diff --git a/src/Utils/PlotUtils.cxx b/src/Utils/PlotUtils.cxx index 6c01bc4..a9309c5 100644 --- a/src/Utils/PlotUtils.cxx +++ b/src/Utils/PlotUtils.cxx @@ -1,1260 +1,1275 @@ // Copyright 2016-2021 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret /******************************************************************************* * This file is part of NUISANCE. * * NUISANCE is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * NUISANCE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NUISANCE. If not, see . *******************************************************************************/ #include "PlotUtils.h" #include "FitEvent.h" #include "StatUtils.h" // MOVE TO GENERAL UTILS? bool PlotUtils::CheckObjectWithName(TFile *inFile, std::string substring) { TIter nextkey(inFile->GetListOfKeys()); TKey *key; while ((key = (TKey *)nextkey())) { std::string test(key->GetName()); if (test.find(substring) != std::string::npos) return true; } return false; }; // MOVE TO GENERAL UTILS? std::string PlotUtils::GetObjectWithName(TFile *inFile, std::string substring) { TIter nextkey(inFile->GetListOfKeys()); TKey *key; std::string output = ""; while ((key = (TKey *)nextkey())) { std::string test(key->GetName()); if (test.find(substring) != std::string::npos) output = test; } return output; }; void PlotUtils::CreateNeutModeArray(TH1 *hist, TH1 *neutarray[]) { for (int i = 0; i < 60; i++) { neutarray[i] = (TH1 *)hist->Clone(Form("%s_NMODE_%i", hist->GetName(), i)); } return; }; void PlotUtils::DeleteNeutModeArray(TH1 *neutarray[]) { for (int i = 0; i < 60; i++) { delete neutarray[i]; } return; }; void PlotUtils::FillNeutModeArray(TH1D *hist[], int mode, double xval, double weight) { if (abs(mode) > 60) return; hist[abs(mode)]->Fill(xval, weight); return; }; void PlotUtils::FillNeutModeArray(TH2D *hist[], int mode, double xval, double yval, double weight) { if (abs(mode) > 60) return; hist[abs(mode)]->Fill(xval, yval, weight); return; }; THStack PlotUtils::GetNeutModeStack(std::string title, TH1 *ModeStack[], int option) { (void)option; THStack allmodes = THStack(title.c_str(), title.c_str()); for (int i = 0; i < 60; i++) { allmodes.Add(ModeStack[i]); } // Credit to Clarence for copying all this out. // CC ModeStack[1]->SetTitle("CCQE"); ModeStack[1]->SetFillColor(kBlue); // ModeStack[1]->SetFillStyle(3444); ModeStack[1]->SetLineColor(kBlue); ModeStack[2]->SetTitle("2p/2h Nieves"); ModeStack[2]->SetFillColor(kRed); // ModeStack[2]->SetFillStyle(3344); ModeStack[2]->SetLineColor(kRed); // ModeStack[11]->SetTitle("#it{#nu + p #rightarrow l^{-} + p + #pi^{+}}"); ModeStack[11]->SetTitle("CC1#pi^{+} on p"); ModeStack[11]->SetFillColor(kGreen); // ModeStack[11]->SetFillStyle(3004); ModeStack[11]->SetLineColor(kGreen); // ModeStack[12]->SetTitle("#it{#nu + n #rightarrow l^{-} + p + #pi^{0}}"); ModeStack[12]->SetTitle("CC1#pi^{0} on n"); ModeStack[12]->SetFillColor(kGreen + 3); // ModeStack[12]->SetFillStyle(3005); ModeStack[12]->SetLineColor(kGreen); // ModeStack[13]->SetTitle("#it{#nu + n #rightarrow l^{-} + n + #pi^{+}}"); ModeStack[13]->SetTitle("CC1#pi^{+} on n"); ModeStack[13]->SetFillColor(kGreen - 2); // ModeStack[13]->SetFillStyle(3004); ModeStack[13]->SetLineColor(kGreen); ModeStack[16]->SetTitle("CC coherent"); ModeStack[16]->SetFillColor(kBlue-6); // ModeStack[16]->SetFillStyle(3644); ModeStack[16]->SetLineColor(kBlue-6); // ModeStack[17]->SetTitle("#it{#nu + n #rightarrow l^{-} + p + #gamma}"); ModeStack[17]->SetTitle("CC1#gamma"); ModeStack[17]->SetFillColor(kMagenta); // ModeStack[17]->SetFillStyle(3001); ModeStack[17]->SetLineColor(kMagenta); ModeStack[21]->SetTitle("Multi #pi (1.3 < W < 2.0)"); ModeStack[21]->SetFillColor(kYellow); // ModeStack[21]->SetFillStyle(3005); ModeStack[21]->SetLineColor(kYellow); // ModeStack[22]->SetTitle("#it{#nu + n #rightarrow l^{-} + p + #eta^{0}}"); ModeStack[22]->SetTitle("CC1#eta^{0} on n"); ModeStack[22]->SetFillColor(kYellow - 2); // ModeStack[22]->SetFillStyle(3013); ModeStack[22]->SetLineColor(kYellow - 2); // ModeStack[23]->SetTitle("#it{#nu + n #rightarrow l^{-} + #Lambda + // K^{+}}"); ModeStack[23]->SetTitle("CC1#Labda1K^{+}"); ModeStack[23]->SetFillColor(kYellow - 6); // ModeStack[23]->SetFillStyle(3013); ModeStack[23]->SetLineColor(kYellow - 6); ModeStack[26]->SetTitle("DIS (W > 2.0)"); ModeStack[26]->SetFillColor(kRed-6); // ModeStack[26]->SetFillStyle(3006); ModeStack[26]->SetLineColor(kRed-6); // NC // ModeStack[31]->SetTitle("#it{#nu + n #rightarrow #nu + n + #pi^{0}}"); ModeStack[31]->SetTitle("NC1#pi^{0} on n"); ModeStack[31]->SetFillColor(kBlue-4); // ModeStack[31]->SetFillStyle(3004); ModeStack[31]->SetLineColor(kBlue-4); // ModeStack[32]->SetTitle("#it{#nu + p #rightarrow #nu + p + #pi^{0}}"); ModeStack[32]->SetTitle("NC1#pi^{0} on p"); ModeStack[32]->SetFillColor(kBlue + 3); // ModeStack[32]->SetFillStyle(3004); ModeStack[32]->SetLineColor(kBlue + 3); // ModeStack[33]->SetTitle("#it{#nu + n #rightarrow #nu + p + #pi^{-}}"); ModeStack[33]->SetTitle("NC1#pi^{-} on n"); ModeStack[33]->SetFillColor(kBlue - 2); // ModeStack[33]->SetFillStyle(3005); ModeStack[33]->SetLineColor(kBlue - 2); // ModeStack[34]->SetTitle("#it{#nu + p #rightarrow #nu + n + #pi^{+}}"); ModeStack[34]->SetTitle("NC1#pi^{+} on p"); ModeStack[34]->SetFillColor(kBlue - 8); // ModeStack[34]->SetFillStyle(3005); ModeStack[34]->SetLineColor(kBlue - 8); ModeStack[36]->SetTitle("NC Coherent"); ModeStack[36]->SetFillColor(kBlue + 8); // ModeStack[36]->SetFillStyle(3644); ModeStack[36]->SetLineColor(kBlue + 8); // ModeStack[38]->SetTitle("#it{#nu + n #rightarrow #nu + n + #gamma}"); ModeStack[38]->SetTitle("NC1#gamma on n"); ModeStack[38]->SetFillColor(kMagenta); // ModeStack[38]->SetFillStyle(3001); ModeStack[38]->SetLineColor(kMagenta); // ModeStack[39]->SetTitle("#it{#nu + p #rightarrow #nu + p + #gamma}"); ModeStack[39]->SetTitle("NC1#gamma on p"); ModeStack[39]->SetFillColor(kMagenta - 10); // ModeStack[39]->SetFillStyle(3001); ModeStack[39]->SetLineColor(kMagenta - 10); ModeStack[41]->SetTitle("Multi #pi (1.3 < W < 2.0)"); ModeStack[41]->SetFillColor(kBlue - 10); // ModeStack[41]->SetFillStyle(3005); ModeStack[41]->SetLineColor(kBlue - 10); // ModeStack[42]->SetTitle("#it{#nu + n #rightarrow #nu + n + #eta^{0}}"); ModeStack[42]->SetTitle("NC1#eta^{0} on n"); ModeStack[42]->SetFillColor(kYellow - 2); // ModeStack[42]->SetFillStyle(3013); ModeStack[42]->SetLineColor(kYellow - 2); // ModeStack[43]->SetTitle("#it{#nu + p #rightarrow #nu + p + #eta^{0}}"); ModeStack[43]->SetTitle("NC1#eta^{0} on p"); ModeStack[43]->SetFillColor(kYellow - 4); // ModeStack[43]->SetFillStyle(3013); ModeStack[43]->SetLineColor(kYellow - 4); // ModeStack[44]->SetTitle("#it{#nu + n #rightarrow #nu + #Lambda + K^{0}}"); ModeStack[44]->SetTitle("NC1#Lambda1K^{0} on n"); ModeStack[44]->SetFillColor(kYellow - 6); // ModeStack[44]->SetFillStyle(3014); ModeStack[44]->SetLineColor(kYellow - 6); // ModeStack[45]->SetTitle("#it{#nu + p #rightarrow #nu + #Lambda + K^{+}}"); ModeStack[45]->SetTitle("NC1#Lambda1K^{+}"); ModeStack[45]->SetFillColor(kYellow - 10); // ModeStack[45]->SetFillStyle(3014); ModeStack[45]->SetLineColor(kYellow - 10); ModeStack[46]->SetTitle("DIS (W > 2.0)"); ModeStack[46]->SetFillColor(kRed-6); // ModeStack[46]->SetFillStyle(3006); ModeStack[46]->SetLineColor(kRed-6); // ModeStack[51]->SetTitle("#it{#nu + p #rightarrow #nu + p}"); ModeStack[51]->SetTitle("NC on p"); ModeStack[51]->SetFillColor(kBlack); // ModeStack[51]->SetFillStyle(3444); ModeStack[51]->SetLineColor(kBlack); // ModeStack[52]->SetTitle("#it{#nu + n #rightarrow #nu + n}"); ModeStack[52]->SetTitle("NC on n"); ModeStack[52]->SetFillColor(kGray); // ModeStack[52]->SetFillStyle(3444); ModeStack[52]->SetLineColor(kGray); return allmodes; }; TLegend PlotUtils::GenerateStackLegend(THStack stack, int xlow, int ylow, int xhigh, int yhigh) { TLegend leg = TLegend(xlow, ylow, xhigh, yhigh); TObjArray *histarray = stack.GetStack(); int nhist = histarray->GetEntries(); for (int i = 0; i < nhist; i++) { TH1 *hist = (TH1 *)(histarray->At(i)); leg.AddEntry((hist), ((TH1 *)histarray->At(i))->GetTitle(), "fl"); } leg.SetName(Form("%s_LEG", stack.GetName())); return leg; }; void PlotUtils::ScaleNeutModeArray(TH1 *hist[], double factor, std::string option) { for (int i = 0; i < 60; i++) { if (hist[i]) hist[i]->Scale(factor, option.c_str()); } return; }; void PlotUtils::ResetNeutModeArray(TH1 *hist[]) { for (int i = 0; i < 60; i++) { if (hist[i]) hist[i]->Reset(); } return; }; //******************************************************************** // This assumes the Enu axis is the x axis, as is the case for MiniBooNE 2D // distributions void PlotUtils::FluxUnfoldedScaling(TH2D *fMCHist, TH1D *fhist, TH1D *ehist, double scalefactor) { //******************************************************************** // Make clones to avoid changing stuff TH1D *eventhist = (TH1D *)ehist->Clone(); TH1D *fFluxHist = (TH1D *)fhist->Clone(); // Undo width integral in SF fMCHist->Scale(scalefactor / eventhist->Integral(1, eventhist->GetNbinsX() + 1, "width")); // Standardise The Flux eventhist->Scale(1.0 / fFluxHist->Integral()); fFluxHist->Scale(1.0 / fFluxHist->Integral()); // Do interpolation for 2D plots? // fFluxHist = PlotUtils::InterpolateFineHistogram(fFluxHist,100,"width"); // eventhist = PlotUtils::InterpolateFineHistogram(eventhist,100,"width"); // eventhist->Scale(1.0/fFluxHist->Integral()); // fFluxHist->Scale(1.0/fFluxHist->Integral()); // Scale fMCHist by eventhist integral fMCHist->Scale(eventhist->Integral(1, eventhist->GetNbinsX() + 1)); // Find which axis is the Enu axis bool EnuOnXaxis = false; std::string xaxis = fMCHist->GetXaxis()->GetTitle(); if (xaxis.find("E") != std::string::npos && xaxis.find("nu") != std::string::npos) EnuOnXaxis = true; std::string yaxis = fMCHist->GetYaxis()->GetTitle(); if (yaxis.find("E") != std::string::npos && xaxis.find("nu") != std::string::npos) { // First check that xaxis didn't also find Enu if (EnuOnXaxis) { NUIS_ERR(FTL, fMCHist->GetTitle() << " error:"); NUIS_ERR(FTL, "Found Enu in xaxis title: " << xaxis); NUIS_ERR(FTL, "AND"); NUIS_ERR(FTL, "Found Enu in yaxis title: " << yaxis); NUIS_ABORT("Enu on x and Enu on y flux unfolded scaling isn't " "implemented, please modify " << __FILE__ << ":" << __LINE__); } EnuOnXaxis = false; } // Now Get a flux PDF assuming X axis is Enu TH1D *pdfflux = NULL; // If xaxis is Enu if (EnuOnXaxis) pdfflux = (TH1D *)fMCHist->ProjectionX()->Clone(); // If yaxis is Enu else pdfflux = (TH1D *)fMCHist->ProjectionY()->Clone(); // pdfflux->Write( (std::string(fMCHist->GetName()) + "_PROJX").c_str()); pdfflux->Reset(); // Awful MiniBooNE Check for the time being // Needed because the flux is in GeV whereas the measurement is in MeV bool ismb = std::string(fMCHist->GetName()).find("MiniBooNE") != std::string::npos; for (int i = 0; i < pdfflux->GetNbinsX(); i++) { double Ml = pdfflux->GetXaxis()->GetBinLowEdge(i + 1); double Mh = pdfflux->GetXaxis()->GetBinLowEdge(i + 2); // double Mc = pdfflux->GetXaxis()->GetBinCenter(i+1); // double Mw = pdfflux->GetBinWidth(i+1); double fluxint = 0.0; // Scaling to match flux for MB if (ismb) { Ml /= 1.E3; Mh /= 1.E3; // Mc /= 1.E3; // Mw /= 1.E3; } for (int j = 0; j < fFluxHist->GetNbinsX(); j++) { // double Fc = fFluxHist->GetXaxis()->GetBinCenter(j+1); double Fl = fFluxHist->GetXaxis()->GetBinLowEdge(j + 1); double Fh = fFluxHist->GetXaxis()->GetBinLowEdge(j + 2); double Fe = fFluxHist->GetBinContent(j + 1); double Fw = fFluxHist->GetXaxis()->GetBinWidth(j + 1); if (Fl >= Ml and Fh <= Mh) { fluxint += Fe; } else if (Fl < Ml and Fl < Mh and Fh > Ml and Fh < Mh) { fluxint += Fe * (Fh - Ml) / Fw; } else if (Fh > Mh and Fl < Mh and Fh > Ml and Fl > Ml) { fluxint += Fe * (Mh - Fl) / Fw; } else if (Ml >= Fl and Mh <= Fh) { fluxint += Fe * (Mh - Ml) / Fw; } else { continue; } } pdfflux->SetBinContent(i + 1, fluxint); } // Then finally divide by the bin-width in for (int i = 0; i < fMCHist->GetNbinsX(); i++) { for (int j = 0; j < fMCHist->GetNbinsY(); j++) { if (pdfflux->GetBinContent(i + 1) == 0.0) continue; // Different scaling depending on if Enu is on x or y axis double scaling = 1.0; // If Enu is on the x-axis, we want the ith entry of the flux // And to divide by the bin width of the jth bin if (EnuOnXaxis) { double binWidth = fMCHist->GetYaxis()->GetBinLowEdge(j + 2) - fMCHist->GetYaxis()->GetBinLowEdge(j + 1); scaling = pdfflux->GetBinContent(i + 1) * binWidth; } else { double binWidth = fMCHist->GetXaxis()->GetBinLowEdge(i + 2) - fMCHist->GetXaxis()->GetBinLowEdge(i + 1); scaling = pdfflux->GetBinContent(j + 1) * binWidth; } // fMCHist->SetBinContent(i + 1, j + 1, // fMCHist->GetBinContent(i + 1, j + 1) / // pdfflux->GetBinContent(i + 1) / binWidth); // fMCHist->SetBinError(i + 1, j + 1, fMCHist->GetBinError(i + 1, j + 1) / // pdfflux->GetBinContent(i + 1) / // binWidth); fMCHist->SetBinContent(i + 1, j + 1, fMCHist->GetBinContent(i + 1, j + 1) / scaling); fMCHist->SetBinError(i + 1, j + 1, fMCHist->GetBinError(i + 1, j + 1) / scaling); } } delete eventhist; delete fFluxHist; }; TH1D *PlotUtils::InterpolateFineHistogram(TH1D *hist, int res, std::string opt) { int nbins = hist->GetNbinsX(); double elow = hist->GetXaxis()->GetBinLowEdge(1); double ehigh = hist->GetXaxis()->GetBinLowEdge(nbins + 1); bool width = true; // opt.find("width") != std::string::npos; TH1D *fine = new TH1D("fine", "fine", nbins * res, elow, ehigh); TGraph *temp = new TGraph(); for (int i = 0; i < nbins; i++) { double E = hist->GetXaxis()->GetBinCenter(i + 1); double C = hist->GetBinContent(i + 1); double W = hist->GetXaxis()->GetBinWidth(i + 1); if (!width) W = 1.0; if (W != 0.0) temp->SetPoint(temp->GetN(), E, C / W); } for (int i = 0; i < fine->GetNbinsX(); i++) { double E = fine->GetXaxis()->GetBinCenter(i + 1); double W = fine->GetBinWidth(i + 1); if (!width) W = 1.0; fine->SetBinContent(i + 1, temp->Eval(E, 0, "S") * W); } fine->Scale(hist->Integral(1, hist->GetNbinsX() + 1) / fine->Integral(1, fine->GetNbinsX() + 1)); // std::cout << "Interpolation Difference = " //<< fine->Integral(1, fine->GetNbinsX() + 1) << "/" //<< hist->Integral(1, hist->GetNbinsX() + 1) << std::endl; return fine; } //******************************************************************** // This interpolates the flux by a TGraph instead of requiring the flux and MC // flux to have the same binning void PlotUtils::FluxUnfoldedScaling(TH1D *mcHist, TH1D *fhist, TH1D *ehist, double scalefactor, int nevents) { //******************************************************************** TH1D *eventhist = (TH1D *)ehist->Clone(); TH1D *fFluxHist = (TH1D *)fhist->Clone(); std::string name = std::string(mcHist->GetName()); if (FitPar::Config().GetParB("save_flux_debug")) { mcHist->Write((name + "_UNF_MC").c_str()); fFluxHist->Write((name + "_UNF_FLUX").c_str()); eventhist->Write((name + "_UNF_EVT").c_str()); TH1D *scalehist = new TH1D("scalehist", "scalehist", 1, 0.0, 1.0); scalehist->SetBinContent(1, scalefactor); scalehist->SetBinContent(2, nevents); scalehist->Write((name + "_UNF_SCALE").c_str()); } // Undo width integral in SF mcHist->Scale(scalefactor / eventhist->Integral(1, eventhist->GetNbinsX() + 1, "width")); // Standardise The Flux eventhist->Scale(1.0 / fFluxHist->Integral()); fFluxHist->Scale(1.0 / fFluxHist->Integral()); // Scale mcHist by eventhist integral mcHist->Scale(eventhist->Integral(1, eventhist->GetNbinsX() + 1)); // Now Get a flux PDF TH1D *pdfflux = (TH1D *)mcHist->Clone(); pdfflux->Reset(); for (int i = 0; i < mcHist->GetNbinsX(); i++) { double Ml = mcHist->GetXaxis()->GetBinLowEdge(i + 1); double Mh = mcHist->GetXaxis()->GetBinLowEdge(i + 2); // double Mc = mcHist->GetXaxis()->GetBinCenter(i+1); // double Me = mcHist->GetBinContent(i+1); // double Mw = mcHist->GetBinWidth(i+1); double fluxint = 0.0; for (int j = 0; j < fFluxHist->GetNbinsX(); j++) { // double Fc = fFluxHist->GetXaxis()->GetBinCenter(j+1); double Fl = fFluxHist->GetXaxis()->GetBinLowEdge(j + 1); double Fh = fFluxHist->GetXaxis()->GetBinLowEdge(j + 2); double Fe = fFluxHist->GetBinContent(j + 1); double Fw = fFluxHist->GetXaxis()->GetBinWidth(j + 1); if (Fl >= Ml and Fh <= Mh) { fluxint += Fe; } else if (Fl < Ml and Fl < Mh and Fh > Ml and Fh < Mh) { fluxint += Fe * (Fh - Ml) / Fw; } else if (Fh > Mh and Fl < Mh and Fh > Ml and Fl > Ml) { fluxint += Fe * (Mh - Fl) / Fw; } else if (Ml >= Fl and Mh <= Fh) { fluxint += Fe * (Mh - Ml) / Fw; } else { continue; } } pdfflux->SetBinContent(i + 1, fluxint); } if (FitPar::Config().GetParB("save_flux_debug")) { pdfflux->Write((name + "_UNF_SCALEHIST").c_str()); } // Scale MC hist by pdfflux for (int i = 0; i < mcHist->GetNbinsX(); i++) { if (pdfflux->GetBinContent(i + 1) == 0.0) continue; mcHist->SetBinContent(i + 1, mcHist->GetBinContent(i + 1) / pdfflux->GetBinContent(i + 1)); mcHist->SetBinError(i + 1, mcHist->GetBinError(i + 1) / pdfflux->GetBinContent(i + 1)); } delete eventhist; delete fFluxHist; }; // MOVE TO GENERAL UTILS //******************************************************************** void PlotUtils::Set2DHistFromText(std::string dataFile, TH2 *hist, double norm, bool skipbins) { //******************************************************************** std::string line; std::ifstream data(dataFile.c_str(), std::ifstream::in); int yBin = 0; while (std::getline(data >> std::ws, line, '\n')) { std::vector entries = GeneralUtils::ParseToDbl(line, " "); // Loop over entries and insert them into the histogram for (uint xBin = 0; xBin < entries.size(); xBin++) { if (!skipbins || entries[xBin] != -1.0) hist->SetBinContent(xBin + 1, yBin + 1, entries[xBin] * norm); } yBin++; } return; } // MOVE TO GENERAL UTILS TH1D *PlotUtils::GetTH1DFromFile(std::string dataFile, std::string title, std::string fPlotTitles, std::string alt_name) { TH1D *tempPlot; // If format is a root file if (dataFile.find(".root") != std::string::npos) { TFile *temp_infile = new TFile(dataFile.c_str(), "READ"); // Check that file actually exists if (!temp_infile->IsOpen() || temp_infile->IsZombie()) { NUIS_ERR(FTL, "Input ROOT file" << dataFile << " does not exist"); NUIS_ERR(FTL, "Please make sure the correct file exists, and your implementation of the sample points to the correct location"); throw; } tempPlot = (TH1D *)temp_infile->Get(title.c_str()); if (tempPlot == NULL) { NUIS_ERR(FTL, "Could not find distribution " << title << " in file " << temp_infile); throw; } tempPlot->SetDirectory(0); temp_infile->Close(); delete temp_infile; // Else its a space separated txt file // Expecting format: lower bin edge, data, uncertainty } else { // Make a TGraph Errors TGraphErrors *gr = new TGraphErrors(dataFile.c_str(), "%lg %lg %lg"); if (gr->IsZombie()) { NUIS_ERR(FTL, "Input file" << dataFile << " does not exist"); NUIS_ERR(FTL, "Please make sure the correct file exists, and your implementation of the sample points to the correct location"); throw; } double *bins = gr->GetX(); double *values = gr->GetY(); double *errors = gr->GetEY(); int npoints = gr->GetN(); // Fill the histogram from it tempPlot = new TH1D(title.c_str(), title.c_str(), npoints - 1, bins); for (int i = 0; i < npoints; ++i) { tempPlot->SetBinContent(i + 1, values[i]); // If only two columns are present in the input file, use the sqrt(values) // as the error equivalent to assuming that the error is statistical. Also // check that we're looking at an event rate rather than a cross section if (!errors[i] && values[i] > 1E-30) { tempPlot->SetBinError(i + 1, sqrt(values[i])); } else { tempPlot->SetBinError(i + 1, errors[i]); } } delete gr; } // Allow alternate naming for root files if (!alt_name.empty()) { tempPlot->SetNameTitle(alt_name.c_str(), alt_name.c_str()); } // Allow alternate axis titles if (!fPlotTitles.empty()) { tempPlot->SetNameTitle( tempPlot->GetName(), (std::string(tempPlot->GetTitle()) + fPlotTitles).c_str()); } return tempPlot; }; TH1D *PlotUtils::GetRatioPlot(TH1D *hist1, TH1D *hist2, TH1D *new_hist) { // If the hist to save into doesn't exist, make copy of first hist if (!new_hist) new_hist = (TH1D *)hist1->Clone(); // Do bins and errors ourselves as scales can go awkward for (int i = 0; i < new_hist->GetNbinsX(); i++) { double binVal = 0; double binErr = 0; if (hist2->GetBinContent(i+1) && hist1->GetBinContent(i+1)) { binVal = hist1->GetBinContent(i+1)/hist2->GetBinContent(i+1); double fractErr1 = hist1->GetBinError(i+1)/hist1->GetBinContent(i+1); double fractErr2 = hist2->GetBinError(i+1)/hist2->GetBinContent(i+1); binErr = binVal * sqrt(fractErr1*fractErr1 + fractErr2*fractErr2); } new_hist->SetBinContent(i+1, binVal); new_hist->SetBinError(i+1, binErr); } return new_hist; }; TH1D *PlotUtils::GetRenormalisedPlot(TH1D *hist1, TH1D *hist2) { // make copy of first hist TH1D *new_hist = (TH1D *)hist1->Clone(); if (hist1->Integral("width") == 0 or hist2->Integral("width") == 0) { new_hist->Reset(); return new_hist; } Double_t scaleF = hist2->Integral("width") / hist1->Integral("width"); new_hist->Scale(scaleF); return new_hist; }; TH1D *PlotUtils::GetShapePlot(TH1D *hist1) { // make copy of first hist TH1D *new_hist = (TH1D *)hist1->Clone(); if (hist1->Integral("width") == 0) { new_hist->Reset(); return new_hist; } Double_t scaleF1 = 1.0 / hist1->Integral("width"); new_hist->Scale(scaleF1); return new_hist; }; TH1D *PlotUtils::GetShapeRatio(TH1D *hist1, TH1D *hist2) { TH1D *new_hist1 = GetShapePlot(hist1); TH1D *new_hist2 = GetShapePlot(hist2); // Do bins and errors ourselves as scales can go awkward for (int i = 0; i < new_hist1->GetNbinsX(); i++) { if (hist2->GetBinContent(i + 1) == 0) { new_hist1->SetBinContent(i + 1, 0.0); } new_hist1->SetBinContent(i + 1, new_hist1->GetBinContent(i + 1) / new_hist2->GetBinContent(i + 1)); new_hist1->SetBinError(i + 1, new_hist1->GetBinError(i + 1) / new_hist2->GetBinContent(i + 1)); } delete new_hist2; return new_hist1; }; TH2D *PlotUtils::GetCovarPlot(TMatrixDSym *cov, std::string name, std::string title) { TH2D *CovarPlot; if (cov) CovarPlot = new TH2D((*cov)); else CovarPlot = new TH2D(name.c_str(), title.c_str(), 1, 0, 1, 1, 0, 1); CovarPlot->SetName(name.c_str()); CovarPlot->SetTitle(title.c_str()); return CovarPlot; } TH2D *PlotUtils::GetFullCovarPlot(TMatrixDSym *cov, std::string name) { return PlotUtils::GetCovarPlot( cov, name + "_COV", name + "_COV;Bins;Bins;Covariance (#times10^{-76})"); } TH2D *PlotUtils::GetInvCovarPlot(TMatrixDSym *cov, std::string name) { return PlotUtils::GetCovarPlot( cov, name + "_INVCOV", name + "_INVCOV;Bins;Bins;Inv. Covariance (#times10^{-76})"); } TH2D *PlotUtils::GetDecompCovarPlot(TMatrixDSym *cov, std::string name) { return PlotUtils::GetCovarPlot( cov, name + "_DECCOV", name + "_DECCOV;Bins;Bins;Decomp Covariance (#times10^{-76})"); } TH1D *PlotUtils::GetTH1DFromRootFile(std::string file, std::string name) { + if (name.empty()) { std::vector tempfile = GeneralUtils::ParseToStr(file, ";"); + if (tempfile.size() != 2) { + NUIS_ERR(FTL, "File/histogram specifier is malformed: " << file); + NUIS_ERR(FTL, "Needs to be separated by FILE_NAME:HISTOGRAM_NAME"); + NUIS_ERR(FTL, "Or the HISTOGRAM_NAME can be given as an argument"); + throw; + } file = tempfile[0]; name = tempfile[1]; } + // Check that the file is actually a ".root" file + if (file.find(".root") == std::string::npos) { + NUIS_ERR(FTL, "Input file " << file << " does not appear to be a ROOT file"); + NUIS_ERR(FTL, "You've probably used the wrong function for the data setter"); + NUIS_ERR(FTL, "Or, you have a ROOT file which does not end in .root, please address"); + throw; + } + TFile *rootHistFile = new TFile(file.c_str(), "READ"); // Check that file actually exists if (!rootHistFile->IsOpen() || rootHistFile->IsZombie()) { NUIS_ERR(FTL, "Input ROOT file" << file << " does not exist"); NUIS_ERR(FTL, "Please make sure the correct file exists, and your implementation of the sample points to the correct location"); throw; } TH1D *tempHist = (TH1D *)rootHistFile->Get(name.c_str())->Clone(); if (tempHist == NULL) { NUIS_ERR(FTL, "Could not find distribution " << name << " in file " << file); throw; } tempHist->SetDirectory(0); rootHistFile->Close(); return tempHist; } TH2D *PlotUtils::GetTH2DFromRootFile(std::string file, std::string name) { if (name.empty()) { std::vector tempfile = GeneralUtils::ParseToStr(file, ";"); file = tempfile[0]; name = tempfile[1]; } TFile *rootHistFile = new TFile(file.c_str(), "READ"); // Check that file actually exists if (!rootHistFile->IsOpen() || rootHistFile->IsZombie()) { NUIS_ERR(FTL, "Input ROOT file" << file << " does not exist"); NUIS_ERR(FTL, "Please make sure the correct file exists, and your implementation of the sample points to the correct location"); throw; } TH2D *tempHist = (TH2D *)rootHistFile->Get(name.c_str())->Clone(); if (tempHist == NULL) { NUIS_ERR(FTL, "Could not find distribution " << name << " in file " << file); throw; } tempHist->SetDirectory(0); rootHistFile->Close(); delete rootHistFile; return tempHist; } TH1 *PlotUtils::GetTH1FromRootFile(std::string file, std::string name) { if (name.empty()) { std::vector tempfile = GeneralUtils::ParseToStr(file, ";"); file = tempfile[0]; name = tempfile[1]; } TFile *rootHistFile = new TFile(file.c_str(), "READ"); if (!rootHistFile || rootHistFile->IsZombie()) { NUIS_ABORT("Couldn't open root file: \"" << file << "\"."); } TH1 *tempHist = dynamic_cast(rootHistFile->Get(name.c_str())->Clone()); if (!tempHist) { NUIS_ABORT("Couldn't retrieve: \"" << name << "\" from root file: \"" << file << "\"."); } tempHist->SetDirectory(0); rootHistFile->Close(); delete rootHistFile; return tempHist; } TGraph *PlotUtils::GetTGraphFromRootFile(std::string file, std::string name) { if (name.empty()) { std::vector tempfile = GeneralUtils::ParseToStr(file, ";"); file = tempfile[0]; name = tempfile[1]; } TDirectory *olddir = gDirectory; TFile *rootHistFile = new TFile(file.c_str(), "READ"); if (!rootHistFile || rootHistFile->IsZombie()) { NUIS_ABORT("Couldn't open root file: \"" << file << "\"."); } TDirectory *newdir = gDirectory; TGraph *temp = dynamic_cast(rootHistFile->Get(name.c_str())->Clone()); if (!temp) { NUIS_ABORT("Couldn't retrieve: \"" << name << "\" from root file: \"" << file << "\"."); } newdir->Remove(temp); olddir->Append(temp); rootHistFile->Close(); olddir->cd(); return temp; } /// Returns a vector of named TH1*s found in a single input file. /// /// Expects a descriptor like: file.root[hist1|hist2|...] std::vector PlotUtils::GetTH1sFromRootFile(std::string const &descriptor) { std::vector descriptors = GeneralUtils::ParseToStr(descriptor, ","); std::vector hists; for (size_t d_it = 0; d_it < descriptors.size(); ++d_it) { std::string &d = descriptors[d_it]; std::vector fname = GeneralUtils::ParseToStr(d, "["); if (!fname.size() || !fname[0].length()) { NUIS_ABORT("Couldn't find input file when attempting to parse : \"" << d << "\". Expected input.root[hist1|hist2|...]."); } if (fname[1][fname[1].length() - 1] == ']') { fname[1] = fname[1].substr(0, fname[1].length() - 1); } std::vector histnames = GeneralUtils::ParseToStr(fname[1], "|"); if (!histnames.size()) { NUIS_ABORT( "Couldn't find any histogram name specifiers when attempting to " "parse " ": \"" << fname[1] << "\". Expected hist1|hist2|..."); } TFile *rootHistFile = new TFile(fname[0].c_str(), "READ"); if (!rootHistFile || rootHistFile->IsZombie()) { NUIS_ABORT("Couldn't open root file: \"" << fname[0] << "\"."); } for (size_t i = 0; i < histnames.size(); ++i) { TH1 *tempHist = dynamic_cast(rootHistFile->Get(histnames[i].c_str())->Clone()); if (!tempHist) { NUIS_ABORT("Couldn't retrieve: \"" << histnames[i] << "\" from root file: \"" << fname[0] << "\"."); } tempHist->SetDirectory(0); hists.push_back(tempHist); } rootHistFile->Close(); } return hists; } // Create an array from an input file std::vector PlotUtils::GetArrayFromTextFile(std::string DataFile) { std::string line; std::ifstream data(DataFile.c_str(), std::ifstream::in); // Get first line std::getline(data >> std::ws, line, '\n'); // Convert from a string into a vector of double std::vector entries = GeneralUtils::ParseToDbl(line, " "); return entries; } // Get a 2D array from a text file std::vector > PlotUtils::Get2DArrayFromTextFile(std::string DataFile) { std::string line; std::vector > DataArray; std::ifstream data(DataFile.c_str(), std::ifstream::in); while (std::getline(data >> std::ws, line, '\n')) { std::vector entries = GeneralUtils::ParseToDbl(line, " "); DataArray.push_back(entries); } return DataArray; } TH2D *PlotUtils::GetTH2DFromTextFile(std::string data, std::string binx, std::string biny) { // First read in the binning // Array of x binning std::vector xbins = GetArrayFromTextFile(binx); // Array of y binning std::vector ybins = GetArrayFromTextFile(biny); // Read in the data std::vector > Data = Get2DArrayFromTextFile(data); // And finally fill the data TH2D *DataPlot = new TH2D("TempHist", "TempHist", xbins.size() - 1, &xbins[0], ybins.size() - 1, &ybins[0]); int nBinsX = 0; int nBinsY = 0; for (std::vector >::iterator it = Data.begin(); it != Data.end(); ++it) { nBinsX++; // Get the inner vector std::vector temp = *it; // Save the previous number[of bins to make sure it's uniform binning int oldBinsY = nBinsY; // Reset the counter nBinsY = 0; for (std::vector::iterator jt = temp.begin(); jt != temp.end(); ++jt) { nBinsY++; DataPlot->SetBinContent(nBinsX, nBinsY, *jt); DataPlot->SetBinError(nBinsX, nBinsY, 0.0); } if (oldBinsY > 0 && oldBinsY != nBinsY) { NUIS_ERR(FTL, "Found non-uniform y-binning in " << data); NUIS_ERR(FTL, "Previous slice: " << oldBinsY); NUIS_ERR(FTL, "Current slice: " << nBinsY); NUIS_ABORT("Non-uniform binning is not supported in " "PlotUtils::GetTH2DFromTextFile"); } } // Check x bins if (size_t(nBinsX + 1) != xbins.size()) { NUIS_ERR(FTL, "Number of x bins in data histogram does not match the binning " "histogram!"); NUIS_ERR( FTL, "Are they the wrong way around (i.e. xbinning should be ybinning)?"); NUIS_ERR(FTL, "Data: " << nBinsX); NUIS_ABORT("From " << binx << " binning: " << xbins.size()); } // Check y bins if (size_t(nBinsY + 1) != ybins.size()) { NUIS_ERR(FTL, "Number of y bins in data histogram does not match the binning " "histogram!"); NUIS_ERR( FTL, "Are they the wrong way around (i.e. xbinning should be ybinning)?"); NUIS_ERR(FTL, "Data: " << nBinsY); NUIS_ABORT("From " << biny << " binning: " << ybins.size()); } return DataPlot; } TH1D *PlotUtils::GetSliceY(TH2D *Hist, int SliceNo) { TH1D *Slice = Hist->ProjectionX(Form("%s_SLICEY%i", Hist->GetName(), SliceNo), SliceNo, SliceNo, "e"); Slice->SetTitle(Form("%s, %.2f-%.2f", Hist->GetYaxis()->GetTitle(), Hist->GetYaxis()->GetBinLowEdge(SliceNo), Hist->GetYaxis()->GetBinLowEdge(SliceNo + 1))); Slice->GetYaxis()->SetTitle(Hist->GetZaxis()->GetTitle()); return Slice; } TH1D *PlotUtils::GetSliceX(TH2D *Hist, int SliceNo) { TH1D *Slice = Hist->ProjectionY(Form("%s_SLICEX%i", Hist->GetName(), SliceNo), SliceNo, SliceNo, "e"); Slice->SetTitle(Form("%s, %.2f-%.2f", Hist->GetXaxis()->GetTitle(), Hist->GetXaxis()->GetBinLowEdge(SliceNo), Hist->GetXaxis()->GetBinLowEdge(SliceNo + 1))); Slice->GetYaxis()->SetTitle(Hist->GetZaxis()->GetTitle()); return Slice; } void PlotUtils::AddNeutModeArray(TH1D *hist1[], TH1D *hist2[], double scaling) { for (int i = 0; i < 60; i++) { if (!hist2[i]) continue; if (!hist1[i]) continue; hist1[i]->Add(hist2[i], scaling); } return; } void PlotUtils::ScaleToData(TH1D *data, TH1D *mc, TH1I *mask) { double scaleF = GetDataMCRatio(data, mc, mask); mc->Scale(scaleF); return; } void PlotUtils::MaskBins(TH1D *hist, TH1I *mask) { for (int i = 0; i < hist->GetNbinsX(); i++) { if (mask->GetBinContent(i + 1) <= 0.5) continue; hist->SetBinContent(i + 1, 0.0); hist->SetBinError(i + 1, 0.0); NUIS_LOG(DEB, "MaskBins: Set " << hist->GetName() << " Bin " << i + 1 << " to 0.0 +- 0.0"); } return; } void PlotUtils::MaskBins(TH2D *hist, TH2I *mask) { for (int i = 0; i < hist->GetNbinsX(); i++) { for (int j = 0; j < hist->GetNbinsY(); j++) { if (mask->GetBinContent(i + 1, j + 1) <= 0.5) continue; hist->SetBinContent(i + 1, j + 1, 0.0); hist->SetBinError(i + 1, j + 1, 0.0); NUIS_LOG(DEB, "MaskBins: Set " << hist->GetName() << " Bin " << i + 1 << " " << j + 1 << " to 0.0 +- 0.0"); } } return; } double PlotUtils::GetDataMCRatio(TH1D *data, TH1D *mc, TH1I *mask) { double rat = 1.0; TH1D *newmc = (TH1D *)mc->Clone(); TH1D *newdt = (TH1D *)data->Clone(); if (mask) { MaskBins(newmc, mask); MaskBins(newdt, mask); } rat = newdt->Integral() / newmc->Integral(); return rat; } TH2D *PlotUtils::GetCorrelationPlot(TH2D *cov, std::string name) { TH2D *cor = (TH2D *)cov->Clone(); cor->Reset(); for (int i = 0; i < cov->GetNbinsX(); i++) { for (int j = 0; j < cov->GetNbinsY(); j++) { if (cov->GetBinContent(i + 1, i + 1) != 0.0 and cov->GetBinContent(j + 1, j + 1) != 0.0) cor->SetBinContent(i + 1, j + 1, cov->GetBinContent(i + 1, j + 1) / (sqrt(cov->GetBinContent(i + 1, i + 1) * cov->GetBinContent(j + 1, j + 1)))); } } if (!name.empty()) { cor->SetNameTitle(name.c_str(), (name + ";;correlation").c_str()); } cor->SetMinimum(-1); cor->SetMaximum(1); return cor; } TH2D *PlotUtils::GetDecompPlot(TH2D *cov, std::string name) { TMatrixDSym *covarmat = new TMatrixDSym(cov->GetNbinsX()); for (int i = 0; i < cov->GetNbinsX(); i++) for (int j = 0; j < cov->GetNbinsY(); j++) (*covarmat)(i, j) = cov->GetBinContent(i + 1, j + 1); TMatrixDSym *decompmat = StatUtils::GetDecomp(covarmat); TH2D *dec = (TH2D *)cov->Clone(); for (int i = 0; i < cov->GetNbinsX(); i++) for (int j = 0; j < cov->GetNbinsY(); j++) dec->SetBinContent(i + 1, j + 1, (*decompmat)(i, j)); delete covarmat; delete decompmat; dec->SetNameTitle(name.c_str(), (name + ";;;decomposition").c_str()); return dec; } TH2D *PlotUtils::MergeIntoTH2D(TH1D *xhist, TH1D *yhist, std::string zname) { std::vector xedges, yedges; for (int i = 0; i < xhist->GetNbinsX() + 2; i++) { xedges.push_back(xhist->GetXaxis()->GetBinLowEdge(i + 1)); } for (int i = 0; i < yhist->GetNbinsX() + 2; i++) { yedges.push_back(yhist->GetXaxis()->GetBinLowEdge(i + 1)); } int nbinsx = xhist->GetNbinsX(); int nbinsy = yhist->GetNbinsX(); std::string name = std::string(xhist->GetName()) + "_vs_" + std::string(yhist->GetName()); std::string titles = ";" + std::string(xhist->GetXaxis()->GetTitle()) + ";" + std::string(yhist->GetXaxis()->GetTitle()) + ";" + zname; TH2D *newplot = new TH2D(name.c_str(), (name + titles).c_str(), nbinsx, &xedges[0], nbinsy, &yedges[0]); return newplot; } //*************************************************** void PlotUtils::MatchEmptyBins(TH1D *data, TH1D *mc) { //************************************************** for (int i = 0; i < data->GetNbinsX(); i++) { if (data->GetBinContent(i + 1) == 0.0 or data->GetBinError(i + 1) == 0.0) mc->SetBinContent(i + 1, 0.0); } return; } //*************************************************** void PlotUtils::MatchEmptyBins(TH2D *data, TH2D *mc) { //************************************************** for (int i = 0; i < data->GetNbinsX(); i++) { for (int j = 0; j < data->GetNbinsY(); j++) { if (data->GetBinContent(i + 1, j + 1) == 0.0 or data->GetBinError(i + 1, j + 1) == 0.0) mc->SetBinContent(i + 1, j + 1, 0.0); } } return; } //*************************************************** TH1D *PlotUtils::GetProjectionX(TH2D *hist, TH2I *mask) { //*************************************************** TH2D *maskedhist = StatUtils::ApplyHistogramMasking(hist, mask); // This includes the underflow/overflow TH1D *hist_X = maskedhist->ProjectionX("_px", 1, maskedhist->GetXaxis()->GetNbins()); hist_X->SetTitle(Form("%s x no under/overflow", hist_X->GetTitle())); delete maskedhist; return hist_X; } //*************************************************** TH1D *PlotUtils::GetProjectionY(TH2D *hist, TH2I *mask) { //*************************************************** TH2D *maskedhist = StatUtils::ApplyHistogramMasking(hist, mask); // This includes the underflow/overflow TH1D *hist_Y = maskedhist->ProjectionY("_py", 1, maskedhist->GetYaxis()->GetNbins()); hist_Y->SetTitle(Form("%s y no under/overflow", hist_Y->GetTitle())); delete maskedhist; return hist_Y; } // A slightly hacky way to restrict the range of a TH1D TH1D* PlotUtils::RestrictHistRange(TH1D* inHist, double minVal, double maxVal){ NUIS_LOG(SAM, "Restricting histogram range to " << minVal << " - " << maxVal); std::string name = inHist->GetName(); std::string title = inHist->GetTitle(); std::vector bin_edges; std::vector bin_vals; std::vector bin_errs; for (int i=0; iGetNbinsX(); ++i){ double low_edge = inHist->GetXaxis()->GetBinLowEdge(i+1); double up_edge = inHist->GetXaxis()->GetBinUpEdge(i+1); if (low_edge < minVal) continue; // Deal with the slightly special case of the first bin if (bin_edges.size() == 0) bin_edges.push_back(low_edge); // Deal with the rest if (maxVal >= up_edge) { bin_edges.push_back(up_edge); bin_vals .push_back(inHist->GetBinContent(i+1)); bin_errs .push_back(inHist->GetBinError(i+1)); } } int nbins = bin_edges.size()-1; // Sanity check if (nbins < 1) return inHist; // Now make a new histogram TH1D *ret = new TH1D("temp", "temp", nbins, bin_edges.data()); for (int i=0; iSetBinContent(i+1, bin_vals[i]); ret->SetBinError(i+1, bin_errs[i]); } delete inHist; ret->SetNameTitle(name.c_str(), title.c_str()); return ret; }