
     if (entries[1] > 0) val = 1;
     fMaskHist->SetBinContent(entries[0], val);
   }
 
   // Apply masking by setting masked data bins to zero
   PlotUtils::MaskBins(fDataHist, fMaskHist);
 
   return;
 }
 
 
 
 //********************************************************************
 void Measurement1D::FinaliseMeasurement() {
 //********************************************************************
 
   LOG(SAM) << "Finalising Measurement: " << fName << std::endl;
 
   if (fSettings.GetB("onlymc")){
     if (fDataHist) delete fDataHist;
     fDataHist = new TH1D("empty_data","empty_data",1,0.0,1.0);
   }
 
   // Make sure data is setup
   if (!fDataHist) {
     ERR(FTL) << "No data has been setup inside " << fName << " constructor!" << std::endl;
     throw;
   }
 
   // Make sure covariances are setup
   if (!fFullCovar) {
     fIsDiag = true;
     SetCovarFromDiagonal(fDataHist);
   }
 
   if (!covar) {
     covar = StatUtils::GetInvert(fFullCovar);
   }
 
   if (!fDecomp) {
     fDecomp = StatUtils::GetDecomp(fFullCovar);
   }
 
   // Push the diagonals of fFullCovar onto the data histogram
   // Comment this out until the covariance/data scaling is consistent!
   StatUtils::SetDataErrorFromCov(fDataHist, fFullCovar, 1E-38);
 
   // If shape only, set covar and fDecomp using the shape-only matrix (if set)
   if (fIsShape && fShapeCovar and FitPar::Config().GetParB("UseShapeCovar")){
     if (covar) delete covar;
     covar = StatUtils::GetInvert(fShapeCovar);
     if (fDecomp) delete fDecomp;
     fDecomp = StatUtils::GetDecomp(fFullCovar);
   }
 
   // Setup fMCHist from data
   fMCHist = (TH1D*)fDataHist->Clone();
   fMCHist->SetNameTitle((fSettings.GetName() + "_MC").c_str(),
                         (fSettings.GetFullTitles()).c_str());
   fMCHist->Reset();
 
   // Setup fMCFine
   fMCFine = new TH1D("mcfine", "mcfine", fDataHist->GetNbinsX() * 8,
                      fMCHist->GetBinLowEdge(1),
                      fMCHist->GetBinLowEdge(fDataHist->GetNbinsX() + 1));
   fMCFine->SetNameTitle((fSettings.GetName() + "_MC_FINE").c_str(),
                         (fSettings.GetFullTitles()).c_str());
   fMCFine->Reset();
 
   // Setup MC Stat
   fMCStat = (TH1D*)fMCHist->Clone();
   fMCStat->Reset();
 
   // Search drawopts for possible types to include by default
   std::string drawopts = FitPar::Config().GetParS("drawopts");
   if (drawopts.find("MODES") != std::string::npos) {
     fMCHist_Modes = new TrueModeStack( (fSettings.GetName() + "_MODES").c_str(),
                                        ("True Channels"), fMCHist);
     SetAutoProcessTH1(fMCHist_Modes, kCMD_Reset, kCMD_Norm, kCMD_Write);
   }
 
   // Setup bin masks using sample name
   if (fIsMask) {
 
     std::string curname  = fName;
     std::string origname = fSettings.GetS("originalname");
 
     // Check rename.mask
     std::string maskloc = FitPar::Config().GetParDIR(curname + ".mask");
 
     // Check origname.mask
     if (maskloc.empty()) maskloc = FitPar::Config().GetParDIR(origname + ".mask");
 
     // Check database
     if (maskloc.empty()) {
       maskloc = FitPar::GetDataBase() + "/masks/" + origname + ".mask";
     }
 
     // Setup Bin Mask
     SetBinMask(maskloc);
   }
 
   if (fScaleFactor < 0) {
     ERR(FTL) << "I found a negative fScaleFactor in " << __FILE__ << ":" << __LINE__ << std::endl;
     ERR(FTL) << "fScaleFactor = " << fScaleFactor << std::endl;
     ERR(FTL) << "EXITING" << std::endl;
     throw;
   }
 
   // Create and fill Weighted Histogram
   if (!fMCWeighted) {
 
     fMCWeighted = (TH1D*)fMCHist->Clone();
     fMCWeighted->SetNameTitle((fName + "_MCWGHTS").c_str(),
                               (fName + "_MCWGHTS" + fPlotTitles).c_str());
     fMCWeighted->GetYaxis()->SetTitle("Weighted Events");
 
   }
 
 
 }
 
 //********************************************************************
 void Measurement1D::SetFitOptions(std::string opt) {
 //********************************************************************
 
   // Do nothing if default given
   if (opt == "DEFAULT") return;
 
   // CHECK Conflicting Fit Options
   std::vector<std::string> fit_option_allow =
     GeneralUtils::ParseToStr(fAllowedTypes, "/");
 
   for (UInt_t i = 0; i < fit_option_allow.size(); i++) {
     std::vector<std::string> fit_option_section =
       GeneralUtils::ParseToStr(fit_option_allow.at(i), ",");
 
     bool found_option = false;
 
     for (UInt_t j = 0; j < fit_option_section.size(); j++) {
       std::string av_opt = fit_option_section.at(j);
 
       if (!found_option and opt.find(av_opt) != std::string::npos) {
         found_option = true;
 
       } else if (found_option and opt.find(av_opt) != std::string::npos) {
         ERR(FTL) << "ERROR: Conflicting fit options provided: "
                  << opt << std::endl
                  << "Conflicting group = " << fit_option_section.at(i) << std::endl
                  << "You should only supply one of these options in card file." << std::endl;
         throw;
       }
     }
   }
 
   // Check all options are allowed
   std::vector<std::string> fit_options_input =
     GeneralUtils::ParseToStr(opt, "/");
   for (UInt_t i = 0; i < fit_options_input.size(); i++) {
     if (fAllowedTypes.find(fit_options_input.at(i)) == std::string::npos) {
       ERR(FTL) << "ERROR: Fit Option '" << fit_options_input.at(i)
                << "' Provided is not allowed for this measurement."
                << std::endl;
       ERR(FTL) << "Fit Options should be provided as a '/' seperated list "
                "(e.g. FREE/DIAG/NORM)"
                << std::endl;
       ERR(FTL) << "Available options for " << fName << " are '" << fAllowedTypes
                << "'" << std::endl;
 
       throw;
     }
   }
 
   // Set TYPE
   fFitType = opt;
 
   // FIX,SHAPE,FREE
   if (opt.find("FIX") != std::string::npos) {
     fIsFree = fIsShape = false;
     fIsFix = true;
   } else if (opt.find("SHAPE") != std::string::npos) {
     fIsFree = fIsFix = false;
     fIsShape = true;
   } else if (opt.find("FREE") != std::string::npos) {
     fIsFix = fIsShape = false;
     fIsFree = true;
   }
 
   // DIAG,FULL (or default to full)
   if (opt.find("DIAG") != std::string::npos) {
     fIsDiag = true;
     fIsFull = false;
   } else if (opt.find("FULL") != std::string::npos) {
     fIsDiag = false;
     fIsFull = true;
   }
 
   // CHI2/LL (OTHERS?)
   if (opt.find("LOG") != std::string::npos) {
     fIsChi2 = false;
 
     ERR(FTL) << "No other LIKELIHOODS properly supported!" << std::endl;
     ERR(FTL) << "Try to use a chi2!" << std::endl;
     throw;
 
   } else {
     fIsChi2 = true;
   }
 
   // EXTRAS
   if (opt.find("RAW") != std::string::npos) fIsRawEvents = true;
   if (opt.find("NOWIDTH") != std::string::npos) fIsNoWidth = true;
   if (opt.find("DIF") != std::string::npos) fIsDifXSec = true;
   if (opt.find("ENU1D") != std::string::npos) fIsEnu1D = true;
   if (opt.find("NORM") != std::string::npos) fAddNormPen = true;
   if (opt.find("MASK") != std::string::npos) fIsMask = true;
 
   return;
 };
 
 
 //********************************************************************
 void Measurement1D::SetSmearingMatrix(std::string smearfile, int truedim,
                                       int recodim) {
   //********************************************************************
 
   // The smearing matrix describes the migration from true bins (rows) to reco
   // bins (columns)
   // Counter over the true bins!
   int row = 0;
 
   std::string line;
   std::ifstream smear(smearfile.c_str(), std::ifstream::in);
 
   // Note that the smearing matrix may be rectangular.
   fSmearMatrix = new TMatrixD(truedim, recodim);
 
   if (smear.is_open())
     LOG(SAM) << "Reading smearing matrix from file: " << smearfile << std::endl;
   else
     ERR(FTL) << "Smearing matrix provided is incorrect: " << smearfile
              << std::endl;
 
   while (std::getline(smear >> std::ws, line, '\n')) {
     int column = 0;
 
     std::vector<double> entries = GeneralUtils::ParseToDbl(line, " ");
     for (std::vector<double>::iterator iter = entries.begin();
          iter != entries.end(); iter++) {
       (*fSmearMatrix)(row, column) =
         (*iter) / 100.;  // Convert to fraction from
       // percentage (this may not be
       // general enough)
       column++;
     }
     row++;
   }
   return;
 }
 
 //********************************************************************
 void Measurement1D::ApplySmearingMatrix() {
 //********************************************************************
 
   if (!fSmearMatrix) {
     ERR(WRN) << fName
              << ": attempted to apply smearing matrix, but none was set"
              << std::endl;
     return;
   }
 
   TH1D* unsmeared = (TH1D*)fMCHist->Clone();
   TH1D* smeared = (TH1D*)fMCHist->Clone();
   smeared->Reset();
 
   // Loop over reconstructed bins
   // true = row; reco = column
   for (int rbin = 0; rbin < fSmearMatrix->GetNcols(); ++rbin) {
     // Sum up the constributions from all true bins
     double rBinVal = 0;
 
     // Loop over true bins
     for (int tbin = 0; tbin < fSmearMatrix->GetNrows(); ++tbin) {
       rBinVal +=
         (*fSmearMatrix)(tbin, rbin) * unsmeared->GetBinContent(tbin + 1);
     }
     smeared->SetBinContent(rbin + 1, rBinVal);
   }
   fMCHist = (TH1D*)smeared->Clone();
 
   return;
 }
 
 /*
    Reconfigure LOOP
 */
 //********************************************************************
 void Measurement1D::ResetAll() {
 //********************************************************************
 
   fMCHist->Reset();
   fMCFine->Reset();
   fMCStat->Reset();
 
   return;
 };
 
 //********************************************************************
 void Measurement1D::FillHistograms() {
   //********************************************************************
 
   if (Signal) {
 
     QLOG(DEB, "Fill MCHist: " << fXVar << ", " << Weight);
 
     fMCHist->Fill(fXVar, Weight);
     fMCFine->Fill(fXVar, Weight);
     fMCStat->Fill(fXVar, 1.0);
 
     if (fMCHist_Modes) fMCHist_Modes->Fill(Mode, fXVar, Weight);
   }
 
   return;
 };
 
 //********************************************************************
 void Measurement1D::ScaleEvents() {
 //********************************************************************
 
   // Fill MCWeighted;
   // for (int i = 0; i < fMCHist->GetNbinsX(); i++) {
   //   fMCWeighted->SetBinContent(i + 1, fMCHist->GetBinContent(i + 1));
   //   fMCWeighted->SetBinError(i + 1,   fMCHist->GetBinError(i + 1));
   // }
 
 
   // Setup Stat ratios for MC and MC Fine
   double* statratio     = new double[fMCHist->GetNbinsX()];
   for (int i = 0; i < fMCHist->GetNbinsX(); i++) {
     if (fMCHist->GetBinContent(i + 1) != 0) {
       statratio[i] = fMCHist->GetBinError(i + 1) / fMCHist->GetBinContent(i + 1);
     } else {
       statratio[i] = 0.0;
     }
   }
 
   double* statratiofine = new double[fMCFine->GetNbinsX()];
   for (int i = 0; i < fMCFine->GetNbinsX(); i++) {
     if (fMCFine->GetBinContent(i + 1) != 0) {
       statratiofine[i] = fMCFine->GetBinError(i + 1) / fMCFine->GetBinContent(i + 1);
     } else {
       statratiofine[i] = 0.0;
     }
   }
 
 
   // Scaling for raw event rates
   if (fIsRawEvents) {
     double datamcratio = fDataHist->Integral() / fMCHist->Integral();
 
     fMCHist->Scale(datamcratio);
     fMCFine->Scale(datamcratio);
 
     if (fMCHist_Modes) fMCHist_Modes->Scale(datamcratio);
 
     // Scaling for XSec as function of Enu
   } else if (fIsEnu1D) {
 
     PlotUtils::FluxUnfoldedScaling(fMCHist, GetFluxHistogram(),
                                    GetEventHistogram(), fScaleFactor,
                                    fNEvents);
     PlotUtils::FluxUnfoldedScaling(fMCFine, GetFluxHistogram(),
                                    GetEventHistogram(), fScaleFactor,
                                    fNEvents);
 
 
     // if (fMCHist_Modes) {
     // PlotUtils::FluxUnfoldedScaling(fMCHist_Modes, GetFluxHistogram(),
     // GetEventHistogram(), fScaleFactor,
     // fNEvents);
     // }
 
   } else if (fIsNoWidth) {
     fMCHist->Scale(fScaleFactor);
     fMCFine->Scale(fScaleFactor);
     if (fMCHist_Modes) fMCHist_Modes->Scale(fScaleFactor);
     // Any other differential scaling
   } else {
     fMCHist->Scale(fScaleFactor, "width");
     fMCFine->Scale(fScaleFactor, "width");
 
     if (fMCHist_Modes) fMCHist_Modes->Scale(fScaleFactor, "width");
   }
 
 
   // Proper error scaling - ROOT Freaks out with xsec weights sometimes
   for (int i = 0; i < fMCStat->GetNbinsX(); i++) {
     fMCHist->SetBinError(i + 1, fMCHist->GetBinContent(i + 1) * statratio[i]);
   }
 
   for (int i = 0; i < fMCFine->GetNbinsX(); i++) {
     fMCFine->SetBinError(i + 1, fMCFine->GetBinContent(i + 1) * statratiofine[i]);
   }
 
 
   // Clean up
   delete statratio;
   delete statratiofine;
 
   return;
 };
 
 //********************************************************************
 void Measurement1D::ApplyNormScale(double norm) {
 //********************************************************************
 
   fCurrentNorm = norm;
 
   fMCHist->Scale(1.0 / norm);
   fMCFine->Scale(1.0 / norm);
 
   return;
 };
 
 
 
 /*
    Statistic Functions - Outsources to StatUtils
 */
 
 //********************************************************************
 int Measurement1D::GetNDOF() {
   //********************************************************************
   int ndof = fDataHist->GetNbinsX();
   if (fMaskHist and fIsMask) ndof -= fMaskHist->Integral();
   return ndof;
 }
 
 //********************************************************************
 double Measurement1D::GetLikelihood() {
 //********************************************************************
 
   // If this is for a ratio, there is no data histogram to compare to!
   if (fNoData || !fDataHist) return 0.;
 
   // Apply Masking to MC if Required.
   if (fIsMask and fMaskHist) {
     PlotUtils::MaskBins(fMCHist, fMaskHist);
   }
 
 
   // Sort Shape Scaling
   double scaleF = 0.0;
   // TODO Include !fIsRawEvents
   if (fIsShape) {
     if (fMCHist->Integral(1, fMCHist->GetNbinsX(), "width")) {
       scaleF = fDataHist->Integral(1, fDataHist->GetNbinsX(), "width") /
       	fMCHist->Integral(1, fMCHist->GetNbinsX(), "width");
       fMCHist->Scale(scaleF);
       fMCFine->Scale(scaleF);
     }
   }
 
 
   // Likelihood Calculation
   double stat = 0.;
   if (fIsChi2) {
 
     if (fIsRawEvents) {
       stat = StatUtils::GetChi2FromEventRate(fDataHist, fMCHist, fMaskHist);
     } else if (fIsDiag) {
       stat = StatUtils::GetChi2FromDiag(fDataHist, fMCHist, fMaskHist);
     } else if (!fIsDiag and !fIsRawEvents) {
       stat = StatUtils::GetChi2FromCov(fDataHist, fMCHist, covar, fMaskHist);
     }
 
   }
 
   // Sort Penalty Terms
   if (fAddNormPen) {
     double penalty =
       (1. - fCurrentNorm) * (1. - fCurrentNorm) / (fNormError * fNormError);
 
     stat += penalty;
   }
 
   // Return to normal scaling
   if (fIsShape) { // and !FitPar::Config().GetParB("saveshapescaling")) {
     fMCHist->Scale(1. / scaleF);
     fMCFine->Scale(1. / scaleF);
   }
 
   fLikelihood = stat;
 
   return stat;
 }
 
 
 /*
   Fake Data Functions
 */
 //********************************************************************
 void Measurement1D::SetFakeDataValues(std::string fakeOption) {
 //********************************************************************
 
   // Setup original/datatrue
   TH1D* tempdata = (TH1D*) fDataHist->Clone();
 
   if (!fIsFakeData) {
     fIsFakeData = true;
 
     // Make a copy of the original data histogram.
     if (!fDataOrig) fDataOrig = (TH1D*)fDataHist->Clone((fName + "_data_original").c_str());
 
   } else {
     ResetFakeData();
 
   }
 
   // Setup Inputs
   fFakeDataInput = fakeOption;
   LOG(SAM) << "Setting fake data from : " << fFakeDataInput << std::endl;
 
   // From MC
   if (fFakeDataInput.compare("MC") == 0) {
     fDataHist = (TH1D*)fMCHist->Clone((fName + "_MC").c_str());
 
     // Fake File
   } else {
     if (!fFakeDataFile) fFakeDataFile = new TFile(fFakeDataInput.c_str(), "READ");
     fDataHist = (TH1D*)fFakeDataFile->Get((fName + "_MC").c_str());
 
   }
 
   // Setup Data Hist
   fDataHist->SetNameTitle((fName + "_FAKE").c_str(),
                           (fName + fPlotTitles).c_str());
 
   // Replace Data True
   if (fDataTrue) delete fDataTrue;
   fDataTrue = (TH1D*)fDataHist->Clone();
   fDataTrue->SetNameTitle((fName + "_FAKE_TRUE").c_str(),
                           (fName + fPlotTitles).c_str());
 
 
   // Make a new covariance for fake data hist.
   int nbins = fDataHist->GetNbinsX();
   double alpha_i = 0.0;
   double alpha_j = 0.0;
 
   for (int i = 0; i < nbins; i++) {
     for (int j = 0; j < nbins; j++) {
       alpha_i = fDataHist->GetBinContent(i + 1) / tempdata->GetBinContent(i + 1);
       alpha_j = fDataHist->GetBinContent(j + 1) / tempdata->GetBinContent(j + 1);
 
       (*fFullCovar)(i, j) = alpha_i * alpha_j * (*fFullCovar)(i, j);
     }
   }
 
   // Setup Covariances
   if (covar) delete covar;
   covar   = StatUtils::GetInvert(fFullCovar);
 
   if (fDecomp) delete fDecomp;
   fDecomp = StatUtils::GetInvert(fFullCovar);
 
   delete tempdata;
 
   return;
 };
 
 //********************************************************************
 void Measurement1D::ResetFakeData() {
 //********************************************************************
 
   if (fIsFakeData) {
     if (fDataHist) delete fDataHist;
     fDataHist = (TH1D*)fDataTrue->Clone((fSettings.GetName() + "_FKDAT").c_str());
   }
 
 }
 
 //********************************************************************
 void Measurement1D::ResetData() {
 //********************************************************************
 
   if (fIsFakeData) {
     if (fDataHist) delete fDataHist;
     fDataHist = (TH1D*)fDataOrig->Clone((fSettings.GetName() + "_data").c_str());
   }
 
   fIsFakeData = false;
 }
 
 //********************************************************************
 void Measurement1D::ThrowCovariance() {
 //********************************************************************
 
   // Take a fDecomposition and use it to throw the current dataset.
   // Requires fDataTrue also be set incase used repeatedly.
 
   if (!fDataTrue) fDataTrue = (TH1D*) fDataHist->Clone();
   if (fDataHist) delete fDataHist;
   fDataHist = StatUtils::ThrowHistogram(fDataTrue, fFullCovar);
 
   return;
 };
 
 
 //********************************************************************
 void Measurement1D::ThrowDataToy(){
 //********************************************************************
   if (!fDataTrue) fDataTrue = (TH1D*) fDataHist->Clone();
   if (fMCHist) delete fMCHist;
   fMCHist = StatUtils::ThrowHistogram(fDataTrue, fFullCovar);
 }
 
 /*
    Access Functions
 */
 
 //********************************************************************
 TH1D* Measurement1D::GetMCHistogram() {
 //********************************************************************
 
   if (!fMCHist) return fMCHist;
 
   std::ostringstream chi2;
   chi2 << std::setprecision(5) << this->GetLikelihood();
 
   int linecolor = kRed;
   int linestyle = 1;
   int linewidth = 1;
 
   int fillcolor = 0;
   int fillstyle = 1001;
 
   // if (fSettings.Has("linecolor")) linecolor = fSettings.GetI("linecolor");
   // if (fSettings.Has("linestyle")) linestyle = fSettings.GetI("linestyle");
   // if (fSettings.Has("linewidth")) linewidth = fSettings.GetI("linewidth");
 
   // if (fSettings.Has("fillcolor")) fillcolor = fSettings.GetI("fillcolor");
   // if (fSettings.Has("fillstyle")) fillstyle = fSettings.GetI("fillstyle");
 
   fMCHist->SetTitle(chi2.str().c_str());
 
   fMCHist->SetLineColor(linecolor);
   fMCHist->SetLineStyle(linestyle);
   fMCHist->SetLineWidth(linewidth);
 
   fMCHist->SetFillColor(fillcolor);
   fMCHist->SetFillStyle(fillstyle);
 
   return fMCHist;
 };
 
 //********************************************************************
 TH1D* Measurement1D::GetDataHistogram() {
 //********************************************************************
 
   if (!fDataHist) return fDataHist;
 
   int datacolor = kBlack;
   int datastyle = 1;
   int datawidth = 1;
 
   // if (fSettings.Has("datacolor")) datacolor = fSettings.GetI("datacolor");
   // if (fSettings.Has("datastyle")) datastyle = fSettings.GetI("datastyle");
   // if (fSettings.Has("datawidth")) datawidth = fSettings.GetI("datawidth");
 
   fDataHist->SetLineColor(datacolor);
   fDataHist->SetLineWidth(datawidth);
   fDataHist->SetMarkerStyle(datastyle);
 
   return fDataHist;
 };
 
 
 /*
    Write Functions
 */
 
 // Save all the histograms at once
 //********************************************************************
 void Measurement1D::Write(std::string drawOpt) {
 //********************************************************************
 
   // Get Draw Options
   drawOpt = FitPar::Config().GetParS("drawopts");
 
   // Write Settigns
   if (drawOpt.find("SETTINGS") != std::string::npos){
     fSettings.Set("#chi^{2}",fLikelihood);
     fSettings.Set("NDOF", this->GetNDOF() );
     fSettings.Set("#chi^{2}/NDOF", fLikelihood / this->GetNDOF() );
     fSettings.Write();
   }
 
   // Write Data/MC
-  GetDataList().at(0)->Write();
-  GetMCList().at(0)->Write();
-
-  if((fEvtRateScaleFactor != 0xdeadbeef) && GetMCList().at(0)){
-    TH1D * PredictedEvtRate = static_cast<TH1D *>(GetMCList().at(0)->Clone());
-    PredictedEvtRate->Scale(fEvtRateScaleFactor);
-    PredictedEvtRate->GetYaxis()->SetTitle("Predicted event rate");
-    PredictedEvtRate->Write();
+  if (drawOpt.find("DATA") != std::string::npos) GetDataList().at(0)->Write();
+  if (drawOpt.find("MC") != std::string::npos) { 
+    GetMCList().at(0)->Write();
+    if((fEvtRateScaleFactor != 0xdeadbeef) && GetMCList().at(0)){
+      TH1D * PredictedEvtRate = static_cast<TH1D *>(GetMCList().at(0)->Clone());
+      PredictedEvtRate->Scale(fEvtRateScaleFactor);
+      PredictedEvtRate->GetYaxis()->SetTitle("Predicted event rate");
+      PredictedEvtRate->Write();
+    }
   }
 
-
   // Write Fine Histogram
   if (drawOpt.find("FINE") != std::string::npos)
     GetFineList().at(0)->Write();
 
   // Write Weighted Histogram
   if (drawOpt.find("WEIGHTS") != std::string::npos && fMCWeighted)
     fMCWeighted->Write();
 
 
   // Save Flux/Evt if no event manager
   if (!FitPar::Config().GetParB("EventManager")) {
-
     if (drawOpt.find("FLUX") != std::string::npos && GetFluxHistogram())
       GetFluxHistogram()->Write();
 
     if (drawOpt.find("EVT") != std::string::npos && GetEventHistogram())
       GetEventHistogram()->Write();
 
     if (drawOpt.find("XSEC") != std::string::npos && GetEventHistogram())
       GetXSecHistogram()->Write();
-
   }
 
   // Write Mask
   if (fIsMask && (drawOpt.find("MASK") != std::string::npos)) {
     fMaskHist->Write();
   }
 
-
   // Write Covariances
   if (drawOpt.find("COV") != std::string::npos && fFullCovar) {
     PlotUtils::GetFullCovarPlot(fFullCovar, fSettings.GetName());
   }
 
   if (drawOpt.find("INVCOV") != std::string::npos && covar) {
     PlotUtils::GetInvCovarPlot(covar, fSettings.GetName());
   }
 
   if (drawOpt.find("DECOMP") != std::string::npos && fDecomp) {
     PlotUtils::GetDecompCovarPlot(fDecomp, fSettings.GetName());
   }
 
   // // Likelihood residual plots
   // if (drawOpt.find("RESIDUAL") != std::string::npos) {
   //   WriteResidualPlots();
   // }
 
   // Ratio and Shape Plots
   if (drawOpt.find("RATIO") != std::string::npos) {
     WriteRatioPlot();
   }
 
   if (drawOpt.find("SHAPE") != std::string::npos) {
     WriteShapePlot();
     if (drawOpt.find("RATIO") != std::string::npos)
       WriteShapeRatioPlot();
   }
 
   // // RATIO
   // if (drawOpt.find("CANVMC") != std::string::npos) {
   //   TCanvas* c1 = WriteMCCanvas(fDataHist, fMCHist);
   //   c1->Write();
   //   delete c1;
   // }
 
   // // PDG
   // if (drawOpt.find("CANVPDG") != std::string::npos && fMCHist_Modes) {
   //   TCanvas* c2 = WritePDGCanvas(fDataHist, fMCHist, fMCHist_Modes);
   //   c2->Write();
   //   delete c2;
   // }
 
   // Write Extra Histograms
   AutoWriteExtraTH1();
   WriteExtraHistograms();
 
   // Returning
   LOG(SAM) << "Written Histograms: " << fName << std::endl;
   return;
 }
 
 //********************************************************************
 void Measurement1D::WriteRatioPlot() {
-//********************************************************************
+  //********************************************************************
 
   // Setup mc data ratios
   TH1D* dataRatio = (TH1D*)fDataHist->Clone((fName + "_data_RATIO").c_str());
   TH1D* mcRatio   = (TH1D*)fMCHist->Clone((fName + "_MC_RATIO").c_str());
 
   // Extra MC Data Ratios
   for (int i = 0; i < mcRatio->GetNbinsX(); i++) {
 
     dataRatio->SetBinContent(i + 1, fDataHist->GetBinContent(i + 1) / fMCHist->GetBinContent(i + 1));
     dataRatio->SetBinError(i + 1,   fDataHist->GetBinError(i + 1)   / fMCHist->GetBinContent(i + 1));
 
     mcRatio->SetBinContent(i + 1, fMCHist->GetBinContent(i + 1) / fMCHist->GetBinContent(i + 1));
     mcRatio->SetBinError(i + 1,   fMCHist->GetBinError(i + 1)   / fMCHist->GetBinContent(i + 1));
 
   }
 
   // Write ratios
   mcRatio->Write();
   dataRatio->Write();
 
   delete mcRatio;
   delete dataRatio;
 }
 
 
 //********************************************************************
 void Measurement1D::WriteShapePlot() {
-//********************************************************************
+  //********************************************************************
 
   TH1D* mcShape = (TH1D*)fMCHist->Clone((fName + "_MC_SHAPE").c_str());
 
   TH1D* dataShape = (TH1D*)fDataHist->Clone((fName + "_data_SHAPE").c_str());
   if (fShapeCovar) StatUtils::SetDataErrorFromCov(dataShape, fShapeCovar, 1E-38);
 
   double shapeScale = 1.0;
   if (fIsRawEvents) {
     shapeScale = fDataHist->Integral() / fMCHist->Integral();
   } else {
     shapeScale = fDataHist->Integral("width") / fMCHist->Integral("width");
   }
 
   mcShape->Scale(shapeScale);
 
   std::stringstream ss;
   ss << shapeScale;
   mcShape->SetTitle(ss.str().c_str());
 
   mcShape->SetLineWidth(3);
   mcShape->SetLineStyle(7);
 
   mcShape->Write();
   dataShape->Write();
 
   delete mcShape;
 
 }
 
 //********************************************************************
 void Measurement1D::WriteShapeRatioPlot() {
-//********************************************************************
+  //********************************************************************
 
   // Get a mcshape histogram
   TH1D* mcShape = (TH1D*)fMCHist->Clone((fName + "_MC_SHAPE").c_str());
 
   double shapeScale = 1.0;
   if (fIsRawEvents) {
     shapeScale = fDataHist->Integral() / fMCHist->Integral();
   } else {
     shapeScale = fDataHist->Integral("width") / fMCHist->Integral("width");
   }
 
   mcShape->Scale(shapeScale);
 
   // Create shape ratio histograms
   TH1D* mcShapeRatio   = (TH1D*)mcShape->Clone((fName + "_MC_SHAPE_RATIO").c_str());
   TH1D* dataShapeRatio = (TH1D*)fDataHist->Clone((fName + "_data_SHAPE_RATIO").c_str());
 
   // Divide the histograms
   mcShapeRatio->Divide(mcShape);
   dataShapeRatio->Divide(mcShape);
 
   // Colour the shape ratio plots
   mcShapeRatio->SetLineWidth(3);
   mcShapeRatio->SetLineStyle(7);
 
   mcShapeRatio->Write();
   dataShapeRatio->Write();
 
   delete mcShapeRatio;
   delete dataShapeRatio;
-
 }
 
 
 
 
 //// CRAP TO BE REMOVED
 
 
 //********************************************************************
 void Measurement1D::SetupMeasurement(std::string inputfile, std::string type,
-                                     FitWeight * rw, std::string fkdt) {
+    FitWeight * rw, std::string fkdt) {
   //********************************************************************
 
 
   nuiskey samplekey = Config::CreateKey("sample");
   samplekey.Set("name", fName);
   samplekey.Set("type",type);
   samplekey.Set("input",inputfile);
   fSettings = LoadSampleSettings(samplekey);
 
   // Reset everything to NULL
   // Init();
 
   // Check if name contains Evt, indicating that it is a raw number of events
   // measurements and should thus be treated as once
   fIsRawEvents = false;
   if ((fName.find("Evt") != std::string::npos) && fIsRawEvents == false) {
     fIsRawEvents = true;
     LOG(SAM) << "Found event rate measurement but fIsRawEvents == false!"
-             << std::endl;
+      << std::endl;
     LOG(SAM) << "Overriding this and setting fIsRawEvents == true!"
-             << std::endl;
+      << std::endl;
   }
 
   fIsEnu1D = false;
   if (fName.find("XSec_1DEnu") != std::string::npos) {
     fIsEnu1D = true;
     LOG(SAM) << "::" << fName << "::" << std::endl;
     LOG(SAM) << "Found XSec Enu measurement, applying flux integrated scaling, "
-             "not flux averaged!"
-             << std::endl;
+      "not flux averaged!"
+      << std::endl;
   }
 
   if (fIsEnu1D && fIsRawEvents) {
     LOG(SAM) << "Found 1D Enu XSec distribution AND fIsRawEvents, is this "
-             "really correct?!"
-             << std::endl;
+      "really correct?!"
+      << std::endl;
     LOG(SAM) << "Check experiment constructor for " << fName
-             << " and correct this!" << std::endl;
+      << " and correct this!" << std::endl;
     LOG(SAM) << "I live in " << __FILE__ << ":" << __LINE__ << std::endl;
     exit(-1);
   }
 
   fRW = rw;
 
   if (!fInput and !fIsJoint) SetupInputs(inputfile);
 
   // Set Default Options
   SetFitOptions(fDefaultTypes);
 
   // Set Passed Options
   SetFitOptions(type);
 
   // Still adding support for flat flux inputs
   //  // Set Enu Flux Scaling
   //  if (isFlatFluxFolding) this->Input()->ApplyFluxFolding(
   //  this->defaultFluxHist );
 
   // FinaliseMeasurement();
 }
 
 //********************************************************************
 void Measurement1D::SetupDefaultHist() {
   //********************************************************************
 
   // Setup fMCHist
   fMCHist = (TH1D*)fDataHist->Clone();
   fMCHist->SetNameTitle((fName + "_MC").c_str(),
-                        (fName + "_MC" + fPlotTitles).c_str());
+      (fName + "_MC" + fPlotTitles).c_str());
 
   // Setup fMCFine
   Int_t nBins = fMCHist->GetNbinsX();
   fMCFine = new TH1D(
-    (fName + "_MC_FINE").c_str(), (fName + "_MC_FINE" + fPlotTitles).c_str(),
-    nBins * 6, fMCHist->GetBinLowEdge(1), fMCHist->GetBinLowEdge(nBins + 1));
+      (fName + "_MC_FINE").c_str(), (fName + "_MC_FINE" + fPlotTitles).c_str(),
+      nBins * 6, fMCHist->GetBinLowEdge(1), fMCHist->GetBinLowEdge(nBins + 1));
 
   fMCStat = (TH1D*)fMCHist->Clone();
   fMCStat->Reset();
 
   fMCHist->Reset();
   fMCFine->Reset();
 
   // Setup the NEUT Mode Array
   PlotUtils::CreateNeutModeArray((TH1D*)fMCHist, (TH1**)fMCHist_PDG);
   PlotUtils::ResetNeutModeArray((TH1**)fMCHist_PDG);
 
   // Setup bin masks using sample name
   if (fIsMask) {
     std::string maskloc = FitPar::Config().GetParDIR(fName + ".mask");
     if (maskloc.empty()) {
       maskloc = FitPar::GetDataBase() + "/masks/" + fName + ".mask";
     }
 
     SetBinMask(maskloc);
   }
 
   fMCHist_Modes = new TrueModeStack( (fName + "_MODES").c_str(), ("True Channels"), fMCHist);
   SetAutoProcessTH1(fMCHist_Modes, kCMD_Reset, kCMD_Norm, kCMD_Write);
 
   return;
 }
 
 
 
 
 
 //********************************************************************
 void Measurement1D::SetDataValues(std::string dataFile) {
   //********************************************************************
 
   // Override this function if the input file isn't in a suitable format
   LOG(SAM) << "Reading data from: " << dataFile.c_str() << std::endl;
   fDataHist =
     PlotUtils::GetTH1DFromFile(dataFile, (fName + "_data"), fPlotTitles);
   fDataTrue = (TH1D*)fDataHist->Clone();
 
   // Number of data points is number of bins
   fNDataPointsX = fDataHist->GetXaxis()->GetNbins();
 
   return;
 };
 
 
 
 
 
 //********************************************************************
 void Measurement1D::SetDataFromDatabase(std::string inhistfile,
-                                        std::string histname) {
+    std::string histname) {
   //********************************************************************
 
   LOG(SAM) << "Filling histogram from " << inhistfile << "->" << histname
-           << std::endl;
+    << std::endl;
   fDataHist = PlotUtils::GetTH1DFromRootFile(
-                (GeneralUtils::GetTopLevelDir() + "/data/" + inhistfile), histname);
+      (GeneralUtils::GetTopLevelDir() + "/data/" + inhistfile), histname);
   fDataHist->SetNameTitle((fName + "_data").c_str(), (fName + "_data").c_str());
 
   return;
 };
 
 //********************************************************************
 void Measurement1D::SetDataFromFile(std::string inhistfile,
-                                    std::string histname) {
+    std::string histname) {
   //********************************************************************
 
   LOG(SAM) << "Filling histogram from " << inhistfile << "->" << histname
-           << std::endl;
+    << std::endl;
   fDataHist = PlotUtils::GetTH1DFromRootFile((inhistfile), histname);
   fDataHist->SetNameTitle((fName + "_data").c_str(), (fName + "_data").c_str());
 
   return;
 };
 
 //********************************************************************
 void Measurement1D::SetCovarMatrix(std::string covarFile) {
   //********************************************************************
 
   // Covariance function, only really used when reading in the MB Covariances.
 
   TFile* tempFile = new TFile(covarFile.c_str(), "READ");
 
   TH2D* covarPlot = new TH2D();
   //  TH2D* decmpPlot = new TH2D();
   TH2D* covarInvPlot = new TH2D();
   TH2D* fFullCovarPlot = new TH2D();
   std::string covName = "";
   std::string covOption = FitPar::Config().GetParS("thrown_covariance");
 
   if (fIsShape || fIsFree) covName = "shp_";
   if (fIsDiag)
     covName += "diag";
   else
     covName += "full";
 
   covarPlot = (TH2D*)tempFile->Get((covName + "cov").c_str());
   covarInvPlot = (TH2D*)tempFile->Get((covName + "covinv").c_str());
 
   if (!covOption.compare("SUB"))
     fFullCovarPlot = (TH2D*)tempFile->Get((covName + "cov").c_str());
   else if (!covOption.compare("FULL"))
     fFullCovarPlot = (TH2D*)tempFile->Get("fullcov");
   else
     ERR(WRN) << "Incorrect thrown_covariance option in parameters."
-             << std::endl;
+      << std::endl;
 
   int dim = int(fDataHist->GetNbinsX());  //-this->masked->Integral());
   int covdim = int(fDataHist->GetNbinsX());
 
   this->covar = new TMatrixDSym(dim);
   fFullCovar = new TMatrixDSym(dim);
   fDecomp = new TMatrixDSym(dim);
 
   int row, column = 0;
   row = 0;
   column = 0;
   for (Int_t i = 0; i < covdim; i++) {
     // if (this->masked->GetBinContent(i+1) > 0) continue;
 
     for (Int_t j = 0; j < covdim; j++) {
       //   if (this->masked->GetBinContent(j+1) > 0) continue;
 
       (*this->covar)(row, column) = covarPlot->GetBinContent(i + 1, j + 1);
       (*fFullCovar)(row, column) = fFullCovarPlot->GetBinContent(i + 1, j + 1);
 
       column++;
     }
     column = 0;
     row++;
   }
 
   // Set bin errors on data
   if (!fIsDiag) {
     StatUtils::SetDataErrorFromCov(fDataHist, fFullCovar);
   }
 
   // Get Deteriminant and inverse matrix
   // fCovDet = this->covar->Determinant();
 
   TDecompSVD LU = TDecompSVD(*this->covar);
   this->covar = new TMatrixDSym(dim, LU.Invert().GetMatrixArray(), "");
 
   return;
 };
 
 //********************************************************************
 // Sets the covariance matrix from a provided file in a text format
 // scale is a multiplicative pre-factor to apply in the case where the
 // covariance is given in some unit (e.g. 1E-38)
 void Measurement1D::SetCovarMatrixFromText(std::string covarFile, int dim,
     double scale) {
   //********************************************************************
 
   // Make a counter to track the line number
   int row = 0;
 
   std::string line;
   std::ifstream covarread(covarFile.c_str(), std::ifstream::in);
 
   this->covar = new TMatrixDSym(dim);
   fFullCovar = new TMatrixDSym(dim);
   if (covarread.is_open())
     LOG(SAM) << "Reading covariance matrix from file: " << covarFile
-             << std::endl;
+      << std::endl;
   else
     ERR(FTL) << "Covariance matrix provided is incorrect: " << covarFile
-             << std::endl;
+      << std::endl;
 
   // Loop over the lines in the file
   while (std::getline(covarread >> std::ws, line, '\n')) {
     int column = 0;
 
     // Loop over entries and insert them into matrix
     std::vector<double> entries = GeneralUtils::ParseToDbl(line, " ");
 
     if (entries.size() <= 1) {
       ERR(WRN) << "SetCovarMatrixFromText -> Covariance matrix only has <= 1 "
-               "entries on this line: "
-               << row << std::endl;
+        "entries on this line: "
+        << row << std::endl;
     }
 
     for (std::vector<double>::iterator iter = entries.begin();
-         iter != entries.end(); iter++) {
+        iter != entries.end(); iter++) {
       (*covar)(row, column) = *iter;
       (*fFullCovar)(row, column) = *iter;
 
       column++;
     }
 
     row++;
   }
   covarread.close();
 
   // Scale the actualy covariance matrix by some multiplicative factor
   (*fFullCovar) *= scale;
 
   // Robust matrix inversion method
   TDecompSVD LU = TDecompSVD(*this->covar);
   // THIS IS ACTUALLY THE INVERSE COVARIANCE MATRIXA AAAAARGH
   delete this->covar;
   this->covar = new TMatrixDSym(dim, LU.Invert().GetMatrixArray(), "");
 
   // Now need to multiply by the scaling factor
   // If the covariance
   (*this->covar) *= 1. / (scale);
 
   return;
 };
 
 //********************************************************************
 void Measurement1D::SetCovarMatrixFromCorrText(std::string corrFile, int dim) {
   //********************************************************************
 
   // Make a counter to track the line number
   int row = 0;
 
   std::string line;
   std::ifstream corr(corrFile.c_str(), std::ifstream::in);
 
   this->covar = new TMatrixDSym(dim);
   this->fFullCovar = new TMatrixDSym(dim);
   if (corr.is_open())
     LOG(SAM) << "Reading and converting correlation matrix from file: "
-             << corrFile << std::endl;
+      << corrFile << std::endl;
   else {
     ERR(FTL) << "Correlation matrix provided is incorrect: " << corrFile
-             << std::endl;
+      << std::endl;
     exit(-1);
   }
 
   while (std::getline(corr >> std::ws, line, '\n')) {
     int column = 0;
 
     // Loop over entries and insert them into matrix
     // Multiply by the errors to get the covariance, rather than the correlation
     // matrix
     std::vector<double> entries = GeneralUtils::ParseToDbl(line, " ");
     for (std::vector<double>::iterator iter = entries.begin();
-         iter != entries.end(); iter++) {
+        iter != entries.end(); iter++) {
       double val = (*iter) * this->fDataHist->GetBinError(row + 1) * 1E38 *
-                   this->fDataHist->GetBinError(column + 1) * 1E38;
+        this->fDataHist->GetBinError(column + 1) * 1E38;
       if (val == 0) {
         ERR(FTL) << "Found a zero value in the covariance matrix, assuming "
-                 "this is an error!"
-                 << std::endl;
+          "this is an error!"
+          << std::endl;
         exit(-1);
       }
 
       (*this->covar)(row, column) = val;
       (*this->fFullCovar)(row, column) = val;
 
       column++;
     }
 
     row++;
   }
 
   // Robust matrix inversion method
   TDecompSVD LU = TDecompSVD(*this->covar);
   delete this->covar;
   this->covar = new TMatrixDSym(dim, LU.Invert().GetMatrixArray(), "");
 
   return;
 };
 
 
 
 
 
 
 //********************************************************************
 // FullUnits refers to if we have "real" unscaled units in the covariance matrix, e.g. 1E-76.
 // If this is the case we need to scale it so that the chi2 contribution is correct
 // NUISANCE internally assumes the covariance matrix has units of 1E76
 void Measurement1D::SetCovarFromDataFile(std::string covarFile,
     std::string covName, bool FullUnits) {
   //********************************************************************
 
   LOG(SAM) << "Getting covariance from " << covarFile << "->" << covName
-           << std::endl;
+    << std::endl;
 
   TFile* tempFile = new TFile(covarFile.c_str(), "READ");
   TH2D* covPlot = (TH2D*)tempFile->Get(covName.c_str());
   covPlot->SetDirectory(0);
   // Scale the covariance matrix if it comes in normal units
   if (FullUnits) {
     covPlot->Scale(1.E76);
   }
 
   int dim = covPlot->GetNbinsX();
   fFullCovar = new TMatrixDSym(dim);
 
   for (int i = 0; i < dim; i++) {
     for (int j = 0; j < dim; j++) {
       (*fFullCovar)(i, j) = covPlot->GetBinContent(i + 1, j + 1);
     }
   }
 
   this->covar = (TMatrixDSym*)fFullCovar->Clone();
   fDecomp = (TMatrixDSym*)fFullCovar->Clone();
 
   TDecompSVD LU = TDecompSVD(*this->covar);
   this->covar = new TMatrixDSym(dim, LU.Invert().GetMatrixArray(), "");
 
   TDecompChol LUChol = TDecompChol(*fDecomp);
   LUChol.Decompose();
   fDecomp = new TMatrixDSym(dim, LU.GetU().GetMatrixArray(), "");
 
   return;
 };
 
 // //********************************************************************
 // void Measurement1D::SetBinMask(std::string maskFile) {
 //   //********************************************************************
 
 //   // Create a mask histogram.
 //   int nbins = fDataHist->GetNbinsX();
 //   fMaskHist =
 //     new TH1I((fName + "_fMaskHist").c_str(),
 //              (fName + "_fMaskHist; Bin; Mask?").c_str(), nbins, 0, nbins);
 //   std::string line;
 //   std::ifstream mask(maskFile.c_str(), std::ifstream::in);
 
 //   if (mask.is_open())
 //     LOG(SAM) << "Reading bin mask from file: " << maskFile << std::endl;
 //   else
 //     LOG(FTL) << " Cannot find mask file." << std::endl;
 
 //   while (std::getline(mask >> std::ws, line, '\n')) {
 //     std::vector<int> entries = GeneralUtils::ParseToInt(line, " ");
 
 //     // Skip lines with poorly formatted lines
 //     if (entries.size() < 2) {
 //       LOG(WRN) << "Measurement1D::SetBinMask(), couldn't parse line: " << line
 //                << std::endl;
 //       continue;
 //     }
 
 //     // The first index should be the bin number, the second should be the mask
 //     // value.
 //     fMaskHist->SetBinContent(entries[0], entries[1]);
 //   }
 
 //   // Set masked data bins to zero
 //   PlotUtils::MaskBins(fDataHist, fMaskHist);
 
 //   return;
 // }
 
 // //********************************************************************
 // void Measurement1D::GetBinContents(std::vector<double>& cont,
 //                                    std::vector<double>& err) {
 //   //********************************************************************
 
 //   // Return a vector of the main bin contents
 //   for (int i = 0; i < fMCHist->GetNbinsX(); i++) {
 //     cont.push_back(fMCHist->GetBinContent(i + 1));
 //     err.push_back(fMCHist->GetBinError(i + 1));
 //   }
 
 //   return;
 // };
 
 
 /*
    XSec Functions
    */
 
 // //********************************************************************
 // void Measurement1D::SetFluxHistogram(std::string fluxFile, int minE, int
 // maxE,
 //     double fluxNorm) {
 //   //********************************************************************
 
 //   // Note this expects the flux bins to be given in terms of MeV
 //   LOG(SAM) << "Reading flux from file: " << fluxFile << std::endl;
 
 //   TGraph f(fluxFile.c_str(), "%lg %lg");
 
 //   fFluxHist =
 //     new TH1D((fName + "_flux").c_str(), (fName + "; E_{#nu} (GeV)").c_str(),
 //         f.GetN() - 1, minE, maxE);
 
 //   Double_t* yVal = f.GetY();
 
 //   for (int i = 0; i < fFluxHist->GetNbinsX(); ++i)
 //     fFluxHist->SetBinContent(i + 1, yVal[i] * fluxNorm);
 // };
 
 // //********************************************************************
 // double Measurement1D::TotalIntegratedFlux(std::string intOpt, double low,
 //     double high) {
 //   //********************************************************************
 
 //   if (fInput->GetType() == kGiBUU) {
 //     return 1.0;
 //   }
 
 //   // The default case of low = -9999.9 and high = -9999.9
 //   if (low == -9999.9) low = this->EnuMin;
 //   if (high == -9999.9) high = this->EnuMax;
 
 //   int minBin = fFluxHist->GetXaxis()->FindBin(low);
 //   int maxBin = fFluxHist->GetXaxis()->FindBin(high);
 
 //   // Get integral over custom range
 //   double integral = fFluxHist->Integral(minBin, maxBin + 1, intOpt.c_str());
 
 //   return integral;
 // };