diff --git a/cmake/setup.sh.in b/cmake/setup.sh.in index 123aaef..44d8d3f 100644 --- a/cmake/setup.sh.in +++ b/cmake/setup.sh.in @@ -1,155 +1,159 @@ # Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret ################################################################################ # This file is part of NUISANCE. # # NUISANCE is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # NUISANCE is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NUISANCE. If not, see . ################################################################################ #!/bin/sh ### Adapted from https://unix.stackexchange.com/questions/4965/keep-duplicates-out-of-path-on-source function add_to_PATH () { for d; do d=$(cd -- "$d" && { pwd -P || pwd; }) 2>/dev/null # canonicalize symbolic links if [ -z "$d" ]; then continue; fi # skip nonexistent directory if [ "$d" == "/usr/bin" ] || [ "$d" == "/usr/bin64" ] || [ "$d" == "/usr/local/bin" ] || [ "$d" == "/usr/local/bin64" ]; then case ":$PATH:" in *":$d:"*) :;; *) export PATH=$PATH:$d;; esac else case ":$PATH:" in *":$d:"*) :;; *) export PATH=$d:$PATH;; esac fi done } function add_to_LD_LIBRARY_PATH () { for d; do d=$(cd -- "$d" && { pwd -P || pwd; }) 2>/dev/null # canonicalize symbolic links if [ -z "$d" ]; then continue; fi # skip nonexistent directory if [ "$d" == "/usr/lib" ] || [ "$d" == "/usr/lib64" ] || [ "$d" == "/usr/local/lib" ] || [ "$d" == "/usr/local/lib64" ]; then case ":$LD_LIBRARY_PATH:" in *":$d:"*) :;; *) export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$d;; esac else case ":$LD_LIBRARY_PATH:" in *":$d:"*) :;; *) export LD_LIBRARY_PATH=$d:$LD_LIBRARY_PATH;; esac fi done } if [ "@EXTRA_SETUP_SCRIPT@" ]; then if [ ! -e @EXTRA_SETUP_SCRIPT@ ]; then echo "[WARN]: Extra setup script \"@EXTRA_SETUP_SCRIPT@\" requested, but could not be found. Skipping..." else echo "[INFO]: Sourcing extra setup from \"@EXTRA_SETUP_SCRIPT@\"." . @EXTRA_SETUP_SCRIPT@ fi fi add_to_PATH "@CMAKE_INSTALL_PREFIX@/bin" add_to_LD_LIBRARY_PATH "@CMAKE_INSTALL_PREFIX@/lib" if [ ! "${ROOTSYS}" ]; then echo "[INFO]: Sourcing ROOT from: @CMAKE_ROOTSYS@" source "@CMAKE_ROOTSYS@/bin/thisroot.sh" fi if [ "@USE_T2K@" != "FALSE" ]; then echo "[INFO]: Adding T2K paths to the environment." export T2KREWEIGHT=@T2KREWEIGHT@ add_to_LD_LIBRARY_PATH "@T2KREWEIGHT@/lib" fi if [ "@USE_NIWG@" != "FALSE" ]; then echo "[INFO]: Adding NIWG paths to the environment." export NIWG=@NIWG_ROOT@ export NIWGREWEIGHT_INPUTS=@NIWG_ROOT@/inputs add_to_LD_LIBRARY_PATH "@NIWG_ROOT@" fi if [ "@USE_NEUT@" != "FALSE" ]; then echo "[INFO]: Adding NEUT library paths to the environment." export NEUT_ROOT=@NEUT_ROOT@ export CERN=@CERN@ export CERN_LEVEL=@CERN_LEVEL@ add_to_LD_LIBRARY_PATH "${NEUT_LIB_DIR}" "${NEUT_ROOT}/src/reweight" fi if [ "@USE_NuWro@" != "FALSE" ]; then if [ "@NUWRO_BUILT_FROM_FILE@" == "FALSE" ]; then echo "[INFO]: Adding NuWro library paths to the environment." export NUWRO="@NUWRO@" add_to_PATH "@NUWRO@/bin" add_to_LD_LIBRARY_PATH "@NUWRO@/build/@CMAKE_SYSTEM_NAME@/lib" if [ "@NUWRO_INC@" ]; then export NUWRO_INC=@NUWRO_INC@ fi else echo "[INFO]: NuWro support included from input event file." fi fi if [ "@NEED_PYTHIA6@" != "FALSE" ]; then echo "[INFO]: Adding PYTHIA6 library paths to the environment." export PYTHIA6="@PYTHIA6@" add_to_LD_LIBRARY_PATH "@PYTHIA6@" fi if [ "@USE_GENIE@" != "FALSE" ]; then echo "[INFO]: Adding GENIE paths to the environment." export GENIE="@GENIE@" export LHAPDF_LIB="@LHAPDF_LIB@" export LHAPDF_INC="@LHAPDF_INC@" export LIBXML2_LIB="@LIBXML2_LIB@" export LIBXML2_INC="@LIBXML2_INC@" export LOG4CPP_LIB="@LOG4CPP_LIB@" export LOG4CPP_INC="@LOG4CPP_INC@" if [ "@LHAPATH@" ]; then export LHAPATH="@LHAPATH@" fi add_to_PATH "@GENIE@/bin" add_to_LD_LIBRARY_PATH "@GENIE@/lib" "@LHAPDF_LIB@" "@LIBXML2_LIB@" "@LOG4CPP_LIB@" fi if [ "@BUILD_GiBUU@" != "FALSE" ]; then echo "[INFO]: Sourcing GiBUU tools." source @CMAKE_BINARY_DIR@/GiBUUTools/src/GiBUUTools-build/Linux/setup.sh fi +if [ "@NUSYST_ROOT@" != "" ]; then + source @NUSYST_ROOT@/setup.sh +fi + export NUISANCE="@CMAKE_SOURCE_DIR@" diff --git a/src/InputHandler/FitEvent.cxx b/src/InputHandler/FitEvent.cxx index 7516fee..9c33652 100644 --- a/src/InputHandler/FitEvent.cxx +++ b/src/InputHandler/FitEvent.cxx @@ -1,466 +1,466 @@ // Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret /******************************************************************************* * This file is pddrt of NUISANCE. * * NUISANCE is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * NUISANCE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NUISANCE. If not, see . *******************************************************************************/ #include "FitEvent.h" #include "TObjArray.h" #include FitEvent::FitEvent() { fGenInfo = NULL; kRemoveFSIParticles = true; kRemoveUndefParticles = true; - AllocateParticleStack(25); + AllocateParticleStack(50); }; void FitEvent::AddGeneratorInfo(GeneratorInfoBase *gen) { fGenInfo = gen; gen->AllocateParticleStack(kMaxParticles); } void FitEvent::AllocateParticleStack(int stacksize) { kMaxParticles = stacksize; if (!stacksize) { return; } LOG(DEB) << "Allocating particle stack of size: " << stacksize << std::endl; fParticleList = new FitParticle *[kMaxParticles]; fParticleMom = new double *[kMaxParticles]; fParticleState = new UInt_t[kMaxParticles]; fParticlePDG = new int[kMaxParticles]; fOrigParticleMom = new double *[kMaxParticles]; fOrigParticleState = new UInt_t[kMaxParticles]; fOrigParticlePDG = new int[kMaxParticles]; for (size_t i = 0; i < kMaxParticles; i++) { fParticleList[i] = NULL; fParticleMom[i] = new double[4]; fOrigParticleMom[i] = new double[4]; } if (fGenInfo) fGenInfo->AllocateParticleStack(kMaxParticles); } void FitEvent::ExpandParticleStack(int stacksize) { DeallocateParticleStack(); AllocateParticleStack(stacksize); } void FitEvent::DeallocateParticleStack() { if (!kMaxParticles) { return; } for (size_t i = 0; i < kMaxParticles; i++) { if (fParticleList[i]) delete fParticleList[i]; delete[] fParticleMom[i]; delete[] fOrigParticleMom[i]; } delete[] fParticleMom; delete[] fOrigParticleMom; delete[] fParticleList; delete[] fParticleState; delete[] fParticlePDG; delete[] fOrigParticleState; delete[] fOrigParticlePDG; if (fGenInfo) fGenInfo->DeallocateParticleStack(); kMaxParticles = 0; fNParticles = 0; } void FitEvent::ClearFitParticles() { for (size_t i = 0; i < kMaxParticles; i++) { fParticleList[i] = NULL; } } void FitEvent::FreeFitParticles() { for (size_t i = 0; i < kMaxParticles; i++) { FitParticle *fp = fParticleList[i]; if (fp) delete fp; fParticleList[i] = NULL; } } void FitEvent::ResetParticleList() { for (unsigned int i = 0; i < kMaxParticles; i++) { FitParticle *fp = fParticleList[i]; if (fp) delete fp; fParticleList[i] = NULL; } } void FitEvent::HardReset() { for (unsigned int i = 0; i < kMaxParticles; i++) { fParticleList[i] = NULL; } } void FitEvent::ResetEvent() { Mode = 9999; fEventNo = -1; fTotCrs = -1.0; fTargetA = -1; fTargetZ = -1; fTargetH = -1; fBound = false; fNParticles = 0; if (fGenInfo) fGenInfo->Reset(); for (unsigned int i = 0; i < kMaxParticles; i++) { if (fParticleList[i]) delete fParticleList[i]; fParticleList[i] = NULL; continue; fParticlePDG[i] = 0; fParticleState[i] = kUndefinedState; fParticleMom[i][0] = 0.0; fParticleMom[i][1] = 0.0; fParticleMom[i][2] = 0.0; fParticleMom[i][3] = 0.0; fOrigParticlePDG[i] = 0; fOrigParticleState[i] = kUndefinedState; fOrigParticleMom[i][0] = 0.0; fOrigParticleMom[i][1] = 0.0; fOrigParticleMom[i][2] = 0.0; fOrigParticleMom[i][3] = 0.0; } } void FitEvent::OrderStack() { // Copy current stack int npart = fNParticles; for (int i = 0; i < npart; i++) { fOrigParticlePDG[i] = fParticlePDG[i]; fOrigParticleState[i] = fParticleState[i]; fOrigParticleMom[i][0] = fParticleMom[i][0]; fOrigParticleMom[i][1] = fParticleMom[i][1]; fOrigParticleMom[i][2] = fParticleMom[i][2]; fOrigParticleMom[i][3] = fParticleMom[i][3]; } // Now run loops for each particle fNParticles = 0; int stateorder[6] = {kInitialState, kFinalState, kFSIState, kNuclearInitial, kNuclearRemnant, kUndefinedState}; for (int s = 0; s < 6; s++) { for (int i = 0; i < npart; i++) { if ((UInt_t)fOrigParticleState[i] != (UInt_t)stateorder[s]) continue; fParticlePDG[fNParticles] = fOrigParticlePDG[i]; fParticleState[fNParticles] = fOrigParticleState[i]; fParticleMom[fNParticles][0] = fOrigParticleMom[i][0]; fParticleMom[fNParticles][1] = fOrigParticleMom[i][1]; fParticleMom[fNParticles][2] = fOrigParticleMom[i][2]; fParticleMom[fNParticles][3] = fOrigParticleMom[i][3]; fNParticles++; } } if (LOG_LEVEL(DEB)) { LOG(DEB) << "Ordered stack" << std::endl; for (int i = 0; i < fNParticles; i++) { LOG(DEB) << "Particle " << i << ". " << fParticlePDG[i] << " " << fParticleMom[i][0] << " " << fParticleMom[i][1] << " " << fParticleMom[i][2] << " " << fParticleMom[i][3] << " " << fParticleState[i] << std::endl; } } if (fNParticles != npart) { ERR(FTL) << "Dropped some particles when ordering the stack!" << std::endl; } return; } void FitEvent::Print() { if (LOG_LEVEL(FIT)) { LOG(FIT) << "FITEvent print" << std::endl; LOG(FIT) << "Mode: " << Mode << ", Weight: " << InputWeight << std::endl; LOG(FIT) << "Particles: " << fNParticles << std::endl; LOG(FIT) << " -> Particle Stack " << std::endl; for (int i = 0; i < fNParticles; i++) { LOG(FIT) << " -> -> " << i << ". " << fParticlePDG[i] << " " << fParticleState[i] << " " << " Mom(" << fParticleMom[i][0] << ", " << fParticleMom[i][1] << ", " << fParticleMom[i][2] << ", " << fParticleMom[i][3] << ")." << std::endl; } } return; } /* Read/Write own event class */ void FitEvent::SetBranchAddress(TChain *tn) { tn->SetBranchAddress("Mode", &Mode); tn->SetBranchAddress("EventNo", &fEventNo); tn->SetBranchAddress("TotCrs", &fTotCrs); tn->SetBranchAddress("TargetA", &fTargetA); tn->SetBranchAddress("TargetH", &fTargetH); tn->SetBranchAddress("Bound", &fBound); tn->SetBranchAddress("RWWeight", &SavedRWWeight); tn->SetBranchAddress("InputWeight", &InputWeight); } void FitEvent::AddBranchesToTree(TTree *tn) { tn->Branch("Mode", &Mode, "Mode/I"); tn->Branch("EventNo", &fEventNo, "EventNo/i"); tn->Branch("TotCrs", &fTotCrs, "TotCrs/D"); tn->Branch("TargetA", &fTargetA, "TargetA/I"); tn->Branch("TargetH", &fTargetH, "TargetH/I"); tn->Branch("Bound", &fBound, "Bound/O"); tn->Branch("RWWeight", &RWWeight, "RWWeight/D"); tn->Branch("InputWeight", &InputWeight, "InputWeight/D"); tn->Branch("NParticles", &fNParticles, "NParticles/I"); tn->Branch("ParticleState", fOrigParticleState, "ParticleState[NParticles]/i"); tn->Branch("ParticlePDG", fOrigParticlePDG, "ParticlePDG[NParticles]/I"); tn->Branch("ParticleMom", fOrigParticleMom, "ParticleMom[NParticles][4]/D"); } // ------- EVENT ACCESS FUNCTION --------- // TLorentzVector FitEvent::GetParticleP4(int index) const { if (index == -1 or index >= fNParticles) return TLorentzVector(); return TLorentzVector(fParticleMom[index][0], fParticleMom[index][1], fParticleMom[index][2], fParticleMom[index][3]); } TVector3 FitEvent::GetParticleP3(int index) const { if (index == -1 or index >= fNParticles) return TVector3(); return TVector3(fParticleMom[index][0], fParticleMom[index][1], fParticleMom[index][2]); } double FitEvent::GetParticleMom(int index) const { if (index == -1 or index >= fNParticles) return 0.0; return sqrt(fParticleMom[index][0] * fParticleMom[index][0] + fParticleMom[index][1] * fParticleMom[index][1] + fParticleMom[index][2] * fParticleMom[index][2]); } double FitEvent::GetParticleMom2(int index) const { if (index == -1 or index >= fNParticles) return 0.0; return fabs((fParticleMom[index][0] * fParticleMom[index][0] + fParticleMom[index][1] * fParticleMom[index][1] + fParticleMom[index][2] * fParticleMom[index][2])); } double FitEvent::GetParticleE(int index) const { if (index == -1 or index >= fNParticles) return 0.0; return fParticleMom[index][3]; } int FitEvent::GetParticleState(int index) const { if (index == -1 or index >= fNParticles) return kUndefinedState; return (fParticleState[index]); } int FitEvent::GetParticlePDG(int index) const { if (index == -1 or index >= fNParticles) return 0; return (fParticlePDG[index]); } FitParticle *FitEvent::GetParticle(int const i) { // Check Valid Index if (i == -1) { return NULL; } // Check Valid if (i > fNParticles) { ERR(FTL) << "Requesting particle beyond stack!" << std::endl << "i = " << i << " N = " << fNParticles << std::endl << "Mode = " << Mode << std::endl; throw; } if (!fParticleList[i]) { /* std::cout << "Creating particle with values i " << i << " "; std::cout << fParticleMom[i][0] << " " << fParticleMom[i][1] << " " << fParticleMom[i][2] << " " << fParticleMom[i][3] << " "; std::cout << fParticlePDG[i] << " " << fParticleState[i] << std::endl; */ fParticleList[i] = new FitParticle(fParticleMom[i][0], fParticleMom[i][1], fParticleMom[i][2], fParticleMom[i][3], fParticlePDG[i], fParticleState[i]); } else { /* std::cout << "Filling particle with values i " << i << " "; std::cout << fParticleMom[i][0] << " " << fParticleMom[i][1] << " " << fParticleMom[i][2] << " " << fParticleMom[i][3] << " "; std::cout << fParticlePDG[i] << " "<< fParticleState[i] <SetValues(fParticleMom[i][0], fParticleMom[i][1], fParticleMom[i][2], fParticleMom[i][3], fParticlePDG[i], fParticleState[i]); } return fParticleList[i]; } bool FitEvent::HasParticle(int const pdg, int const state) const { bool found = false; for (int i = 0; i < fNParticles; i++) { if (state != -1 && fParticleState[i] != (uint)state) continue; if (fParticlePDG[i] == pdg) found = true; } return found; } int FitEvent::NumParticle(int const pdg, int const state) const { int nfound = 0; for (int i = 0; i < fNParticles; i++) { if (state != -1 and fParticleState[i] != (uint)state) continue; if (pdg == 0 or fParticlePDG[i] == pdg) nfound += 1; } return nfound; } std::vector FitEvent::GetAllParticleIndices(int const pdg, int const state) const { std::vector indexlist; for (int i = 0; i < fNParticles; i++) { if (state != -1 and fParticleState[i] != (uint)state) continue; if (pdg == 0 or fParticlePDG[i] == pdg) { indexlist.push_back(i); } } return indexlist; } std::vector FitEvent::GetAllParticle(int const pdg, int const state) { std::vector indexlist = GetAllParticleIndices(pdg, state); std::vector plist; for (std::vector::iterator iter = indexlist.begin(); iter != indexlist.end(); iter++) { plist.push_back(GetParticle((*iter))); } return plist; } int FitEvent::GetHMParticleIndex(int const pdg, int const state) const { double maxmom2 = -9999999.9; int maxind = -1; for (int i = 0; i < fNParticles; i++) { if (state != -1 and fParticleState[i] != (uint)state) continue; if (pdg == 0 or fParticlePDG[i] == pdg) { double newmom2 = GetParticleMom2(i); if (newmom2 > maxmom2) { maxind = i; maxmom2 = newmom2; } } } return maxind; } int FitEvent::GetBeamNeutrinoIndex(void) const { for (int i = 0; i < fNParticles; i++) { if (fParticleState[i] != kInitialState) continue; int pdg = abs(fParticlePDG[i]); if (pdg == 12 or pdg == 14 or pdg == 16) { return i; } } return 0; } int FitEvent::GetBeamElectronIndex(void) const { return GetHMISParticleIndex(11); } int FitEvent::GetBeamPionIndex(void) const { return GetHMISParticleIndex(PhysConst::pdg_pions); } int FitEvent::NumFSMesons() { int nMesons = 0; for (int i = 0; i < fNParticles; i++) { if (fParticleState[i] != kFinalState) continue; if (abs(fParticlePDG[i]) >= 111 && abs(fParticlePDG[i]) <= 557) nMesons += 1; } return nMesons; } int FitEvent::NumFSLeptons(void) const { int nLeptons = 0; for (int i = 0; i < fNParticles; i++) { if (fParticleState[i] != kFinalState) continue; if (abs(fParticlePDG[i]) == 11 || abs(fParticlePDG[i]) == 13 || abs(fParticlePDG[i]) == 15) nLeptons += 1; } return nLeptons; } diff --git a/src/InputHandler/GENIEInputHandler.cxx b/src/InputHandler/GENIEInputHandler.cxx index 278295d..aa9a02a 100644 --- a/src/InputHandler/GENIEInputHandler.cxx +++ b/src/InputHandler/GENIEInputHandler.cxx @@ -1,540 +1,543 @@ // Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret /******************************************************************************* * This file is part of NUISANCE. * * NUISANCE is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * NUISANCE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NUISANCE. If not, see . *******************************************************************************/ #ifdef __GENIE_ENABLED__ #include "GENIEInputHandler.h" #include "InputUtils.h" #ifdef __DUNERWT_ENABLED__ #include "systematicstools/utility/ParameterAndProviderConfigurationUtility.hh" #include "fhiclcpp/make_ParameterSet.h" #endif GENIEGeneratorInfo::~GENIEGeneratorInfo() { DeallocateParticleStack(); } void GENIEGeneratorInfo::AddBranchesToTree(TTree *tn) { tn->Branch("GenieParticlePDGs", &fGenieParticlePDGs, "GenieParticlePDGs/I"); } void GENIEGeneratorInfo::SetBranchesFromTree(TTree *tn) { tn->SetBranchAddress("GenieParticlePDGs", &fGenieParticlePDGs); } void GENIEGeneratorInfo::AllocateParticleStack(int stacksize) { fGenieParticlePDGs = new int[stacksize]; } void GENIEGeneratorInfo::DeallocateParticleStack() { delete fGenieParticlePDGs; } void GENIEGeneratorInfo::FillGeneratorInfo(NtpMCEventRecord *ntpl) { Reset(); // Check for GENIE Event if (!ntpl) return; if (!ntpl->event) return; // Cast Event Record GHepRecord *ghep = static_cast(ntpl->event); if (!ghep) return; // Fill Particle Stack GHepParticle *p = 0; TObjArrayIter iter(ghep); // Loop over all particles int i = 0; while ((p = (dynamic_cast((iter).Next())))) { if (!p) continue; // Get PDG fGenieParticlePDGs[i] = p->Pdg(); i++; } } void GENIEGeneratorInfo::Reset() { for (int i = 0; i < kMaxParticles; i++) { fGenieParticlePDGs[i] = 0; } } GENIEInputHandler::GENIEInputHandler(std::string const &handle, std::string const &rawinputs) { LOG(SAM) << "Creating GENIEInputHandler : " << handle << std::endl; // Run a joint input handling fName = handle; // Setup the TChain fGENIETree = new TChain("gtree"); fSaveExtra = FitPar::Config().GetParB("SaveExtraGenie"); fCacheSize = FitPar::Config().GetParI("CacheSize"); fMaxEvents = FitPar::Config().GetParI("MAXEVENTS"); // Loop over all inputs and grab flux, eventhist, and nevents std::vector inputs = InputUtils::ParseInputFileList(rawinputs); for (size_t inp_it = 0; inp_it < inputs.size(); ++inp_it) { // Open File for histogram access TFile *inp_file = new TFile( InputUtils::ExpandInputDirectories(inputs[inp_it]).c_str(), "READ"); if (!inp_file or inp_file->IsZombie()) { THROW("GENIE File IsZombie() at : '" << inputs[inp_it] << "'" << std::endl << "Check that your file paths are correct and the file exists!" << std::endl << "$ ls -lh " << inputs[inp_it]); } // Get Flux/Event hist TH1D *fluxhist = (TH1D *)inp_file->Get("nuisance_flux"); TH1D *eventhist = (TH1D *)inp_file->Get("nuisance_events"); if (!fluxhist or !eventhist) { ERROR(FTL, "Input File Contents: " << inputs[inp_it]); inp_file->ls(); THROW("GENIE FILE doesn't contain flux/xsec info." << std::endl << "Try running the app PrepareGENIE first on :" << inputs[inp_it] << std::endl << "$ PrepareGENIE -h"); } // Get N Events TTree *genietree = (TTree *)inp_file->Get("gtree"); if (!genietree) { ERROR(FTL, "gtree not located in GENIE file: " << inputs[inp_it]); THROW("Check your inputs, they may need to be completely regenerated!"); throw; } int nevents = genietree->GetEntries(); if (nevents <= 0) { THROW("Trying to a TTree with " << nevents << " to TChain from : " << inputs[inp_it]); } // Register input to form flux/event rate hists RegisterJointInput(inputs[inp_it], nevents, fluxhist, eventhist); // Add To TChain fGENIETree->AddFile(inputs[inp_it].c_str()); } // Registor all our file inputs SetupJointInputs(); // Assign to tree fEventType = kGENIE; fGenieNtpl = NULL; fGENIETree->SetBranchAddress("gmcrec", &fGenieNtpl); // Libraries should be seen but not heard... StopTalking(); fGENIETree->GetEntry(0); StartTalking(); #ifndef __DUNERWT_ENABLED__ // Create Fit Event fNUISANCEEvent = new FitEvent(); fNUISANCEEvent->SetGenieEvent(fGenieNtpl); if (fSaveExtra) { fGenieInfo = new GENIEGeneratorInfo(); fNUISANCEEvent->AddGeneratorInfo(fGenieInfo); } fNUISANCEEvent->HardReset(); #else std::vector HandlerOpts = Config::QueryKeys("GENIEInputHandler"); fUseCache = HandlerOpts.size() && HandlerOpts.front().Has("UseCache") && HandlerOpts.front().GetB("UseCache"); DUNERwtCachedResponseReader = nullptr; HaveCachedResponseReader = false; if (fUseCache && (inputs.size() == 1)) { std::vector DuneRwtCacheParams = Config::QueryKeys("DUNERwtResponseCache"); for (nuiskey &key : DuneRwtCacheParams) { if (key.Has("Input") && (key.GetS("Input") == inputs.front()) && key.Has("CacheFile") && key.Has("ParameterFHiCL")) { fhicl::ParameterSet ps = fhicl::make_ParameterSet(key.GetS("ParameterFHiCL")); fhicl::ParameterSet syst_providers = ps.get( "generated_systematic_provider_configuration"); systtools::param_header_map_t configuredParameterHeaders = systtools::BuildParameterHeaders(syst_providers); DUNERwtCachedResponseReader = std::make_unique>( key.GetS("CacheFile"), "resp_tree", configuredParameterHeaders.size()); HaveCachedResponseReader = true; break; } } } else { fNUISANCEEvent = new FitEvent(); fNUISANCEEvent->SetGenieEvent(fGenieNtpl); if (fSaveExtra) { fGenieInfo = new GENIEGeneratorInfo(); fNUISANCEEvent->AddGeneratorInfo(fGenieInfo); } fNUISANCEEvent->HardReset(); } #endif }; GENIEInputHandler::~GENIEInputHandler() { // if (fGenieGHep) delete fGenieGHep; // if (fGenieNtpl) delete fGenieNtpl; // if (fGENIETree) delete fGENIETree; // if (fGenieInfo) delete fGenieInfo; } void GENIEInputHandler::CreateCache() { if (fCacheSize > 0) { // fGENIETree->SetCacheEntryRange(0, fNEvents); fGENIETree->AddBranchToCache("*", 1); fGENIETree->SetCacheSize(fCacheSize); } } void GENIEInputHandler::RemoveCache() { // fGENIETree->SetCacheEntryRange(0, fNEvents); fGENIETree->AddBranchToCache("*", 0); fGENIETree->SetCacheSize(0); } FitEvent *GENIEInputHandler::GetNuisanceEvent(const UInt_t entry, const bool lightweight) { if (entry >= (UInt_t)fNEvents) return NULL; // Reduce memory pressure from the cache by clearing out the last entry each // time. if (entry && rwEvs[entry - 1].NParticles()) { rwEvs[entry - 1].DeallocateParticleStack(); } // Read Entry from TTree to fill NEUT Vect in BaseFitEvt; fGENIETree->GetEntry(entry); #ifdef __DUNERWT_ENABLED__ if (entry >= rwEvs.size()) { rwEvs.push_back(FitEvent()); if (HaveCachedResponseReader) { rwEvs.back().DUNERwtPolyResponses = DUNERwtCachedResponseReader->GetEventResponse(entry); rwEvs.back().HasDUNERwtPolyResponses = true; } } rwEvs[entry].SetGenieEvent(fGenieNtpl); fNUISANCEEvent = &rwEvs[entry]; #endif // Run NUISANCE Vector Filler if (!lightweight) { CalcNUISANCEKinematics(); } #ifdef __PROB3PP_ENABLED__ else { // Check for GENIE Event if (!fGenieNtpl) return NULL; if (!fGenieNtpl->event) return NULL; // Cast Event Record fGenieGHep = fGenieNtpl->event; if (!fGenieGHep) return NULL; TObjArrayIter iter(fGenieGHep); genie::GHepParticle *p; while ((p = (dynamic_cast((iter).Next())))) { if (!p) { continue; } // Get Status int state = GetGENIEParticleStatus(p, fNUISANCEEvent->Mode); if (state != genie::kIStInitialState) { continue; } fNUISANCEEvent->probe_E = p->E() * 1.E3; fNUISANCEEvent->probe_pdg = p->Pdg(); break; } } #endif // Setup Input scaling for joint inputs fNUISANCEEvent->InputWeight = GetInputWeight(entry); return fNUISANCEEvent; } int GENIEInputHandler::GetGENIEParticleStatus(genie::GHepParticle *p, int mode) { /* kIStUndefined = -1, kIStInitialState = 0, / generator-level initial state / kIStStableFinalState = 1, / generator-level final state: particles to be tracked by detector-level MC / kIStIntermediateState = 2, kIStDecayedState = 3, kIStCorrelatedNucleon = 10, kIStNucleonTarget = 11, kIStDISPreFragmHadronicState = 12, kIStPreDecayResonantState = 13, kIStHadronInTheNucleus = 14, / hadrons inside the nucleus: marked for hadron transport modules to act on / kIStFinalStateNuclearRemnant = 15, / low energy nuclear fragments entering the record collectively as a 'hadronic blob' pseudo-particle / kIStNucleonClusterTarget = 16, // for composite nucleons before phase space decay */ int state = kUndefinedState; switch (p->Status()) { case genie::kIStNucleonTarget: case genie::kIStInitialState: case genie::kIStCorrelatedNucleon: case genie::kIStNucleonClusterTarget: state = kInitialState; break; case genie::kIStStableFinalState: state = kFinalState; break; case genie::kIStHadronInTheNucleus: if (abs(mode) == 2) state = kInitialState; else state = kFSIState; break; case genie::kIStPreDecayResonantState: case genie::kIStDISPreFragmHadronicState: case genie::kIStIntermediateState: state = kFSIState; break; case genie::kIStFinalStateNuclearRemnant: case genie::kIStUndefined: case genie::kIStDecayedState: default: break; } // Flag to remove nuclear part in genie if (p->Pdg() > 1000000) { if (state == kInitialState) state = kNuclearInitial; else if (state == kFinalState) state = kNuclearRemnant; } return state; } #endif #ifdef __GENIE_ENABLED__ int GENIEInputHandler::ConvertGENIEReactionCode(GHepRecord *gheprec) { // Electron Scattering if (gheprec->Summary()->ProcInfo().IsEM()) { if (gheprec->Summary()->InitState().ProbePdg() == 11) { if (gheprec->Summary()->ProcInfo().IsQuasiElastic()) return 1; else if (gheprec->Summary()->ProcInfo().IsMEC()) return 2; else if (gheprec->Summary()->ProcInfo().IsResonant()) return 13; else if (gheprec->Summary()->ProcInfo().IsDeepInelastic()) return 26; else { ERROR(WRN, "Unknown GENIE Electron Scattering Mode!" << std::endl << "ScatteringTypeId = " << gheprec->Summary()->ProcInfo().ScatteringTypeId() << " " << "InteractionTypeId = " << gheprec->Summary()->ProcInfo().InteractionTypeId() << std::endl << genie::ScatteringType::AsString( gheprec->Summary()->ProcInfo().ScatteringTypeId()) << " " << genie::InteractionType::AsString( gheprec->Summary()->ProcInfo().InteractionTypeId()) << " " << gheprec->Summary()->ProcInfo().IsMEC()); return 0; } } // Weak CC } else if (gheprec->Summary()->ProcInfo().IsWeakCC()) { // CC MEC if (gheprec->Summary()->ProcInfo().IsMEC()) { if (pdg::IsNeutrino(gheprec->Summary()->InitState().ProbePdg())) return 2; else if (pdg::IsAntiNeutrino(gheprec->Summary()->InitState().ProbePdg())) return -2; // CC OTHER } else { return utils::ghep::NeutReactionCode(gheprec); } // Weak NC } else if (gheprec->Summary()->ProcInfo().IsWeakNC()) { // NC MEC if (gheprec->Summary()->ProcInfo().IsMEC()) { if (pdg::IsNeutrino(gheprec->Summary()->InitState().ProbePdg())) return 32; else if (pdg::IsAntiNeutrino(gheprec->Summary()->InitState().ProbePdg())) return -32; // NC OTHER } else { return utils::ghep::NeutReactionCode(gheprec); } } return 0; } void GENIEInputHandler::CalcNUISANCEKinematics() { // Reset all variables fNUISANCEEvent->ResetEvent(); // Check for GENIE Event if (!fGenieNtpl) return; if (!fGenieNtpl->event) return; // Cast Event Record fGenieGHep = fGenieNtpl->event; if (!fGenieGHep) return; // Convert GENIE Reaction Code fNUISANCEEvent->Mode = ConvertGENIEReactionCode(fGenieGHep); // Set Event Info fNUISANCEEvent->fEventNo = 0.0; fNUISANCEEvent->fTotCrs = fGenieGHep->XSec(); fNUISANCEEvent->fTargetA = 0.0; fNUISANCEEvent->fTargetZ = 0.0; fNUISANCEEvent->fTargetH = 0; fNUISANCEEvent->fBound = 0.0; fNUISANCEEvent->InputWeight = 1.0; //(1E+38 / genie::units::cm2) * fGenieGHep->XSec(); // Get N Particle Stack unsigned int npart = fGenieGHep->GetEntries(); unsigned int kmax = fNUISANCEEvent->kMaxParticles; if (npart > kmax) { fNUISANCEEvent->ExpandParticleStack(npart); } // Fill Particle Stack GHepParticle *p = 0; TObjArrayIter iter(fGenieGHep); fNUISANCEEvent->fNParticles = 0; // Loop over all particles while ((p = (dynamic_cast((iter).Next())))) { if (!p) continue; // Get Status int state = GetGENIEParticleStatus(p, fNUISANCEEvent->Mode); // Remove Undefined if (kRemoveUndefParticles && state == kUndefinedState) continue; // Remove FSI if (kRemoveFSIParticles && state == kFSIState) continue; if (kRemoveNuclearParticles && (state == kNuclearInitial || state == kNuclearRemnant)) continue; // Fill Vectors int curpart = fNUISANCEEvent->fNParticles; fNUISANCEEvent->fParticleState[curpart] = state; // Mom fNUISANCEEvent->fParticleMom[curpart][0] = p->Px() * 1.E3; fNUISANCEEvent->fParticleMom[curpart][1] = p->Py() * 1.E3; fNUISANCEEvent->fParticleMom[curpart][2] = p->Pz() * 1.E3; fNUISANCEEvent->fParticleMom[curpart][3] = p->E() * 1.E3; // PDG fNUISANCEEvent->fParticlePDG[curpart] = p->Pdg(); // Add to N particle count fNUISANCEEvent->fNParticles++; // Extra Check incase GENIE fails. if ((UInt_t)fNUISANCEEvent->fNParticles == kmax) { - ERR(WRN) << "Number of GENIE Particles exceeds maximum!" << std::endl; + ERR(WRN) << "Number of GENIE Particles exceeds maximum (Max: " << kmax + << ", GHEP: " << fGenieGHep->GetEntries() + << ", Added: " << fNUISANCEEvent->fNParticles << ")!" + << std::endl; ERR(WRN) << "Extend kMax, or run without including FSI particles!" << std::endl; break; } } // Fill Extra Stack if (fSaveExtra) fGenieInfo->FillGeneratorInfo(fGenieNtpl); // Run Initial, FSI, Final, Other ordering. fNUISANCEEvent->OrderStack(); FitParticle *ISNeutralLepton = fNUISANCEEvent->GetHMISParticle(PhysConst::pdg_neutrinos); if (ISNeutralLepton) { fNUISANCEEvent->probe_E = ISNeutralLepton->E(); fNUISANCEEvent->probe_pdg = ISNeutralLepton->PDG(); } return; } void GENIEInputHandler::Print() {} #endif diff --git a/src/Reweight/DUNERwtWeightEngine.cxx b/src/Reweight/DUNERwtWeightEngine.cxx index 3477010..00f5d3d 100644 --- a/src/Reweight/DUNERwtWeightEngine.cxx +++ b/src/Reweight/DUNERwtWeightEngine.cxx @@ -1,167 +1,164 @@ // Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret /******************************************************************************* * This file is part of NUISANCE. * * NUISANCE is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * NUISANCE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NUISANCE. If not, see . *******************************************************************************/ #include "DUNERwtWeightEngine.h" #include #include DUNERwtWeightEngine::DUNERwtWeightEngine() { Config(); } void DUNERwtWeightEngine::Config() { std::vector DuneRwtParam = Config::QueryKeys("DUNERwt"); if (DuneRwtParam.size() < 1) { ERROR(WRN, "Oscillation parameters specified but no OscParam element " "configuring the experimental characteristics found.\nExpect at " "least . Pausing for " "10..."); sleep(10); return; } std::string fhicl_name = DuneRwtParam.front().GetS("ConfigFHiCL"); DUNErwt.LoadConfiguration(fhicl_name); } int DUNERwtWeightEngine::ConvDial(std::string name) { if (!DUNErwt.HaveHeader(name)) { THROW("DUNERwtWeightEngine passed dial: " << name << " that it does not understand."); } return DUNErwt.GetHeaderId(name); } void DUNERwtWeightEngine::IncludeDial(std::string name, double startval) { EnabledParams.push_back({systtools::paramId_t(ConvDial(name)), startval}); } void DUNERwtWeightEngine::SetDialValue(int nuisenum, double val) { systtools::paramId_t DuneRwtEnum = (nuisenum % 1000); systtools::ParamValue &pval = GetParamElementFromContainer(EnabledParams, DuneRwtEnum); fHasChanged = (pval.val - val) > std::numeric_limits::epsilon(); pval.val = val; } void DUNERwtWeightEngine::SetDialValue(std::string name, double val) { if (!IsDialIncluded(name)) { THROW("DUNERwtWeightEngine passed dial: " << name << " that is not enabled."); } systtools::ParamValue &pval = GetParamElementFromContainer(EnabledParams, ConvDial(name)); fHasChanged = (pval.val - val) > std::numeric_limits::epsilon(); pval.val = val; } bool DUNERwtWeightEngine::IsDialIncluded(std::string name) { return IsDialIncluded(ConvDial(name)); } bool DUNERwtWeightEngine::IsDialIncluded(int nuisenum) { systtools::paramId_t DuneRwtEnum = (nuisenum % 1000); return systtools::ContainterHasParam(EnabledParams, DuneRwtEnum); } double DUNERwtWeightEngine::GetDialValue(std::string name) { if (!IsDialIncluded(name)) { THROW("DUNERwtWeightEngine passed dial: " << name << " that is not enabled."); } systtools::ParamValue &pval = GetParamElementFromContainer(EnabledParams, ConvDial(name)); return pval.val; } double DUNERwtWeightEngine::GetDialValue(int nuisenum) { if (!IsDialIncluded(nuisenum)) { THROW("DUNERwtWeightEngine passed dial: " << nuisenum << " that is not enabled."); } systtools::paramId_t DuneRwtEnum = (nuisenum % 1000); systtools::ParamValue &pval = GetParamElementFromContainer(EnabledParams, DuneRwtEnum); return pval.val; } void DUNERwtWeightEngine::Reconfigure(bool silent) { fHasChanged = false; }; bool DUNERwtWeightEngine::NeedsEventReWeight() { if (fHasChanged) { return true; } return false; } double DUNERwtWeightEngine::CalcWeight(BaseFitEvt *evt) { double weight = 1; if (evt->HasDUNERwtPolyResponses) { for (size_t i = 0; i < EnabledParams.size(); ++i) { if (DUNErwt.IsSplineParam(EnabledParams[i].pid)) { if (!ContainterHasParam(evt->DUNERwtPolyResponses, EnabledParams[i].pid)) { continue; } weight *= GetParamElementFromContainer(evt->DUNERwtPolyResponses, EnabledParams[i].pid) .resp.eval(EnabledParams[i].val); - evt->DUNERwtResponses = - DUNErwt.GetEventResponses(*evt->genie_event->event); - } else { if (!evt->HasDUNERwtResponses) { evt->DUNERwtResponses = DUNErwt.GetEventResponses(*evt->genie_event->event); evt->HasDUNERwtResponses = true; } weight *= DUNErwt.GetDiscreteResponse(EnabledParams[i].pid, int(EnabledParams[i].val), evt->DUNERwtResponses); } } } else { if (!evt->HasDUNERwtResponses) { evt->DUNERwtResponses = DUNErwt.GetEventResponses(*evt->genie_event->event); evt->HasDUNERwtResponses = true; } for (size_t i = 0; i < EnabledParams.size(); ++i) { if (DUNErwt.IsSplineParam(EnabledParams[i].pid)) { weight *= DUNErwt.GetParameterResponse( EnabledParams[i].pid, EnabledParams[i].val, evt->DUNERwtResponses); } else { weight *= DUNErwt.GetDiscreteResponse(EnabledParams[i].pid, int(EnabledParams[i].val), evt->DUNERwtResponses); } } } return weight; } void DUNERwtWeightEngine::Print() { std::cout << "DUNERwtWeightEngine: " << std::endl; }