diff --git a/parameters/dial_conversion.card b/parameters/dial_conversion.card index 0227a07..7a50e83 100644 --- a/parameters/dial_conversion.card +++ b/parameters/dial_conversion.card @@ -1,38 +1,46 @@ # par Name Units Nominal FracErr ConvFunc -neut_parameter MaCCQE GeV 1.21*(1.0+x*0.16) +neut_parameter MaCCQE GeV 1.21*(1.0+x*0.16) neut_parameter MaNFFRES GeV 0.95*(1.0+x*0.157894737) neut_parameter CA5RES x 1.01*(1.0+x*0.247524752) neut_parameter BgSclRES x 1.30*(1.0+x*0.153846154) neut_parameter FrAbs_pi x 1.1*(1.0+x*0.5) -neut_parameter FrInelLow_pi x 1*(1.0+x*0.5) +neut_parameter FrInelLow_pi x 1.0+x*0.5 neut_parameter FrInelHigh_pi x 1.8*(1.0+x*0.3) -neut_parameter FrPiProd_pi x 1*(1.0+x*0.5) -neut_parameter FrCExLow_pi x 1*(1.0+x*0.5) +neut_parameter FrPiProd_pi x 1.0+x*0.5 +neut_parameter FrCExLow_pi x 1.0+x*0.5 neut_parameter FrCExHigh_pi x 1.8*(1.0+x*0.3) niwg_parameter NIWGMEC_Norm_C12 % 100.0*(1.0+x) niwg_parameter VecFFCCQE MDLQE x niwg_parameter CCQEFermiSurfMom MeV 217*(1.0+x*0.15) t2k_parameter NIWG2014a_pF_C12 MeV 217*(1.0+x*0.073733) t2k_parameter NIWG2014a_pF_O16 MeV 225*(1.0+x*0.071111) t2k_parameter NIWGMEC_PDDWeight_C12 x 0.5*(1.0+x*1.0) t2k_parameter NIWGMEC_PDDWeight_O16 x 0.5*(1.0+x*1.0) -t2k_parameter NXSec_MaCCQE GeV 1.21*(1.0+x*0.165289256) +t2k_parameter NIWG2012a_dismpishp x 1.0*(1.0+x*0.4) +t2k_parameter NXSec_MaCCQE GeV 1.21*(1.0+x*0.165289256) t2k_parameter NXSec_MaNFFRES GeV 0.95*(1.0+x*0.157894737) t2k_parameter NXSec_CA5RES x 1.01*(1.0+x*0.247524752) -t2k_parameter NXSec_BgSclCCRES x 1.30*(1.0+x*0.153846154) +t2k_parameter NXSec_BgSclRES x 1.30*(1.0+x*0.153846154) + +t2k_parameter NCasc_FrAbs_pi x 1.1*(1.0+x*0.5) +t2k_parameter NCasc_FrInelLow_pi x 1.0+x*0.5 +t2k_parameter NCasc_FrInelHigh_pi x 1.8*(1.0+x*0.3) +t2k_parameter NCasc_FrPiProd_pi x 1.0+x*0.5 +t2k_parameter NCasc_FrCExLow_pi x 1.0+x*0.5 +t2k_parameter NCasc_FrCExHigh_pi x 1.8*(1.0+x*0.3) t2k_parameter NIWG_Effective_rpaCCQE_A x 1.0*(1.0 + x*0.1) t2k_parameter NIWG_Effective_rpaCCQE_B x 1.0*(1.0 + x*0.1) t2k_parameter NIWG_Effective_rpaCCQE_C x 1.0*(1.0 + x*0.1) t2k_parameter NIWG_Effective_rpaCCQE_D x 1.0*(1.0 + x*0.1) t2k_parameter NIWG_Effective_rpaCCQE_U x 1.0*(1.0 + x*0.1) nuwro_parameter kNuwro_Ma_CCQE MeV 1200*(1.0+x*0.160) nuwro_parameter kNuwro_MaRES GeV 0.940*(1.0+x*0.1) nuwro_parameter kNuwro_CA5 x 1.19*(1.0+x*0.1) nuwro_parameter kNuwro_SPPBkgScale x 1.0*(1.0+x*0.26) diff --git a/src/MCStudies/GenericFlux_Vectors.cxx b/src/MCStudies/GenericFlux_Vectors.cxx index 045f0c0..0543dc5 100644 --- a/src/MCStudies/GenericFlux_Vectors.cxx +++ b/src/MCStudies/GenericFlux_Vectors.cxx @@ -1,339 +1,363 @@ // Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret /******************************************************************************* * This file is part of NUISANCE. * * NUISANCE is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * NUISANCE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NUISANCE. If not, see . *******************************************************************************/ #include "GenericFlux_Vectors.h" GenericFlux_Vectors::GenericFlux_Vectors(std::string name, std::string inputfile, FitWeight *rw, std::string type, std::string fakeDataFile) { // Measurement Details fName = name; eventVariables = NULL; // Define our energy range for flux calcs EnuMin = 0.; EnuMax = 1E10; // Arbritrarily high energy limit if (Config::HasPar("EnuMin")) { EnuMin = Config::GetParD("EnuMin"); } if (Config::HasPar("EnuMax")) { EnuMax = Config::GetParD("EnuMax"); } // Set default fitter flags fIsDiag = true; fIsShape = false; fIsRawEvents = false; // This function will sort out the input files automatically and parse all the // inputs,flags,etc. // There may be complex cases where you have to do this by hand, but usually // this will do. Measurement1D::SetupMeasurement(inputfile, type, rw, fakeDataFile); eventVariables = NULL; // Setup fDataHist as a placeholder this->fDataHist = new TH1D(("empty_data"), ("empty-data"), 1, 0, 1); this->SetupDefaultHist(); fFullCovar = StatUtils::MakeDiagonalCovarMatrix(fDataHist); covar = StatUtils::GetInvert(fFullCovar); // 1. The generator is organised in SetupMeasurement so it gives the // cross-section in "per nucleon" units. // So some extra scaling for a specific measurement may be required. For // Example to get a "per neutron" measurement on carbon // which we do here, we have to multiple by the number of nucleons 12 and // divide by the number of neutrons 6. // N.B. MeasurementBase::PredictedEventRate includes the 1E-38 factor that is // often included here in other classes that directly integrate the event // histogram. This method is used here as it now respects EnuMin and EnuMax // correctly. this->fScaleFactor = (this->PredictedEventRate("width", 0, EnuMax) / double(fNEvents)) / - this->TotalIntegratedFlux(); + this->TotalIntegratedFlux("width"); LOG(SAM) << " Generic Flux Scaling Factor = " << fScaleFactor << " [= " << (GetEventHistogram()->Integral("width") * 1E-38) << "/(" - << (fNEvents + 0.) << "*" << this->TotalIntegratedFlux() << ")]" + << (fNEvents + 0.) << "*" << TotalIntegratedFlux("width") << ")]" << std::endl; - if (fScaleFactor <= 0.0) { ERR(WRN) << "SCALE FACTOR TOO LOW " << std::endl; throw; } // Setup our TTrees this->AddEventVariablesToTree(); this->AddSignalFlagsToTree(); } void GenericFlux_Vectors::AddEventVariablesToTree() { // Setup the TTree to save everything if (!eventVariables) { Config::Get().out->cd(); eventVariables = new TTree((this->fName + "_VARS").c_str(), (this->fName + "_VARS").c_str()); } LOG(SAM) << "Adding Event Variables" << std::endl; eventVariables->Branch("Mode", &Mode, "Mode/I"); eventVariables->Branch("cc", &cc, "cc/B"); eventVariables->Branch("PDGnu", &PDGnu, "PDGnu/I"); eventVariables->Branch("Enu_true", &Enu_true, "Enu_true/F"); eventVariables->Branch("tgt", &tgt, "tgt/I"); eventVariables->Branch("PDGLep", &PDGLep, "PDGLep/I"); eventVariables->Branch("ELep", &ELep, "ELep/F"); eventVariables->Branch("CosLep", &CosLep, "CosLep/F"); // Basic interaction kinematics eventVariables->Branch("Q2", &Q2, "Q2/F"); eventVariables->Branch("q0", &q0, "q0/F"); eventVariables->Branch("q3", &q3, "q3/F"); eventVariables->Branch("Enu_QE", &Enu_QE, "Enu_QE/F"); eventVariables->Branch("Q2_QE", &Q2_QE, "Q2_QE/F"); eventVariables->Branch("W_nuc_rest", &W_nuc_rest, "W_nuc_rest/F"); eventVariables->Branch("W", &W, "W/F"); + eventVariables->Branch("W_genie", &W_genie, "W_genie/F"); eventVariables->Branch("x", &x, "x/F"); eventVariables->Branch("y", &y, "y/F"); eventVariables->Branch("Eav", &Eav, "Eav/F"); eventVariables->Branch("EavAlt", &EavAlt, "EavAlt/F"); + eventVariables->Branch("dalphat", &dalphat, "dalphat/F"); + eventVariables->Branch("dpt", &dpt, "dpt/F"); + eventVariables->Branch("dphit", &dphit, "dphit/F"); + eventVariables->Branch("pnreco_C", &pnreco_C, "pnreco_C/F"); + // Save outgoing particle vectors eventVariables->Branch("nfsp", &nfsp, "nfsp/I"); eventVariables->Branch("px", px, "px[nfsp]/F"); eventVariables->Branch("py", py, "py[nfsp]/F"); eventVariables->Branch("pz", pz, "pz[nfsp]/F"); eventVariables->Branch("E", E, "E[nfsp]/F"); eventVariables->Branch("pdg", pdg, "pdg[nfsp]/I"); // Event Scaling Information eventVariables->Branch("Weight", &Weight, "Weight/F"); eventVariables->Branch("InputWeight", &InputWeight, "InputWeight/F"); eventVariables->Branch("RWWeight", &RWWeight, "RWWeight/F"); // Should be a double because may be 1E-39 and less eventVariables->Branch("fScaleFactor", &fScaleFactor, "fScaleFactor/D"); // The customs eventVariables->Branch("CustomWeight", &CustomWeight, "CustomWeight/F"); eventVariables->Branch("CustomWeightArray", CustomWeightArray, "CustomWeightArray[6]/F"); return; } void GenericFlux_Vectors::FillEventVariables(FitEvent *event) { ResetVariables(); // Fill Signal Variables FillSignalFlags(event); LOG(DEB) << "Filling signal" << std::endl; // Now fill the information Mode = event->Mode; cc = (abs(event->Mode) < 30); // Get the incoming neutrino and outgoing lepton FitParticle *nu = event->GetNeutrinoIn(); FitParticle *lep = event->GetHMFSAnyLepton(); PDGnu = nu->fPID; Enu_true = nu->fP.E() / 1E3; tgt = event->fTargetPDG; if (lep != NULL) { PDGLep = lep->fPID; ELep = lep->fP.E() / 1E3; CosLep = cos(nu->fP.Vect().Angle(lep->fP.Vect())); // Basic interaction kinematics Q2 = -1 * (nu->fP - lep->fP).Mag2() / 1E6; q0 = (nu->fP - lep->fP).E() / 1E3; q3 = (nu->fP - lep->fP).Vect().Mag() / 1E3; // These assume C12 binding from MINERvA... not ideal Enu_QE = FitUtils::EnuQErec(lep->fP, CosLep, 34., true); Q2_QE = FitUtils::Q2QErec(lep->fP, CosLep, 34., true); Eav = FitUtils::GetErecoil_MINERvA_LowRecoil(event)/1.E3; EavAlt = FitUtils::Eavailable(event)/1.E3; // Get W_true with assumption of initial state nucleon at rest float m_n = (float)PhysConst::mass_proton; // Q2 assuming nucleon at rest W_nuc_rest = sqrt(-Q2 + 2 * m_n * q0 + m_n * m_n); // True Q2 W = sqrt(-Q2 + 2 * m_n * q0 + m_n * m_n); x = Q2 / (2 * m_n * q0); y = 1 - ELep / Enu_true; + + dalphat = FitUtils::Get_STV_dalphat(event, PDGnu, true); + dpt = FitUtils::Get_STV_dpt(event, PDGnu, true); + dphit = FitUtils::Get_STV_dphit(event, PDGnu, true); + pnreco_C = FitUtils::Get_pn_reco_C(event, PDGnu, true); } // Loop over the particles and store all the final state particles in a vector for (UInt_t i = 0; i < event->Npart(); ++i) { bool part_alive = event->PartInfo(i)->fIsAlive && - event->PartInfo(i)->Status() == kFinalState; + event->PartInfo(i)->Status() == kFinalState; if (!part_alive) continue; partList.push_back(event->PartInfo(i)); } // Save outgoing particle vectors nfsp = (int)partList.size(); for (int i = 0; i < nfsp; ++i) { px[i] = partList[i]->fP.X() / 1E3; py[i] = partList[i]->fP.Y() / 1E3; pz[i] = partList[i]->fP.Z() / 1E3; E[i] = partList[i]->fP.E() / 1E3; pdg[i] = partList[i]->fPID; } +#ifdef __GENIE_ENABLED__ + if (event->fType == kGENIE) { + EventRecord * gevent = static_cast(event->genie_event->event); + const Interaction * interaction = gevent->Summary(); + const Kinematics & kine = interaction->Kine(); + double W_genie = kine.W(); + } +#endif + // Fill event weights Weight = event->RWWeight * event->InputWeight; RWWeight = event->RWWeight; InputWeight = event->InputWeight; // And the Customs CustomWeight = event->CustomWeight; for (int i = 0; i < 6; ++i) { CustomWeightArray[i] = event->CustomWeightArray[i]; } // Fill the eventVariables Tree eventVariables->Fill(); return; }; //******************************************************************** void GenericFlux_Vectors::ResetVariables() { -//******************************************************************** + //******************************************************************** cc = false; // Reset all Function used to extract any variables of interest to the event Mode = PDGnu = tgt = PDGLep = 0; Enu_true = ELep = CosLep = Q2 = q0 = q3 = Enu_QE = Q2_QE = W_nuc_rest = W = x = y = Eav = EavAlt = -999.9; + W_genie = -999; + // Other fun variables + // MINERvA-like ones + dalphat = dpt = dphit = pnreco_C = -999.99; + nfsp = 0; for (int i = 0; i < kMAX; ++i){ px[i] = py[i] = pz[i] = E[i] = -999; pdg[i] = 0; } Weight = InputWeight = RWWeight = 0.0; CustomWeight = 0.0; for (int i = 0; i < 6; ++i) CustomWeightArray[i] = 0.0; partList.clear(); flagCCINC = flagNCINC = flagCCQE = flagCC0pi = flagCCQELike = flagNCEL = flagNC0pi = flagCCcoh = flagNCcoh = flagCC1pip = flagNC1pip = flagCC1pim = flagNC1pim = flagCC1pi0 = flagNC1pi0 = false; } //******************************************************************** void GenericFlux_Vectors::FillSignalFlags(FitEvent *event) { //******************************************************************** // Some example flags are given from SignalDef. // See src/Utils/SignalDef.cxx for more. int nuPDG = event->PartInfo(0)->fPID; // Generic signal flags flagCCINC = SignalDef::isCCINC(event, nuPDG); flagNCINC = SignalDef::isNCINC(event, nuPDG); flagCCQE = SignalDef::isCCQE(event, nuPDG); flagCCQELike = SignalDef::isCCQELike(event, nuPDG); flagCC0pi = SignalDef::isCC0pi(event, nuPDG); flagNCEL = SignalDef::isNCEL(event, nuPDG); flagNC0pi = SignalDef::isNC0pi(event, nuPDG); flagCCcoh = SignalDef::isCCCOH(event, nuPDG, 211); flagNCcoh = SignalDef::isNCCOH(event, nuPDG, 111); flagCC1pip = SignalDef::isCC1pi(event, nuPDG, 211); flagNC1pip = SignalDef::isNC1pi(event, nuPDG, 211); flagCC1pim = SignalDef::isCC1pi(event, nuPDG, -211); flagNC1pim = SignalDef::isNC1pi(event, nuPDG, -211); flagCC1pi0 = SignalDef::isCC1pi(event, nuPDG, 111); flagNC1pi0 = SignalDef::isNC1pi(event, nuPDG, 111); } void GenericFlux_Vectors::AddSignalFlagsToTree() { if (!eventVariables) { Config::Get().out->cd(); eventVariables = new TTree((this->fName + "_VARS").c_str(), - (this->fName + "_VARS").c_str()); + (this->fName + "_VARS").c_str()); } LOG(SAM) << "Adding signal flags" << std::endl; // Signal Definitions from SignalDef.cxx eventVariables->Branch("flagCCINC", &flagCCINC, "flagCCINC/O"); eventVariables->Branch("flagNCINC", &flagNCINC, "flagNCINC/O"); eventVariables->Branch("flagCCQE", &flagCCQE, "flagCCQE/O"); eventVariables->Branch("flagCC0pi", &flagCC0pi, "flagCC0pi/O"); eventVariables->Branch("flagCCQELike", &flagCCQELike, "flagCCQELike/O"); eventVariables->Branch("flagNCEL", &flagNCEL, "flagNCEL/O"); eventVariables->Branch("flagNC0pi", &flagNC0pi, "flagNC0pi/O"); eventVariables->Branch("flagCCcoh", &flagCCcoh, "flagCCcoh/O"); eventVariables->Branch("flagNCcoh", &flagNCcoh, "flagNCcoh/O"); eventVariables->Branch("flagCC1pip", &flagCC1pip, "flagCC1pip/O"); eventVariables->Branch("flagNC1pip", &flagNC1pip, "flagNC1pip/O"); eventVariables->Branch("flagCC1pim", &flagCC1pim, "flagCC1pim/O"); eventVariables->Branch("flagNC1pim", &flagNC1pim, "flagNC1pim/O"); eventVariables->Branch("flagCC1pi0", &flagCC1pi0, "flagCC1pi0/O"); eventVariables->Branch("flagNC1pi0", &flagNC1pi0, "flagNC1pi0/O"); }; void GenericFlux_Vectors::Write(std::string drawOpt) { // First save the TTree eventVariables->Write(); // Save Flux and Event Histograms too GetInput()->GetFluxHistogram()->Write(); GetInput()->GetEventHistogram()->Write(); return; } // Override functions which aren't really necessary bool GenericFlux_Vectors::isSignal(FitEvent *event) { (void)event; return true; }; void GenericFlux_Vectors::ScaleEvents() { return; } void GenericFlux_Vectors::ApplyNormScale(float norm) { this->fCurrentNorm = norm; return; } void GenericFlux_Vectors::FillHistograms() { return; } void GenericFlux_Vectors::ResetAll() { eventVariables->Reset(); return; } float GenericFlux_Vectors::GetChi2() { return 0.0; } diff --git a/src/MCStudies/GenericFlux_Vectors.h b/src/MCStudies/GenericFlux_Vectors.h index 921b247..101335b 100644 --- a/src/MCStudies/GenericFlux_Vectors.h +++ b/src/MCStudies/GenericFlux_Vectors.h @@ -1,127 +1,133 @@ // Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret /******************************************************************************* * This file is part of NUISANCE. * * NUISANCE is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * NUISANCE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NUISANCE. If not, see . *******************************************************************************/ #ifndef GenericFlux_Vectors_H_SEEN #define GenericFlux_Vectors_H_SEEN #include "Measurement1D.h" +#include "FitEvent.h" class GenericFlux_Vectors : public Measurement1D { public: GenericFlux_Vectors(std::string name, std::string inputfile, FitWeight *rw, std::string type, std::string fakeDataFile); virtual ~GenericFlux_Vectors() {}; //! Grab info from event void FillEventVariables(FitEvent *event); //! Fill signal flags void FillSignalFlags(FitEvent *event); void ResetVariables(); //! Fill Custom Histograms void FillHistograms(); //! ResetAll void ResetAll(); //! Scale void ScaleEvents(); //! Norm void ApplyNormScale(float norm); //! Define this samples signal bool isSignal(FitEvent *nvect); //! Write Files void Write(std::string drawOpt); //! Get Chi2 float GetChi2(); void AddEventVariablesToTree(); void AddSignalFlagsToTree(); private: TTree* eventVariables; std::vector partList; int Mode; bool cc; int PDGnu; int tgt; int PDGLep; float ELep; float CosLep; // Basic interaction kinematics float Q2; float q0; float q3; float Enu_QE; float Enu_true; float Q2_QE; float W_nuc_rest; float W; float x; float y; float Eav; float EavAlt; + float dalphat; + float W_genie; + float dpt; + float dphit; + float pnreco_C; // Save outgoing particle vectors int nfsp; static const int kMAX = 200; float px[kMAX]; float py[kMAX]; float pz[kMAX]; float E[kMAX]; int pdg[kMAX]; // Basic event info float Weight; float InputWeight; float RWWeight; double fScaleFactor; // Custom weights float CustomWeight; float CustomWeightArray[6]; // Generic signal flags bool flagCCINC; bool flagNCINC; bool flagCCQE; bool flagCC0pi; bool flagCCQELike; bool flagNCEL; bool flagNC0pi; bool flagCCcoh; bool flagNCcoh; bool flagCC1pip; bool flagNC1pip; bool flagCC1pim; bool flagNC1pim; bool flagCC1pi0; bool flagNC1pi0; }; #endif diff --git a/src/Reweight/BeRPA.h b/src/Reweight/BeRPA.h new file mode 100644 index 0000000..d6e85c8 --- /dev/null +++ b/src/Reweight/BeRPA.h @@ -0,0 +1,93 @@ +#ifndef _ERPA_H_SEEN_ +#define _ERPA_H_SEEN_ + +#include +#include + +// ===================== +// +// Roughly a copy/paste job from NIWGReWeight/NIWGReWeightEffectiveRPA.cc/h +// Written by Asmita Redij, University of Bern +// Implemented in MaCh3 by Clarence Wret: c.wret14@imperial.ac.uk +// +// ===================== +// +// Purpose: +// +// eRPA attempts to mimic Nieves RPA calculation in functional form (cubic, switching to exponential) +// Currently, there are no RPA shape parameters to include as RPA systematics +// eRPA remedies this by ffitting a functional form to the Nieves calculation +// +// Defaults have been fit to Nieves RPA calculation +// +/- 1 sigma in eRPA are also set after a fit to the +/- 1 sigma from Nieves RPA +// +// The eRPA calculation is a function of Q2 and return a RPA/no-RPA correction factor for a given value of Q2 +// It should currently only be applied to CCQE (or 2p2h?) interactions on nuclear targets (i.e. ignore H interactions!) +// +// +// The eRPA calculation is a function which depends on five parameters. The naming of the parameters has changed as work +// has developed on eRPA. Originally, eRPA was discussed in terms of five parameters: A, B, C, D, and U. The interpretation +// of these parameters is: +// Polynomial terms: +// A = RPA correction at Q2 = 0 +// B = Slope of RPA correction at Q2 = 0 +// C = RPA correction when polynominal switches to exponential (when Q2 = U) +// Exponential terms: +// D = Controls the damping constant of the exponential when Q2 > U +// Control terms: +// U = 1.20, the value of Q2 where we switch from polynomial to exponential. +// Can be varied but is in Jan 2016 not recommended use. +// +// We have now changed to describing eRPA in terms of the five parameters A, B, D, E, and U. The formula is identical +// to the one which depends on A, B, C, D, and U. The relation between the new and old parameters is: +// A (old) = A (new) +// B (old) = B (new) +// C (old) = D (new) +// D (old) = E (new) +// U (old) = U (new) +// +// To make thing extra confusing, the new parameterisation also includes a parameter C given by +// C = D+U*E*(D-1)/3 +// This is *not* related to C in the old parameterisation, and is *not* directly used as a parameter by us (it's indirectly +// determined by the values of D, U, and E) +// +// More info about the eRPA parameterisation (and anything else you could possibly want to know!) is in T2K-TN-309. +// Some more info about eRPA is also available in the slides at http://www.t2k.org/asg/oagroup/meeting/2016/banffoa27seppm/ffsanderpa/ +// (beware: they use the "old" A,B,C,D,U parameter names). +// +// ===================== + +// Calculates the absolute eRPA for given Q2, BERNSTEIN STYLE +inline double const calcRPA(const double Q2, const double A, const double B, const double D, const double E, const double U = 1.20) { + + // Callum's eye-balled nominals + // A = 0.6 + // B = 1.0 + // D = 1.2 + // E = 1.0 + // U = 1.2 + // + // Callum's fitted nominals + // A = 0.59 +/- 20% + // B = 1.05 +/- 20% + // D = 1.13 +/- 15% + // E = 0.88 +/- 40% + // U = 1.2 + + // Kept for convenience + double eRPA = 1.; + + // Q2 transition; less than U -> polynominal + if (Q2 < U) { + // xprime as prescribed by Callum + const double xprime = Q2/U; + const double C = D + U*E*(D-1)/3.; + eRPA = A*(1-xprime)*(1-xprime)*(1-xprime) + 3*B*(1-xprime)*(1-xprime)*xprime + 3*C*(1-xprime)*xprime*xprime + D*xprime*xprime*xprime; + } else { + eRPA = 1 + (D-1)*exp(-E*(Q2-U)); + } + + return eRPA; +}; + +#endif diff --git a/src/Utils/FitUtils.cxx b/src/Utils/FitUtils.cxx index 225c98c..87b1efe 100644 --- a/src/Utils/FitUtils.cxx +++ b/src/Utils/FitUtils.cxx @@ -1,1095 +1,1186 @@ // Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret /******************************************************************************* * This file is part of NUISANCE. * * NUISANCE is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * NUISANCE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NUISANCE. If not, see . *******************************************************************************/ #include "FitUtils.h" /* MISC Functions */ //******************************************************************** double *FitUtils::GetArrayFromMap(std::vector invals, std::map inmap) { //******************************************************************** double *outarr = new double[invals.size()]; int count = 0; for (size_t i = 0; i < invals.size(); i++) { outarr[count++] = inmap[invals.at(i)]; } return outarr; } /* MISC Event */ //******************************************************************** // Returns the kinetic energy of a particle in GeV double FitUtils::T(TLorentzVector part) { //******************************************************************** double E_part = part.E() / 1000.; double p_part = part.Vect().Mag() / 1000.; double m_part = sqrt(E_part * E_part - p_part * p_part); double KE_part = E_part - m_part; return KE_part; }; //******************************************************************** // Returns the momentum of a particle in GeV double FitUtils::p(TLorentzVector part) { //******************************************************************** double p_part = part.Vect().Mag() / 1000.; return p_part; }; double FitUtils::p(FitParticle *part) { return FitUtils::p(part->fP); }; //******************************************************************** // Returns the angle between two particles in radians double FitUtils::th(TLorentzVector part1, TLorentzVector part2) { //******************************************************************** double th = part1.Vect().Angle(part2.Vect()); return th; }; double FitUtils::th(FitParticle *part1, FitParticle *part2) { return FitUtils::th(part1->fP, part2->fP); }; // T2K CC1pi+ helper functions // //******************************************************************** // Returns the angle between q3 and the pion defined in Raquel's CC1pi+ on CH // paper // Uses "MiniBooNE formula" for Enu, here called EnuCC1pip_T2K_MB //******************************************************************** double FitUtils::thq3pi_CC1pip_T2K(TLorentzVector pnu, TLorentzVector pmu, TLorentzVector ppi) { // Want this in GeV TVector3 p_mu = pmu.Vect() * (1. / 1000.); // Get the reconstructed Enu // We are not using Michel e sample, so we have pion kinematic information double Enu = EnuCC1piprec(pnu, pmu, ppi, true); // Get neutrino unit direction, multiply by reconstructed Enu TVector3 p_nu = pnu.Vect() * (1. / (pnu.Vect().Mag())) * Enu; TVector3 p_pi = ppi.Vect() * (1. / 1000.); // This is now in GeV TVector3 q3 = (p_nu - p_mu); // Want this in GeV double th_q3_pi = q3.Angle(p_pi); return th_q3_pi; } //******************************************************************** // Returns the q3 defined in Raquel's CC1pi+ on CH paper // Uses "MiniBooNE formula" for Enu //******************************************************************** double FitUtils::q3_CC1pip_T2K(TLorentzVector pnu, TLorentzVector pmu, TLorentzVector ppi) { // Can't use the true Enu here; need to reconstruct it // We do have Michel e- here so reconstruct Enu by "MiniBooNE formula" without // pion kinematics // The bool false refers to that we don't have pion kinematics // Last bool refers to if we have pion kinematic information or not double Enu = EnuCC1piprec(pnu, pmu, ppi, false); TVector3 p_mu = pmu.Vect() * (1. / 1000.); TVector3 p_nu = pnu.Vect() * (1. / pnu.Vect().Mag()) * Enu; double q3 = (p_nu - p_mu).Mag(); return q3; } //******************************************************************** // Returns the W reconstruction from Raquel CC1pi+ CH thesis // Uses the MiniBooNE formula Enu //******************************************************************** double FitUtils::WrecCC1pip_T2K_MB(TLorentzVector pnu, TLorentzVector pmu, TLorentzVector ppi) { double E_mu = pmu.E() / 1000.; double p_mu = pmu.Vect().Mag() / 1000.; double E_nu = EnuCC1piprec(pnu, pmu, ppi, false); double a1 = (E_nu + PhysConst::mass_neutron) - E_mu; double a2 = E_nu - p_mu; double wrec = sqrt(a1 * a1 - a2 * a2); return wrec; } //******************************************************** double FitUtils::ProtonQ2QErec(double pE, double binding) { //******************************************************** const double V = binding / 1000.; // binding potential const double mn = PhysConst::mass_neutron; // neutron mass const double mp = PhysConst::mass_proton; // proton mass const double mn_eff = mn - V; // effective proton mass const double pki = (pE / 1000.0) - mp; double q2qe = mn_eff * mn_eff - mp * mp + 2 * mn_eff * (pki + mp - mn_eff); return q2qe; }; //******************************************************************** double FitUtils::EnuQErec(TLorentzVector pmu, double costh, double binding, bool neutrino) { //******************************************************************** // Convert all values to GeV const double V = binding / 1000.; // binding potential const double mn = PhysConst::mass_neutron; // neutron mass const double mp = PhysConst::mass_proton; // proton mass double mN_eff = mn - V; double mN_oth = mp; if (!neutrino) { mN_eff = mp - V; mN_oth = mn; } double el = pmu.E() / 1000.; double pl = (pmu.Vect().Mag()) / 1000.; // momentum of lepton double ml = sqrt(el * el - pl * pl); // lepton mass double rEnu = (2 * mN_eff * el - ml * ml + mN_oth * mN_oth - mN_eff * mN_eff) / (2 * (mN_eff - el + pl * costh)); return rEnu; }; double FitUtils::Q2QErec(TLorentzVector pmu, double costh, double binding, bool neutrino) { double el = pmu.E() / 1000.; double pl = (pmu.Vect().Mag()) / 1000.; // momentum of lepton double ml = sqrt(el * el - pl * pl); // lepton mass double rEnu = EnuQErec(pmu, costh, binding, neutrino); double q2 = -ml * ml + 2. * rEnu * (el - pl * costh); return q2; }; double FitUtils::Q2QErec(TLorentzVector Pmu, TLorentzVector Pnu, double binding, bool neutrino) { double q2qe = Q2QErec(Pmu, cos(Pnu.Vect().Angle(Pmu.Vect())), binding, neutrino); return q2qe; } double FitUtils::EnuQErec(double pl, double costh, double binding, bool neutrino) { if (pl < 0) return 0.; // Make sure nobody is silly double mN_eff = PhysConst::mass_neutron - binding / 1000.; double mN_oth = PhysConst::mass_proton; if (!neutrino) { mN_eff = PhysConst::mass_proton - binding / 1000.; mN_oth = PhysConst::mass_neutron; } double ml = PhysConst::mass_muon; double el = sqrt(pl * pl + ml * ml); double rEnu = (2 * mN_eff * el - ml * ml + mN_oth * mN_oth - mN_eff * mN_eff) / (2 * (mN_eff - el + pl * costh)); return rEnu; }; double FitUtils::Q2QErec(double pl, double costh, double binding, bool neutrino) { if (pl < 0) return 0.; // Make sure nobody is silly double ml = PhysConst::mass_muon; double el = sqrt(pl * pl + ml * ml); double rEnu = EnuQErec(pl, costh, binding, neutrino); double q2 = -ml * ml + 2. * rEnu * (el - pl * costh); return q2; }; //******************************************************************** // Reconstructs Enu for CC1pi0 // Very similar for CC1pi+ reconstruction double FitUtils::EnuCC1pi0rec(TLorentzVector pnu, TLorentzVector pmu, TLorentzVector ppi0) { //******************************************************************** double E_mu = pmu.E() / 1000; double p_mu = pmu.Vect().Mag() / 1000; double m_mu = sqrt(E_mu * E_mu - p_mu * p_mu); double th_nu_mu = pnu.Vect().Angle(pmu.Vect()); double E_pi0 = ppi0.E() / 1000; double p_pi0 = ppi0.Vect().Mag() / 1000; double m_pi0 = sqrt(E_pi0 * E_pi0 - p_pi0 * p_pi0); double th_nu_pi0 = pnu.Vect().Angle(ppi0.Vect()); const double m_n = PhysConst::mass_neutron; // neutron mass const double m_p = PhysConst::mass_proton; // proton mass double th_pi0_mu = ppi0.Vect().Angle(pmu.Vect()); double rEnu = (m_mu * m_mu + m_pi0 * m_pi0 + m_n * m_n - m_p * m_p - 2 * m_n * (E_pi0 + E_mu) + 2 * E_pi0 * E_mu - 2 * p_pi0 * p_mu * cos(th_pi0_mu)) / (2 * (E_pi0 + E_mu - p_pi0 * cos(th_nu_pi0) - p_mu * cos(th_nu_mu) - m_n)); return rEnu; }; //******************************************************************** // Reconstruct Q2 for CC1pi0 // Beware: uses true Enu, not reconstructed Enu double FitUtils::Q2CC1pi0rec(TLorentzVector pnu, TLorentzVector pmu, TLorentzVector ppi0) { //******************************************************************** double E_mu = pmu.E() / 1000.; // energy of lepton in GeV double p_mu = pmu.Vect().Mag() / 1000.; // momentum of lepton double m_mu = sqrt(E_mu * E_mu - p_mu * p_mu); // lepton mass double th_nu_mu = pnu.Vect().Angle(pmu.Vect()); // double rEnu = EnuCC1pi0rec(pnu, pmu, ppi0); //reconstructed neutrino energy // Use true neutrino energy double rEnu = pnu.E() / 1000.; double q2 = -m_mu * m_mu + 2. * rEnu * (E_mu - p_mu * cos(th_nu_mu)); return q2; }; //******************************************************************** // Reconstruct Enu for CC1pi+ // pionInfo reflects if we're using pion kinematics or not // In T2K CC1pi+ CH the Michel tag is used for pion in which pion kinematic info // is lost and Enu is reconstructed without pion kinematics double FitUtils::EnuCC1piprec(TLorentzVector pnu, TLorentzVector pmu, TLorentzVector ppi, bool pionInfo) { //******************************************************************** double E_mu = pmu.E() / 1000.; double p_mu = pmu.Vect().Mag() / 1000.; double m_mu = sqrt(E_mu * E_mu - p_mu * p_mu); double E_pi = ppi.E() / 1000.; double p_pi = ppi.Vect().Mag() / 1000.; double m_pi = sqrt(E_pi * E_pi - p_pi * p_pi); const double m_n = PhysConst::mass_neutron; // neutron/proton mass // should really take proton mass for proton interaction, neutron for neutron // interaction. However, difference is pretty much negligable here! // need this angle too double th_nu_pi = pnu.Vect().Angle(ppi.Vect()); double th_nu_mu = pnu.Vect().Angle(pmu.Vect()); double th_pi_mu = ppi.Vect().Angle(pmu.Vect()); double rEnu = -999; // If experiment doesn't have pion kinematic information (T2K CC1pi+ CH // example of this; Michel e sample has no directional information on pion) // We'll need to modify the reconstruction variables if (!pionInfo) { // Assumes that pion angle contribution contributes net zero // Also assumes the momentum of reconstructed pions when using Michel // electrons is 130 MeV // So need to redefine E_pi and p_pi // It's a little unclear what happens to the pmu . ppi term (4-vector); do // we include the angular contribution? // This below doesn't th_nu_pi = M_PI / 2.; p_pi = 0.130; E_pi = sqrt(p_pi * p_pi + m_pi * m_pi); // rEnu = (m_mu*m_mu + m_pi*m_pi - 2*m_n*(E_mu + E_pi) + 2*E_mu*E_pi - // 2*p_mu*p_pi) / (2*(E_mu + E_pi - p_mu*cos(th_nu_mu) - m_n)); } rEnu = (m_mu * m_mu + m_pi * m_pi - 2 * m_n * (E_pi + E_mu) + 2 * E_pi * E_mu - 2 * p_pi * p_mu * cos(th_pi_mu)) / (2 * (E_pi + E_mu - p_pi * cos(th_nu_pi) - p_mu * cos(th_nu_mu) - m_n)); return rEnu; }; //******************************************************************** // Reconstruct neutrino energy from outgoing particles; will differ from the // actual neutrino energy. Here we use assumption of a Delta resonance double FitUtils::EnuCC1piprecDelta(TLorentzVector pnu, TLorentzVector pmu) { //******************************************************************** const double m_Delta = PhysConst::mass_delta; // PDG value for Delta mass in GeV const double m_n = PhysConst::mass_neutron; // neutron/proton mass // should really take proton mass for proton interaction, neutron for neutron // interaction. However, difference is pretty much negligable here! double E_mu = pmu.E() / 1000; double p_mu = pmu.Vect().Mag() / 1000; double m_mu = sqrt(E_mu * E_mu - p_mu * p_mu); double th_nu_mu = pnu.Vect().Angle(pmu.Vect()); double rEnu = (m_Delta * m_Delta - m_n * m_n - m_mu * m_mu + 2 * m_n * E_mu) / (2 * (m_n - E_mu + p_mu * cos(th_nu_mu))); return rEnu; }; // MOVE TO T2K UTILS! //******************************************************************** // Reconstruct Enu using "extended MiniBooNE" as defined in Raquel's T2K TN // // Supposedly includes pion direction and binding energy of target nucleon // I'm not convinced (yet), maybe double FitUtils::EnuCC1piprec_T2K_eMB(TLorentzVector pnu, TLorentzVector pmu, TLorentzVector ppi) { //******************************************************************** // Unit vector for neutrino momentum TVector3 p_nu_vect_unit = pnu.Vect() * (1. / pnu.E()); double E_mu = pmu.E() / 1000.; TVector3 p_mu_vect = pmu.Vect() * (1. / 1000.); double E_pi = ppi.E() / 1000.; TVector3 p_pi_vect = ppi.Vect() * (1. / 1000.); double E_bind = 27. / 1000.; // This should be roughly correct for CH; but not clear! double m_p = PhysConst::mass_proton; // Makes life a little easier, gonna square this one double a1 = m_p - E_bind - E_mu - E_pi; // Just gets the magnitude square of the muon and pion momentum vectors double a2 = (p_mu_vect + p_pi_vect).Mag2(); // Gets the somewhat complicated scalar product between neutrino and // (p_mu+p_pi), scaled to Enu double a3 = p_nu_vect_unit * (p_mu_vect + p_pi_vect); double rEnu = (m_p * m_p - a1 * a1 + a2) / (2 * (m_p - E_bind - E_mu - E_pi + a3)); return rEnu; } //******************************************************************** // Reconstructed Q2 for CC1pi+ // // enuType describes how the neutrino energy is reconstructed // 0 uses true neutrino energy; case for MINERvA and MiniBooNE // 1 uses "extended MiniBooNE" reconstructed (T2K CH) // 2 uses "MiniBooNE" reconstructed (EnuCC1piprec with pionInfo = true) (T2K CH) // "MiniBooNE" reconstructed (EnuCC1piprec with pionInfo = false, the // case for T2K when using Michel tag) (T2K CH) // 3 uses Delta for reconstruction (T2K CH) double FitUtils::Q2CC1piprec(TLorentzVector pnu, TLorentzVector pmu, TLorentzVector ppi, int enuType, bool pionInfo) { //******************************************************************** double E_mu = pmu.E() / 1000.; // energy of lepton in GeV double p_mu = pmu.Vect().Mag() / 1000.; // momentum of lepton double m_mu = sqrt(E_mu * E_mu - p_mu * p_mu); // lepton mass double th_nu_mu = pnu.Vect().Angle(pmu.Vect()); // Different ways of reconstructing the neutrino energy; default is just to // use the truth (case 0) double rEnu = -999; switch (enuType) { case 0: // True neutrino energy, default; this is the case for when Q2 // defined as Q2 true (MiniBooNE, MINERvA) rEnu = pnu.E() / 1000.; break; case 1: // Extended MiniBooNE reconstructed, as defined by Raquel's CC1pi+ // CH T2K analysis // Definitely uses pion info :) rEnu = EnuCC1piprec_T2K_eMB(pnu, pmu, ppi); break; case 2: // MiniBooNE reconstructed, as defined by MiniBooNE and Raquel's // CC1pi+ CH T2K analysis and Linda's CC1pi+ H2O // Can have this with and without pion info, depending on if Michel tag // used (Raquel) rEnu = EnuCC1piprec(pnu, pmu, ppi, pionInfo); break; case 3: rEnu = EnuCC1piprecDelta(pnu, pmu); break; } // No need for default here since default value of enuType = 0, defined in // header double q2 = -m_mu * m_mu + 2. * rEnu * (E_mu - p_mu * cos(th_nu_mu)); return q2; }; //******************************************************************** // Returns the reconstructed W from a nucleon and an outgoing pion // // Could do this a lot more clever (pp + ppi).Mag() would do the job, but this // would be less instructive //******************************************************************** double FitUtils::MpPi(TLorentzVector pp, TLorentzVector ppi) { double E_p = pp.E(); double p_p = pp.Vect().Mag(); double m_p = sqrt(E_p * E_p - p_p * p_p); double E_pi = ppi.E(); double p_pi = ppi.Vect().Mag(); double m_pi = sqrt(E_pi * E_pi - p_pi * p_pi); double th_p_pi = pp.Vect().Angle(ppi.Vect()); // fairly easy thing to derive since bubble chambers measure the proton! double invMass = sqrt(m_p * m_p + m_pi * m_pi + 2 * E_p * E_pi - 2 * p_pi * p_p * cos(th_p_pi)); return invMass; }; //******************************************************** // Reconstruct the hadronic mass using neutrino and muon // Could technically do E_nu = EnuCC1pipRec(pnu,pmu,ppi) too, but this wwill be // reconstructed Enu; so gives reconstructed Wrec which most of the time isn't // used! // // Only MINERvA uses this so far; and the Enu is Enu_true // If we want W_true need to take initial state nucleon motion into account // Return value is in MeV!!! double FitUtils::Wrec(TLorentzVector pnu, TLorentzVector pmu) { //******************************************************** double E_mu = pmu.E(); double p_mu = pmu.Vect().Mag(); double m_mu = sqrt(E_mu * E_mu - p_mu * p_mu); double th_nu_mu = pnu.Vect().Angle(pmu.Vect()); // The factor of 1000 is necessary for downstream functions const double m_p = PhysConst::mass_proton * 1000; // MINERvA cut on W_exp which is tuned to W_true; so use true Enu from // generators double E_nu = pnu.E(); double w_rec = sqrt(m_p * m_p + m_mu * m_mu - 2 * m_p * E_mu + 2 * E_nu * (m_p - E_mu + p_mu * cos(th_nu_mu))); return w_rec; }; //******************************************************** // Reconstruct the true hadronic mass using the initial state and muon // Could technically do E_nu = EnuCC1pipRec(pnu,pmu,ppi) too, but this wwill be // reconstructed Enu; so gives reconstructed Wrec which most of the time isn't // used! // // No one seems to use this because it's fairly MC dependent! // Return value is in MeV!!! double FitUtils::Wtrue(TLorentzVector pnu, TLorentzVector pmu, TLorentzVector pnuc) { //******************************************************** // Could simply do the TLorentzVector operators here but this is more // instructive? // ... and prone to errors ... double E_mu = pmu.E(); double p_mu = pmu.Vect().Mag(); double m_mu = sqrt(E_mu * E_mu - p_mu * p_mu); double th_nu_mu = pnu.Vect().Angle(pmu.Vect()); double E_nuc = pnuc.E(); double p_nuc = pnuc.Vect().Mag(); double m_nuc = sqrt(E_nuc * E_nuc - p_nuc * p_nuc); double th_nuc_mu = pmu.Vect().Angle(pnuc.Vect()); double th_nu_nuc = pnu.Vect().Angle(pnuc.Vect()); double E_nu = pnu.E(); double w_rec = sqrt(m_nuc * m_nuc + m_mu * m_mu - 2 * E_nu * E_mu + 2 * E_nu * p_mu * cos(th_nu_mu) - 2 * E_nuc * E_mu + 2 * p_nuc * p_mu * cos(th_nuc_mu) + 2 * E_nu * E_nuc - 2 * E_nu * p_nuc * cos(th_nu_nuc)); return w_rec; }; double FitUtils::SumKE_PartVect(std::vector const fps) { double sum = 0.0; for (size_t p_it = 0; p_it < fps.size(); ++p_it) { sum += fps[p_it]->KE(); } return sum; } double FitUtils::SumTE_PartVect(std::vector const fps) { double sum = 0.0; for (size_t p_it = 0; p_it < fps.size(); ++p_it) { sum += fps[p_it]->E(); } return sum; } /* E Recoil */ double FitUtils::GetErecoil_TRUE(FitEvent *event) { // Get total energy of hadronic system. double Erecoil = 0.0; for (unsigned int i = 2; i < event->Npart(); i++) { // Only final state if (!event->PartInfo(i)->fIsAlive) continue; if (event->PartInfo(i)->fNEUTStatusCode != 0) continue; // Skip Lepton if (abs(event->PartInfo(i)->fPID) == abs(event->PartInfo(0)->fPID) - 1) continue; // Add Up KE of protons and TE of everything else if (event->PartInfo(i)->fPID == 2212 || event->PartInfo(i)->fPID == 2112) { Erecoil += fabs(event->PartInfo(i)->fP.E()) - fabs(event->PartInfo(i)->fP.Mag()); } else { Erecoil += event->PartInfo(i)->fP.E(); } } return Erecoil; } double FitUtils::GetErecoil_CHARGED(FitEvent *event) { // Get total energy of hadronic system. double Erecoil = 0.0; for (unsigned int i = 2; i < event->Npart(); i++) { // Only final state if (!event->PartInfo(i)->fIsAlive) continue; if (event->PartInfo(i)->fNEUTStatusCode != 0) continue; // Skip Lepton if (abs(event->PartInfo(i)->fPID) == abs(event->PartInfo(0)->fPID) - 1) continue; // Skip Neutral particles if (event->PartInfo(i)->fPID == 2112 || event->PartInfo(i)->fPID == 111 || event->PartInfo(i)->fPID == 22) continue; // Add Up KE of protons and TE of everything else if (event->PartInfo(i)->fPID == 2212) { Erecoil += fabs(event->PartInfo(i)->fP.E()) - fabs(event->PartInfo(i)->fP.Mag()); } else { Erecoil += event->PartInfo(i)->fP.E(); } } return Erecoil; } // MOVE TO MINERVA Utils! double FitUtils::GetErecoil_MINERvA_LowRecoil(FitEvent *event) { // Get total energy of hadronic system. double Erecoil = 0.0; for (unsigned int i = 2; i < event->Npart(); i++) { // Only final state if (!event->PartInfo(i)->fIsAlive) continue; if (event->PartInfo(i)->fNEUTStatusCode != 0) continue; // Skip Lepton if (abs(event->PartInfo(i)->fPID) == 13) continue; // Skip Neutrons particles if (event->PartInfo(i)->fPID == 2112) continue; int PID = event->PartInfo(i)->fPID; // KE of Protons and charged pions if (PID == 2212 or PID == 211 or PID == -211) { // Erecoil += FitUtils::T(event->PartInfo(i)->fP); Erecoil += fabs(event->PartInfo(i)->fP.E()) - fabs(event->PartInfo(i)->fP.Mag()); // Total Energy of non-neutrons // } else if (PID != 2112 and PID < 999 and PID != 22 and abs(PID) != // 14) { } else if (PID == 111 || PID == 11 || PID == -11 || PID == 22) { Erecoil += (event->PartInfo(i)->fP.E()); } } return Erecoil; } // MOVE TO MINERVA Utils! // The alternative Eavailble definition takes true q0 and subtracts the kinetic energy of neutrons and pion masses // returns in MeV double FitUtils::Eavailable(FitEvent *event) { double Eav = 0.0; // Now take q0 and subtract Eav double q0 = event->GetNeutrinoIn()->fP.E(); if (event->GetHMFSParticle(13)) { q0 -= event->GetHMFSParticle(13)->fP.E(); } else if (event->GetHMFSParticle(-13)) { q0 -= event->GetHMFSParticle(-13)->fP.E(); } else if (event->GetHMFSParticle(14)) { q0 -= event->GetHMFSParticle(14)->fP.E(); } else if (event->GetHMFSParticle(-14)) { q0 -= event->GetHMFSParticle(-14)->fP.E(); }else { std::cerr << "Found no Muon or Muon Neutrino" << std::endl; } for (unsigned int i = 2; i < event->Npart(); i++) { // Only final state if (!event->PartInfo(i)->fIsAlive) continue; if (event->PartInfo(i)->fNEUTStatusCode != 0) continue; int PID = event->PartInfo(i)->fPID; // Neutrons if (PID == 2112) { // Adding kinetic energy of neutron Eav += FitUtils::T(event->PartInfo(i)->fP)*1000.; // All pion masses } else if (abs(PID) == 211 || PID == 111) { Eav += event->PartInfo(i)->fP.M(); } } return q0-Eav; } TVector3 GetVectorInTPlane(const TVector3 &inp, const TVector3 &planarNormal) { TVector3 pnUnit = planarNormal.Unit(); double inpProjectPN = inp.Dot(pnUnit); TVector3 InPlanarInput = inp - (inpProjectPN * pnUnit); return InPlanarInput; } TVector3 GetUnitVectorInTPlane(const TVector3 &inp, const TVector3 &planarNormal) { return GetVectorInTPlane(inp, planarNormal).Unit(); } Double_t GetDeltaPhiT(TVector3 const &V_lepton, TVector3 const &V_other, TVector3 const &Normal, bool PiMinus = false) { TVector3 V_lepton_T = GetUnitVectorInTPlane(V_lepton, Normal); TVector3 V_other_T = GetUnitVectorInTPlane(V_other, Normal); return PiMinus ? acos(V_lepton_T.Dot(V_other_T)) : (M_PI - acos(V_lepton_T.Dot(V_other_T))); } TVector3 GetDeltaPT(TVector3 const &V_lepton, TVector3 const &V_other, TVector3 const &Normal) { TVector3 V_lepton_T = GetVectorInTPlane(V_lepton, Normal); TVector3 V_other_T = GetVectorInTPlane(V_other, Normal); return V_lepton_T + V_other_T; } Double_t GetDeltaAlphaT(TVector3 const &V_lepton, TVector3 const &V_other, TVector3 const &Normal, bool PiMinus = false) { TVector3 DeltaPT = GetDeltaPT(V_lepton, V_other, Normal); return GetDeltaPhiT(V_lepton, DeltaPT, Normal, PiMinus); } double FitUtils::Get_STV_dpt(FitEvent *event, int ISPDG, bool Is0pi) { // Check that the neutrino exists if (event->NumISParticle(ISPDG) == 0) { return -9999; } // Return 0 if the proton or muon are missing if (event->NumFSParticle(2212) == 0 || event->NumFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1)) == 0) { return -9999; } // Now get the TVector3s for each particle TVector3 const &NuP = event->GetHMISParticle(14)->fP.Vect(); TVector3 const &LeptonP = event->GetHMFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1))->fP.Vect(); // Find the highest momentum proton in the event between 450 and 1200 MeV with theta_p < 70 TLorentzVector Pnu = event->GetNeutrinoIn()->fP; int HMFSProton = 0; double HighestMomentum = 0.0; // Get the stack of protons std::vector Protons = event->GetAllFSProton(); for (size_t i = 0; i < Protons.size(); ++i) { if (Protons[i]->p() > 450 && Protons[i]->p() < 1200 && Protons[i]->P3().Angle(Pnu.Vect()) < (M_PI/180.0)*70.0 && Protons[i]->p() > HighestMomentum) { HighestMomentum = Protons[i]->p(); HMFSProton = i; } } // Now get the proton TLorentzVector Pprot = Protons[HMFSProton]->fP; // Get highest momentum proton in allowed proton range TVector3 HadronP = Pprot.Vect(); // If we don't have a CC0pi signal definition we also add in pion momentum if (!Is0pi) { if (event->NumFSParticle(PhysConst::pdg_pions) == 0) { return -9999; } // Count up pion momentum TLorentzVector pp = event->GetHMFSParticle(PhysConst::pdg_pions)->fP; HadronP += pp.Vect(); } return GetDeltaPT(LeptonP, HadronP, NuP).Mag(); } double FitUtils::Get_STV_dphit(FitEvent *event, int ISPDG, bool Is0pi) { // Check that the neutrino exists if (event->NumISParticle(ISPDG) == 0) { return -9999; } // Return 0 if the proton or muon are missing if (event->NumFSParticle(2212) == 0 || event->NumFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1)) == 0) { return -9999; } // Now get the TVector3s for each particle TVector3 const &NuP = event->GetHMISParticle(ISPDG)->fP.Vect(); TVector3 const &LeptonP = event->GetHMFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1))->fP.Vect(); // Find the highest momentum proton in the event between 450 and 1200 MeV with theta_p < 70 TLorentzVector Pnu = event->GetNeutrinoIn()->fP; int HMFSProton = 0; double HighestMomentum = 0.0; // Get the stack of protons std::vector Protons = event->GetAllFSProton(); for (size_t i = 0; i < Protons.size(); ++i) { if (Protons[i]->p() > 450 && Protons[i]->p() < 1200 && Protons[i]->P3().Angle(Pnu.Vect()) < (M_PI/180.0)*70.0 && Protons[i]->p() > HighestMomentum) { HighestMomentum = Protons[i]->p(); HMFSProton = i; } } // Now get the proton TLorentzVector Pprot = Protons[HMFSProton]->fP; // Get highest momentum proton in allowed proton range TVector3 HadronP = Pprot.Vect(); if (!Is0pi) { if (event->NumFSParticle(PhysConst::pdg_pions) == 0) { return -9999; } TLorentzVector pp = event->GetHMFSParticle(PhysConst::pdg_pions)->fP; HadronP += pp.Vect(); } return GetDeltaPhiT(LeptonP, HadronP, NuP); } double FitUtils::Get_STV_dalphat(FitEvent *event, int ISPDG, bool Is0pi) { // Check that the neutrino exists if (event->NumISParticle(ISPDG) == 0) { return -9999; } // Return 0 if the proton or muon are missing if (event->NumFSParticle(2212) == 0 || event->NumFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1)) == 0) { return -9999; } // Now get the TVector3s for each particle TVector3 const &NuP = event->GetHMISParticle(ISPDG)->fP.Vect(); TVector3 const &LeptonP = event->GetHMFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1))->fP.Vect(); // Find the highest momentum proton in the event between 450 and 1200 MeV with theta_p < 70 TLorentzVector Pnu = event->GetNeutrinoIn()->fP; int HMFSProton = 0; double HighestMomentum = 0.0; // Get the stack of protons std::vector Protons = event->GetAllFSProton(); for (size_t i = 0; i < Protons.size(); ++i) { if (Protons[i]->p() > 450 && Protons[i]->p() < 1200 && Protons[i]->P3().Angle(Pnu.Vect()) < (M_PI/180.0)*70.0 && Protons[i]->p() > HighestMomentum) { HighestMomentum = Protons[i]->p(); HMFSProton = i; } } // Now get the proton TLorentzVector Pprot = Protons[HMFSProton]->fP; // Get highest momentum proton in allowed proton range TVector3 HadronP = Pprot.Vect(); if (!Is0pi) { if (event->NumFSParticle(PhysConst::pdg_pions) == 0) { return -9999; } TLorentzVector pp = event->GetHMFSParticle(PhysConst::pdg_pions)->fP; HadronP += pp.Vect(); } return GetDeltaAlphaT(LeptonP, HadronP, NuP); } // As defined in PhysRevC.95.065501 // Using prescription from arXiv 1805.05486 // Returns in GeV double FitUtils::Get_pn_reco_C(FitEvent *event, int ISPDG, bool Is0pi) { const double mn = PhysConst::mass_neutron; // neutron mass const double mp = PhysConst::mass_proton; // proton mass // Check that the neutrino exists if (event->NumISParticle(ISPDG) == 0) { return -9999; } // Return 0 if the proton or muon are missing if (event->NumFSParticle(2212) == 0 || event->NumFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1)) == 0) { return -9999; } // Now get the TVector3s for each particle TVector3 const &NuP = event->GetHMISParticle(14)->fP.Vect(); TVector3 const &LeptonP = event->GetHMFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1))->fP.Vect(); // Find the highest momentum proton in the event between 450 and 1200 MeV with theta_p < 70 TLorentzVector Pnu = event->GetNeutrinoIn()->fP; int HMFSProton = 0; double HighestMomentum = 0.0; // Get the stack of protons std::vector Protons = event->GetAllFSProton(); for (size_t i = 0; i < Protons.size(); ++i) { // Update the highest momentum particle if (Protons[i]->p() > 450 && Protons[i]->p() < 1200 && Protons[i]->P3().Angle(Pnu.Vect()) < (M_PI/180.0)*70.0 && Protons[i]->p() > HighestMomentum) { HighestMomentum = Protons[i]->p(); HMFSProton = i; } } // Now get the proton TLorentzVector Pprot = Protons[HMFSProton]->fP; // Get highest momentum proton in allowed proton range TVector3 HadronP = Pprot.Vect(); //TVector3 HadronP = event->GetHMFSParticle(2212)->fP.Vect(); double const el = event->GetHMFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1))->E()/1000.; double const eh = Pprot.E()/1000.; if (!Is0pi) { if (event->NumFSParticle(PhysConst::pdg_pions) == 0) { return -9999; } TLorentzVector pp = event->GetHMFSParticle(PhysConst::pdg_pions)->fP; HadronP += pp.Vect(); } TVector3 dpt = GetDeltaPT(LeptonP, HadronP, NuP); double dptMag = dpt.Mag()/1000.; double ma = 6*mn + 6*mp - 0.09216; // target mass (E is from PhysRevC.95.065501) double map = ma - mn + 0.02713; // remnant mass double pmul = LeptonP.Dot(NuP.Unit())/1000.; double phl = HadronP.Dot(NuP.Unit())/1000.; //double pmul = GetVectorInTPlane(LeptonP, dpt).Mag()/1000.; //double phl = GetVectorInTPlane(HadronP, dpt).Mag()/1000.; double R = ma + pmul + phl - el - eh; double dpl = 0.5*R - (map*map + dptMag*dptMag)/(2*R); //double dpl = ((R*R)-(dptMag*dptMag)-(map*map))/(2*R); // as in in PhysRevC.95.065501 - gives same result double pn_reco = sqrt((dptMag*dptMag) + (dpl*dpl)); //std::cout << "Diagnostics: " << std::endl; //std::cout << "mn: " << mn << std::endl; //std::cout << "ma: " << ma << std::endl; //std::cout << "map: " << map << std::endl; //std::cout << "pmu: " << LeptonP.Mag()/1000. << std::endl; //std::cout << "ph: " << HadronP.Mag()/1000. << std::endl; //std::cout << "pmul: " << pmul << std::endl; //std::cout << "phl: " << phl << std::endl; //std::cout << "el: " << el << std::endl; //std::cout << "eh: " << eh << std::endl; //std::cout << "R: " << R << std::endl; //std::cout << "dptMag: " << dptMag << std::endl; //std::cout << "dpl: " << dpl << std::endl; //std::cout << "pn_reco: " << pn_reco << std::endl; return pn_reco; } +double FitUtils::Get_pn_reco_Ar(FitEvent *event, int ISPDG, bool Is0pi) { + + const double mn = PhysConst::mass_neutron; // neutron mass + const double mp = PhysConst::mass_proton; // proton mass + + // Check that the neutrino exists + if (event->NumISParticle(ISPDG) == 0) { + return -9999; + } + // Return 0 if the proton or muon are missing + if (event->NumFSParticle(2212) == 0 || + event->NumFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1)) == 0) { + return -9999; + } + + // Now get the TVector3s for each particle + TVector3 const &NuP = event->GetHMISParticle(14)->fP.Vect(); + TVector3 const &LeptonP = + event->GetHMFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1))->fP.Vect(); + + // Find the highest momentum proton in the event between 450 and 1200 MeV with theta_p < 70 + TLorentzVector Pnu = event->GetNeutrinoIn()->fP; + int HMFSProton = 0; + double HighestMomentum = 0.0; + // Get the stack of protons + std::vector Protons = event->GetAllFSProton(); + for (size_t i = 0; i < Protons.size(); ++i) { + // Update the highest momentum particle + if (Protons[i]->p() > 450 && + Protons[i]->p() < 1200 && + Protons[i]->P3().Angle(Pnu.Vect()) < (M_PI/180.0)*70.0 && + Protons[i]->p() > HighestMomentum) { + HighestMomentum = Protons[i]->p(); + HMFSProton = i; + } + } + // Now get the proton + TLorentzVector Pprot = Protons[HMFSProton]->fP; + // Get highest momentum proton in allowed proton range + TVector3 HadronP = Pprot.Vect(); + //TVector3 HadronP = event->GetHMFSParticle(2212)->fP.Vect(); + + double const el = event->GetHMFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1))->E()/1000.; + double const eh = Pprot.E()/1000.; + + if (!Is0pi) { + if (event->NumFSParticle(PhysConst::pdg_pions) == 0) { + return -9999; + } + TLorentzVector pp = event->GetHMFSParticle(PhysConst::pdg_pions)->fP; + HadronP += pp.Vect(); + } + TVector3 dpt = GetDeltaPT(LeptonP, HadronP, NuP); + double dptMag = dpt.Mag()/1000.; + + //double ma = 6*mn + 6*mp - 0.09216; // target mass (E is from PhysRevC.95.065501) + //double map = ma - mn + 0.02713; // remnant mass + double ma = 6*mn + 6*mp - 0.34381; // target mass (E is from PhysRevC.95.065501) + double map = ma - mn + 0.02713; // remnant mass + + double pmul = LeptonP.Dot(NuP.Unit())/1000.; + double phl = HadronP.Dot(NuP.Unit())/1000.; + + //double pmul = GetVectorInTPlane(LeptonP, dpt).Mag()/1000.; + //double phl = GetVectorInTPlane(HadronP, dpt).Mag()/1000.; + + double R = ma + pmul + phl - el - eh; + + double dpl = 0.5*R - (map*map + dptMag*dptMag)/(2*R); + //double dpl = ((R*R)-(dptMag*dptMag)-(map*map))/(2*R); // as in in PhysRevC.95.065501 - gives same result + + double pn_reco = sqrt((dptMag*dptMag) + (dpl*dpl)); + + //std::cout << "Diagnostics: " << std::endl; + //std::cout << "mn: " << mn << std::endl; + //std::cout << "ma: " << ma << std::endl; + //std::cout << "map: " << map << std::endl; + //std::cout << "pmu: " << LeptonP.Mag()/1000. << std::endl; + //std::cout << "ph: " << HadronP.Mag()/1000. << std::endl; + //std::cout << "pmul: " << pmul << std::endl; + //std::cout << "phl: " << phl << std::endl; + //std::cout << "el: " << el << std::endl; + //std::cout << "eh: " << eh << std::endl; + //std::cout << "R: " << R << std::endl; + //std::cout << "dptMag: " << dptMag << std::endl; + //std::cout << "dpl: " << dpl << std::endl; + //std::cout << "pn_reco: " << pn_reco << std::endl; + + return pn_reco; +} + // Get Cos theta with Adler angles double FitUtils::CosThAdler(TLorentzVector Pnu, TLorentzVector Pmu, TLorentzVector Ppi, TLorentzVector Pprot) { // Get the "resonance" lorentz vector (pion proton system) TLorentzVector Pres = Pprot + Ppi; // Boost the particles into the resonance rest frame so we can define the x,y,z axis Pnu.Boost(Pres.BoostVector()); Pmu.Boost(-Pres.BoostVector()); Ppi.Boost(-Pres.BoostVector()); // The z-axis is defined as the axis of three-momentum transfer, \vec{k} // Also unit normalise the axis TVector3 zAxis = (Pnu.Vect()-Pmu.Vect())*(1.0/((Pnu.Vect()-Pmu.Vect()).Mag())); // Then the angle between the pion in the "resonance" rest-frame and the z-axis is the theta Adler angle double costhAdler = cos(Ppi.Vect().Angle(zAxis)); return costhAdler; } // Get phi with Adler angles, a bit more complicated... double FitUtils::PhiAdler(TLorentzVector Pnu, TLorentzVector Pmu, TLorentzVector Ppi, TLorentzVector Pprot) { // Get the "resonance" lorentz vector (pion proton system) TLorentzVector Pres = Pprot + Ppi; // Boost the particles into the resonance rest frame so we can define the x,y,z axis Pnu.Boost(Pres.BoostVector()); Pmu.Boost(-Pres.BoostVector()); Ppi.Boost(-Pres.BoostVector()); // The z-axis is defined as the axis of three-momentum transfer, \vec{k} // Also unit normalise the axis TVector3 zAxis = (Pnu.Vect()-Pmu.Vect())*(1.0/((Pnu.Vect()-Pmu.Vect()).Mag())); // The y-axis is then defined perpendicular to z and muon momentum in the resonance frame TVector3 yAxis = Pnu.Vect().Cross(Pmu.Vect()); yAxis *= 1.0/double(yAxis.Mag()); // And the x-axis is then simply perpendicular to z and x TVector3 xAxis = yAxis.Cross(zAxis); xAxis *= 1.0/double(xAxis.Mag()); double x = Ppi.Vect().Dot(xAxis); double y = Ppi.Vect().Dot(yAxis); //double z = Ppi.Vect().Dot(zAxis); double newphi = atan2(y, x)*(180./M_PI); // Convert negative angles to positive if (newphi < 0.0) newphi += 360.0; // Old silly method before atan2 /* // Then finally construct phi as the angle between pion projection and x axis // Get the project of the pion momentum on to the zaxis TVector3 PiVectZ = zAxis*Ppi.Vect().Dot(zAxis); // The subtract the projection off the pion vector to get to get the plane TVector3 PiPlane = Ppi.Vect() - PiVectZ; double phi = -999.99; if (PiPlane.Y() > 0) { phi = (180./M_PI)*PiPlane.Angle(xAxis); } else if (PiPlane.Y() < 0) { phi = (180./M_PI)*(2*M_PI-PiPlane.Angle(xAxis)); } else if (PiPlane.Y() == 0) { TRandom3 rand; double randNo = rand.Rndm(); if (randNo > 0.5) { phi = (180./M_PI)*PiPlane.Angle(xAxis); } else { phi = (180./M_PI)*(2*M_PI-PiPlane.Angle(xAxis)); } } */ return newphi; } //******************************************************************** double FitUtils::ppInfK(TLorentzVector pmu, double costh, double binding, bool neutrino) { //******************************************************************** // Convert all values to GeV //const double V = binding / 1000.; // binding potential //const double mn = PhysConst::mass_neutron; // neutron mass const double mp = PhysConst::mass_proton; // proton mass double el = pmu.E() / 1000.; //double pl = (pmu.Vect().Mag()) / 1000.; // momentum of lepton double enu = EnuQErec(pmu, costh, binding, neutrino); double ep_inf = enu - el + mp; double pp_inf = sqrt(ep_inf * ep_inf - mp * mp); return pp_inf; }; //******************************************************************** TVector3 FitUtils::tppInfK(TLorentzVector pmu, double costh, double binding, bool neutrino) { //******************************************************************** // Convert all values to GeV //const double V = binding / 1000.; // binding potential //const double mn = PhysConst::mass_neutron; // neutron mass //const double mp = PhysConst::mass_proton; // proton mass double pl_x = pmu.X() / 1000.; double pl_y = pmu.Y() / 1000.; double pl_z= pmu.Z() / 1000.; double enu = EnuQErec(pmu, costh, binding, neutrino); TVector3 tpp_inf(-pl_x, -pl_y, -pl_z+enu); return tpp_inf; }; //******************************************************************** double FitUtils::cthpInfK(TLorentzVector pmu, double costh, double binding, bool neutrino) { //******************************************************************** // Convert all values to GeV //const double V = binding / 1000.; // binding potential //const double mn = PhysConst::mass_neutron; // neutron mass const double mp = PhysConst::mass_proton; // proton mass double el = pmu.E() / 1000.; double pl = (pmu.Vect().Mag()) / 1000.; // momentum of lepton double enu = EnuQErec(pmu, costh, binding, neutrino); double ep_inf = enu - el + mp; double pp_inf = sqrt(ep_inf * ep_inf - mp * mp); double cth_inf = (enu*enu + pp_inf*pp_inf - pl*pl)/(2*enu*pp_inf); return cth_inf; };