diff --git a/CMakeLists.txt b/CMakeLists.txt index 590b423..0154ce4 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1,228 +1,232 @@ # Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret ################################################################################ # This file is part of NUISANCE. # # NUISANCE is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # NUISANCE is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NUISANCE. If not, see . ################################################################################ -cmake_minimum_required (VERSION 2.6 FATAL_ERROR) +cmake_minimum_required (VERSION 2.8 FATAL_ERROR) + +#Use the compilers found in the path +find_program(CMAKE_C_COMPILER NAMES $ENV{CC} gcc PATHS ENV PATH NO_DEFAULT_PATH) +find_program(CMAKE_CXX_COMPILER NAMES $ENV{CXX} g++ PATHS ENV PATH NO_DEFAULT_PATH) project(NUISANCE) include(ExternalProject) enable_language(Fortran) set (NUISANCE_VERSION_MAJOR 2) set (NUISANCE_VERSION_MINOR 7) set (NUISANCE_VERSION_REVISION 0) set (NUISANCE_VERSION_STRING "v${NUISANCE_VERSION_MAJOR}r${NUISANCE_VERSION_MINOR}") if(${NUISANCE_VERSION_REVISION} STRGREATER "0") set (NUISANCE_VERSION_STRING "${NUISANCE_VERSION_STRING}p${NUISANCE_VERSION_REVISION}") endif() #Set this to TRUE to enable build debugging messages set(BUILD_DEBUG_MSGS TRUE) include(${CMAKE_SOURCE_DIR}/cmake/cmessage.cmake) include(${CMAKE_SOURCE_DIR}/cmake/cacheVariables.cmake) cmessage(STATUS "CMAKE_INSTALL_PREFIX: \"${CMAKE_INSTALL_PREFIX}\"") cmessage(STATUS "CMAKE_BUILD_TYPE: \"${CMAKE_BUILD_TYPE}\"") ################################################################################ # Check Dependencies ################################################################################ ################################## ROOT ###################################### include(${CMAKE_SOURCE_DIR}/cmake/ROOTSetup.cmake) ################################# HEPMC ###################################### include(${CMAKE_SOURCE_DIR}/cmake/HepMC.cmake) ############################ Reweight Engines ################################ include(${CMAKE_SOURCE_DIR}/cmake/ReweightEnginesSetup.cmake) ############################ Other Generators ################################ include(${CMAKE_SOURCE_DIR}/cmake/GiBUUSetup.cmake) if(USE_NUANCE) LIST(APPEND EXTRA_CXX_FLAGS -D__NUANCE_ENABLED__) endif() ################################# Pythia6/8 #################################### include(${CMAKE_SOURCE_DIR}/cmake/pythia6Setup.cmake) include(${CMAKE_SOURCE_DIR}/cmake/pythia8Setup.cmake) ################################# gperftools ################################### include(${CMAKE_SOURCE_DIR}/cmake/gperfSetup.cmake) if(NOT NOTEST) enable_testing() endif() SET(GENERATOR_SUPPORT) foreach(gen NEUT;NuWro;GENIE;GiBUU;NUANCE) if(USE_${gen}) SET(GENERATOR_SUPPORT "${GENERATOR_SUPPORT}${gen} ") endif() endforeach(gen) cmessage(STATUS "Generator Input Support: ${GENERATOR_SUPPORT}") set(MINCODE Routines FCN) set(CORE MCStudies Genie FitBase Config Logger InputHandler Splines Reweight Utils Statistical #Devel Smearceptance ) LIST(APPEND ALLEXPERIMENTS ANL ArgoNeuT BEBC BNL Electron FNAL GGM K2K MINERvA MiniBooNE SciBooNE T2K) foreach(exp ${ALLEXPERIMENTS}) if(NOT NO_${exp}) LIST(APPEND EXPERIMENTS_TO_BUILD ${exp}) else() LIST(REVERSE EXTRA_CXX_FLAGS) LIST(APPEND EXTRA_CXX_FLAGS -D__NO_${exp}__) LIST(REVERSE EXTRA_CXX_FLAGS) endif() endforeach() ################################## COMPILER #################################### include(${CMAKE_SOURCE_DIR}/cmake/c++CompilerSetup.cmake) ################################### doxygen ################################### include(${CMAKE_SOURCE_DIR}/cmake/docsSetup.cmake) ################################################################################ set(MINIMUM_INCLUDE_DIRECTORIES) LIST(APPEND MINIMUM_INCLUDE_DIRECTORIES ${RWENGINE_INCLUDE_DIRECTORIES} ${CMAKE_SOURCE_DIR}/src/FitBase ${CMAKE_SOURCE_DIR}/src/Reweight ${CMAKE_SOURCE_DIR}/src/InputHandler ${CMAKE_SOURCE_DIR}/src/Config ${CMAKE_SOURCE_DIR}/src/Logger ${CMAKE_SOURCE_DIR}/src/Statistical ${CMAKE_SOURCE_DIR}/src/Splines ${CMAKE_SOURCE_DIR}/src/Utils ${CMAKE_SOURCE_DIR}/src/Genie) cmessage(DEBUG "Base include directories: ${MINIMUM_INCLUDE_DIRECTORIES}") set(EXP_INCLUDE_DIRECTORIES) foreach(edir ${EXPERIMENTS_TO_BUILD}) LIST(APPEND EXP_INCLUDE_DIRECTORIES ${CMAKE_SOURCE_DIR}/src/${edir}) endforeach() cmessage(DEBUG "Included experiments: ${EXP_INCLUDE_DIRECTORIES}") foreach(mdir ${MINCODE}) cmessage (DEBUG "Configuring directory: src/${mdir}") add_subdirectory(src/${mdir}) endforeach() foreach(edir ${EXPERIMENTS_TO_BUILD}) cmessage (DEBUG "Configuring directory: src/${edir}") add_subdirectory(src/${edir}) endforeach() foreach(cdir ${CORE}) cmessage (DEBUG "Configuring directory: src/${cdir}") add_subdirectory(src/${cdir}) endforeach() cmessage(DEBUG "Module targets: ${MODULETargets}") add_subdirectory(app) add_subdirectory(src/Tests) configure_file(cmake/setup.sh.in "${PROJECT_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/setup.sh" @ONLY) install(FILES "${PROJECT_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/setup.sh" DESTINATION ${CMAKE_INSTALL_PREFIX}) configure_file(cmake/MakeBinaryBlob.in "${PROJECT_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/MakeBinaryBlob" @ONLY) install(PROGRAMS "${PROJECT_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/MakeBinaryBlob" DESTINATION bin) if(USE_DYNSAMPLES) SET(ALL_INCLUDES ${MINIMUM_INCLUDE_DIRECTORIES}) LIST(APPEND ALL_INCLUDES ${CMAKE_SOURCE_DIR}/src/Smearceptance) LIST(APPEND ALL_INCLUDES ${EXP_INCLUDE_DIRECTORIES}) string(REPLACE ";" " -I" ALL_INCLUDES_STR "${ALL_INCLUDES}") cmessage(DEBUG ${CMAKE_DEPENDLIB_FLAGS}) string(REPLACE "-levent " "" CMAKE_DEPENDLIB_FLAGS_NEW ${CMAKE_DEPENDLIB_FLAGS}) set(CMAKE_DEPENDLIB_FLAGS ${CMAKE_DEPENDLIB_FLAGS_NEW}) cmessage(DEBUG ${CMAKE_DEPENDLIB_FLAGS}) string(REPLACE ";" " -l" ALL_MODULETARGETS_STR "${MODULETargets}") configure_file(cmake/BuildDynamicSample.in "${PROJECT_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/BuildDynamicSample" @ONLY) install(PROGRAMS "${PROJECT_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/BuildDynamicSample" DESTINATION bin) configure_file(cmake/BuildDynamicSmearcepter.in "${PROJECT_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/BuildDynamicSmearcepter" @ONLY) install(PROGRAMS "${PROJECT_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/BuildDynamicSmearcepter" DESTINATION bin) endif() install(PROGRAMS "${PROJECT_SOURCE_DIR}/scripts/nuiscardgen" DESTINATION bin) install(PROGRAMS "${PROJECT_SOURCE_DIR}/scripts/nuissamples" DESTINATION bin) diff --git a/cmake/ROOTSetup.cmake b/cmake/ROOTSetup.cmake index 37f6157..caa6e8e 100644 --- a/cmake/ROOTSetup.cmake +++ b/cmake/ROOTSetup.cmake @@ -1,167 +1,169 @@ # Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret ################################################################################ # This file is part of NUISANCE. # # NUISANCE is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # NUISANCE is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NUISANCE. If not, see . ################################################################################ if ( NOT DEFINED ENV{ROOTSYS} ) cmessage (FATAL_ERROR "$ROOTSYS is not defined, please set up ROOT first.") else() cmessage(STATUS "Using ROOT installed at $ENV{ROOTSYS}") set(CMAKE_ROOTSYS $ENV{ROOTSYS}) endif() # Get cflags from ROOT execute_process (COMMAND root-config --cflags OUTPUT_VARIABLE ROOT_CXX_FLAGS_RAW OUTPUT_STRIP_TRAILING_WHITESPACE) string(REPLACE " " ";" ROOT_CXX_FLAGS "${ROOT_CXX_FLAGS_RAW}") # Get libdir from ROOT execute_process (COMMAND root-config --libdir OUTPUT_VARIABLE ROOT_LIBDIR OUTPUT_STRIP_TRAILING_WHITESPACE) # Get version from ROOT execute_process (COMMAND root-config --version OUTPUT_VARIABLE ROOT_VERSION OUTPUT_STRIP_TRAILING_WHITESPACE) # Get features from ROOT execute_process (COMMAND root-config --features OUTPUT_VARIABLE ROOT_FEATURES OUTPUT_STRIP_TRAILING_WHITESPACE) LIST(APPEND EXTRA_LINK_DIRS ${ROOT_LIBDIR}) LIST(APPEND ROOT_LIBS Core Cint RIO XMLIO Net Hist Graf Graf3d Gpad Tree Rint Postscript Matrix Physics MathCore Thread EG Geom GenVector) if(USE_MINIMIZER) if("${ROOT_FEATURES}" MATCHES "minuit2") cmessage(STATUS "ROOT built with MINUIT2 support") LIST(APPEND EXTRA_CXX_FLAGS -D__MINUIT2_ENABLED__) else() cmessage(FATAL_ERROR "ROOT built without MINUIT2 support but minimizer functionality requested. Either configure with -DUSE_MINIMIZER=FALSE or use a version of ROOT with MINUIT2 support.") endif() - string(REGEX MATCH "6\..*+)" ROOTVERSIXMATCH ${ROOT_VERSION}) + string(REGEX MATCH "6.*" ROOTVERSIXMATCH ${ROOT_VERSION}) if(ROOTVERSIXMATCH) - cmessage(STATUS "Using ROOT6, We are essentiall flying blind here.") + cmessage(STATUS "Using ROOT6, We are essentially flying blind here.") + LIST(REMOVE_ITEM ROOT_LIBS Cint) + LIST(APPEND EXTRA_CXX_FLAGS -DROOT6_USE_FIT_FITTER_INTERFACE) else() string(REGEX MATCH "5.34/([0-9]+)" ROOTVERSMATCH ${ROOT_VERSION}) if(NOT ROOTVERSMATCH OR ${CMAKE_MATCH_1} LESS "19") cmessage(FATAL_ERROR "ROOT Version: ${ROOT_VERSION} has out of date minimizer interface, but minimizer functionality requested. Please configure with -DUSE_MINIMIZER=FALSE or update to 5.34/19 or greater to enable minimization features.") endif() endif() endif() if("${ROOT_FEATURES}" MATCHES "opengl") cmessage(STATUS "ROOT built with OpenGL support") LIST(APPEND ROOT_LIBS RGL) endif() if(DEFINED NEED_ROOTPYTHIA6 AND NEED_ROOTPYTHIA6) LIST(APPEND ROOT_LIBS EGPythia6 Pythia6) endif() cmessage ( STATUS "[ROOT]: root-config --version: ${ROOT_VERSION} ") cmessage ( STATUS "[ROOT]: root-config --cflags : ${ROOT_CXX_FLAGS} ") cmessage ( STATUS "[ROOT]: root-config --libs : ${ROOT_LD_FLAGS} ") LIST(APPEND EXTRA_CXX_FLAGS ${ROOT_CXX_FLAGS}) #Helper functions for building dictionaries function(GenROOTDictionary OutputDictName Header LinkDef) get_directory_property(incdirs INCLUDE_DIRECTORIES) string(REPLACE ";" ";-I" LISTDIRINCLUDES "-I${incdirs}") string(REPLACE " " ";" LISTCPPFLAGS "${EXTRA_CXX_FLAGS}") #ROOT5 CINT cannot handle it. list(REMOVE_ITEM LISTCPPFLAGS "-std=c++11") message(STATUS "LISTCPPFLAGS: ${LISTCPPFLAGS}") message(STATUS "LISTINCLUDES: ${LISTDIRINCLUDES}") #Learn how to generate the Dict.cxx and Dict.hxx add_custom_command( OUTPUT "${OutputDictName}.cxx" "${OutputDictName}.h" COMMAND rootcint ARGS -f ${OutputDictName}.cxx -c -p ${LISTDIRINCLUDES} ${LISTCPPFLAGS} ${Header} ${LinkDef} DEPENDS ${Header};${LinkDef}) endfunction() function(BuildROOTProject ProjectName InputFile CommaSeparatedClassesToDump LIBLINKMODE) string(REPLACE "," ";" HeadersToDump ${CommaSeparatedClassesToDump}) set(OUTPUTFILES ${CMAKE_BINARY_DIR}/${ProjectName}/${ProjectName}ProjectSource.cxx ${CMAKE_BINARY_DIR}/${ProjectName}/${ProjectName}LinkDef.h ${CMAKE_BINARY_DIR}/${ProjectName}/${ProjectName}ProjectHeaders.h ${CMAKE_BINARY_DIR}/${ProjectName}/${ProjectName}ProjectInstances.h) cmessage(STATUS "As part of ROOT project: ${ProjectName}") foreach (header ${HeadersToDump}) LIST(APPEND OUTPUTFILES "${CMAKE_BINARY_DIR}/${ProjectName}/${header}.h") cmessage(STATUS "Will generate: ${CMAKE_BINARY_DIR}/${ProjectName}/${header}.h") endforeach() add_custom_command( OUTPUT ${OUTPUTFILES} COMMAND ${CMAKE_BINARY_DIR}/src/Utils/DumpROOTClassesFromVector ARGS ${InputFile} ${CMAKE_BINARY_DIR}/${ProjectName} ${CommaSeparatedClassesToDump} VERBATIM DEPENDS DumpROOTClassesFromVector) add_custom_target(${ProjectName}_sources DEPENDS ${OUTPUTFILES}) GenROOTDictionary( ${CMAKE_BINARY_DIR}/${ProjectName}/${ProjectName}ProjectDict ${CMAKE_BINARY_DIR}/${ProjectName}/${ProjectName}ProjectHeaders.h ${CMAKE_BINARY_DIR}/${ProjectName}/${ProjectName}LinkDef.h ) add_custom_target(${ProjectName}ProjectDict DEPENDS ${CMAKE_BINARY_DIR}/${ProjectName}/${ProjectName}ProjectDict.cxx ${CMAKE_BINARY_DIR}/${ProjectName}/${ProjectName}ProjectDict.h ) # add_dependencies(${ProjectName}ProjectDict ${ProjectName}_sources) #ProjectSource.cxx includes ProjectDict.cxx, so no need to add to compilation. set(ROAA_SOURCEFILES ${CMAKE_BINARY_DIR}/${ProjectName}/${ProjectName}ProjectSource.cxx) add_library(${ProjectName} ${LIBLINKMODE} ${ROAA_SOURCEFILES}) add_dependencies(${ProjectName} ${ProjectName}ProjectDict) endfunction() diff --git a/src/Electron/ElectronScattering_DurhamData.cxx b/src/Electron/ElectronScattering_DurhamData.cxx index c171df5..7e7b616 100644 --- a/src/Electron/ElectronScattering_DurhamData.cxx +++ b/src/Electron/ElectronScattering_DurhamData.cxx @@ -1,486 +1,486 @@ // Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret /******************************************************************************* * This file is part of NUISANCE. * * NUISANCE is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * NUISANCE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NUISANCE. If not, see . *******************************************************************************/ #include "ElectronScattering_DurhamData.h" //******************************************************************** ElectronScattering_DurhamData::ElectronScattering_DurhamData( nuiskey samplekey) { //******************************************************************** // Sample overview --------------------------------------------------- std::string descrip = "Electron Scattering Durham Data sample. \n" "Target: Multiple \n" "Flux: Energy should match data being handled \n" "Signal: Any event with an electron in the final state \n"; fSettings = LoadSampleSettings(samplekey); fSettings.SetDescription(descrip); fSettings.DefineAllowedSpecies("electron"); fSettings.SetTitle("Electron"); fSettings.SetAllowedTypes("FIX/DIAG", "FIX,FREE,SHAPE/DIAG/NORM/MASK"); fSettings.SetXTitle("q0"); fSettings.SetYTitle("#sigma"); fIsNoWidth = true; FinaliseSampleSettings(); // Plot Setup ------------------------------------------------------- SetDataFromName(fSettings.GetS("originalname")); SetCovarFromDiagonal(); // Scaling Setup --------------------------------------------------- // ScaleFactor automatically setup for DiffXSec/cm2/Nucleon // fScaleFactor = ((GetEventHistogram()->Integral("width") * 1E-38 / (fNEvents // + 0.)) / TotalIntegratedFlux()); EnuMin = fZLowLim; EnuMax = fZHighLim; double sigscale = GetEventHistogram()->Integral() * 1E-38 / double(fNEvents) / TotalIntegratedFlux(); // double dangle = 2 * M_PI * fabs((1. - cos(fYLowLim * M_PI / 180.)) - (1. - // cos(fYHighLim * M_PI / 180.))); // fScaleFactor = sigscale / dangle / fZCenter; fScaleFactor = sigscale; std::cout << "Event Integral = " << GetEventHistogram()->Integral() << std::endl; std::cout << "Flux Integral = " << TotalIntegratedFlux() << std::endl; std::cout << "FNEvents = " << fNEvents << std::endl; std::cout << "Z Limits = " << fZLowLim << " " << fZHighLim << std::endl; std::cout << "sigscale = " << sigscale << std::endl; std::cout << "fZCenter = " << fZCenter << std::endl; std::cout << "ScaleFactor = " << fScaleFactor << std::endl; // Finish up FinaliseMeasurement(); }; //******************************************************************** void ElectronScattering_DurhamData::SetDataFromName(std::string name) { //******************************************************************** // Data Should be given in the format // Electron_Z_A_Energy_Theta_Source std::vector splitstring = GeneralUtils::ParseToStr(name, "_"); std::string zstring = splitstring[1]; std::string astring = splitstring[2]; std::string estring = splitstring[3]; std::string tstring = splitstring[4]; std::string sstring = splitstring[5]; fYCenter = GeneralUtils::StrToDbl(tstring); fZCenter = GeneralUtils::StrToDbl(estring); // Create effective E and Theta bin Edges std::vector thetabinedges; std::vector ebinedges; int nthetabins = FitPar::Config().GetParI("Electron_NThetaBins"); int nebins = FitPar::Config().GetParI("Electron_NEnergyBins"); double thetawidth = FitPar::Config().GetParD("Electron_ThetaWidth"); double ewidth = FitPar::Config().GetParD("Electron_EnergyWidth"); for (int i = -nthetabins; i <= nthetabins; i++) { thetabinedges.push_back(fYCenter + thetawidth * (double(i))); } for (int i = -nebins; i <= nebins; i++) { double newval = fZCenter + ewidth * (double(i)); if (newval < 0.0) newval = 0.0; if (newval < GetEventHistogram()->GetXaxis()->GetXmin()) newval = GetEventHistogram()->GetXaxis()->GetXmin(); if (newval > GetEventHistogram()->GetXaxis()->GetXmax()) newval = GetEventHistogram()->GetXaxis()->GetXmax(); if (std::find(ebinedges.begin(), ebinedges.end(), newval) != ebinedges.end()) continue; ebinedges.push_back(newval); } // Determine target std::string target = ""; if (!zstring.compare("6") && !astring.compare("12")) target = "12C.dat"; else if (!zstring.compare("8") && !astring.compare("16")) target = "16O.dat"; else { ERR(FTL) << "Target not supported in electron scattering module!" << std::endl; throw; } // Fill Data Points std::string line; std::ifstream mask((FitPar::GetDataBase() + "/Electron/" + target).c_str(), - ifstream::in); + std::ifstream::in); if (!mask.good()) { ERR(FTL) << "Failed to open e-scattering database file: " << (FitPar::GetDataBase() + "/Electron/" + target) << std::endl; throw; } int i = 0; std::vector pointx; std::vector errorx; std::vector pointy; std::vector errory; double scalef = 1.E-38 * 1.E5; while (std::getline(mask >> std::ws, line, '\n')) { // std::cout << "Line = " << line << std::endl; if (line.empty()) continue; std::vector lineentries = GeneralUtils::ParseToStr(line, " "); // std::cout << "Checking : " << line << std::endl; if (zstring.compare(lineentries[0])) continue; if (astring.compare(lineentries[1])) continue; if (estring.compare(lineentries[2])) continue; if (tstring.compare(lineentries[3])) continue; if (sstring.compare(lineentries[7])) continue; // std::cout << "Registering data point : " << line << std::endl; // std::cout << "Adding Graph Point : " << // GeneralUtils::StrToDbl(lineentries[4]) << " " << // GeneralUtils::StrToDbl(lineentries[5]) << std::endl; // Loop through x and y points and find a place to insert if (pointx.empty()) { pointx.push_back(GeneralUtils::StrToDbl(lineentries[4])); errorx.push_back(0.0); pointy.push_back(GeneralUtils::StrToDbl(lineentries[5]) * scalef); errory.push_back(GeneralUtils::StrToDbl(lineentries[6]) * scalef); } else { for (size_t j = 0; j < pointx.size(); j++) { if (GeneralUtils::StrToDbl(lineentries[4]) < pointx[j] && j == 0) { // std::cout << "Inserting at start point iterator " << std::endl; pointx.insert(pointx.begin() + j, GeneralUtils::StrToDbl(lineentries[4])); errorx.insert(errorx.begin() + j, 0.0); pointy.insert(pointy.begin() + j, GeneralUtils::StrToDbl(lineentries[5]) * scalef); errory.insert(errory.begin() + j, GeneralUtils::StrToDbl(lineentries[6]) * scalef); break; } else if (GeneralUtils::StrToDbl(lineentries[4]) > pointx[j] && j == pointx.size() - 1) { // std::cout << "Pushing back data point " << std::endl; pointx.push_back(GeneralUtils::StrToDbl(lineentries[4])); errorx.push_back(0.0); pointy.push_back(GeneralUtils::StrToDbl(lineentries[5]) * scalef); errory.push_back(GeneralUtils::StrToDbl(lineentries[6]) * scalef); break; } else if (GeneralUtils::StrToDbl(lineentries[4]) > pointx[j - 1] && GeneralUtils::StrToDbl(lineentries[4]) < pointx[j]) { // std::cout << "Inserting at point iterator = " << j << std::endl; pointx.insert(pointx.begin() + j, GeneralUtils::StrToDbl(lineentries[4])); errorx.insert(errorx.begin() + j, 0.0); pointy.insert(pointy.begin() + j, GeneralUtils::StrToDbl(lineentries[5]) * scalef); errory.insert(errory.begin() + j, GeneralUtils::StrToDbl(lineentries[6]) * scalef); break; } } } // pointx.push_back(GeneralUtils::StrToDbl(lineentries[4])); // errorx.push_back(0.0); // pointy.push_back(GeneralUtils::StrToDbl(lineentries[5])); // errory.push_back(GeneralUtils::StrToDbl(lineentries[6])); i++; } if (!pointx.size() || (pointx.size() != errorx.size()) || !pointy.size() || (pointy.size() != errory.size())) { ERR(FTL) << "Failed to find dataset: " << name << "{" << "Z: " << zstring << ", A: " << astring << ", E: " << estring << ", CTheta: " << tstring << ", PubID: " << sstring << " } in file: " << (FitPar::GetDataBase() + "/Electron/" + target) << std::endl; throw; } // for (uint i = 0; i < pointx.size(); i++) { // std::cout << "Q0 Point " << i << " = " << pointx[i] << std::endl; // } fDataGraph = new TGraphErrors(pointx.size(), &pointx[0], &pointy[0], &errorx[0], &errory[0]); fDataGraph->SetNameTitle((fName + "_data_GRAPH").c_str(), (fName + "_data_GRAPH").c_str()); // Now form an effective data and mc histogram std::vector q0binedges; const double* x = fDataGraph->GetX(); // Loop over graph and get mid way point between each data point. for (int i = 0; i < fDataGraph->GetN(); i++) { // std::cout << "X Point = " << x[i] << std::endl; if (i == 0) { // First point set lower width as half distance to point above q0binedges.push_back(x[0] - ((x[1] - x[0]) / 2.0)); } else if (i == fDataGraph->GetN() - 1) { // Last point set upper width as half distance to point above. q0binedges.push_back(x[i] - ((x[i] - x[i - 1]) / 2.0)); q0binedges.push_back(x[i] + ((x[i] - x[i - 1]) / 2.0)); } else { // Set half distance to point below q0binedges.push_back(x[i] - ((x[i] - x[i - 1]) / 2.0)); } } // Bubble Sort // for (uint i = 0; i < q0binedges.size(); i++) { // std::cout << "Q0 Edge " << i << " = " << q0binedges[i] << std::endl; // } // for (uint i = 0; i < ebinedges.size(); i++) { // std::cout << "e Edge " << i << " = " << ebinedges[i] << std::endl; // } // for (uint i = 0; i < thetabinedges.size(); i++) { // std::cout << "theta Edge " << i << " = " << thetabinedges[i] << // std::endl; // } // Form the data hist, mchist, etc fDataHist = new TH1D((fName + "_data").c_str(), (fName + "_data").c_str(), q0binedges.size() - 1, &q0binedges[0]); fMCHist = (TH1D*)fDataHist->Clone("MC"); const double* y = fDataGraph->GetY(); const double* ey = fDataGraph->GetEY(); for (int i = 0; i < fDataGraph->GetN(); i++) { // std::cout << "Setting Data Bin " << i + 1 << " to " << y[i] << " +- " << // ey[i] << std::endl; fDataHist->SetBinContent(i + 1, y[i]); fDataHist->SetBinError(i + 1, ey[i]); fMCHist->SetBinContent(i + 1, 0.0); fMCHist->SetBinError(i + 1, 0.0); } fMCScan_Q0vsThetavsE = new TH3D((fName + "_MC_q0vsthetavse").c_str(), "MC_q0vsthetavse", q0binedges.size() - 1, &q0binedges[0], thetabinedges.size() - 1, &thetabinedges[0], ebinedges.size() - 1, &ebinedges[0]); fMCScan_Q0vsThetavsE->Reset(); fMCScan_Q0vsTheta = new TH2D( (fName + "_MC_q0vstheta").c_str(), "MC_q0vstheta", q0binedges.size() - 1, &q0binedges[0], thetabinedges.size() - 1, &thetabinedges[0]); fMCScan_Q0vsTheta->Reset(); fMCScan_Q0vsE = new TH2D((fName + "_MC_q0vse").c_str(), "MC_q0vse", q0binedges.size() - 1, &q0binedges[0], ebinedges.size() - 1, &ebinedges[0]); fMCScan_Q0vsE->Reset(); fXLowLim = fMCScan_Q0vsThetavsE->GetXaxis()->GetBinLowEdge(1); fXHighLim = fMCScan_Q0vsThetavsE->GetXaxis()->GetBinLowEdge( fMCScan_Q0vsThetavsE->GetNbinsX() + 2); fYLowLim = fMCScan_Q0vsThetavsE->GetYaxis()->GetBinLowEdge(1); fYHighLim = fMCScan_Q0vsThetavsE->GetYaxis()->GetBinLowEdge( fMCScan_Q0vsThetavsE->GetNbinsY() + 2); fZLowLim = fMCScan_Q0vsThetavsE->GetZaxis()->GetBinLowEdge(1); fZHighLim = fMCScan_Q0vsThetavsE->GetZaxis()->GetBinLowEdge( fMCScan_Q0vsThetavsE->GetNbinsZ() + 2); std::cout << "Sample " << name << "initialised: " << "{" << fXLowLim << "--" << fXHighLim << ", " << fYLowLim << "--" << fYHighLim << ", " << fZLowLim << "--" << fZHighLim << "}" << std::endl; } //******************************************************************** void ElectronScattering_DurhamData::FillEventVariables(FitEvent* event) { //******************************************************************** if (event->NumFSParticle(11) == 0) return; FitParticle* ein = event->PartInfo(0); FitParticle* eout = event->GetHMFSParticle(11); double q0 = fabs(ein->fP.E() - eout->fP.E()) / 1000.0; double E = ein->fP.E() / 1000.0; double theta = ein->fP.Vect().Angle(eout->fP.Vect()) * 180. / M_PI; fXVar = q0; fYVar = theta; fZVar = E; return; }; //******************************************************************** bool ElectronScattering_DurhamData::isSignal(FitEvent* event) { //******************************************************************** if (event->NumFSParticle(11) == 0) { std::cout << "Ev Cut due to no FS electron." << std::endl; return false; } // std::cout << "fXVar = " << fXVar << " " << fXLowLim << " " << fXHighLim << // std::endl; // std::cout << "fYVar = " << fYVar << " " << fYLowLim << " " << fYHighLim << // std::endl; // std::cout << "fZVar = " << fZVar << " " << fZLowLim << " " << fZHighLim << // std::endl; // std::cout << "iWeight: " << event->InputWeight << std::endl; if (fXVar < fXLowLim or fXVar > fXHighLim) { // std::cout << "Ev Cut due to X lims: " << fXLowLim << " -- " << fXHighLim // << " !<> " << fXVar << std::endl; return false; } if (fYVar < fYLowLim or fYVar > fYHighLim) { // std::cout << "Ev Cut due to Y lims: " << fYLowLim << " -- " << fYHighLim // << " !<> " << fXVar << std::endl; return false; } if (fZVar < fZLowLim or fZVar > fZHighLim) { // std::cout << "Ev Cut due to Z lims: " << fZLowLim << " -- " << fZHighLim // << " !<> " << fXVar << std::endl; return false; } return true; }; //******************************************************************** void ElectronScattering_DurhamData::FillHistograms() { //******************************************************************** Measurement1D::FillHistograms(); if (Signal) { fMCScan_Q0vsThetavsE->Fill(fXVar, fYVar, fZVar); fMCScan_Q0vsTheta->Fill(fXVar, fYVar); fMCScan_Q0vsE->Fill(fXVar, fZVar); } } // Weight = 1.0; // if (Signal) { // fMCHist->Fill(fXVar, Weight); // fMCFine->Fill(fXVar, Weight); // fMCStat->Fill(fXVar, 1.0); // if (fMCHist_Modes) fMCHist_Modes->Fill(Mode, fXVar, Weight); // } // } void ElectronScattering_DurhamData::ResetAll() { Measurement1D::ResetAll(); fMCScan_Q0vsThetavsE->Reset(); fMCScan_Q0vsTheta->Reset(); fMCScan_Q0vsE->Reset(); } void ElectronScattering_DurhamData::ApplyNormScale(double norm) { Measurement1D::ApplyNormScale(norm); fMCScan_Q0vsThetavsE->Scale(1.0 / norm); fMCScan_Q0vsTheta->Scale(1.0 / norm); fMCScan_Q0vsE->Scale(1.0 / norm); } //******************************************************************** void ElectronScattering_DurhamData::ScaleEvents() { //******************************************************************** Measurement1D::ScaleEvents(); /* fMCScan_Q0vsThetavsE->Scale(fScaleFactor, "width"); // Project into fMCScan_Q0vsTheta for (int x = 0; x < fMCScan_Q0vsThetavsE->GetNbinsX(); x++) { for (int y = 0; y < fMCScan_Q0vsThetavsE->GetNbinsY(); y++) { double total = 0.; for (int z = 0; z < fMCScan_Q0vsThetavsE->GetNbinsZ(); z++) { double zwidth = fMCScan_Q0vsThetavsE->GetZaxis()->GetBinWidth(z + 1); total += fMCScan_Q0vsThetavsE->GetBinContent(x + 1, y + 1, z + 1) * zwidth; } fMCScan_Q0vsTheta->SetBinContent(x + 1, y + 1, total); } } // Project into fMCScan_Q0vsE for (int x = 0; x < fMCScan_Q0vsThetavsE->GetNbinsX(); x++) { for (int z = 0; z < fMCScan_Q0vsThetavsE->GetNbinsZ(); z++) { double total = 0.; for (int y = 0; y < fMCScan_Q0vsThetavsE->GetNbinsY(); y++) { double ywidth = fMCScan_Q0vsThetavsE->GetYaxis()->GetBinWidth(y + 1); total += fMCScan_Q0vsThetavsE->GetBinContent(x + 1, y + 1, z + 1) * ywidth; } fMCScan_Q0vsE->SetBinContent(x + 1, z + 1, total); } } // Project fMCScan_Q0vsTheta into MC Hist for (int x = 0; x < fMCScan_Q0vsTheta->GetNbinsX(); x++) { double total = 0.; for (int y = 0; y < fMCScan_Q0vsTheta->GetNbinsY(); y++) { double ywidth = fMCScan_Q0vsTheta->GetYaxis()->GetBinWidth(y + 1); total += fMCScan_Q0vsTheta->GetBinContent(x + 1, y + 1); } double xwidth = fMCScan_Q0vsTheta->GetXaxis()->GetBinWidth(x + 1); fMCHist->SetBinContent(x + 1, total * xwidth); } fMCHist->Scale(fDataHist->Integral() / fMCHist->Integral()); */ } //******************************************************************** int ElectronScattering_DurhamData::GetNDOF() { //******************************************************************** return fDataGraph->GetN(); } void ElectronScattering_DurhamData::Write(std::string drawOpts) { Measurement1D::Write(drawOpts); fMCScan_Q0vsThetavsE->Write(); fMCScan_Q0vsTheta->Write(); fMCScan_Q0vsE->Write(); fDataGraph->Write(); } double ElectronScattering_DurhamData::GetLikelihood() { return 0.0; } void ElectronScattering_DurhamData::SetFitOptions(std::string opt) { return; } TH1D* ElectronScattering_DurhamData::GetMCHistogram(void) { return fMCHist; } TH1D* ElectronScattering_DurhamData::GetDataHistogram(void) { return fDataHist; } diff --git a/src/FitBase/JointMeas1D.cxx b/src/FitBase/JointMeas1D.cxx index 6700a10..6c3e699 100644 --- a/src/FitBase/JointMeas1D.cxx +++ b/src/FitBase/JointMeas1D.cxx @@ -1,2303 +1,2303 @@ // Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret /******************************************************************************* * This ile is part of NUISANCE. * * NUISANCE is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * NUISANCE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NUISANCE. If not, see . *******************************************************************************/ #include "JointMeas1D.h" //******************************************************************** JointMeas1D::JointMeas1D(void) { //******************************************************************** // XSec Scalings fScaleFactor = -1.0; fCurrentNorm = 1.0; // Histograms fDataHist = NULL; fDataTrue = NULL; fMCHist = NULL; fMCFine = NULL; fMCWeighted = NULL; fMaskHist = NULL; // Covar covar = NULL; fFullCovar = NULL; fCovar = NULL; fInvert = NULL; fDecomp = NULL; // Fake Data fFakeDataInput = ""; fFakeDataFile = NULL; // Options fDefaultTypes = "FIX/FULL/CHI2"; fAllowedTypes = "FIX,FREE,SHAPE/FULL,DIAG/CHI2/NORM/ENUCORR/Q2CORR/ENU1D/MASK"; fIsFix = false; fIsShape = false; fIsFree = false; fIsDiag = false; fIsFull = false; fAddNormPen = false; fIsMask = false; fIsChi2SVD = false; fIsRawEvents = false; fIsDifXSec = false; fIsEnu1D = false; // Inputs fInput = NULL; fRW = NULL; // Extra Histograms fMCHist_Modes = NULL; for (std::vector::const_iterator iter = fSubChain.begin(); iter != fSubChain.end(); iter++) { MeasurementBase* exp = *iter; if (exp) delete exp; } fSubChain.clear(); // Flags for Joint Measurements fIsRatio = false; fIsSummed = false; fSaveSubMeas = false; fIsJoint = true; } //******************************************************************** void JointMeas1D::SetupDefaultHist() { //******************************************************************** // Setup fMCHist fMCHist = (TH1D*)fDataHist->Clone(); fMCHist->SetNameTitle((fName + "_MC").c_str(), (fName + "_MC" + fPlotTitles).c_str()); // Setup fMCFine Int_t nBins = fMCHist->GetNbinsX(); fMCFine = new TH1D( (fName + "_MC_FINE").c_str(), (fName + "_MC_FINE" + fPlotTitles).c_str(), nBins * 6, fMCHist->GetBinLowEdge(1), fMCHist->GetBinLowEdge(nBins + 1)); fMCStat = (TH1D*)fMCHist->Clone(); fMCStat->Reset(); fMCHist->Reset(); fMCFine->Reset(); // Setup the NEUT Mode Array PlotUtils::CreateNeutModeArray((TH1D*)fMCHist, (TH1**)fMCHist_PDG); PlotUtils::ResetNeutModeArray((TH1**)fMCHist_PDG); // Setup bin masks using sample name if (fIsMask) { std::string maskloc = FitPar::Config().GetParDIR(fName + ".mask"); if (maskloc.empty()) { maskloc = FitPar::GetDataBase() + "/masks/" + fName + ".mask"; } SetBinMask(maskloc); } fMCHist_Modes = new TrueModeStack( (fName + "_MODES").c_str(), ("True Channels"), fMCHist); SetAutoProcessTH1(fMCHist_Modes); return; } //******************************************************************** JointMeas1D::~JointMeas1D(void) { //******************************************************************** if (fDataHist) delete fDataHist; if (fDataTrue) delete fDataTrue; if (fMCHist) delete fMCHist; if (fMCFine) delete fMCFine; if (fMCWeighted) delete fMCWeighted; if (fMaskHist) delete fMaskHist; if (covar) delete covar; if (fFullCovar) delete fFullCovar; if (fCovar) delete fCovar; if (fInvert) delete fInvert; if (fDecomp) delete fDecomp; for (std::vector::const_iterator iter = fSubChain.begin(); iter != fSubChain.end(); iter++) { MeasurementBase* exp = *iter; if (exp) delete exp; } fSubChain.clear(); } //******************************************************************** SampleSettings JointMeas1D::LoadSampleSettings(nuiskey samplekey){ //******************************************************************** SampleSettings s = MeasurementBase::LoadSampleSettings(samplekey); // Parse Inputs fSubInFiles.clear(); std::vector entries = GeneralUtils::ParseToStr(s.GetS("input"), ";"); if (entries.size() < 2) { ERR(FTL) << "Joint measurement expected to recieve at least two semi-colon " "separated input files, but recieved: \"" << s.GetS("input") << "\"" << std::endl; throw; } std::vector first_file_descriptor = GeneralUtils::ParseToStr(entries.front(), ":"); if (first_file_descriptor.size() != 2) { ERR(FTL) << "Found Joint measurement where the input file had no type: \"" << s.GetS("input") << "\", expected \"INPUTTYPE:File.root;File2.root\"." << std::endl; throw; } std::string inpType = first_file_descriptor[0]; for (std::vector::iterator iter = entries.begin(); iter != entries.end(); iter++) { if (GeneralUtils::ParseToStr(*iter, ":").size() != 2) { std::stringstream ss(""); ss << inpType << ":" << (*iter); fSubInFiles.push_back(ss.str()); } else { fSubInFiles.push_back(*iter); } } return s; } //******************************************************************** void JointMeas1D::FinaliseSampleSettings() { //******************************************************************** // Setup naming + renaming fName = fSettings.GetName(); fSettings.SetS("originalname", fName); if (fSettings.Has("rename")) { fName = fSettings.GetS("rename"); fSettings.SetS("name", fName); } // Setup all other options LOG(SAM) << "Finalising Sample Settings: " << fName << std::endl; if ((fSettings.GetS("originalname").find("Evt") != std::string::npos)) { fIsRawEvents = true; LOG(SAM) << "Found event rate measurement but using poisson likelihoods." << std::endl; } if (fSettings.GetS("originalname").find("XSec_1DEnu") != std::string::npos) { fIsEnu1D = true; LOG(SAM) << "::" << fName << "::" << std::endl; LOG(SAM) << "Found XSec Enu measurement, applying flux integrated scaling, " << "not flux averaged!" << std::endl; } if (fIsEnu1D && fIsRawEvents) { LOG(SAM) << "Found 1D Enu XSec distribution AND fIsRawEvents, is this " "really correct?!" << std::endl; LOG(SAM) << "Check experiment constructor for " << fName << " and correct this!" << std::endl; LOG(SAM) << "I live in " << __FILE__ << ":" << __LINE__ << std::endl; exit(-1); } // Parse Inputs fSubInFiles.clear(); std::vector entries = GeneralUtils::ParseToStr(fSettings.GetS("input"), ";"); if (entries.size() < 2) { ERR(FTL) << "Joint measurement expected to recieve at least two semi-colon " "separated input files, but recieved: \"" << fSettings.GetS("input") << "\"" << std::endl; throw; } std::vector first_file_descriptor = GeneralUtils::ParseToStr(entries.front(), ":"); if (first_file_descriptor.size() != 2) { ERR(FTL) << "Found Joint measurement where the input file had no type: \"" << fSettings.GetS("input") << "\", expected \"INPUTTYPE:File.root;File2.root\"." << std::endl; throw; } std::string inpType = first_file_descriptor[0]; for (std::vector::iterator iter = entries.begin(); iter != entries.end(); iter++) { if (GeneralUtils::ParseToStr(*iter, ":").size() != 2) { std::stringstream ss(""); ss << inpType << ":" << (*iter); fSubInFiles.push_back(ss.str()); } else { fSubInFiles.push_back(*iter); } } // Setup options SetFitOptions(fDefaultTypes); // defaults SetFitOptions(fSettings.GetS("type")); // user specified EnuMin = GeneralUtils::StrToDbl(fSettings.GetS("enu_min")); EnuMax = GeneralUtils::StrToDbl(fSettings.GetS("enu_max")); if (fAddNormPen) { if (fNormError <= 0.0) { ERR(WRN) << "Norm error for class " << fName << " is 0.0!" << std::endl; ERR(WRN) << "If you want to use it please add fNormError=VAL" << std::endl; throw; } } if (!fRW) fRW = FitBase::GetRW(); LOG(SAM) << "Finalised Sample Settings" << std::endl; } //******************************************************************** void JointMeas1D::SetDataFromTextFile(std::string datafile) { //******************************************************************** LOG(SAM) << "Reading data from text file: " << datafile << std::endl; fDataHist = PlotUtils::GetTH1DFromFile(datafile, fSettings.GetName() + "_data", fSettings.GetFullTitles()); } //******************************************************************** void JointMeas1D::SetDataFromRootFile(std::string datafile, std::string histname) { //******************************************************************** LOG(SAM) << "Reading data from root file: " << datafile << ";" << histname << std::endl; fDataHist = PlotUtils::GetTH1DFromRootFile(datafile, histname); fDataHist->SetNameTitle((fSettings.GetName() + "_data").c_str(), (fSettings.GetFullTitles()).c_str()); return; }; //******************************************************************** void JointMeas1D::SetPoissonErrors() { //******************************************************************** if (!fDataHist) { ERR(FTL) << "Need a data hist to setup possion errors! " << std::endl; ERR(FTL) << "Setup Data First!" << std::endl; throw; } for (int i = 0; i < fDataHist->GetNbinsX() + 1; i++) { fDataHist->SetBinError(i + 1, sqrt(fDataHist->GetBinContent(i + 1))); } } //******************************************************************** void JointMeas1D::SetCovarFromDiagonal(TH1D* data) { //******************************************************************** if (!data and fDataHist) { data = fDataHist; } if (data) { LOG(SAM) << "Setting diagonal covariance for: " << data->GetName() << std::endl; fFullCovar = StatUtils::MakeDiagonalCovarMatrix(data); covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); } else { ERR(FTL) << "No data input provided to set diagonal covar from!" << std::endl; } if (!fIsDiag) { ERR(FTL) << "SetCovarMatrixFromDiag called for measurement " << "that is not set as diagonal." << std::endl; throw; } } //******************************************************************** void JointMeas1D::SetCovarFromTextFile(std::string covfile, int dim) { //******************************************************************** LOG(SAM) << "Reading covariance from text file: " << covfile << std::endl; fFullCovar = StatUtils::GetCovarFromTextFile(covfile, dim); - + covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); } //******************************************************************** void JointMeas1D::SetCovarFromMultipleTextFiles(std::string covfiles, int dim) { //******************************************************************** if (dim == -1) { dim = fDataHist->GetNbinsX(); } std::vector covList = GeneralUtils::ParseToStr(covfiles, ";"); fFullCovar = new TMatrixDSym(dim); for (uint i = 0; i < covList.size(); ++i){ LOG(SAM) << "Reading covariance from text file: " << covList[i] << std::endl; TMatrixDSym* temp_cov = StatUtils::GetCovarFromTextFile(covList[i], dim); (*fFullCovar) += (*temp_cov); delete temp_cov; } covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); } //******************************************************************** void JointMeas1D::SetCovarFromRootFile(std::string covfile, std::string histname) { //******************************************************************** LOG(SAM) << "Reading covariance from text file: " << covfile << ";" << histname << std::endl; fFullCovar = StatUtils::GetCovarFromRootFile(covfile, histname); covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); } //******************************************************************** void JointMeas1D::SetCovarInvertFromTextFile(std::string covfile, int dim) { //******************************************************************** LOG(SAM) << "Reading inverted covariance from text file: " << covfile << std::endl; covar = StatUtils::GetCovarFromTextFile(covfile, dim); fFullCovar = StatUtils::GetInvert(covar); fDecomp = StatUtils::GetDecomp(fFullCovar); } //******************************************************************** void JointMeas1D::SetCovarInvertFromRootFile(std::string covfile, std::string histname) { //******************************************************************** LOG(SAM) << "Reading inverted covariance from text file: " << covfile << ";" << histname << std::endl; covar = StatUtils::GetCovarFromRootFile(covfile, histname); fFullCovar = StatUtils::GetInvert(covar); fDecomp = StatUtils::GetDecomp(fFullCovar); } //******************************************************************** void JointMeas1D::SetCorrelationFromTextFile(std::string covfile, int dim) { //******************************************************************** if (dim == -1) dim = fDataHist->GetNbinsX(); LOG(SAM) << "Reading data correlations from text file: " << covfile << ";" << dim << std::endl; TMatrixDSym* correlation = StatUtils::GetCovarFromTextFile(covfile, dim); if (!fDataHist) { ERR(FTL) << "Trying to set correlations from text file but there is no data to build it from. \n" << "In constructor make sure data is set before SetCorrelationFromTextFile is called. \n" << std::endl; throw; } // Fill covar from data errors and correlations fFullCovar = new TMatrixDSym(dim); for (int i = 0; i < fDataHist->GetNbinsX(); i++) { for (int j = 0; j < fDataHist->GetNbinsX(); j++) { (*fFullCovar)(i, j) = (*correlation)(i, j) * fDataHist->GetBinError(i + 1) * fDataHist->GetBinError(j + 1) * 1.E76; } } // Fill other covars. covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); delete correlation; } //******************************************************************** void JointMeas1D::SetCorrelationFromMultipleTextFiles(std::string corrfiles, int dim) { //******************************************************************** if (dim == -1) { dim = fDataHist->GetNbinsX(); } std::vector corrList = GeneralUtils::ParseToStr(corrfiles, ";"); fFullCovar = new TMatrixDSym(dim); for (uint i = 0; i < corrList.size(); ++i){ LOG(SAM) << "Reading covariance from text file: " << corrList[i] << std::endl; TMatrixDSym* temp_cov = StatUtils::GetCovarFromTextFile(corrList[i], dim); for (int i = 0; i < fDataHist->GetNbinsX(); i++) { for (int j = 0; j < fDataHist->GetNbinsX(); j++) { // Note that there is a factor of 1E76 here. It is very silly indeed. // However, if you remove it, you also need to fix the factors of 1E38 added to the chi2 calculations! (*temp_cov)(i, j) = (*temp_cov)(i, j) * fDataHist->GetBinError(i + 1) * fDataHist->GetBinError(j + 1) * 1E76; } } (*fFullCovar) += (*temp_cov); delete temp_cov; } covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); } //******************************************************************** void JointMeas1D::SetCorrelationFromRootFile(std::string covfile, std::string histname) { //******************************************************************** LOG(SAM) << "Reading data correlations from text file: " << covfile << ";" << histname << std::endl; TMatrixDSym* correlation = StatUtils::GetCovarFromRootFile(covfile, histname); if (!fDataHist) { ERR(FTL) << "Trying to set correlations from text file but there is no data to build it from. \n" << "In constructor make sure data is set before SetCorrelationFromTextFile is called. \n" << std::endl; throw; } // Fill covar from data errors and correlations fFullCovar = new TMatrixDSym(fDataHist->GetNbinsX()); for (int i = 0; i < fDataHist->GetNbinsX(); i++) { for (int j = 0; j < fDataHist->GetNbinsX(); j++) { (*fFullCovar)(i, j) = (*correlation)(i, j) * fDataHist->GetBinError(i + 1) * fDataHist->GetBinError(j + 1) * 1.E76; } } // Fill other covars. covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); delete correlation; } void JointMeas1D::SetShapeCovar(){ // Return if this is missing any pre-requisites if (!fFullCovar) return; if (!fDataHist) return; // Also return if it's bloody stupid under the circumstances if (fIsDiag) return; fShapeCovar = StatUtils::ExtractShapeOnlyCovar(fFullCovar, fDataHist); return; } //******************************************************************** void JointMeas1D::SetCholDecompFromTextFile(std::string covfile, int dim) { //******************************************************************** LOG(SAM) << "Reading cholesky from text file: " << covfile << std::endl; TMatrixD* temp = StatUtils::GetMatrixFromTextFile(covfile, dim, dim); TMatrixD* trans = (TMatrixD*)temp->Clone(); trans->T(); (*trans) *= (*temp); fFullCovar = new TMatrixDSym(dim, trans->GetMatrixArray(), ""); covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); delete temp; delete trans; } //******************************************************************** void JointMeas1D::SetCholDecompFromRootFile(std::string covfile, std::string histname) { //******************************************************************** LOG(SAM) << "Reading cholesky decomp from root file: " << covfile << ";" << histname << std::endl; TMatrixD* temp = StatUtils::GetMatrixFromRootFile(covfile, histname); TMatrixD* trans = (TMatrixD*)temp->Clone(); trans->T(); (*trans) *= (*temp); fFullCovar = new TMatrixDSym(temp->GetNrows(), trans->GetMatrixArray(), ""); covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); delete temp; delete trans; } //******************************************************************** void JointMeas1D::ScaleData(double scale) { //******************************************************************** fDataHist->Scale(scale); } //******************************************************************** void JointMeas1D::ScaleCovar(double scale) { //******************************************************************** (*fFullCovar) *= scale; (*covar) *= 1.0 / scale; (*fDecomp) *= sqrt(scale); } //******************************************************************** void JointMeas1D::SetBinMask(std::string maskfile) { //******************************************************************** if (!fIsMask) return; LOG(SAM) << "Reading bin mask from file: " << maskfile << std::endl; // Create a mask histogram with dim of data int nbins = fDataHist->GetNbinsX(); fMaskHist = new TH1I((fSettings.GetName() + "_BINMASK").c_str(), (fSettings.GetName() + "_BINMASK; Bin; Mask?").c_str(), nbins, 0, nbins); std::string line; - std::ifstream mask(maskfile.c_str(), ifstream::in); + std::ifstream mask(maskfile.c_str(), std::ifstream::in); if (!mask.is_open()) { LOG(FTL) << " Cannot find mask file." << std::endl; throw; } while (std::getline(mask >> std::ws, line, '\n')) { std::vector entries = GeneralUtils::ParseToInt(line, " "); // Skip lines with poorly formatted lines if (entries.size() < 2) { LOG(WRN) << "JointMeas1D::SetBinMask(), couldn't parse line: " << line << std::endl; continue; } // The first index should be the bin number, the second should be the mask // value. int val = 0; if (entries[1] > 0) val = 1; fMaskHist->SetBinContent(entries[0], val); } // Apply masking by setting masked data bins to zero PlotUtils::MaskBins(fDataHist, fMaskHist); return; } //******************************************************************** void JointMeas1D::FinaliseMeasurement() { //******************************************************************** LOG(SAM) << "Finalising Measurement: " << fName << std::endl; // Make sure data is setup if (!fDataHist) { ERR(FTL) << "No data has been setup inside " << fName << " constructor!" << std::endl; throw; } // Make sure covariances are setup if (!fFullCovar) { fIsDiag = true; SetCovarFromDiagonal(fDataHist); } if (!covar) { covar = StatUtils::GetInvert(fFullCovar); } if (!fDecomp) { fDecomp = StatUtils::GetDecomp(fFullCovar); } // Push the diagonals of fFullCovar onto the data histogram // Comment out until scaling is used consistently... StatUtils::SetDataErrorFromCov(fDataHist, fFullCovar, 1E-38); // Setup fMCHist from data fMCHist = (TH1D*)fDataHist->Clone(); fMCHist->SetNameTitle((fSettings.GetName() + "_MC").c_str(), (fSettings.GetFullTitles()).c_str()); fMCHist->Reset(); // Setup fMCFine fMCFine = new TH1D("mcfine", "mcfine", fDataHist->GetNbinsX(), fMCHist->GetBinLowEdge(1), fMCHist->GetBinLowEdge(fDataHist->GetNbinsX() + 1)); fMCFine->SetNameTitle((fSettings.GetName() + "_MC_FINE").c_str(), (fSettings.GetFullTitles()).c_str()); fMCFine->Reset(); // Setup MC Stat fMCStat = (TH1D*)fMCHist->Clone(); fMCStat->Reset(); // Search drawopts for possible types to include by default std::string drawopts = FitPar::Config().GetParS("drawopts"); if (drawopts.find("MODES") != std::string::npos) { fMCHist_Modes = new TrueModeStack( (fSettings.GetName() + "_MODES").c_str(), ("True Channels"), fMCHist); SetAutoProcessTH1(fMCHist_Modes); } // Setup bin masks using sample name if (fIsMask) { std::string curname = fName; std::string origname = fSettings.GetS("originalname"); // Check rename.mask std::string maskloc = FitPar::Config().GetParDIR(curname + ".mask"); // Check origname.mask if (maskloc.empty()) maskloc = FitPar::Config().GetParDIR(origname + ".mask"); // Check database if (maskloc.empty()) { maskloc = FitPar::GetDataBase() + "/masks/" + origname + ".mask"; } // Setup Bin Mask SetBinMask(maskloc); } /* if (fScaleFactor < 0) { ERR(FTL) << "I found a negative fScaleFactor in " << __FILE__ << ":" << __LINE__ << std::endl; ERR(FTL) << "fScaleFactor = " << fScaleFactor << std::endl; ERR(FTL) << "EXITING" << std::endl; throw; } */ // Create and fill Weighted Histogram if (!fMCWeighted) { fMCWeighted = (TH1D*)fMCHist->Clone(); fMCWeighted->SetNameTitle((fName + "_MCWGHTS").c_str(), (fName + "_MCWGHTS" + fPlotTitles).c_str()); fMCWeighted->GetYaxis()->SetTitle("Weighted Events"); } } //******************************************************************** void JointMeas1D::SetFitOptions(std::string opt) { //******************************************************************** // Do nothing if default given if (opt == "DEFAULT") return; // CHECK Conflicting Fit Options std::vector fit_option_allow = GeneralUtils::ParseToStr(fAllowedTypes, "/"); for (UInt_t i = 0; i < fit_option_allow.size(); i++) { std::vector fit_option_section = GeneralUtils::ParseToStr(fit_option_allow.at(i), ","); bool found_option = false; for (UInt_t j = 0; j < fit_option_section.size(); j++) { std::string av_opt = fit_option_section.at(j); if (!found_option and opt.find(av_opt) != std::string::npos) { found_option = true; } else if (found_option and opt.find(av_opt) != std::string::npos) { ERR(FTL) << "ERROR: Conflicting fit options provided: " << opt << std::endl << "Conflicting group = " << fit_option_section.at(i) << std::endl << "You should only supply one of these options in card file." << std::endl; throw; } } } // Check all options are allowed std::vector fit_options_input = GeneralUtils::ParseToStr(opt, "/"); for (UInt_t i = 0; i < fit_options_input.size(); i++) { if (fAllowedTypes.find(fit_options_input.at(i)) == std::string::npos) { ERR(FTL) << "ERROR: Fit Option '" << fit_options_input.at(i) << "' Provided is not allowed for this measurement." << std::endl; ERR(FTL) << "Fit Options should be provided as a '/' seperated list " "(e.g. FREE/DIAG/NORM)" << std::endl; ERR(FTL) << "Available options for " << fName << " are '" << fAllowedTypes << "'" << std::endl; throw; } } // Set TYPE fFitType = opt; // FIX,SHAPE,FREE if (opt.find("FIX") != std::string::npos) { fIsFree = fIsShape = false; fIsFix = true; } else if (opt.find("SHAPE") != std::string::npos) { fIsFree = fIsFix = false; fIsShape = true; } else if (opt.find("FREE") != std::string::npos) { fIsFix = fIsShape = false; fIsFree = true; } // DIAG,FULL (or default to full) if (opt.find("DIAG") != std::string::npos) { fIsDiag = true; fIsFull = false; } else if (opt.find("FULL") != std::string::npos) { fIsDiag = false; fIsFull = true; } // CHI2/LL (OTHERS?) if (opt.find("LOG") != std::string::npos) { fIsChi2 = false; ERR(FTL) << "No other LIKELIHOODS properly supported!" << std::endl; ERR(FTL) << "Try to use a chi2!" << std::endl; throw; } else { fIsChi2 = true; } // EXTRAS if (opt.find("RAW") != std::string::npos) fIsRawEvents = true; if (opt.find("DIF") != std::string::npos) fIsDifXSec = true; if (opt.find("ENU1D") != std::string::npos) fIsEnu1D = true; if (opt.find("NORM") != std::string::npos) fAddNormPen = true; if (opt.find("MASK") != std::string::npos) fIsMask = true; return; }; //******************************************************************** void JointMeas1D::SetSmearingMatrix(std::string smearfile, int truedim, int recodim) { //******************************************************************** // The smearing matrix describes the migration from true bins (rows) to reco // bins (columns) // Counter over the true bins! int row = 0; std::string line; - std::ifstream smear(smearfile.c_str(), ifstream::in); + std::ifstream smear(smearfile.c_str(), std::ifstream::in); // Note that the smearing matrix may be rectangular. fSmearMatrix = new TMatrixD(truedim, recodim); if (smear.is_open()) LOG(SAM) << "Reading smearing matrix from file: " << smearfile << std::endl; else ERR(FTL) << "Smearing matrix provided is incorrect: " << smearfile << std::endl; while (std::getline(smear >> std::ws, line, '\n')) { int column = 0; std::vector entries = GeneralUtils::ParseToDbl(line, " "); for (std::vector::iterator iter = entries.begin(); iter != entries.end(); iter++) { (*fSmearMatrix)(row, column) = (*iter) / 100.; // Convert to fraction from // percentage (this may not be // general enough) column++; } row++; } return; } //******************************************************************** void JointMeas1D::ApplySmearingMatrix() { //******************************************************************** if (!fSmearMatrix) { ERR(WRN) << fName << ": attempted to apply smearing matrix, but none was set" << std::endl; return; } TH1D* unsmeared = (TH1D*)fMCHist->Clone(); TH1D* smeared = (TH1D*)fMCHist->Clone(); smeared->Reset(); // Loop over reconstructed bins // true = row; reco = column for (int rbin = 0; rbin < fSmearMatrix->GetNcols(); ++rbin) { // Sum up the constributions from all true bins double rBinVal = 0; // Loop over true bins for (int tbin = 0; tbin < fSmearMatrix->GetNrows(); ++tbin) { rBinVal += (*fSmearMatrix)(tbin, rbin) * unsmeared->GetBinContent(tbin + 1); } smeared->SetBinContent(rbin + 1, rBinVal); } fMCHist = (TH1D*)smeared->Clone(); return; } /* Reconfigure LOOP */ //******************************************************************** void JointMeas1D::ResetAll() { //******************************************************************** fMCHist->Reset(); fMCFine->Reset(); fMCStat->Reset(); return; }; //******************************************************************** void JointMeas1D::FillHistograms() { //******************************************************************** if (Signal) { fMCHist->Fill(fXVar, Weight); fMCFine->Fill(fXVar, Weight); fMCStat->Fill(fXVar, 1.0); if (fMCHist_Modes) fMCHist_Modes->Fill(Mode, fXVar, Weight); } return; }; //******************************************************************** void JointMeas1D::ScaleEvents() { //******************************************************************** LOG(FIT) << "Scaling JointMeas1D" << std::endl; // Fill MCWeighted; for (int i = 0; i < fMCHist->GetNbinsX(); i++) { fMCWeighted->SetBinContent(i + 1, fMCHist->GetBinContent(i + 1)); fMCWeighted->SetBinError(i + 1, fMCHist->GetBinError(i + 1)); } // Setup Stat ratios for MC and MC Fine double* statratio = new double[fMCHist->GetNbinsX()]; for (int i = 0; i < fMCHist->GetNbinsX(); i++) { if (fMCHist->GetBinContent(i + 1) != 0) { statratio[i] = fMCHist->GetBinError(i + 1) / fMCHist->GetBinContent(i + 1); } else { statratio[i] = 0.0; } } double* statratiofine = new double[fMCFine->GetNbinsX()]; for (int i = 0; i < fMCFine->GetNbinsX(); i++) { if (fMCFine->GetBinContent(i + 1) != 0) { statratiofine[i] = fMCFine->GetBinError(i + 1) / fMCFine->GetBinContent(i + 1); } else { statratiofine[i] = 0.0; } } // Scaling for raw event rates if (fIsRawEvents) { double datamcratio = fDataHist->Integral() / fMCHist->Integral(); fMCHist->Scale(datamcratio); fMCFine->Scale(datamcratio); if (fMCHist_Modes) fMCHist_Modes->Scale(datamcratio); // Scaling for XSec as function of Enu } else if (fIsEnu1D) { PlotUtils::FluxUnfoldedScaling(fMCHist, GetFluxHistogram(), GetEventHistogram(), fScaleFactor, fNEvents); PlotUtils::FluxUnfoldedScaling(fMCFine, GetFluxHistogram(), GetEventHistogram(), fScaleFactor, fNEvents); // if (fMCHist_Modes) { // PlotUtils::FluxUnfoldedScaling(fMCHist_Modes, GetFluxHistogram(), // GetEventHistogram(), fScaleFactor, // fNEvents); // } // Any other differential scaling } else { fMCHist->Scale(fScaleFactor, "width"); fMCFine->Scale(fScaleFactor, "width"); if (fMCHist_Modes) fMCHist_Modes->Scale(fScaleFactor, "width"); } // Proper error scaling - ROOT Freaks out with xsec weights sometimes for (int i = 0; i < fMCStat->GetNbinsX(); i++) { fMCHist->SetBinError(i + 1, fMCHist->GetBinContent(i + 1) * statratio[i]); } for (int i = 0; i < fMCFine->GetNbinsX(); i++) { fMCFine->SetBinError(i + 1, fMCFine->GetBinContent(i + 1) * statratiofine[i]); } // Clean up delete statratio; delete statratiofine; return; }; //******************************************************************** void JointMeas1D::ApplyNormScale(double norm) { //******************************************************************** fCurrentNorm = norm; fMCHist->Scale(1.0 / norm); fMCFine->Scale(1.0 / norm); return; }; /* Statistic Functions - Outsources to StatUtils */ //******************************************************************** int JointMeas1D::GetNDOF() { //******************************************************************** int ndof = fDataHist->GetNbinsX(); if (fMaskHist) ndof -= fMaskHist->Integral(); return ndof; } //******************************************************************** double JointMeas1D::GetLikelihood() { //******************************************************************** // If this is for a ratio, there is no data histogram to compare to! if (fNoData || !fDataHist) return 0.; // Apply Masking to MC if Required. if (fIsMask and fMaskHist) { PlotUtils::MaskBins(fMCHist, fMaskHist); } // Sort Shape Scaling double scaleF = 0.0; if (fIsShape) { if (fMCHist->Integral(1, fMCHist->GetNbinsX(), "width")) { scaleF = fDataHist->Integral(1, fDataHist->GetNbinsX(), "width") / fMCHist->Integral(1, fMCHist->GetNbinsX(), "width"); fMCHist->Scale(scaleF); fMCFine->Scale(scaleF); } } // Likelihood Calculation double stat = 0.; if (fIsChi2) { if (fIsRawEvents) { stat = StatUtils::GetChi2FromEventRate(fDataHist, fMCHist, fMaskHist); } else if (fIsDiag) { stat = StatUtils::GetChi2FromDiag(fDataHist, fMCHist, fMaskHist); } else if (!fIsDiag and !fIsRawEvents) { stat = StatUtils::GetChi2FromCov(fDataHist, fMCHist, covar, fMaskHist); } } // Sort Penalty Terms if (fAddNormPen) { double penalty = (1. - fCurrentNorm) * (1. - fCurrentNorm) / (fNormError * fNormError); stat += penalty; } // Return to normal scaling if (fIsShape and !FitPar::Config().GetParB("saveshapescaling")) { fMCHist->Scale(1. / scaleF); fMCFine->Scale(1. / scaleF); } fLikelihood = stat; return stat; } /* Fake Data Functions */ //******************************************************************** void JointMeas1D::SetFakeDataValues(std::string fakeOption) { //******************************************************************** // Setup original/datatrue TH1D* tempdata = (TH1D*) fDataHist->Clone(); if (!fIsFakeData) { fIsFakeData = true; // Make a copy of the original data histogram. if (!fDataOrig) fDataOrig = (TH1D*)fDataHist->Clone((fName + "_data_original").c_str()); } else { ResetFakeData(); } // Setup Inputs fFakeDataInput = fakeOption; LOG(SAM) << "Setting fake data from : " << fFakeDataInput << std::endl; // From MC if (fFakeDataInput.compare("MC") == 0) { fDataHist = (TH1D*)fMCHist->Clone((fName + "_MC").c_str()); // Fake File } else { if (!fFakeDataFile) fFakeDataFile = new TFile(fFakeDataInput.c_str(), "READ"); fDataHist = (TH1D*)fFakeDataFile->Get((fName + "_MC").c_str()); } // Setup Data Hist fDataHist->SetNameTitle((fName + "_FAKE").c_str(), (fName + fPlotTitles).c_str()); // Replace Data True if (fDataTrue) delete fDataTrue; fDataTrue = (TH1D*)fDataHist->Clone(); fDataTrue->SetNameTitle((fName + "_FAKE_TRUE").c_str(), (fName + fPlotTitles).c_str()); // Make a new covariance for fake data hist. int nbins = fDataHist->GetNbinsX(); double alpha_i = 0.0; double alpha_j = 0.0; for (int i = 0; i < nbins; i++) { for (int j = 0; j < nbins; j++) { alpha_i = fDataHist->GetBinContent(i + 1) / tempdata->GetBinContent(i + 1); alpha_j = fDataHist->GetBinContent(j + 1) / tempdata->GetBinContent(j + 1); (*fFullCovar)(i, j) = alpha_i * alpha_j * (*fFullCovar)(i, j); } } // Setup Covariances if (covar) delete covar; covar = StatUtils::GetInvert(fFullCovar); if (fDecomp) delete fDecomp; fDecomp = StatUtils::GetInvert(fFullCovar); delete tempdata; return; }; //******************************************************************** void JointMeas1D::ResetFakeData() { //******************************************************************** if (fIsFakeData) { if (fDataHist) delete fDataHist; fDataHist = (TH1D*)fDataTrue->Clone((fSettings.GetName() + "_FKDAT").c_str()); } } //******************************************************************** void JointMeas1D::ResetData() { //******************************************************************** if (fIsFakeData) { if (fDataHist) delete fDataHist; fDataHist = (TH1D*)fDataOrig->Clone((fSettings.GetName() + "_data").c_str()); } fIsFakeData = false; } //******************************************************************** void JointMeas1D::ThrowCovariance() { //******************************************************************** // Take a fDecomposition and use it to throw the current dataset. // Requires fDataTrue also be set incase used repeatedly. if (fDataHist) delete fDataHist; fDataHist = StatUtils::ThrowHistogram(fDataTrue, fFullCovar); return; }; //******************************************************************** void JointMeas1D::ThrowDataToy(){ //******************************************************************** if (!fDataTrue) fDataTrue = (TH1D*) fDataHist->Clone(); if (fMCHist) delete fMCHist; fMCHist = StatUtils::ThrowHistogram(fDataTrue, fFullCovar); } /* Access Functions */ //******************************************************************** TH1D* JointMeas1D::GetMCHistogram() { //******************************************************************** if (!fMCHist) return fMCHist; std::ostringstream chi2; chi2 << std::setprecision(5) << this->GetLikelihood(); int linecolor = kRed; int linestyle = 1; int linewidth = 1; int fillcolor = 0; int fillstyle = 1001; if (fSettings.Has("linecolor")) linecolor = fSettings.GetI("linecolor"); if (fSettings.Has("linestyle")) linestyle = fSettings.GetI("linestyle"); if (fSettings.Has("linewidth")) linewidth = fSettings.GetI("linewidth"); if (fSettings.Has("fillcolor")) fillcolor = fSettings.GetI("fillcolor"); if (fSettings.Has("fillstyle")) fillstyle = fSettings.GetI("fillstyle"); fMCHist->SetTitle(chi2.str().c_str()); fMCHist->SetLineColor(linecolor); fMCHist->SetLineStyle(linestyle); fMCHist->SetLineWidth(linewidth); fMCHist->SetFillColor(fillcolor); fMCHist->SetFillStyle(fillstyle); return fMCHist; }; //******************************************************************** TH1D* JointMeas1D::GetDataHistogram() { //******************************************************************** if (!fDataHist) return fDataHist; int datacolor = kBlack; int datastyle = 1; int datawidth = 1; if (fSettings.Has("datacolor")) datacolor = fSettings.GetI("datacolor"); if (fSettings.Has("datastyle")) datastyle = fSettings.GetI("datastyle"); if (fSettings.Has("datawidth")) datawidth = fSettings.GetI("datawidth"); fDataHist->SetLineColor(datacolor); fDataHist->SetLineWidth(datawidth); fDataHist->SetMarkerStyle(datastyle); return fDataHist; }; /* Write Functions */ // Save all the histograms at once //******************************************************************** void JointMeas1D::Write(std::string drawOpt) { //******************************************************************** // Get Draw Options drawOpt = FitPar::Config().GetParS("drawopts"); // Write Settigns if (drawOpt.find("SETTINGS") != std::string::npos){ fSettings.Set("#chi^{2}",fLikelihood); fSettings.Set("NDOF", this->GetNDOF() ); fSettings.Set("#chi^{2}/NDOF", fLikelihood / this->GetNDOF() ); fSettings.Write(); } // Write Data/MC GetDataHistogram()->Write(); GetMCHistogram()->Write(); // Write Fine Histogram if (drawOpt.find("FINE") != std::string::npos) GetFineList().at(0)->Write(); // Write Weighted Histogram if (drawOpt.find("WEIGHTS") != std::string::npos && fMCWeighted) fMCWeighted->Write(); // Save Flux/Evt if no event manager if (!FitPar::Config().GetParB("EventManager")) { if (drawOpt.find("FLUX") != std::string::npos && GetFluxHistogram()) GetFluxHistogram()->Write(); if (drawOpt.find("EVT") != std::string::npos && GetEventHistogram()) GetEventHistogram()->Write(); if (drawOpt.find("XSEC") != std::string::npos && GetEventHistogram()) GetEventHistogram()->Write(); } // Write Mask if (fIsMask && (drawOpt.find("MASK") != std::string::npos)) { fMaskHist->Write(); } // Write Covariances if (drawOpt.find("COV") != std::string::npos && fFullCovar) { PlotUtils::GetFullCovarPlot(fFullCovar, fSettings.GetName()); } if (drawOpt.find("INVCOV") != std::string::npos && covar) { PlotUtils::GetInvCovarPlot(covar, fSettings.GetName()); } if (drawOpt.find("DECOMP") != std::string::npos && fDecomp) { PlotUtils::GetDecompCovarPlot(fDecomp, fSettings.GetName()); } // // Likelihood residual plots // if (drawOpt.find("RESIDUAL") != std::string::npos) { // WriteResidualPlots(); // } // Ratio and Shape Plots if (drawOpt.find("RATIO") != std::string::npos) { WriteRatioPlot(); } if (drawOpt.find("SHAPE") != std::string::npos) { WriteShapePlot(); if (drawOpt.find("RATIO") != std::string::npos) WriteShapeRatioPlot(); } // // RATIO // if (drawOpt.find("CANVMC") != std::string::npos) { // TCanvas* c1 = WriteMCCanvas(fDataHist, fMCHist); // c1->Write(); // delete c1; // } // // PDG // if (drawOpt.find("CANVPDG") != std::string::npos && fMCHist_Modes) { // TCanvas* c2 = WritePDGCanvas(fDataHist, fMCHist, fMCHist_Modes); // c2->Write(); // delete c2; // } // Write Extra Histograms AutoWriteExtraTH1(); WriteExtraHistograms(); if (fSaveSubMeas) { for (std::vector::const_iterator expIter = fSubChain.begin(); expIter != fSubChain.end(); expIter++) { MeasurementBase* exp = *expIter; exp->Write(drawOpt); } } // Returning LOG(SAM) << "Written Histograms: " << fName << std::endl; return; } //******************************************************************** void JointMeas1D::WriteRatioPlot() { //******************************************************************** // Setup mc data ratios TH1D* dataRatio = (TH1D*)fDataHist->Clone((fName + "_data_RATIO").c_str()); TH1D* mcRatio = (TH1D*)fMCHist->Clone((fName + "_MC_RATIO").c_str()); // Extra MC Data Ratios for (int i = 0; i < mcRatio->GetNbinsX(); i++) { dataRatio->SetBinContent(i + 1, fDataHist->GetBinContent(i + 1) / fMCHist->GetBinContent(i + 1)); dataRatio->SetBinError(i + 1, fDataHist->GetBinError(i + 1) / fMCHist->GetBinContent(i + 1)); mcRatio->SetBinContent(i + 1, fMCHist->GetBinContent(i + 1) / fMCHist->GetBinContent(i + 1)); mcRatio->SetBinError(i + 1, fMCHist->GetBinError(i + 1) / fMCHist->GetBinContent(i + 1)); } // Write ratios mcRatio->Write(); dataRatio->Write(); delete mcRatio; delete dataRatio; } //******************************************************************** void JointMeas1D::WriteShapePlot() { //******************************************************************** TH1D* mcShape = (TH1D*)fMCHist->Clone((fName + "_MC_SHAPE").c_str()); double shapeScale = 1.0; if (fIsRawEvents) { shapeScale = fDataHist->Integral() / fMCHist->Integral(); } else { shapeScale = fDataHist->Integral("width") / fMCHist->Integral("width"); } mcShape->Scale(shapeScale); std::stringstream ss; ss << shapeScale; mcShape->SetTitle(ss.str().c_str()); mcShape->SetLineWidth(3); mcShape->SetLineStyle(7); mcShape->Write(); delete mcShape; } //******************************************************************** void JointMeas1D::WriteShapeRatioPlot() { //******************************************************************** // Get a mcshape histogram TH1D* mcShape = (TH1D*)fMCHist->Clone((fName + "_MC_SHAPE").c_str()); double shapeScale = 1.0; if (fIsRawEvents) { shapeScale = fDataHist->Integral() / fMCHist->Integral(); } else { shapeScale = fDataHist->Integral("width") / fMCHist->Integral("width"); } mcShape->Scale(shapeScale); // Create shape ratio histograms TH1D* mcShapeRatio = (TH1D*)mcShape->Clone((fName + "_MC_SHAPE_RATIO").c_str()); TH1D* dataShapeRatio = (TH1D*)fDataHist->Clone((fName + "_data_SHAPE_RATIO").c_str()); // Divide the histograms mcShapeRatio->Divide(mcShape); dataShapeRatio->Divide(mcShape); // Colour the shape ratio plots mcShapeRatio->SetLineWidth(3); mcShapeRatio->SetLineStyle(7); mcShapeRatio->Write(); dataShapeRatio->Write(); delete mcShapeRatio; delete dataShapeRatio; } // Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret /******************************************************************************* * This file is part of NUISANCE. * * NUISANCE is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * NUISANCE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NUISANCE. If not, see . *******************************************************************************/ #include "JointMeas1D.h" /* Constructor/Deconstuctor */ /* Setup Functions */ //******************************************************************** void JointMeas1D::SetupMeasurement(std::string input, std::string type, FitWeight* rw, std::string fkdt) { //******************************************************************** // For joint samples, input files are given as a semi-colon seperated list. // Parse this list and save it for later, and set up the types etc. if (FitPar::Config().GetParB("EventManager")) { ERR(FTL) << "Event Manager does not yet work with JointMeas1D Samples" << std::endl; ERR(FTL) << "If you want good predictions for " << fName << " then run with it turned off! (-q EventManager=0)" << std::endl; } fSubInFiles.clear(); std::vector entries = GeneralUtils::ParseToStr(input, ";"); if (entries.size() < 2) { ERR(FTL) << "Joint measurement expected to recieve at least two semi-colon " "separated input files, but recieved: \"" << input << "\"" << std::endl; throw; } std::vector first_file_descriptor = GeneralUtils::ParseToStr(entries.front(), ":"); if (first_file_descriptor.size() != 2) { ERR(FTL) << "Found Joint measurement where the input file had no type: \"" << input << "\", expected \"INPUTTYPE:File.root;File2.root\"." << std::endl; throw; } std::string inpType = first_file_descriptor[0]; for (std::vector::iterator iter = entries.begin(); iter != entries.end(); iter++) { if (GeneralUtils::ParseToStr(*iter, ":").size() != 2) { std::stringstream ss(""); ss << inpType << ":" << (*iter); fSubInFiles.push_back(ss.str()); } else { fSubInFiles.push_back(*iter); } } // Set Engine and Fake Data fRW = rw; fFakeDataInput = fkdt; // Set Fit Options SetFitOptions(type); return; } /* XSec Functions */ //******************************************************************** double JointMeas1D::TotalIntegratedFlux(std::string intOpt, double low, double high) { //******************************************************************** double totalflux = 0.0; // Destroy the job for sub samples for (std::vector::const_iterator expIter = fSubChain.begin(); expIter != fSubChain.end(); expIter++) { MeasurementBase* exp = *expIter; double expflux = exp->TotalIntegratedFlux(intOpt, low, high); // Fill flux options if (fIsRatio) { totalflux = expflux; break; } if (fIsSummed) { totalflux += expflux; } } return totalflux; } /* Reconfigure Functions */ //******************************************************************** void JointMeas1D::Reconfigure() { //******************************************************************** for (std::vector::const_iterator expIter = fSubChain.begin(); expIter != fSubChain.end(); expIter++) { MeasurementBase* exp = *expIter; exp->Reconfigure(); } ConvertEventRates(); return; } //******************************************************************** void JointMeas1D::ConvertEventRates() { //******************************************************************** // Apply Event Scaling for (std::vector::const_iterator expIter = fSubChain.begin(); expIter != fSubChain.end(); expIter++) { MeasurementBase* exp = static_cast(*expIter); exp->ScaleEvents(); } // Joint function called by top level class MakePlots(); // Do Final Normalisation ApplyNormScale(fRW->GetSampleNorm(this->fName)); } //******************************************************************** void JointMeas1D::MakePlots() { //******************************************************************** // Reset the 1D histograms but not the subClasses ResetAll(); // If Summed if (fIsSummed) { for (std::vector::const_iterator expIter = fSubChain.begin(); expIter != fSubChain.end(); expIter++) { MeasurementBase* exp = static_cast(*expIter); this->fMCHist->Add(exp->GetMCList().at(0)); this->fMCFine->Add(exp->GetFineList().at(0)); } return; } // If Ratio if (fIsRatio) { int sample = 0; for (std::vector::const_iterator expIter = fSubChain.begin(); expIter != fSubChain.end(); expIter++) { MeasurementBase* exp = *expIter; if (sample == 0) { this->fMCHist->Add(exp->GetMCList().at(0)); this->fMCFine->Add(exp->GetFineList().at(0)); } else if (sample == 1) { this->fMCHist->Divide(exp->GetMCList().at(0)); this->fMCFine->Divide(exp->GetFineList().at(0)); } else { break; } sample++; } return; } return; } /* Access Functions */ //******************************************************************** std::vector JointMeas1D::GetMCList() { //******************************************************************** // Make Default Vector std::vector tempVect; tempVect.push_back(this->fMCHist); // Return vector from all sub samples for (std::vector::const_iterator expIter = fSubChain.begin(); expIter != fSubChain.end(); expIter++) { MeasurementBase* exp = *expIter; std::vector subTempVect = exp->GetMCList(); for (UInt_t i = 0; i < subTempVect.size(); i++) { tempVect.push_back(subTempVect.at(i)); } } return tempVect; } //******************************************************************** std::vector JointMeas1D::GetDataList() { //******************************************************************** // Make Default Vector std::vector tempVect; tempVect.push_back(this->fDataHist); // Return vector from all sub samples for (std::vector::const_iterator expIter = fSubChain.begin(); expIter != fSubChain.end(); expIter++) { MeasurementBase* exp = *expIter; std::vector subTempVect = exp->GetDataList(); for (UInt_t i = 0; i < subTempVect.size(); i++) { tempVect.push_back(subTempVect.at(i)); } } return tempVect; } //******************************************************************** std::vector JointMeas1D::GetFineList() { //******************************************************************** // Make Default Vector std::vector tempVect; tempVect.push_back(this->fMCFine); // Return vector from all sub samples for (std::vector::const_iterator expIter = fSubChain.begin(); expIter != fSubChain.end(); expIter++) { MeasurementBase* exp = *expIter; std::vector subTempVect = exp->GetFineList(); for (UInt_t i = 0; i < subTempVect.size(); i++) { tempVect.push_back(subTempVect.at(i)); } } return tempVect; } //******************************************************************** std::vector JointMeas1D::GetMaskList() { //******************************************************************** // Make Default Vector std::vector tempVect; tempVect.push_back(this->fMaskHist); // Return vector from all sub samples for (std::vector::const_iterator expIter = fSubChain.begin(); expIter != fSubChain.end(); expIter++) { MeasurementBase* exp = *expIter; std::vector subTempVect = exp->GetMaskList(); for (UInt_t i = 0; i < subTempVect.size(); i++) { tempVect.push_back(subTempVect.at(i)); } } return tempVect; } //******************************************************************** std::vector JointMeas1D::GetFluxList() { //******************************************************************** // Make Default Vector std::vector tempVect; tempVect.push_back(MeasurementBase::GetFluxHistogram()); // Return vector from all sub samples for (std::vector::const_iterator expIter = fSubChain.begin(); expIter != fSubChain.end(); expIter++) { MeasurementBase* exp = *expIter; std::vector subTempVect = exp->GetFluxList(); for (UInt_t i = 0; i < subTempVect.size(); i++) { tempVect.push_back(subTempVect.at(i)); } } return tempVect; } //******************************************************************** std::vector JointMeas1D::GetEventRateList() { //******************************************************************** // Make Default Vector std::vector tempVect; tempVect.push_back(MeasurementBase::GetEventHistogram()); // Return vector from all sub samples for (std::vector::const_iterator expIter = fSubChain.begin(); expIter != fSubChain.end(); expIter++) { MeasurementBase* exp = *expIter; std::vector subTempVect = exp->GetEventRateList(); for (UInt_t i = 0; i < subTempVect.size(); i++) { tempVect.push_back(subTempVect.at(i)); } } return tempVect; } //******************************************************************** std::vector JointMeas1D::GetXSecList() { //******************************************************************** // Make Default Vector std::vector tempVect; tempVect.push_back(MeasurementBase::GetXSecHistogram()); // Return vector from all sub samples for (std::vector::const_iterator expIter = fSubChain.begin(); expIter != fSubChain.end(); expIter++) { MeasurementBase* exp = *expIter; std::vector subTempVect = exp->GetXSecList(); for (UInt_t i = 0; i < subTempVect.size(); i++) { tempVect.push_back(subTempVect.at(i)); } } return tempVect; } //******************************************************************** TH1D* JointMeas1D::GetCombinedFlux() { //******************************************************************** TH1D* newflux = NULL; int sample = 0; for (std::vector::const_iterator expIter = fSubChain.begin(); expIter != fSubChain.end(); expIter++) { MeasurementBase* exp = *expIter; // Get flux from experiment std::vector fluxVect = exp->GetFluxList(); // Setup newflux if (sample == 0) { newflux = (TH1D*)fluxVect.at(0); newflux->Reset(); } // Add all fluxes for (UInt_t i = 0; i < fluxVect.size(); i++) { newflux->Add((TH1D*)fluxVect.at(i)); sample++; } } if (!newflux){ ERR(FTL) << "No combined flux setup in JointMeas1D" << std::endl; } return newflux; } //******************************************************************** TH1D* JointMeas1D::GetCombinedEventRate() { //******************************************************************** TH1D* newflux = NULL; int sample = 0; for (std::vector::const_iterator expIter = fSubChain.begin(); expIter != fSubChain.end(); expIter++) { MeasurementBase* exp = *expIter; // Get flux from experiment std::vector fluxVect = exp->GetFluxList(); // Setup newflux if (sample == 0) { newflux = (TH1D*)fluxVect.at(0); newflux->Reset(); } // Add all fluxes for (UInt_t i = 0; i < fluxVect.size(); i++) { newflux->Add(fluxVect.at(i)); sample++; } } if (!newflux){ ERR(FTL) << "No combined event rate setup in JointMeas1D" << std::endl; } return newflux; } //******************************************************************** std::vector JointMeas1D::GetSubSamples() { //******************************************************************** std::vector exps; for (std::vector::const_iterator expIter = fSubChain.begin(); expIter != fSubChain.end(); expIter++) { exps.push_back(*expIter); } return exps; } //// CRAP TO BE REMOVED //******************************************************************** void JointMeas1D::SetDataValues(std::string dataFile) { //******************************************************************** // Override this function if the input file isn't in a suitable format LOG(SAM) << "Reading data from: " << dataFile.c_str() << std::endl; fDataHist = PlotUtils::GetTH1DFromFile(dataFile, (fName + "_data"), fPlotTitles); fDataTrue = (TH1D*)fDataHist->Clone(); // Number of data points is number of bins fNDataPointsX = fDataHist->GetXaxis()->GetNbins(); return; }; //******************************************************************** void JointMeas1D::SetDataFromDatabase(std::string inhistfile, std::string histname) { //******************************************************************** LOG(SAM) << "Filling histogram from " << inhistfile << "->" << histname << std::endl; fDataHist = PlotUtils::GetTH1DFromRootFile( (GeneralUtils::GetTopLevelDir() + "/data/" + inhistfile), histname); fDataHist->SetNameTitle((fName + "_data").c_str(), (fName + "_data").c_str()); return; }; //******************************************************************** void JointMeas1D::SetDataFromFile(std::string inhistfile, std::string histname) { //******************************************************************** LOG(SAM) << "Filling histogram from " << inhistfile << "->" << histname << std::endl; fDataHist = PlotUtils::GetTH1DFromRootFile((inhistfile), histname); fDataHist->SetNameTitle((fName + "_data").c_str(), (fName + "_data").c_str()); return; }; //******************************************************************** void JointMeas1D::SetCovarMatrix(std::string covarFile) { //******************************************************************** // Covariance function, only really used when reading in the MB Covariances. TFile* tempFile = new TFile(covarFile.c_str(), "READ"); TH2D* covarPlot = new TH2D(); // TH2D* decmpPlot = new TH2D(); TH2D* covarInvPlot = new TH2D(); TH2D* fFullCovarPlot = new TH2D(); std::string covName = ""; std::string covOption = FitPar::Config().GetParS("thrown_covariance"); if (fIsShape || fIsFree) covName = "shp_"; if (fIsDiag) covName += "diag"; else covName += "full"; covarPlot = (TH2D*)tempFile->Get((covName + "cov").c_str()); covarInvPlot = (TH2D*)tempFile->Get((covName + "covinv").c_str()); if (!covOption.compare("SUB")) fFullCovarPlot = (TH2D*)tempFile->Get((covName + "cov").c_str()); else if (!covOption.compare("FULL")) fFullCovarPlot = (TH2D*)tempFile->Get("fullcov"); else ERR(WRN) << "Incorrect thrown_covariance option in parameters." << std::endl; int dim = int(fDataHist->GetNbinsX()); //-this->masked->Integral()); int covdim = int(fDataHist->GetNbinsX()); this->covar = new TMatrixDSym(dim); fFullCovar = new TMatrixDSym(dim); fDecomp = new TMatrixDSym(dim); int row, column = 0; row = 0; column = 0; for (Int_t i = 0; i < covdim; i++) { // if (this->masked->GetBinContent(i+1) > 0) continue; for (Int_t j = 0; j < covdim; j++) { // if (this->masked->GetBinContent(j+1) > 0) continue; (*this->covar)(row, column) = covarPlot->GetBinContent(i + 1, j + 1); (*fFullCovar)(row, column) = fFullCovarPlot->GetBinContent(i + 1, j + 1); column++; } column = 0; row++; } // Set bin errors on data if (!fIsDiag) { StatUtils::SetDataErrorFromCov(fDataHist, fFullCovar); } // Get Deteriminant and inverse matrix // fCovDet = this->covar->Determinant(); TDecompSVD LU = TDecompSVD(*this->covar); this->covar = new TMatrixDSym(dim, LU.Invert().GetMatrixArray(), ""); return; }; //******************************************************************** // Sets the covariance matrix from a provided file in a text format // scale is a multiplicative pre-factor to apply in the case where the // covariance is given in some unit (e.g. 1E-38) void JointMeas1D::SetCovarMatrixFromText(std::string covarFile, int dim, double scale) { //******************************************************************** // Make a counter to track the line number int row = 0; std::string line; - std::ifstream covarread(covarFile.c_str(), ifstream::in); + std::ifstream covarread(covarFile.c_str(), std::ifstream::in); this->covar = new TMatrixDSym(dim); fFullCovar = new TMatrixDSym(dim); if (covarread.is_open()) LOG(SAM) << "Reading covariance matrix from file: " << covarFile << std::endl; else ERR(FTL) << "Covariance matrix provided is incorrect: " << covarFile << std::endl; // Loop over the lines in the file while (std::getline(covarread >> std::ws, line, '\n')) { int column = 0; // Loop over entries and insert them into matrix std::vector entries = GeneralUtils::ParseToDbl(line, " "); if (entries.size() <= 1) { ERR(WRN) << "SetCovarMatrixFromText -> Covariance matrix only has <= 1 " "entries on this line: " << row << std::endl; } for (std::vector::iterator iter = entries.begin(); iter != entries.end(); iter++) { (*covar)(row, column) = *iter; (*fFullCovar)(row, column) = *iter; column++; } row++; } covarread.close(); // Scale the actualy covariance matrix by some multiplicative factor (*fFullCovar) *= scale; // Robust matrix inversion method TDecompSVD LU = TDecompSVD(*this->covar); // THIS IS ACTUALLY THE INVERSE COVARIANCE MATRIXA AAAAARGH delete this->covar; this->covar = new TMatrixDSym(dim, LU.Invert().GetMatrixArray(), ""); // Now need to multiply by the scaling factor // If the covariance (*this->covar) *= 1. / (scale); return; }; //******************************************************************** void JointMeas1D::SetCovarMatrixFromCorrText(std::string corrFile, int dim) { //******************************************************************** // Make a counter to track the line number int row = 0; std::string line; - std::ifstream corr(corrFile.c_str(), ifstream::in); + std::ifstream corr(corrFile.c_str(), std::ifstream::in); this->covar = new TMatrixDSym(dim); this->fFullCovar = new TMatrixDSym(dim); if (corr.is_open()) LOG(SAM) << "Reading and converting correlation matrix from file: " << corrFile << std::endl; else { ERR(FTL) << "Correlation matrix provided is incorrect: " << corrFile << std::endl; exit(-1); } while (std::getline(corr >> std::ws, line, '\n')) { int column = 0; // Loop over entries and insert them into matrix // Multiply by the errors to get the covariance, rather than the correlation // matrix std::vector entries = GeneralUtils::ParseToDbl(line, " "); for (std::vector::iterator iter = entries.begin(); iter != entries.end(); iter++) { double val = (*iter) * this->fDataHist->GetBinError(row + 1) * 1E38 * this->fDataHist->GetBinError(column + 1) * 1E38; if (val == 0) { ERR(FTL) << "Found a zero value in the covariance matrix, assuming " "this is an error!" << std::endl; exit(-1); } (*this->covar)(row, column) = val; (*this->fFullCovar)(row, column) = val; column++; } row++; } // Robust matrix inversion method TDecompSVD LU = TDecompSVD(*this->covar); delete this->covar; this->covar = new TMatrixDSym(dim, LU.Invert().GetMatrixArray(), ""); return; }; //******************************************************************** // FullUnits refers to if we have "real" unscaled units in the covariance matrix, e.g. 1E-76. // If this is the case we need to scale it so that the chi2 contribution is correct // NUISANCE internally assumes the covariance matrix has units of 1E76 void JointMeas1D::SetCovarFromDataFile(std::string covarFile, std::string covName, bool FullUnits) { //******************************************************************** LOG(SAM) << "Getting covariance from " << covarFile << "->" << covName << std::endl; TFile* tempFile = new TFile(covarFile.c_str(), "READ"); TH2D* covPlot = (TH2D*)tempFile->Get(covName.c_str()); covPlot->SetDirectory(0); // Scale the covariance matrix if it comes in normal units if (FullUnits) { covPlot->Scale(1.E76); } int dim = covPlot->GetNbinsX(); fFullCovar = new TMatrixDSym(dim); for (int i = 0; i < dim; i++) { for (int j = 0; j < dim; j++) { (*fFullCovar)(i, j) = covPlot->GetBinContent(i + 1, j + 1); } } this->covar = (TMatrixDSym*)fFullCovar->Clone(); fDecomp = (TMatrixDSym*)fFullCovar->Clone(); TDecompSVD LU = TDecompSVD(*this->covar); this->covar = new TMatrixDSym(dim, LU.Invert().GetMatrixArray(), ""); TDecompChol LUChol = TDecompChol(*fDecomp); LUChol.Decompose(); fDecomp = new TMatrixDSym(dim, LU.GetU().GetMatrixArray(), ""); return; }; // std::vector JointMeas1D::GetMCList(void){ // std::vector temp; // return temp; // } // std::vector JointMeas1D::GetDataList(void){ // std::vector temp; // return temp; // } // std::vector JointMeas1D::GetMaskList(void){ // std::vector temp; // return temp; // } // std::vector JointMeas1D::GetFineList(void){ // std::vector temp; // return temp; // } diff --git a/src/FitBase/Measurement1D.cxx b/src/FitBase/Measurement1D.cxx index cb2cdd3..5f88e1d 100644 --- a/src/FitBase/Measurement1D.cxx +++ b/src/FitBase/Measurement1D.cxx @@ -1,1903 +1,1903 @@ // Copyright 2016 L. Pickering, P. Stowell, R. Terri, C. Wilkinson, C. Wret /******************************************************************************* * This ile is part of NUISANCE. * * NUISANCE is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * NUISANCE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NUISANCE. If not, see . *******************************************************************************/ #include "Measurement1D.h" //******************************************************************** Measurement1D::Measurement1D(void) { //******************************************************************** // XSec Scalings fScaleFactor = -1.0; fCurrentNorm = 1.0; // Histograms fDataHist = NULL; fDataTrue = NULL; fMCHist = NULL; fMCFine = NULL; fMCWeighted = NULL; fMaskHist = NULL; // Covar covar = NULL; fFullCovar = NULL; fShapeCovar = NULL; fCovar = NULL; fInvert = NULL; fDecomp = NULL; // Fake Data fFakeDataInput = ""; fFakeDataFile = NULL; // Options fDefaultTypes = "FIX/FULL/CHI2"; fAllowedTypes = "FIX,FREE,SHAPE/FULL,DIAG/CHI2/NORM/ENUCORR/Q2CORR/ENU1D/MASK/NOWIDTH"; fIsFix = false; fIsShape = false; fIsFree = false; fIsDiag = false; fIsFull = false; fAddNormPen = false; fIsMask = false; fIsChi2SVD = false; fIsRawEvents = false; fIsNoWidth = false; fIsDifXSec = false; fIsEnu1D = false; // Inputs fInput = NULL; fRW = NULL; // Extra Histograms fMCHist_Modes = NULL; } //******************************************************************** Measurement1D::~Measurement1D(void) { //******************************************************************** if (fDataHist) delete fDataHist; if (fDataTrue) delete fDataTrue; if (fMCHist) delete fMCHist; if (fMCFine) delete fMCFine; if (fMCWeighted) delete fMCWeighted; if (fMaskHist) delete fMaskHist; if (covar) delete covar; if (fFullCovar) delete fFullCovar; if (fShapeCovar) delete fShapeCovar; if (fCovar) delete fCovar; if (fInvert) delete fInvert; if (fDecomp) delete fDecomp; } //******************************************************************** void Measurement1D::FinaliseSampleSettings() { //******************************************************************** MeasurementBase::FinaliseSampleSettings(); // Setup naming + renaming fName = fSettings.GetName(); fSettings.SetS("originalname", fName); if (fSettings.Has("rename")) { fName = fSettings.GetS("rename"); fSettings.SetS("name", fName); } // Setup all other options LOG(SAM) << "Finalising Sample Settings: " << fName << std::endl; if ((fSettings.GetS("originalname").find("Evt") != std::string::npos)) { fIsRawEvents = true; LOG(SAM) << "Found event rate measurement but using poisson likelihoods." << std::endl; } if (fSettings.GetS("originalname").find("XSec_1DEnu") != std::string::npos) { fIsEnu1D = true; LOG(SAM) << "::" << fName << "::" << std::endl; LOG(SAM) << "Found XSec Enu measurement, applying flux integrated scaling, " << "not flux averaged!" << std::endl; } if (fIsEnu1D && fIsRawEvents) { LOG(SAM) << "Found 1D Enu XSec distribution AND fIsRawEvents, is this " "really correct?!" << std::endl; LOG(SAM) << "Check experiment constructor for " << fName << " and correct this!" << std::endl; LOG(SAM) << "I live in " << __FILE__ << ":" << __LINE__ << std::endl; exit(-1); } if (!fRW) fRW = FitBase::GetRW(); if (!fInput and !fIsJoint) SetupInputs(fSettings.GetS("input")); // Setup options SetFitOptions(fDefaultTypes); // defaults SetFitOptions(fSettings.GetS("type")); // user specified EnuMin = GeneralUtils::StrToDbl(fSettings.GetS("enu_min")); EnuMax = GeneralUtils::StrToDbl(fSettings.GetS("enu_max")); if (fAddNormPen) { if (fNormError <= 0.0) { ERR(WRN) << "Norm error for class " << fName << " is 0.0!" << std::endl; ERR(WRN) << "If you want to use it please add fNormError=VAL" << std::endl; throw; } } } //******************************************************************** void Measurement1D::CreateDataHistogram(int dimx, double* binx) { //******************************************************************** if (fDataHist) delete fDataHist; fDataHist = new TH1D( (fSettings.GetName() + "_data").c_str(), (fSettings.GetFullTitles()).c_str(), dimx, binx) ; } //******************************************************************** void Measurement1D::SetDataFromTextFile(std::string datafile) { //******************************************************************** LOG(SAM) << "Reading data from text file: " << datafile << std::endl; fDataHist = PlotUtils::GetTH1DFromFile(datafile, fSettings.GetName() + "_data", fSettings.GetFullTitles()); } //******************************************************************** void Measurement1D::SetDataFromRootFile(std::string datafile, std::string histname) { //******************************************************************** LOG(SAM) << "Reading data from root file: " << datafile << ";" << histname << std::endl; fDataHist = PlotUtils::GetTH1DFromRootFile(datafile, histname); fDataHist->SetNameTitle((fSettings.GetName() + "_data").c_str(), (fSettings.GetFullTitles()).c_str()); return; }; //******************************************************************** void Measurement1D::SetEmptyData(){ //******************************************************************** fDataHist = new TH1D("EMPTY_DATA","EMPTY_DATA",1,0.0,1.0); } //******************************************************************** void Measurement1D::SetPoissonErrors() { //******************************************************************** if (!fDataHist) { ERR(FTL) << "Need a data hist to setup possion errors! " << std::endl; ERR(FTL) << "Setup Data First!" << std::endl; throw; } for (int i = 0; i < fDataHist->GetNbinsX() + 1; i++) { fDataHist->SetBinError(i + 1, sqrt(fDataHist->GetBinContent(i + 1))); } } //******************************************************************** void Measurement1D::SetCovarFromDiagonal(TH1D* data) { //******************************************************************** if (!data and fDataHist) { data = fDataHist; } if (data) { LOG(SAM) << "Setting diagonal covariance for: " << data->GetName() << std::endl; fFullCovar = StatUtils::MakeDiagonalCovarMatrix(data); covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); } else { ERR(FTL) << "No data input provided to set diagonal covar from!" << std::endl; } // if (!fIsDiag) { // ERR(FTL) << "SetCovarMatrixFromDiag called for measurement " // << "that is not set as diagonal." << std::endl; // throw; // } } //******************************************************************** void Measurement1D::SetCovarFromTextFile(std::string covfile, int dim) { //******************************************************************** if (dim == -1) { dim = fDataHist->GetNbinsX(); } LOG(SAM) << "Reading covariance from text file: " << covfile << std::endl; fFullCovar = StatUtils::GetCovarFromTextFile(covfile, dim); covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); } //******************************************************************** void Measurement1D::SetCovarFromMultipleTextFiles(std::string covfiles, int dim) { //******************************************************************** if (dim == -1) { dim = fDataHist->GetNbinsX(); } std::vector covList = GeneralUtils::ParseToStr(covfiles, ";"); fFullCovar = new TMatrixDSym(dim); for (uint i = 0; i < covList.size(); ++i){ LOG(SAM) << "Reading covariance from text file: " << covList[i] << std::endl; TMatrixDSym* temp_cov = StatUtils::GetCovarFromTextFile(covList[i], dim); (*fFullCovar) += (*temp_cov); delete temp_cov; } covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); } //******************************************************************** void Measurement1D::SetCovarFromRootFile(std::string covfile, std::string histname) { //******************************************************************** LOG(SAM) << "Reading covariance from text file: " << covfile << ";" << histname << std::endl; fFullCovar = StatUtils::GetCovarFromRootFile(covfile, histname); covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); } //******************************************************************** void Measurement1D::SetCovarInvertFromTextFile(std::string covfile, int dim) { //******************************************************************** if (dim == -1) { dim = fDataHist->GetNbinsX(); } LOG(SAM) << "Reading inverted covariance from text file: " << covfile << std::endl; covar = StatUtils::GetCovarFromTextFile(covfile, dim); fFullCovar = StatUtils::GetInvert(covar); fDecomp = StatUtils::GetDecomp(fFullCovar); } //******************************************************************** void Measurement1D::SetCovarInvertFromRootFile(std::string covfile, std::string histname) { //******************************************************************** LOG(SAM) << "Reading inverted covariance from text file: " << covfile << ";" << histname << std::endl; covar = StatUtils::GetCovarFromRootFile(covfile, histname); fFullCovar = StatUtils::GetInvert(covar); fDecomp = StatUtils::GetDecomp(fFullCovar); } //******************************************************************** void Measurement1D::SetCorrelationFromTextFile(std::string covfile, int dim) { //******************************************************************** if (dim == -1) dim = fDataHist->GetNbinsX(); LOG(SAM) << "Reading data correlations from text file: " << covfile << ";" << dim << std::endl; TMatrixDSym* correlation = StatUtils::GetCovarFromTextFile(covfile, dim); if (!fDataHist) { ERR(FTL) << "Trying to set correlations from text file but there is no data to build it from. \n" << "In constructor make sure data is set before SetCorrelationFromTextFile is called. \n" << std::endl; throw; } // Fill covar from data errors and correlations fFullCovar = new TMatrixDSym(dim); for (int i = 0; i < fDataHist->GetNbinsX(); i++) { for (int j = 0; j < fDataHist->GetNbinsX(); j++) { (*fFullCovar)(i, j) = (*correlation)(i, j) * fDataHist->GetBinError(i + 1) * fDataHist->GetBinError(j + 1) * 1.E76; } } // Fill other covars. covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); delete correlation; } //******************************************************************** void Measurement1D::SetCorrelationFromMultipleTextFiles(std::string corrfiles, int dim) { //******************************************************************** if (dim == -1) { dim = fDataHist->GetNbinsX(); } std::vector corrList = GeneralUtils::ParseToStr(corrfiles, ";"); fFullCovar = new TMatrixDSym(dim); for (uint i = 0; i < corrList.size(); ++i){ LOG(SAM) << "Reading covariance from text file: " << corrList[i] << std::endl; TMatrixDSym* temp_cov = StatUtils::GetCovarFromTextFile(corrList[i], dim); for (int i = 0; i < fDataHist->GetNbinsX(); i++) { for (int j = 0; j < fDataHist->GetNbinsX(); j++) { (*temp_cov)(i, j) = (*temp_cov)(i, j) * fDataHist->GetBinError(i + 1) * fDataHist->GetBinError(j + 1) * 1.E76; } } (*fFullCovar) += (*temp_cov); delete temp_cov; } covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); } //******************************************************************** void Measurement1D::SetCorrelationFromRootFile(std::string covfile, std::string histname) { //******************************************************************** LOG(SAM) << "Reading data correlations from text file: " << covfile << ";" << histname << std::endl; TMatrixDSym* correlation = StatUtils::GetCovarFromRootFile(covfile, histname); if (!fDataHist) { ERR(FTL) << "Trying to set correlations from text file but there is no data to build it from. \n" << "In constructor make sure data is set before SetCorrelationFromTextFile is called. \n" << std::endl; throw; } // Fill covar from data errors and correlations fFullCovar = new TMatrixDSym(fDataHist->GetNbinsX()); for (int i = 0; i < fDataHist->GetNbinsX(); i++) { for (int j = 0; j < fDataHist->GetNbinsX(); j++) { (*fFullCovar)(i, j) = (*correlation)(i, j) * fDataHist->GetBinError(i + 1) * fDataHist->GetBinError(j + 1) * 1.E76; } } // Fill other covars. covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); delete correlation; } //******************************************************************** void Measurement1D::SetCholDecompFromTextFile(std::string covfile, int dim) { //******************************************************************** if (dim == -1) { dim = fDataHist->GetNbinsX(); } LOG(SAM) << "Reading cholesky from text file: " << covfile << std::endl; TMatrixD* temp = StatUtils::GetMatrixFromTextFile(covfile, dim, dim); TMatrixD* trans = (TMatrixD*)temp->Clone(); trans->T(); (*trans) *= (*temp); fFullCovar = new TMatrixDSym(dim, trans->GetMatrixArray(), ""); covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); delete temp; delete trans; } //******************************************************************** void Measurement1D::SetCholDecompFromRootFile(std::string covfile, std::string histname) { //******************************************************************** LOG(SAM) << "Reading cholesky decomp from root file: " << covfile << ";" << histname << std::endl; TMatrixD* temp = StatUtils::GetMatrixFromRootFile(covfile, histname); TMatrixD* trans = (TMatrixD*)temp->Clone(); trans->T(); (*trans) *= (*temp); fFullCovar = new TMatrixDSym(temp->GetNrows(), trans->GetMatrixArray(), ""); covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); delete temp; delete trans; } void Measurement1D::SetShapeCovar(){ // Return if this is missing any pre-requisites if (!fFullCovar) return; if (!fDataHist) return; // Also return if it's bloody stupid under the circumstances if (fIsDiag) return; fShapeCovar = StatUtils::ExtractShapeOnlyCovar(fFullCovar, fDataHist); return; } //******************************************************************** void Measurement1D::ScaleData(double scale) { //******************************************************************** fDataHist->Scale(scale); } //******************************************************************** void Measurement1D::ScaleDataErrors(double scale) { //******************************************************************** for (int i = 0; i < fDataHist->GetNbinsX(); i++) { fDataHist->SetBinError(i + 1, fDataHist->GetBinError(i + 1) * scale); } } //******************************************************************** void Measurement1D::ScaleCovar(double scale) { //******************************************************************** (*fFullCovar) *= scale; (*covar) *= 1.0 / scale; (*fDecomp) *= sqrt(scale); } //******************************************************************** void Measurement1D::SetBinMask(std::string maskfile) { //******************************************************************** if (!fIsMask) return; LOG(SAM) << "Reading bin mask from file: " << maskfile << std::endl; // Create a mask histogram with dim of data int nbins = fDataHist->GetNbinsX(); fMaskHist = new TH1I((fSettings.GetName() + "_BINMASK").c_str(), (fSettings.GetName() + "_BINMASK; Bin; Mask?").c_str(), nbins, 0, nbins); std::string line; - std::ifstream mask(maskfile.c_str(), ifstream::in); + std::ifstream mask(maskfile.c_str(), std::ifstream::in); if (!mask.is_open()) { LOG(FTL) << " Cannot find mask file." << std::endl; throw; } while (std::getline(mask >> std::ws, line, '\n')) { std::vector entries = GeneralUtils::ParseToInt(line, " "); // Skip lines with poorly formatted lines if (entries.size() < 2) { LOG(WRN) << "Measurement1D::SetBinMask(), couldn't parse line: " << line << std::endl; continue; } // The first index should be the bin number, the second should be the mask // value. int val = 0; if (entries[1] > 0) val = 1; fMaskHist->SetBinContent(entries[0], val); } // Apply masking by setting masked data bins to zero PlotUtils::MaskBins(fDataHist, fMaskHist); return; } //******************************************************************** void Measurement1D::FinaliseMeasurement() { //******************************************************************** LOG(SAM) << "Finalising Measurement: " << fName << std::endl; if (fSettings.GetB("onlymc")){ if (fDataHist) delete fDataHist; fDataHist = new TH1D("empty_data","empty_data",1,0.0,1.0); } // Make sure data is setup if (!fDataHist) { ERR(FTL) << "No data has been setup inside " << fName << " constructor!" << std::endl; throw; } // Make sure covariances are setup if (!fFullCovar) { fIsDiag = true; SetCovarFromDiagonal(fDataHist); } if (!covar) { covar = StatUtils::GetInvert(fFullCovar); } if (!fDecomp) { fDecomp = StatUtils::GetDecomp(fFullCovar); } // Push the diagonals of fFullCovar onto the data histogram // Comment this out until the covariance/data scaling is consistent! StatUtils::SetDataErrorFromCov(fDataHist, fFullCovar, 1E-38); // If shape only, set covar and fDecomp using the shape-only matrix (if set) if (fIsShape && fShapeCovar and FitPar::Config().GetParB("UseShapeCovar")){ if (covar) delete covar; covar = StatUtils::GetInvert(fShapeCovar); if (fDecomp) delete fDecomp; fDecomp = StatUtils::GetDecomp(fFullCovar); } // Setup fMCHist from data fMCHist = (TH1D*)fDataHist->Clone(); fMCHist->SetNameTitle((fSettings.GetName() + "_MC").c_str(), (fSettings.GetFullTitles()).c_str()); fMCHist->Reset(); // Setup fMCFine fMCFine = new TH1D("mcfine", "mcfine", fDataHist->GetNbinsX() * 8, fMCHist->GetBinLowEdge(1), fMCHist->GetBinLowEdge(fDataHist->GetNbinsX() + 1)); fMCFine->SetNameTitle((fSettings.GetName() + "_MC_FINE").c_str(), (fSettings.GetFullTitles()).c_str()); fMCFine->Reset(); // Setup MC Stat fMCStat = (TH1D*)fMCHist->Clone(); fMCStat->Reset(); // Search drawopts for possible types to include by default std::string drawopts = FitPar::Config().GetParS("drawopts"); if (drawopts.find("MODES") != std::string::npos) { fMCHist_Modes = new TrueModeStack( (fSettings.GetName() + "_MODES").c_str(), ("True Channels"), fMCHist); SetAutoProcessTH1(fMCHist_Modes, kCMD_Reset, kCMD_Norm, kCMD_Write); } // Setup bin masks using sample name if (fIsMask) { std::string curname = fName; std::string origname = fSettings.GetS("originalname"); // Check rename.mask std::string maskloc = FitPar::Config().GetParDIR(curname + ".mask"); // Check origname.mask if (maskloc.empty()) maskloc = FitPar::Config().GetParDIR(origname + ".mask"); // Check database if (maskloc.empty()) { maskloc = FitPar::GetDataBase() + "/masks/" + origname + ".mask"; } // Setup Bin Mask SetBinMask(maskloc); } if (fScaleFactor < 0) { ERR(FTL) << "I found a negative fScaleFactor in " << __FILE__ << ":" << __LINE__ << std::endl; ERR(FTL) << "fScaleFactor = " << fScaleFactor << std::endl; ERR(FTL) << "EXITING" << std::endl; throw; } // Create and fill Weighted Histogram if (!fMCWeighted) { fMCWeighted = (TH1D*)fMCHist->Clone(); fMCWeighted->SetNameTitle((fName + "_MCWGHTS").c_str(), (fName + "_MCWGHTS" + fPlotTitles).c_str()); fMCWeighted->GetYaxis()->SetTitle("Weighted Events"); } } //******************************************************************** void Measurement1D::SetFitOptions(std::string opt) { //******************************************************************** // Do nothing if default given if (opt == "DEFAULT") return; // CHECK Conflicting Fit Options std::vector fit_option_allow = GeneralUtils::ParseToStr(fAllowedTypes, "/"); for (UInt_t i = 0; i < fit_option_allow.size(); i++) { std::vector fit_option_section = GeneralUtils::ParseToStr(fit_option_allow.at(i), ","); bool found_option = false; for (UInt_t j = 0; j < fit_option_section.size(); j++) { std::string av_opt = fit_option_section.at(j); if (!found_option and opt.find(av_opt) != std::string::npos) { found_option = true; } else if (found_option and opt.find(av_opt) != std::string::npos) { ERR(FTL) << "ERROR: Conflicting fit options provided: " << opt << std::endl << "Conflicting group = " << fit_option_section.at(i) << std::endl << "You should only supply one of these options in card file." << std::endl; throw; } } } // Check all options are allowed std::vector fit_options_input = GeneralUtils::ParseToStr(opt, "/"); for (UInt_t i = 0; i < fit_options_input.size(); i++) { if (fAllowedTypes.find(fit_options_input.at(i)) == std::string::npos) { ERR(FTL) << "ERROR: Fit Option '" << fit_options_input.at(i) << "' Provided is not allowed for this measurement." << std::endl; ERR(FTL) << "Fit Options should be provided as a '/' seperated list " "(e.g. FREE/DIAG/NORM)" << std::endl; ERR(FTL) << "Available options for " << fName << " are '" << fAllowedTypes << "'" << std::endl; throw; } } // Set TYPE fFitType = opt; // FIX,SHAPE,FREE if (opt.find("FIX") != std::string::npos) { fIsFree = fIsShape = false; fIsFix = true; } else if (opt.find("SHAPE") != std::string::npos) { fIsFree = fIsFix = false; fIsShape = true; } else if (opt.find("FREE") != std::string::npos) { fIsFix = fIsShape = false; fIsFree = true; } // DIAG,FULL (or default to full) if (opt.find("DIAG") != std::string::npos) { fIsDiag = true; fIsFull = false; } else if (opt.find("FULL") != std::string::npos) { fIsDiag = false; fIsFull = true; } // CHI2/LL (OTHERS?) if (opt.find("LOG") != std::string::npos) { fIsChi2 = false; ERR(FTL) << "No other LIKELIHOODS properly supported!" << std::endl; ERR(FTL) << "Try to use a chi2!" << std::endl; throw; } else { fIsChi2 = true; } // EXTRAS if (opt.find("RAW") != std::string::npos) fIsRawEvents = true; if (opt.find("NOWIDTH") != std::string::npos) fIsNoWidth = true; if (opt.find("DIF") != std::string::npos) fIsDifXSec = true; if (opt.find("ENU1D") != std::string::npos) fIsEnu1D = true; if (opt.find("NORM") != std::string::npos) fAddNormPen = true; if (opt.find("MASK") != std::string::npos) fIsMask = true; return; }; //******************************************************************** void Measurement1D::SetSmearingMatrix(std::string smearfile, int truedim, int recodim) { //******************************************************************** // The smearing matrix describes the migration from true bins (rows) to reco // bins (columns) // Counter over the true bins! int row = 0; std::string line; - std::ifstream smear(smearfile.c_str(), ifstream::in); + std::ifstream smear(smearfile.c_str(), std::ifstream::in); // Note that the smearing matrix may be rectangular. fSmearMatrix = new TMatrixD(truedim, recodim); if (smear.is_open()) LOG(SAM) << "Reading smearing matrix from file: " << smearfile << std::endl; else ERR(FTL) << "Smearing matrix provided is incorrect: " << smearfile << std::endl; while (std::getline(smear >> std::ws, line, '\n')) { int column = 0; std::vector entries = GeneralUtils::ParseToDbl(line, " "); for (std::vector::iterator iter = entries.begin(); iter != entries.end(); iter++) { (*fSmearMatrix)(row, column) = (*iter) / 100.; // Convert to fraction from // percentage (this may not be // general enough) column++; } row++; } return; } //******************************************************************** void Measurement1D::ApplySmearingMatrix() { //******************************************************************** if (!fSmearMatrix) { ERR(WRN) << fName << ": attempted to apply smearing matrix, but none was set" << std::endl; return; } TH1D* unsmeared = (TH1D*)fMCHist->Clone(); TH1D* smeared = (TH1D*)fMCHist->Clone(); smeared->Reset(); // Loop over reconstructed bins // true = row; reco = column for (int rbin = 0; rbin < fSmearMatrix->GetNcols(); ++rbin) { // Sum up the constributions from all true bins double rBinVal = 0; // Loop over true bins for (int tbin = 0; tbin < fSmearMatrix->GetNrows(); ++tbin) { rBinVal += (*fSmearMatrix)(tbin, rbin) * unsmeared->GetBinContent(tbin + 1); } smeared->SetBinContent(rbin + 1, rBinVal); } fMCHist = (TH1D*)smeared->Clone(); return; } /* Reconfigure LOOP */ //******************************************************************** void Measurement1D::ResetAll() { //******************************************************************** fMCHist->Reset(); fMCFine->Reset(); fMCStat->Reset(); return; }; //******************************************************************** void Measurement1D::FillHistograms() { //******************************************************************** if (Signal) { fMCHist->Fill(fXVar, Weight); fMCFine->Fill(fXVar, Weight); fMCStat->Fill(fXVar, 1.0); if (fMCHist_Modes) fMCHist_Modes->Fill(Mode, fXVar, Weight); } return; }; //******************************************************************** void Measurement1D::ScaleEvents() { //******************************************************************** // Fill MCWeighted; // for (int i = 0; i < fMCHist->GetNbinsX(); i++) { // fMCWeighted->SetBinContent(i + 1, fMCHist->GetBinContent(i + 1)); // fMCWeighted->SetBinError(i + 1, fMCHist->GetBinError(i + 1)); // } // Setup Stat ratios for MC and MC Fine double* statratio = new double[fMCHist->GetNbinsX()]; for (int i = 0; i < fMCHist->GetNbinsX(); i++) { if (fMCHist->GetBinContent(i + 1) != 0) { statratio[i] = fMCHist->GetBinError(i + 1) / fMCHist->GetBinContent(i + 1); } else { statratio[i] = 0.0; } } double* statratiofine = new double[fMCFine->GetNbinsX()]; for (int i = 0; i < fMCFine->GetNbinsX(); i++) { if (fMCFine->GetBinContent(i + 1) != 0) { statratiofine[i] = fMCFine->GetBinError(i + 1) / fMCFine->GetBinContent(i + 1); } else { statratiofine[i] = 0.0; } } // Scaling for raw event rates if (fIsRawEvents) { double datamcratio = fDataHist->Integral() / fMCHist->Integral(); fMCHist->Scale(datamcratio); fMCFine->Scale(datamcratio); if (fMCHist_Modes) fMCHist_Modes->Scale(datamcratio); // Scaling for XSec as function of Enu } else if (fIsEnu1D) { PlotUtils::FluxUnfoldedScaling(fMCHist, GetFluxHistogram(), GetEventHistogram(), fScaleFactor, fNEvents); PlotUtils::FluxUnfoldedScaling(fMCFine, GetFluxHistogram(), GetEventHistogram(), fScaleFactor, fNEvents); // if (fMCHist_Modes) { // PlotUtils::FluxUnfoldedScaling(fMCHist_Modes, GetFluxHistogram(), // GetEventHistogram(), fScaleFactor, // fNEvents); // } } else if (fIsNoWidth) { fMCHist->Scale(fScaleFactor); fMCFine->Scale(fScaleFactor); if (fMCHist_Modes) fMCHist_Modes->Scale(fScaleFactor); // Any other differential scaling } else { fMCHist->Scale(fScaleFactor, "width"); fMCFine->Scale(fScaleFactor, "width"); if (fMCHist_Modes) fMCHist_Modes->Scale(fScaleFactor, "width"); } // Proper error scaling - ROOT Freaks out with xsec weights sometimes for (int i = 0; i < fMCStat->GetNbinsX(); i++) { fMCHist->SetBinError(i + 1, fMCHist->GetBinContent(i + 1) * statratio[i]); } for (int i = 0; i < fMCFine->GetNbinsX(); i++) { fMCFine->SetBinError(i + 1, fMCFine->GetBinContent(i + 1) * statratiofine[i]); } // Clean up delete statratio; delete statratiofine; return; }; //******************************************************************** void Measurement1D::ApplyNormScale(double norm) { //******************************************************************** fCurrentNorm = norm; fMCHist->Scale(1.0 / norm); fMCFine->Scale(1.0 / norm); return; }; /* Statistic Functions - Outsources to StatUtils */ //******************************************************************** int Measurement1D::GetNDOF() { //******************************************************************** int ndof = fDataHist->GetNbinsX(); if (fMaskHist and fIsMask) ndof -= fMaskHist->Integral(); return ndof; } //******************************************************************** double Measurement1D::GetLikelihood() { //******************************************************************** // If this is for a ratio, there is no data histogram to compare to! if (fNoData || !fDataHist) return 0.; // Apply Masking to MC if Required. if (fIsMask and fMaskHist) { PlotUtils::MaskBins(fMCHist, fMaskHist); } // Sort Shape Scaling double scaleF = 0.0; // TODO Include !fIsRawEvents if (fIsShape) { if (fMCHist->Integral(1, fMCHist->GetNbinsX(), "width")) { scaleF = fDataHist->Integral(1, fDataHist->GetNbinsX(), "width") / fMCHist->Integral(1, fMCHist->GetNbinsX(), "width"); fMCHist->Scale(scaleF); fMCFine->Scale(scaleF); } } // Likelihood Calculation double stat = 0.; if (fIsChi2) { if (fIsRawEvents) { stat = StatUtils::GetChi2FromEventRate(fDataHist, fMCHist, fMaskHist); } else if (fIsDiag) { stat = StatUtils::GetChi2FromDiag(fDataHist, fMCHist, fMaskHist); } else if (!fIsDiag and !fIsRawEvents) { stat = StatUtils::GetChi2FromCov(fDataHist, fMCHist, covar, fMaskHist); } } // Sort Penalty Terms if (fAddNormPen) { double penalty = (1. - fCurrentNorm) * (1. - fCurrentNorm) / (fNormError * fNormError); stat += penalty; } // Return to normal scaling if (fIsShape) { // and !FitPar::Config().GetParB("saveshapescaling")) { fMCHist->Scale(1. / scaleF); fMCFine->Scale(1. / scaleF); } fLikelihood = stat; return stat; } /* Fake Data Functions */ //******************************************************************** void Measurement1D::SetFakeDataValues(std::string fakeOption) { //******************************************************************** // Setup original/datatrue TH1D* tempdata = (TH1D*) fDataHist->Clone(); if (!fIsFakeData) { fIsFakeData = true; // Make a copy of the original data histogram. if (!fDataOrig) fDataOrig = (TH1D*)fDataHist->Clone((fName + "_data_original").c_str()); } else { ResetFakeData(); } // Setup Inputs fFakeDataInput = fakeOption; LOG(SAM) << "Setting fake data from : " << fFakeDataInput << std::endl; // From MC if (fFakeDataInput.compare("MC") == 0) { fDataHist = (TH1D*)fMCHist->Clone((fName + "_MC").c_str()); // Fake File } else { if (!fFakeDataFile) fFakeDataFile = new TFile(fFakeDataInput.c_str(), "READ"); fDataHist = (TH1D*)fFakeDataFile->Get((fName + "_MC").c_str()); } // Setup Data Hist fDataHist->SetNameTitle((fName + "_FAKE").c_str(), (fName + fPlotTitles).c_str()); // Replace Data True if (fDataTrue) delete fDataTrue; fDataTrue = (TH1D*)fDataHist->Clone(); fDataTrue->SetNameTitle((fName + "_FAKE_TRUE").c_str(), (fName + fPlotTitles).c_str()); // Make a new covariance for fake data hist. int nbins = fDataHist->GetNbinsX(); double alpha_i = 0.0; double alpha_j = 0.0; for (int i = 0; i < nbins; i++) { for (int j = 0; j < nbins; j++) { alpha_i = fDataHist->GetBinContent(i + 1) / tempdata->GetBinContent(i + 1); alpha_j = fDataHist->GetBinContent(j + 1) / tempdata->GetBinContent(j + 1); (*fFullCovar)(i, j) = alpha_i * alpha_j * (*fFullCovar)(i, j); } } // Setup Covariances if (covar) delete covar; covar = StatUtils::GetInvert(fFullCovar); if (fDecomp) delete fDecomp; fDecomp = StatUtils::GetInvert(fFullCovar); delete tempdata; return; }; //******************************************************************** void Measurement1D::ResetFakeData() { //******************************************************************** if (fIsFakeData) { if (fDataHist) delete fDataHist; fDataHist = (TH1D*)fDataTrue->Clone((fSettings.GetName() + "_FKDAT").c_str()); } } //******************************************************************** void Measurement1D::ResetData() { //******************************************************************** if (fIsFakeData) { if (fDataHist) delete fDataHist; fDataHist = (TH1D*)fDataOrig->Clone((fSettings.GetName() + "_data").c_str()); } fIsFakeData = false; } //******************************************************************** void Measurement1D::ThrowCovariance() { //******************************************************************** // Take a fDecomposition and use it to throw the current dataset. // Requires fDataTrue also be set incase used repeatedly. if (!fDataTrue) fDataTrue = (TH1D*) fDataHist->Clone(); if (fDataHist) delete fDataHist; fDataHist = StatUtils::ThrowHistogram(fDataTrue, fFullCovar); return; }; //******************************************************************** void Measurement1D::ThrowDataToy(){ //******************************************************************** if (!fDataTrue) fDataTrue = (TH1D*) fDataHist->Clone(); if (fMCHist) delete fMCHist; fMCHist = StatUtils::ThrowHistogram(fDataTrue, fFullCovar); } /* Access Functions */ //******************************************************************** TH1D* Measurement1D::GetMCHistogram() { //******************************************************************** if (!fMCHist) return fMCHist; std::ostringstream chi2; chi2 << std::setprecision(5) << this->GetLikelihood(); int linecolor = kRed; int linestyle = 1; int linewidth = 1; int fillcolor = 0; int fillstyle = 1001; // if (fSettings.Has("linecolor")) linecolor = fSettings.GetI("linecolor"); // if (fSettings.Has("linestyle")) linestyle = fSettings.GetI("linestyle"); // if (fSettings.Has("linewidth")) linewidth = fSettings.GetI("linewidth"); // if (fSettings.Has("fillcolor")) fillcolor = fSettings.GetI("fillcolor"); // if (fSettings.Has("fillstyle")) fillstyle = fSettings.GetI("fillstyle"); fMCHist->SetTitle(chi2.str().c_str()); fMCHist->SetLineColor(linecolor); fMCHist->SetLineStyle(linestyle); fMCHist->SetLineWidth(linewidth); fMCHist->SetFillColor(fillcolor); fMCHist->SetFillStyle(fillstyle); return fMCHist; }; //******************************************************************** TH1D* Measurement1D::GetDataHistogram() { //******************************************************************** if (!fDataHist) return fDataHist; int datacolor = kBlack; int datastyle = 1; int datawidth = 1; // if (fSettings.Has("datacolor")) datacolor = fSettings.GetI("datacolor"); // if (fSettings.Has("datastyle")) datastyle = fSettings.GetI("datastyle"); // if (fSettings.Has("datawidth")) datawidth = fSettings.GetI("datawidth"); fDataHist->SetLineColor(datacolor); fDataHist->SetLineWidth(datawidth); fDataHist->SetMarkerStyle(datastyle); return fDataHist; }; /* Write Functions */ // Save all the histograms at once //******************************************************************** void Measurement1D::Write(std::string drawOpt) { //******************************************************************** // Get Draw Options drawOpt = FitPar::Config().GetParS("drawopts"); // Write Settigns if (drawOpt.find("SETTINGS") != std::string::npos){ fSettings.Set("#chi^{2}",fLikelihood); fSettings.Set("NDOF", this->GetNDOF() ); fSettings.Set("#chi^{2}/NDOF", fLikelihood / this->GetNDOF() ); fSettings.Write(); } // Write Data/MC GetDataList().at(0)->Write(); GetMCList().at(0)->Write(); if((fEvtRateScaleFactor != 0xdeadbeef) && GetMCList().at(0)){ TH1D * PredictedEvtRate = static_cast(GetMCList().at(0)->Clone()); PredictedEvtRate->Scale(fEvtRateScaleFactor); PredictedEvtRate->GetYaxis()->SetTitle("Predicted event rate"); PredictedEvtRate->Write(); } // Write Fine Histogram if (drawOpt.find("FINE") != std::string::npos) GetFineList().at(0)->Write(); // Write Weighted Histogram if (drawOpt.find("WEIGHTS") != std::string::npos && fMCWeighted) fMCWeighted->Write(); // Save Flux/Evt if no event manager if (!FitPar::Config().GetParB("EventManager")) { if (drawOpt.find("FLUX") != std::string::npos && GetFluxHistogram()) GetFluxHistogram()->Write(); if (drawOpt.find("EVT") != std::string::npos && GetEventHistogram()) GetEventHistogram()->Write(); if (drawOpt.find("XSEC") != std::string::npos && GetEventHistogram()) GetXSecHistogram()->Write(); } // Write Mask if (fIsMask && (drawOpt.find("MASK") != std::string::npos)) { fMaskHist->Write(); } // Write Covariances if (drawOpt.find("COV") != std::string::npos && fFullCovar) { PlotUtils::GetFullCovarPlot(fFullCovar, fSettings.GetName()); } if (drawOpt.find("INVCOV") != std::string::npos && covar) { PlotUtils::GetInvCovarPlot(covar, fSettings.GetName()); } if (drawOpt.find("DECOMP") != std::string::npos && fDecomp) { PlotUtils::GetDecompCovarPlot(fDecomp, fSettings.GetName()); } // // Likelihood residual plots // if (drawOpt.find("RESIDUAL") != std::string::npos) { // WriteResidualPlots(); // } // Ratio and Shape Plots if (drawOpt.find("RATIO") != std::string::npos) { WriteRatioPlot(); } if (drawOpt.find("SHAPE") != std::string::npos) { WriteShapePlot(); if (drawOpt.find("RATIO") != std::string::npos) WriteShapeRatioPlot(); } // // RATIO // if (drawOpt.find("CANVMC") != std::string::npos) { // TCanvas* c1 = WriteMCCanvas(fDataHist, fMCHist); // c1->Write(); // delete c1; // } // // PDG // if (drawOpt.find("CANVPDG") != std::string::npos && fMCHist_Modes) { // TCanvas* c2 = WritePDGCanvas(fDataHist, fMCHist, fMCHist_Modes); // c2->Write(); // delete c2; // } // Write Extra Histograms AutoWriteExtraTH1(); WriteExtraHistograms(); // Returning LOG(SAM) << "Written Histograms: " << fName << std::endl; return; } //******************************************************************** void Measurement1D::WriteRatioPlot() { //******************************************************************** // Setup mc data ratios TH1D* dataRatio = (TH1D*)fDataHist->Clone((fName + "_data_RATIO").c_str()); TH1D* mcRatio = (TH1D*)fMCHist->Clone((fName + "_MC_RATIO").c_str()); // Extra MC Data Ratios for (int i = 0; i < mcRatio->GetNbinsX(); i++) { dataRatio->SetBinContent(i + 1, fDataHist->GetBinContent(i + 1) / fMCHist->GetBinContent(i + 1)); dataRatio->SetBinError(i + 1, fDataHist->GetBinError(i + 1) / fMCHist->GetBinContent(i + 1)); mcRatio->SetBinContent(i + 1, fMCHist->GetBinContent(i + 1) / fMCHist->GetBinContent(i + 1)); mcRatio->SetBinError(i + 1, fMCHist->GetBinError(i + 1) / fMCHist->GetBinContent(i + 1)); } // Write ratios mcRatio->Write(); dataRatio->Write(); delete mcRatio; delete dataRatio; } //******************************************************************** void Measurement1D::WriteShapePlot() { //******************************************************************** TH1D* mcShape = (TH1D*)fMCHist->Clone((fName + "_MC_SHAPE").c_str()); TH1D* dataShape = (TH1D*)fDataHist->Clone((fName + "_data_SHAPE").c_str()); if (fShapeCovar) StatUtils::SetDataErrorFromCov(dataShape, fShapeCovar, 1E-38); double shapeScale = 1.0; if (fIsRawEvents) { shapeScale = fDataHist->Integral() / fMCHist->Integral(); } else { shapeScale = fDataHist->Integral("width") / fMCHist->Integral("width"); } mcShape->Scale(shapeScale); std::stringstream ss; ss << shapeScale; mcShape->SetTitle(ss.str().c_str()); mcShape->SetLineWidth(3); mcShape->SetLineStyle(7); mcShape->Write(); dataShape->Write(); delete mcShape; } //******************************************************************** void Measurement1D::WriteShapeRatioPlot() { //******************************************************************** // Get a mcshape histogram TH1D* mcShape = (TH1D*)fMCHist->Clone((fName + "_MC_SHAPE").c_str()); double shapeScale = 1.0; if (fIsRawEvents) { shapeScale = fDataHist->Integral() / fMCHist->Integral(); } else { shapeScale = fDataHist->Integral("width") / fMCHist->Integral("width"); } mcShape->Scale(shapeScale); // Create shape ratio histograms TH1D* mcShapeRatio = (TH1D*)mcShape->Clone((fName + "_MC_SHAPE_RATIO").c_str()); TH1D* dataShapeRatio = (TH1D*)fDataHist->Clone((fName + "_data_SHAPE_RATIO").c_str()); // Divide the histograms mcShapeRatio->Divide(mcShape); dataShapeRatio->Divide(mcShape); // Colour the shape ratio plots mcShapeRatio->SetLineWidth(3); mcShapeRatio->SetLineStyle(7); mcShapeRatio->Write(); dataShapeRatio->Write(); delete mcShapeRatio; delete dataShapeRatio; } //// CRAP TO BE REMOVED //******************************************************************** void Measurement1D::SetupMeasurement(std::string inputfile, std::string type, FitWeight * rw, std::string fkdt) { //******************************************************************** nuiskey samplekey = Config::CreateKey("sample"); samplekey.Set("name", fName); samplekey.Set("type",type); samplekey.Set("input",inputfile); fSettings = LoadSampleSettings(samplekey); // Reset everything to NULL // Init(); // Check if name contains Evt, indicating that it is a raw number of events // measurements and should thus be treated as once fIsRawEvents = false; if ((fName.find("Evt") != std::string::npos) && fIsRawEvents == false) { fIsRawEvents = true; LOG(SAM) << "Found event rate measurement but fIsRawEvents == false!" << std::endl; LOG(SAM) << "Overriding this and setting fIsRawEvents == true!" << std::endl; } fIsEnu1D = false; if (fName.find("XSec_1DEnu") != std::string::npos) { fIsEnu1D = true; LOG(SAM) << "::" << fName << "::" << std::endl; LOG(SAM) << "Found XSec Enu measurement, applying flux integrated scaling, " "not flux averaged!" << std::endl; } if (fIsEnu1D && fIsRawEvents) { LOG(SAM) << "Found 1D Enu XSec distribution AND fIsRawEvents, is this " "really correct?!" << std::endl; LOG(SAM) << "Check experiment constructor for " << fName << " and correct this!" << std::endl; LOG(SAM) << "I live in " << __FILE__ << ":" << __LINE__ << std::endl; exit(-1); } fRW = rw; if (!fInput and !fIsJoint) SetupInputs(inputfile); // Set Default Options SetFitOptions(fDefaultTypes); // Set Passed Options SetFitOptions(type); // Still adding support for flat flux inputs // // Set Enu Flux Scaling // if (isFlatFluxFolding) this->Input()->ApplyFluxFolding( // this->defaultFluxHist ); // FinaliseMeasurement(); } //******************************************************************** void Measurement1D::SetupDefaultHist() { //******************************************************************** // Setup fMCHist fMCHist = (TH1D*)fDataHist->Clone(); fMCHist->SetNameTitle((fName + "_MC").c_str(), (fName + "_MC" + fPlotTitles).c_str()); // Setup fMCFine Int_t nBins = fMCHist->GetNbinsX(); fMCFine = new TH1D( (fName + "_MC_FINE").c_str(), (fName + "_MC_FINE" + fPlotTitles).c_str(), nBins * 6, fMCHist->GetBinLowEdge(1), fMCHist->GetBinLowEdge(nBins + 1)); fMCStat = (TH1D*)fMCHist->Clone(); fMCStat->Reset(); fMCHist->Reset(); fMCFine->Reset(); // Setup the NEUT Mode Array PlotUtils::CreateNeutModeArray((TH1D*)fMCHist, (TH1**)fMCHist_PDG); PlotUtils::ResetNeutModeArray((TH1**)fMCHist_PDG); // Setup bin masks using sample name if (fIsMask) { std::string maskloc = FitPar::Config().GetParDIR(fName + ".mask"); if (maskloc.empty()) { maskloc = FitPar::GetDataBase() + "/masks/" + fName + ".mask"; } SetBinMask(maskloc); } fMCHist_Modes = new TrueModeStack( (fName + "_MODES").c_str(), ("True Channels"), fMCHist); SetAutoProcessTH1(fMCHist_Modes, kCMD_Reset, kCMD_Norm, kCMD_Write); return; } //******************************************************************** void Measurement1D::SetDataValues(std::string dataFile) { //******************************************************************** // Override this function if the input file isn't in a suitable format LOG(SAM) << "Reading data from: " << dataFile.c_str() << std::endl; fDataHist = PlotUtils::GetTH1DFromFile(dataFile, (fName + "_data"), fPlotTitles); fDataTrue = (TH1D*)fDataHist->Clone(); // Number of data points is number of bins fNDataPointsX = fDataHist->GetXaxis()->GetNbins(); return; }; //******************************************************************** void Measurement1D::SetDataFromDatabase(std::string inhistfile, std::string histname) { //******************************************************************** LOG(SAM) << "Filling histogram from " << inhistfile << "->" << histname << std::endl; fDataHist = PlotUtils::GetTH1DFromRootFile( (GeneralUtils::GetTopLevelDir() + "/data/" + inhistfile), histname); fDataHist->SetNameTitle((fName + "_data").c_str(), (fName + "_data").c_str()); return; }; //******************************************************************** void Measurement1D::SetDataFromFile(std::string inhistfile, std::string histname) { //******************************************************************** LOG(SAM) << "Filling histogram from " << inhistfile << "->" << histname << std::endl; fDataHist = PlotUtils::GetTH1DFromRootFile((inhistfile), histname); fDataHist->SetNameTitle((fName + "_data").c_str(), (fName + "_data").c_str()); return; }; //******************************************************************** void Measurement1D::SetCovarMatrix(std::string covarFile) { //******************************************************************** // Covariance function, only really used when reading in the MB Covariances. TFile* tempFile = new TFile(covarFile.c_str(), "READ"); TH2D* covarPlot = new TH2D(); // TH2D* decmpPlot = new TH2D(); TH2D* covarInvPlot = new TH2D(); TH2D* fFullCovarPlot = new TH2D(); std::string covName = ""; std::string covOption = FitPar::Config().GetParS("thrown_covariance"); if (fIsShape || fIsFree) covName = "shp_"; if (fIsDiag) covName += "diag"; else covName += "full"; covarPlot = (TH2D*)tempFile->Get((covName + "cov").c_str()); covarInvPlot = (TH2D*)tempFile->Get((covName + "covinv").c_str()); if (!covOption.compare("SUB")) fFullCovarPlot = (TH2D*)tempFile->Get((covName + "cov").c_str()); else if (!covOption.compare("FULL")) fFullCovarPlot = (TH2D*)tempFile->Get("fullcov"); else ERR(WRN) << "Incorrect thrown_covariance option in parameters." << std::endl; int dim = int(fDataHist->GetNbinsX()); //-this->masked->Integral()); int covdim = int(fDataHist->GetNbinsX()); this->covar = new TMatrixDSym(dim); fFullCovar = new TMatrixDSym(dim); fDecomp = new TMatrixDSym(dim); int row, column = 0; row = 0; column = 0; for (Int_t i = 0; i < covdim; i++) { // if (this->masked->GetBinContent(i+1) > 0) continue; for (Int_t j = 0; j < covdim; j++) { // if (this->masked->GetBinContent(j+1) > 0) continue; (*this->covar)(row, column) = covarPlot->GetBinContent(i + 1, j + 1); (*fFullCovar)(row, column) = fFullCovarPlot->GetBinContent(i + 1, j + 1); column++; } column = 0; row++; } // Set bin errors on data if (!fIsDiag) { StatUtils::SetDataErrorFromCov(fDataHist, fFullCovar); } // Get Deteriminant and inverse matrix // fCovDet = this->covar->Determinant(); TDecompSVD LU = TDecompSVD(*this->covar); this->covar = new TMatrixDSym(dim, LU.Invert().GetMatrixArray(), ""); return; }; //******************************************************************** // Sets the covariance matrix from a provided file in a text format // scale is a multiplicative pre-factor to apply in the case where the // covariance is given in some unit (e.g. 1E-38) void Measurement1D::SetCovarMatrixFromText(std::string covarFile, int dim, double scale) { //******************************************************************** // Make a counter to track the line number int row = 0; std::string line; - std::ifstream covarread(covarFile.c_str(), ifstream::in); + std::ifstream covarread(covarFile.c_str(), std::ifstream::in); this->covar = new TMatrixDSym(dim); fFullCovar = new TMatrixDSym(dim); if (covarread.is_open()) LOG(SAM) << "Reading covariance matrix from file: " << covarFile << std::endl; else ERR(FTL) << "Covariance matrix provided is incorrect: " << covarFile << std::endl; // Loop over the lines in the file while (std::getline(covarread >> std::ws, line, '\n')) { int column = 0; // Loop over entries and insert them into matrix std::vector entries = GeneralUtils::ParseToDbl(line, " "); if (entries.size() <= 1) { ERR(WRN) << "SetCovarMatrixFromText -> Covariance matrix only has <= 1 " "entries on this line: " << row << std::endl; } for (std::vector::iterator iter = entries.begin(); iter != entries.end(); iter++) { (*covar)(row, column) = *iter; (*fFullCovar)(row, column) = *iter; column++; } row++; } covarread.close(); // Scale the actualy covariance matrix by some multiplicative factor (*fFullCovar) *= scale; // Robust matrix inversion method TDecompSVD LU = TDecompSVD(*this->covar); // THIS IS ACTUALLY THE INVERSE COVARIANCE MATRIXA AAAAARGH delete this->covar; this->covar = new TMatrixDSym(dim, LU.Invert().GetMatrixArray(), ""); // Now need to multiply by the scaling factor // If the covariance (*this->covar) *= 1. / (scale); return; }; //******************************************************************** void Measurement1D::SetCovarMatrixFromCorrText(std::string corrFile, int dim) { //******************************************************************** // Make a counter to track the line number int row = 0; std::string line; - std::ifstream corr(corrFile.c_str(), ifstream::in); + std::ifstream corr(corrFile.c_str(), std::ifstream::in); this->covar = new TMatrixDSym(dim); this->fFullCovar = new TMatrixDSym(dim); if (corr.is_open()) LOG(SAM) << "Reading and converting correlation matrix from file: " << corrFile << std::endl; else { ERR(FTL) << "Correlation matrix provided is incorrect: " << corrFile << std::endl; exit(-1); } while (std::getline(corr >> std::ws, line, '\n')) { int column = 0; // Loop over entries and insert them into matrix // Multiply by the errors to get the covariance, rather than the correlation // matrix std::vector entries = GeneralUtils::ParseToDbl(line, " "); for (std::vector::iterator iter = entries.begin(); iter != entries.end(); iter++) { double val = (*iter) * this->fDataHist->GetBinError(row + 1) * 1E38 * this->fDataHist->GetBinError(column + 1) * 1E38; if (val == 0) { ERR(FTL) << "Found a zero value in the covariance matrix, assuming " "this is an error!" << std::endl; exit(-1); } (*this->covar)(row, column) = val; (*this->fFullCovar)(row, column) = val; column++; } row++; } // Robust matrix inversion method TDecompSVD LU = TDecompSVD(*this->covar); delete this->covar; this->covar = new TMatrixDSym(dim, LU.Invert().GetMatrixArray(), ""); return; }; //******************************************************************** // FullUnits refers to if we have "real" unscaled units in the covariance matrix, e.g. 1E-76. // If this is the case we need to scale it so that the chi2 contribution is correct // NUISANCE internally assumes the covariance matrix has units of 1E76 void Measurement1D::SetCovarFromDataFile(std::string covarFile, std::string covName, bool FullUnits) { //******************************************************************** LOG(SAM) << "Getting covariance from " << covarFile << "->" << covName << std::endl; TFile* tempFile = new TFile(covarFile.c_str(), "READ"); TH2D* covPlot = (TH2D*)tempFile->Get(covName.c_str()); covPlot->SetDirectory(0); // Scale the covariance matrix if it comes in normal units if (FullUnits) { covPlot->Scale(1.E76); } int dim = covPlot->GetNbinsX(); fFullCovar = new TMatrixDSym(dim); for (int i = 0; i < dim; i++) { for (int j = 0; j < dim; j++) { (*fFullCovar)(i, j) = covPlot->GetBinContent(i + 1, j + 1); } } this->covar = (TMatrixDSym*)fFullCovar->Clone(); fDecomp = (TMatrixDSym*)fFullCovar->Clone(); TDecompSVD LU = TDecompSVD(*this->covar); this->covar = new TMatrixDSym(dim, LU.Invert().GetMatrixArray(), ""); TDecompChol LUChol = TDecompChol(*fDecomp); LUChol.Decompose(); fDecomp = new TMatrixDSym(dim, LU.GetU().GetMatrixArray(), ""); return; }; // //******************************************************************** // void Measurement1D::SetBinMask(std::string maskFile) { // //******************************************************************** // // Create a mask histogram. // int nbins = fDataHist->GetNbinsX(); // fMaskHist = // new TH1I((fName + "_fMaskHist").c_str(), // (fName + "_fMaskHist; Bin; Mask?").c_str(), nbins, 0, nbins); // std::string line; -// std::ifstream mask(maskFile.c_str(), ifstream::in); +// std::ifstream mask(maskFile.c_str(), std::ifstream::in); // if (mask.is_open()) // LOG(SAM) << "Reading bin mask from file: " << maskFile << std::endl; // else // LOG(FTL) << " Cannot find mask file." << std::endl; // while (std::getline(mask >> std::ws, line, '\n')) { // std::vector entries = GeneralUtils::ParseToInt(line, " "); // // Skip lines with poorly formatted lines // if (entries.size() < 2) { // LOG(WRN) << "Measurement1D::SetBinMask(), couldn't parse line: " << line // << std::endl; // continue; // } // // The first index should be the bin number, the second should be the mask // // value. // fMaskHist->SetBinContent(entries[0], entries[1]); // } // // Set masked data bins to zero // PlotUtils::MaskBins(fDataHist, fMaskHist); // return; // } // //******************************************************************** // void Measurement1D::GetBinContents(std::vector& cont, // std::vector& err) { // //******************************************************************** // // Return a vector of the main bin contents // for (int i = 0; i < fMCHist->GetNbinsX(); i++) { // cont.push_back(fMCHist->GetBinContent(i + 1)); // err.push_back(fMCHist->GetBinError(i + 1)); // } // return; // }; /* XSec Functions */ // //******************************************************************** // void Measurement1D::SetFluxHistogram(std::string fluxFile, int minE, int // maxE, // double fluxNorm) { // //******************************************************************** // // Note this expects the flux bins to be given in terms of MeV // LOG(SAM) << "Reading flux from file: " << fluxFile << std::endl; // TGraph f(fluxFile.c_str(), "%lg %lg"); // fFluxHist = // new TH1D((fName + "_flux").c_str(), (fName + "; E_{#nu} (GeV)").c_str(), // f.GetN() - 1, minE, maxE); // Double_t* yVal = f.GetY(); // for (int i = 0; i < fFluxHist->GetNbinsX(); ++i) // fFluxHist->SetBinContent(i + 1, yVal[i] * fluxNorm); // }; // //******************************************************************** // double Measurement1D::TotalIntegratedFlux(std::string intOpt, double low, // double high) { // //******************************************************************** // if (fInput->GetType() == kGiBUU) { // return 1.0; // } // // The default case of low = -9999.9 and high = -9999.9 // if (low == -9999.9) low = this->EnuMin; // if (high == -9999.9) high = this->EnuMax; // int minBin = fFluxHist->GetXaxis()->FindBin(low); // int maxBin = fFluxHist->GetXaxis()->FindBin(high); // // Get integral over custom range // double integral = fFluxHist->Integral(minBin, maxBin + 1, intOpt.c_str()); // return integral; // }; diff --git a/src/FitBase/Measurement2D.cxx b/src/FitBase/Measurement2D.cxx index 87f361f..77424bc 100644 --- a/src/FitBase/Measurement2D.cxx +++ b/src/FitBase/Measurement2D.cxx @@ -1,1961 +1,1961 @@ // Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret /******************************************************************************* * This file is part of NUISANCE. * * NUISANCE is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * NUISANCE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NUISANCE. If not, see . *******************************************************************************/ #include "Measurement2D.h" #include "TDecompChol.h" //******************************************************************** Measurement2D::Measurement2D(void) { //******************************************************************** covar = NULL; fDecomp = NULL; fFullCovar = NULL; fMCHist = NULL; fMCFine = NULL; fDataHist = NULL; fMCHist_X = NULL; fMCHist_Y = NULL; fDataHist_X = NULL; fDataHist_Y = NULL; fMaskHist = NULL; fMapHist = NULL; fDataOrig = NULL; fDataTrue = NULL; fMCWeighted = NULL; fDefaultTypes = "FIX/FULL/CHI2"; fAllowedTypes = "FIX,FREE,SHAPE/FULL,DIAG/CHI2/NORM/ENUCORR/Q2CORR/ENU1D/FITPROJX/" "FITPROJY"; fIsFix = false; fIsShape = false; fIsFree = false; fIsDiag = false; fIsFull = false; fAddNormPen = false; fIsMask = false; fIsChi2SVD = false; fIsRawEvents = false; fIsDifXSec = false; fIsEnu = false; // XSec Scalings fScaleFactor = -1.0; fCurrentNorm = 1.0; // Histograms fDataHist = NULL; fDataTrue = NULL; fMCHist = NULL; fMCFine = NULL; fMCWeighted = NULL; fMaskHist = NULL; // Covar covar = NULL; fFullCovar = NULL; fCovar = NULL; fInvert = NULL; fDecomp = NULL; // Fake Data fFakeDataInput = ""; fFakeDataFile = NULL; // Options fDefaultTypes = "FIX/FULL/CHI2"; fAllowedTypes = "FIX,FREE,SHAPE/FULL,DIAG/CHI2/NORM/ENUCORR/Q2CORR/ENU1D/MASK"; fIsFix = false; fIsShape = false; fIsFree = false; fIsDiag = false; fIsFull = false; fAddNormPen = false; fIsMask = false; fIsChi2SVD = false; fIsRawEvents = false; fIsDifXSec = false; fIsEnu1D = false; // Inputs fInput = NULL; fRW = NULL; // Extra Histograms fMCHist_Modes = NULL; } //******************************************************************** Measurement2D::~Measurement2D(void) { //******************************************************************** if (fDataHist) delete fDataHist; if (fDataTrue) delete fDataTrue; if (fMCHist) delete fMCHist; if (fMCFine) delete fMCFine; if (fMCWeighted) delete fMCWeighted; if (fMaskHist) delete fMaskHist; if (covar) delete covar; if (fFullCovar) delete fFullCovar; if (fCovar) delete fCovar; if (fInvert) delete fInvert; if (fDecomp) delete fDecomp; } //******************************************************************** void Measurement2D::FinaliseSampleSettings() { //******************************************************************** MeasurementBase::FinaliseSampleSettings(); // Setup naming + renaming fName = fSettings.GetName(); fSettings.SetS("originalname", fName); if (fSettings.Has("rename")) { fName = fSettings.GetS("rename"); fSettings.SetS("name", fName); } // Setup all other options LOG(SAM) << "Finalising Sample Settings: " << fName << std::endl; if ((fSettings.GetS("originalname").find("Evt") != std::string::npos)) { fIsRawEvents = true; LOG(SAM) << "Found event rate measurement but using poisson likelihoods." << std::endl; } if (fSettings.GetS("originalname").find("XSec_1DEnu") != std::string::npos) { fIsEnu1D = true; LOG(SAM) << "::" << fName << "::" << std::endl; LOG(SAM) << "Found XSec Enu measurement, applying flux integrated scaling, " << "not flux averaged!" << std::endl; } if (fIsEnu1D && fIsRawEvents) { LOG(SAM) << "Found 1D Enu XSec distribution AND fIsRawEvents, is this " "really correct?!" << std::endl; LOG(SAM) << "Check experiment constructor for " << fName << " and correct this!" << std::endl; LOG(SAM) << "I live in " << __FILE__ << ":" << __LINE__ << std::endl; exit(-1); } if (!fRW) fRW = FitBase::GetRW(); if (!fInput) SetupInputs(fSettings.GetS("input")); // Setup options SetFitOptions(fDefaultTypes); // defaults SetFitOptions(fSettings.GetS("type")); // user specified EnuMin = GeneralUtils::StrToDbl(fSettings.GetS("enu_min")); EnuMax = GeneralUtils::StrToDbl(fSettings.GetS("enu_max")); if (fAddNormPen) { fNormError = fSettings.GetNormError(); if (fNormError <= 0.0) { ERR(WRN) << "Norm error for class " << fName << " is 0.0!" << std::endl; ERR(WRN) << "If you want to use it please add fNormError=VAL" << std::endl; throw; } } } void Measurement2D::CreateDataHistogram(int dimx, double* binx, int dimy, double* biny) { if (fDataHist) delete fDataHist; LOG(SAM) << "Creating Data Histogram dim : " << dimx << " " << dimy << std::endl; fDataHist = new TH2D( (fSettings.GetName() + "_data").c_str(), (fSettings.GetFullTitles()).c_str(), dimx - 1, binx, dimy - 1, biny ); } void Measurement2D::SetDataFromTextFile(std::string datfile) { // fDataHist = PlotUtils::GetTH2DFromTextFile(datfile,""); } void Measurement2D::SetDataFromRootFile(std::string datfile, std::string histname) { fDataHist = PlotUtils::GetTH2DFromRootFile(datfile, histname); } void Measurement2D::SetDataValuesFromTextFile(std::string datfile, TH2D* hist) { LOG(SAM) << "Setting data values from text file" << std::endl; if (!hist) hist = fDataHist; // Read TH2D From textfile TH2D* valhist = (TH2D*) hist->Clone(); valhist->Reset(); PlotUtils::Set2DHistFromText(datfile, valhist, 1.0, true); LOG(SAM) << " -> Filling values from read hist." << std::endl; for (int i = 0; i < valhist->GetNbinsX(); i++) { for (int j = 0; j < valhist->GetNbinsY(); j++) { hist->SetBinContent(i + 1, j + 1, valhist->GetBinContent(i + 1, j + 1)); } } LOG(SAM) << " --> Done" << std::endl; } void Measurement2D::SetDataErrorsFromTextFile(std::string datfile, TH2D* hist) { LOG(SAM) << "Setting data errors from text file" << std::endl; if (!hist) hist = fDataHist; // Read TH2D From textfile TH2D* valhist = (TH2D*) hist->Clone(); valhist->Reset(); PlotUtils::Set2DHistFromText(datfile, valhist, 1.0); // Fill Errors LOG(SAM) << " -> Filling errors from read hist." << std::endl; for (int i = 0; i < valhist->GetNbinsX(); i++) { for (int j = 0; j < valhist->GetNbinsY(); j++) { hist->SetBinError(i + 1, j + 1, valhist->GetBinContent(i + 1, j + 1)); } } LOG(SAM) << " --> Done" << std::endl; } void Measurement2D::SetMapValuesFromText(std::string dataFile) { TH2D* hist = fDataHist; std::vector edgex; std::vector edgey; for (int i = 0; i <= hist->GetNbinsX(); i++) edgex.push_back(hist->GetXaxis()->GetBinLowEdge(i + 1)); for (int i = 0; i <= hist->GetNbinsY(); i++) edgey.push_back(hist->GetYaxis()->GetBinLowEdge(i + 1)); fMapHist = new TH2I((fName + "_map").c_str(), (fName + fPlotTitles).c_str(), edgex.size() - 1, &edgex[0], edgey.size() - 1, &edgey[0]); LOG(SAM) << "Reading map from: " << dataFile << std::endl; PlotUtils::Set2DHistFromText(dataFile, fMapHist, 1.0); } //******************************************************************** void Measurement2D::SetPoissonErrors() { //******************************************************************** if (!fDataHist) { ERR(FTL) << "Need a data hist to setup possion errors! " << std::endl; ERR(FTL) << "Setup Data First!" << std::endl; throw; } for (int i = 0; i < fDataHist->GetNbinsX() + 1; i++) { fDataHist->SetBinError(i + 1, sqrt(fDataHist->GetBinContent(i + 1))); } } //******************************************************************** void Measurement2D::SetCovarFromDiagonal(TH2D* data) { //******************************************************************** if (!data and fDataHist) { data = fDataHist; } if (data) { LOG(SAM) << "Setting diagonal covariance for: " << data->GetName() << std::endl; fFullCovar = StatUtils::MakeDiagonalCovarMatrix(data); covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); } else { ERR(FTL) << "No data input provided to set diagonal covar from!" << std::endl; } // if (!fIsDiag) { // ERR(FTL) << "SetCovarMatrixFromDiag called for measurement " // << "that is not set as diagonal." << std::endl; // throw; // } } //******************************************************************** void Measurement2D::SetCovarFromTextFile(std::string covfile, int dim) { //******************************************************************** if (dim == -1) { dim = this->GetNDOF(); } LOG(SAM) << "Reading covariance from text file: " << covfile << " " << dim << std::endl; fFullCovar = StatUtils::GetCovarFromTextFile(covfile, dim); covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); } //******************************************************************** void Measurement2D::SetCovarFromRootFile(std::string covfile, std::string histname) { //******************************************************************** LOG(SAM) << "Reading covariance from text file: " << covfile << ";" << histname << std::endl; fFullCovar = StatUtils::GetCovarFromRootFile(covfile, histname); covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); } //******************************************************************** void Measurement2D::SetCovarInvertFromTextFile(std::string covfile, int dim) { //******************************************************************** if (dim == -1) { dim = this->GetNDOF(); } LOG(SAM) << "Reading inverted covariance from text file: " << covfile << std::endl; covar = StatUtils::GetCovarFromTextFile(covfile, dim); fFullCovar = StatUtils::GetInvert(covar); fDecomp = StatUtils::GetDecomp(fFullCovar); } //******************************************************************** void Measurement2D::SetCovarInvertFromRootFile(std::string covfile, std::string histname) { //******************************************************************** LOG(SAM) << "Reading inverted covariance from text file: " << covfile << ";" << histname << std::endl; covar = StatUtils::GetCovarFromRootFile(covfile, histname); fFullCovar = StatUtils::GetInvert(covar); fDecomp = StatUtils::GetDecomp(fFullCovar); } //******************************************************************** void Measurement2D::SetCorrelationFromTextFile(std::string covfile, int dim) { //******************************************************************** if (dim == -1) dim = this->GetNDOF(); LOG(SAM) << "Reading data correlations from text file: " << covfile << ";" << dim << std::endl; TMatrixDSym* correlation = StatUtils::GetCovarFromTextFile(covfile, dim); if (!fDataHist) { ERR(FTL) << "Trying to set correlations from text file but there is no data to build it from. \n" << "In constructor make sure data is set before SetCorrelationFromTextFile is called. \n" << std::endl; throw; } // Fill covar from data errors and correlations fFullCovar = new TMatrixDSym(dim); for (int i = 0; i < fDataHist->GetNbinsX(); i++) { for (int j = 0; j < fDataHist->GetNbinsX(); j++) { (*fFullCovar)(i, j) = (*correlation)(i, j) * fDataHist->GetBinError(i + 1) * fDataHist->GetBinError(j + 1) * 1.E76; } } // Fill other covars. covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); delete correlation; } //******************************************************************** void Measurement2D::SetCorrelationFromRootFile(std::string covfile, std::string histname) { //******************************************************************** LOG(SAM) << "Reading data correlations from text file: " << covfile << ";" << histname << std::endl; TMatrixDSym* correlation = StatUtils::GetCovarFromRootFile(covfile, histname); if (!fDataHist) { ERR(FTL) << "Trying to set correlations from text file but there is no data to build it from. \n" << "In constructor make sure data is set before SetCorrelationFromTextFile is called. \n" << std::endl; throw; } // Fill covar from data errors and correlations fFullCovar = new TMatrixDSym(fDataHist->GetNbinsX()); for (int i = 0; i < fDataHist->GetNbinsX(); i++) { for (int j = 0; j < fDataHist->GetNbinsX(); j++) { (*fFullCovar)(i, j) = (*correlation)(i, j) * fDataHist->GetBinError(i + 1) * fDataHist->GetBinError(j + 1) * 1.E76; } } // Fill other covars. covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); delete correlation; } //******************************************************************** void Measurement2D::SetCholDecompFromTextFile(std::string covfile, int dim) { //******************************************************************** if (dim == -1) { dim = this->GetNDOF(); } LOG(SAM) << "Reading cholesky from text file: " << covfile << " " << dim << std::endl; TMatrixD* temp = StatUtils::GetMatrixFromTextFile(covfile, dim, dim); TMatrixD* trans = (TMatrixD*)temp->Clone(); trans->T(); (*trans) *= (*temp); fFullCovar = new TMatrixDSym(dim, trans->GetMatrixArray(), ""); covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); delete temp; delete trans; } //******************************************************************** void Measurement2D::SetCholDecompFromRootFile(std::string covfile, std::string histname) { //******************************************************************** LOG(SAM) << "Reading cholesky decomp from root file: " << covfile << ";" << histname << std::endl; TMatrixD* temp = StatUtils::GetMatrixFromRootFile(covfile, histname); TMatrixD* trans = (TMatrixD*)temp->Clone(); trans->T(); (*trans) *= (*temp); fFullCovar = new TMatrixDSym(temp->GetNrows(), trans->GetMatrixArray(), ""); covar = StatUtils::GetInvert(fFullCovar); fDecomp = StatUtils::GetDecomp(fFullCovar); delete temp; delete trans; } //******************************************************************** void Measurement2D::ScaleData(double scale) { //******************************************************************** fDataHist->Scale(scale); } //******************************************************************** void Measurement2D::ScaleDataErrors(double scale) { //******************************************************************** for (int i = 0; i < fDataHist->GetNbinsX(); i++) { for (int j = 0; j < fDataHist->GetNbinsY(); j++) { fDataHist->SetBinError(i + 1, j + 1, fDataHist->GetBinError(i + 1, j + 1) * scale); } } } //******************************************************************** void Measurement2D::ScaleCovar(double scale) { //******************************************************************** (*fFullCovar) *= scale; (*covar) *= 1.0 / scale; (*fDecomp) *= sqrt(scale); } //******************************************************************** void Measurement2D::SetBinMask(std::string maskfile) { //******************************************************************** if (!fIsMask) return; LOG(SAM) << "Reading bin mask from file: " << maskfile << std::endl; // Create a mask histogram with dim of data int nbinsx = fDataHist->GetNbinsX(); int nbinxy = fDataHist->GetNbinsY(); fMaskHist = new TH2I((fSettings.GetName() + "_BINMASK").c_str(), (fSettings.GetName() + "_BINMASK; Bin; Mask?").c_str(), nbinsx, 0, nbinsx, nbinxy, 0, nbinxy); std::string line; - std::ifstream mask(maskfile.c_str(), ifstream::in); + std::ifstream mask(maskfile.c_str(), std::ifstream::in); if (!mask.is_open()) { LOG(FTL) << " Cannot find mask file." << std::endl; throw; } while (std::getline(mask >> std::ws, line, '\n')) { std::vector entries = GeneralUtils::ParseToInt(line, " "); // Skip lines with poorly formatted lines if (entries.size() < 2) { LOG(WRN) << "Measurement2D::SetBinMask(), couldn't parse line: " << line << std::endl; continue; } // The first index should be the bin number, the second should be the mask // value. int val = 0; if (entries[2] > 0) val = 1; fMaskHist->SetBinContent(entries[0], entries[1], val); } // Apply masking by setting masked data bins to zero PlotUtils::MaskBins(fDataHist, fMaskHist); return; } //******************************************************************** void Measurement2D::FinaliseMeasurement() { //******************************************************************** LOG(SAM) << "Finalising Measurement: " << fName << std::endl; if (fSettings.GetB("onlymc")) { if (fDataHist) delete fDataHist; fDataHist = new TH2D("empty_data", "empty_data", 1, 0.0, 1.0,1,0.0,1.0); } // Make sure data is setup if (!fDataHist) { ERR(FTL) << "No data has been setup inside " << fName << " constructor!" << std::endl; throw; } // Make sure covariances are setup if (!fFullCovar) { fIsDiag = true; SetCovarFromDiagonal(fDataHist); } if (!covar) { covar = StatUtils::GetInvert(fFullCovar); } if (!fDecomp) { fDecomp = StatUtils::GetDecomp(fFullCovar); } // Setup fMCHist from data fMCHist = (TH2D*)fDataHist->Clone(); fMCHist->SetNameTitle((fSettings.GetName() + "_MC").c_str(), (fSettings.GetFullTitles()).c_str()); fMCHist->Reset(); // Setup fMCFine fMCFine = new TH2D("mcfine", "mcfine", fDataHist->GetNbinsX() * 6, fMCHist->GetXaxis()->GetBinLowEdge(1), fMCHist->GetXaxis()->GetBinLowEdge(fDataHist->GetNbinsX() + 1), fDataHist->GetNbinsY() * 6, fMCHist->GetYaxis()->GetBinLowEdge(1), fMCHist->GetYaxis()->GetBinLowEdge(fDataHist->GetNbinsY() + 1)); fMCFine->SetNameTitle((fSettings.GetName() + "_MC_FINE").c_str(), (fSettings.GetFullTitles()).c_str()); fMCFine->Reset(); // Setup MC Stat fMCStat = (TH2D*)fMCHist->Clone(); fMCStat->Reset(); // Search drawopts for possible types to include by default std::string drawopts = FitPar::Config().GetParS("drawopts"); if (drawopts.find("MODES") != std::string::npos) { fMCHist_Modes = new TrueModeStack( (fSettings.GetName() + "_MODES").c_str(), ("True Channels"), fMCHist); SetAutoProcessTH1(fMCHist_Modes); } // Setup bin masks using sample name if (fIsMask) { std::string curname = fName; std::string origname = fSettings.GetS("originalname"); // Check rename.mask std::string maskloc = FitPar::Config().GetParDIR(curname + ".mask"); // Check origname.mask if (maskloc.empty()) maskloc = FitPar::Config().GetParDIR(origname + ".mask"); // Check database if (maskloc.empty()) { maskloc = FitPar::GetDataBase() + "/masks/" + origname + ".mask"; } // Setup Bin Mask SetBinMask(maskloc); } if (fScaleFactor < 0) { ERR(FTL) << "I found a negative fScaleFactor in " << __FILE__ << ":" << __LINE__ << std::endl; ERR(FTL) << "fScaleFactor = " << fScaleFactor << std::endl; ERR(FTL) << "EXITING" << std::endl; throw; } // Create and fill Weighted Histogram if (!fMCWeighted) { fMCWeighted = (TH2D*)fMCHist->Clone(); fMCWeighted->SetNameTitle((fName + "_MCWGHTS").c_str(), (fName + "_MCWGHTS" + fPlotTitles).c_str()); fMCWeighted->GetYaxis()->SetTitle("Weighted Events"); } } //******************************************************************** void Measurement2D::SetFitOptions(std::string opt) { //******************************************************************** // Do nothing if default given if (opt == "DEFAULT") return; // CHECK Conflicting Fit Options std::vector fit_option_allow = GeneralUtils::ParseToStr(fAllowedTypes, "/"); for (UInt_t i = 0; i < fit_option_allow.size(); i++) { std::vector fit_option_section = GeneralUtils::ParseToStr(fit_option_allow.at(i), ","); bool found_option = false; for (UInt_t j = 0; j < fit_option_section.size(); j++) { std::string av_opt = fit_option_section.at(j); if (!found_option and opt.find(av_opt) != std::string::npos) { found_option = true; } else if (found_option and opt.find(av_opt) != std::string::npos) { ERR(FTL) << "ERROR: Conflicting fit options provided: " << opt << std::endl << "Conflicting group = " << fit_option_section.at(i) << std::endl << "You should only supply one of these options in card file." << std::endl; throw; } } } // Check all options are allowed std::vector fit_options_input = GeneralUtils::ParseToStr(opt, "/"); for (UInt_t i = 0; i < fit_options_input.size(); i++) { if (fAllowedTypes.find(fit_options_input.at(i)) == std::string::npos) { ERR(FTL) << "ERROR: Fit Option '" << fit_options_input.at(i) << "' Provided is not allowed for this measurement." << std::endl; ERR(FTL) << "Fit Options should be provided as a '/' seperated list " "(e.g. FREE/DIAG/NORM)" << std::endl; ERR(FTL) << "Available options for " << fName << " are '" << fAllowedTypes << "'" << std::endl; throw; } } // Set TYPE fFitType = opt; // FIX,SHAPE,FREE if (opt.find("FIX") != std::string::npos) { fIsFree = fIsShape = false; fIsFix = true; } else if (opt.find("SHAPE") != std::string::npos) { fIsFree = fIsFix = false; fIsShape = true; } else if (opt.find("FREE") != std::string::npos) { fIsFix = fIsShape = false; fIsFree = true; } // DIAG,FULL (or default to full) if (opt.find("DIAG") != std::string::npos) { fIsDiag = true; fIsFull = false; } else if (opt.find("FULL") != std::string::npos) { fIsDiag = false; fIsFull = true; } // CHI2/LL (OTHERS?) if (opt.find("LOG") != std::string::npos) { fIsChi2 = false; ERR(FTL) << "No other LIKELIHOODS properly supported!" << std::endl; ERR(FTL) << "Try to use a chi2!" << std::endl; throw; } else { fIsChi2 = true; } // EXTRAS if (opt.find("RAW") != std::string::npos) fIsRawEvents = true; if (opt.find("DIF") != std::string::npos) fIsDifXSec = true; if (opt.find("ENU1D") != std::string::npos) fIsEnu1D = true; if (opt.find("NORM") != std::string::npos) fAddNormPen = true; if (opt.find("MASK") != std::string::npos) fIsMask = true; // Set TYPE fFitType = opt; // FIX,SHAPE,FREE if (opt.find("FIX") != std::string::npos) { fIsFree = fIsShape = false; fIsFix = true; } else if (opt.find("SHAPE") != std::string::npos) { fIsFree = fIsFix = false; fIsShape = true; } else if (opt.find("FREE") != std::string::npos) { fIsFix = fIsShape = false; fIsFree = true; } // DIAG,FULL (or default to full) if (opt.find("DIAG") != std::string::npos) { fIsDiag = true; fIsFull = false; } else if (opt.find("FULL") != std::string::npos) { fIsDiag = false; fIsFull = true; } // CHI2/LL (OTHERS?) if (opt.find("LOG") != std::string::npos) fIsChi2 = false; else fIsChi2 = true; // EXTRAS if (opt.find("RAW") != std::string::npos) fIsRawEvents = true; if (opt.find("DIF") != std::string::npos) fIsDifXSec = true; if (opt.find("ENU1D") != std::string::npos) fIsEnu = true; if (opt.find("NORM") != std::string::npos) fAddNormPen = true; if (opt.find("MASK") != std::string::npos) fIsMask = true; fIsProjFitX = (opt.find("FITPROJX") != std::string::npos); fIsProjFitY = (opt.find("FITPROJY") != std::string::npos); return; }; /* Reconfigure LOOP */ //******************************************************************** void Measurement2D::ResetAll() { //******************************************************************** fMCHist->Reset(); fMCFine->Reset(); fMCStat->Reset(); return; }; //******************************************************************** void Measurement2D::FillHistograms() { //******************************************************************** if (Signal) { fMCHist->Fill(fXVar, fYVar, Weight); fMCFine->Fill(fXVar, fYVar, Weight); fMCStat->Fill(fXVar, fYVar, 1.0); if (fMCHist_Modes) fMCHist_Modes->Fill(Mode, fXVar, fYVar, Weight); } return; }; //******************************************************************** void Measurement2D::ScaleEvents() { //******************************************************************** // Fill MCWeighted; // for (int i = 0; i < fMCHist->GetNbinsX(); i++) { // fMCWeighted->SetBinContent(i + 1, fMCHist->GetBinContent(i + 1)); // fMCWeighted->SetBinError(i + 1, fMCHist->GetBinError(i + 1)); // } // Setup Stat ratios for MC and MC Fine double* statratio = new double[fMCHist->GetNbinsX()]; for (int i = 0; i < fMCHist->GetNbinsX(); i++) { if (fMCHist->GetBinContent(i + 1) != 0) { statratio[i] = fMCHist->GetBinError(i + 1) / fMCHist->GetBinContent(i + 1); } else { statratio[i] = 0.0; } } double* statratiofine = new double[fMCFine->GetNbinsX()]; for (int i = 0; i < fMCFine->GetNbinsX(); i++) { if (fMCFine->GetBinContent(i + 1) != 0) { statratiofine[i] = fMCFine->GetBinError(i + 1) / fMCFine->GetBinContent(i + 1); } else { statratiofine[i] = 0.0; } } // Scaling for raw event rates if (fIsRawEvents) { double datamcratio = fDataHist->Integral() / fMCHist->Integral(); fMCHist->Scale(datamcratio); fMCFine->Scale(datamcratio); if (fMCHist_Modes) fMCHist_Modes->Scale(datamcratio); // Scaling for XSec as function of Enu } else if (fIsEnu1D) { PlotUtils::FluxUnfoldedScaling(fMCHist, GetFluxHistogram(), GetEventHistogram(), fScaleFactor); PlotUtils::FluxUnfoldedScaling(fMCFine, GetFluxHistogram(), GetEventHistogram(), fScaleFactor); // if (fMCHist_Modes) { // PlotUtils::FluxUnfoldedScaling(fMCHist_Modes, GetFluxHistogram(), // GetEventHistogram(), fScaleFactor, // fNEvents); // } // Any other differential scaling } else { fMCHist->Scale(fScaleFactor, "width"); fMCFine->Scale(fScaleFactor, "width"); // if (fMCHist_Modes) fMCHist_Modes->Scale(fScaleFactor, "width"); } // Proper error scaling - ROOT Freaks out with xsec weights sometimes for (int i = 0; i < fMCStat->GetNbinsX(); i++) { fMCHist->SetBinError(i + 1, fMCHist->GetBinContent(i + 1) * statratio[i]); } for (int i = 0; i < fMCFine->GetNbinsX(); i++) { fMCFine->SetBinError(i + 1, fMCFine->GetBinContent(i + 1) * statratiofine[i]); } // Clean up delete statratio; delete statratiofine; return; }; //******************************************************************** void Measurement2D::ApplyNormScale(double norm) { //******************************************************************** fCurrentNorm = norm; fMCHist->Scale(1.0 / norm); fMCFine->Scale(1.0 / norm); return; }; /* Statistic Functions - Outsources to StatUtils */ //******************************************************************** int Measurement2D::GetNDOF() { //******************************************************************** // Just incase it has gone... if (!fDataHist) return -1; int nDOF = 0; // If datahist has no errors make sure we don't include those bins as they are // not data points for (int xBin = 0; xBin < fDataHist->GetNbinsX() + 1; ++xBin) { for (int yBin = 0; yBin < fDataHist->GetNbinsY() + 1; ++yBin) { if (fDataHist->GetBinError(xBin, yBin) != 0) ++nDOF; } } // Account for possible bin masking int nMasked = 0; if (fMaskHist and fIsMask) if (fMaskHist->Integral() > 0) for (int xBin = 0; xBin < fMaskHist->GetNbinsX() + 1; ++xBin) for (int yBin = 0; yBin < fMaskHist->GetNbinsY() + 1; ++yBin) if (fMaskHist->GetBinContent(xBin, yBin) > 0.5) ++nMasked; // Take away those masked DOF if (fIsMask) { nDOF -= nMasked; } return nDOF; } //******************************************************************** double Measurement2D::GetLikelihood() { //******************************************************************** // If this is for a ratio, there is no data histogram to compare to! if (fNoData || !fDataHist) return 0.; // Fix weird masking bug if (!fIsMask) { if (fMaskHist) { fMaskHist = NULL; } } else { if (fMaskHist) { PlotUtils::MaskBins(fMCHist, fMaskHist); } } // if (fIsProjFitX or fIsProjFitY) return GetProjectedChi2(); // Scale up the results to match each other (Not using width might be // inconsistent with Meas1D) double scaleF = fDataHist->Integral() / fMCHist->Integral(); if (fIsShape) { fMCHist->Scale(scaleF); fMCFine->Scale(scaleF); //PlotUtils::ScaleNeutModeArray((TH1**)fMCHist_PDG, scaleF); } if (!fMapHist) { fMapHist = StatUtils::GenerateMap(fDataHist); } // Get the chi2 from either covar or diagonals double chi2 = 0.0; if (fIsChi2) { if (fIsDiag) { chi2 = StatUtils::GetChi2FromDiag(fDataHist, fMCHist, fMapHist, fMaskHist); } else { chi2 = StatUtils::GetChi2FromCov(fDataHist, fMCHist, covar, fMapHist, fMaskHist); } } // Add a normal penalty term if (fAddNormPen) { chi2 += (1 - (fCurrentNorm)) * (1 - (fCurrentNorm)) / (fNormError * fNormError); LOG(REC) << "Norm penalty = " << (1 - (fCurrentNorm)) * (1 - (fCurrentNorm)) / (fNormError * fNormError) << std::endl; } // Adjust the shape back to where it was. if (fIsShape and !FitPar::Config().GetParB("saveshapescaling")) { fMCHist->Scale(1. / scaleF); fMCFine->Scale(1. / scaleF); } fLikelihood = chi2; return chi2; } /* Fake Data Functions */ //******************************************************************** void Measurement2D::SetFakeDataValues(std::string fakeOption) { //******************************************************************** // Setup original/datatrue TH2D* tempdata = (TH2D*) fDataHist->Clone(); if (!fIsFakeData) { fIsFakeData = true; // Make a copy of the original data histogram. if (!fDataOrig) fDataOrig = (TH2D*)fDataHist->Clone((fName + "_data_original").c_str()); } else { ResetFakeData(); } // Setup Inputs fFakeDataInput = fakeOption; LOG(SAM) << "Setting fake data from : " << fFakeDataInput << std::endl; // From MC if (fFakeDataInput.compare("MC") == 0) { fDataHist = (TH2D*)fMCHist->Clone((fName + "_MC").c_str()); // Fake File } else { if (!fFakeDataFile) fFakeDataFile = new TFile(fFakeDataInput.c_str(), "READ"); fDataHist = (TH2D*)fFakeDataFile->Get((fName + "_MC").c_str()); } // Setup Data Hist fDataHist->SetNameTitle((fName + "_FAKE").c_str(), (fName + fPlotTitles).c_str()); // Replace Data True if (fDataTrue) delete fDataTrue; fDataTrue = (TH2D*)fDataHist->Clone(); fDataTrue->SetNameTitle((fName + "_FAKE_TRUE").c_str(), (fName + fPlotTitles).c_str()); // Make a new covariance for fake data hist. int nbins = fDataHist->GetNbinsX() * fDataHist->GetNbinsY(); double alpha_i = 0.0; double alpha_j = 0.0; for (int i = 0; i < nbins; i++) { for (int j = 0; j < nbins; j++) { if (tempdata->GetBinContent(i + 1) && tempdata->GetBinContent(j + 1)) { alpha_i = fDataHist->GetBinContent(i + 1) / tempdata->GetBinContent(i + 1); alpha_j = fDataHist->GetBinContent(j + 1) / tempdata->GetBinContent(j + 1); } else { alpha_i = 0.0; alpha_j = 0.0; } (*fFullCovar)(i, j) = alpha_i * alpha_j * (*fFullCovar)(i, j); } } // Setup Covariances if (covar) delete covar; covar = StatUtils::GetInvert(fFullCovar); if (fDecomp) delete fDecomp; fDecomp = StatUtils::GetInvert(fFullCovar); delete tempdata; return; }; //******************************************************************** void Measurement2D::ResetFakeData() { //******************************************************************** if (fIsFakeData) { if (fDataHist) delete fDataHist; fDataHist = (TH2D*)fDataTrue->Clone((fSettings.GetName() + "_FKDAT").c_str()); } } //******************************************************************** void Measurement2D::ResetData() { //******************************************************************** if (fIsFakeData) { if (fDataHist) delete fDataHist; fDataHist = (TH2D*)fDataOrig->Clone((fSettings.GetName() + "_data").c_str()); } fIsFakeData = false; } //******************************************************************** void Measurement2D::ThrowCovariance() { //******************************************************************** // Take a fDecomposition and use it to throw the current dataset. // Requires fDataTrue also be set incase used repeatedly. if (fDataHist) delete fDataHist; fDataHist = StatUtils::ThrowHistogram(fDataTrue, fFullCovar); return; }; //******************************************************************** void Measurement2D::ThrowDataToy() { //******************************************************************** if (!fDataTrue) fDataTrue = (TH2D*) fDataHist->Clone(); if (fMCHist) delete fMCHist; fMCHist = StatUtils::ThrowHistogram(fDataTrue, fFullCovar); } /* Access Functions */ //******************************************************************** TH2D* Measurement2D::GetMCHistogram() { //******************************************************************** if (!fMCHist) return fMCHist; std::ostringstream chi2; chi2 << std::setprecision(5) << this->GetLikelihood(); int linecolor = kRed; int linestyle = 1; int linewidth = 1; int fillcolor = 0; int fillstyle = 1001; if (fSettings.Has("linecolor")) linecolor = fSettings.GetI("linecolor"); if (fSettings.Has("linestyle")) linestyle = fSettings.GetI("linestyle"); if (fSettings.Has("linewidth")) linewidth = fSettings.GetI("linewidth"); if (fSettings.Has("fillcolor")) fillcolor = fSettings.GetI("fillcolor"); if (fSettings.Has("fillstyle")) fillstyle = fSettings.GetI("fillstyle"); fMCHist->SetTitle(chi2.str().c_str()); fMCHist->SetLineColor(linecolor); fMCHist->SetLineStyle(linestyle); fMCHist->SetLineWidth(linewidth); fMCHist->SetFillColor(fillcolor); fMCHist->SetFillStyle(fillstyle); return fMCHist; }; //******************************************************************** TH2D* Measurement2D::GetDataHistogram() { //******************************************************************** if (!fDataHist) return fDataHist; int datacolor = kBlack; int datastyle = 1; int datawidth = 1; if (fSettings.Has("datacolor")) datacolor = fSettings.GetI("datacolor"); if (fSettings.Has("datastyle")) datastyle = fSettings.GetI("datastyle"); if (fSettings.Has("datawidth")) datawidth = fSettings.GetI("datawidth"); fDataHist->SetLineColor(datacolor); fDataHist->SetLineWidth(datawidth); fDataHist->SetMarkerStyle(datastyle); return fDataHist; }; /* Write Functions */ // Save all the histograms at once //******************************************************************** void Measurement2D::Write(std::string drawOpt) { //******************************************************************** // Get Draw Options drawOpt = FitPar::Config().GetParS("drawopts"); // Write Settigns if (drawOpt.find("SETTINGS") != std::string::npos) { fSettings.Set("#chi^{2}", fLikelihood); fSettings.Set("NDOF", this->GetNDOF() ); fSettings.Set("#chi^{2}/NDOF", fLikelihood / this->GetNDOF() ); fSettings.Write(); } // Write Data/MC GetDataList().at(0)->Write(); GetMCList().at(0)->Write(); // Write Fine Histogram if (drawOpt.find("FINE") != std::string::npos) GetFineList().at(0)->Write(); // Write Weighted Histogram if (drawOpt.find("WEIGHTS") != std::string::npos && fMCWeighted) fMCWeighted->Write(); // Save Flux/Evt if no event manager if (!FitPar::Config().GetParB("EventManager")) { if (drawOpt.find("FLUX") != std::string::npos && GetFluxHistogram()) GetFluxHistogram()->Write(); if (drawOpt.find("EVT") != std::string::npos && GetEventHistogram()) GetEventHistogram()->Write(); if (drawOpt.find("XSEC") != std::string::npos && GetEventHistogram()) GetEventHistogram()->Write(); } // Write Mask if (fIsMask && (drawOpt.find("MASK") != std::string::npos)) { fMaskHist->Write(); } // Write Covariances if (drawOpt.find("COV") != std::string::npos && fFullCovar) { PlotUtils::GetFullCovarPlot(fFullCovar, fSettings.GetName()); } if (drawOpt.find("INVCOV") != std::string::npos && covar) { PlotUtils::GetInvCovarPlot(covar, fSettings.GetName()); } if (drawOpt.find("DECOMP") != std::string::npos && fDecomp) { PlotUtils::GetDecompCovarPlot(fDecomp, fSettings.GetName()); } // // Likelihood residual plots // if (drawOpt.find("RESIDUAL") != std::string::npos) { // WriteResidualPlots(); // } // // RATIO // if (drawOpt.find("CANVMC") != std::string::npos) { // TCanvas* c1 = WriteMCCanvas(fDataHist, fMCHist); // c1->Write(); // delete c1; // } // // PDG // if (drawOpt.find("CANVPDG") != std::string::npos && fMCHist_Modes) { // TCanvas* c2 = WritePDGCanvas(fDataHist, fMCHist, fMCHist_Modes); // c2->Write(); // delete c2; // } // Write Extra Histograms AutoWriteExtraTH1(); WriteExtraHistograms(); /// 2D VERSION // If null pointer return if (!fMCHist and !fDataHist) { LOG(SAM) << fName << "Incomplete histogram set!" << std::endl; return; } // Config::Get().out->cd(); // Get Draw Options drawOpt = FitPar::Config().GetParS("drawopts"); bool drawData = (drawOpt.find("DATA") != std::string::npos); bool drawNormal = (drawOpt.find("MC") != std::string::npos); bool drawEvents = (drawOpt.find("EVT") != std::string::npos); bool drawXSec = (drawOpt.find("XSEC") != std::string::npos); bool drawFine = (drawOpt.find("FINE") != std::string::npos); bool drawRatio = (drawOpt.find("RATIO") != std::string::npos); // bool drawModes = (drawOpt.find("MODES") != std::string::npos); bool drawShape = (drawOpt.find("SHAPE") != std::string::npos); bool residual = (drawOpt.find("RESIDUAL") != std::string::npos); bool drawMatrix = (drawOpt.find("MATRIX") != std::string::npos); bool drawFlux = (drawOpt.find("FLUX") != std::string::npos); bool drawMask = (drawOpt.find("MASK") != std::string::npos); bool drawMap = (drawOpt.find("MAP") != std::string::npos); bool drawProj = (drawOpt.find("PROJ") != std::string::npos); // bool drawCanvPDG = (drawOpt.find("CANVPDG") != std::string::npos); bool drawCov = (drawOpt.find("COV") != std::string::npos); bool drawSliceCanvYMC = (drawOpt.find("CANVYMC") != std::string::npos); bool drawWeighted = (drawOpt.find("WGHT") != std::string::npos); if (FitPar::Config().GetParB("EventManager")) { drawFlux = false; drawXSec = false; drawEvents = false; } if (fMaskHist) fMaskHist->Write(); // Save standard plots if (drawData) this->GetDataList().at(0)->Write(); if (drawNormal) this->GetMCList().at(0)->Write(); if (drawCov) { TH2D(*fFullCovar).Write((fName + "_COV").c_str()); } if (drawOpt.find("INVCOV") != std::string::npos) { TH2D(*covar).Write((fName + "_INVCOV").c_str()); } // Generate a simple map if (!fMapHist) fMapHist = StatUtils::GenerateMap(fDataHist); // Convert to 1D Lists TH1D* data_1D = StatUtils::MapToTH1D(fDataHist, fMapHist); TH1D* mc_1D = StatUtils::MapToTH1D(fMCHist, fMapHist); TH1I* mask_1D = StatUtils::MapToMask(fMaskHist, fMapHist); data_1D->Write(); mc_1D->Write(); if (mask_1D) { mask_1D->Write(); TMatrixDSym* calc_cov = StatUtils::ApplyInvertedMatrixMasking(covar, mask_1D); TH1D* calc_data = StatUtils::ApplyHistogramMasking(data_1D, mask_1D); TH1D* calc_mc = StatUtils::ApplyHistogramMasking(mc_1D, mask_1D); TH2D* bin_cov = new TH2D(*calc_cov); bin_cov->Write(); calc_data->Write(); calc_mc->Write(); delete mask_1D; delete calc_cov; delete calc_data; delete calc_mc; delete bin_cov; } delete data_1D; delete mc_1D; // Save only mc and data if splines if (fEventType == 4 or fEventType == 3) { return; } // Draw Extra plots if (drawFine) this->GetFineList().at(0)->Write(); if (drawFlux and GetFluxHistogram()) { GetFluxHistogram()->Write(); } if (drawEvents and GetEventHistogram()) { GetEventHistogram()->Write(); } if (fIsMask and drawMask) { fMaskHist->Write((fName + "_MSK").c_str()); //< save mask } if (drawMap) fMapHist->Write((fName + "_MAP").c_str()); //< save map // // Save neut stack // if (drawModes) { // THStack combo_fMCHist_PDG = PlotUtils::GetNeutModeStack( // (fName + "_MC_PDG").c_str(), (TH1**)fMCHist_PDG, 0); // combo_fMCHist_PDG.Write(); // } // Save Matrix plots if (drawMatrix and fFullCovar and covar and fDecomp) { TH2D cov = TH2D((*fFullCovar)); cov.SetNameTitle((fName + "_cov").c_str(), (fName + "_cov;Bins; Bins;").c_str()); cov.Write(); TH2D covinv = TH2D((*this->covar)); covinv.SetNameTitle((fName + "_covinv").c_str(), (fName + "_cov;Bins; Bins;").c_str()); covinv.Write(); TH2D covdec = TH2D((*fDecomp)); covdec.SetNameTitle((fName + "_covdec").c_str(), (fName + "_cov;Bins; Bins;").c_str()); covdec.Write(); } // Save ratio plots if required if (drawRatio) { // Needed for error bars for (int i = 0; i < fMCHist->GetNbinsX() * fMCHist->GetNbinsY(); i++) fMCHist->SetBinError(i + 1, 0.0); fDataHist->GetSumw2(); fMCHist->GetSumw2(); // Create Ratio Histograms TH2D* dataRatio = (TH2D*)fDataHist->Clone((fName + "_data_RATIO").c_str()); TH2D* mcRatio = (TH2D*)fMCHist->Clone((fName + "_MC_RATIO").c_str()); mcRatio->Divide(fMCHist); dataRatio->Divide(fMCHist); // Cancel bin errors on MC for (int i = 0; i < mcRatio->GetNbinsX() * mcRatio->GetNbinsY(); i++) { mcRatio->SetBinError( i + 1, fMCHist->GetBinError(i + 1) / fMCHist->GetBinContent(i + 1)); } mcRatio->SetMinimum(0); mcRatio->SetMaximum(2); dataRatio->SetMinimum(0); dataRatio->SetMaximum(2); mcRatio->Write(); dataRatio->Write(); delete mcRatio; delete dataRatio; } // Save Shape Plots if required if (drawShape) { // Create Shape Histogram TH2D* mcShape = (TH2D*)fMCHist->Clone((fName + "_MC_SHAPE").c_str()); double shapeScale = 1.0; if (fIsRawEvents) { shapeScale = fDataHist->Integral() / fMCHist->Integral(); } else { shapeScale = fDataHist->Integral("width") / fMCHist->Integral("width"); } mcShape->Scale(shapeScale); mcShape->SetLineWidth(3); mcShape->SetLineStyle(7); // dashes mcShape->Write(); // Save shape ratios if (drawRatio) { // Needed for error bars mcShape->GetSumw2(); // Create shape ratio histograms TH2D* mcShapeRatio = (TH2D*)mcShape->Clone((fName + "_MC_SHAPE_RATIO").c_str()); TH2D* dataShapeRatio = (TH2D*)fDataHist->Clone((fName + "_data_SHAPE_RATIO").c_str()); // Divide the histograms mcShapeRatio->Divide(mcShape); dataShapeRatio->Divide(mcShape); // Colour the shape ratio plots mcShapeRatio->SetLineWidth(3); mcShapeRatio->SetLineStyle(7); // dashes mcShapeRatio->Write(); dataShapeRatio->Write(); delete mcShapeRatio; delete dataShapeRatio; } delete mcShape; } // Save residual calculations of what contributed to the chi2 values. if (residual) { } if (fIsProjFitX or fIsProjFitY or drawProj) { // If not already made, make the projections if (!fMCHist_X) { PlotUtils::MatchEmptyBins(fDataHist, fMCHist); fMCHist_X = PlotUtils::GetProjectionX(fMCHist, fMaskHist); fMCHist_Y = PlotUtils::GetProjectionY(fMCHist, fMaskHist); fDataHist_X = PlotUtils::GetProjectionX(fDataHist, fMaskHist); fDataHist_Y = PlotUtils::GetProjectionY(fDataHist, fMaskHist); double chi2X = StatUtils::GetChi2FromDiag(fDataHist_X, fMCHist_X); double chi2Y = StatUtils::GetChi2FromDiag(fDataHist_Y, fMCHist_Y); fMCHist_X->SetTitle(Form("%f", chi2X)); fMCHist_Y->SetTitle(Form("%f", chi2Y)); } // Save the histograms fDataHist_X->Write(); fMCHist_X->Write(); fDataHist_Y->Write(); fMCHist_Y->Write(); } if (drawSliceCanvYMC or true) { TCanvas* c1 = new TCanvas((fName + "_MC_CANV_Y").c_str(), (fName + "_MC_CANV_Y").c_str(), 800, 600); c1->Divide(int(sqrt(fDataHist->GetNbinsY() + 1)), int(sqrt(fDataHist->GetNbinsY() + 1))); TH2D* mcShape = (TH2D*)fMCHist->Clone((fName + "_MC_SHAPE").c_str()); double shapeScale = fDataHist->Integral("width") / fMCHist->Integral("width"); mcShape->Scale(shapeScale); mcShape->SetLineStyle(7); c1->cd(1); TLegend* leg = new TLegend(0.6, 0.6, 0.9, 0.9); leg->AddEntry(fDataHist, (fName + " Data").c_str(), "ep"); leg->AddEntry(fMCHist, (fName + " MC").c_str(), "l"); leg->AddEntry(mcShape, (fName + " Shape").c_str(), "l"); leg->Draw("SAME"); /* // Make Y slices for (int i = 0; i < fDataHist->GetNbinY(); i++){ c1->cd(i+2); TH1D* fDataHist_SliceY = PlotUtils::GetSliceY(fDataHist, i); fDataHist_SliceY->Draw("E1"); TH1D* fMCHist_SliceY = PlotUtils::GetSliceY(fMCHist, i); fMCHist_SliceY->Draw("SAME HIST C"); TH1D* mcShape_SliceY = PlotUtils::GetSliceY(mcShape, i); mcShape_SliceY->Draw("SAME HIST C"); } */ c1->Write(); } if (drawWeighted) { fMCWeighted->Write(); } // Returning LOG(SAM) << "Written Histograms: " << fName << std::endl; return; // Returning LOG(SAM) << "Written Histograms: " << fName << std::endl; return; } /* Setup Functions */ //******************************************************************** void Measurement2D::SetupMeasurement(std::string inputfile, std::string type, FitWeight* rw, std::string fkdt) { //******************************************************************** // Check if name contains Evt, indicating that it is a raw number of events // measurements and should thus be treated as once fIsRawEvents = false; if ((fName.find("Evt") != std::string::npos) && fIsRawEvents == false) { fIsRawEvents = true; LOG(SAM) << "Found event rate measurement but fIsRawEvents == false!" << std::endl; LOG(SAM) << "Overriding this and setting fIsRawEvents == true!" << std::endl; } fIsEnu = false; if ((fName.find("XSec") != std::string::npos) && (fName.find("Enu") != std::string::npos)) { fIsEnu = true; LOG(SAM) << "::" << fName << "::" << std::endl; LOG(SAM) << "Found XSec Enu measurement, applying flux integrated scaling, " "not flux averaged!" << std::endl; if (FitPar::Config().GetParB("EventManager")) { ERR(FTL) << "Enu Measurements do not yet work with the Event Manager!" << std::endl; ERR(FTL) << "If you want decent flux unfolded results please run in " "series mode (-q EventManager=0)" << std::endl; sleep(2); } } if (fIsEnu && fIsRawEvents) { LOG(SAM) << "Found 1D Enu XSec distribution AND fIsRawEvents, is this " "really correct?!" << std::endl; LOG(SAM) << "Check experiment constructor for " << fName << " and correct this!" << std::endl; LOG(SAM) << "I live in " << __FILE__ << ":" << __LINE__ << std::endl; exit(-1); } // Reset everything to NULL fRW = rw; // Setting up 2D Inputs this->SetupInputs(inputfile); // Set Default Options SetFitOptions(fDefaultTypes); // Set Passed Options SetFitOptions(type); } //******************************************************************** void Measurement2D::SetupDefaultHist() { //******************************************************************** // Setup fMCHist fMCHist = (TH2D*)fDataHist->Clone(); fMCHist->SetNameTitle((fName + "_MC").c_str(), (fName + "_MC" + fPlotTitles).c_str()); // Setup fMCFine Int_t nBinsX = fMCHist->GetNbinsX(); Int_t nBinsY = fMCHist->GetNbinsY(); fMCFine = new TH2D((fName + "_MC_FINE").c_str(), (fName + "_MC_FINE" + fPlotTitles).c_str(), nBinsX * 3, fMCHist->GetXaxis()->GetBinLowEdge(1), fMCHist->GetXaxis()->GetBinLowEdge(nBinsX + 1), nBinsY * 3, fMCHist->GetYaxis()->GetBinLowEdge(1), fMCHist->GetYaxis()->GetBinLowEdge(nBinsY + 1)); // Setup MC Stat fMCStat = (TH2D*)fMCHist->Clone(); fMCStat->Reset(); // Setup the NEUT Mode Array //PlotUtils::CreateNeutModeArray(fMCHist, (TH1**)fMCHist_PDG); // Setup bin masks using sample name if (fIsMask) { std::string maskloc = FitPar::Config().GetParDIR(fName + ".mask"); if (maskloc.empty()) { maskloc = FitPar::GetDataBase() + "/masks/" + fName + ".mask"; } SetBinMask(maskloc); } return; } //******************************************************************** void Measurement2D::SetDataValues(std::string dataFile, std::string TH2Dname) { //******************************************************************** if (dataFile.find(".root") == std::string::npos) { ERR(FTL) << "Error! " << dataFile << " is not a .root file" << std::endl; ERR(FTL) << "Currently only .root file reading is supported (MiniBooNE " "CC1pi+ 2D), but implementing .txt should be dirt easy" << std::endl; ERR(FTL) << "See me at " << __FILE__ << ":" << __LINE__ << std::endl; exit(-1); } else { TFile* inFile = new TFile(dataFile.c_str(), "READ"); fDataHist = (TH2D*)(inFile->Get(TH2Dname.c_str())->Clone()); fDataHist->SetDirectory(0); fDataHist->SetNameTitle((fName + "_data").c_str(), (fName + "_MC" + fPlotTitles).c_str()); delete inFile; } return; } //******************************************************************** void Measurement2D::SetDataValues(std::string dataFile, double dataNorm, std::string errorFile, double errorNorm) { //******************************************************************** // Make a counter to track the line number int yBin = 0; std::string line; - std::ifstream data(dataFile.c_str(), ifstream::in); + std::ifstream data(dataFile.c_str(), std::ifstream::in); fDataHist = new TH2D((fName + "_data").c_str(), (fName + fPlotTitles).c_str(), fNDataPointsX - 1, fXBins, fNDataPointsY - 1, fYBins); if (data.is_open()) LOG(SAM) << "Reading data from: " << dataFile.c_str() << std::endl; while (std::getline(data >> std::ws, line, '\n')) { int xBin = 0; // Loop over entries and insert them into the histogram std::vector entries = GeneralUtils::ParseToDbl(line, " "); for (std::vector::iterator iter = entries.begin(); iter != entries.end(); iter++) { fDataHist->SetBinContent(xBin + 1, yBin + 1, (*iter) * dataNorm); xBin++; } yBin++; } yBin = 0; - std::ifstream error(errorFile.c_str(), ifstream::in); + std::ifstream error(errorFile.c_str(), std::ifstream::in); if (error.is_open()) LOG(SAM) << "Reading errors from: " << errorFile.c_str() << std::endl; while (std::getline(error >> std::ws, line, '\n')) { int xBin = 0; // Loop over entries and insert them into the histogram std::vector entries = GeneralUtils::ParseToDbl(line, " "); for (std::vector::iterator iter = entries.begin(); iter != entries.end(); iter++) { fDataHist->SetBinError(xBin + 1, yBin + 1, (*iter) * errorNorm); xBin++; } yBin++; } return; }; //******************************************************************** void Measurement2D::SetDataValuesFromText(std::string dataFile, double dataNorm) { //******************************************************************** fDataHist = new TH2D((fName + "_data").c_str(), (fName + fPlotTitles).c_str(), fNDataPointsX - 1, fXBins, fNDataPointsY - 1, fYBins); LOG(SAM) << "Reading data from: " << dataFile << std::endl; PlotUtils::Set2DHistFromText(dataFile, fDataHist, dataNorm, true); return; }; //******************************************************************** void Measurement2D::SetCovarMatrix(std::string covarFile) { //******************************************************************** // Used to read a covariance matrix from a root file TFile* tempFile = new TFile(covarFile.c_str(), "READ"); // Make plots that we want TH2D* covarPlot = new TH2D(); // TH2D* decmpPlot = new TH2D(); TH2D* covarInvPlot = new TH2D(); TH2D* fFullCovarPlot = new TH2D(); // Get covariance options for fake data studies std::string covName = ""; std::string covOption = FitPar::Config().GetParS("throw_covariance"); // Which matrix to get? if (fIsShape || fIsFree) covName = "shp_"; if (fIsDiag) covName += "diag"; else covName += "full"; covarPlot = (TH2D*)tempFile->Get((covName + "cov").c_str()); covarInvPlot = (TH2D*)tempFile->Get((covName + "covinv").c_str()); // Throw either the sub matrix or the full matrix if (!covOption.compare("SUB")) fFullCovarPlot = (TH2D*)tempFile->Get((covName + "cov").c_str()); else if (!covOption.compare("FULL")) fFullCovarPlot = (TH2D*)tempFile->Get("fullcov"); else ERR(WRN) << " Incorrect thrown_covariance option in parameters." << std::endl; // Bin masking? int dim = int(fDataHist->GetNbinsX()); //-this->masked->Integral()); int covdim = int(fDataHist->GetNbinsX()); // Make new covars this->covar = new TMatrixDSym(dim); fFullCovar = new TMatrixDSym(dim); fDecomp = new TMatrixDSym(dim); // Full covariance values int row, column = 0; row = 0; column = 0; for (Int_t i = 0; i < covdim; i++) { // masking can be dodgy // if (this->masked->GetBinContent(i+1) > 0) continue; for (Int_t j = 0; j < covdim; j++) { // if (this->masked->GetBinContent(j+1) > 0) continue; (*this->covar)(row, column) = covarPlot->GetBinContent(i + 1, j + 1); (*fFullCovar)(row, column) = fFullCovarPlot->GetBinContent(i + 1, j + 1); column++; } column = 0; row++; } // Set bin errors on data if (!fIsDiag) { for (Int_t i = 0; i < fDataHist->GetNbinsX(); i++) { fDataHist->SetBinError( i + 1, sqrt((covarPlot->GetBinContent(i + 1, i + 1))) * 1E-38); } } TDecompSVD LU = TDecompSVD(*this->covar); this->covar = new TMatrixDSym(dim, LU.Invert().GetMatrixArray(), ""); tempFile->Close(); delete tempFile; return; }; //******************************************************************** void Measurement2D::SetCovarMatrixFromText(std::string covarFile, int dim) { //******************************************************************** // Make a counter to track the line number int row = 0; std::string line; - std::ifstream covar(covarFile.c_str(), ifstream::in); + std::ifstream covar(covarFile.c_str(), std::ifstream::in); this->covar = new TMatrixDSym(dim); fFullCovar = new TMatrixDSym(dim); if (covar.is_open()) LOG(SAM) << "Reading covariance matrix from file: " << covarFile << std::endl; while (std::getline(covar >> std::ws, line, '\n')) { int column = 0; // Loop over entries and insert them into matrix // Multiply by the errors to get the covariance, rather than the correlation // matrix std::vector entries = GeneralUtils::ParseToDbl(line, " "); for (std::vector::iterator iter = entries.begin(); iter != entries.end(); iter++) { double val = (*iter) * fDataHist->GetBinError(row + 1) * 1E38 * fDataHist->GetBinError(column + 1) * 1E38; (*this->covar)(row, column) = val; (*fFullCovar)(row, column) = val; column++; } row++; } // Robust matrix inversion method TDecompSVD LU = TDecompSVD(*this->covar); this->covar = new TMatrixDSym(dim, LU.Invert().GetMatrixArray(), ""); return; }; //******************************************************************** void Measurement2D::SetCovarMatrixFromChol(std::string covarFile, int dim) { //******************************************************************** // Make a counter to track the line number int row = 0; std::string line; - std::ifstream covarread(covarFile.c_str(), ifstream::in); + std::ifstream covarread(covarFile.c_str(), std::ifstream::in); TMatrixD* newcov = new TMatrixD(dim, dim); if (covarread.is_open()) LOG(SAM) << "Reading covariance matrix from file: " << covarFile << std::endl; while (std::getline(covarread >> std::ws, line, '\n')) { int column = 0; // Loop over entries and insert them into matrix // Multiply by the errors to get the covariance, rather than the correlation // matrix std::vector entries = GeneralUtils::ParseToDbl(line, " "); for (std::vector::iterator iter = entries.begin(); iter != entries.end(); iter++) { (*newcov)(row, column) = *iter; column++; } row++; } covarread.close(); // Form full covariance TMatrixD* trans = (TMatrixD*)(newcov)->Clone(); trans->T(); (*trans) *= (*newcov); fFullCovar = new TMatrixDSym(dim, trans->GetMatrixArray(), ""); delete newcov; delete trans; // Robust matrix inversion method TDecompChol LU = TDecompChol(*this->fFullCovar); this->covar = new TMatrixDSym(dim, LU.Invert().GetMatrixArray(), ""); return; }; // //******************************************************************** // void Measurement2D::SetMapValuesFromText(std::string dataFile) { // //******************************************************************** // fMapHist = new TH2I((fName + "_map").c_str(), (fName + fPlotTitles).c_str(), // fNDataPointsX - 1, fXBins, fNDataPointsY - 1, fYBins); // LOG(SAM) << "Reading map from: " << dataFile << std::endl; // PlotUtils::Set2DHistFromText(dataFile, fMapHist, 1.0); // return; // }; diff --git a/src/Reweight/WeightUtils.cxx b/src/Reweight/WeightUtils.cxx index a17eb22..7204c64 100644 --- a/src/Reweight/WeightUtils.cxx +++ b/src/Reweight/WeightUtils.cxx @@ -1,615 +1,615 @@ #include "WeightUtils.h" #include "FitLogger.h" #ifdef __T2KREW_ENABLED__ #include "T2KGenieReWeight.h" #include "T2KNIWGReWeight.h" #include "T2KNIWGUtils.h" #include "T2KNeutReWeight.h" #include "T2KNeutUtils.h" #include "T2KReWeight.h" using namespace t2krew; #endif #ifdef __NIWG_ENABLED__ #include "NIWGReWeight.h" #include "NIWGReWeight1piAngle.h" #include "NIWGReWeight2010a.h" #include "NIWGReWeight2012a.h" #include "NIWGReWeight2014a.h" #include "NIWGReWeightDeltaMass.h" #include "NIWGReWeightEffectiveRPA.h" #include "NIWGReWeightHadronMultSwitch.h" #include "NIWGReWeightMEC.h" #include "NIWGReWeightPiMult.h" #include "NIWGReWeightProtonFSIbug.h" #include "NIWGReWeightRPA.h" #include "NIWGReWeightSpectralFunc.h" #include "NIWGReWeightSplineEnu.h" #include "NIWGSyst.h" #include "NIWGSystUncertainty.h" #endif #ifdef __NEUT_ENABLED__ #include "NReWeight.h" #include "NReWeightCasc.h" #include "NReWeightNuXSecCCQE.h" #include "NReWeightNuXSecCCRES.h" #include "NReWeightNuXSecCOH.h" #include "NReWeightNuXSecDIS.h" #include "NReWeightNuXSecNC.h" #include "NReWeightNuXSecNCEL.h" #include "NReWeightNuXSecNCRES.h" #include "NReWeightNuXSecRES.h" #include "NReWeightNuclPiless.h" #include "NSyst.h" #include "NSystUncertainty.h" #include "neutpart.h" #include "neutvect.h" #endif #ifdef __NUWRO_ENABLED__ #include "event1.h" #endif #ifdef __NUWRO_REWEIGHT_ENABLED__ #include "NuwroReWeight.h" #include "NuwroReWeight_FlagNorm.h" #include "NuwroReWeight_QEL.h" #include "NuwroReWeight_SPP.h" #include "NuwroSyst.h" #include "NuwroSystUncertainty.h" #endif #ifdef __GENIE_ENABLED__ #include "EVGCore/EventRecord.h" #include "EVGCore/EventRecord.h" #include "GHEP/GHepRecord.h" #include "GSyst.h" #include "GSystUncertainty.h" #include "Ntuple/NtpMCEventRecord.h" #include "ReWeight/GReWeight.h" #include "ReWeight/GReWeightAGKY.h" #include "ReWeight/GReWeightDISNuclMod.h" #include "ReWeight/GReWeightFGM.h" #include "ReWeight/GReWeightFZone.h" #include "ReWeight/GReWeightINuke.h" #include "ReWeight/GReWeightNonResonanceBkg.h" #include "ReWeight/GReWeightNuXSecCCQE.h" #include "ReWeight/GReWeightNuXSecCCQEvec.h" #include "ReWeight/GReWeightNuXSecCCRES.h" #include "ReWeight/GReWeightNuXSecCOH.h" #include "ReWeight/GReWeightNuXSecDIS.h" #include "ReWeight/GReWeightNuXSecNC.h" #include "ReWeight/GReWeightNuXSecNCEL.h" #include "ReWeight/GReWeightNuXSecNCRES.h" #include "ReWeight/GReWeightResonanceDecay.h" using namespace genie; using namespace genie::rew; #endif #include "GlobalDialList.h" #include "ModeNormEngine.h" #include "NUISANCESyst.h" #include "OscWeightEngine.h" //******************************************************************** TF1 FitBase::GetRWConvFunction(std::string const &type, std::string const &name) { //******************************************************************** std::string dialfunc = "x"; std::string parType = type; double low = -10000.0; double high = 10000.0; if (parType.find("parameter") == std::string::npos) parType += "_parameter"; std::string line; - ifstream card( + std::ifstream card( (GeneralUtils::GetTopLevelDir() + "/parameters/dial_conversion.card") .c_str(), - ifstream::in); + std::ifstream::in); while (std::getline(card >> std::ws, line, '\n')) { std::vector inputlist = GeneralUtils::ParseToStr(line, " "); // Check the line length if (inputlist.size() < 4) continue; // Check whether this is a comment if (inputlist[0].c_str()[0] == '#') continue; // Check whether this is the correct parameter type if (inputlist[0].compare(parType) != 0) continue; // Check the parameter name if (inputlist[1].compare(name) != 0) continue; // inputlist[2] should be the units... ignore for now dialfunc = inputlist[3]; // High and low are optional, check whether they exist if (inputlist.size() > 4) low = GeneralUtils::StrToDbl(inputlist[4]); if (inputlist.size() > 5) high = GeneralUtils::StrToDbl(inputlist[5]); } TF1 convfunc = TF1((name + "_convfunc").c_str(), dialfunc.c_str(), low, high); return convfunc; } //******************************************************************** std::string FitBase::GetRWUnits(std::string const &type, std::string const &name) { //******************************************************************** std::string unit = "sig."; std::string parType = type; if (parType.find("parameter") == std::string::npos) { parType += "_parameter"; } std::string line; std::ifstream card( (GeneralUtils::GetTopLevelDir() + "/parameters/dial_conversion.card") .c_str(), - ifstream::in); + std::ifstream::in); while (std::getline(card >> std::ws, line, '\n')) { std::vector inputlist = GeneralUtils::ParseToStr(line, " "); // Check the line length if (inputlist.size() < 3) continue; // Check whether this is a comment if (inputlist[0].c_str()[0] == '#') continue; // Check whether this is the correct parameter type if (inputlist[0].compare(parType) != 0) continue; // Check the parameter name if (inputlist[1].compare(name) != 0) continue; unit = inputlist[2]; break; } return unit; } //******************************************************************** double FitBase::RWAbsToSigma(std::string const &type, std::string const &name, double val) { //******************************************************************** TF1 f1 = GetRWConvFunction(type, name); double conv_val = f1.GetX(val); if (fabs(conv_val) < 1E-10) conv_val = 0.0; std::cout << "AbsToSigma(" << name << ") = " << val << " -> " << conv_val << std::endl; return conv_val; } //******************************************************************** double FitBase::RWSigmaToAbs(std::string const &type, std::string const &name, double val) { //******************************************************************** TF1 f1 = GetRWConvFunction(type, name); double conv_val = f1.Eval(val); return conv_val; } //******************************************************************** double FitBase::RWFracToSigma(std::string const &type, std::string const &name, double val) { //******************************************************************** TF1 f1 = GetRWConvFunction(type, name); double conv_val = f1.GetX((val * f1.Eval(0.0))); if (fabs(conv_val) < 1E-10) conv_val = 0.0; return conv_val; } //******************************************************************** double FitBase::RWSigmaToFrac(std::string const &type, std::string const &name, double val) { //******************************************************************** TF1 f1 = GetRWConvFunction(type, name); double conv_val = f1.Eval(val) / f1.Eval(0.0); return conv_val; } int FitBase::ConvDialType(std::string const &type) { if (!type.compare("neut_parameter")) return kNEUT; else if (!type.compare("niwg_parameter")) return kNIWG; else if (!type.compare("nuwro_parameter")) return kNUWRO; else if (!type.compare("t2k_parameter")) return kT2K; else if (!type.compare("genie_parameter")) return kGENIE; else if (!type.compare("custom_parameter")) return kCUSTOM; else if (!type.compare("norm_parameter")) return kNORM; else if (!type.compare("likeweight_parameter")) return kLIKEWEIGHT; else if (!type.compare("spline_parameter")) return kSPLINEPARAMETER; else if (!type.compare("osc_parameter")) return kOSCILLATION; else if (!type.compare("modenorm_parameter")) return kMODENORM; else return kUNKNOWN; } std::string FitBase::ConvDialType(int type) { switch (type) { case kNEUT: { return "neut_parameter"; } case kNIWG: { return "niwg_parameter"; } case kNUWRO: { return "nuwro_parameter"; } case kT2K: { return "t2k_parameter"; } case kGENIE: { return "genie_parameter"; } case kNORM: { return "norm_parameter"; } case kCUSTOM: { return "custom_parameter"; } case kLIKEWEIGHT: { return "likeweight_parameter"; } case kSPLINEPARAMETER: { return "spline_parameter"; } case kOSCILLATION: { return "osc_parameter"; } case kMODENORM: { return "modenorm_parameter"; } default: return "unknown_parameter"; } } int FitBase::GetDialEnum(std::string const &type, std::string const &name) { return FitBase::GetDialEnum(FitBase::ConvDialType(type), name); } int FitBase::GetDialEnum(int type, std::string const &name) { int offset = type * 1000; int this_enum = Reweight::kNoDialFound; // Not Found std::cout << "Getting dial enum " << type << " " << name << std::endl; // Select Types switch (type) { // NEUT DIAL TYPE case kNEUT: { #ifdef __NEUT_ENABLED__ int neut_enum = (int)neut::rew::NSyst::FromString(name); if (neut_enum != 0) { this_enum = neut_enum + offset; } #else this_enum = Reweight::kNoTypeFound; // Not enabled #endif break; } // NIWG DIAL TYPE case kNIWG: { #ifdef __NIWG_ENABLED__ int niwg_enum = (int)niwg::rew::NIWGSyst::FromString(name); if (niwg_enum != 0) { this_enum = niwg_enum + offset; } #else this_enum = Reweight::kNoTypeFound; #endif break; } // NUWRO DIAL TYPE case kNUWRO: { #ifdef __NUWRO_REWEIGHT_ENABLED__ int nuwro_enum = (int)nuwro::rew::NuwroSyst::FromString(name); if (nuwro_enum > 0) { this_enum = nuwro_enum + offset; } #else this_enum = Reweight::kNoTypeFound; #endif } // GENIE DIAL TYPE case kGENIE: { #ifdef __GENIE_ENABLED__ int genie_enum = (int)genie::rew::GSyst::FromString(name); if (genie_enum > 0) { this_enum = genie_enum + offset; } #else this_enum = Reweight::kNoTypeFound; #endif break; } case kCUSTOM: { int custom_enum = 0; // PLACEHOLDER this_enum = custom_enum + offset; break; } // T2K DIAL TYPE case kT2K: { #ifdef __T2KREW_ENABLED__ int t2k_enum = (int)t2krew::T2KSyst::FromString(name); if (t2k_enum > 0) { this_enum = t2k_enum + offset; } #else this_enum = Reweight::kNoTypeFound; #endif break; } case kNORM: { if (gNormEnums.find(name) == gNormEnums.end()) { gNormEnums[name] = gNormEnums.size() + 1 + offset; } this_enum = gNormEnums[name]; break; } case kLIKEWEIGHT: { if (gLikeWeightEnums.find(name) == gLikeWeightEnums.end()) { gLikeWeightEnums[name] = gLikeWeightEnums.size() + 1 + offset; } this_enum = gLikeWeightEnums[name]; break; } case kSPLINEPARAMETER: { if (gSplineParameterEnums.find(name) == gSplineParameterEnums.end()) { gSplineParameterEnums[name] = gSplineParameterEnums.size() + 1 + offset; } this_enum = gSplineParameterEnums[name]; break; } case kOSCILLATION: { #ifdef __PROB3PP_ENABLED__ int oscEnum = OscWeightEngine::SystEnumFromString(name); if (oscEnum != 0) { this_enum = oscEnum + offset; } #else this_enum = Reweight::kNoTypeFound; // Not enabled #endif } case kMODENORM: { size_t us_pos = name.find_first_of('_'); std::string numstr = name.substr(us_pos + 1); int mode_num = std::atoi(numstr.c_str()); LOG(FTL) << "Getting mode num " << mode_num << std::endl; if (!mode_num) { ERR(FTL) << "Attempting to parse dial name: \"" << name << "\" as a mode norm dial but failed." << std::endl; throw; } this_enum = 60 + mode_num + offset; break; } } // If Not Enabled if (this_enum == Reweight::kNoTypeFound) { ERR(FTL) << "RW Engine not supported for " << FitBase::ConvDialType(type) << std::endl; ERR(FTL) << "Check dial " << name << std::endl; } // If Not Found if (this_enum == Reweight::kNoDialFound) { ERR(FTL) << "Dial " << name << " not found." << std::endl; } return this_enum; } int Reweight::ConvDialType(std::string const &type) { return FitBase::ConvDialType(type); } std::string Reweight::ConvDialType(int type) { return FitBase::ConvDialType(type); } int Reweight::GetDialType(int type) { int t = (type / 1000); return t > kMODENORM ? Reweight::kNoDialFound : t; } int Reweight::RemoveDialType(int type) { return (type % 1000); } int Reweight::NEUTEnumFromName(std::string const &name) { #ifdef __NEUT_ENABLED__ int neutenum = (int)neut::rew::NSyst::FromString(name); return (neutenum > 0) ? neutenum : Reweight::kNoDialFound; #else return Reweight::kGeneratorNotBuilt; #endif } int Reweight::NIWGEnumFromName(std::string const &name) { #ifdef __NIWG_ENABLED__ int niwgenum = (int)niwg::rew::NIWGSyst::FromString(name); return (niwgenum != 0) ? niwgenum : Reweight::kNoDialFound; #else return Reweight::kGeneratorNotBuilt; #endif } int Reweight::NUWROEnumFromName(std::string const &name) { #ifdef __NUWRO_REWEIGHT_ENABLED__ int nuwroenum = (int)nuwro::rew::NuwroSyst::FromString(name); return (nuwroenum > 0) ? nuwroenum : Reweight::kNoDialFound; #else return Reweight::kGeneratorNotBuilt; #endif } int Reweight::GENIEEnumFromName(std::string const &name) { #ifdef __GENIE_ENABLED__ int genieenum = (int)genie::rew::GSyst::FromString(name); return (genieenum > 0) ? genieenum : Reweight::kNoDialFound; #else return Reweight::kGeneratorNotBuilt; #endif } int Reweight::T2KEnumFromName(std::string const &name) { #ifdef __T2KREW_ENABLED__ int t2kenum = (int)t2krew::T2KSyst::FromString(name); return (t2kenum > 0) ? t2kenum : Reweight::kNoDialFound; #else return Reweight::kGeneratorNotBuilt; #endif } int Reweight::OscillationEnumFromName(std::string const &name) { #ifdef __PROB3PP_ENABLED__ int oscEnum = OscWeightEngine::SystEnumFromString(name); return (oscEnum > 0) ? oscEnum : Reweight::kNoDialFound; #else return Reweight::kGeneratorNotBuilt; #endif } int Reweight::NUISANCEEnumFromName(std::string const &name, int type) { int nuisenum = Reweight::DialList().EnumFromNameAndType(name, type); return nuisenum; } int Reweight::CustomEnumFromName(std::string const &name) { int custenum = Reweight::ConvertNUISANCEDial(name); return custenum; } int Reweight::ConvDial(std::string const &name, std::string const &type, bool exceptions) { return Reweight::ConvDial(name, Reweight::ConvDialType(type), exceptions); } int Reweight::ConvDial(std::string const &fullname, int type, bool exceptions) { std::string name = GeneralUtils::ParseToStr(fullname, ",")[0]; // Only use first dial given // Produce offset seperating each type. int offset = type * 1000; int genenum = Reweight::kNoDialFound; switch (type) { case kNEUT: genenum = NEUTEnumFromName(name); break; case kNIWG: genenum = NIWGEnumFromName(name); break; case kNUWRO: genenum = NUWROEnumFromName(name); break; case kGENIE: genenum = GENIEEnumFromName(name); break; case kT2K: genenum = T2KEnumFromName(name); break; case kCUSTOM: genenum = CustomEnumFromName(name); break; case kNORM: case kLIKEWEIGHT: case kSPLINEPARAMETER: case kNEWSPLINE: genenum = NUISANCEEnumFromName(name, type); break; case kOSCILLATION: genenum = OscillationEnumFromName(name); break; case kMODENORM: genenum = ModeNormEngine::SystEnumFromString(name); break; default: genenum = Reweight::kNoTypeFound; break; } // Throw if required. if (exceptions) { // If Not Enabled if (genenum == Reweight::kGeneratorNotBuilt) { ERR(FTL) << "RW Engine not supported for " << FitBase::ConvDialType(type) << std::endl; ERR(FTL) << "Check dial " << name << std::endl; throw; } // If no type enabled if (genenum == Reweight::kNoTypeFound) { ERR(FTL) << "Type mismatch inside ConvDialEnum" << std::endl; throw; } // If Not Found if (genenum == Reweight::kNoDialFound) { ERR(FTL) << "Dial " << name << " not found." << std::endl; throw; } } // Add offset if no issue int nuisenum = genenum; if ((genenum != Reweight::kGeneratorNotBuilt) && (genenum != Reweight::kNoTypeFound) && (genenum != Reweight::kNoDialFound)) { nuisenum += offset; } // Now register dial Reweight::DialList().RegisterDialEnum(name, type, nuisenum); return nuisenum; } std::string Reweight::ConvDial(int nuisenum) { for (size_t i = 0; i < Reweight::DialList().fAllDialEnums.size(); i++) { if (Reweight::DialList().fAllDialEnums[i] == nuisenum) { return Reweight::DialList().fAllDialNames[i]; } } LOG(FIT) << "Cannot find dial with enum = " << nuisenum << std::endl; return ""; } diff --git a/src/Routines/MinimizerRoutines.h b/src/Routines/MinimizerRoutines.h index 0733601..86b2d1d 100755 --- a/src/Routines/MinimizerRoutines.h +++ b/src/Routines/MinimizerRoutines.h @@ -1,270 +1,276 @@ // Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret /******************************************************************************* * This file is part of NUISANCE. * * NUISANCE is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * NUISANCE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NUISANCE. If not, see . *******************************************************************************/ #ifndef MINIMIZER_ROUTINES_H #define MINIMIZER_ROUTINES_H /*! * \addtogroup Minimizer * @{ */ #include "TH1.h" #include "TF1.h" #include "TMatrixD.h" #include "TVectorD.h" + +#ifdef ROOT6_USE_FIT_FITTER_INTERFACE +#include "Fit/Fitter.h" +#else #include "Minuit2/FCNBase.h" #include "TFitterMinuit.h" +#endif + #include "TSystem.h" #include "TFile.h" #include "TProfile.h" #include #include #include #include #include #include "FitEvent.h" #include "JointFCN.h" #include "MinimizerFCN.h" #include "Math/Minimizer.h" #include "Math/Factory.h" #include "Math/Functor.h" #include "FitLogger.h" #include "ParserUtils.h" enum minstate { kErrorStatus = -1, kGoodStatus, kFitError, kNoChange, kFitFinished, kFitUnfinished, kStateChange, }; //************************************* //! Collects all possible fit routines into a single class to avoid repeated code class MinimizerRoutines{ //************************************* public: /* Constructor/Destructor */ //! Constructor reads in arguments given at the command line for the fit here. MinimizerRoutines(int argc, char* argv[]); - + //! Default destructor ~MinimizerRoutines(); //! Reset everything to default/NULL void Init(); - + /* Input Functions */ //! Splits the arguments ready for initial setup void ParseArgs(int argc, char* argv[]); //! Sorts out configuration and verbosity right at the very start. //! Calls readCard to set everything else up. void InitialSetup(); //! Loops through each line of the card file and passes it to other read functions void ReadCard(std::string cardfile); //! Check for parameter string in the line and assign the correct type. //! Fills maps for each of the parameters int ReadParameters(std::string parstring); //! Reads in fake parameters and assigns them (Requires the parameter to be included as a normal parameter as well) int ReadFakeDataPars(std::string parstring); //! Read in the samples so we can set up the free normalisation dials if required int ReadSamples(std::string sampleString); void SetupMinimizerFromXML(); /* Setup Functions */ //! Setup the configuration given the arguments passed at the commandline and card file void SetupConfig(); //! Setups up our custom RW engine with all the parameters passed in the card file void SetupRWEngine(); //! Setups up the jointFCN. void SetupFCN(); //! Sets up the minimizerObj for ROOT. there are cases where this is called repeatedly, e.g. If you are using a brute force scan before using Migrad. void SetupFitter(std::string routine); //! Set the current data histograms in each sample to the fake data. void SetFakeData(); //! Setup the covariances with the correct dimensions. At the start this is either uncorrelated or merged given all the input covariances. //! At the end of the fit this produces the blank covariances which can then be filled by the minimizerObj with best fit covariances. void SetupCovariance(); /* Fitting Functions */ //! Main function to actually start iterating over the different required fit routines void Run(); //! Given a new map change the values that the RW engine is currently set to void UpdateRWEngine(std::map& updateVals); //! Given a single routine (see tutorial for options) run that fit routine now. int RunFitRoutine(std::string routine); //! Get the current state of minimizerObj and fill it into currentVals and currentNorms void GetMinimizerState(); //! Print current value void PrintState(); - + //! Performs a fit routine where the input.maxevents is set to a much lower value to try and move closer to the best fit minimum. void LowStatRoutine(std::string routine); //! Perform a chi2 scan in 1D around the current point void Create1DScans(); //! Perform a chi2 scan in 2D around the current point void Chi2Scan2D(); //! Currently a placeholder NEEDS UPDATING void CreateContours(); //! If any currentVals are close to the limits set them to the limit and fix them int FixAtLimit(); //! Throw the current covariance of dial values we have, and fill the thrownVals and thrownNorms maps. //! If uniformly is true parameters will be thrown uniformly between their upper and lower limits. void ThrowCovariance(bool uniformly); //! Given the covariance we currently have generate error bands by throwing the covariance. //! The FitPar config "error_uniform" defines whether to throw using the covariance or uniformly. //! The FitPar config "error_throws" defines how many throws are needed. //! Currently only supports TH1D plots. void GenerateErrorBands(); /* Write Functions */ //! Write plots and TTrees listing the minimizerObj result of the fit to file void SaveMinimizerState(); //! Save the sample plots for current MC //! dir if not empty forces plots to be saved in a subdirectory of outputfile void SaveCurrentState(std::string subdir=""); //! Save starting predictions into a seperate folder void SaveNominal(); //! Save predictions before the fit is ran into a seperate folder void SavePrefit(); void SaveResults(); /* MISC Functions */ //! Get previous fit status from a file Int_t GetStatus(); /// Makes a histogram of likelihoods when throwing the data according to its statistics void ThrowDataToys(); protected: //! Our Custom ReWeight Object FitWeight* rw; std::string fOutputFile; std::string fInputFile; TFile* fInputRootFile; TFile* fOutputRootFile; //! Flag for whether the fit should be continued if an output file is already found. bool fitContinue; //! Minimizer Object for handling roots different minimizer methods ROOT::Math::Minimizer* fMinimizer; JointFCN* fSampleFCN; MinimizerFCN* fMinimizerFCN; ROOT::Math::Functor* fCallFunctor; int nfreepars; std::string fCardFile; std::string fStrategy; std::vector fRoutines; std::string fAllowedRoutines; - + std::string fFakeDataInput; // Input Dial Vals //! Vector of dial names std::vector fParams; std::map fStateVals; std::map fStartVals; std::map fCurVals; std::map fErrorVals; std::map fMinVals; std::map fMaxVals; std::map fStepVals; std::map fTypeVals; std::map fFixVals; std::map fStartFixVals; //! Vector of fake parameter names std::map fFakeVals; //! Map of thrown parameter names and values (After ThrowCovariance) std::map fThrownVals; TH2D* fCorrel; TH2D* fDecomp; TH2D* fCovar; - + TH2D* fCorFree; TH2D* fDecFree; TH2D* fCovFree; nuiskey fCompKey; }; /*! @} */ #endif diff --git a/src/Splines/SplineWriter.h b/src/Splines/SplineWriter.h index ffc0655..87d7cc6 100644 --- a/src/Splines/SplineWriter.h +++ b/src/Splines/SplineWriter.h @@ -1,92 +1,98 @@ #ifndef SPLINEWRITER_H #define SPLINEWRITER_H #include "FitWeight.h" #include "Spline.h" #include "SplineUtils.h" #ifdef __MINUIT2_ENABLED__ + +#ifdef ROOT6_USE_FIT_FITTER_INTERFACE +#include "Fit/Fitter.h" +#else #include "TFitterMinuit.h" #endif +#endif + class SplineFCN { public: SplineFCN(Spline* spl, std::vector > v, std::vector w) { fSpl = spl; fVal = v; fWeight = w; }; ~SplineFCN() {}; double operator()(const double* x) const; double DoEval(const double *x) const; void SaveAs(std::string name, const float* fx); void UpdateWeights(std::vector& w); void SetCorrelated(bool state = true); bool uncorrelated; std::vector< std::vector > fVal; std::vector< double > fWeight; Spline* fSpl; }; class SplineWriter : public SplineReader { public: SplineWriter(FitWeight* fw) { fRW = fw; fDrawSplines = FitPar::Config().GetParB("drawsplines"); }; ~SplineWriter() {}; void SetupSplineSet(); void Write(std::string name); void AddCoefficientsToTree(TTree* tree); void FitSplinesForEvent(TCanvas* fitcanvas = NULL, bool saveplot = false); void AddWeightsToTree(TTree* tr); void ReadWeightsFromTree(TTree* tr); void FitSplinesForEvent(double* weightvals, float* coeff); void GetWeightsForEvent(FitEvent* event, double* weights); void GetWeightsForEvent(FitEvent* event); void ReconfigureSet(int iset); double GetWeightForThisSet(FitEvent* event, int iset=-1); void SetWeights(double* weights); inline int GetNWeights(){return fParVect.size();}; inline int GetNPars(){ return fNCoEff;}; int fNCoEff; // double* fCoEffStorer; float* fCoEffStorer; std::vector< std::vector > fParVect; std::vector< int > fSetIndex; double* fWeightList; std::vector< std::vector > fValList; int fCurrentSet; FitWeight* fRW; bool fDrawSplines; std::vector fAllDrawnHists; std::vector fAllDrawnGraphs; #ifdef __MINUIT2_ENABLED__ std::map fSplineFCNs; std::map fSplineFunctors; std::map fSplineMinimizers; #endif // Spline* gSpline; // Available Fitting Functions void FitCoeff(Spline* spl, std::vector< std::vector >& v, std::vector& w, float* coeff, bool draw); void FitCoeff1DGraph(Spline* spl, int n, double* x, double* y, float* coeff, bool draw); void GetCoeff1DTSpline3(Spline* spl, int n, double* x, double* y, float* coeff, bool draw); // void FitCoeff2DGraph(Spline* spl, std::vector< std::vector >& v, std::vector& w, float* coeff, bool draw); void FitCoeffNDGraph(Spline* spl, std::vector< std::vector >& v, std::vector& w, float* coeff, bool draw); void FitCoeff2DGraph(Spline* spl, int n, double* x, double* y, double* w, float* coeff, bool draw); //double Func2DWrapper(double* x, double* p); }; #endif diff --git a/src/Utils/PlotUtils.cxx b/src/Utils/PlotUtils.cxx index ec742e3..0f8bbcb 100644 --- a/src/Utils/PlotUtils.cxx +++ b/src/Utils/PlotUtils.cxx @@ -1,1001 +1,1001 @@ // Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret /******************************************************************************* * This file is part of NUISANCE. * * NUISANCE is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * NUISANCE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NUISANCE. If not, see . *******************************************************************************/ #include "PlotUtils.h" #include "FitEvent.h" #include "StatUtils.h" // MOVE TO MB UTILS! // This function is intended to be modified to enforce a consistent masking for // all models. TH2D* PlotUtils::SetMaskHist(std::string type, TH2D* data) { TH2D* fMaskHist = (TH2D*)data->Clone("fMaskHist"); for (int xBin = 0; xBin < fMaskHist->GetNbinsX(); ++xBin) { for (int yBin = 0; yBin < fMaskHist->GetNbinsY(); ++yBin) { if (data->GetBinContent(xBin + 1, yBin + 1) == 0) fMaskHist->SetBinContent(xBin + 1, yBin + 1, 0); else fMaskHist->SetBinContent(xBin + 1, yBin + 1, 0.5); if (!type.compare("MB_numu_2D")) { if (yBin == 19 && xBin < 8) fMaskHist->SetBinContent(xBin + 1, yBin + 1, 1.0); } else { if (yBin == 19 && xBin < 11) fMaskHist->SetBinContent(xBin + 1, yBin + 1, 1.0); } if (yBin == 18 && xBin < 3) fMaskHist->SetBinContent(xBin + 1, yBin + 1, 1.0); if (yBin == 17 && xBin < 2) fMaskHist->SetBinContent(xBin + 1, yBin + 1, 1.0); if (yBin == 16 && xBin < 1) fMaskHist->SetBinContent(xBin + 1, yBin + 1, 1.0); } } return fMaskHist; }; // MOVE TO GENERAL UTILS? bool PlotUtils::CheckObjectWithName(TFile* inFile, std::string substring) { TIter nextkey(inFile->GetListOfKeys()); TKey* key; while ((key = (TKey*)nextkey())) { std::string test(key->GetName()); if (test.find(substring) != std::string::npos) return true; } return false; }; // MOVE TO GENERAL UTILS? std::string PlotUtils::GetObjectWithName(TFile* inFile, std::string substring) { TIter nextkey(inFile->GetListOfKeys()); TKey* key; std::string output = ""; while ((key = (TKey*)nextkey())) { std::string test(key->GetName()); if (test.find(substring) != std::string::npos) output = test; } return output; }; void PlotUtils::CreateNeutModeArray(TH1* hist, TH1* neutarray[]) { for (int i = 0; i < 60; i++) { neutarray[i] = (TH1*)hist->Clone(Form("%s_NMODE_%i", hist->GetName(), i)); } return; }; void PlotUtils::DeleteNeutModeArray(TH1* neutarray[]) { for (int i = 0; i < 60; i++) { delete neutarray[i]; } return; }; void PlotUtils::FillNeutModeArray(TH1D* hist[], int mode, double xval, double weight) { if (abs(mode) > 60) return; hist[abs(mode)]->Fill(xval, weight); return; }; void PlotUtils::FillNeutModeArray(TH2D* hist[], int mode, double xval, double yval, double weight) { if (abs(mode) > 60) return; hist[abs(mode)]->Fill(xval, yval, weight); return; }; THStack PlotUtils::GetNeutModeStack(std::string title, TH1* ModeStack[], int option) { (void)option; THStack allmodes = THStack(title.c_str(), title.c_str()); for (int i = 0; i < 60; i++) { allmodes.Add(ModeStack[i]); } // Credit to Clarence for copying all this out. // CC ModeStack[1]->SetTitle("CCQE"); ModeStack[1]->SetFillColor(kBlue); // ModeStack[1]->SetFillStyle(3444); ModeStack[1]->SetLineColor(kBlue); ModeStack[2]->SetTitle("2p/2h Nieves"); ModeStack[2]->SetFillColor(kRed); // ModeStack[2]->SetFillStyle(3344); ModeStack[2]->SetLineColor(kRed); // ModeStack[11]->SetTitle("#it{#nu + p #rightarrow l^{-} + p + #pi^{+}}"); ModeStack[11]->SetTitle("CC1#pi^{+} on p"); ModeStack[11]->SetFillColor(kGreen); // ModeStack[11]->SetFillStyle(3004); ModeStack[11]->SetLineColor(kGreen); // ModeStack[12]->SetTitle("#it{#nu + n #rightarrow l^{-} + p + #pi^{0}}"); ModeStack[12]->SetTitle("CC1#pi^{0} on n"); ModeStack[12]->SetFillColor(kGreen + 3); // ModeStack[12]->SetFillStyle(3005); ModeStack[12]->SetLineColor(kGreen); // ModeStack[13]->SetTitle("#it{#nu + n #rightarrow l^{-} + n + #pi^{+}}"); ModeStack[13]->SetTitle("CC1#pi^{+} on n"); ModeStack[13]->SetFillColor(kGreen - 2); // ModeStack[13]->SetFillStyle(3004); ModeStack[13]->SetLineColor(kGreen); ModeStack[16]->SetTitle("CC coherent"); ModeStack[16]->SetFillColor(kBlue); // ModeStack[16]->SetFillStyle(3644); ModeStack[16]->SetLineColor(kBlue); // ModeStack[17]->SetTitle("#it{#nu + n #rightarrow l^{-} + p + #gamma}"); ModeStack[17]->SetTitle("CC1#gamma"); ModeStack[17]->SetFillColor(kMagenta); // ModeStack[17]->SetFillStyle(3001); ModeStack[17]->SetLineColor(kMagenta); ModeStack[21]->SetTitle("Multi #pi (1.3 < W < 2.0)"); ModeStack[21]->SetFillColor(kYellow); // ModeStack[21]->SetFillStyle(3005); ModeStack[21]->SetLineColor(kYellow); // ModeStack[22]->SetTitle("#it{#nu + n #rightarrow l^{-} + p + #eta^{0}}"); ModeStack[22]->SetTitle("CC1#eta^{0} on n"); ModeStack[22]->SetFillColor(kYellow - 2); // ModeStack[22]->SetFillStyle(3013); ModeStack[22]->SetLineColor(kYellow - 2); // ModeStack[23]->SetTitle("#it{#nu + n #rightarrow l^{-} + #Lambda + // K^{+}}"); ModeStack[23]->SetTitle("CC1#Labda1K^{+}"); ModeStack[23]->SetFillColor(kYellow - 6); // ModeStack[23]->SetFillStyle(3013); ModeStack[23]->SetLineColor(kYellow - 6); ModeStack[26]->SetTitle("DIS (W > 2.0)"); ModeStack[26]->SetFillColor(kRed); // ModeStack[26]->SetFillStyle(3006); ModeStack[26]->SetLineColor(kRed); // NC // ModeStack[31]->SetTitle("#it{#nu + n #rightarrow #nu + n + #pi^{0}}"); ModeStack[31]->SetTitle("NC1#pi^{0} on n"); ModeStack[31]->SetFillColor(kBlue); // ModeStack[31]->SetFillStyle(3004); ModeStack[31]->SetLineColor(kBlue); // ModeStack[32]->SetTitle("#it{#nu + p #rightarrow #nu + p + #pi^{0}}"); ModeStack[32]->SetTitle("NC1#pi^{0} on p"); ModeStack[32]->SetFillColor(kBlue + 3); // ModeStack[32]->SetFillStyle(3004); ModeStack[32]->SetLineColor(kBlue + 3); // ModeStack[33]->SetTitle("#it{#nu + n #rightarrow #nu + p + #pi^{-}}"); ModeStack[33]->SetTitle("NC1#pi^{-} on n"); ModeStack[33]->SetFillColor(kBlue - 2); // ModeStack[33]->SetFillStyle(3005); ModeStack[33]->SetLineColor(kBlue - 2); // ModeStack[34]->SetTitle("#it{#nu + p #rightarrow #nu + n + #pi^{+}}"); ModeStack[34]->SetTitle("NC1#pi^{+} on p"); ModeStack[34]->SetFillColor(kBlue - 8); // ModeStack[34]->SetFillStyle(3005); ModeStack[34]->SetLineColor(kBlue - 8); ModeStack[36]->SetTitle("NC Coherent"); ModeStack[36]->SetFillColor(kBlue + 8); // ModeStack[36]->SetFillStyle(3644); ModeStack[36]->SetLineColor(kBlue + 8); // ModeStack[38]->SetTitle("#it{#nu + n #rightarrow #nu + n + #gamma}"); ModeStack[38]->SetTitle("NC1#gamma on n"); ModeStack[38]->SetFillColor(kMagenta); // ModeStack[38]->SetFillStyle(3001); ModeStack[38]->SetLineColor(kMagenta); // ModeStack[39]->SetTitle("#it{#nu + p #rightarrow #nu + p + #gamma}"); ModeStack[39]->SetTitle("NC1#gamma on p"); ModeStack[39]->SetFillColor(kMagenta - 10); // ModeStack[39]->SetFillStyle(3001); ModeStack[39]->SetLineColor(kMagenta - 10); ModeStack[41]->SetTitle("Multi #pi (1.3 < W < 2.0)"); ModeStack[41]->SetFillColor(kBlue - 10); // ModeStack[41]->SetFillStyle(3005); ModeStack[41]->SetLineColor(kBlue - 10); // ModeStack[42]->SetTitle("#it{#nu + n #rightarrow #nu + n + #eta^{0}}"); ModeStack[42]->SetTitle("NC1#eta^{0} on n"); ModeStack[42]->SetFillColor(kYellow - 2); // ModeStack[42]->SetFillStyle(3013); ModeStack[42]->SetLineColor(kYellow - 2); // ModeStack[43]->SetTitle("#it{#nu + p #rightarrow #nu + p + #eta^{0}}"); ModeStack[43]->SetTitle("NC1#eta^{0} on p"); ModeStack[43]->SetFillColor(kYellow - 4); // ModeStack[43]->SetFillStyle(3013); ModeStack[43]->SetLineColor(kYellow - 4); // ModeStack[44]->SetTitle("#it{#nu + n #rightarrow #nu + #Lambda + K^{0}}"); ModeStack[44]->SetTitle("NC1#Lambda1K^{0} on n"); ModeStack[44]->SetFillColor(kYellow - 6); // ModeStack[44]->SetFillStyle(3014); ModeStack[44]->SetLineColor(kYellow - 6); // ModeStack[45]->SetTitle("#it{#nu + p #rightarrow #nu + #Lambda + K^{+}}"); ModeStack[45]->SetTitle("NC1#Lambda1K^{+}"); ModeStack[45]->SetFillColor(kYellow - 10); // ModeStack[45]->SetFillStyle(3014); ModeStack[45]->SetLineColor(kYellow - 10); ModeStack[46]->SetTitle("DIS (W > 2.0)"); ModeStack[46]->SetFillColor(kRed); // ModeStack[46]->SetFillStyle(3006); ModeStack[46]->SetLineColor(kRed); // ModeStack[51]->SetTitle("#it{#nu + p #rightarrow #nu + p}"); ModeStack[51]->SetTitle("NC on p"); ModeStack[51]->SetFillColor(kBlack); // ModeStack[51]->SetFillStyle(3444); ModeStack[51]->SetLineColor(kBlack); // ModeStack[52]->SetTitle("#it{#nu + n #rightarrow #nu + n}"); ModeStack[52]->SetTitle("NC on n"); ModeStack[52]->SetFillColor(kGray); // ModeStack[52]->SetFillStyle(3444); ModeStack[52]->SetLineColor(kGray); return allmodes; }; TLegend PlotUtils::GenerateStackLegend(THStack stack, int xlow, int ylow, int xhigh, int yhigh) { TLegend leg = TLegend(xlow, ylow, xhigh, yhigh); TObjArray* histarray = stack.GetStack(); int nhist = histarray->GetEntries(); for (int i = 0; i < nhist; i++) { TH1* hist = (TH1*)(histarray->At(i)); leg.AddEntry((hist), ((TH1*)histarray->At(i))->GetTitle(), "fl"); } leg.SetName(Form("%s_LEG", stack.GetName())); return leg; }; void PlotUtils::ScaleNeutModeArray(TH1* hist[], double factor, std::string option) { for (int i = 0; i < 60; i++) { if (hist[i]) hist[i]->Scale(factor, option.c_str()); } return; }; void PlotUtils::ResetNeutModeArray(TH1* hist[]) { for (int i = 0; i < 60; i++) { if (hist[i]) hist[i]->Reset(); } return; }; //******************************************************************** // This assumes the Enu axis is the x axis, as is the case for MiniBooNE 2D // distributions void PlotUtils::FluxUnfoldedScaling(TH2D* fMCHist, TH1D* fhist, TH1D* ehist, double scalefactor) { //******************************************************************** // Make clones to avoid changing stuff TH1D* eventhist = (TH1D*)ehist->Clone(); TH1D* fFluxHist = (TH1D*)fhist->Clone(); // Undo width integral in SF fMCHist->Scale(scalefactor / eventhist->Integral(1, eventhist->GetNbinsX() + 1, "width")); // Standardise The Flux eventhist->Scale(1.0 / fFluxHist->Integral()); fFluxHist->Scale(1.0 / fFluxHist->Integral()); // Do interpolation for 2D plots? // fFluxHist = PlotUtils::InterpolateFineHistogram(fFluxHist,100,"width"); // eventhist = PlotUtils::InterpolateFineHistogram(eventhist,100,"width"); // eventhist->Scale(1.0/fFluxHist->Integral()); // fFluxHist->Scale(1.0/fFluxHist->Integral()); // Scale fMCHist by eventhist integral fMCHist->Scale(eventhist->Integral(1, eventhist->GetNbinsX() + 1)); // Now Get a flux PDF assuming X axis is Enu TH1D* pdfflux = (TH1D*)fMCHist->ProjectionX()->Clone(); // pdfflux->Write( (std::string(fMCHist->GetName()) + "_PROJX").c_str()); pdfflux->Reset(); // Awful MiniBooNE Check for the time being bool ismb = std::string(fMCHist->GetName()).find("MiniBooNE") != std::string::npos; for (int i = 0; i < pdfflux->GetNbinsX(); i++) { double Ml = pdfflux->GetXaxis()->GetBinLowEdge(i + 1); double Mh = pdfflux->GetXaxis()->GetBinLowEdge(i + 2); // double Mc = pdfflux->GetXaxis()->GetBinCenter(i+1); // double Mw = pdfflux->GetBinWidth(i+1); double fluxint = 0.0; // Scaling to match flux for MB if (ismb) { Ml /= 1.E3; Mh /= 1.E3; // Mc /= 1.E3; // Mw /= 1.E3; } for (int j = 0; j < fFluxHist->GetNbinsX(); j++) { // double Fc = fFluxHist->GetXaxis()->GetBinCenter(j+1); double Fl = fFluxHist->GetXaxis()->GetBinLowEdge(j + 1); double Fh = fFluxHist->GetXaxis()->GetBinLowEdge(j + 2); double Fe = fFluxHist->GetBinContent(j + 1); double Fw = fFluxHist->GetXaxis()->GetBinWidth(j + 1); if (Fl >= Ml and Fh <= Mh) { fluxint += Fe; } else if (Fl < Ml and Fl < Mh and Fh > Ml and Fh < Mh) { fluxint += Fe * (Fh - Ml) / Fw; } else if (Fh > Mh and Fl < Mh and Fh > Ml and Fl > Ml) { fluxint += Fe * (Mh - Fl) / Fw; } else if (Ml >= Fl and Mh <= Fh) { fluxint += Fe * (Mh - Ml) / Fw; } else { continue; } } pdfflux->SetBinContent(i + 1, fluxint); } for (int i = 0; i < fMCHist->GetNbinsX(); i++) { for (int j = 0; j < fMCHist->GetNbinsY(); j++) { if (pdfflux->GetBinContent(i + 1) == 0.0) continue; double binWidth = fMCHist->GetYaxis()->GetBinLowEdge(j + 2) - fMCHist->GetYaxis()->GetBinLowEdge(j + 1); fMCHist->SetBinContent(i + 1, j + 1, fMCHist->GetBinContent(i + 1, j + 1) / pdfflux->GetBinContent(i + 1) / binWidth); fMCHist->SetBinError(i + 1, j + 1, fMCHist->GetBinError(i + 1, j + 1) / pdfflux->GetBinContent(i + 1) / binWidth); } } delete eventhist; delete fFluxHist; return; }; TH1D* PlotUtils::InterpolateFineHistogram(TH1D* hist, int res, std::string opt) { int nbins = hist->GetNbinsX(); double elow = hist->GetXaxis()->GetBinLowEdge(1); double ehigh = hist->GetXaxis()->GetBinLowEdge(nbins + 1); bool width = true; // opt.find("width") != std::string::npos; TH1D* fine = new TH1D("fine", "fine", nbins * res, elow, ehigh); TGraph* temp = new TGraph(); for (int i = 0; i < nbins; i++) { double E = hist->GetXaxis()->GetBinCenter(i + 1); double C = hist->GetBinContent(i + 1); double W = hist->GetXaxis()->GetBinWidth(i + 1); if (!width) W = 1.0; if (W != 0.0) temp->SetPoint(temp->GetN(), E, C / W); } for (int i = 0; i < fine->GetNbinsX(); i++) { double E = fine->GetXaxis()->GetBinCenter(i + 1); double W = fine->GetBinWidth(i + 1); if (!width) W = 1.0; fine->SetBinContent(i + 1, temp->Eval(E, 0, "S") * W); } fine->Scale(hist->Integral(1, hist->GetNbinsX() + 1) / fine->Integral(1, fine->GetNbinsX() + 1)); std::cout << "Interpolation Difference = " << fine->Integral(1, fine->GetNbinsX() + 1) << "/" << hist->Integral(1, hist->GetNbinsX() + 1) << std::endl; return fine; } //******************************************************************** // This interpolates the flux by a TGraph instead of requiring the flux and MC // flux to have the same binning void PlotUtils::FluxUnfoldedScaling(TH1D* mcHist, TH1D* fhist, TH1D* ehist, double scalefactor, int nevents) { //******************************************************************** TH1D* eventhist = (TH1D*)ehist->Clone(); TH1D* fFluxHist = (TH1D*)fhist->Clone(); if (FitPar::Config().GetParB("save_flux_debug")) { std::string name = std::string(mcHist->GetName()); mcHist->Write((name + "_UNF_MC").c_str()); fFluxHist->Write((name + "_UNF_FLUX").c_str()); eventhist->Write((name + "_UNF_EVT").c_str()); TH1D* scalehist = new TH1D("scalehist", "scalehist", 1, 0.0, 1.0); scalehist->SetBinContent(1, scalefactor); scalehist->SetBinContent(2, nevents); scalehist->Write((name + "_UNF_SCALE").c_str()); } // Undo width integral in SF mcHist->Scale(scalefactor / eventhist->Integral(1, eventhist->GetNbinsX() + 1, "width")); // Standardise The Flux eventhist->Scale(1.0 / fFluxHist->Integral()); fFluxHist->Scale(1.0 / fFluxHist->Integral()); // Scale mcHist by eventhist integral mcHist->Scale(eventhist->Integral(1, eventhist->GetNbinsX() + 1)); // Now Get a flux PDF TH1D* pdfflux = (TH1D*)mcHist->Clone(); pdfflux->Reset(); for (int i = 0; i < mcHist->GetNbinsX(); i++) { double Ml = mcHist->GetXaxis()->GetBinLowEdge(i + 1); double Mh = mcHist->GetXaxis()->GetBinLowEdge(i + 2); // double Mc = mcHist->GetXaxis()->GetBinCenter(i+1); // double Me = mcHist->GetBinContent(i+1); // double Mw = mcHist->GetBinWidth(i+1); double fluxint = 0.0; for (int j = 0; j < fFluxHist->GetNbinsX(); j++) { // double Fc = fFluxHist->GetXaxis()->GetBinCenter(j+1); double Fl = fFluxHist->GetXaxis()->GetBinLowEdge(j + 1); double Fh = fFluxHist->GetXaxis()->GetBinLowEdge(j + 2); double Fe = fFluxHist->GetBinContent(j + 1); double Fw = fFluxHist->GetXaxis()->GetBinWidth(j + 1); if (Fl >= Ml and Fh <= Mh) { fluxint += Fe; } else if (Fl < Ml and Fl < Mh and Fh > Ml and Fh < Mh) { fluxint += Fe * (Fh - Ml) / Fw; } else if (Fh > Mh and Fl < Mh and Fh > Ml and Fl > Ml) { fluxint += Fe * (Mh - Fl) / Fw; } else if (Ml >= Fl and Mh <= Fh) { fluxint += Fe * (Mh - Ml) / Fw; } else { continue; } } pdfflux->SetBinContent(i + 1, fluxint); } // Scale MC hist by pdfflux for (int i = 0; i < mcHist->GetNbinsX(); i++) { if (pdfflux->GetBinContent(i + 1) == 0.0) continue; mcHist->SetBinContent( i + 1, mcHist->GetBinContent(i + 1) / pdfflux->GetBinContent(i + 1)); mcHist->SetBinError( i + 1, mcHist->GetBinError(i + 1) / pdfflux->GetBinContent(i + 1)); } delete eventhist; delete fFluxHist; return; }; // MOVE TO GENERAL UTILS //******************************************************************** void PlotUtils::Set2DHistFromText(std::string dataFile, TH2* hist, double norm, bool skipbins) { //******************************************************************** std::string line; - std::ifstream data(dataFile.c_str(), ifstream::in); + std::ifstream data(dataFile.c_str(), std::ifstream::in); int yBin = 0; while (std::getline(data >> std::ws, line, '\n')) { std::vector entries = GeneralUtils::ParseToDbl(line, " "); // Loop over entries and insert them into the histogram for (uint xBin = 0; xBin < entries.size(); xBin++) { if (!skipbins or entries[xBin] != -1.0) hist->SetBinContent(xBin + 1, yBin + 1, entries[xBin] * norm); } yBin++; } return; } // MOVE TO GENERAL UTILS TH1D* PlotUtils::GetTH1DFromFile(std::string dataFile, std::string title, std::string fPlotTitles, std::string alt_name) { TH1D* tempPlot; // If format is a root file if (dataFile.find(".root") != std::string::npos) { TFile* temp_infile = new TFile(dataFile.c_str(), "READ"); tempPlot = (TH1D*)temp_infile->Get(title.c_str()); tempPlot->SetDirectory(0); temp_infile->Close(); delete temp_infile; // Else its a space seperated txt file } else { // Make a TGraph Errors TGraphErrors* gr = new TGraphErrors(dataFile.c_str(), "%lg %lg %lg"); if (gr->IsZombie()) { exit(-1); } double* bins = gr->GetX(); double* values = gr->GetY(); double* errors = gr->GetEY(); int npoints = gr->GetN(); // Fill the histogram from it tempPlot = new TH1D(title.c_str(), title.c_str(), npoints - 1, bins); for (int i = 0; i < npoints; ++i) { tempPlot->SetBinContent(i + 1, values[i]); // If only two columns are present in the input file, use the sqrt(values) // as the error // equivalent to assuming that the error is statistical if (!errors[i]) tempPlot->SetBinError(i + 1, sqrt(values[i])); else tempPlot->SetBinError(i + 1, errors[i]); } delete gr; } // Allow alternate naming for root files if (!alt_name.empty()) { tempPlot->SetNameTitle(alt_name.c_str(), alt_name.c_str()); } // Allow alternate axis titles if (!fPlotTitles.empty()) { tempPlot->SetNameTitle( tempPlot->GetName(), (std::string(tempPlot->GetTitle()) + fPlotTitles).c_str()); } return tempPlot; }; TH1D* PlotUtils::GetRatioPlot(TH1D* hist1, TH1D* hist2) { // make copy of first hist TH1D* new_hist = (TH1D*)hist1->Clone(); // Do bins and errors ourselves as scales can go awkward for (int i = 0; i < new_hist->GetNbinsX(); i++) { if (hist2->GetBinContent(i + 1) == 0.0) { new_hist->SetBinContent(i + 1, 0.0); } new_hist->SetBinContent( i + 1, hist1->GetBinContent(i + 1) / hist2->GetBinContent(i + 1)); new_hist->SetBinError( i + 1, hist1->GetBinError(i + 1) / hist2->GetBinContent(i + 1)); } return new_hist; }; TH1D* PlotUtils::GetRenormalisedPlot(TH1D* hist1, TH1D* hist2) { // make copy of first hist TH1D* new_hist = (TH1D*)hist1->Clone(); if (hist1->Integral("width") == 0 or hist2->Integral("width") == 0) { new_hist->Reset(); return new_hist; } Double_t scaleF = hist2->Integral("width") / hist1->Integral("width"); new_hist->Scale(scaleF); return new_hist; }; TH1D* PlotUtils::GetShapePlot(TH1D* hist1) { // make copy of first hist TH1D* new_hist = (TH1D*)hist1->Clone(); if (hist1->Integral("width") == 0) { new_hist->Reset(); return new_hist; } Double_t scaleF1 = 1.0 / hist1->Integral("width"); new_hist->Scale(scaleF1); return new_hist; }; TH1D* PlotUtils::GetShapeRatio(TH1D* hist1, TH1D* hist2) { TH1D* new_hist1 = GetShapePlot(hist1); TH1D* new_hist2 = GetShapePlot(hist2); // Do bins and errors ourselves as scales can go awkward for (int i = 0; i < new_hist1->GetNbinsX(); i++) { if (hist2->GetBinContent(i + 1) == 0) { new_hist1->SetBinContent(i + 1, 0.0); } new_hist1->SetBinContent(i + 1, new_hist1->GetBinContent(i + 1) / new_hist2->GetBinContent(i + 1)); new_hist1->SetBinError( i + 1, new_hist1->GetBinError(i + 1) / new_hist2->GetBinContent(i + 1)); } delete new_hist2; return new_hist1; }; TH2D* PlotUtils::GetCovarPlot(TMatrixDSym* cov, std::string name, std::string title) { TH2D* CovarPlot; if (cov) CovarPlot = new TH2D((*cov)); else CovarPlot = new TH2D(name.c_str(), title.c_str(), 1, 0, 1, 1, 0, 1); CovarPlot->SetName(name.c_str()); CovarPlot->SetTitle(title.c_str()); return CovarPlot; } TH2D* PlotUtils::GetFullCovarPlot(TMatrixDSym* cov, std::string name) { return PlotUtils::GetCovarPlot( cov, name + "_COV", name + "_COV;Bins;Bins;Covariance (#times10^{-76})"); } TH2D* PlotUtils::GetInvCovarPlot(TMatrixDSym* cov, std::string name) { return PlotUtils::GetCovarPlot( cov, name + "_INVCOV", name + "_INVCOV;Bins;Bins;Inv. Covariance (#times10^{-76})"); } TH2D* PlotUtils::GetDecompCovarPlot(TMatrixDSym* cov, std::string name) { return PlotUtils::GetCovarPlot( cov, name + "_DECCOV", name + "_DECCOV;Bins;Bins;Decomp Covariance (#times10^{-76})"); } TH1D* PlotUtils::GetTH1DFromRootFile(std::string file, std::string name) { if (name.empty()) { std::vector tempfile = GeneralUtils::ParseToStr(file, ";"); file = tempfile[0]; name = tempfile[1]; } TFile* rootHistFile = new TFile(file.c_str(), "READ"); TH1D* tempHist = (TH1D*)rootHistFile->Get(name.c_str())->Clone(); tempHist->SetDirectory(0); rootHistFile->Close(); return tempHist; } TH2D* PlotUtils::GetTH2DFromRootFile(std::string file, std::string name) { if (name.empty()) { std::vector tempfile = GeneralUtils::ParseToStr(file, ";"); file = tempfile[0]; name = tempfile[1]; } TFile* rootHistFile = new TFile(file.c_str(), "READ"); TH2D* tempHist = (TH2D*)rootHistFile->Get(name.c_str())->Clone(); tempHist->SetDirectory(0); rootHistFile->Close(); delete rootHistFile; return tempHist; } TH1* PlotUtils::GetTH1FromRootFile(std::string file, std::string name) { if (name.empty()) { std::vector tempfile = GeneralUtils::ParseToStr(file, ";"); file = tempfile[0]; name = tempfile[1]; } TFile* rootHistFile = new TFile(file.c_str(), "READ"); if (!rootHistFile || rootHistFile->IsZombie()) { THROW("Couldn't open root file: \"" << file << "\"."); } TH1* tempHist = dynamic_cast(rootHistFile->Get(name.c_str())->Clone()); if (!tempHist) { THROW("Couldn't retrieve: \"" << name << "\" from root file: \"" << file << "\"."); } tempHist->SetDirectory(0); rootHistFile->Close(); delete rootHistFile; return tempHist; } /// Returns a vector of named TH1*s found in a single input file. /// /// Expects a descriptor like: file.root[hist1|hist2|...] std::vector PlotUtils::GetTH1sFromRootFile( std::string const& descriptor) { std::vector descriptors = GeneralUtils::ParseToStr(descriptor, ","); std::vector hists; for (size_t d_it = 0; d_it < descriptors.size(); ++d_it) { std::string& d = descriptors[d_it]; std::vector fname = GeneralUtils::ParseToStr(d, "["); if (!fname.size() || !fname[0].length()) { THROW("Couldn't find input file when attempting to parse : \"" << d << "\". Expected input.root[hist1|hist2|...]."); } if (fname[1][fname[1].length() - 1] == ']') { fname[1] = fname[1].substr(0, fname[1].length() - 1); } std::vector histnames = GeneralUtils::ParseToStr(fname[1], "|"); if (!histnames.size()) { THROW( "Couldn't find any histogram name specifiers when attempting to " "parse " ": \"" << fname[1] << "\". Expected hist1|hist2|..."); } TFile* rootHistFile = new TFile(fname[0].c_str(), "READ"); if (!rootHistFile || rootHistFile->IsZombie()) { THROW("Couldn't open root file: \"" << fname[0] << "\"."); } for (size_t i = 0; i < histnames.size(); ++i) { TH1* tempHist = dynamic_cast(rootHistFile->Get(histnames[i].c_str())->Clone()); if (!tempHist) { THROW("Couldn't retrieve: \"" << histnames[i] << "\" from root file: \"" << fname[0] << "\"."); } tempHist->SetDirectory(0); hists.push_back(tempHist); } rootHistFile->Close(); } return hists; } TH2D* PlotUtils::GetTH2DFromTextFile(std::string file) { /// Contents should be /// Low Edfe return NULL; } void PlotUtils::AddNeutModeArray(TH1D* hist1[], TH1D* hist2[], double scaling) { for (int i = 0; i < 60; i++) { if (!hist2[i]) continue; if (!hist1[i]) continue; hist1[i]->Add(hist2[i], scaling); } return; } void PlotUtils::ScaleToData(TH1D* data, TH1D* mc, TH1I* mask) { double scaleF = GetDataMCRatio(data, mc, mask); mc->Scale(scaleF); return; } void PlotUtils::MaskBins(TH1D* hist, TH1I* mask) { for (int i = 0; i < hist->GetNbinsX(); i++) { if (mask->GetBinContent(i + 1) <= 0.5) continue; hist->SetBinContent(i + 1, 0.0); hist->SetBinError(i + 1, 0.0); LOG(REC) << "MaskBins: Set " << hist->GetName() << " Bin " << i + 1 << " to 0.0 +- 0.0" << std::endl; } return; } void PlotUtils::MaskBins(TH2D* hist, TH2I* mask) { for (int i = 0; i < hist->GetNbinsX(); i++) { for (int j = 0; j < hist->GetNbinsY(); j++) { if (mask->GetBinContent(i + 1, j + 1) <= 0.5) continue; hist->SetBinContent(i + 1, j + 1, 0.0); hist->SetBinError(i + 1, j + 1, 0.0); LOG(REC) << "MaskBins: Set " << hist->GetName() << " Bin " << i + 1 << " " << j + 1 << " to 0.0 +- 0.0" << std::endl; } } return; } double PlotUtils::GetDataMCRatio(TH1D* data, TH1D* mc, TH1I* mask) { double rat = 1.0; TH1D* newmc = (TH1D*)mc->Clone(); TH1D* newdt = (TH1D*)data->Clone(); if (mask) { MaskBins(newmc, mask); MaskBins(newdt, mask); } rat = newdt->Integral() / newmc->Integral(); return rat; } TH2D* PlotUtils::GetCorrelationPlot(TH2D* cov, std::string name) { TH2D* cor = (TH2D*)cov->Clone(); cor->Reset(); for (int i = 0; i < cov->GetNbinsX(); i++) { for (int j = 0; j < cov->GetNbinsY(); j++) { if (cov->GetBinContent(i + 1, i + 1) != 0.0 and cov->GetBinContent(j + 1, j + 1) != 0.0) cor->SetBinContent(i + 1, j + 1, cov->GetBinContent(i + 1, j + 1) / (sqrt(cov->GetBinContent(i + 1, i + 1) * cov->GetBinContent(j + 1, j + 1)))); } } if (!name.empty()) { cor->SetNameTitle(name.c_str(), (name + ";;correlation").c_str()); } cor->SetMinimum(-1); cor->SetMaximum(1); return cor; } TH2D* PlotUtils::GetDecompPlot(TH2D* cov, std::string name) { TMatrixDSym* covarmat = new TMatrixDSym(cov->GetNbinsX()); for (int i = 0; i < cov->GetNbinsX(); i++) for (int j = 0; j < cov->GetNbinsY(); j++) (*covarmat)(i, j) = cov->GetBinContent(i + 1, j + 1); TMatrixDSym* decompmat = StatUtils::GetDecomp(covarmat); TH2D* dec = (TH2D*)cov->Clone(); for (int i = 0; i < cov->GetNbinsX(); i++) for (int j = 0; j < cov->GetNbinsY(); j++) dec->SetBinContent(i + 1, j + 1, (*decompmat)(i, j)); delete covarmat; delete decompmat; dec->SetNameTitle(name.c_str(), (name + ";;;decomposition").c_str()); return dec; } TH2D* PlotUtils::MergeIntoTH2D(TH1D* xhist, TH1D* yhist, std::string zname) { std::vector xedges, yedges; for (int i = 0; i < xhist->GetNbinsX() + 2; i++) { xedges.push_back(xhist->GetXaxis()->GetBinLowEdge(i + 1)); } for (int i = 0; i < yhist->GetNbinsX() + 2; i++) { yedges.push_back(yhist->GetXaxis()->GetBinLowEdge(i + 1)); } int nbinsx = xhist->GetNbinsX(); int nbinsy = yhist->GetNbinsX(); std::string name = std::string(xhist->GetName()) + "_vs_" + std::string(yhist->GetName()); std::string titles = ";" + std::string(xhist->GetXaxis()->GetTitle()) + ";" + std::string(yhist->GetXaxis()->GetTitle()) + ";" + zname; TH2D* newplot = new TH2D(name.c_str(), (name + titles).c_str(), nbinsx, &xedges[0], nbinsy, &yedges[0]); return newplot; } //*************************************************** void PlotUtils::MatchEmptyBins(TH1D* data, TH1D* mc) { //************************************************** for (int i = 0; i < data->GetNbinsX(); i++) { if (data->GetBinContent(i + 1) == 0.0 or data->GetBinError(i + 1) == 0.0) mc->SetBinContent(i + 1, 0.0); } return; } //*************************************************** void PlotUtils::MatchEmptyBins(TH2D* data, TH2D* mc) { //************************************************** for (int i = 0; i < data->GetNbinsX(); i++) { for (int j = 0; j < data->GetNbinsY(); j++) { if (data->GetBinContent(i + 1, j + 1) == 0.0 or data->GetBinError(i + 1, j + 1) == 0.0) mc->SetBinContent(i + 1, j + 1, 0.0); } } return; } //*************************************************** TH1D* PlotUtils::GetProjectionX(TH2D* hist, TH2I* mask) { //*************************************************** TH2D* maskedhist = StatUtils::ApplyHistogramMasking(hist, mask); TH1D* hist_X = maskedhist->ProjectionX(); delete maskedhist; return hist_X; } //*************************************************** TH1D* PlotUtils::GetProjectionY(TH2D* hist, TH2I* mask) { //*************************************************** TH2D* maskedhist = StatUtils::ApplyHistogramMasking(hist, mask); TH1D* hist_Y = maskedhist->ProjectionY(); delete maskedhist; return hist_Y; }