diff --git a/src/InputHandler/InputHandler.cxx b/src/InputHandler/InputHandler.cxx index dd609c4..d606944 100644 --- a/src/InputHandler/InputHandler.cxx +++ b/src/InputHandler/InputHandler.cxx @@ -1,297 +1,298 @@ // Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret /******************************************************************************* * This file is part of NUISANCE. * * NUISANCE is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * NUISANCE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NUISANCE. If not, see . *******************************************************************************/ #include "InputHandler.h" #include "InputUtils.h" InputHandlerBase::InputHandlerBase() { fName = ""; fFluxHist = NULL; fEventHist = NULL; fNEvents = 0; fNUISANCEEvent = NULL; fBaseEvent = NULL; kRemoveUndefParticles = FitPar::Config().GetParB("RemoveUndefParticles"); kRemoveFSIParticles = FitPar::Config().GetParB("RemoveFSIParticles"); kRemoveNuclearParticles = FitPar::Config().GetParB("RemoveNuclearParticles"); fMaxEvents = FitPar::Config().GetParI("MAXEVENTS"); fTTreePerformance = NULL; }; InputHandlerBase::~InputHandlerBase() { if (fFluxHist) delete fFluxHist; if (fEventHist) delete fEventHist; // if (fXSecHist) delete fXSecHist; // if (fNUISANCEEvent) delete fNUISANCEEvent; jointfluxinputs.clear(); jointeventinputs.clear(); jointindexlow.clear(); jointindexhigh.clear(); jointindexallowed.clear(); jointindexscale.clear(); // if (fTTreePerformance) { // fTTreePerformance->SaveAs(("ttreeperfstats_" + fName + // ".root").c_str()); // } } void InputHandlerBase::Print(){}; TH1D* InputHandlerBase::GetXSecHistogram(void) { fXSecHist = (TH1D*)fFluxHist->Clone(); fXSecHist->Divide(fEventHist); return fXSecHist; }; double InputHandlerBase::PredictedEventRate(double low, double high, std::string intOpt) { Int_t minBin = fEventHist->GetXaxis()->FindFixBin(low); Int_t maxBin = fEventHist->GetXaxis()->FindFixBin(high); if ((fEventHist->IsBinOverflow(minBin) && (low != -9999.9))) { minBin = 1; } if ((fEventHist->IsBinOverflow(maxBin) && (high != -9999.9))) { maxBin = fEventHist->GetXaxis()->GetNbins() + 1; } // If we are within a single bin if (minBin == maxBin) { // Get the contained fraction of the single bin's width return ((high - low) / fEventHist->GetXaxis()->GetBinWidth(minBin)) * fEventHist->Integral(minBin, minBin, intOpt.c_str()); } double lowBinUpEdge = fEventHist->GetXaxis()->GetBinUpEdge(minBin); double highBinLowEdge = fEventHist->GetXaxis()->GetBinLowEdge(maxBin); double lowBinfracIntegral = ((lowBinUpEdge - low) / fEventHist->GetXaxis()->GetBinWidth(minBin)) * fEventHist->Integral(minBin, minBin, intOpt.c_str()); double highBinfracIntegral = ((high - highBinLowEdge) / fEventHist->GetXaxis()->GetBinWidth(maxBin)) * fEventHist->Integral(maxBin, maxBin, intOpt.c_str()); // If they are neighbouring bins if ((minBin + 1) == maxBin) { std::cout << "Get lowfrac + highfrac" << std::endl; // Get the contained fraction of the two bin's width return lowBinfracIntegral + highBinfracIntegral; } double ContainedIntegral = fEventHist->Integral(minBin + 1, maxBin - 1, intOpt.c_str()); // If there are filled bins between them return lowBinfracIntegral + highBinfracIntegral + ContainedIntegral; }; double InputHandlerBase::TotalIntegratedFlux(double low, double high, std::string intOpt) { Int_t minBin = fFluxHist->GetXaxis()->FindFixBin(low); Int_t maxBin = fFluxHist->GetXaxis()->FindFixBin(high); if ((fFluxHist->IsBinOverflow(minBin) && (low != -9999.9))) { minBin = 1; } if ((fFluxHist->IsBinOverflow(maxBin) && (high != -9999.9))) { - maxBin = fFluxHist->GetXaxis()->GetNbins() + 1; + maxBin = fFluxHist->GetXaxis()->GetNbins(); + high = fFluxHist->GetXaxis()->GetBinLowEdge(maxBin+1); } // If we are within a single bin if (minBin == maxBin) { // Get the contained fraction of the single bin's width return ((high - low) / fFluxHist->GetXaxis()->GetBinWidth(minBin)) * fFluxHist->Integral(minBin, minBin, intOpt.c_str()); } double lowBinUpEdge = fFluxHist->GetXaxis()->GetBinUpEdge(minBin); double highBinLowEdge = fFluxHist->GetXaxis()->GetBinLowEdge(maxBin); double lowBinfracIntegral = ((lowBinUpEdge - low) / fFluxHist->GetXaxis()->GetBinWidth(minBin)) * fFluxHist->Integral(minBin, minBin, intOpt.c_str()); double highBinfracIntegral = ((high - highBinLowEdge) / fFluxHist->GetXaxis()->GetBinWidth(maxBin)) * fFluxHist->Integral(maxBin, maxBin, intOpt.c_str()); // If they are neighbouring bins if ((minBin + 1) == maxBin) { std::cout << "Get lowfrac + highfrac" << std::endl; // Get the contained fraction of the two bin's width return lowBinfracIntegral + highBinfracIntegral; } double ContainedIntegral = fFluxHist->Integral(minBin + 1, maxBin - 1, intOpt.c_str()); // If there are filled bins between them return lowBinfracIntegral + highBinfracIntegral + ContainedIntegral; } std::vector InputHandlerBase::GetFluxList(void) { return std::vector(1, fFluxHist); }; std::vector InputHandlerBase::GetEventList(void) { return std::vector(1, fEventHist); }; std::vector InputHandlerBase::GetXSecList(void) { return std::vector(1, GetXSecHistogram()); }; FitEvent* InputHandlerBase::FirstNuisanceEvent() { fCurrentIndex = 0; return GetNuisanceEvent(fCurrentIndex); }; FitEvent* InputHandlerBase::NextNuisanceEvent() { fCurrentIndex++; if ((fMaxEvents != -1) && (fCurrentIndex > fMaxEvents)) { return NULL; } return GetNuisanceEvent(fCurrentIndex); }; BaseFitEvt* InputHandlerBase::FirstBaseEvent() { fCurrentIndex = 0; return GetBaseEvent(fCurrentIndex); }; BaseFitEvt* InputHandlerBase::NextBaseEvent() { fCurrentIndex++; if (jointinput and fMaxEvents != -1) { while (fCurrentIndex < jointindexlow[jointindexswitch] || fCurrentIndex >= jointindexhigh[jointindexswitch]) { jointindexswitch++; // Loop Around if (jointindexswitch == jointindexlow.size()) { jointindexswitch = 0; } } if (fCurrentIndex > jointindexlow[jointindexswitch] + jointindexallowed[jointindexswitch]) { fCurrentIndex = jointindexlow[jointindexswitch]; } } return GetBaseEvent(fCurrentIndex); }; void InputHandlerBase::RegisterJointInput(std::string input, int n, TH1D* f, TH1D* e) { if (jointfluxinputs.size() == 0) { jointindexswitch = 0; fNEvents = 0; } // Push into individual input vectors jointfluxinputs.push_back((TH1D*)f->Clone()); jointeventinputs.push_back((TH1D*)e->Clone()); jointindexlow.push_back(fNEvents); jointindexhigh.push_back(fNEvents + n); fNEvents += n; // Add to the total flux/event hist if (!fFluxHist) fFluxHist = (TH1D*)f->Clone(); else fFluxHist->Add(f); if (!fEventHist) fEventHist = (TH1D*)e->Clone(); else fEventHist->Add(e); } void InputHandlerBase::SetupJointInputs() { if (jointeventinputs.size() <= 1) { jointinput = false; } else if (jointeventinputs.size() > 1) { jointinput = true; jointindexswitch = 0; } fMaxEvents = FitPar::Config().GetParI("MAXEVENTS"); if (fMaxEvents != -1 and jointeventinputs.size() > 1) { THROW("Can only handle joint inputs when config MAXEVENTS = -1!"); } if (jointeventinputs.size() > 1) { ERROR(WRN, "GiBUU sample contains multiple inputs. This will only work for " "samples that expect multi-species inputs. If this sample does, you " "can ignore this warning."); } for (size_t i = 0; i < jointeventinputs.size(); i++) { double scale = double(fNEvents) / fEventHist->Integral("width"); scale *= jointeventinputs.at(i)->Integral("width"); scale /= double(jointindexhigh[i] - jointindexlow[i]); jointindexscale.push_back(scale); } fEventHist->SetNameTitle((fName + "_EVT").c_str(), (fName + "_EVT").c_str()); fFluxHist->SetNameTitle((fName + "_FLUX").c_str(), (fName + "_FLUX").c_str()); // Setup Max Events if (fMaxEvents > 1 && fMaxEvents < fNEvents) { if (LOG_LEVEL(SAM)) { std::cout << "\t\t|-> Read Max Entries : " << fMaxEvents << std::endl; } fNEvents = fMaxEvents; } // Print out Status if (LOG_LEVEL(SAM)) { std::cout << "\t\t|-> Total Entries : " << fNEvents << std::endl << "\t\t|-> Event Integral : " << fEventHist->Integral("width") * 1.E-38 << " events/nucleon" << std::endl << "\t\t|-> Flux Integral : " << fFluxHist->Integral("width") << " /cm2" << std::endl << "\t\t|-> Event/Flux : " << fEventHist->Integral("width") * 1.E-38 / fFluxHist->Integral("width") << " cm2/nucleon" << std::endl; } } BaseFitEvt* InputHandlerBase::GetBaseEvent(const UInt_t entry) { return static_cast(GetNuisanceEvent(entry, true)); } double InputHandlerBase::GetInputWeight(int entry) { if (!jointinput) return 1.0; // Find Switch Scale while (entry < jointindexlow[jointindexswitch] || entry >= jointindexhigh[jointindexswitch]) { jointindexswitch++; // Loop Around if (jointindexswitch >= jointindexlow.size()) { jointindexswitch = 0; } } return jointindexscale[jointindexswitch]; };