diff --git a/src/LauIsobarDynamics.cc b/src/LauIsobarDynamics.cc index 78a5810..7456e03 100644 --- a/src/LauIsobarDynamics.cc +++ b/src/LauIsobarDynamics.cc @@ -1,2681 +1,2683 @@ /* Copyright 2005 University of Warwick Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ /* Laura++ package authors: John Back Paul Harrison Thomas Latham */ /*! \file LauIsobarDynamics.cc \brief File containing implementation of LauIsobarDynamics class. */ #include #include #include #include #include #include "TFile.h" #include "TRandom.h" #include "TSystem.h" #include "LauAbsEffModel.hh" #include "LauAbsResonance.hh" #include "LauAbsIncohRes.hh" #include "LauBelleNR.hh" #include "LauBelleSymNR.hh" #include "LauCacheData.hh" #include "LauConstants.hh" #include "LauDaughters.hh" #include "LauDPPartialIntegralInfo.hh" #include "LauFitDataTree.hh" #include "LauIsobarDynamics.hh" #include "LauKinematics.hh" #include "LauKMatrixProdPole.hh" #include "LauKMatrixProdSVP.hh" #include "LauKMatrixPropagator.hh" #include "LauKMatrixPropFactory.hh" #include "LauNRAmplitude.hh" #include "LauPrint.hh" #include "LauRandom.hh" #include "LauResonanceInfo.hh" #include "LauResonanceMaker.hh" #include "LauRhoOmegaMix.hh" ClassImp(LauIsobarDynamics) // for Kpipi: only one scfFraction 2D histogram is needed LauIsobarDynamics::LauIsobarDynamics(LauDaughters* daughters, LauAbsEffModel* effModel, LauAbsEffModel* scfFractionModel) : daughters_(daughters), kinematics_(daughters_ ? daughters_->getKinematics() : 0), effModel_(effModel), nAmp_(0), nIncohAmp_(0), DPNorm_(0.0), DPRate_("DPRate", 0.0, 0.0, 1000.0), meanDPEff_("meanDPEff", 0.0, 0.0, 1.0), currentEvent_(0), symmetricalDP_(kFALSE), fullySymmetricDP_(kFALSE), flavConjDP_(kFALSE), integralsDone_(kFALSE), normalizationSchemeDone_(kFALSE), forceSymmetriseIntegration_(kFALSE), intFileName_("integ.dat"), m13BinWidth_(0.005), m23BinWidth_(0.005), mPrimeBinWidth_(0.001), thPrimeBinWidth_(0.001), narrowWidth_(0.020), binningFactor_(100.0), m13Sq_(0.0), m23Sq_(0.0), mPrime_(0.0), thPrime_(0.0), tagCat_(-1), eff_(1.0), scfFraction_(0.0), jacobian_(0.0), ASq_(0.0), evtLike_(0.0), iterationsMax_(100000), nSigGenLoop_(0), aSqMaxSet_(1.25), aSqMaxVar_(0.0), flipHelicity_(kTRUE), - recalcNormalisation_(kFALSE) + recalcNormalisation_(kFALSE), + calculateRhoOmegaFitFractions_(kFALSE) { if (daughters != 0) { symmetricalDP_ = daughters->gotSymmetricalDP(); fullySymmetricDP_ = daughters->gotFullySymmetricDP(); flavConjDP_ = daughters->gotFlavourConjugateDP(); typDaug_.push_back(daughters->getTypeDaug1()); typDaug_.push_back(daughters->getTypeDaug2()); typDaug_.push_back(daughters->getTypeDaug3()); } if (scfFractionModel != 0) { scfFractionModel_[0] = scfFractionModel; } sigResonances_.clear(); sigIncohResonances_.clear(); kMatrixPropagators_.clear(); kMatrixPropSet_.clear(); extraParameters_.clear(); } // for Kspipi, we need a scfFraction 2D histogram for each tagging category. They are provided by the map. // Also, we need to know the place that the tagging category of the current event occupies in the data structure inputFitTree LauIsobarDynamics::LauIsobarDynamics(LauDaughters* daughters, LauAbsEffModel* effModel, LauTagCatScfFractionModelMap scfFractionModel) : daughters_(daughters), kinematics_(daughters_ ? daughters_->getKinematics() : 0), effModel_(effModel), scfFractionModel_(scfFractionModel), nAmp_(0), nIncohAmp_(0), DPNorm_(0.0), DPRate_("DPRate", 0.0, 0.0, 1000.0), meanDPEff_("meanDPEff", 0.0, 0.0, 1.0), currentEvent_(0), symmetricalDP_(kFALSE), fullySymmetricDP_(kFALSE), flavConjDP_(kFALSE), integralsDone_(kFALSE), normalizationSchemeDone_(kFALSE), forceSymmetriseIntegration_(kFALSE), intFileName_("integ.dat"), m13BinWidth_(0.005), m23BinWidth_(0.005), mPrimeBinWidth_(0.001), thPrimeBinWidth_(0.001), narrowWidth_(0.020), binningFactor_(100.0), m13Sq_(0.0), m23Sq_(0.0), mPrime_(0.0), thPrime_(0.0), tagCat_(-1), eff_(1.0), scfFraction_(0.0), jacobian_(0.0), ASq_(0.0), evtLike_(0.0), iterationsMax_(100000), nSigGenLoop_(0), aSqMaxSet_(1.25), aSqMaxVar_(0.0), flipHelicity_(kTRUE), - recalcNormalisation_(kFALSE) + recalcNormalisation_(kFALSE), + calculateRhoOmegaFitFractions_(kFALSE) { // Constructor for the isobar signal model if (daughters != 0) { symmetricalDP_ = daughters->gotSymmetricalDP(); fullySymmetricDP_ = daughters->gotFullySymmetricDP(); flavConjDP_ = daughters->gotFlavourConjugateDP(); typDaug_.push_back(daughters->getTypeDaug1()); typDaug_.push_back(daughters->getTypeDaug2()); typDaug_.push_back(daughters->getTypeDaug3()); } sigResonances_.clear(); sigIncohResonances_.clear(); kMatrixPropagators_.clear(); kMatrixPropSet_.clear(); extraParameters_.clear(); } LauIsobarDynamics::~LauIsobarDynamics() { extraParameters_.clear(); for ( std::vector::iterator iter = data_.begin(); iter != data_.end(); ++iter ) { delete (*iter); } data_.clear(); for (std::vector::iterator it = dpPartialIntegralInfo_.begin(); it != dpPartialIntegralInfo_.end(); ++it) { delete (*it); } dpPartialIntegralInfo_.clear(); } void LauIsobarDynamics::resetNormVectors() { for (UInt_t i = 0; i < nAmp_; i++) { fSqSum_[i] = 0.0; fSqEffSum_[i] = 0.0; fNorm_[i] = 0.0; ff_[i].zero(); for (UInt_t j = 0; j < nAmp_; j++) { fifjEffSum_[i][j].zero(); fifjSum_[i][j].zero(); } } for (UInt_t i = 0; i < nIncohAmp_; i++) { fSqSum_[i+nAmp_] = 0.0; fSqEffSum_[i+nAmp_] = 0.0; fNorm_[i+nAmp_] = 0.0; incohInten_[i] = 0.0; } } void LauIsobarDynamics::recalculateNormalisation() { if ( recalcNormalisation_ == kFALSE ) { return; } // We need to calculate the normalisation constants for the // Dalitz plot generation/fitting. integralsDone_ = kFALSE; this->resetNormVectors(); this->findIntegralsToBeRecalculated(); this->calcDPNormalisation(); integralsDone_ = kTRUE; } void LauIsobarDynamics::findIntegralsToBeRecalculated() { // Loop through the resonance parameters and see which ones have changed // For those that have changed mark the corresponding resonance(s) as needing to be re-evaluated integralsToBeCalculated_.clear(); const UInt_t nResPars = resonancePars_.size(); for ( UInt_t iPar(0); iPar < nResPars; ++iPar ) { const Double_t newValue = resonancePars_[iPar]->value(); if ( newValue != resonanceParValues_[iPar] ) { resonanceParValues_[iPar] = newValue; const std::vector& indices = resonanceParResIndex_[iPar]; std::vector::const_iterator indexIter = indices.begin(); const std::vector::const_iterator indexEnd = indices.end(); for( ; indexIter != indexEnd; ++indexIter) { integralsToBeCalculated_.insert(*indexIter); } } } } void LauIsobarDynamics::collateResonanceParameters() { // Initialise all resonance models resonancePars_.clear(); resonanceParValues_.clear(); resonanceParResIndex_.clear(); std::set uniqueResPars; UInt_t resIndex(0); for ( std::vector::iterator resIter = sigResonances_.begin(); resIter != sigResonances_.end(); ++resIter ) { (*resIter)->initialise(); // Check if this resonance has floating parameters // Append all unique parameters to our list const std::vector& resPars = (*resIter)->getFloatingParameters(); for ( std::vector::const_iterator parIter = resPars.begin(); parIter != resPars.end(); ++parIter ) { if ( uniqueResPars.insert( *parIter ).second ) { // This parameter has not already been added to // the list of unique ones. Add it, its value // and its associated resonance ID to the // appropriate lists. resonancePars_.push_back( *parIter ); resonanceParValues_.push_back( (*parIter)->value() ); std::vector resIndices( 1, resIndex ); resonanceParResIndex_.push_back( resIndices ); } else { // This parameter has already been added to the // list of unique ones. However, we still need // to indicate that this resonance should be // associated with it. std::vector::const_iterator uniqueParIter = resonancePars_.begin(); std::vector >::iterator indicesIter = resonanceParResIndex_.begin(); while( (*uniqueParIter) != (*parIter) ) { ++uniqueParIter; ++indicesIter; } ( *indicesIter ).push_back( resIndex ); } } ++resIndex; } for ( std::vector::iterator resIter = sigIncohResonances_.begin(); resIter != sigIncohResonances_.end(); ++resIter ) { (*resIter)->initialise(); // Check if this resonance has floating parameters // Append all unique parameters to our list const std::vector& resPars = (*resIter)->getFloatingParameters(); for ( std::vector::const_iterator parIter = resPars.begin(); parIter != resPars.end(); ++parIter ) { if ( uniqueResPars.insert( *parIter ).second ) { // This parameter has not already been added to // the list of unique ones. Add it, its value // and its associated resonance ID to the // appropriate lists. resonancePars_.push_back( *parIter ); resonanceParValues_.push_back( (*parIter)->value() ); std::vector resIndices( 1, resIndex ); resonanceParResIndex_.push_back( resIndices ); } else { // This parameter has already been added to the // list of unique ones. However, we still need // to indicate that this resonance should be // associated with it. std::vector::const_iterator uniqueParIter = resonancePars_.begin(); std::vector >::iterator indicesIter = resonanceParResIndex_.begin(); while( (*uniqueParIter) != (*parIter) ) { ++uniqueParIter; ++indicesIter; } ( *indicesIter ).push_back( resIndex ); } } ++resIndex; } } void LauIsobarDynamics::initialise(const std::vector& coeffs) { // Check whether we have a valid set of integration constants for // the normalisation of the signal likelihood function. this->initialiseVectors(); // Mark the DP integrals as undetermined integralsDone_ = kFALSE; this->collateResonanceParameters(); if ( resonancePars_.empty() ) { recalcNormalisation_ = kFALSE; } else { recalcNormalisation_ = kTRUE; } // Print summary of what we have so far to screen this->initSummary(); if ( nAmp_+nIncohAmp_ == 0 ) { std::cout << "INFO in LauIsobarDynamics::initialise : No contributions to DP model, not performing normalisation integrals." << std::endl; } else { // We need to calculate the normalisation constants for the Dalitz plot generation/fitting. std::cout<<"INFO in LauIsobarDynamics::initialise : Starting special run to generate the integrals for normalising the PDF..."<calcDPNormalisation(); // Write the integrals to a file (mainly for debugging purposes) this->writeIntegralsFile(); } integralsDone_ = kTRUE; std::cout << std::setprecision(10); std::cout<<"INFO in LauIsobarDynamics::initialise : Summary of the integrals:"<getResonanceModel(); getChar << resModelInt << " "; } getChar << std::endl; // Write out the track pairings for each resonance. This is specified // by the resPairAmpInt integer in the addResonance function. for (i = 0; i < nAmp_; i++) { getChar << resPairAmp_[i] << " "; } getChar << std::endl; // Write out the fSqSum = |ff|^2, where ff = resAmp() for (i = 0; i < nAmp_; i++) { getChar << fSqSum_[i] << " "; } getChar << std::endl; // Similar to fSqSum, but with the efficiency term included. for (i = 0; i < nAmp_; i++) { getChar << fSqEffSum_[i] << " "; } getChar << std::endl; // Write out the f_i*f_j_conj*eff values = resAmp_i*resAmp_j_conj*eff. // Note that only the top half of the i*j "matrix" is required, as it // is symmetric w.r.t i, j. for (i = 0; i < nAmp_; i++) { for (j = i; j < nAmp_; j++) { getChar << fifjEffSum_[i][j] << " "; } } getChar << std::endl; // Similar to fifjEffSum, but without the efficiency term included. for (i = 0; i < nAmp_; i++) { for (j = i; j < nAmp_; j++) { getChar << fifjSum_[i][j] << " "; } } getChar << std::endl; // Write out number of incoherent resonances in the Dalitz plot model getChar << nIncohAmp_ << std::endl; // Write out the incoherent resonances for (i = 0; i < nIncohAmp_; i++) { getChar << incohResTypAmp_[i] << " "; } getChar << std::endl; // Write out the incoherent resonance model types (BW, RelBW etc...) for (i = 0; i < nIncohAmp_; i++) { LauAbsResonance* theResonance = sigIncohResonances_[i]; Int_t resModelInt = theResonance->getResonanceModel(); getChar << resModelInt << " "; } getChar << std::endl; // Write out the track pairings for each incoherent resonance. This is specified // by the resPairAmpInt integer in the addIncohResonance function. for (i = 0; i < nIncohAmp_; i++) { getChar << incohResPairAmp_[i] << " "; } getChar << std::endl; // Write out the fSqSum = |ff|^2, where |ff|^2 = incohResAmp() for (i = nAmp_; i < nAmp_+nIncohAmp_; i++) { getChar << fSqSum_[i] << " "; } getChar << std::endl; // Similar to fSqSum, but with the efficiency term included. for (i = nAmp_; i < nAmp_+nIncohAmp_; i++) { getChar << fSqEffSum_[i] << " "; } getChar << std::endl; } LauAbsResonance* LauIsobarDynamics::addResonance(const TString& resName, const Int_t resPairAmpInt, const LauAbsResonance::LauResonanceModel resType, const LauBlattWeisskopfFactor::BlattWeisskopfCategory bwCategory) { // Function to add a resonance in a Dalitz plot. // No check is made w.r.t flavour and charge conservation rules, and so // the user is responsible for checking the internal consistency of // their function statements with these laws. For example, the program // will not prevent the user from asking for a rho resonance in a K-pi // pair or a K* resonance in a pi-pi pair. // However, to assist the user, a summary of the resonant structure requested // by the user is printed before the program runs. It is important to check this // information when you first define your Dalitz plot model before doing // any fitting/generating. // Arguments are: resonance name, integer to specify the resonance track pairing // (1 => m_23, 2 => m_13, 3 => m_12), i.e. the bachelor track number. // The third argument resType specifies whether the resonance is a Breit-Wigner (BW) // Relativistic Breit-Wigner (RelBW) or Flatte distribution (Flatte), for example. if( LauAbsResonance::isIncoherentModel(resType) == true ) { std::cerr<<"ERROR in LauIsobarDynamics::addResonance : Resonance type \""<getCharge(resPairAmpInt) == 0 && daughters_->getChargeParent() == 0 && daughters_->getTypeParent() > 0 ) { if ( ( resPairAmpInt == 1 && TMath::Abs(daughters_->getTypeDaug2()) == TMath::Abs(daughters_->getTypeDaug3()) ) || ( resPairAmpInt == 2 && TMath::Abs(daughters_->getTypeDaug1()) == TMath::Abs(daughters_->getTypeDaug3()) ) || ( resPairAmpInt == 3 && TMath::Abs(daughters_->getTypeDaug1()) == TMath::Abs(daughters_->getTypeDaug2()) ) ) { theResonance->flipHelicity(kTRUE); } } // Set the resonance name and what track is the bachelor TString resonanceName = theResonance->getResonanceName(); resTypAmp_.push_back(resonanceName); // Always force the non-resonant amplitude pair to have resPairAmp = 0 // in case the user chooses the wrong number. if ( resType == LauAbsResonance::FlatNR || resType == LauAbsResonance::NRModel ) { std::cout<<"INFO in LauIsobarDynamics::addResonance : Setting resPairAmp to 0 for "<( resonanceMaker.getResonance(daughters_, resName, resPairAmpInt, resType) ); if (theResonance == 0) { std::cerr<<"ERROR in LauIsobarDynamics::addIncohResonance : Couldn't create the resonance \""<getResonanceName(); incohResTypAmp_.push_back(resonanceName); incohResPairAmp_.push_back(resPairAmpInt); // Increment the number of resonance amplitudes we have so far ++nIncohAmp_; // Finally, add the resonance object to the internal array sigIncohResonances_.push_back(theResonance); std::cout<<"INFO in LauIsobarDynamics::addIncohResonance : Successfully added incoherent resonance. Total number of incoherent resonances so far = "< nChannels) { std::cerr << "ERROR in LauIsobarDynamics::defineKMatrixPropagator. The rowIndex, which is set to " << rowIndex << ", must be between 1 and the number of channels " << nChannels << std::endl; gSystem->Exit(EXIT_FAILURE); } TString propagatorName(propName), parameterFile(paramFileName); LauKMatrixPropagator* thePropagator = LauKMatrixPropFactory::getInstance()->getPropagator(propagatorName, parameterFile, resPairAmpInt, nChannels, nPoles, rowIndex); kMatrixPropagators_[propagatorName] = thePropagator; } void LauIsobarDynamics::addKMatrixProdPole(const TString& poleName, const TString& propName, Int_t poleIndex, Bool_t useProdAdler) { // Add a K-matrix production pole term, using the K-matrix propagator given by the propName. // Here, poleIndex is the integer specifying the pole number. // First, find the K-matrix propagator. KMPropMap::iterator mapIter = kMatrixPropagators_.find(propName); if (mapIter != kMatrixPropagators_.end()) { LauKMatrixPropagator* thePropagator = mapIter->second; // Make sure the pole index is valid Int_t nPoles = thePropagator->getNPoles(); if (poleIndex < 1 || poleIndex > nPoles) { std::cerr<<"ERROR in LauIsobarDynamics::addKMatrixProdPole : The pole index "<getResPairAmpInt(); LauAbsResonance* prodPole = new LauKMatrixProdPole(poleName, poleIndex, resPairAmpInt, thePropagator, daughters_, useProdAdler); resTypAmp_.push_back(poleName); resPairAmp_.push_back(resPairAmpInt); ++nAmp_; sigResonances_.push_back(prodPole); // Also store the propName-poleName pair for calculating total fit fractions later on // (avoiding the need to use dynamic casts to check which resonances are of the K-matrix type) kMatrixPropSet_[poleName] = propName; std::cout<<"INFO in LauIsobarDynamics::addKMatrixProdPole : Successfully added K-matrix production pole term. Total number of resonances so far = "<second; // Make sure the channel index is valid Int_t nChannels = thePropagator->getNChannels(); if (channelIndex < 1 || channelIndex > nChannels) { std::cerr<<"ERROR in LauIsobarDynamics::addKMatrixProdSVP : The channel index "<getResPairAmpInt(); LauAbsResonance* prodSVP = new LauKMatrixProdSVP(SVPName, channelIndex, resPairAmpInt, thePropagator, daughters_, useProdAdler); resTypAmp_.push_back(SVPName); resPairAmp_.push_back(resPairAmpInt); ++nAmp_; sigResonances_.push_back(prodSVP); // Also store the SVPName-propName pair for calculating total fit fractions later on // (avoiding the need to use dynamic casts to check which resonances are of the K-matrix type) kMatrixPropSet_[SVPName] = propName; std::cout<<"INFO in LauIsobarDynamics::addKMatrixProdSVP : Successfully added K-matrix production slowly-varying (SVP) term. Total number of resonances so far = "<::const_iterator iter=sigResonances_.begin(); iter!=sigResonances_.end(); ++iter) { theResonance = (*iter); if (theResonance != 0) { const TString& resString = theResonance->getResonanceName(); if (resString == resName) { return index; } } ++index; } for (std::vector::const_iterator iter=sigIncohResonances_.begin(); iter!=sigIncohResonances_.end(); ++iter) { theResonance = (*iter); if (theResonance != 0) { const TString& resString = theResonance->getResonanceName(); if (resString == resName) { return index; } } ++index; } return -1; } Bool_t LauIsobarDynamics::hasResonance(const TString& resName) const { const Int_t index = this->resonanceIndex(resName); if (index < 0) { return kFALSE; } else { return kTRUE; } } const LauAbsResonance* LauIsobarDynamics::getResonance(const UInt_t resIndex) const { if ( resIndex < this->getnCohAmp() ) { return sigResonances_[resIndex]; } else if ( resIndex < this->getnTotAmp() ) { return sigIncohResonances_[ resIndex - nAmp_ ]; } else { std::cerr<<"ERROR in LauIsobarDynamics::getResonance : Couldn't find resonance with index \""<getnCohAmp() ) { return sigResonances_[resIndex]; } else if ( resIndex < this->getnTotAmp() ) { return sigIncohResonances_[ resIndex - nAmp_ ]; } else { std::cerr<<"ERROR in LauIsobarDynamics::getResonance : Couldn't find resonance with index \""<resonanceIndex( resName ); if ( index < 0 ) { std::cerr<<"ERROR in LauIsobarDynamics::findResonance : Couldn't find resonance with name \""<getResonance( index ); } } const LauAbsResonance* LauIsobarDynamics::findResonance(const TString& resName) const { const Int_t index = this->resonanceIndex( resName ); if ( index < 0 ) { std::cerr<<"ERROR in LauIsobarDynamics::findResonance : Couldn't find resonance with name \""<getResonance( index ); } } void LauIsobarDynamics::removeCharge(TString& string) const { Ssiz_t index = string.Index("+"); if (index != -1) { string.Remove(index,1); } index = string.Index("-"); if (index != -1) { string.Remove(index,1); } } void LauIsobarDynamics::calcDPNormalisation() { if (!normalizationSchemeDone_) { this->calcDPNormalisationScheme(); } for (std::vector::iterator it = dpPartialIntegralInfo_.begin(); it != dpPartialIntegralInfo_.end(); ++it) { this->calcDPPartialIntegral( *it ); } for (UInt_t i = 0; i < nAmp_+nIncohAmp_; ++i) { fNorm_[i] = 0.0; if (fSqSum_[i] > 0.0) {fNorm_[i] = TMath::Sqrt(1.0/(fSqSum_[i]));} } } std::vector< std::pair > LauIsobarDynamics::formGapsFromRegions( const std::vector< std::pair >& regions, const Double_t min, const Double_t max ) const { std::vector< std::pair > gaps(regions.size() + 1, std::make_pair(0., 0.)); // Given some narrow resonance regions, find the regions that correspond to the gaps between them gaps[0].first = min; for (UInt_t i = 0; i < regions.size(); ++i) { gaps[i].second = regions[i].first; gaps[i + 1].first = regions[i].second; } gaps[gaps.size() - 1].second = max; return gaps; } void LauIsobarDynamics::cullNullRegions( std::vector& regions ) const { LauDPPartialIntegralInfo* tmp(0); regions.erase( std::remove(regions.begin(), regions.end(), tmp), regions.end() ); } void LauIsobarDynamics::correctDPOverlap( std::vector< std::pair >& regions, const std::vector& binnings ) const { if (regions.empty()) { return; } // If the regions overlap, ensure that the one with the finest binning takes precedence (i.e., extends its full width) for (UInt_t i = 0; i < regions.size() - 1; ++i) { if ( regions[i + 1].first <= regions[i].second ) { if ((binnings[i] < binnings[i + 1])) { regions[i + 1] = std::make_pair(regions[i].second, regions[i + 1].second); } else { regions[i] = std::make_pair(regions[i].first, regions[i + 1].first); } } } } std::vector LauIsobarDynamics::m13IntegrationRegions( const std::vector< std::pair >& m13Regions, const std::vector< std::pair >& m23Regions, const std::vector& m13Binnings, const Double_t precision, const Double_t defaultBinning ) const { // Create integration regions for all narrow resonances in m13 except for the overlaps with narrow resonances in m23 std::vector integrationRegions; const Double_t m23Min = kinematics_->getm23Min(); const Double_t m23Max = kinematics_->getm23Max(); // Loop over narrow resonances in m13 for (UInt_t m13i = 0; m13i < m13Regions.size(); ++m13i) { const Double_t m13Binning = m13Binnings[m13i]; const Double_t resMin13 = m13Regions[m13i].first; const Double_t resMax13 = m13Regions[m13i].second; // Initialise to the full height of the DP in case there are no narrow resonances in m23 Double_t lastResMax23 = m23Min; // Loop over narrow resonances in m23 for (UInt_t m23i = 0; m23i < m23Regions.size(); m23i++) { const Double_t resMin23 = m23Regions[m23i].first; const Double_t resMax23 = m23Regions[m23i].second; // For the first entry, add the area between m23 threshold and this first entry if (m23i == 0) { integrationRegions.push_back(this->newDPIntegrationRegion(resMin13, resMax13, m23Min, resMin23, m13Binning, defaultBinning, precision, nAmp_, nIncohAmp_)); } // For all entries except the last one, add the area between this and the next entry if (m23i != (m23Regions.size() - 1)) { const Double_t nextResMin23 = m23Regions[m23i + 1].first; integrationRegions.push_back(this->newDPIntegrationRegion(resMin13, resMax13, resMax23, nextResMin23, m13Binning, defaultBinning, precision, nAmp_, nIncohAmp_)); } else { lastResMax23 = resMax23; } } // Add the area between the last entry and the maximum m23 (which could be the whole strip if there are no entries in m23Regions) integrationRegions.push_back(this->newDPIntegrationRegion(resMin13, resMax13, lastResMax23, m23Max, m13Binning, defaultBinning, precision, nAmp_, nIncohAmp_)); } return integrationRegions; } std::vector LauIsobarDynamics::m23IntegrationRegions( const std::vector >& m13Regions, const std::vector >& m23Regions, const std::vector& m13Binnings, const std::vector& m23Binnings, const Double_t precision, const Double_t defaultBinning ) const { // Create integration regions for all narrow resonances in m23 (including the overlap regions with m13 narrow resonances) std::vector integrationRegions; const Double_t m13Min = kinematics_->getm13Min(); const Double_t m13Max = kinematics_->getm13Max(); // Loop over narrow resonances in m23 for (UInt_t m23i = 0; m23i < m23Regions.size(); m23i++) { const Double_t m23Binning = m23Binnings[m23i]; const Double_t resMin23 = m23Regions[m23i].first; const Double_t resMax23 = m23Regions[m23i].second; // Initialise to the full width of the DP in case there are no narrow resonances in m13 Double_t lastResMax13 = m13Min; // Loop over narrow resonances in m13 for (UInt_t m13i = 0; m13i < m13Regions.size(); m13i++){ const Double_t m13Binning = m13Binnings[m23i]; const Double_t resMin13 = m13Regions[m13i].first; const Double_t resMax13 = m13Regions[m13i].second; // Overlap region (only needed in m23) integrationRegions.push_back(this->newDPIntegrationRegion(resMin13, resMax13, resMin23, resMax23, m13Binning, m23Binning, precision, nAmp_, nIncohAmp_)); // For the first entry, add the area between m13 threshold and this first entry if (m13i == 0) { integrationRegions.push_back(this->newDPIntegrationRegion(m13Min, resMin13, resMin23, resMax23, defaultBinning, m23Binning, precision, nAmp_, nIncohAmp_)); } // For all entries except the last one, add the area between this and the next entry if (m13i != m13Regions.size() - 1) { const Double_t nextResMin13 = m23Regions[m13i + 1].first; integrationRegions.push_back(this->newDPIntegrationRegion(resMax13, nextResMin13, resMin23, resMax23, defaultBinning, m23Binning, precision, nAmp_, nIncohAmp_)); } else { lastResMax13 = resMax13; } } // Add the area between the last entry and the maximum m13 (which could be the whole strip if there are no entries in m13Regions) integrationRegions.push_back(this->newDPIntegrationRegion(lastResMax13, m13Max, resMin23, resMax23, defaultBinning, m23Binning, precision, nAmp_, nIncohAmp_)); } return integrationRegions; } LauDPPartialIntegralInfo* LauIsobarDynamics::newDPIntegrationRegion( const Double_t minm13, const Double_t maxm13, const Double_t minm23, const Double_t maxm23, const Double_t m13BinWidth, const Double_t m23BinWidth, const Double_t precision, const UInt_t nAmp, const UInt_t nIncohAmp ) const { const UInt_t nm13Points = static_cast((maxm13-minm13)/m13BinWidth); const UInt_t nm23Points = static_cast((maxm23-minm23)/m23BinWidth); // If we would create a region with no interior points, just return a null pointer if (nm13Points == 0 || nm23Points == 0) { return 0; } return new LauDPPartialIntegralInfo(minm13, maxm13, minm23, maxm23, m13BinWidth, m23BinWidth, precision, nAmp, nIncohAmp); } void LauIsobarDynamics::calcDPNormalisationScheme() { if ( ! dpPartialIntegralInfo_.empty() ) { std::cerr << "ERROR in LauIsobarDynamics::calcDPNormalisationScheme : Scheme already stored!" << std::endl; return; } // The precision for the Gauss-Legendre weights const Double_t precision(1e-6); // Get the rectangle that encloses the DP const Double_t minm13 = kinematics_->getm13Min(); const Double_t maxm13 = kinematics_->getm13Max(); const Double_t minm23 = kinematics_->getm23Min(); const Double_t maxm23 = kinematics_->getm23Max(); const Double_t minm12 = kinematics_->getm12Min(); const Double_t maxm12 = kinematics_->getm12Max(); // Find out whether we have narrow resonances in the DP (defined here as width < 20 MeV). std::vector< std::pair > m13NarrowRes; std::vector< std::pair > m23NarrowRes; std::vector< std::pair > m12NarrowRes; // Rho-omega mixing models implicitly contains omega(782) model, but width is of rho(770) - handle as a special case LauResonanceMaker& resonanceMaker = LauResonanceMaker::get(); LauResonanceInfo* omega_info = resonanceMaker.getResInfo("omega(782)"); const Double_t omegaMass = (omega_info!=0) ? omega_info->getMass()->unblindValue() : 0.78265; const Double_t omegaWidth = (omega_info!=0) ? omega_info->getWidth()->unblindValue() : 0.00849; for ( std::vector::const_iterator iter = sigResonances_.begin(); iter != sigResonances_.end(); ++iter ) { LauAbsResonance::LauResonanceModel model = (*iter)->getResonanceModel(); const TString& name = (*iter)->getResonanceName(); Int_t pair = (*iter)->getPairInt(); Double_t mass = (*iter)->getMass(); Double_t width = (*iter)->getWidth(); if ( model == LauAbsResonance::RhoOmegaMix_GS || model == LauAbsResonance::RhoOmegaMix_GS_1 || model == LauAbsResonance::RhoOmegaMix_RBW || model == LauAbsResonance::RhoOmegaMix_RBW_1 ) { mass = omegaMass; width = omegaWidth; } if ( width > narrowWidth_ || width == 0.0 ) { continue; } std::cout << "INFO in LauIsobarDynamics::calcDPNormalisationScheme : Found narrow resonance: " << name << ", mass = " << mass << ", width = " << width << ", pair int = " << pair << std::endl; if ( pair == 1 ) { if ( mass < minm23 || mass > maxm23 ){ std::cout << std::string(53, ' ') << ": But its pole is outside the kinematically allowed range, so will not consider it narrow for the purposes of integration" << std::endl; } else { m23NarrowRes.push_back( std::make_pair(mass,width) ); if ( fullySymmetricDP_ ) { m13NarrowRes.push_back( std::make_pair(mass,width) ); m12NarrowRes.push_back( std::make_pair(mass,width) ); } else if ( symmetricalDP_ || ( flavConjDP_ && forceSymmetriseIntegration_ ) ) { m13NarrowRes.push_back( std::make_pair(mass,width) ); } } } else if ( pair == 2 ) { if ( mass < minm13 || mass > maxm13 ){ std::cout << std::string(53, ' ') << ": But its pole is outside the kinematically allowed range, so will not consider it narrow for the purposes of integration" << std::endl; } else { m13NarrowRes.push_back( std::make_pair(mass,width) ); if ( fullySymmetricDP_ ) { m23NarrowRes.push_back( std::make_pair(mass,width) ); m12NarrowRes.push_back( std::make_pair(mass,width) ); } else if ( symmetricalDP_ || ( flavConjDP_ && forceSymmetriseIntegration_ ) ) { m23NarrowRes.push_back( std::make_pair(mass,width) ); } } } else if ( pair == 3 ) { if ( mass < minm12 || mass > maxm12 ){ std::cout << std::string(53, ' ') << ": But its pole is outside the kinematically allowed range, so will not consider it narrow for the purposes of integration" << std::endl; } else { m12NarrowRes.push_back( std::make_pair(mass,width) ); if ( fullySymmetricDP_ ) { m13NarrowRes.push_back( std::make_pair(mass,width) ); m12NarrowRes.push_back( std::make_pair(mass,width) ); } } } else { std::cerr << "WARNING in LauIsobarDynamics::calcDPNormalisationScheme : strange pair integer, " << pair << ", for resonance \"" << (*iter)->getResonanceName() << std::endl; } } for ( std::vector::const_iterator iter = sigIncohResonances_.begin(); iter != sigIncohResonances_.end(); ++iter ) { const TString& name = (*iter)->getResonanceName(); Int_t pair = (*iter)->getPairInt(); Double_t mass = (*iter)->getMass(); Double_t width = (*iter)->getWidth(); if ( width > narrowWidth_ || width == 0.0 ) { continue; } std::cout<<"INFO in LauIsobarDynamics::calcDPNormalisationScheme : Found narrow resonance: " << name << ", mass = " << mass << ", width = " << width << ", pair int = " << pair << std::endl; if ( pair == 1 ) { if ( mass < minm23 || mass > maxm23 ){ std::cout << std::string(53, ' ') << ": But its pole is outside the kinematically allowed range, so will not consider it narrow for the purposes of integration" << std::endl; } else { m23NarrowRes.push_back( std::make_pair(mass,width) ); if ( fullySymmetricDP_ ) { m13NarrowRes.push_back( std::make_pair(mass,width) ); m12NarrowRes.push_back( std::make_pair(mass,width) ); } else if ( symmetricalDP_ || ( flavConjDP_ && forceSymmetriseIntegration_ ) ) { m13NarrowRes.push_back( std::make_pair(mass,width) ); } } } else if ( pair == 2 ) { if ( mass < minm13 || mass > maxm13 ){ std::cout << std::string(53, ' ') << ": But its pole is outside the kinematically allowed range, so will not consider it narrow for the purposes of integration" << std::endl; } else { m13NarrowRes.push_back( std::make_pair(mass,width) ); if ( fullySymmetricDP_ ) { m23NarrowRes.push_back( std::make_pair(mass,width) ); m12NarrowRes.push_back( std::make_pair(mass,width) ); } else if ( symmetricalDP_ || ( flavConjDP_ && forceSymmetriseIntegration_ ) ) { m23NarrowRes.push_back( std::make_pair(mass,width) ); } } } else if ( pair == 3 ) { if ( mass < minm12 || mass > maxm12 ){ std::cout << std::string(53, ' ') << ": But its pole is outside the kinematically allowed range, so will not consider it narrow for the purposes of integration" << std::endl; } else { m12NarrowRes.push_back( std::make_pair(mass,width) ); if ( fullySymmetricDP_ ) { m13NarrowRes.push_back( std::make_pair(mass,width) ); m12NarrowRes.push_back( std::make_pair(mass,width) ); } } } else { std::cerr << "WARNING in LauIsobarDynamics::calcDPNormalisationScheme : strange pair integer, " << pair << ", for resonance \"" << (*iter)->getResonanceName() << std::endl; } } // Depending on how many narrow resonances we have and where they are // we adopt different approaches if ( ! m12NarrowRes.empty() ) { // We have at least one narrow resonance in m12 // Switch to using the square DP for the integration // TODO - for the time being just use a single, reasonably fine by default and tunable, grid // - can later consider whether there's a need to split up the mPrime axis into regions around particularly narrow resonances in m12 // - but it seems that this isn't really needed since even the default tune gives a good resolution for most narrow resonances such as phi / chi_c0 std::cout<<"INFO in LauIsobarDynamics::calcDPNormalisationScheme : One or more narrow resonances found in m12, integrating over whole square Dalitz plot with bin widths of "<squareDP() ) { std::cerr << "WARNING in LauIsobarDynamics::calcDPNormalisationScheme : forcing kinematics to calculate the required square DP co-ordinates" << std::endl; kinematics_->squareDP(kTRUE); } dpPartialIntegralInfo_.push_back(new LauDPPartialIntegralInfo(0.0, 1.0, 0.0, 1.0, mPrimeBinWidth_, thPrimeBinWidth_, precision, nAmp_, nIncohAmp_, kTRUE, kinematics_)); } else if (m13NarrowRes.empty() && m23NarrowRes.empty()) { // There are no narrow resonances, so we just do a single grid over the whole DP std::cout << "INFO in LauIsobarDynamics::calcDPNormalisationScheme : No narrow resonances found, integrating over whole Dalitz plot..." << std::endl; dpPartialIntegralInfo_.push_back(new LauDPPartialIntegralInfo(minm13, maxm13, minm23, maxm23, m13BinWidth_, m23BinWidth_, precision, nAmp_, nIncohAmp_)); } else { // Get regions in that correspond to narrow resonances in m13 and m23, and correct for overlaps in each dimension (to use the finest binning) // Sort resonances by ascending mass to calculate regions properly std::sort(m13NarrowRes.begin(), m13NarrowRes.end()); std::sort(m23NarrowRes.begin(), m23NarrowRes.end()); // For each narrow resonance in m13, determine the corresponding window and its binning std::vector > m13Regions; std::vector m13Binnings; for ( std::vector >::const_iterator iter = m13NarrowRes.begin(); iter != m13NarrowRes.end(); ++iter ) { Double_t mass = iter->first; Double_t width = iter->second; Double_t regionBegin = mass - 5.0 * width; Double_t regionEnd = mass + 5.0 * width; Double_t binning = width / binningFactor_; // check if we ought to extend the region to the edge of the phase space (in either direction) if ( regionBegin < (minm13+50.0*m13BinWidth_) ) { std::cout << "INFO in LauIsobarDynamics::calcDPNormalisationScheme : Resonance at m13 = " << mass << " is close to threshold, extending integration region" << std::endl; regionBegin = minm13; } if ( regionEnd > (maxm13-50.0*m13BinWidth_) ) { std::cout << "INFO in LauIsobarDynamics::calcDPNormalisationScheme : Resonance at m13 = " << mass << " is close to upper edge of phase space, extending integration region" << std::endl; regionEnd = maxm13; } m13Regions.push_back(std::make_pair(regionBegin, regionEnd)); m13Binnings.push_back(binning); } // For each narrow resonance in m23, determine the corresponding window and its binning std::vector > m23Regions; std::vector m23Binnings; for ( std::vector >::const_iterator iter = m23NarrowRes.begin(); iter != m23NarrowRes.end(); ++iter ) { Double_t mass = iter->first; Double_t width = iter->second; Double_t regionBegin = mass - 5.0 * width; Double_t regionEnd = mass + 5.0 * width; Double_t binning = width / binningFactor_; // check if we ought to extend the region to the edge of the phase space (in either direction) if ( regionBegin < (minm23+50.0*m23BinWidth_) ) { std::cout << "INFO in LauIsobarDynamics::calcDPNormalisationScheme : Resonance at m23 = " << mass << " is close to threshold, extending integration region" << std::endl; regionBegin = minm23; } if ( regionEnd > (maxm23-50.0*m23BinWidth_) ) { std::cout << "INFO in LauIsobarDynamics::calcDPNormalisationScheme : Resonance at m23 = " << mass << " is close to upper edge of phase space, extending integration region" << std::endl; regionEnd = maxm23; } m23Regions.push_back(std::make_pair(regionBegin, regionEnd)); m23Binnings.push_back(binning); } // Sort out overlaps between regions in the same mass pairing this->correctDPOverlap(m13Regions, m13Binnings); this->correctDPOverlap(m23Regions, m23Binnings); // Get the narrow resonance regions plus any overlap region std::vector fineScheme13 = this->m13IntegrationRegions(m13Regions, m23Regions, m13Binnings, precision, m13BinWidth_); std::vector fineScheme23 = this->m23IntegrationRegions(m13Regions, m23Regions, m13Binnings, m23Binnings, precision, m23BinWidth_); // Get coarse regions by calculating the gaps between the // narrow resonances and using the same functions to create // the integration grid object for each std::vector< std::pair > coarseRegions = this->formGapsFromRegions(m13Regions, minm13, maxm13); std::vector coarseBinning( fineScheme13.size()+1, m13BinWidth_ ); std::vector coarseScheme = this->m13IntegrationRegions(coarseRegions, m23Regions, coarseBinning, precision, m13BinWidth_); dpPartialIntegralInfo_.insert(dpPartialIntegralInfo_.end(), fineScheme13.begin(), fineScheme13.end()); dpPartialIntegralInfo_.insert(dpPartialIntegralInfo_.end(), fineScheme23.begin(), fineScheme23.end()); dpPartialIntegralInfo_.insert(dpPartialIntegralInfo_.end(), coarseScheme.begin(), coarseScheme.end()); // Remove any null pointer entries in the integral list // (that are produced when an integration region with no // interior points is defined) this->cullNullRegions(dpPartialIntegralInfo_); } normalizationSchemeDone_ = kTRUE; } void LauIsobarDynamics::setIntegralBinWidths(const Double_t m13BinWidth, const Double_t m23BinWidth, const Double_t mPrimeBinWidth, const Double_t thPrimeBinWidth) { // Set the bin widths for the m13 vs m23 integration grid m13BinWidth_ = m13BinWidth; m23BinWidth_ = m23BinWidth; // Set the bin widths for the m' vs theta' integration grid mPrimeBinWidth_ = mPrimeBinWidth; thPrimeBinWidth_ = thPrimeBinWidth; } void LauIsobarDynamics::calcDPPartialIntegral(LauDPPartialIntegralInfo* intInfo) { // Calculate the integrals for all parts of the amplitude in the given region of the DP const Bool_t squareDP = intInfo->getSquareDP(); const UInt_t nm13Points = intInfo->getnm13Points(); const UInt_t nm23Points = intInfo->getnm23Points(); //Double_t dpArea(0.0); for (UInt_t i = 0; i < nm13Points; ++i) { const Double_t m13 = intInfo->getM13Value(i); const Double_t m13Sq = m13*m13; for (UInt_t j = 0; j < nm23Points; ++j) { const Double_t m23 = intInfo->getM23Value(j); const Double_t m23Sq = m23*m23; const Double_t weight = intInfo->getWeight(i,j); // Calculate the integral contributions for each resonance. // Only points within the DP area contribute. // This also calculates the total DP area as a check. // NB if squareDP is true, m13 and m23 are actually mPrime and thetaPrime Bool_t withinDP = squareDP ? kinematics_->withinSqDPLimits(m13, m23) : kinematics_->withinDPLimits(m13Sq, m23Sq); if (withinDP == kTRUE) { if ( squareDP ) { // NB m13 and m23 are actually mPrime and thetaPrime kinematics_->updateSqDPKinematics(m13, m23); } else { kinematics_->updateKinematics(m13Sq, m23Sq); } this->calculateAmplitudes(intInfo, i, j); this->addGridPointToIntegrals(weight); // Increment total DP area //dpArea += weight; } } // j weights loop } // i weights loop // Print out DP area to check whether we have a sensible output //std::cout<<" : dpArea = "<::const_iterator intEnd = integralsToBeCalculated_.end(); for (UInt_t iAmp = 0; iAmp < nAmp_; ++iAmp) { if ( integralsToBeCalculated_.find(iAmp) != intEnd ) { // Calculate the dynamics for this resonance ff_[iAmp] = this->resAmp(iAmp); // Store the new value in the integration info object intInfo->storeAmplitude( m13Point, m23Point, iAmp, ff_[iAmp] ); } else { // Retrieve the cached value of the amplitude ff_[iAmp] = intInfo->getAmplitude( m13Point, m23Point, iAmp ); } } for (UInt_t iAmp = 0; iAmp < nIncohAmp_; ++iAmp) { if ( integralsToBeCalculated_.find(iAmp+nAmp_) != intEnd ) { // Calculate the dynamics for this resonance incohInten_[iAmp] = this->incohResAmp(iAmp); // Store the new value in the integration info object intInfo->storeIntensity( m13Point, m23Point, iAmp, incohInten_[iAmp] ); } else { // Retrieve the cached value of the amplitude incohInten_[iAmp] = intInfo->getIntensity( m13Point, m23Point, iAmp ); } } // If symmetric, do as above with flipped kinematics and add to amplitude // (No need to retrive the cache if this was done in the first case) if ( symmetricalDP_ == kTRUE ) { kinematics_->flipAndUpdateKinematics(); for (UInt_t iAmp = 0; iAmp < nAmp_; ++iAmp) { if ( (integralsToBeCalculated_.find(iAmp) != intEnd) && !sigResonances_[iAmp]->preSymmetrised() ) { // Calculate the dynamics for this resonance ff_[iAmp] += this->resAmp(iAmp); // Store the new value in the integration info object intInfo->storeAmplitude( m13Point, m23Point, iAmp, ff_[iAmp] ); } } for (UInt_t iAmp = 0; iAmp < nIncohAmp_; ++iAmp) { if ( (integralsToBeCalculated_.find(iAmp+nAmp_) != intEnd) && !sigResonances_[iAmp]->preSymmetrised() ) { // Calculate the dynamics for this resonance incohInten_[iAmp] += this->incohResAmp(iAmp); // Store the new value in the integration info object intInfo->storeIntensity( m13Point, m23Point, iAmp, incohInten_[iAmp] ); } } kinematics_->flipAndUpdateKinematics(); } if (fullySymmetricDP_ == kTRUE) { // rotate and evaluate kinematics_->rotateAndUpdateKinematics(); for (UInt_t iAmp = 0; iAmp < nAmp_; ++iAmp) { if ( (integralsToBeCalculated_.find(iAmp) != intEnd) && !sigResonances_[iAmp]->preSymmetrised() ) { // Calculate the dynamics for this resonance ff_[iAmp] += this->resAmp(iAmp); // Store the new value in the integration info object intInfo->storeAmplitude( m13Point, m23Point, iAmp, ff_[iAmp] ); } } for (UInt_t iAmp = 0; iAmp < nIncohAmp_; ++iAmp) { if ( (integralsToBeCalculated_.find(iAmp+nAmp_) != intEnd) && !sigResonances_[iAmp]->preSymmetrised() ) { // Calculate the dynamics for this resonance incohInten_[iAmp] += this->incohResAmp(iAmp); // Store the new value in the integration info object intInfo->storeIntensity( m13Point, m23Point, iAmp, incohInten_[iAmp] ); } } // rotate and evaluate kinematics_->rotateAndUpdateKinematics(); for (UInt_t iAmp = 0; iAmp < nAmp_; ++iAmp) { if ( (integralsToBeCalculated_.find(iAmp) != intEnd) && !sigResonances_[iAmp]->preSymmetrised() ) { // Calculate the dynamics for this resonance ff_[iAmp] += this->resAmp(iAmp); // Store the new value in the integration info object intInfo->storeAmplitude( m13Point, m23Point, iAmp, ff_[iAmp] ); } } for (UInt_t iAmp = 0; iAmp < nIncohAmp_; ++iAmp) { if ( (integralsToBeCalculated_.find(iAmp+nAmp_) != intEnd) && !sigResonances_[iAmp]->preSymmetrised() ) { // Calculate the dynamics for this resonance incohInten_[iAmp] += this->incohResAmp(iAmp); // Store the new value in the integration info object intInfo->storeIntensity( m13Point, m23Point, iAmp, incohInten_[iAmp] ); } } // rotate, flip and evaluate kinematics_->rotateAndUpdateKinematics(); kinematics_->flipAndUpdateKinematics(); for (UInt_t iAmp = 0; iAmp < nAmp_; ++iAmp) { if ( (integralsToBeCalculated_.find(iAmp) != intEnd) && !sigResonances_[iAmp]->preSymmetrised() ) { // Calculate the dynamics for this resonance ff_[iAmp] += this->resAmp(iAmp); // Store the new value in the integration info object intInfo->storeAmplitude( m13Point, m23Point, iAmp, ff_[iAmp] ); } } for (UInt_t iAmp = 0; iAmp < nIncohAmp_; ++iAmp) { if ( (integralsToBeCalculated_.find(iAmp+nAmp_) != intEnd) && !sigResonances_[iAmp]->preSymmetrised() ) { // Calculate the dynamics for this resonance incohInten_[iAmp] += this->incohResAmp(iAmp); // Store the new value in the integration info object intInfo->storeIntensity( m13Point, m23Point, iAmp, incohInten_[iAmp] ); } } // rotate and evaluate kinematics_->rotateAndUpdateKinematics(); for (UInt_t iAmp = 0; iAmp < nAmp_; ++iAmp) { if ( (integralsToBeCalculated_.find(iAmp) != intEnd) && !sigResonances_[iAmp]->preSymmetrised() ) { // Calculate the dynamics for this resonance ff_[iAmp] += this->resAmp(iAmp); // Store the new value in the integration info object intInfo->storeAmplitude( m13Point, m23Point, iAmp, ff_[iAmp] ); } } for (UInt_t iAmp = 0; iAmp < nIncohAmp_; ++iAmp) { if ( (integralsToBeCalculated_.find(iAmp+nAmp_) != intEnd) && !sigResonances_[iAmp]->preSymmetrised() ) { // Calculate the dynamics for this resonance incohInten_[iAmp] += this->incohResAmp(iAmp); // Store the new value in the integration info object intInfo->storeIntensity( m13Point, m23Point, iAmp, incohInten_[iAmp] ); } } // rotate and evaluate kinematics_->rotateAndUpdateKinematics(); for (UInt_t iAmp = 0; iAmp < nAmp_; ++iAmp) { if ( (integralsToBeCalculated_.find(iAmp) != intEnd) && !sigResonances_[iAmp]->preSymmetrised() ) { // Calculate the dynamics for this resonance ff_[iAmp] += this->resAmp(iAmp); // Store the new value in the integration info object intInfo->storeAmplitude( m13Point, m23Point, iAmp, ff_[iAmp] ); } } for (UInt_t iAmp = 0; iAmp < nIncohAmp_; ++iAmp) { if ( (integralsToBeCalculated_.find(iAmp+nAmp_) != intEnd) && !sigResonances_[iAmp]->preSymmetrised() ) { // Calculate the dynamics for this resonance incohInten_[iAmp] += this->incohResAmp(iAmp); // Store the new value in the integration info object intInfo->storeIntensity( m13Point, m23Point, iAmp, incohInten_[iAmp] ); } } // rotate and flip to get us back to where we started kinematics_->rotateAndUpdateKinematics(); kinematics_->flipAndUpdateKinematics(); } // If we haven't cached the data, then we need to find out the efficiency. eff_ = this->retrieveEfficiency(); intInfo->storeEfficiency( m13Point, m23Point, eff_ ); } void LauIsobarDynamics::calculateAmplitudes() { std::set::const_iterator iter = integralsToBeCalculated_.begin(); const std::set::const_iterator intEnd = integralsToBeCalculated_.end(); for ( iter = integralsToBeCalculated_.begin(); iter != intEnd; ++iter) { // Calculate the dynamics for this resonance if(*iter < nAmp_) { ff_[*iter] = this->resAmp(*iter); } else { incohInten_[*iter-nAmp_] = this->incohResAmp(*iter-nAmp_); } } if ( symmetricalDP_ == kTRUE ) { kinematics_->flipAndUpdateKinematics(); for ( iter = integralsToBeCalculated_.begin(); iter != intEnd; ++iter) { // Calculate the dynamics for this resonance if(*iter < nAmp_ && !sigResonances_[*iter]->preSymmetrised() ) { ff_[*iter] += this->resAmp(*iter); } else if (*iter >= nAmp_ && !sigResonances_[*iter-nAmp_]->preSymmetrised() ){ incohInten_[*iter-nAmp_] += this->incohResAmp(*iter-nAmp_); } } kinematics_->flipAndUpdateKinematics(); } if ( fullySymmetricDP_ == kTRUE ) { // rotate and evaluate kinematics_->rotateAndUpdateKinematics(); for ( iter = integralsToBeCalculated_.begin(); iter != intEnd; ++iter) { if(*iter < nAmp_ && !sigResonances_[*iter]->preSymmetrised() ) { ff_[*iter] += this->resAmp(*iter); } else if (*iter >= nAmp_ && !sigResonances_[*iter-nAmp_]->preSymmetrised() ){ incohInten_[*iter-nAmp_] += this->incohResAmp(*iter-nAmp_); } } // rotate and evaluate kinematics_->rotateAndUpdateKinematics(); for ( iter = integralsToBeCalculated_.begin(); iter != intEnd; ++iter) { if(*iter < nAmp_ && !sigResonances_[*iter]->preSymmetrised() ) { ff_[*iter] += this->resAmp(*iter); } else if (*iter >= nAmp_ && !sigResonances_[*iter-nAmp_]->preSymmetrised() ){ incohInten_[*iter-nAmp_] += this->incohResAmp(*iter-nAmp_); } } // rotate, flip and evaluate kinematics_->rotateAndUpdateKinematics(); kinematics_->flipAndUpdateKinematics(); for ( iter = integralsToBeCalculated_.begin(); iter != intEnd; ++iter) { if(*iter < nAmp_ && !sigResonances_[*iter]->preSymmetrised() ) { ff_[*iter] += this->resAmp(*iter); } else if (*iter >= nAmp_ && !sigResonances_[*iter-nAmp_]->preSymmetrised() ){ incohInten_[*iter-nAmp_] += this->incohResAmp(*iter-nAmp_); } } // rotate and evaluate kinematics_->rotateAndUpdateKinematics(); for ( iter = integralsToBeCalculated_.begin(); iter != intEnd; ++iter) { if(*iter < nAmp_ && !sigResonances_[*iter]->preSymmetrised() ) { ff_[*iter] += this->resAmp(*iter); } else if (*iter >= nAmp_ && !sigResonances_[*iter-nAmp_]->preSymmetrised() ){ incohInten_[*iter-nAmp_] += this->incohResAmp(*iter-nAmp_); } } // rotate and evaluate kinematics_->rotateAndUpdateKinematics(); for ( iter = integralsToBeCalculated_.begin(); iter != intEnd; ++iter) { if(*iter < nAmp_ && !sigResonances_[*iter]->preSymmetrised() ) { ff_[*iter] += this->resAmp(*iter); } else if (*iter >= nAmp_ && !sigResonances_[*iter-nAmp_]->preSymmetrised() ){ incohInten_[*iter-nAmp_] += this->incohResAmp(*iter-nAmp_); } } // rotate and flip to get us back to where we started kinematics_->rotateAndUpdateKinematics(); kinematics_->flipAndUpdateKinematics(); } // If we haven't cached the data, then we need to find out the efficiency. eff_ = this->retrieveEfficiency(); } void LauIsobarDynamics::calcTotalAmp(const Bool_t useEff) { // Reset the total amplitude to zero totAmp_.zero(); // Loop over all signal amplitudes LauComplex ATerm; for (UInt_t i = 0; i < nAmp_; ++i) { // Get the partial complex amplitude - (mag, phase)*(resonance dynamics) ATerm = Amp_[i]*ff_[i]; // Scale this contribution by its relative normalisation w.r.t. the whole dynamics ATerm.rescale(fNorm_[i]); // Add this partial amplitude to the sum totAmp_ += ATerm; } // Loop over amplitudes // |Sum of partial amplitudes|^2 ASq_ = totAmp_.abs2(); for (UInt_t i = 0; i < nIncohAmp_; ++i) { // Get the partial complex amplitude - (mag, phase) ATerm = Amp_[i+nAmp_]; // Scale this contribution by its relative normalisation w.r.t. the whole dynamics ATerm.rescale(fNorm_[i+nAmp_]); // Add this partial amplitude to the sum ASq_ += ATerm.abs2()*incohInten_[i]; } // Apply the efficiency correction for this event. // Multiply the amplitude squared sum by the DP efficiency if ( useEff ) { ASq_ *= eff_; } } void LauIsobarDynamics::addGridPointToIntegrals(const Double_t weight) { // Combine the Gauss-Legendre weight with the efficiency const Double_t effWeight = eff_*weight; LauComplex fifjEffSumTerm; LauComplex fifjSumTerm; // Calculates the half-matrix of amplitude-squared and interference // terms (dynamical part only) // Add the values at this point on the integration grid to the sums // (one weighted only by the integration weights, one also weighted by // the efficiency) for (UInt_t i = 0; i < nAmp_; ++i) { // Add the dynamical amplitude squared for this resonance. Double_t fSqVal = ff_[i].abs2(); fSqSum_[i] += fSqVal*weight; fSqEffSum_[i] += fSqVal*effWeight; for (UInt_t j = i; j < nAmp_; ++j) { fifjEffSumTerm = fifjSumTerm = ff_[i]*ff_[j].conj(); fifjEffSumTerm.rescale(effWeight); fifjEffSum_[i][j] += fifjEffSumTerm; fifjSumTerm.rescale(weight); fifjSum_[i][j] += fifjSumTerm; } } for (UInt_t i = 0; i < nIncohAmp_; ++i) { // Add the dynamical amplitude squared for this resonance. Double_t fSqVal = incohInten_[i]; fSqSum_[i+nAmp_] += fSqVal*weight; fSqEffSum_[i+nAmp_] += fSqVal*effWeight; } } LauComplex LauIsobarDynamics::resAmp(const UInt_t index) { // Routine to calculate the resonance dynamics (amplitude) // using the appropriate Breit-Wigner/Form Factors. LauComplex amp = LauComplex(0.0, 0.0); if ( index >= nAmp_ ) { std::cerr<<"ERROR in LauIsobarDynamics::resAmp : index = "<= nIncohAmp_ ) { std::cerr<<"ERROR in LauIsobarDynamics::setFFTerm : index = "<= nAmp_) { //Set off-diagonal incoherent terms to zero fitFrac_[i][j].value(0.); fitFracEffUnCorr_[i][j].value(0.); continue; } LauComplex AmpjConj = Amp_[j].conj(); LauComplex AmpTerm = Amp_[i]*AmpjConj; Double_t crossTerm = 2.0*(AmpTerm*fifjSum_[i][j]).re()*fNorm_[i]*fNorm_[j]; fifjTot += crossTerm; Double_t crossEffTerm = 2.0*(AmpTerm*fifjEffSum_[i][j]).re()*fNorm_[i]*fNorm_[j]; fifjEffTot += crossEffTerm; fitFrac_[i][j].value(crossTerm); fitFracEffUnCorr_[i][j].value(crossEffTerm); } } for (i = nAmp_; i < nAmp_+nIncohAmp_; i++) { // Calculate the incoherent terms TString name = "A"; name += i; name += "Sq_FitFrac"; fitFrac_[i][i].name(name); name += "EffUnCorr"; fitFracEffUnCorr_[i][i].name(name); Double_t sumTerm = Amp_[i].abs2()*fSqSum_[i]*fNorm_[i]*fNorm_[i]; fifjTot += sumTerm; Double_t sumEffTerm = Amp_[i].abs2()*fSqEffSum_[i]*fNorm_[i]*fNorm_[i]; fifjEffTot += sumEffTerm; fitFrac_[i][i].value(sumTerm); fitFracEffUnCorr_[i][i].value(sumEffTerm); } for (i = nAmp_; i < nAmp_+nIncohAmp_; i++) { for (j = i+1; j < nAmp_+nIncohAmp_; j++) { //Set off-diagonal incoherent terms to zero TString name = "A"; name += i; name += "A"; name += j; name += "_FitFrac"; fitFrac_[i][j].name(name); name += "EffUnCorr"; fitFracEffUnCorr_[i][j].name(name); fitFrac_[i][j].value(0.); fitFracEffUnCorr_[i][j].value(0.); } } if (TMath::Abs(fifjTot) > 1e-10) { meanDPEff_.value(fifjEffTot/fifjTot); if (init) { meanDPEff_.genValue( meanDPEff_.value() ); meanDPEff_.initValue( meanDPEff_.value() ); } } DPRate_.value(fifjTot); if (init) { DPRate_.genValue( DPRate_.value() ); DPRate_.initValue( DPRate_.value() ); } // Now divide the fitFraction sums by the overall integral for (i = 0; i < nAmp_+nIncohAmp_; i++) { for (j = i; j < nAmp_+nIncohAmp_; j++) { // Get the actual fractions by dividing by the total DP rate Double_t fitFracVal = fitFrac_[i][j].value(); fitFracVal /= fifjTot; fitFrac_[i][j].value( fitFracVal ); Double_t fitFracEffUnCorrVal = fitFracEffUnCorr_[i][j].value(); fitFracEffUnCorrVal /= fifjEffTot; fitFracEffUnCorr_[i][j].value( fitFracEffUnCorrVal ); if (init) { fitFrac_[i][j].genValue( fitFrac_[i][j].value() ); fitFrac_[i][j].initValue( fitFrac_[i][j].value() ); fitFracEffUnCorr_[i][j].genValue( fitFracEffUnCorr_[i][j].value() ); fitFracEffUnCorr_[i][j].initValue( fitFracEffUnCorr_[i][j].value() ); } } } // Work out total fit fraction over all K-matrix components (for each propagator) KMPropMap::iterator mapIter; Int_t propInt(0); for (mapIter = kMatrixPropagators_.begin(); mapIter != kMatrixPropagators_.end(); ++mapIter) { LauKMatrixPropagator* thePropagator = mapIter->second; TString propName = thePropagator->getName(); // Now loop over all resonances and find those which are K-matrix components for this propagator Double_t kMatrixTotFitFrac(0.0); for (i = 0; i < nAmp_; i++) { Bool_t gotKMRes1 = this->gotKMatrixMatch(i, propName); if (gotKMRes1 == kFALSE) {continue;} Double_t fifjSumReal = fifjSum_[i][i].re(); Double_t sumTerm = Amp_[i].abs2()*fifjSumReal*fNorm_[i]*fNorm_[i]; //Double_t fifjEffSumReal = fifjEffSum_[i][i].re(); //Double_t sumEffTerm = Amp_[i].abs2()*fifjEffSumReal*fNorm_[i]*fNorm_[i]; kMatrixTotFitFrac += sumTerm; for (j = i+1; j < nAmp_; j++) { Bool_t gotKMRes2 = this->gotKMatrixMatch(j, propName); if (gotKMRes2 == kFALSE) {continue;} LauComplex AmpjConj = Amp_[j].conj(); LauComplex AmpTerm = Amp_[i]*AmpjConj; Double_t crossTerm = 2.0*(AmpTerm*fifjSum_[i][j]).re()*fNorm_[i]*fNorm_[j]; //Double_t crossEffTerm = 2.0*(AmpTerm*fifjEffSum_[i][j]).re()*fNorm_[i]*fNorm_[j]; kMatrixTotFitFrac += crossTerm; } } kMatrixTotFitFrac /= fifjTot; TString parName("KMatrixTotFF_"); parName += propInt; extraParameters_[propInt].name( parName ); extraParameters_[propInt].value(kMatrixTotFitFrac); if (init) { extraParameters_[propInt].genValue(kMatrixTotFitFrac); extraParameters_[propInt].initValue(kMatrixTotFitFrac); } std::cout<<"INFO in LauIsobarDynamics::calcExtraInfo : Total K-matrix fit fraction for propagator "<calculateRhoOmegaFitFractions_ && !init) { int omegaID = 0; int storeID = 1; // Check which B flavour (and therefore which rho_COPY we are) by whether the FF is non-zero // Only for CP fit though - for a 'simple' fit this is more complicated if (fitFrac_[omegaID][omegaID].value() < 1E-4) { omegaID = 1; storeID = 0; } // Check this is really the correct model LauRhoOmegaMix * rhomega = dynamic_cast(getResonance(omegaID)); if (rhomega != NULL) { // Bail out std::cout << "INFO in LauIsobarDynamics::calcExtraInfo : Calculating omega fit fraction from resonance " << omegaID << std::endl; std::cout << "INFO in LauIsobarDynamics::calcExtraInfo : Storing omega fit fraction in resonance " << storeID << std::endl; // Tell the RhoOmegaMix model only to give us the omega amplitude-squared rhomega->setWhichAmpSq(1); // Recalculate the integrals for the omega fit-fraction integralsDone_ = kFALSE; this->resetNormVectors(); for ( UInt_t k(0); k < nAmp_+nIncohAmp_; ++k ) { integralsToBeCalculated_.insert(k); } this->calcDPNormalisation(); integralsDone_ = kTRUE; Double_t fifjSumRealOmega = fifjSum_[omegaID][omegaID].re(); // Recalculate the integrals for the rho fit-fraction rhomega->setWhichAmpSq(2); integralsDone_ = kFALSE; this->resetNormVectors(); for ( UInt_t k(0); k < nAmp_+nIncohAmp_; ++k ) { integralsToBeCalculated_.insert(k); } this->calcDPNormalisation(); integralsDone_ = kTRUE; Double_t fitFracPartRho = Amp_[omegaID].abs2()*fifjSum_[omegaID][omegaID].re(); // Reset the RhoOmegaMix model and the integrals rhomega->setWhichAmpSq(0); integralsDone_ = kFALSE; this->resetNormVectors(); for ( UInt_t k(0); k < nAmp_+nIncohAmp_; ++k ) { integralsToBeCalculated_.insert(k); } this->calcDPNormalisation(); integralsDone_ = kTRUE; // Store the omega fit-fraction in the rho_COPY location (which is otherwise empty) // Store the rho fit-fraction in the rho location (overwriting the combined FF) Double_t omegaFF = fifjSumRealOmega * fitFrac_[omegaID][omegaID].value(); fitFrac_[storeID][storeID].value(omegaFF); fitFrac_[omegaID][omegaID].value(fitFracPartRho * fNorm_[omegaID] * fNorm_[omegaID] / DPRate_.value()); } else { std::cout << "INFO in LauIsobarDynamics::calcExtraInfo : calculateRhoOmegaFitFractions is set, but the RhoOmegaMix model isn't in the right place. Ignoring this option." << std::endl; } } } Bool_t LauIsobarDynamics::gotKMatrixMatch(UInt_t resAmpInt, const TString& propName) const { Bool_t gotMatch(kFALSE); if (resAmpInt >= nAmp_) {return kFALSE;} const LauAbsResonance* theResonance = sigResonances_[resAmpInt]; if (theResonance == 0) {return kFALSE;} Int_t resModelInt = theResonance->getResonanceModel(); if (resModelInt == LauAbsResonance::KMatrix) { TString resName = theResonance->getResonanceName(); KMStringMap::const_iterator kMPropSetIter = kMatrixPropSet_.find(resName); if (kMPropSetIter != kMatrixPropSet_.end()) { TString kmPropString = kMPropSetIter->second; if (kmPropString == propName) {gotMatch = kTRUE;} } } return gotMatch; } Double_t LauIsobarDynamics::calcSigDPNorm() { // Calculate the normalisation for the log-likelihood function. DPNorm_ = 0.0; for (UInt_t i = 0; i < nAmp_; i++) { // fifjEffSum is the contribution from the term involving the resonance // dynamics (f_i for resonance i) and the efficiency term. Double_t fifjEffSumReal = fifjEffSum_[i][i].re(); // We need to normalise this contribution w.r.t. the complete dynamics in the DP. // Hence we scale by the fNorm_i factor (squared), which is calculated by the // initialise() function, when the normalisation integrals are calculated and cached. // We also include the complex amplitude squared to get the total normalisation // contribution from this resonance. DPNorm_ += Amp_[i].abs2()*fifjEffSumReal*fNorm_[i]*fNorm_[i]; } // We now come to the cross-terms (between resonances i and j) in the normalisation. for (UInt_t i = 0; i < nAmp_; i++) { for (UInt_t j = i+1; j < nAmp_; j++) { LauComplex AmpjConj = Amp_[j].conj(); LauComplex AmpTerm = Amp_[i]*AmpjConj; // Again, fifjEffSum is the contribution from the term involving the resonance // dynamics (f_i*f_j_conjugate) and the efficiency cross term. // Also include the relative normalisation between these two resonances w.r.t. the // total DP dynamical structure (fNorm_i and fNorm_j) and the complex // amplitude squared (mag,phase) part. DPNorm_ += 2.0*(AmpTerm*fifjEffSum_[i][j]).re()*fNorm_[i]*fNorm_[j]; } } for (UInt_t i = 0; i < nIncohAmp_; i++) { DPNorm_ += Amp_[i+nAmp_].abs2()*fSqEffSum_[i+nAmp_]*fNorm_[i+nAmp_]*fNorm_[i+nAmp_]; } return DPNorm_; } Bool_t LauIsobarDynamics::generate() { // Routine to generate a signal event according to the Dalitz plot // model we have defined. // We need to make sure to calculate everything for every resonance integralsToBeCalculated_.clear(); for ( UInt_t i(0); i < nAmp_+nIncohAmp_; ++i ) { integralsToBeCalculated_.insert(i); } nSigGenLoop_ = 0; Bool_t generatedSig(kFALSE); while (generatedSig == kFALSE && nSigGenLoop_ < iterationsMax_) { // Generates uniform DP phase-space distribution Double_t m13Sq(0.0), m23Sq(0.0); kinematics_->genFlatPhaseSpace(m13Sq, m23Sq); // If we're in a symmetrical DP then we should only generate events in one half // TODO - what do we do for fully symmetric? if ( symmetricalDP_ && !fullySymmetricDP_ && m13Sq > m23Sq ) { Double_t tmpSq = m13Sq; m13Sq = m23Sq; m23Sq = tmpSq; } // Calculate the amplitudes and total amplitude for the given DP point this->calcLikelihoodInfo(m13Sq, m23Sq); // Throw the random number and check it against the ratio of ASq and the accept/reject ceiling const Double_t randNo = LauRandom::randomFun()->Rndm(); if (randNo > ASq_/aSqMaxSet_) { ++nSigGenLoop_; } else { generatedSig = kTRUE; nSigGenLoop_ = 0; // Keep a note of the maximum ASq that we've found if (ASq_ > aSqMaxVar_) {aSqMaxVar_ = ASq_;} } } // while loop // Check that all is well with the generation Bool_t sigGenOK(kTRUE); if (GenOK != this->checkToyMC(kTRUE,kFALSE)) { sigGenOK = kFALSE; } return sigGenOK; } LauIsobarDynamics::ToyMCStatus LauIsobarDynamics::checkToyMC(Bool_t printErrorMessages, Bool_t printInfoMessages) { // Check whether we have generated the toy MC OK. ToyMCStatus ok(GenOK); if (nSigGenLoop_ >= iterationsMax_) { // Exceeded maximum allowed iterations - the generation is too inefficient if (printErrorMessages) { std::cerr<<"WARNING in LauIsobarDynamics::checkToyMC : More than "< 1.01 * aSqMaxVar_ ) { if (printErrorMessages) { std::cerr<<" : |A|^2 maximum was set to "< aSqMaxSet_) { // Found a value of ASq higher than the accept/reject ceiling - the generation is biased if (printErrorMessages) { std::cerr<<"WARNING in LauIsobarDynamics::checkToyMC : |A|^2 maximum was set to "< "<= "<retrievem13Sq(); m23Sq_ = currentEvent_->retrievem23Sq(); mPrime_ = currentEvent_->retrievemPrime(); thPrime_ = currentEvent_->retrievethPrime(); tagCat_ = currentEvent_->retrieveTagCat(); eff_ = currentEvent_->retrieveEff(); scfFraction_ = currentEvent_->retrieveScfFraction(); // These two are necessary, even though the dynamics don't actually use scfFraction_ or jacobian_, jacobian_ = currentEvent_->retrieveJacobian(); // since this is at the heart of the caching mechanism. } void LauIsobarDynamics::calcLikelihoodInfo(const UInt_t iEvt) { // Calculate the likelihood and associated info // for the given event using cached information evtLike_ = 0.0; // retrieve the cached dynamics from the tree: // realAmp, imagAmp for each resonance plus efficiency, scf fraction and jacobian this->setDataEventNo(iEvt); // use realAmp and imagAmp to create the resonance amplitudes const std::vector& realAmp = currentEvent_->retrieveRealAmp(); const std::vector& imagAmp = currentEvent_->retrieveImagAmp(); const std::vector& incohInten = currentEvent_->retrieveIncohIntensities(); for (UInt_t i = 0; i < nAmp_; i++) { this->setFFTerm(i, realAmp[i], imagAmp[i]); } for (UInt_t i = 0; i < nIncohAmp_; i++) { this->setIncohIntenTerm(i, incohInten[i]); } // Update the dynamics - calculates totAmp_ and then ASq_ = totAmp_.abs2() * eff_ // All calculated using cached information on the individual amplitudes and efficiency. this->calcTotalAmp(kTRUE); // Calculate the normalised matrix element squared value if (DPNorm_ > 1e-10) { evtLike_ = ASq_/DPNorm_; } } void LauIsobarDynamics::calcLikelihoodInfo(const Double_t m13Sq, const Double_t m23Sq) { this->calcLikelihoodInfo(m13Sq, m23Sq, -1); } void LauIsobarDynamics::calcLikelihoodInfo(const Double_t m13Sq, const Double_t m23Sq, const Int_t tagCat) { // Calculate the likelihood and associated info // for the given point in the Dalitz plot // Also retrieves the SCF fraction in the bin where the event lies (done // here to cache it along with the the rest of the DP quantities, like eff) // The jacobian for the square DP is calculated here for the same reason. evtLike_ = 0.0; // update the kinematics for the specified DP point kinematics_->updateKinematics(m13Sq, m23Sq); // calculate the jacobian and the scfFraction to cache them later scfFraction_ = this->retrieveScfFraction(tagCat); if (kinematics_->squareDP() == kTRUE) { jacobian_ = kinematics_->calcSqDPJacobian(); } // calculate the ff_ terms and retrieves eff_ from the efficiency model this->calculateAmplitudes(); // then calculate totAmp_ and finally ASq_ = totAmp_.abs2() * eff_ this->calcTotalAmp(kTRUE); // Calculate the normalised matrix element squared value if (DPNorm_ > 1e-10) { evtLike_ = ASq_/DPNorm_; } } void LauIsobarDynamics::modifyDataTree() { if ( recalcNormalisation_ == kFALSE ) { return; } const UInt_t nEvents = data_.size(); std::set::const_iterator iter = integralsToBeCalculated_.begin(); const std::set::const_iterator intEnd = integralsToBeCalculated_.end(); for (UInt_t iEvt = 0; iEvt < nEvents; ++iEvt) { currentEvent_ = data_[iEvt]; std::vector& realAmp = currentEvent_->retrieveRealAmp(); std::vector& imagAmp = currentEvent_->retrieveImagAmp(); std::vector& incohInten = currentEvent_->retrieveIncohIntensities(); const Double_t m13Sq = currentEvent_->retrievem13Sq(); const Double_t m23Sq = currentEvent_->retrievem23Sq(); const Int_t tagCat = currentEvent_->retrieveTagCat(); this->calcLikelihoodInfo(m13Sq, m23Sq, tagCat); for ( iter = integralsToBeCalculated_.begin(); iter != intEnd; ++iter) { const UInt_t i = *iter; if(*iter < nAmp_) { realAmp[i] = ff_[i].re(); imagAmp[i] = ff_[i].im(); } else { incohInten[i-nAmp_] = incohInten_[i-nAmp_]; } } } } void LauIsobarDynamics::fillDataTree(const LauFitDataTree& inputFitTree) { // In LauFitDataTree, the first two variables should always be m13^2 and m23^2. // Other variables follow thus: charge/flavour tag prob, etc. // Since this is the first caching, we need to make sure to calculate everything for every resonance integralsToBeCalculated_.clear(); for ( UInt_t i(0); i < nAmp_+nIncohAmp_; ++i ) { integralsToBeCalculated_.insert(i); } UInt_t nBranches = inputFitTree.nBranches(); if (nBranches < 2) { std::cerr<<"ERROR in LauIsobarDynamics::fillDataTree : Expecting at least 2 variables " <<"in input data tree, but there are "<Exit(EXIT_FAILURE); } // Data structure that will cache the variables required to // calculate the signal likelihood for this experiment for ( std::vector::iterator iter = data_.begin(); iter != data_.end(); ++iter ) { delete (*iter); } data_.clear(); Double_t m13Sq(0.0), m23Sq(0.0); Double_t mPrime(0.0), thPrime(0.0); Int_t tagCat(-1); std::vector realAmp(nAmp_), imagAmp(nAmp_); Double_t eff(0.0), scfFraction(0.0), jacobian(0.0); UInt_t nEvents = inputFitTree.nEvents() + inputFitTree.nFakeEvents(); data_.reserve(nEvents); for (UInt_t iEvt = 0; iEvt < nEvents; ++iEvt) { const LauFitData& dataValues = inputFitTree.getData(iEvt); LauFitData::const_iterator iter = dataValues.find("m13Sq"); m13Sq = iter->second; iter = dataValues.find("m23Sq"); m23Sq = iter->second; // is there more than one tagging category? // if so then we need to know the category from the data if (scfFractionModel_.size()>1) { iter = dataValues.find("tagCat"); tagCat = static_cast(iter->second); } // calculates the amplitudes and total amplitude for the given DP point // tagging category not needed by dynamics, but to find out the scfFraction this->calcLikelihoodInfo(m13Sq, m23Sq, tagCat); // extract the real and imaginary parts of the ff_ terms for storage for (UInt_t i = 0; i < nAmp_; i++) { realAmp[i] = ff_[i].re(); imagAmp[i] = ff_[i].im(); } if ( kinematics_->squareDP() ) { mPrime = kinematics_->getmPrime(); thPrime = kinematics_->getThetaPrime(); } eff = this->getEvtEff(); scfFraction = this->getEvtScfFraction(); jacobian = this->getEvtJacobian(); // store the data for each event in the list data_.push_back( new LauCacheData() ); data_[iEvt]->storem13Sq(m13Sq); data_[iEvt]->storem23Sq(m23Sq); data_[iEvt]->storemPrime(mPrime); data_[iEvt]->storethPrime(thPrime); data_[iEvt]->storeTagCat(tagCat); data_[iEvt]->storeEff(eff); data_[iEvt]->storeScfFraction(scfFraction); data_[iEvt]->storeJacobian(jacobian); data_[iEvt]->storeRealAmp(realAmp); data_[iEvt]->storeImagAmp(imagAmp); data_[iEvt]->storeIncohIntensities(incohInten_); } } Bool_t LauIsobarDynamics::gotReweightedEvent() { // Select the event (kinematics_) using an accept/reject method based on the // ratio of the current value of ASq to the maximal value. Bool_t accepted(kFALSE); // calculate the ff_ terms and retrieves eff_ from the efficiency model this->calculateAmplitudes(); // then calculate totAmp_ and finally ASq_ = totAmp_.abs2() (without the efficiency correction!) this->calcTotalAmp(kFALSE); // Compare the ASq value with the maximal value (set by the user) if (LauRandom::randomFun()->Rndm() < ASq_/aSqMaxSet_) { accepted = kTRUE; } if (ASq_ > aSqMaxVar_) {aSqMaxVar_ = ASq_;} return accepted; } Double_t LauIsobarDynamics::getEventWeight() { // calculate the ff_ terms and retrieves eff_ from the efficiency model this->calculateAmplitudes(); // then calculate totAmp_ and finally ASq_ = totAmp_.abs2() (without the efficiency correction!) this->calcTotalAmp(kFALSE); // return the event weight = the value of the squared amplitude return ASq_; } void LauIsobarDynamics::updateCoeffs(const std::vector& coeffs) { // Check that the number of coeffs is correct if (coeffs.size() != this->getnTotAmp()) { std::cerr << "ERROR in LauIsobarDynamics::updateCoeffs : Expected " << this->getnTotAmp() << " but got " << coeffs.size() << std::endl; gSystem->Exit(EXIT_FAILURE); } // Now check if the coeffs have changed Bool_t changed = (Amp_ != coeffs); if (changed) { // Copy the coeffs Amp_ = coeffs; } // TODO should perhaps keep track of whether the resonance parameters have changed here and if none of those and none of the coeffs have changed then we don't need to update the norm // Update the total normalisation for the signal likelihood this->calcSigDPNorm(); } TString LauIsobarDynamics::getConjResName(const TString& resName) const { // Get the name of the charge conjugate resonance TString conjName(resName); Ssiz_t index1 = resName.Index("+"); Ssiz_t index2 = resName.Index("-"); if (index1 != -1) { conjName.Replace(index1, 1, "-"); } else if (index2 != -1) { conjName.Replace(index2, 1, "+"); } return conjName; } Double_t LauIsobarDynamics::retrieveEfficiency() { Double_t eff(1.0); if (effModel_ != 0) { eff = effModel_->calcEfficiency(kinematics_); } return eff; } Double_t LauIsobarDynamics::retrieveScfFraction(Int_t tagCat) { Double_t scfFraction(0.0); // scf model and eff model are exactly the same, functionally // so we use an instance of LauAbsEffModel, and the method // calcEfficiency actually calculates the scf fraction if (tagCat == -1) { if (!scfFractionModel_.empty()) { scfFraction = scfFractionModel_[0]->calcEfficiency(kinematics_); } } else { scfFraction = scfFractionModel_[tagCat]->calcEfficiency(kinematics_); } return scfFraction; }