diff --git a/src/FCN/SampleList.cxx b/src/FCN/SampleList.cxx index 90c08fc..d137b57 100644 --- a/src/FCN/SampleList.cxx +++ b/src/FCN/SampleList.cxx @@ -1,1409 +1,1414 @@ #include "SampleList.h" #ifndef __NO_ANL__ #include "ANL_CCQE_Evt_1DQ2_nu.h" #include "ANL_CCQE_XSec_1DEnu_nu.h" // ANL CC1ppip #include "ANL_CC1ppip_Evt_1DQ2_nu.h" #include "ANL_CC1ppip_Evt_1DcosmuStar_nu.h" #include "ANL_CC1ppip_Evt_1DcosmuStar_nu.h" #include "ANL_CC1ppip_Evt_1DcosthAdler_nu.h" #include "ANL_CC1ppip_Evt_1Dphi_nu.h" #include "ANL_CC1ppip_Evt_1Dppi_nu.h" #include "ANL_CC1ppip_Evt_1Dthpr_nu.h" #include "ANL_CC1ppip_XSec_1DEnu_nu.h" #include "ANL_CC1ppip_XSec_1DQ2_nu.h" // ANL CC1npip #include "ANL_CC1npip_Evt_1DQ2_nu.h" #include "ANL_CC1npip_Evt_1DcosmuStar_nu.h" #include "ANL_CC1npip_Evt_1Dppi_nu.h" #include "ANL_CC1npip_XSec_1DEnu_nu.h" // ANL CC1pi0 #include "ANL_CC1pi0_Evt_1DQ2_nu.h" #include "ANL_CC1pi0_Evt_1DcosmuStar_nu.h" #include "ANL_CC1pi0_XSec_1DEnu_nu.h" // ANL NC1npip (mm, exotic!) #include "ANL_NC1npip_Evt_1Dppi_nu.h" // ANL NC1ppim (mm, exotic!) #include "ANL_NC1ppim_Evt_1DcosmuStar_nu.h" #include "ANL_NC1ppim_XSec_1DEnu_nu.h" // ANL CC2pi 1pim1pip (mm, even more exotic!) #include "ANL_CC2pi_1pim1pip_Evt_1Dpmu_nu.h" #include "ANL_CC2pi_1pim1pip_Evt_1Dppim_nu.h" #include "ANL_CC2pi_1pim1pip_Evt_1Dppip_nu.h" #include "ANL_CC2pi_1pim1pip_Evt_1Dpprot_nu.h" #include "ANL_CC2pi_1pim1pip_XSec_1DEnu_nu.h" // ANL CC2pi 1pip1pip (mm, even more exotic!) #include "ANL_CC2pi_1pip1pip_Evt_1Dpmu_nu.h" #include "ANL_CC2pi_1pip1pip_Evt_1Dpneut_nu.h" #include "ANL_CC2pi_1pip1pip_Evt_1DppipHigh_nu.h" #include "ANL_CC2pi_1pip1pip_Evt_1DppipLow_nu.h" #include "ANL_CC2pi_1pip1pip_XSec_1DEnu_nu.h" // ANL CC2pi 1pip1pi0 (mm, even more exotic!) #include "ANL_CC2pi_1pip1pi0_Evt_1Dpmu_nu.h" #include "ANL_CC2pi_1pip1pi0_Evt_1Dppi0_nu.h" #include "ANL_CC2pi_1pip1pi0_Evt_1Dppip_nu.h" #include "ANL_CC2pi_1pip1pi0_Evt_1Dpprot_nu.h" #include "ANL_CC2pi_1pip1pi0_XSec_1DEnu_nu.h" #endif #ifndef __NO_ArgoNeuT__ // ArgoNeuT CC1Pi #include "ArgoNeuT_CC1Pi_XSec_1Dpmu_nu.h" #include "ArgoNeuT_CC1Pi_XSec_1Dthetamu_nu.h" #include "ArgoNeuT_CC1Pi_XSec_1Dthetapi_nu.h" #include "ArgoNeuT_CC1Pi_XSec_1Dthetamupi_nu.h" #include "ArgoNeuT_CC1Pi_XSec_1Dpmu_antinu.h" #include "ArgoNeuT_CC1Pi_XSec_1Dthetamu_antinu.h" #include "ArgoNeuT_CC1Pi_XSec_1Dthetapi_antinu.h" #include "ArgoNeuT_CC1Pi_XSec_1Dthetamupi_antinu.h" // ArgoNeuT CC-inclusive #include "ArgoNeuT_CCInc_XSec_1Dpmu_antinu.h" #include "ArgoNeuT_CCInc_XSec_1Dpmu_nu.h" #include "ArgoNeuT_CCInc_XSec_1Dthetamu_antinu.h" #include "ArgoNeuT_CCInc_XSec_1Dthetamu_nu.h" #endif #ifndef __NO_BNL__ // BNL CCQE #include "BNL_CCQE_Evt_1DQ2_nu.h" #include "BNL_CCQE_XSec_1DEnu_nu.h" // BNL CC1ppip #include "BNL_CC1ppip_Evt_1DQ2_nu.h" #include "BNL_CC1ppip_Evt_1DQ2_nu.h" #include "BNL_CC1ppip_Evt_1DcosthAdler_nu.h" #include "BNL_CC1ppip_Evt_1Dphi_nu.h" #include "BNL_CC1ppip_XSec_1DEnu_nu.h" // BNL CC1npip #include "BNL_CC1npip_Evt_1DQ2_nu.h" #include "BNL_CC1npip_XSec_1DEnu_nu.h" // BNL CC1pi0 #include "BNL_CC1pi0_Evt_1DQ2_nu.h" #include "BNL_CC1pi0_XSec_1DEnu_nu.h" #endif #ifndef __NO_FNAL__ // FNAL CCQE #include "FNAL_CCQE_Evt_1DQ2_nu.h" // FNAL CC1ppip #include "FNAL_CC1ppip_Evt_1DQ2_nu.h" #include "FNAL_CC1ppip_XSec_1DEnu_nu.h" #include "FNAL_CC1ppip_XSec_1DQ2_nu.h" // FNAL CC1ppim #include "FNAL_CC1ppim_XSec_1DEnu_antinu.h" #endif #ifndef __NO_BEBC__ // BEBC CCQE #include "BEBC_CCQE_XSec_1DQ2_nu.h" // BEBC CC1ppip #include "BEBC_CC1ppip_XSec_1DEnu_nu.h" #include "BEBC_CC1ppip_XSec_1DQ2_nu.h" // BEBC CC1npip #include "BEBC_CC1npip_XSec_1DEnu_nu.h" #include "BEBC_CC1npip_XSec_1DQ2_nu.h" // BEBC CC1pi0 #include "BEBC_CC1pi0_XSec_1DEnu_nu.h" #include "BEBC_CC1pi0_XSec_1DQ2_nu.h" // BEBC CC1npim #include "BEBC_CC1npim_XSec_1DEnu_antinu.h" #include "BEBC_CC1npim_XSec_1DQ2_antinu.h" // BEBC CC1ppim #include "BEBC_CC1ppim_XSec_1DEnu_antinu.h" #include "BEBC_CC1ppim_XSec_1DQ2_antinu.h" #endif #ifndef __NO_GGM__ // GGM CC1ppip #include "GGM_CC1ppip_Evt_1DQ2_nu.h" #include "GGM_CC1ppip_XSec_1DEnu_nu.h" #endif #ifndef __NO_MiniBooNE__ // MiniBooNE CCQE #include "MiniBooNE_CCQE_XSec_1DQ2_antinu.h" #include "MiniBooNE_CCQE_XSec_1DQ2_nu.h" #include "MiniBooNE_CCQE_XSec_2DTcos_antinu.h" #include "MiniBooNE_CCQE_XSec_2DTcos_antinu.h" #include "MiniBooNE_CCQE_XSec_2DTcos_nu.h" // MiniBooNE CC1pi+ 1D #include "MiniBooNE_CC1pip_XSec_1DEnu_nu.h" #include "MiniBooNE_CC1pip_XSec_1DQ2_nu.h" #include "MiniBooNE_CC1pip_XSec_1DTpi_nu.h" #include "MiniBooNE_CC1pip_XSec_1DTu_nu.h" // MiniBooNE CC1pi+ 2D #include "MiniBooNE_CC1pip_XSec_2DQ2Enu_nu.h" #include "MiniBooNE_CC1pip_XSec_2DTpiCospi_nu.h" #include "MiniBooNE_CC1pip_XSec_2DTpiEnu_nu.h" #include "MiniBooNE_CC1pip_XSec_2DTuCosmu_nu.h" #include "MiniBooNE_CC1pip_XSec_2DTuEnu_nu.h" // MiniBooNE CC1pi0 #include "MiniBooNE_CC1pi0_XSec_1DEnu_nu.h" #include "MiniBooNE_CC1pi0_XSec_1DQ2_nu.h" #include "MiniBooNE_CC1pi0_XSec_1DTu_nu.h" #include "MiniBooNE_CC1pi0_XSec_1Dcosmu_nu.h" #include "MiniBooNE_CC1pi0_XSec_1Dcospi0_nu.h" #include "MiniBooNE_CC1pi0_XSec_1Dppi0_nu.h" #include "MiniBooNE_NC1pi0_XSec_1Dcospi0_antinu.h" #include "MiniBooNE_NC1pi0_XSec_1Dcospi0_nu.h" #include "MiniBooNE_NC1pi0_XSec_1Dppi0_antinu.h" #include "MiniBooNE_NC1pi0_XSec_1Dppi0_nu.h" // MiniBooNE NC1pi0 //#include "MiniBooNE_NCpi0_XSec_1Dppi0_nu.h" // MiniBooNE NCEL #include "MiniBooNE_NCEL_XSec_Treco_nu.h" #endif #ifndef __NO_MINERvA__ // MINERvA CCQE #include "MINERvA_CCQE_XSec_1DQ2_antinu.h" #include "MINERvA_CCQE_XSec_1DQ2_joint.h" #include "MINERvA_CCQE_XSec_1DQ2_nu.h" // MINERvA CC0pi #include "MINERvA_CC0pi_XSec_1DEe_nue.h" #include "MINERvA_CC0pi_XSec_1DQ2_nu_proton.h" #include "MINERvA_CC0pi_XSec_1DQ2_nue.h" #include "MINERvA_CC0pi_XSec_1DThetae_nue.h" // 2018 MINERvA CC0pi STV #include "MINERvA_CC0pinp_STV_XSec_1D_nu.h" // 2018 MINERvA CC0pi 2D #include "MINERvA_CC0pi_XSec_2D_nu.h" #include "MINERvA_CC0pi_XSec_1D_2018_nu.h" +// 2018 MINERvA CC0pi 2D antinu +#include "MINERvA_CC0pi_XSec_2D_antinu.h" + // MINERvA CC1pi+ #include "MINERvA_CC1pip_XSec_1DTpi_20deg_nu.h" #include "MINERvA_CC1pip_XSec_1DTpi_nu.h" #include "MINERvA_CC1pip_XSec_1Dth_20deg_nu.h" #include "MINERvA_CC1pip_XSec_1Dth_nu.h" // 2017 data update #include "MINERvA_CC1pip_XSec_1D_2017Update.h" // MINERvA CCNpi+ #include "MINERvA_CCNpip_XSec_1DEnu_nu.h" #include "MINERvA_CCNpip_XSec_1DQ2_nu.h" #include "MINERvA_CCNpip_XSec_1DTpi_nu.h" #include "MINERvA_CCNpip_XSec_1Dpmu_nu.h" #include "MINERvA_CCNpip_XSec_1Dth_nu.h" #include "MINERvA_CCNpip_XSec_1Dthmu_nu.h" // MINERvA CC1pi0 #include "MINERvA_CC1pi0_XSec_1DEnu_antinu.h" #include "MINERvA_CC1pi0_XSec_1DQ2_antinu.h" #include "MINERvA_CC1pi0_XSec_1DTpi0_antinu.h" #include "MINERvA_CC1pi0_XSec_1Dpmu_antinu.h" #include "MINERvA_CC1pi0_XSec_1Dppi0_antinu.h" #include "MINERvA_CC1pi0_XSec_1Dth_antinu.h" #include "MINERvA_CC1pi0_XSec_1Dthmu_antinu.h" // MINERvA CC1pi0 neutrino #include "MINERvA_CC1pi0_XSec_1D_nu.h" // MINERvA CCINC #include "MINERvA_CCinc_XSec_1DEnu_ratio.h" #include "MINERvA_CCinc_XSec_1Dx_ratio.h" #include "MINERvA_CCinc_XSec_2DEavq3_nu.h" // MINERvA CCDIS #include "MINERvA_CCDIS_XSec_1DEnu_ratio.h" #include "MINERvA_CCDIS_XSec_1Dx_ratio.h" // MINERvA CCCOH pion #include "MINERvA_CCCOHPI_XSec_1DEnu_antinu.h" #include "MINERvA_CCCOHPI_XSec_1DEnu_antinu.h" #include "MINERvA_CCCOHPI_XSec_1DEpi_antinu.h" #include "MINERvA_CCCOHPI_XSec_1DQ2_antinu.h" #include "MINERvA_CCCOHPI_XSec_1DEpi_nu.h" #include "MINERvA_CCCOHPI_XSec_1DQ2_nu.h" #include "MINERvA_CCCOHPI_XSec_1Dth_nu.h" #include "MINERvA_CCCOHPI_XSec_1Dth_nu.h" #include "MINERvA_CCCOHPI_XSec_joint.h" #include "MINERvA_CC0pi_XSec_1DQ2_TgtRatio_nu.h" #include "MINERvA_CC0pi_XSec_1DQ2_Tgt_nu.h" #endif #ifndef __NO_T2K__ // T2K CC0pi 2016 #include "T2K_CC0pi_XSec_2DPcos_nu.h" // T2K CC-inclusive with full acceptance 2018 #include "T2K_CCinc_XSec_2DPcos_nu_nonuniform.h" // T2K STV CC0pi 2018 #include "T2K_CC0pi_XSec_2DPcos_nu_nonuniform.h" #include "T2K_CC0pinp_STV_XSec_1Ddpt_nu.h" #include "T2K_CC0pinp_STV_XSec_1Ddphit_nu.h" #include "T2K_CC0pinp_STV_XSec_1Ddat_nu.h" #include "T2K_CC0pi1p_XSec_3DPcoscos_nu_nonuniform.h" #include "T2K_CC0pinp_ifk_XSec_3Dinfp_nu.h" #include "T2K_CC0pinp_ifk_XSec_3Dinfa_nu.h" #include "T2K_CC0pinp_ifk_XSec_3Dinfip_nu.h" // T2K CC1pi+ on CH #include "T2K_CC1pip_CH_XSec_1DQ2_nu.h" #include "T2K_CC1pip_CH_XSec_1DWrec_nu.h" #include "T2K_CC1pip_CH_XSec_1Dpmu_nu.h" #include "T2K_CC1pip_CH_XSec_1Dppi_nu.h" #include "T2K_CC1pip_CH_XSec_1Dq3_nu.h" #include "T2K_CC1pip_CH_XSec_1Dthmupi_nu.h" #include "T2K_CC1pip_CH_XSec_1Dthpi_nu.h" #include "T2K_CC1pip_CH_XSec_1Dthq3pi_nu.h" // T2K CC1pi+ on H2O #include "T2K_CC1pip_H2O_XSec_1DEnuDelta_nu.h" #include "T2K_CC1pip_H2O_XSec_1DEnuMB_nu.h" #include "T2K_CC1pip_H2O_XSec_1Dcosmu_nu.h" #include "T2K_CC1pip_H2O_XSec_1Dcosmupi_nu.h" #include "T2K_CC1pip_H2O_XSec_1Dcospi_nu.h" #include "T2K_CC1pip_H2O_XSec_1Dpmu_nu.h" #include "T2K_CC1pip_H2O_XSec_1Dppi_nu.h" #endif #ifndef __NO_SciBooNE__ // SciBooNE COH studies #include "SciBooNE_CCCOH_1TRK_1DQ2_nu.h" #include "SciBooNE_CCCOH_1TRK_1Dpmu_nu.h" #include "SciBooNE_CCCOH_1TRK_1Dthetamu_nu.h" #include "SciBooNE_CCCOH_MuPiNoVA_1DQ2_nu.h" #include "SciBooNE_CCCOH_MuPiNoVA_1Dthetapi_nu.h" #include "SciBooNE_CCCOH_MuPiNoVA_1Dthetapr_nu.h" #include "SciBooNE_CCCOH_MuPiNoVA_1Dthetamu_nu.h" #include "SciBooNE_CCCOH_MuPiNoVA_1Dpmu_nu.h" #include "SciBooNE_CCCOH_MuPiVA_1DQ2_nu.h" #include "SciBooNE_CCCOH_MuPiVA_1Dpmu_nu.h" #include "SciBooNE_CCCOH_MuPiVA_1Dthetamu_nu.h" #include "SciBooNE_CCCOH_MuPr_1DQ2_nu.h" #include "SciBooNE_CCCOH_MuPr_1Dpmu_nu.h" #include "SciBooNE_CCCOH_MuPr_1Dthetamu_nu.h" #include "SciBooNE_CCCOH_STOPFINAL_1DQ2_nu.h" #include "SciBooNE_CCCOH_STOP_NTrks_nu.h" #endif #ifndef __NO_K2K__ // K2K NC1pi0 #include "K2K_NC1pi0_Evt_1Dppi0_nu.h" #endif // MC Studies #include "ExpMultDist_CCQE_XSec_1DVar_FakeStudy.h" #include "ExpMultDist_CCQE_XSec_2DVar_FakeStudy.h" #include "MCStudy_CCQEHistograms.h" #include "GenericFlux_Tester.h" #include "GenericFlux_Vectors.h" #include "ElectronFlux_FlatTree.h" #include "ElectronScattering_DurhamData.h" #include "MCStudy_KaonPreSelection.h" #include "MCStudy_MuonValidation.h" #include "OfficialNIWGPlots.h" #include "T2K2017_FakeData.h" #include "Simple_Osc.h" #include "Smear_SVDUnfold_Propagation_Osc.h" #include "FitWeight.h" #include "NuisConfig.h" #include "NuisKey.h" #ifdef __USE_DYNSAMPLES__ #include "TRegexp.h" #include // linux #include DynamicSampleFactory::DynamicSampleFactory() : NSamples(0), NManifests(0) { LoadPlugins(); QLOG(FIT, "Loaded " << NSamples << " from " << NManifests << " shared object libraries."); } DynamicSampleFactory* DynamicSampleFactory::glblDSF = NULL; DynamicSampleFactory::PluginManifest::~PluginManifest() { for (size_t i_it = 0; i_it < Instances.size(); ++i_it) { (*(DSF_DestroySample))(Instances[i_it]); } } std::string EnsureTrailingSlash(std::string const& inp) { if (!inp.length()) { return "/"; } if (inp[inp.length() - 1] == '/') { return inp; } return inp + "/"; } void DynamicSampleFactory::LoadPlugins() { std::vector SearchDirectories; if (Config::HasPar("dynamic_sample.path")) { SearchDirectories = GeneralUtils::ParseToStr(Config::GetParS("dynamic_sample.path"), ":"); } char const* envPath = getenv("NUISANCE_DS_PATH"); if (envPath) { std::vector envPaths = GeneralUtils::ParseToStr(envPath, ":"); for (size_t ep_it = 0; ep_it < envPaths.size(); ++ep_it) { SearchDirectories.push_back(envPaths[ep_it]); } } if (!SearchDirectories.size()) { char const* pwdPath = getenv("PWD"); if (pwdPath) { SearchDirectories.push_back(pwdPath); } } for (size_t sp_it = 0; sp_it < SearchDirectories.size(); ++sp_it) { std::string dirpath = EnsureTrailingSlash(SearchDirectories[sp_it]); QLOG(FIT, "Searching for dynamic sample manifests in: " << dirpath); Ssiz_t len = 0; DIR* dir; struct dirent* ent; dir = opendir(dirpath.c_str()); if (dir != NULL) { TRegexp matchExp("*.so", true); while ((ent = readdir(dir)) != NULL) { if (matchExp.Index(TString(ent->d_name), &len) != Ssiz_t(-1)) { QLOG(FIT, "\tFound shared object: " << ent->d_name << " checking for relevant methods..."); void* dlobj = dlopen((dirpath + ent->d_name).c_str(), RTLD_NOW | RTLD_GLOBAL); char const* dlerr_cstr = dlerror(); std::string dlerr; if (dlerr_cstr) { dlerr = dlerr_cstr; } if (dlerr.length()) { ERROR(WRN, "\tDL Load Error: " << dlerr); continue; } PluginManifest plgManif; plgManif.dllib = dlobj; plgManif.soloc = (dirpath + ent->d_name); plgManif.DSF_NSamples = reinterpret_cast(dlsym(dlobj, "DSF_NSamples")); dlerr = ""; dlerr_cstr = dlerror(); if (dlerr_cstr) { dlerr = dlerr_cstr; } if (dlerr.length()) { ERROR(WRN, "\tFailed to load symbol \"DSF_NSamples\" from " << (dirpath + ent->d_name) << ": " << dlerr); dlclose(dlobj); continue; } plgManif.DSF_GetSampleName = reinterpret_cast( dlsym(dlobj, "DSF_GetSampleName")); dlerr = ""; dlerr_cstr = dlerror(); if (dlerr_cstr) { dlerr = dlerr_cstr; } if (dlerr.length()) { ERROR(WRN, "\tFailed to load symbol \"DSF_GetSampleName\" from " << (dirpath + ent->d_name) << ": " << dlerr); dlclose(dlobj); continue; } plgManif.DSF_GetSample = reinterpret_cast( dlsym(dlobj, "DSF_GetSample")); dlerr = ""; dlerr_cstr = dlerror(); if (dlerr_cstr) { dlerr = dlerr_cstr; } if (dlerr.length()) { ERROR(WRN, "\tFailed to load symbol \"DSF_GetSample\" from " << (dirpath + ent->d_name) << ": " << dlerr); dlclose(dlobj); continue; } plgManif.DSF_DestroySample = reinterpret_cast( dlsym(dlobj, "DSF_DestroySample")); dlerr = ""; dlerr_cstr = dlerror(); if (dlerr_cstr) { dlerr = dlerr_cstr; } if (dlerr.length()) { ERROR(WRN, "Failed to load symbol \"DSF_DestroySample\" from " << (dirpath + ent->d_name) << ": " << dlerr); dlclose(dlobj); continue; } plgManif.NSamples = (*(plgManif.DSF_NSamples))(); QLOG(FIT, "\tSuccessfully loaded dynamic sample manifest: " << plgManif.soloc << ". Contains " << plgManif.NSamples << " samples."); for (size_t smp_it = 0; smp_it < plgManif.NSamples; ++smp_it) { char const* smp_name = (*(plgManif.DSF_GetSampleName))(smp_it); if (!smp_name) { THROW("Could not load sample " << smp_it << " / " << plgManif.NSamples << " from " << plgManif.soloc); } if (Samples.count(smp_name)) { ERROR(WRN, "Already loaded a sample named: \"" << smp_name << "\". cannot load duplciates. This " "sample will be skipped."); continue; } plgManif.SamplesProvided.push_back(smp_name); Samples[smp_name] = std::make_pair(plgManif.soloc, smp_it); QLOG(FIT, "\t\t" << smp_name); } if (plgManif.SamplesProvided.size()) { Manifests[plgManif.soloc] = plgManif; NSamples += plgManif.SamplesProvided.size(); NManifests++; } else { dlclose(dlobj); } } } closedir(dir); } else { ERROR(WRN, "Tried to open non-existant directory."); } } } DynamicSampleFactory& DynamicSampleFactory::Get() { if (!glblDSF) { glblDSF = new DynamicSampleFactory(); } return *glblDSF; } void DynamicSampleFactory::Print() { std::map > ManifestSamples; for (std::map >::iterator smp_it = Samples.begin(); smp_it != Samples.end(); ++smp_it) { if (!ManifestSamples.count(smp_it->second.first)) { ManifestSamples[smp_it->second.first] = std::vector(); } ManifestSamples[smp_it->second.first].push_back(smp_it->first); } QLOG(FIT, "Dynamic sample manifest: "); for (std::map >::iterator m_it = ManifestSamples.begin(); m_it != ManifestSamples.end(); ++m_it) { QLOG(FIT, "\tLibrary " << m_it->first << " contains: "); for (size_t s_it = 0; s_it < m_it->second.size(); ++s_it) { QLOG(FIT, "\t\t" << m_it->second[s_it]); } } } bool DynamicSampleFactory::HasSample(std::string const& name) { return Samples.count(name); } bool DynamicSampleFactory::HasSample(nuiskey& samplekey) { return HasSample(samplekey.GetS("name")); } MeasurementBase* DynamicSampleFactory::CreateSample(nuiskey& samplekey) { if (!HasSample(samplekey)) { ERROR(WRN, "Asked to load unknown sample: \"" << samplekey.GetS("name") << "\"."); return NULL; } std::pair sample = Samples[samplekey.GetS("name")]; QLOG(SAM, "\tLoading sample " << sample.second << " from " << sample.first); return (*(Manifests[sample.first].DSF_GetSample))(sample.second, &samplekey); } DynamicSampleFactory::~DynamicSampleFactory() { Manifests.clear(); } #endif //! Functions to make it easier for samples to be created and handled. namespace SampleUtils { //! Create a given sample given its name, file, type, fakdata(fkdt) file and the //! current rw engine and push it back into the list fChain. MeasurementBase* CreateSample(std::string name, std::string file, std::string type, std::string fkdt, FitWeight* rw) { nuiskey samplekey = Config::CreateKey("sample"); samplekey.Set("name", name); samplekey.Set("input", file); samplekey.Set("type", type); return CreateSample(samplekey); } MeasurementBase* CreateSample(nuiskey samplekey) { #ifdef __USE_DYNSAMPLES__ if (DynamicSampleFactory::Get().HasSample(samplekey)) { QLOG(SAM, "Instantiating dynamic sample..."); MeasurementBase* ds = DynamicSampleFactory::Get().CreateSample(samplekey); if (ds) { QLOG(SAM, "Done."); return ds; } THROW("Failed to instantiate dynamic sample."); } #endif FitWeight* rw = FitBase::GetRW(); std::string name = samplekey.GetS("name"); std::string file = samplekey.GetS("input"); std::string type = samplekey.GetS("type"); std::string fkdt = ""; /* ANL CCQE Samples */ #ifndef __NO_ANL__ if (!name.compare("ANL_CCQE_XSec_1DEnu_nu") || !name.compare("ANL_CCQE_XSec_1DEnu_nu_PRD26") || !name.compare("ANL_CCQE_XSec_1DEnu_nu_PRL31") || !name.compare("ANL_CCQE_XSec_1DEnu_nu_PRD16")) { return (new ANL_CCQE_XSec_1DEnu_nu(samplekey)); } else if (!name.compare("ANL_CCQE_Evt_1DQ2_nu") || !name.compare("ANL_CCQE_Evt_1DQ2_nu_PRL31") || !name.compare("ANL_CCQE_Evt_1DQ2_nu_PRD26") || !name.compare("ANL_CCQE_Evt_1DQ2_nu_PRD16")) { return (new ANL_CCQE_Evt_1DQ2_nu(samplekey)); /* ANL CC1ppip samples */ } else if (!name.compare("ANL_CC1ppip_XSec_1DEnu_nu") || !name.compare("ANL_CC1ppip_XSec_1DEnu_nu_W14Cut") || !name.compare("ANL_CC1ppip_XSec_1DEnu_nu_Uncorr") || !name.compare("ANL_CC1ppip_XSec_1DEnu_nu_W14Cut_Uncorr") || !name.compare("ANL_CC1ppip_XSec_1DEnu_nu_W16Cut_Uncorr")) { return (new ANL_CC1ppip_XSec_1DEnu_nu(samplekey)); } else if (!name.compare("ANL_CC1ppip_XSec_1DQ2_nu")) { return (new ANL_CC1ppip_XSec_1DQ2_nu(samplekey)); } else if (!name.compare("ANL_CC1ppip_Evt_1DQ2_nu") || !name.compare("ANL_CC1ppip_Evt_1DQ2_nu_W14Cut")) { return (new ANL_CC1ppip_Evt_1DQ2_nu(samplekey)); } else if (!name.compare("ANL_CC1ppip_Evt_1Dppi_nu")) { return (new ANL_CC1ppip_Evt_1Dppi_nu(samplekey)); } else if (!name.compare("ANL_CC1ppip_Evt_1Dthpr_nu")) { return (new ANL_CC1ppip_Evt_1Dthpr_nu(samplekey)); } else if (!name.compare("ANL_CC1ppip_Evt_1DcosmuStar_nu")) { return (new ANL_CC1ppip_Evt_1DcosmuStar_nu(samplekey)); } else if (!name.compare("ANL_CC1ppip_Evt_1DcosthAdler_nu")) { return (new ANL_CC1ppip_Evt_1DcosthAdler_nu(samplekey)); } else if (!name.compare("ANL_CC1ppip_Evt_1Dphi_nu")) { return (new ANL_CC1ppip_Evt_1Dphi_nu(samplekey)); /* ANL CC1npip sample */ } else if (!name.compare("ANL_CC1npip_XSec_1DEnu_nu") || !name.compare("ANL_CC1npip_XSec_1DEnu_nu_W14Cut") || !name.compare("ANL_CC1npip_XSec_1DEnu_nu_Uncorr") || !name.compare("ANL_CC1npip_XSec_1DEnu_nu_W14Cut_Uncorr") || !name.compare("ANL_CC1npip_XSec_1DEnu_nu_W16Cut_Uncorr")) { return (new ANL_CC1npip_XSec_1DEnu_nu(samplekey)); } else if (!name.compare("ANL_CC1npip_Evt_1DQ2_nu") || !name.compare("ANL_CC1npip_Evt_1DQ2_nu_W14Cut")) { return (new ANL_CC1npip_Evt_1DQ2_nu(samplekey)); } else if (!name.compare("ANL_CC1npip_Evt_1Dppi_nu")) { return (new ANL_CC1npip_Evt_1Dppi_nu(samplekey)); } else if (!name.compare("ANL_CC1npip_Evt_1DcosmuStar_nu")) { return (new ANL_CC1npip_Evt_1DcosmuStar_nu(samplekey)); /* ANL CC1pi0 sample */ } else if (!name.compare("ANL_CC1pi0_XSec_1DEnu_nu") || !name.compare("ANL_CC1pi0_XSec_1DEnu_nu_W14Cut") || !name.compare("ANL_CC1pi0_XSec_1DEnu_nu_Uncorr") || !name.compare("ANL_CC1pi0_XSec_1DEnu_nu_W14Cut_Uncorr") || !name.compare("ANL_CC1pi0_XSec_1DEnu_nu_W16Cut_Uncorr")) { return (new ANL_CC1pi0_XSec_1DEnu_nu(samplekey)); } else if (!name.compare("ANL_CC1pi0_Evt_1DQ2_nu") || !name.compare("ANL_CC1pi0_Evt_1DQ2_nu_W14Cut")) { return (new ANL_CC1pi0_Evt_1DQ2_nu(samplekey)); } else if (!name.compare("ANL_CC1pi0_Evt_1DcosmuStar_nu")) { return (new ANL_CC1pi0_Evt_1DcosmuStar_nu(samplekey)); /* ANL NC1npip sample */ } else if (!name.compare("ANL_NC1npip_Evt_1Dppi_nu")) { return (new ANL_NC1npip_Evt_1Dppi_nu(samplekey)); /* ANL NC1ppim sample */ } else if (!name.compare("ANL_NC1ppim_XSec_1DEnu_nu")) { return (new ANL_NC1ppim_XSec_1DEnu_nu(samplekey)); } else if (!name.compare("ANL_NC1ppim_Evt_1DcosmuStar_nu")) { return (new ANL_NC1ppim_Evt_1DcosmuStar_nu(samplekey)); /* ANL CC2pi sample */ } else if (!name.compare("ANL_CC2pi_1pim1pip_XSec_1DEnu_nu")) { return (new ANL_CC2pi_1pim1pip_XSec_1DEnu_nu(samplekey)); } else if (!name.compare("ANL_CC2pi_1pim1pip_Evt_1Dpmu_nu")) { return (new ANL_CC2pi_1pim1pip_Evt_1Dpmu_nu(samplekey)); } else if (!name.compare("ANL_CC2pi_1pim1pip_Evt_1Dppip_nu")) { return (new ANL_CC2pi_1pim1pip_Evt_1Dppip_nu(samplekey)); } else if (!name.compare("ANL_CC2pi_1pim1pip_Evt_1Dppim_nu")) { return (new ANL_CC2pi_1pim1pip_Evt_1Dppim_nu(samplekey)); } else if (!name.compare("ANL_CC2pi_1pim1pip_Evt_1Dpprot_nu")) { return (new ANL_CC2pi_1pim1pip_Evt_1Dpprot_nu(samplekey)); } else if (!name.compare("ANL_CC2pi_1pip1pip_XSec_1DEnu_nu")) { return (new ANL_CC2pi_1pip1pip_XSec_1DEnu_nu(samplekey)); } else if (!name.compare("ANL_CC2pi_1pip1pip_Evt_1Dpmu_nu")) { return (new ANL_CC2pi_1pip1pip_Evt_1Dpmu_nu(samplekey)); } else if (!name.compare("ANL_CC2pi_1pip1pip_Evt_1Dpneut_nu")) { return (new ANL_CC2pi_1pip1pip_Evt_1Dpneut_nu(samplekey)); } else if (!name.compare("ANL_CC2pi_1pip1pip_Evt_1DppipHigh_nu")) { return (new ANL_CC2pi_1pip1pip_Evt_1DppipHigh_nu(samplekey)); } else if (!name.compare("ANL_CC2pi_1pip1pip_Evt_1DppipLow_nu")) { return (new ANL_CC2pi_1pip1pip_Evt_1DppipLow_nu(samplekey)); } else if (!name.compare("ANL_CC2pi_1pip1pi0_XSec_1DEnu_nu")) { return (new ANL_CC2pi_1pip1pi0_XSec_1DEnu_nu(samplekey)); } else if (!name.compare("ANL_CC2pi_1pip1pi0_Evt_1Dpmu_nu")) { return (new ANL_CC2pi_1pip1pi0_Evt_1Dpmu_nu(samplekey)); } else if (!name.compare("ANL_CC2pi_1pip1pi0_Evt_1Dppip_nu")) { return (new ANL_CC2pi_1pip1pi0_Evt_1Dppip_nu(samplekey)); } else if (!name.compare("ANL_CC2pi_1pip1pi0_Evt_1Dppi0_nu")) { return (new ANL_CC2pi_1pip1pi0_Evt_1Dppi0_nu(samplekey)); } else if (!name.compare("ANL_CC2pi_1pip1pi0_Evt_1Dpprot_nu")) { return (new ANL_CC2pi_1pip1pi0_Evt_1Dpprot_nu(samplekey)); /* ArgoNeut Samples */ } else #endif #ifndef __NO_ArgoNeuT__ if (!name.compare("ArgoNeuT_CCInc_XSec_1Dpmu_antinu")) { return (new ArgoNeuT_CCInc_XSec_1Dpmu_antinu(samplekey)); } else if (!name.compare("ArgoNeuT_CCInc_XSec_1Dpmu_nu")) { return (new ArgoNeuT_CCInc_XSec_1Dpmu_nu(samplekey)); } else if (!name.compare("ArgoNeuT_CCInc_XSec_1Dthetamu_antinu")) { return (new ArgoNeuT_CCInc_XSec_1Dthetamu_antinu(samplekey)); } else if (!name.compare("ArgoNeuT_CCInc_XSec_1Dthetamu_nu")) { return (new ArgoNeuT_CCInc_XSec_1Dthetamu_nu(samplekey)); } else if (!name.compare("ArgoNeuT_CC1Pi_XSec_1Dpmu_nu")) { return (new ArgoNeuT_CC1Pi_XSec_1Dpmu_nu(samplekey)); } else if (!name.compare("ArgoNeuT_CC1Pi_XSec_1Dthetamu_nu")) { return (new ArgoNeuT_CC1Pi_XSec_1Dthetamu_nu(samplekey)); } else if (!name.compare("ArgoNeuT_CC1Pi_XSec_1Dthetapi_nu")) { return (new ArgoNeuT_CC1Pi_XSec_1Dthetapi_nu(samplekey)); } else if (!name.compare("ArgoNeuT_CC1Pi_XSec_1Dthetamupi_nu")) { return (new ArgoNeuT_CC1Pi_XSec_1Dthetamupi_nu(samplekey)); } else if (!name.compare("ArgoNeuT_CC1Pi_XSec_1Dpmu_antinu")) { return (new ArgoNeuT_CC1Pi_XSec_1Dpmu_antinu(samplekey)); } else if (!name.compare("ArgoNeuT_CC1Pi_XSec_1Dthetamu_antinu")) { return (new ArgoNeuT_CC1Pi_XSec_1Dthetamu_antinu(samplekey)); } else if (!name.compare("ArgoNeuT_CC1Pi_XSec_1Dthetapi_antinu")) { return (new ArgoNeuT_CC1Pi_XSec_1Dthetapi_antinu(samplekey)); } else if (!name.compare("ArgoNeuT_CC1Pi_XSec_1Dthetamupi_antinu")) { return (new ArgoNeuT_CC1Pi_XSec_1Dthetamupi_antinu(samplekey)); /* BNL Samples */ } else #endif #ifndef __NO_BNL__ if (!name.compare("BNL_CCQE_XSec_1DEnu_nu")) { return (new BNL_CCQE_XSec_1DEnu_nu(samplekey)); } else if (!name.compare("BNL_CCQE_Evt_1DQ2_nu")) { return (new BNL_CCQE_Evt_1DQ2_nu(samplekey)); /* BNL CC1ppip samples */ } else if (!name.compare("BNL_CC1ppip_XSec_1DEnu_nu") || !name.compare("BNL_CC1ppip_XSec_1DEnu_nu_Uncorr") || !name.compare("BNL_CC1ppip_XSec_1DEnu_nu_W14Cut") || !name.compare("BNL_CC1ppip_XSec_1DEnu_nu_W14Cut_Uncorr")) { return (new BNL_CC1ppip_XSec_1DEnu_nu(samplekey)); } else if (!name.compare("BNL_CC1ppip_Evt_1DQ2_nu") || !name.compare("BNL_CC1ppip_Evt_1DQ2_nu_W14Cut")) { return (new BNL_CC1ppip_Evt_1DQ2_nu(samplekey)); } else if (!name.compare("BNL_CC1ppip_Evt_1DcosthAdler_nu")) { return (new BNL_CC1ppip_Evt_1DcosthAdler_nu(samplekey)); } else if (!name.compare("BNL_CC1ppip_Evt_1Dphi_nu")) { return (new BNL_CC1ppip_Evt_1Dphi_nu(samplekey)); /* BNL CC1npip samples */ } else if (!name.compare("BNL_CC1npip_XSec_1DEnu_nu") || !name.compare("BNL_CC1npip_XSec_1DEnu_nu_Uncorr")) { return (new BNL_CC1npip_XSec_1DEnu_nu(samplekey)); } else if (!name.compare("BNL_CC1npip_Evt_1DQ2_nu")) { return (new BNL_CC1npip_Evt_1DQ2_nu(samplekey)); /* BNL CC1pi0 samples */ } else if (!name.compare("BNL_CC1pi0_XSec_1DEnu_nu")) { return (new BNL_CC1pi0_XSec_1DEnu_nu(samplekey)); } else if (!name.compare("BNL_CC1pi0_Evt_1DQ2_nu")) { return (new BNL_CC1pi0_Evt_1DQ2_nu(samplekey)); /* FNAL Samples */ } else #endif #ifndef __NO_FNAL__ if (!name.compare("FNAL_CCQE_Evt_1DQ2_nu")) { return (new FNAL_CCQE_Evt_1DQ2_nu(samplekey)); /* FNAL CC1ppip */ } else if (!name.compare("FNAL_CC1ppip_XSec_1DEnu_nu")) { return (new FNAL_CC1ppip_XSec_1DEnu_nu(samplekey)); } else if (!name.compare("FNAL_CC1ppip_XSec_1DQ2_nu")) { return (new FNAL_CC1ppip_XSec_1DQ2_nu(samplekey)); } else if (!name.compare("FNAL_CC1ppip_Evt_1DQ2_nu")) { return (new FNAL_CC1ppip_Evt_1DQ2_nu(samplekey)); /* FNAL CC1ppim */ } else if (!name.compare("FNAL_CC1ppim_XSec_1DEnu_antinu")) { return (new FNAL_CC1ppim_XSec_1DEnu_antinu(samplekey)); /* BEBC Samples */ } else #endif #ifndef __NO_BEBC__ if (!name.compare("BEBC_CCQE_XSec_1DQ2_nu")) { return (new BEBC_CCQE_XSec_1DQ2_nu(samplekey)); /* BEBC CC1ppip samples */ } else if (!name.compare("BEBC_CC1ppip_XSec_1DEnu_nu")) { return (new BEBC_CC1ppip_XSec_1DEnu_nu(samplekey)); } else if (!name.compare("BEBC_CC1ppip_XSec_1DQ2_nu")) { return (new BEBC_CC1ppip_XSec_1DQ2_nu(samplekey)); /* BEBC CC1npip samples */ } else if (!name.compare("BEBC_CC1npip_XSec_1DEnu_nu")) { return (new BEBC_CC1npip_XSec_1DEnu_nu(samplekey)); } else if (!name.compare("BEBC_CC1npip_XSec_1DQ2_nu")) { return (new BEBC_CC1npip_XSec_1DQ2_nu(samplekey)); /* BEBC CC1pi0 samples */ } else if (!name.compare("BEBC_CC1pi0_XSec_1DEnu_nu")) { return (new BEBC_CC1pi0_XSec_1DEnu_nu(samplekey)); } else if (!name.compare("BEBC_CC1pi0_XSec_1DQ2_nu")) { return (new BEBC_CC1pi0_XSec_1DQ2_nu(samplekey)); /* BEBC CC1npim samples */ } else if (!name.compare("BEBC_CC1npim_XSec_1DEnu_antinu")) { return (new BEBC_CC1npim_XSec_1DEnu_antinu(samplekey)); } else if (!name.compare("BEBC_CC1npim_XSec_1DQ2_antinu")) { return (new BEBC_CC1npim_XSec_1DQ2_antinu(samplekey)); /* BEBC CC1ppim samples */ } else if (!name.compare("BEBC_CC1ppim_XSec_1DEnu_antinu")) { return (new BEBC_CC1ppim_XSec_1DEnu_antinu(samplekey)); } else if (!name.compare("BEBC_CC1ppim_XSec_1DQ2_antinu")) { return (new BEBC_CC1ppim_XSec_1DQ2_antinu(samplekey)); /* GGM CC1ppip samples */ } else #endif #ifndef __NO_GGM__ if (!name.compare("GGM_CC1ppip_XSec_1DEnu_nu")) { return (new GGM_CC1ppip_XSec_1DEnu_nu(samplekey)); } else if (!name.compare("GGM_CC1ppip_Evt_1DQ2_nu")) { return (new GGM_CC1ppip_Evt_1DQ2_nu(samplekey)); /* MiniBooNE Samples */ /* CCQE */ } else #endif #ifndef __NO_MiniBooNE__ if (!name.compare("MiniBooNE_CCQE_XSec_1DQ2_nu") || !name.compare("MiniBooNE_CCQELike_XSec_1DQ2_nu")) { return (new MiniBooNE_CCQE_XSec_1DQ2_nu(samplekey)); } else if (!name.compare("MiniBooNE_CCQE_XSec_1DQ2_antinu") || !name.compare("MiniBooNE_CCQELike_XSec_1DQ2_antinu") || !name.compare("MiniBooNE_CCQE_CTarg_XSec_1DQ2_antinu")) { return (new MiniBooNE_CCQE_XSec_1DQ2_antinu(samplekey)); } else if (!name.compare("MiniBooNE_CCQE_XSec_2DTcos_nu") || !name.compare("MiniBooNE_CCQELike_XSec_2DTcos_nu")) { return (new MiniBooNE_CCQE_XSec_2DTcos_nu(samplekey)); } else if (!name.compare("MiniBooNE_CCQE_XSec_2DTcos_antinu") || !name.compare("MiniBooNE_CCQELike_XSec_2DTcos_antinu")) { return (new MiniBooNE_CCQE_XSec_2DTcos_antinu(samplekey)); /* MiniBooNE CC1pi+ */ // 1D } else if (!name.compare("MiniBooNE_CC1pip_XSec_1DEnu_nu")) { return (new MiniBooNE_CC1pip_XSec_1DEnu_nu(samplekey)); } else if (!name.compare("MiniBooNE_CC1pip_XSec_1DQ2_nu")) { return (new MiniBooNE_CC1pip_XSec_1DQ2_nu(samplekey)); } else if (!name.compare("MiniBooNE_CC1pip_XSec_1DTpi_nu")) { return (new MiniBooNE_CC1pip_XSec_1DTpi_nu(samplekey)); } else if (!name.compare("MiniBooNE_CC1pip_XSec_1DTu_nu")) { return (new MiniBooNE_CC1pip_XSec_1DTu_nu(samplekey)); // 2D } else if (!name.compare("MiniBooNE_CC1pip_XSec_2DQ2Enu_nu")) { return (new MiniBooNE_CC1pip_XSec_2DQ2Enu_nu(samplekey)); } else if (!name.compare("MiniBooNE_CC1pip_XSec_2DTpiCospi_nu")) { return (new MiniBooNE_CC1pip_XSec_2DTpiCospi_nu(samplekey)); } else if (!name.compare("MiniBooNE_CC1pip_XSec_2DTpiEnu_nu")) { return (new MiniBooNE_CC1pip_XSec_2DTpiEnu_nu(samplekey)); } else if (!name.compare("MiniBooNE_CC1pip_XSec_2DTuCosmu_nu")) { return (new MiniBooNE_CC1pip_XSec_2DTuCosmu_nu(samplekey)); } else if (!name.compare("MiniBooNE_CC1pip_XSec_2DTuEnu_nu")) { return (new MiniBooNE_CC1pip_XSec_2DTuEnu_nu(samplekey)); /* MiniBooNE CC1pi0 */ } else if (!name.compare("MiniBooNE_CC1pi0_XSec_1DEnu_nu")) { return (new MiniBooNE_CC1pi0_XSec_1DEnu_nu(samplekey)); } else if (!name.compare("MiniBooNE_CC1pi0_XSec_1DQ2_nu")) { return (new MiniBooNE_CC1pi0_XSec_1DQ2_nu(samplekey)); } else if (!name.compare("MiniBooNE_CC1pi0_XSec_1DTu_nu")) { return (new MiniBooNE_CC1pi0_XSec_1DTu_nu(samplekey)); } else if (!name.compare("MiniBooNE_CC1pi0_XSec_1Dcosmu_nu")) { return (new MiniBooNE_CC1pi0_XSec_1Dcosmu_nu(samplekey)); } else if (!name.compare("MiniBooNE_CC1pi0_XSec_1Dcospi0_nu")) { return (new MiniBooNE_CC1pi0_XSec_1Dcospi0_nu(samplekey)); } else if (!name.compare("MiniBooNE_CC1pi0_XSec_1Dppi0_nu")) { return (new MiniBooNE_CC1pi0_XSec_1Dppi0_nu(samplekey)); } else if (!name.compare("MiniBooNE_NC1pi0_XSec_1Dcospi0_antinu") || !name.compare("MiniBooNE_NC1pi0_XSec_1Dcospi0_rhc")) { return (new MiniBooNE_NC1pi0_XSec_1Dcospi0_antinu(samplekey)); } else if (!name.compare("MiniBooNE_NC1pi0_XSec_1Dcospi0_nu") || !name.compare("MiniBooNE_NC1pi0_XSec_1Dcospi0_fhc")) { return (new MiniBooNE_NC1pi0_XSec_1Dcospi0_nu(samplekey)); } else if (!name.compare("MiniBooNE_NC1pi0_XSec_1Dppi0_antinu") || !name.compare("MiniBooNE_NC1pi0_XSec_1Dppi0_rhc")) { return (new MiniBooNE_NC1pi0_XSec_1Dppi0_antinu(samplekey)); } else if (!name.compare("MiniBooNE_NC1pi0_XSec_1Dppi0_nu") || !name.compare("MiniBooNE_NC1pi0_XSec_1Dppi0_fhc")) { return (new MiniBooNE_NC1pi0_XSec_1Dppi0_nu(samplekey)); /* MiniBooNE NCEL */ } else if (!name.compare("MiniBooNE_NCEL_XSec_Treco_nu")) { return (new MiniBooNE_NCEL_XSec_Treco_nu(samplekey)); /* MINERvA Samples */ } else #endif #ifndef __NO_MINERvA__ if (!name.compare("MINERvA_CCQE_XSec_1DQ2_nu") || !name.compare("MINERvA_CCQE_XSec_1DQ2_nu_20deg") || !name.compare("MINERvA_CCQE_XSec_1DQ2_nu_oldflux") || !name.compare("MINERvA_CCQE_XSec_1DQ2_nu_20deg_oldflux")) { return (new MINERvA_CCQE_XSec_1DQ2_nu(samplekey)); } else if (!name.compare("MINERvA_CCQE_XSec_1DQ2_antinu") || !name.compare("MINERvA_CCQE_XSec_1DQ2_antinu_20deg") || !name.compare("MINERvA_CCQE_XSec_1DQ2_antinu_oldflux") || !name.compare("MINERvA_CCQE_XSec_1DQ2_antinu_20deg_oldflux")) { return (new MINERvA_CCQE_XSec_1DQ2_antinu(samplekey)); } else if (!name.compare("MINERvA_CCQE_XSec_1DQ2_joint_oldflux") || !name.compare("MINERvA_CCQE_XSec_1DQ2_joint_20deg_oldflux") || !name.compare("MINERvA_CCQE_XSec_1DQ2_joint") || !name.compare("MINERvA_CCQE_XSec_1DQ2_joint_20deg")) { return (new MINERvA_CCQE_XSec_1DQ2_joint(samplekey)); } else if (!name.compare("MINERvA_CC0pi_XSec_1DEe_nue")) { return (new MINERvA_CC0pi_XSec_1DEe_nue(samplekey)); } else if (!name.compare("MINERvA_CC0pi_XSec_1DQ2_nue")) { return (new MINERvA_CC0pi_XSec_1DQ2_nue(samplekey)); } else if (!name.compare("MINERvA_CC0pi_XSec_1DThetae_nue")) { return (new MINERvA_CC0pi_XSec_1DThetae_nue(samplekey)); } else if (!name.compare("MINERvA_CC0pinp_STV_XSec_1Dpmu_nu") || !name.compare("MINERvA_CC0pinp_STV_XSec_1Dthmu_nu") || !name.compare("MINERvA_CC0pinp_STV_XSec_1Dpprot_nu") || !name.compare("MINERvA_CC0pinp_STV_XSec_1Dthprot_nu") || !name.compare("MINERvA_CC0pinp_STV_XSec_1Dpnreco_nu") || !name.compare("MINERvA_CC0pinp_STV_XSec_1Ddalphat_nu") || !name.compare("MINERvA_CC0pinp_STV_XSec_1Ddpt_nu") || !name.compare("MINERvA_CC0pinp_STV_XSec_1Ddphit_nu")) { return (new MINERvA_CC0pinp_STV_XSec_1D_nu(samplekey)); } else if (!name.compare("MINERvA_CC0pi_XSec_1DQ2_nu_proton")) { return (new MINERvA_CC0pi_XSec_1DQ2_nu_proton(samplekey)); } else if (!name.compare("MINERvA_CC0pi_XSec_1DQ2_TgtC_nu") || !name.compare("MINERvA_CC0pi_XSec_1DQ2_TgtCH_nu") || !name.compare("MINERvA_CC0pi_XSec_1DQ2_TgtFe_nu") || !name.compare("MINERvA_CC0pi_XSec_1DQ2_TgtPb_nu")) { return (new MINERvA_CC0pi_XSec_1DQ2_Tgt_nu(samplekey)); } else if (!name.compare("MINERvA_CC0pi_XSec_1DQ2_TgtRatioC_nu") || !name.compare("MINERvA_CC0pi_XSec_1DQ2_TgtRatioFe_nu") || !name.compare("MINERvA_CC0pi_XSec_1DQ2_TgtRatioPb_nu")) { return (new MINERvA_CC0pi_XSec_1DQ2_TgtRatio_nu(samplekey)); // Dan Ruterbories measurements of late 2018 } else if ( !name.compare("MINERvA_CC0pi_XSec_2Dptpz_nu")) { return (new MINERvA_CC0pi_XSec_2D_nu(samplekey)); } else if ( !name.compare("MINERvA_CC0pi_XSec_1Dpt_nu") || !name.compare("MINERvA_CC0pi_XSec_1Dpz_nu") || !name.compare("MINERvA_CC0pi_XSec_1DQ2QE_nu") || !name.compare("MINERvA_CC0pi_XSec_1DEnuQE_nu")) { return (new MINERvA_CC0pi_XSec_1D_2018_nu(samplekey)); // C. Patrick's early 2018 measurements - //} else if (!name.compare("MINERvA_CC0pi_XSec_2Dptpx_antinu")) { - //return (new MINERvA_CC0pi_XSec_2Dptpx_antinu(samplekey)); + } else if ( !name.compare("MINERvA_CC0pi_XSec_2Dptpz_antinu") || + !name.compare("MINERvA_CC0pi_XSec_2DQ2QEEnuQE_antinu") || + !name.compare("MINERvA_CC0pi_XSec_2DQ2QEEnuTrue_antinu")) { + return (new MINERvA_CC0pi_XSec_2D_antinu(samplekey)); /* CC1pi+ */ // DONE } else if (!name.compare("MINERvA_CC1pip_XSec_1DTpi_nu") || !name.compare("MINERvA_CC1pip_XSec_1DTpi_nu_20deg") || !name.compare("MINERvA_CC1pip_XSec_1DTpi_nu_fluxcorr") || !name.compare("MINERvA_CC1pip_XSec_1DTpi_nu_20deg_fluxcorr")) { return (new MINERvA_CC1pip_XSec_1DTpi_nu(samplekey)); // DONE } else if (!name.compare("MINERvA_CC1pip_XSec_1Dth_nu") || !name.compare("MINERvA_CC1pip_XSec_1Dth_nu_20deg") || !name.compare("MINERvA_CC1pip_XSec_1Dth_nu_fluxcorr") || !name.compare("MINERvA_CC1pip_XSec_1Dth_nu_20deg_fluxcorr")) { return (new MINERvA_CC1pip_XSec_1Dth_nu(samplekey)); } else if (!name.compare("MINERvA_CC1pip_XSec_1DTpi_nu_2017") || !name.compare("MINERvA_CC1pip_XSec_1Dth_nu_2017") || !name.compare("MINERvA_CC1pip_XSec_1Dpmu_nu_2017") || !name.compare("MINERvA_CC1pip_XSec_1Dthmu_nu_2017") || !name.compare("MINERvA_CC1pip_XSec_1DQ2_nu_2017") || !name.compare("MINERvA_CC1pip_XSec_1DEnu_nu_2017")) { return (new MINERvA_CC1pip_XSec_1D_2017Update(samplekey)); /* CCNpi+ */ } else if (!name.compare("MINERvA_CCNpip_XSec_1Dth_nu") || !name.compare("MINERvA_CCNpip_XSec_1Dth_nu_2015") || !name.compare("MINERvA_CCNpip_XSec_1Dth_nu_2016") || !name.compare("MINERvA_CCNpip_XSec_1Dth_nu_2015_20deg") || !name.compare("MINERvA_CCNpip_XSec_1Dth_nu_2015_fluxcorr") || !name.compare("MINERvA_CCNpip_XSec_1Dth_nu_2015_20deg_fluxcorr")) { return (new MINERvA_CCNpip_XSec_1Dth_nu(samplekey)); } else if (!name.compare("MINERvA_CCNpip_XSec_1DTpi_nu") || !name.compare("MINERvA_CCNpip_XSec_1DTpi_nu_2015") || !name.compare("MINERvA_CCNpip_XSec_1DTpi_nu_2016") || !name.compare("MINERvA_CCNpip_XSec_1DTpi_nu_2015_20deg") || !name.compare("MINERvA_CCNpip_XSec_1DTpi_nu_2015_fluxcorr") || !name.compare( "MINERvA_CCNpip_XSec_1DTpi_nu_2015_20deg_fluxcorr")) { return (new MINERvA_CCNpip_XSec_1DTpi_nu(samplekey)); } else if (!name.compare("MINERvA_CCNpip_XSec_1Dthmu_nu")) { return (new MINERvA_CCNpip_XSec_1Dthmu_nu(samplekey)); } else if (!name.compare("MINERvA_CCNpip_XSec_1Dpmu_nu")) { return (new MINERvA_CCNpip_XSec_1Dpmu_nu(samplekey)); } else if (!name.compare("MINERvA_CCNpip_XSec_1DQ2_nu")) { return (new MINERvA_CCNpip_XSec_1DQ2_nu(samplekey)); } else if (!name.compare("MINERvA_CCNpip_XSec_1DEnu_nu")) { return (new MINERvA_CCNpip_XSec_1DEnu_nu(samplekey)); /* MINERvA CC1pi0 anti-nu */ // Done } else if (!name.compare("MINERvA_CC1pi0_XSec_1Dth_antinu") || !name.compare("MINERvA_CC1pi0_XSec_1Dth_antinu_2015") || !name.compare("MINERvA_CC1pi0_XSec_1Dth_antinu_2016") || !name.compare("MINERvA_CC1pi0_XSec_1Dth_antinu_fluxcorr") || !name.compare("MINERvA_CC1pi0_XSec_1Dth_antinu_2015_fluxcorr") || !name.compare("MINERvA_CC1pi0_XSec_1Dth_antinu_2016_fluxcorr")) { return (new MINERvA_CC1pi0_XSec_1Dth_antinu(samplekey)); } else if (!name.compare("MINERvA_CC1pi0_XSec_1Dppi0_antinu") || !name.compare("MINERvA_CC1pi0_XSec_1Dppi0_antinu_fluxcorr")) { return (new MINERvA_CC1pi0_XSec_1Dppi0_antinu(samplekey)); } else if (!name.compare("MINERvA_CC1pi0_XSec_1DTpi0_antinu")) { return (new MINERvA_CC1pi0_XSec_1DTpi0_antinu(samplekey)); // Done } else if (!name.compare("MINERvA_CC1pi0_XSec_1DQ2_antinu")) { return (new MINERvA_CC1pi0_XSec_1DQ2_antinu(samplekey)); // Done } else if (!name.compare("MINERvA_CC1pi0_XSec_1Dthmu_antinu")) { return (new MINERvA_CC1pi0_XSec_1Dthmu_antinu(samplekey)); // Done } else if (!name.compare("MINERvA_CC1pi0_XSec_1Dpmu_antinu")) { return (new MINERvA_CC1pi0_XSec_1Dpmu_antinu(samplekey)); // Done } else if (!name.compare("MINERvA_CC1pi0_XSec_1DEnu_antinu")) { return (new MINERvA_CC1pi0_XSec_1DEnu_antinu(samplekey)); // MINERvA CC1pi0 nu } else if (!name.compare("MINERvA_CC1pi0_XSec_1DTpi_nu") || !name.compare("MINERvA_CC1pi0_XSec_1Dth_nu") || !name.compare("MINERvA_CC1pi0_XSec_1Dpmu_nu") || !name.compare("MINERvA_CC1pi0_XSec_1Dthmu_nu") || !name.compare("MINERvA_CC1pi0_XSec_1DQ2_nu") || !name.compare("MINERvA_CC1pi0_XSec_1DEnu_nu") || !name.compare("MINERvA_CC1pi0_XSec_1DWexp_nu") || !name.compare("MINERvA_CC1pi0_XSec_1DPPi0Mass_nu") || !name.compare("MINERvA_CC1pi0_XSec_1DPPi0MassDelta_nu") || !name.compare("MINERvA_CC1pi0_XSec_1DCosAdler_nu") || !name.compare("MINERvA_CC1pi0_XSec_1DPhiAdler_nu")) { return (new MINERvA_CC1pi0_XSec_1D_nu(samplekey)); /* CCINC */ } else if (!name.compare("MINERvA_CCinc_XSec_2DEavq3_nu")) { return (new MINERvA_CCinc_XSec_2DEavq3_nu(samplekey)); } else if (!name.compare("MINERvA_CCinc_XSec_1Dx_ratio_C12_CH") || !name.compare("MINERvA_CCinc_XSec_1Dx_ratio_Fe56_CH") || !name.compare("MINERvA_CCinc_XSec_1Dx_ratio_Pb208_CH")) { return (new MINERvA_CCinc_XSec_1Dx_ratio(samplekey)); } else if (!name.compare("MINERvA_CCinc_XSec_1DEnu_ratio_C12_CH") || !name.compare("MINERvA_CCinc_XSec_1DEnu_ratio_Fe56_CH") || !name.compare("MINERvA_CCinc_XSec_1DEnu_ratio_Pb208_CH")) { return (new MINERvA_CCinc_XSec_1DEnu_ratio(samplekey)); /* CCDIS */ } else if (!name.compare("MINERvA_CCDIS_XSec_1Dx_ratio_C12_CH") || !name.compare("MINERvA_CCDIS_XSec_1Dx_ratio_Fe56_CH") || !name.compare("MINERvA_CCDIS_XSec_1Dx_ratio_Pb208_CH")) { return (new MINERvA_CCDIS_XSec_1Dx_ratio(samplekey)); } else if (!name.compare("MINERvA_CCDIS_XSec_1DEnu_ratio_C12_CH") || !name.compare("MINERvA_CCDIS_XSec_1DEnu_ratio_Fe56_CH") || !name.compare("MINERvA_CCDIS_XSec_1DEnu_ratio_Pb208_CH")) { return (new MINERvA_CCDIS_XSec_1DEnu_ratio(samplekey)); /* CC-COH */ } else if (!name.compare("MINERvA_CCCOHPI_XSec_1DEnu_nu")) { return (new MINERvA_CCCOHPI_XSec_1DEnu_nu(samplekey)); } else if (!name.compare("MINERvA_CCCOHPI_XSec_1DEpi_nu")) { return (new MINERvA_CCCOHPI_XSec_1DEpi_nu(samplekey)); } else if (!name.compare("MINERvA_CCCOHPI_XSec_1Dth_nu")) { return (new MINERvA_CCCOHPI_XSec_1Dth_nu(samplekey)); } else if (!name.compare("MINERvA_CCCOHPI_XSec_1DQ2_nu")) { return (new MINERvA_CCCOHPI_XSec_1DQ2_nu(samplekey)); } else if (!name.compare("MINERvA_CCCOHPI_XSec_1DEnu_antinu")) { return (new MINERvA_CCCOHPI_XSec_1DEnu_antinu(samplekey)); } else if (!name.compare("MINERvA_CCCOHPI_XSec_1DEpi_antinu")) { return (new MINERvA_CCCOHPI_XSec_1DEpi_antinu(samplekey)); } else if (!name.compare("MINERvA_CCCOHPI_XSec_1Dth_antinu")) { return (new MINERvA_CCCOHPI_XSec_1Dth_antinu(samplekey)); } else if (!name.compare("MINERvA_CCCOHPI_XSec_1DQ2_antinu")) { return (new MINERvA_CCCOHPI_XSec_1DQ2_antinu(samplekey)); } else if (!name.compare("MINERvA_CCCOHPI_XSec_1DEnu_joint")) { return (new MINERvA_CCCOHPI_XSec_joint(samplekey)); } else if (!name.compare("MINERvA_CCCOHPI_XSec_1DEpi_joint")) { return (new MINERvA_CCCOHPI_XSec_joint(samplekey)); } else if (!name.compare("MINERvA_CCCOHPI_XSec_1Dth_joint")) { return (new MINERvA_CCCOHPI_XSec_joint(samplekey)); } else if (!name.compare("MINERvA_CCCOHPI_XSec_1DQ2_joint")) { return (new MINERvA_CCCOHPI_XSec_joint(samplekey)); /* T2K Samples */ } else #endif #ifndef __NO_T2K__ if (!name.compare("T2K_CC0pi_XSec_2DPcos_nu") || !name.compare("T2K_CC0pi_XSec_2DPcos_nu_I") || !name.compare("T2K_CC0pi_XSec_2DPcos_nu_II")) { return (new T2K_CC0pi_XSec_2DPcos_nu(samplekey)); } else if (!name.compare("T2K_CC0pi_XSec_2DPcos_nu_nonuniform")) { return (new T2K_CC0pi_XSec_2DPcos_nu_nonuniform(samplekey)); } else if (!name.compare("T2K_CCinc_XSec_2DPcos_nu_nonuniform")) { return (new T2K_CCinc_XSec_2DPcos_nu_nonuniform(samplekey)); /* T2K CC1pi+ CH samples */ // Comment these out for now because we don't have the proper data } else if (!name.compare("T2K_CC1pip_CH_XSec_1Dpmu_nu")) { return (new T2K_CC1pip_CH_XSec_1Dpmu_nu(samplekey)); } else if (!name.compare("T2K_CC1pip_CH_XSec_1Dppi_nu")) { return (new T2K_CC1pip_CH_XSec_1Dppi_nu(samplekey)); } else if (!name.compare("T2K_CC1pip_CH_XSec_1DQ2_nu")) { return (new T2K_CC1pip_CH_XSec_1DQ2_nu(file, rw, type, fkdt)); } else if (!name.compare("T2K_CC1pip_CH_XSec_1Dq3_nu")) { return (new T2K_CC1pip_CH_XSec_1Dq3_nu(file, rw, type, fkdt)); } else if (!name.compare("T2K_CC1pip_CH_XSec_1Dthmupi_nu")) { return (new T2K_CC1pip_CH_XSec_1Dthmupi_nu(file, rw, type, fkdt)); } else if (!name.compare("T2K_CC1pip_CH_XSec_1Dthpi_nu")) { return (new T2K_CC1pip_CH_XSec_1Dthpi_nu(file, rw, type, fkdt)); } else if (!name.compare("T2K_CC1pip_CH_XSec_1Dthq3pi_nu")) { return (new T2K_CC1pip_CH_XSec_1Dthq3pi_nu(file, rw, type, fkdt)); } else if (!name.compare("T2K_CC1pip_CH_XSec_1DWrec_nu")) { return (new T2K_CC1pip_CH_XSec_1DWrec_nu(file, rw, type, fkdt)); /* T2K CC1pi+ H2O samples */ } else if (!name.compare("T2K_CC1pip_H2O_XSec_1DEnuDelta_nu")) { return (new T2K_CC1pip_H2O_XSec_1DEnuDelta_nu(samplekey)); } else if (!name.compare("T2K_CC1pip_H2O_XSec_1DEnuMB_nu")) { return (new T2K_CC1pip_H2O_XSec_1DEnuMB_nu(samplekey)); } else if (!name.compare("T2K_CC1pip_H2O_XSec_1Dcosmu_nu")) { return (new T2K_CC1pip_H2O_XSec_1Dcosmu_nu(samplekey)); } else if (!name.compare("T2K_CC1pip_H2O_XSec_1Dcosmupi_nu")) { return (new T2K_CC1pip_H2O_XSec_1Dcosmupi_nu(samplekey)); } else if (!name.compare("T2K_CC1pip_H2O_XSec_1Dcospi_nu")) { return (new T2K_CC1pip_H2O_XSec_1Dcospi_nu(samplekey)); } else if (!name.compare("T2K_CC1pip_H2O_XSec_1Dpmu_nu")) { return (new T2K_CC1pip_H2O_XSec_1Dpmu_nu(samplekey)); } else if (!name.compare("T2K_CC1pip_H2O_XSec_1Dppi_nu")) { return (new T2K_CC1pip_H2O_XSec_1Dppi_nu(samplekey)); /* T2K CC0pi + np CH samples */ } else if (!name.compare("T2K_CC0pinp_STV_XSec_1Ddpt_nu")) { return (new T2K_CC0pinp_STV_XSec_1Ddpt_nu(samplekey)); } else if (!name.compare("T2K_CC0pinp_STV_XSec_1Ddphit_nu")) { return (new T2K_CC0pinp_STV_XSec_1Ddphit_nu(samplekey)); } else if (!name.compare("T2K_CC0pinp_STV_XSec_1Ddat_nu")) { return (new T2K_CC0pinp_STV_XSec_1Ddat_nu(samplekey)); } else if (!name.compare("T2K_CC0pi1p_XSec_3DPcoscos_nu_nonuniform")) { return (new T2K_CC0pi1p_XSec_3DPcoscos_nu_nonuniform(samplekey)); } else if (!name.compare("T2K_CC0pinp_ifk_XSec_3Dinfp_nu")) { return (new T2K_CC0pinp_ifk_XSec_3Dinfp_nu(samplekey)); } else if (!name.compare("T2K_CC0pinp_ifk_XSec_3Dinfa_nu")) { return (new T2K_CC0pinp_ifk_XSec_3Dinfa_nu(samplekey)); } else if (!name.compare("T2K_CC0pinp_ifk_XSec_3Dinfip_nu")) { return (new T2K_CC0pinp_ifk_XSec_3Dinfip_nu(samplekey)); // SciBooNE COH studies } else #endif #ifndef __NO_SciBooNE__ if (!name.compare("SciBooNE_CCCOH_STOP_NTrks_nu")) { return (new SciBooNE_CCCOH_STOP_NTrks_nu(samplekey)); } else if (!name.compare("SciBooNE_CCCOH_1TRK_1DQ2_nu")) { return (new SciBooNE_CCCOH_1TRK_1DQ2_nu(samplekey)); } else if (!name.compare("SciBooNE_CCCOH_1TRK_1Dpmu_nu")) { return (new SciBooNE_CCCOH_1TRK_1Dpmu_nu(samplekey)); } else if (!name.compare("SciBooNE_CCCOH_1TRK_1Dthetamu_nu")) { return (new SciBooNE_CCCOH_1TRK_1Dthetamu_nu(samplekey)); } else if (!name.compare("SciBooNE_CCCOH_MuPr_1DQ2_nu")) { return (new SciBooNE_CCCOH_MuPr_1DQ2_nu(samplekey)); } else if (!name.compare("SciBooNE_CCCOH_MuPr_1Dpmu_nu")) { return (new SciBooNE_CCCOH_MuPr_1Dpmu_nu(samplekey)); } else if (!name.compare("SciBooNE_CCCOH_MuPr_1Dthetamu_nu")) { return (new SciBooNE_CCCOH_MuPr_1Dthetamu_nu(samplekey)); } else if (!name.compare("SciBooNE_CCCOH_MuPiVA_1DQ2_nu")) { return (new SciBooNE_CCCOH_MuPiVA_1DQ2_nu(samplekey)); } else if (!name.compare("SciBooNE_CCCOH_MuPiVA_1Dpmu_nu")) { return (new SciBooNE_CCCOH_MuPiVA_1Dpmu_nu(samplekey)); } else if (!name.compare("SciBooNE_CCCOH_MuPiVA_1Dthetamu_nu")) { return (new SciBooNE_CCCOH_MuPiVA_1Dthetamu_nu(samplekey)); } else if (!name.compare("SciBooNE_CCCOH_MuPiNoVA_1DQ2_nu")) { return (new SciBooNE_CCCOH_MuPiNoVA_1DQ2_nu(samplekey)); } else if (!name.compare("SciBooNE_CCCOH_MuPiNoVA_1Dthetapr_nu")) { return (new SciBooNE_CCCOH_MuPiNoVA_1Dthetapr_nu(samplekey)); } else if (!name.compare("SciBooNE_CCCOH_MuPiNoVA_1Dthetapi_nu")) { return (new SciBooNE_CCCOH_MuPiNoVA_1Dthetapi_nu(samplekey)); } else if (!name.compare("SciBooNE_CCCOH_MuPiNoVA_1Dthetamu_nu")) { return (new SciBooNE_CCCOH_MuPiNoVA_1Dthetamu_nu(samplekey)); } else if (!name.compare("SciBooNE_CCCOH_MuPiNoVA_1Dpmu_nu")) { return (new SciBooNE_CCCOH_MuPiNoVA_1Dpmu_nu(samplekey)); } else if (!name.compare("SciBooNE_CCCOH_STOPFINAL_1DQ2_nu")) { return (new SciBooNE_CCCOH_STOPFINAL_1DQ2_nu(samplekey)); /* K2K Samples */ /* NC1pi0 */ } else #endif #ifndef __NO_K2K__ if (!name.compare("K2K_NC1pi0_Evt_1Dppi0_nu")) { return (new K2K_NC1pi0_Evt_1Dppi0_nu(samplekey)); /* Fake Studies */ } else #endif if (name.find("ExpMultDist_CCQE_XSec_1D") != std::string::npos && name.find("_FakeStudy") != std::string::npos) { return ( new ExpMultDist_CCQE_XSec_1DVar_FakeStudy(name, file, rw, type, fkdt)); } else if (name.find("ExpMultDist_CCQE_XSec_2D") != std::string::npos && name.find("_FakeStudy") != std::string::npos) { return ( new ExpMultDist_CCQE_XSec_2DVar_FakeStudy(name, file, rw, type, fkdt)); } else if (name.find("GenericFlux_") != std::string::npos) { return (new GenericFlux_Tester(name, file, rw, type, fkdt)); } else if (name.find("GenericVectors_") != std::string::npos) { return (new GenericFlux_Vectors(name, file, rw, type, fkdt)); } else if (!name.compare("T2K2017_FakeData")) { return (new T2K2017_FakeData(samplekey)); } else if (!name.compare("MCStudy_CCQE")) { return (new MCStudy_CCQEHistograms(name, file, rw, type, fkdt)); } else if (!name.compare("ElectronFlux_FlatTree")) { return (new ElectronFlux_FlatTree(name, file, rw, type, fkdt)); } else if (name.find("ElectronData_") != std::string::npos) { return new ElectronScattering_DurhamData(samplekey); } else if (name.find("MuonValidation_") != std::string::npos) { return (new MCStudy_MuonValidation(name, file, rw, type, fkdt)); } else if (!name.compare("NIWGOfficialPlots")) { return (new OfficialNIWGPlots(samplekey)); } else if (!name.compare("Simple_Osc")) { return (new Simple_Osc(samplekey)); } else if (!name.compare("Smear_SVDUnfold_Propagation_Osc")) { return (new Smear_SVDUnfold_Propagation_Osc(samplekey)); } else { THROW("Error: No such sample: " << name << std::endl); } // Return NULL if no sample loaded. return NULL; } } diff --git a/src/MINERvA/CMakeLists.txt b/src/MINERvA/CMakeLists.txt index 5314f09..072b31e 100644 --- a/src/MINERvA/CMakeLists.txt +++ b/src/MINERvA/CMakeLists.txt @@ -1,178 +1,178 @@ # Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret ################################################################################ # This file is part of NUISANCE. # # NUISANCE is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # NUISANCE is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NUISANCE. If not, see . ################################################################################ set(IMPLFILES MINERvA_CCQE_XSec_1DQ2_antinu.cxx MINERvA_CCQE_XSec_1DQ2_joint.cxx MINERvA_CCQE_XSec_1DQ2_nu.cxx MINERvA_CC0pi_XSec_1DEe_nue.cxx MINERvA_CC0pi_XSec_1DQ2_nue.cxx MINERvA_CC0pi_XSec_1DQ2_nu_proton.cxx MINERvA_CC0pi_XSec_1DThetae_nue.cxx MINERvA_CC0pinp_STV_XSec_1D_nu.cxx MINERvA_CC1pi0_XSec_1DEnu_antinu.cxx MINERvA_CC1pi0_XSec_1DQ2_antinu.cxx MINERvA_CC1pi0_XSec_1Dpmu_antinu.cxx MINERvA_CC1pi0_XSec_1Dppi0_antinu.cxx MINERvA_CC1pi0_XSec_1DTpi0_antinu.cxx MINERvA_CC1pi0_XSec_1Dth_antinu.cxx MINERvA_CC1pi0_XSec_1Dthmu_antinu.cxx MINERvA_CC1pi0_XSec_1D_nu.cxx - - MINERvA_CC1pip_XSec_1DTpi_20deg_nu.cxx MINERvA_CC1pip_XSec_1DTpi_nu.cxx MINERvA_CC1pip_XSec_1Dth_20deg_nu.cxx MINERvA_CC1pip_XSec_1Dth_nu.cxx MINERvA_CC1pip_XSec_1D_2017Update.cxx MINERvA_CCNpip_XSec_1DEnu_nu.cxx MINERvA_CCNpip_XSec_1DQ2_nu.cxx MINERvA_CCNpip_XSec_1DTpi_nu.cxx MINERvA_CCNpip_XSec_1Dpmu_nu.cxx MINERvA_CCNpip_XSec_1Dth_nu.cxx MINERvA_CCNpip_XSec_1Dthmu_nu.cxx MINERvA_CCinc_XSec_2DEavq3_nu.cxx MINERvA_CCinc_XSec_1Dx_ratio.cxx MINERvA_CCinc_XSec_1DEnu_ratio.cxx MINERvA_CCinc_XSec_1Dx_nu.cxx MINERvA_CCinc_XSec_1DEnu_nu.cxx MINERvA_CCDIS_XSec_1Dx_ratio.cxx MINERvA_CCDIS_XSec_1DEnu_ratio.cxx MINERvA_CCDIS_XSec_1Dx_nu.cxx MINERvA_CCDIS_XSec_1DEnu_nu.cxx MINERvA_CC0pi_XSec_1DQ2_Tgt_nu.cxx MINERvA_CC0pi_XSec_1DQ2_TgtRatio_nu.cxx +MINERvA_CC0pi_XSec_2D_antinu.cxx MINERvA_CC0pi_XSec_2D_nu.cxx MINERvA_CC0pi_XSec_1D_2018_nu.cxx MINERvA_CCCOHPI_XSec_1DEnu_nu.cxx MINERvA_CCCOHPI_XSec_1DEpi_nu.cxx MINERvA_CCCOHPI_XSec_1Dth_nu.cxx MINERvA_CCCOHPI_XSec_1DQ2_nu.cxx MINERvA_CCCOHPI_XSec_1DEnu_antinu.cxx MINERvA_CCCOHPI_XSec_1DEpi_antinu.cxx MINERvA_CCCOHPI_XSec_1Dth_antinu.cxx MINERvA_CCCOHPI_XSec_1DQ2_antinu.cxx MINERvA_CCCOHPI_XSec_joint.cxx MINERvAUtils.cxx MINERvA_SignalDef.cxx ) set(HEADERFILES MINERvA_CCQE_XSec_1DQ2_antinu.h MINERvA_CCQE_XSec_1DQ2_joint.h MINERvA_CCQE_XSec_1DQ2_nu.h MINERvA_CC0pi_XSec_1DEe_nue.h MINERvA_CC0pi_XSec_1DQ2_nue.h MINERvA_CC0pi_XSec_1DQ2_nu_proton.h MINERvA_CC0pi_XSec_1DThetae_nue.h MINERvA_CC0pinp_STV_XSec_1D_nu.h MINERvA_CC1pi0_XSec_1DEnu_antinu.h MINERvA_CC1pi0_XSec_1DQ2_antinu.h MINERvA_CC1pi0_XSec_1Dpmu_antinu.h MINERvA_CC1pi0_XSec_1Dppi0_antinu.h MINERvA_CC1pi0_XSec_1DTpi0_antinu.h MINERvA_CC1pi0_XSec_1Dth_antinu.h MINERvA_CC1pi0_XSec_1Dthmu_antinu.h MINERvA_CC1pip_XSec_1DTpi_20deg_nu.h MINERvA_CC1pip_XSec_1DTpi_nu.h MINERvA_CC1pip_XSec_1Dth_20deg_nu.h MINERvA_CC1pip_XSec_1Dth_nu.h MINERvA_CCNpip_XSec_1DEnu_nu.h MINERvA_CCNpip_XSec_1DQ2_nu.h MINERvA_CCNpip_XSec_1DTpi_nu.h MINERvA_CCNpip_XSec_1Dpmu_nu.h MINERvA_CCNpip_XSec_1Dth_nu.h MINERvA_CCNpip_XSec_1Dthmu_nu.h MINERvA_CCinc_XSec_2DEavq3_nu.h MINERvA_CCinc_XSec_1Dx_ratio.h MINERvA_CCinc_XSec_1DEnu_ratio.h MINERvA_CCinc_XSec_1Dx_nu.h MINERvA_CCinc_XSec_1DEnu_nu.h MINERvA_CCDIS_XSec_1Dx_ratio.h MINERvA_CCDIS_XSec_1DEnu_ratio.h MINERvA_CCDIS_XSec_1Dx_nu.h MINERvA_CCDIS_XSec_1DEnu_nu.h MINERvA_CC0pi_XSec_1DQ2_Tgt_nu.h MINERvA_CC0pi_XSec_1DQ2_TgtRatio_nu.h +MINERvA_CC0pi_XSec_2D_antinu.h MINERvA_CC0pi_XSec_2D_nu.h MINERvA_CC0pi_XSec_1D_2018_nu.h MINERvA_CC1pip_XSec_1D_2017Update.h MINERvA_CCCOHPI_XSec_1DEnu_nu.h MINERvA_CCCOHPI_XSec_1DEpi_nu.h MINERvA_CCCOHPI_XSec_1Dth_nu.h MINERvA_CCCOHPI_XSec_1DQ2_nu.h MINERvA_CCCOHPI_XSec_1DEnu_antinu.h MINERvA_CCCOHPI_XSec_1DEpi_antinu.h MINERvA_CCCOHPI_XSec_1Dth_antinu.h MINERvA_CCCOHPI_XSec_1DQ2_antinu.h MINERvA_CCCOHPI_XSec_joint.h MINERvAUtils.h MINERvA_SignalDef.h MINERvAVariableBoxes.h ) set(LIBNAME expMINERvA) if(CMAKE_BUILD_TYPE MATCHES DEBUG) add_library(${LIBNAME} STATIC ${IMPLFILES}) else(CMAKE_BUILD_TYPE MATCHES RELEASE) add_library(${LIBNAME} SHARED ${IMPLFILES}) endif() include_directories(${MINIMUM_INCLUDE_DIRECTORIES}) set_target_properties(${LIBNAME} PROPERTIES VERSION "${NUISANCE_VERSION_MAJOR}.${NUISANCE_VERSION_MINOR}.${NUISANCE_VERSION_REVISION}") #set_target_properties(${LIBNAME} PROPERTIES LINK_FLAGS ${ROOT_LD_FLAGS}) if(DEFINED PROJECTWIDE_EXTRA_DEPENDENCIES) add_dependencies(${LIBNAME} ${PROJECTWIDE_EXTRA_DEPENDENCIES}) endif() install(TARGETS ${LIBNAME} DESTINATION lib) #Can uncomment this to install the headers... but is it really neccessary? #install(FILES ${HEADERFILES} DESTINATION include) set(MODULETargets ${MODULETargets} ${LIBNAME} PARENT_SCOPE) diff --git a/src/MINERvA/MINERvA_CC0pi_XSec_2D_antinu.cxx b/src/MINERvA/MINERvA_CC0pi_XSec_2D_antinu.cxx new file mode 100644 index 0000000..9aca82a --- /dev/null +++ b/src/MINERvA/MINERvA_CC0pi_XSec_2D_antinu.cxx @@ -0,0 +1,199 @@ +// Adrian Orea +// I used the file MINERvA_CCinc_XSec_2DEavq3_nu.cxx as a template +// Also, I am fully aware of the naming typo (should be ptpz), but Everything is already named the same way so... + +// Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret + +/******************************************************************************* +* This file is part of NUISANCE. +* +* NUISANCE is free software: you can redistribute it and/or modify +* it under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* NUISANCE is distributed in the hope that it will be useful, +* but WITHOUT ANY WARRANTY; without even the implied warranty of +* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +* GNU General Public License for more details. +* +* You should have received a copy of the GNU General Public License +* along with NUISANCE. If not, see . +*******************************************************************************/ +/* + Author : Adrian Orea + Clarence Wret Cleanup 2019: Data was missing + Signal definition wrong (missing 120 MeV KE cut, missing pz and pt cut) + Not fully implemented + Assumed generator send neutrinos along z-axis +*/ + +#include "MINERvA_SignalDef.h" +#include "MINERvA_CC0pi_XSec_2D_antinu.h" + + +//******************************************************************** +void MINERvA_CC0pi_XSec_2D_antinu::SetupDataSettings() { +//******************************************************************** + + // Set Distribution + // See header file for enum and some descriptions + std::string name = fSettings.GetS("name"); + + // We're lucky to have three different MINERvA CC0pi anti-numu 2D distributions + if (!name.compare("MINERvA_CC0pi_XSec_2Dptpz_antinu")) fDist = kPtPz; + else if (!name.compare("MINERvA_CC0pi_XSec_2DQ2QEEnuQE_antinu")) fDist = kQ2QEEnuQE; + else if (!name.compare("MINERvA_CC0pi_XSec_2DQ2QEEnuTrue_antinu")) fDist = kQ2QEEnuTrue; + + // Define what files to use from the dist + std::string basedir = "MINERvA/CC0pi_2D_antinu/"; + std::string datafile = basedir; + std::string covfile = basedir; + std::string titles = ""; + std::string distdescript = ""; + std::string histname = ""; + std::string xbinning = basedir; + std::string ybinning = basedir; + + // N.B. fScaleFactor also needs to be set dependent on the distribution. The EnuQE and EnuTrue distributions flux integrate in the Enu dimension and flux average in the Q2 dimension + switch (fDist) { + case (kPtPz): + datafile += "cross_sections_muonpz_muonpt_lowangleqelike_minerva_2d.csv"; + covfile += "cross_sections_muonpz_muonpt_lowangleqelike_minerva_covariance.csv"; + xbinning += "cross_sections_muonpt_lowangleqelike_minerva_intmuonpz_bins_1d.csv"; + ybinning += "cross_sections_muonpz_lowangleqelike_minerva_intmuonpt_bins_1d.csv"; + titles = "MINERvA CC0#pi #bar{#nu}_{#mu} p_{t} p_{z};p_{t} (GeV);p_{z} (GeV);d^{2}#sigma/dp_{t}dp_{z} (cm^{2}/GeV^{2}/nucleon)"; + distdescript = "MINERvA_CC0pi_XSec_2Dptpz_antinu sample"; + fScaleFactor = (GetEventHistogram()->Integral("width") * 1E-38 / (fNEvents + 0.)) / this->TotalIntegratedFlux(); + break; + case (kQ2QEEnuQE): + datafile += "cross_sections_enuqe_qsq_lowangleqelike_minerva_2d.csv"; + covfile += "cross_sections_enuqe_qsq_lowangleqelike_minerva_covariance.csv"; + xbinning += "cross_sections_qsq_lowangleqelike_minerva_intenuqe_bins_1d.csv"; + ybinning += "cross_sections_enuqe_lowangleqelike_minerva_intqsq_bins_1d.csv"; + titles = "MINERvA CC0#pi #bar{#nu}_{#mu} Q^{2}_{QE} E^{#nu}_{QE};Q^{2}_{QE} (GeV);E^{#nu}_{QE} (GeV);d#sigma/dQ^{2}_{QE} (cm^{2}/GeV^{2}/nucleon)"; + distdescript = "MINERvA_CC0pi_XSec_2DQ2QEEnuQE_antinu sample"; + fScaleFactor = GetEventHistogram()->Integral("width") * double(1E-38) / double(fNEvents); + break; + case (kQ2QEEnuTrue): + datafile += "cross_sections_enu_qsq_lowangleqelike_minerva_2d.csv"; + covfile += "cross_sections_enu_qsq_lowangleqelike_minerva_covariance.csv"; + xbinning += "cross_sections_qsq_lowangleqelike_minerva_intenuqe_bins_1d.csv"; + ybinning += "cross_sections_enuqe_lowangleqelike_minerva_intqsq_bins_1d.csv"; + titles = "MINERvA CC0#pi #bar{#nu}_{#mu} Q^{2}_{QE} E^{#nu}_{True};Q^{2}_{QE} (GeV);E^{#nu}_{True} (GeV);d#sigma/dQ^{2}_{QE} (cm^{2}/GeV^{2}/nucleon)"; + distdescript = "MINERvA_CC0pi_XSec_2DQ2QEEnuTrue_antinu sample"; + fScaleFactor = GetEventHistogram()->Integral("width") * double(1E-38) / double(fNEvents); + break; + default: + THROW("Unknown Analysis Distribution : " << name); + } + + fSettings.SetTitle( GeneralUtils::ParseToStr(titles,";")[0] ); + fSettings.SetXTitle( GeneralUtils::ParseToStr(titles,";")[1] ); + fSettings.SetYTitle( GeneralUtils::ParseToStr(titles,";")[2] ); + fSettings.SetZTitle( GeneralUtils::ParseToStr(titles,";")[3] ); + + // Sample overview --------------------------------------------------- + std::string descrip = distdescript + "\n"\ + "Target: CH \n" \ + "Flux: MINERvA Low Energy RHC anti-numu \n" \ + "Signal: CC-0pi \n"; + fSettings.SetDescription(descrip); + + // The input ROOT file in the fSettings + fSettings.SetDataInput(FitPar::GetDataBase() + datafile); + fSettings.SetCovarInput(FitPar::GetDataBase() + covfile); + // Save the binning used in the sample settings + fSettings.SetS("xbins", FitPar::GetDataBase() + xbinning); + fSettings.SetS("ybins", FitPar::GetDataBase() + ybinning); + + // Sets up the data from the data file, x binning and y binning + SetDataFromTextFile(fSettings.GetDataInput(), + fSettings.GetS("xbins"), + fSettings.GetS("ybins")); + + // The data comes in units of 1E-41 + fDataHist->Scale(1E-41); + + // Setup the covariance matrix + SetCovarFromTextFile(fSettings.GetCovarInput(), fDataHist->GetNbinsX()*fDataHist->GetNbinsY()); + + // Set the error on the data from the covariance matrix + StatUtils::SetDataErrorFromCov(fDataHist, fFullCovar, (TH2I*)NULL, 1.E-41, true); + + // In NUISANCE we assume the covar scale is 1E76 (or cross-section in 1E-38) + // For this measurement it's actually 1E41*1E41=1E82 so need to multiply 1E82/1E76=1E6 + double ScalingFactor = 1E-3*1E-3; + (*fFullCovar) *= ScalingFactor; + (*covar) *= 1./ScalingFactor; + (*fDecomp) *= 1./ScalingFactor; +}; + +//******************************************************************** +MINERvA_CC0pi_XSec_2D_antinu::MINERvA_CC0pi_XSec_2D_antinu(nuiskey samplekey) { +//******************************************************************** + + fSettings = LoadSampleSettings(samplekey); + fSettings.SetAllowedTypes("FIX,FREE,SHAPE/FULL,DIAG/MASK", "FIX/FULL"); + fSettings.SetEnuRange(0.0, 100.0); + fSettings.DefineAllowedTargets("C,H"); + fSettings.DefineAllowedSpecies("antinumu"); + + // Set up the data and covariance matrix + SetupDataSettings(); + + FinaliseSampleSettings(); + + FinaliseMeasurement(); +}; + +//******************************************************************** +void MINERvA_CC0pi_XSec_2D_antinu::FillEventVariables(FitEvent *event) { + //******************************************************************** + + // Checking to see if there is a Muon + if (event->NumFSParticle(-13) == 0) return; + + TLorentzVector Pnu = event->GetNeutrinoIn()->fP; + TLorentzVector Pmu = event->GetHMFSParticle(-13)->fP; + + switch (fDist) { + case (kPtPz): + { + Double_t px = Pmu.X()/1.E3; + Double_t py = Pmu.Y()/1.E3; + Double_t pt = sqrt(px*px+py*py); + + // Don't want to assume the event generators all have neutrino coming along z + // pz is muon momentum projected onto the neutrino direction + Double_t pz = Pmu.Vect().Dot(Pnu.Vect()*(1.0/Pnu.Vect().Mag()))/1.E3; + + // Set Hist Variables + fYVar = pz; + fXVar = pt; + break; + } + case (kQ2QEEnuQE): + { + double Q2qeRec = FitUtils::Q2QErec(Pmu, Pnu, 30, false); + double EnuQErec = FitUtils::EnuQErec(Pmu, Pnu, 30, false); + fXVar = Q2qeRec; + fYVar = EnuQErec; + break; + } + case (kQ2QEEnuTrue): + { + double Q2qeRec = FitUtils::Q2QErec(Pmu, Pnu, 30, false); + double EnuTrue = Pnu.E()/1.E3; + fXVar = Q2qeRec; + fYVar = EnuTrue; + break; + } + } +}; + +//******************************************************************** +bool MINERvA_CC0pi_XSec_2D_antinu::isSignal(FitEvent *event) { + //******************************************************************** + return SignalDef::isCC0pi_anti_MINERvAPTPZ(event, -14, EnuMin, EnuMax); +}; diff --git a/src/MINERvA/MINERvA_CC0pi_XSec_2D_antinu.h b/src/MINERvA/MINERvA_CC0pi_XSec_2D_antinu.h new file mode 100644 index 0000000..6b1675f --- /dev/null +++ b/src/MINERvA/MINERvA_CC0pi_XSec_2D_antinu.h @@ -0,0 +1,55 @@ +// Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret + +/******************************************************************************* +* This file is part of NUISANCE. +* +* NUISANCE is free software: you can redistribute it and/or modify +* it under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* NUISANCE is distributed in the hope that it will be useful, +* but WITHOUT ANY WARRANTY; without even the implied warranty of +* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +* GNU General Public License for more details. +* +* You should have received a copy of the GNU General Public License +* along with NUISANCE. If not, see . +*******************************************************************************/ + +#ifndef MINERVA_CC0PI_XSEC_2D_ANTINU_H_SEEN +#define MINERVA_CC0PI_XSEC_2D_ANTINU_H_SEEN + +#include "Measurement2D.h" + + +//******************************************************************** +class MINERvA_CC0pi_XSec_2D_antinu : public Measurement2D { +//******************************************************************** + + public: + + // Constructor + MINERvA_CC0pi_XSec_2D_antinu(nuiskey samplekey); + + // Destructor + virtual ~MINERvA_CC0pi_XSec_2D_antinu() {}; + + // Required functions + bool isSignal(FitEvent *nvect); + void FillEventVariables(FitEvent *event); + + protected: + // Set up settings based on distribution + void SetupDataSettings(); + + // The 2D distributions we have + enum Distribution { + kPtPz, + kQ2QEEnuQE, + kQ2QEEnuTrue + }; + Distribution fDist; +}; + +#endif diff --git a/src/MINERvA/MINERvA_SignalDef.cxx b/src/MINERvA/MINERvA_SignalDef.cxx index 8c0a864..386de0b 100644 --- a/src/MINERvA/MINERvA_SignalDef.cxx +++ b/src/MINERvA/MINERvA_SignalDef.cxx @@ -1,431 +1,468 @@ // Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret /******************************************************************************* * This file is part of NUISANCE. * * NUISANCE is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * NUISANCE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NUISANCE. If not, see . *******************************************************************************/ #include "SignalDef.h" #include "FitUtils.h" #include "MINERvA_SignalDef.h" namespace SignalDef { // ********************************* // MINERvA CC1pi+/- signal definition (2015 release) // Note: There is a 2016 release which is different to this (listed below), but // it is CCNpi+ and has a different W cut // Note2: The W cut is implemented in the class implementation in MINERvA/ // rather than here so we can draw events that don't pass the W cut (W cut is // 1.4 GeV) // Could possibly be changed for slight speed increase since less events // would be used // // MINERvA signal is slightly different to MiniBooNE // // Exactly one negative muon // Exactly one charged pion (both + and -); however, there is a Michel e- // requirement but UNCLEAR IF UNFOLDED OR NOT (so don't know if should be // applied) // Exactly 1 charged pion exits (so + and - charge), however, has Michel // electron requirement, so look for + only here? // No restriction on neutral pions or other mesons // MINERvA has unfolded and not unfolded muon phase space for 2015 // // Possible issues with the data: // 1) pi- is allowed in signal even when Michel cut included; most pi- is efficiency corrected in GENIE // 2) There is a T_pi < 350 MeV cut coming from requiring a stopping pion; this is efficiency corrected in GENIE // 3) There is a 1.5 < Enu < 10.0 cut in signal definition // 4) There is an angular muon cut which is sometimes efficiency corrected (why we have bool isRestricted below) // // Nice things: // Much data given: with and without muon angle cuts and with and without shape // only data + covariance // bool isCC1pip_MINERvA(FitEvent *event, double EnuMin, double EnuMax, bool isRestricted) { // ********************************* // Signal is both pi+ and pi- // WARNING: PI- CONTAMINATION IS FULLY GENIE BECAUSE THE MICHEL TAG // First, make sure it's CCINC if (!isCCINC(event, 14, EnuMin, EnuMax)) return false; // Allow pi+/pi- int piPDG[] = {211, -211}; int nLeptons = event->NumFSLeptons(); int nPion = event->NumFSParticle(piPDG); // Check that the desired pion exists and is the only meson if (nPion != 1) return false; // Check that there is only one final state lepton if (nLeptons != 1) return false; // MINERvA released another CC1pi+ xsec without muon unfolding! // here the muon angle is < 20 degrees (seen in MINOS) TLorentzVector pnu = event->GetHMISParticle(14)->fP; TLorentzVector pmu = event->GetHMFSParticle(13)->fP; if (isRestricted) { double th_nu_mu = FitUtils::th(pmu, pnu) * 180. / M_PI; if (th_nu_mu >= 20) return false; } // Extract Hadronic Mass double hadMass = FitUtils::Wrec(pnu, pmu); // Actual cut is True GENIE Ws! Arg.! Use gNtpcConv definition. #ifdef __GENIE_ENABLED__ if (event->fType == kGENIE){ EventRecord * gevent = static_cast(event->genie_event->event); const Interaction * interaction = gevent->Summary(); const Kinematics & kine = interaction->Kine(); double Ws = kine.W (true); // std::cout << "Ws versus WRec = " << Ws << " vs " << hadMass << " " << kine.W(false) << std::endl; hadMass = Ws * 1000.0; } #endif if (hadMass > 1400.0) return false; return true; }; // Updated MINERvA 2017 Signal using Wexp and no restriction on angle bool isCC1pip_MINERvA_2017(FitEvent *event, double EnuMin, double EnuMax){ // Signal is both pi+ and pi- // WARNING: PI- CONTAMINATION IS FULLY GENIE BECAUSE THE MICHEL TAG // First, make sure it's CCINC if (!isCCINC(event, 14, EnuMin, EnuMax)) return false; // Allow pi+/pi- int piPDG[] = {211, -211}; int nLeptons = event->NumFSLeptons(); int nPion = event->NumFSParticle(piPDG); // Check that the desired pion exists and is the only meson if (nPion != 1) return false; // Check that there is only one final state lepton if (nLeptons != 1) return false; // Get Muon and Lepton Kinematics TLorentzVector pnu = event->GetHMISParticle(14)->fP; TLorentzVector pmu = event->GetHMFSParticle(13)->fP; // Extract Hadronic Mass double hadMass = FitUtils::Wrec(pnu, pmu); // Cut on 2017 data is 1.8 GeV if (hadMass > 1800.0) return false; return true; }; // ********************************* // MINERvA CCNpi+/- signal definition from 2016 publication // Different to CC1pi+/- listed above; additional has W < 1.8 GeV // // For notes on strangeness of signal definition, see CC1pip_MINERvA // // One negative muon // At least one charged pion // 1.5 < Enu < 10 // No restrictions on pi0 or other mesons or baryons // W_reconstructed (ignoring initial state motion) cut at 1.8 GeV // // Also writes number of pions (nPions) if studies on this want to be done... bool isCCNpip_MINERvA(FitEvent *event, double EnuMin, double EnuMax, bool isRestricted, bool isWtrue) { // ********************************* // First, make sure it's CCINC if (!isCCINC(event, 14, EnuMin, EnuMax)) return false; int nLeptons = event->NumFSLeptons(); // Write the number of pions to the measurement class... // Maybe better to just do that inside the class? int nPions = event->NumFSParticle(PhysConst::pdg_charged_pions); // Check that there is a pion! if (nPions == 0) return false; // Check that there is only one final state lepton if (nLeptons != 1) return false; // Need the muon and the neutrino to check angles and W TLorentzVector pnu = event->GetNeutrinoIn()->fP; TLorentzVector pmu = event->GetHMFSParticle(13)->fP; // MINERvA released some data with restricted muon angle // Here the muon angle is < 20 degrees (seen in MINOS) if (isRestricted) { double th_nu_mu = FitUtils::th(pmu, pnu) * 180. / M_PI; if (th_nu_mu >= 20.) return false; } // Lastly check the W cut (always at 1.8 GeV) double Wrec = FitUtils::Wrec(pnu, pmu) + 0.; // Actual cut is True GENIE Ws! Arg.! Use gNtpcConv definition. if (isWtrue){ #ifdef __GENIE_ENABLED__ if (event->fType == kGENIE){ GHepRecord* ghep = static_cast(event->genie_event->event); const Interaction * interaction = ghep->Summary(); const Kinematics & kine = interaction->Kine(); double Ws = kine.W (true); Wrec = Ws * 1000.0; // Say Wrec is Ws } #endif } if (Wrec > 1800. || Wrec < 0.0) return false; return true; }; //******************************************************************** bool isCCQEnumu_MINERvA(FitEvent *event, double EnuMin, double EnuMax, bool fullphasespace) { //******************************************************************** if (!isCCQELike(event, 14, EnuMin, EnuMax)) return false; TLorentzVector pnu = event->GetHMISParticle(14)->fP; TLorentzVector pmu = event->GetHMFSParticle(13)->fP; double ThetaMu = pnu.Vect().Angle(pmu.Vect()); double Enu_rec = FitUtils::EnuQErec(pmu, cos(ThetaMu), 34., true); // If Restricted phase space if (!fullphasespace && ThetaMu > 0.34906585) return false; // restrict energy range if (Enu_rec < EnuMin || Enu_rec > EnuMax) return false; return true; }; //******************************************************************** bool isCCQEnumubar_MINERvA(FitEvent *event, double EnuMin, double EnuMax, bool fullphasespace) { //******************************************************************** if (!isCCQELike(event, -14, EnuMin, EnuMax)) return false; TLorentzVector pnu = event->GetHMISParticle(-14)->fP; TLorentzVector pmu = event->GetHMFSParticle(-13)->fP; double ThetaMu = pnu.Vect().Angle(pmu.Vect()); double Enu_rec = FitUtils::EnuQErec(pmu, cos(ThetaMu), 30., true); // If Restricted phase space if (!fullphasespace && ThetaMu > 0.34906585) return false; // restrict energy range if (Enu_rec < EnuMin || Enu_rec > EnuMax) return false; return true; } //******************************************************************** bool isCCincLowRecoil_MINERvA(FitEvent *event, double EnuMin, double EnuMax) { //******************************************************************** if (!isCCINC(event, 14, EnuMin, EnuMax)) return false; // Need at least one muon if (event->NumFSParticle(13) < 1) return false; TLorentzVector pmu = event->GetHMFSParticle(13)->fP; TLorentzVector pnu = event->GetHMISParticle(14)->fP; // Cut on muon angle greated than 20deg if (cos(pnu.Vect().Angle(pmu.Vect())) < 0.93969262078) return false; // Cut on muon energy < 1.5 GeV if (pmu.E()/1000.0 < 1.5) return false; return true; } bool isCC0pi1p_MINERvA(FitEvent *event, double enumin, double enumax) { // Require numu CC0pi event with a proton above threshold bool signal = (isCC0pi(event, 14, enumin, enumax) && HasProtonKEAboveThreshold(event, 110.0)); return signal; } // 2015 analysis just asks for 1pi0 and no pi+/pi- bool isCC1pi0_MINERvA_2015(FitEvent *event, double EnuMin, double EnuMax) { bool CC1pi0_anu = SignalDef::isCC1pi(event, -14, 111, EnuMin, EnuMax); return CC1pi0_anu; } // 2016 analysis just asks for 1pi0 and no other charged tracks. Half-open to interpretation: we go with "charged tracks" meaning pions. You'll be forgiven for thinking proton tracks should be included here too but we checked with MINERvA bool isCC1pi0_MINERvA_2016(FitEvent *event, double EnuMin, double EnuMax) { bool CC1pi0_anu = SignalDef::isCC1pi(event, -14, 111, EnuMin, EnuMax); /* // Additionally look for charged proton track // Comment: This is _NOT_ in the signal definition but was tested bool HasProton = event->HasFSParticle(2212); if (CC1pi0_anu) { if (!HasProton) { return true; } else { return false; } } else { return false; } */ return CC1pi0_anu; } // 2016 analysis just asks for 1pi0 and no other charged tracks bool isCC1pi0_MINERvA_nu(FitEvent *event, double EnuMin, double EnuMax) { bool CC1pi0_nu = SignalDef::isCC1pi(event, 14, 111, EnuMin, EnuMax); return CC1pi0_nu; } //******************************************************************** bool isCC0pi_MINERvAPTPZ(FitEvent* event, int nuPDG, double emin, double emax){ //******************************************************************** // Check it's CCINC if (!SignalDef::isCCINC(event, nuPDG, emin, emax)) return false; // Make Angle Cut > 20.0 TLorentzVector pnu = event->GetHMISParticle(14)->fP; TLorentzVector pmu = event->GetHMFSParticle(13)->fP; double th_nu_mu = FitUtils::th(pmu, pnu) * 180. / M_PI; if (th_nu_mu >= 20.0) return false; int genie_n_muons = 0; int genie_n_mesons = 0; int genie_n_heavy_baryons_plus_pi0s = 0; int genie_n_photons = 0; for(unsigned int i = 0; i < event->NParticles(); ++i) { FitParticle* p = event->GetParticle(i); if (p->Status() != kFinalState) continue; int pdg = p->fPID; double energy = p->fP.E(); if( pdg == 13 ) { genie_n_muons++; } else if( pdg == 22 && energy > 10.0 ) { genie_n_photons++; } else if( abs(pdg) == 211 || abs(pdg) == 321 || abs(pdg) == 323 || pdg == 111 || pdg == 130 || pdg == 310 || pdg == 311 || pdg == 313 ) { genie_n_mesons++; } else if( pdg == 3112 || pdg == 3122 || pdg == 3212 || pdg == 3222 || pdg == 4112 || pdg == 4122 || pdg == 4212 || pdg == 4222 || pdg == 411 || pdg == 421 || pdg == 111 ) { genie_n_heavy_baryons_plus_pi0s++; } } if( genie_n_muons == 1 && genie_n_mesons == 0 && genie_n_heavy_baryons_plus_pi0s == 0 && genie_n_photons == 0 ) return true; return false; } + // ************************************************** + // Section VI Event Selection of https://journals.aps.org/prd/pdf/10.1103/PhysRevD.97.052002 + // Anti-neutrino charged-current + // Post-FSI final states without + // mesons, + // prompt photons above nuclear deexcitation energies + // heavy baryons + // protons above kinetic energy of 120 MeV + // Muon-neutrino angle of 20 degrees + // Parallel muon momentum: 1.5 GeV < P|| < 15 GeV --- N.B. APPARENTLY NOT INCLUDED, see below + // Transverse muon momentum: pT < 1.5 GeV --- N.B. APPARENTLY NOT INCLUDED, see below bool isCC0pi_anti_MINERvAPTPZ(FitEvent* event, int nuPDG, double emin, double emax){ + // ************************************************** // Check it's CCINC if (!SignalDef::isCCINC(event, nuPDG, emin, emax)) return false; - // Make Angle Cut > 20.0 - TLorentzVector pnu = event->GetHMISParticle(-14)->fP; + TLorentzVector pnu = event->GetNeutrinoIn()->fP; TLorentzVector pmu = event->GetHMFSParticle(-13)->fP; + // Make Angle Cut > 20.0 double th_nu_mu = FitUtils::th(pmu, pnu) * 180. / M_PI; if (th_nu_mu >= 20.0) return false; + + // Heidi Schellman (schellmh@science.oregonstate.edu) assured me that the p_t and p_z (or p_||) cuts aren't actually implemented as a signal definition: they're only implemented in the binning for p_t and p_z (but not Q2QE and EnuQE) + /* + // Cut on pT and pZ + Double_t px = pmu.X()/1.E3; + Double_t py = pmu.Y()/1.E3; + Double_t pt = sqrt(px*px+py*py); + + // Don't want to assume the event generators all have neutrino coming along z + // pz is muon momentum projected onto the neutrino direction + Double_t pz = pmu.Vect().Dot(pnu.Vect()*(1.0/pnu.Vect().Mag()))/1.E3; + if (pz > 15 || pz < 1.5) return false; + if (pt > 1.5) return false; + */ + + // Find if there are any protons above 120 MeV kinetic energy + if (HasProtonKEAboveThreshold(event, 120.0)) return false; + + // Particle counters int genie_n_muons = 0; int genie_n_mesons = 0; int genie_n_heavy_baryons_plus_pi0s = 0; int genie_n_photons = 0; - + // Loop over the particles in the event and count them up for(unsigned int i = 0; i < event->NParticles(); ++i) { FitParticle* p = event->GetParticle(i); if (p->Status() != kFinalState) continue; int pdg = p->fPID; double energy = p->fP.E(); - if( abs(pdg) == 13 ) + // Any charged muons + if( abs(pdg) == 13 ) { genie_n_muons++; - else if( pdg == 22 && energy > 10.0 ) + // De-excitation photons + } else if( pdg == 22 && energy > 10.0 ) { genie_n_photons++; - else if( abs(pdg) == 211 || abs(pdg) == 321 || abs(pdg) == 323 || abs(pdg) == 111 || abs(pdg) == 130 || abs(pdg) == 310 || abs(pdg) == 311 || abs(pdg) == 313 ) + // Mesons + } else if( abs(pdg) == 211 || abs(pdg) == 321 || abs(pdg) == 323 || abs(pdg) == 111 || abs(pdg) == 130 || abs(pdg) == 310 || abs(pdg) == 311 || abs(pdg) == 313 ) { genie_n_mesons++; - else if( abs(pdg) == 3112 || abs(pdg) == 3122 || abs(pdg) == 3212 || abs(pdg) == 3222 || abs(pdg) == 4112 || + // Heavy baryons and pi0s + } else if( abs(pdg) == 3112 || abs(pdg) == 3122 || abs(pdg) == 3212 || abs(pdg) == 3222 || abs(pdg) == 4112 || abs(pdg) == 4122 || abs(pdg) == 4212 || abs(pdg) == 4222 || abs(pdg) == 411 || abs(pdg) == 421 || - abs(pdg) == 111 ) + abs(pdg) == 111 ) { genie_n_heavy_baryons_plus_pi0s++; + } } + // Look for one muon with no mesons, heavy baryons or deexcitation photons if( genie_n_muons == 1 && genie_n_mesons == 0 && genie_n_heavy_baryons_plus_pi0s == 0 && genie_n_photons == 0 ) return true; return false; } // MINERvA CC0pi transverse variables signal defintion bool isCC0piNp_MINERvA_STV(FitEvent *event, double EnuMin, double EnuMax) { // Require a numu CC0pi event if (!isCC0pi(event, 14, EnuMin, EnuMax)) return false; // Require at least one FS proton if (event->NumFSParticle(2212) == 0) return false; TLorentzVector pnu = event->GetHMISParticle(14)->fP; TLorentzVector pmu = event->GetHMFSParticle(13)->fP; // Muon momentum cuts if (pmu.Vect().Mag() < 1500 || pmu.Vect().Mag() > 10000) return false; // Muon angle cuts if (pmu.Vect().Angle(pnu.Vect()) > (M_PI/180.0)*20.0) return false; // Since there are emany protons allowed we can't just use the highest proton momentum candidate and place cuts on it // Get the stack of protons std::vector Protons = event->GetAllFSProton(); // Count how many protons pass the threshold int nProtonsAboveThreshold = 0; for (size_t i = 0; i < Protons.size(); ++i) { if (Protons[i]->p() > 450 && Protons[i]->p() < 1200 && Protons[i]->P3().Angle(pnu.Vect()) < (M_PI/180.0)*70.0) { nProtonsAboveThreshold++; } } // Proton momentum cuts //if (pp.Vect().Mag() < 450 || pp.Vect().Mag() > 1200) return false; // Proton angle cuts //if (pp.Vect().Angle(pnu.Vect()) > (M_PI/180.0)*70) return false; if (nProtonsAboveThreshold == 0) return false; return true; }; }