diff --git a/src/InputHandler/GENIEInputHandler.cxx b/src/InputHandler/GENIEInputHandler.cxx
index 3ed0af4..699ee50 100644
--- a/src/InputHandler/GENIEInputHandler.cxx
+++ b/src/InputHandler/GENIEInputHandler.cxx
@@ -1,545 +1,545 @@
 // Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret
 
 /*******************************************************************************
  *    This file is part of NUISANCE.
  *
  *    NUISANCE is free software: you can redistribute it and/or modify
  *    it under the terms of the GNU General Public License as published by
  *    the Free Software Foundation, either version 3 of the License, or
  *    (at your option) any later version.
  *
  *    NUISANCE is distributed in the hope that it will be useful,
  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  *    GNU General Public License for more details.
  *
  *    You should have received a copy of the GNU General Public License
  *    along with NUISANCE.  If not, see <http://www.gnu.org/licenses/>.
  *******************************************************************************/
 #ifdef __GENIE_ENABLED__
 #include "GENIEInputHandler.h"
 
 #include "InputUtils.h"
 
 #ifdef __DUNERWT_ENABLED__
 
 #include "systematicstools/utility/ParameterAndProviderConfigurationUtility.hh"
 
 #include "fhiclcpp/make_ParameterSet.h"
 
 #endif
 
 GENIEGeneratorInfo::~GENIEGeneratorInfo() { DeallocateParticleStack(); }
 
 void GENIEGeneratorInfo::AddBranchesToTree(TTree *tn) {
   tn->Branch("GenieParticlePDGs", &fGenieParticlePDGs, "GenieParticlePDGs/I");
 }
 
 void GENIEGeneratorInfo::SetBranchesFromTree(TTree *tn) {
   tn->SetBranchAddress("GenieParticlePDGs", &fGenieParticlePDGs);
 }
 
 void GENIEGeneratorInfo::AllocateParticleStack(int stacksize) {
   fGenieParticlePDGs = new int[stacksize];
 }
 
 void GENIEGeneratorInfo::DeallocateParticleStack() {
   delete fGenieParticlePDGs;
 }
 
 void GENIEGeneratorInfo::FillGeneratorInfo(NtpMCEventRecord *ntpl) {
   Reset();
 
   // Check for GENIE Event
   if (!ntpl)
     return;
   if (!ntpl->event)
     return;
 
   // Cast Event Record
   GHepRecord *ghep = static_cast<GHepRecord *>(ntpl->event);
   if (!ghep)
     return;
 
   // Fill Particle Stack
   GHepParticle *p = 0;
   TObjArrayIter iter(ghep);
 
   // Loop over all particles
   int i = 0;
   while ((p = (dynamic_cast<genie::GHepParticle *>((iter).Next())))) {
     if (!p)
       continue;
 
     // Get PDG
     fGenieParticlePDGs[i] = p->Pdg();
     i++;
   }
 }
 
 void GENIEGeneratorInfo::Reset() {
   for (int i = 0; i < kMaxParticles; i++) {
     fGenieParticlePDGs[i] = 0;
   }
 }
 
 GENIEInputHandler::GENIEInputHandler(std::string const &handle,
                                      std::string const &rawinputs) {
   LOG(SAM) << "Creating GENIEInputHandler : " << handle << std::endl;
 
   // Run a joint input handling
   fName = handle;
 
   // Setup the TChain
   fGENIETree = new TChain("gtree");
   fSaveExtra = FitPar::Config().GetParB("SaveExtraGenie");
   fCacheSize = FitPar::Config().GetParI("CacheSize");
   fMaxEvents = FitPar::Config().GetParI("MAXEVENTS");
 
   // Loop over all inputs and grab flux, eventhist, and nevents
   std::vector<std::string> inputs = InputUtils::ParseInputFileList(rawinputs);
   for (size_t inp_it = 0; inp_it < inputs.size(); ++inp_it) {
     // Open File for histogram access
     TFile *inp_file = new TFile(
         InputUtils::ExpandInputDirectories(inputs[inp_it]).c_str(), "READ");
     if (!inp_file or inp_file->IsZombie()) {
       THROW("GENIE File IsZombie() at : '"
             << inputs[inp_it] << "'" << std::endl
             << "Check that your file paths are correct and the file exists!"
             << std::endl
             << "$ ls -lh " << inputs[inp_it]);
     }
 
     // Get Flux/Event hist
     TH1D *fluxhist = (TH1D *)inp_file->Get("nuisance_flux");
     TH1D *eventhist = (TH1D *)inp_file->Get("nuisance_events");
     if (!fluxhist or !eventhist) {
       ERROR(FTL, "Input File Contents: " << inputs[inp_it]);
       inp_file->ls();
       THROW("GENIE FILE doesn't contain flux/xsec info."
             << std::endl
             << "Try running the app PrepareGENIE first on :" << inputs[inp_it]
             << std::endl
             << "$ PrepareGENIE -h");
     }
 
     // Get N Events
     TTree *genietree = (TTree *)inp_file->Get("gtree");
     if (!genietree) {
       ERROR(FTL, "gtree not located in GENIE file: " << inputs[inp_it]);
       THROW("Check your inputs, they may need to be completely regenerated!");
       throw;
     }
     int nevents = genietree->GetEntries();
     if (nevents <= 0) {
       THROW("Trying to a TTree with "
             << nevents << " to TChain from : " << inputs[inp_it]);
     }
 
     // Register input to form flux/event rate hists
     RegisterJointInput(inputs[inp_it], nevents, fluxhist, eventhist);
 
     // Add To TChain
     fGENIETree->AddFile(inputs[inp_it].c_str());
   }
 
   // Registor all our file inputs
   SetupJointInputs();
 
   // Assign to tree
   fEventType = kGENIE;
   fGenieNtpl = NULL;
   fGENIETree->SetBranchAddress("gmcrec", &fGenieNtpl);
 
   // Libraries should be seen but not heard...
   StopTalking();
   fGENIETree->GetEntry(0);
   StartTalking();
 
 #ifndef __DUNERWT_ENABLED__
   // Create Fit Event
   fNUISANCEEvent = new FitEvent();
   fNUISANCEEvent->SetGenieEvent(fGenieNtpl);
 
   if (fSaveExtra) {
     fGenieInfo = new GENIEGeneratorInfo();
     fNUISANCEEvent->AddGeneratorInfo(fGenieInfo);
   }
 
   fNUISANCEEvent->HardReset();
 #else
   std::vector<nuiskey> HandlerOpts = Config::QueryKeys("GENIEInputHandler");
   fUseCache = HandlerOpts.size() && HandlerOpts.front().Has("UseCache") &&
               HandlerOpts.front().GetB("UseCache");
 
   DUNERwtCachedResponseReader = nullptr;
   HaveCachedResponseReader = false;
   if (fUseCache && (inputs.size() == 1)) {
     std::vector<nuiskey> DuneRwtCacheParams =
         Config::QueryKeys("DUNERwtResponseCache");
     for (nuiskey &key : DuneRwtCacheParams) {
       if (key.Has("Input") && (key.GetS("Input") == inputs.front()) &&
           key.Has("CacheFile") && key.Has("ParameterFHiCL")) {
 
         fhicl::ParameterSet ps =
             fhicl::make_ParameterSet(key.GetS("ParameterFHiCL"));
 
         fhicl::ParameterSet syst_providers = ps.get<fhicl::ParameterSet>(
             "generated_systematic_provider_configuration");
 
         systtools::param_header_map_t configuredParameterHeaders =
             systtools::BuildParameterHeaders(syst_providers);
 
         DUNERwtCachedResponseReader =
             std::make_unique<systtools::PrecalculatedResponseReader<5>>(
-                key.GetS("CacheFile"), "resp_tree",
-                configuredParameterHeaders.size());
+                InputUtils::ExpandInputDirectories(key.GetS("CacheFile")),
+                "resp_tree", configuredParameterHeaders.size());
         HaveCachedResponseReader = true;
         break;
       }
     }
   } else {
     fNUISANCEEvent = new FitEvent();
     fNUISANCEEvent->SetGenieEvent(fGenieNtpl);
 
     if (fSaveExtra) {
       fGenieInfo = new GENIEGeneratorInfo();
       fNUISANCEEvent->AddGeneratorInfo(fGenieInfo);
     }
 
     fNUISANCEEvent->HardReset();
   }
 #endif
 };
 
 GENIEInputHandler::~GENIEInputHandler() {
   // if (fGenieGHep) delete fGenieGHep;
   // if (fGenieNtpl) delete fGenieNtpl;
   // if (fGENIETree) delete fGENIETree;
   // if (fGenieInfo) delete fGenieInfo;
 }
 
 void GENIEInputHandler::CreateCache() {
   if (fCacheSize > 0) {
     // fGENIETree->SetCacheEntryRange(0, fNEvents);
     fGENIETree->AddBranchToCache("*", 1);
     fGENIETree->SetCacheSize(fCacheSize);
   }
 }
 
 void GENIEInputHandler::RemoveCache() {
   // fGENIETree->SetCacheEntryRange(0, fNEvents);
   fGENIETree->AddBranchToCache("*", 0);
   fGENIETree->SetCacheSize(0);
 }
 
 FitEvent *GENIEInputHandler::GetNuisanceEvent(const UInt_t entry,
                                               const bool lightweight) {
   if (entry >= (UInt_t)fNEvents)
     return NULL;
 
 #ifdef __DUNERWT_ENABLED__
   // Reduce memory pressure from the cache by clearing out the last entry each
   // time.
   if (entry && rwEvs[entry - 1].NParticles()) {
     rwEvs[entry - 1].DeallocateParticleStack();
   }
 #endif
 
   // Read Entry from TTree to fill NEUT Vect in BaseFitEvt;
   fGENIETree->GetEntry(entry);
 
 #ifdef __DUNERWT_ENABLED__
   if (entry >= rwEvs.size()) {
     rwEvs.push_back(FitEvent());
     if (HaveCachedResponseReader) {
       rwEvs.back().DUNERwtPolyResponses =
           DUNERwtCachedResponseReader->GetEventResponse(entry);
       rwEvs.back().HasDUNERwtPolyResponses = true;
     }
   }
   rwEvs[entry].SetGenieEvent(fGenieNtpl);
 
   fNUISANCEEvent = &rwEvs[entry];
 #endif
 
   // Run NUISANCE Vector Filler
   if (!lightweight) {
     CalcNUISANCEKinematics();
   }
 #ifdef __PROB3PP_ENABLED__
   else {
     // Check for GENIE Event
     if (!fGenieNtpl)
       return NULL;
     if (!fGenieNtpl->event)
       return NULL;
 
     // Cast Event Record
     fGenieGHep = fGenieNtpl->event;
     if (!fGenieGHep)
       return NULL;
 
     TObjArrayIter iter(fGenieGHep);
     genie::GHepParticle *p;
     while ((p = (dynamic_cast<genie::GHepParticle *>((iter).Next())))) {
       if (!p) {
         continue;
       }
 
       // Get Status
       int state = GetGENIEParticleStatus(p, fNUISANCEEvent->Mode);
       if (state != genie::kIStInitialState) {
         continue;
       }
       fNUISANCEEvent->probe_E = p->E() * 1.E3;
       fNUISANCEEvent->probe_pdg = p->Pdg();
       break;
     }
   }
 #endif
 
   // Setup Input scaling for joint inputs
   fNUISANCEEvent->InputWeight = GetInputWeight(entry);
 
   return fNUISANCEEvent;
 }
 
 int GENIEInputHandler::GetGENIEParticleStatus(genie::GHepParticle *p,
                                               int mode) {
   /*
     kIStUndefined                  = -1,
     kIStInitialState               =  0,   / generator-level initial state /
     kIStStableFinalState           =  1,   / generator-level final state:
     particles to be tracked by detector-level MC /
     kIStIntermediateState          =  2,
     kIStDecayedState               =  3,
     kIStCorrelatedNucleon          = 10,
     kIStNucleonTarget              = 11,
     kIStDISPreFragmHadronicState   = 12,
     kIStPreDecayResonantState      = 13,
     kIStHadronInTheNucleus         = 14,   / hadrons inside the nucleus:
     marked for hadron transport modules to act on /
     kIStFinalStateNuclearRemnant   = 15,   / low energy nuclear fragments
     entering the record collectively as a 'hadronic blob' pseudo-particle /
     kIStNucleonClusterTarget       = 16,   // for composite nucleons before
     phase space decay
   */
 
   int state = kUndefinedState;
   switch (p->Status()) {
   case genie::kIStNucleonTarget:
   case genie::kIStInitialState:
   case genie::kIStCorrelatedNucleon:
   case genie::kIStNucleonClusterTarget:
     state = kInitialState;
     break;
 
   case genie::kIStStableFinalState:
     state = kFinalState;
     break;
 
   case genie::kIStHadronInTheNucleus:
     if (abs(mode) == 2)
       state = kInitialState;
     else
       state = kFSIState;
     break;
 
   case genie::kIStPreDecayResonantState:
   case genie::kIStDISPreFragmHadronicState:
   case genie::kIStIntermediateState:
     state = kFSIState;
     break;
 
   case genie::kIStFinalStateNuclearRemnant:
   case genie::kIStUndefined:
   case genie::kIStDecayedState:
   default:
     break;
   }
 
   // Flag to remove nuclear part in genie
   if (p->Pdg() > 1000000) {
     if (state == kInitialState)
       state = kNuclearInitial;
     else if (state == kFinalState)
       state = kNuclearRemnant;
   }
 
   return state;
 }
 #endif
 
 #ifdef __GENIE_ENABLED__
 int GENIEInputHandler::ConvertGENIEReactionCode(GHepRecord *gheprec) {
   // Electron Scattering
   if (gheprec->Summary()->ProcInfo().IsEM()) {
     if (gheprec->Summary()->InitState().ProbePdg() == 11) {
       if (gheprec->Summary()->ProcInfo().IsQuasiElastic())
         return 1;
       else if (gheprec->Summary()->ProcInfo().IsMEC())
         return 2;
       else if (gheprec->Summary()->ProcInfo().IsResonant())
         return 13;
       else if (gheprec->Summary()->ProcInfo().IsDeepInelastic())
         return 26;
       else {
         ERROR(WRN,
               "Unknown GENIE Electron Scattering Mode!"
                   << std::endl
                   << "ScatteringTypeId = "
                   << gheprec->Summary()->ProcInfo().ScatteringTypeId() << " "
                   << "InteractionTypeId = "
                   << gheprec->Summary()->ProcInfo().InteractionTypeId()
                   << std::endl
                   << genie::ScatteringType::AsString(
                          gheprec->Summary()->ProcInfo().ScatteringTypeId())
                   << " "
                   << genie::InteractionType::AsString(
                          gheprec->Summary()->ProcInfo().InteractionTypeId())
                   << " " << gheprec->Summary()->ProcInfo().IsMEC());
         return 0;
       }
     }
 
     // Weak CC
   } else if (gheprec->Summary()->ProcInfo().IsWeakCC()) {
     // CC MEC
     if (gheprec->Summary()->ProcInfo().IsMEC()) {
       if (pdg::IsNeutrino(gheprec->Summary()->InitState().ProbePdg()))
         return 2;
       else if (pdg::IsAntiNeutrino(gheprec->Summary()->InitState().ProbePdg()))
         return -2;
 
       // CC OTHER
     } else {
       return utils::ghep::NeutReactionCode(gheprec);
     }
 
     // Weak NC
   } else if (gheprec->Summary()->ProcInfo().IsWeakNC()) {
     // NC MEC
     if (gheprec->Summary()->ProcInfo().IsMEC()) {
       if (pdg::IsNeutrino(gheprec->Summary()->InitState().ProbePdg()))
         return 32;
       else if (pdg::IsAntiNeutrino(gheprec->Summary()->InitState().ProbePdg()))
         return -32;
 
       // NC OTHER
     } else {
       return utils::ghep::NeutReactionCode(gheprec);
     }
   }
 
   return 0;
 }
 
 void GENIEInputHandler::CalcNUISANCEKinematics() {
   // Reset all variables
   fNUISANCEEvent->ResetEvent();
 
   // Check for GENIE Event
   if (!fGenieNtpl)
     return;
   if (!fGenieNtpl->event)
     return;
 
   // Cast Event Record
   fGenieGHep = fGenieNtpl->event;
   if (!fGenieGHep)
     return;
 
   // Convert GENIE Reaction Code
   fNUISANCEEvent->Mode = ConvertGENIEReactionCode(fGenieGHep);
 
   // Set Event Info
   fNUISANCEEvent->fEventNo = 0.0;
   fNUISANCEEvent->fTotCrs = fGenieGHep->XSec();
   fNUISANCEEvent->fTargetA = 0.0;
   fNUISANCEEvent->fTargetZ = 0.0;
   fNUISANCEEvent->fTargetH = 0;
   fNUISANCEEvent->fBound = 0.0;
   fNUISANCEEvent->InputWeight =
       1.0; //(1E+38 / genie::units::cm2) * fGenieGHep->XSec();
 
   // Get N Particle Stack
   unsigned int npart = fGenieGHep->GetEntries();
   unsigned int kmax = fNUISANCEEvent->kMaxParticles;
   if (npart > kmax) {
     fNUISANCEEvent->ExpandParticleStack(npart);
   }
 
   // Fill Particle Stack
   GHepParticle *p = 0;
   TObjArrayIter iter(fGenieGHep);
   fNUISANCEEvent->fNParticles = 0;
 
   // Loop over all particles
   while ((p = (dynamic_cast<genie::GHepParticle *>((iter).Next())))) {
     if (!p)
       continue;
 
     // Get Status
     int state = GetGENIEParticleStatus(p, fNUISANCEEvent->Mode);
 
     // Remove Undefined
     if (kRemoveUndefParticles && state == kUndefinedState)
       continue;
 
     // Remove FSI
     if (kRemoveFSIParticles && state == kFSIState)
       continue;
 
     if (kRemoveNuclearParticles &&
         (state == kNuclearInitial || state == kNuclearRemnant))
       continue;
 
     // Fill Vectors
     int curpart = fNUISANCEEvent->fNParticles;
     fNUISANCEEvent->fParticleState[curpart] = state;
 
     // Mom
     fNUISANCEEvent->fParticleMom[curpart][0] = p->Px() * 1.E3;
     fNUISANCEEvent->fParticleMom[curpart][1] = p->Py() * 1.E3;
     fNUISANCEEvent->fParticleMom[curpart][2] = p->Pz() * 1.E3;
     fNUISANCEEvent->fParticleMom[curpart][3] = p->E() * 1.E3;
 
     // PDG
     fNUISANCEEvent->fParticlePDG[curpart] = p->Pdg();
 
     // Add to N particle count
     fNUISANCEEvent->fNParticles++;
 
     // Extra Check incase GENIE fails.
     if ((UInt_t)fNUISANCEEvent->fNParticles == kmax) {
       ERR(WRN) << "Number of GENIE Particles exceeds maximum (Max: " << kmax
                << ", GHEP: " << fGenieGHep->GetEntries()
                << ", Added: " << fNUISANCEEvent->fNParticles << ")!"
                << std::endl;
       ERR(WRN) << "Extend kMax, or run without including FSI particles!"
                << std::endl;
       break;
     }
   }
 
   // Fill Extra Stack
   if (fSaveExtra)
     fGenieInfo->FillGeneratorInfo(fGenieNtpl);
 
   // Run Initial, FSI, Final, Other ordering.
   fNUISANCEEvent->OrderStack();
 
   FitParticle *ISNeutralLepton =
       fNUISANCEEvent->GetHMISParticle(PhysConst::pdg_neutrinos);
   if (ISNeutralLepton) {
     fNUISANCEEvent->probe_E = ISNeutralLepton->E();
     fNUISANCEEvent->probe_pdg = ISNeutralLepton->PDG();
   }
 
   return;
 }
 
 void GENIEInputHandler::Print() {}
 
 #endif