diff --git a/src/LauDecayTimePdf.cc b/src/LauDecayTimePdf.cc index f19b5a4..40a3d13 100644 --- a/src/LauDecayTimePdf.cc +++ b/src/LauDecayTimePdf.cc @@ -1,1617 +1,1626 @@ /* Copyright 2006 University of Warwick Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ /* Laura++ package authors: John Back Paul Harrison Thomas Latham */ /*! \file LauDecayTimePdf.cc \brief File containing implementation of LauDecayTimePdf class. */ #include #include //using std::cerr; //using std::endl; #include //using std::complex; #include "TMath.h" #include "TRandom.h" #include "TSystem.h" #include "TH1.h" #include "RooMath.h" #include "Lau1DCubicSpline.hh" #include "Lau1DHistPdf.hh" #include "LauConstants.hh" #include "LauComplex.hh" #include "LauDecayTimePdf.hh" #include "LauFitDataTree.hh" #include "LauParameter.hh" #include "LauRandom.hh" ClassImp(LauDecayTimePdf) LauDecayTimePdf::LauDecayTimePdf(const TString& theVarName, const TString& theVarErrName, const std::vector& params, Double_t minAbscissaVal, Double_t maxAbscissaVal, Double_t minAbscissaErr, Double_t maxAbscissaErr, FuncType type, UInt_t nGauss, const std::vector& scale, const TimeMeasurementMethod method, const EfficiencyMethod effMethod) : varName_(theVarName), varErrName_(theVarErrName), param_(params), smear_(kTRUE), minAbscissa_(minAbscissaVal), maxAbscissa_(maxAbscissaVal), minAbscissaError_(minAbscissaErr), maxAbscissaError_(maxAbscissaErr), abscissaError_(0.0), abscissaErrorGenerated_(kFALSE), errorDistMPV_(0.230), // for signal 0.234, for qqbar 0.286 errorDistSigma_(0.075), // for signal 0.073, for qqbar 0.102 nGauss_(nGauss), mean_(nGauss_,0), sigma_(nGauss_,0), frac_(nGauss_-1,0), tau_(0), deltaM_(0), deltaGamma_(0), fracPrompt_(0), type_(type), method_(method), effMethod_(effMethod), scaleMeans_(scale), scaleWidths_(scale), expTerm_(0.0), cosTerm_(0.0), sinTerm_(0.0), coshTerm_(0.0), sinhTerm_(0.0), normTermExp_(0.0), normTermCosh_(0.0), normTermSinh_(0.0), errTerm_(0.0), effiTerm_(0.0), pdfTerm_(0.0), state_(Good), errHist_(nullptr), pdfHist_(nullptr), effiFun_(nullptr), effiHist_(nullptr), effiPars_(0) { this->initialise(); } LauDecayTimePdf::LauDecayTimePdf(const TString& theVarName, const TString& theVarErrName, const std::vector& params, Double_t minAbscissaVal, Double_t maxAbscissaVal, Double_t minAbscissaErr, Double_t maxAbscissaErr, FuncType type, UInt_t nGauss, const std::vector& scaleMeans, const std::vector& scaleWidths, const TimeMeasurementMethod method, const EfficiencyMethod effMethod) : varName_(theVarName), varErrName_(theVarErrName), param_(params), smear_(kTRUE), minAbscissa_(minAbscissaVal), maxAbscissa_(maxAbscissaVal), minAbscissaError_(minAbscissaErr), maxAbscissaError_(maxAbscissaErr), abscissaError_(0.0), abscissaErrorGenerated_(kFALSE), errorDistMPV_(0.230), // for signal 0.234, for qqbar 0.286 errorDistSigma_(0.075), // for signal 0.073, for qqbar 0.102 nGauss_(nGauss), mean_(nGauss_,0), sigma_(nGauss_,0), frac_(nGauss_-1,0), tau_(0), deltaM_(0), deltaGamma_(0), fracPrompt_(0), type_(type), method_(method), effMethod_(effMethod), scaleMeans_(scaleMeans), scaleWidths_(scaleWidths), expTerm_(0.0), cosTerm_(0.0), sinTerm_(0.0), coshTerm_(0.0), sinhTerm_(0.0), normTermExp_(0.0), normTermCosh_(0.0), normTermSinh_(0.0), errTerm_(0.0), effiTerm_(0.0), pdfTerm_(0.0), state_(Good), errHist_(nullptr), pdfHist_(nullptr), effiFun_(nullptr), effiHist_(nullptr), effiPars_(0) { this->initialise(); } LauDecayTimePdf::~LauDecayTimePdf() { // Destructor delete errHist_; errHist_ = nullptr; delete pdfHist_; pdfHist_ = nullptr; delete effiFun_; effiFun_ = nullptr; delete effiHist_; effiHist_ = nullptr; for( auto& par : effiPars_ ){ delete par; par = nullptr; } effiPars_.clear(); } void LauDecayTimePdf::initialise() { // The parameters are: // - the mean and the sigma (bias and spread in resolution) of the gaussian(s) // - the mean lifetime, denoted tau, of the exponential decay // - the frequency of oscillation, denoted Delta m, of the cosine and sine terms // - the decay width difference, denoted Delta Gamma, of the hyperbolic cosine and sine terms // // The next two arguments specify the range in which the PDF is defined, // and the PDF will be normalised w.r.t. these limits. // // The final three arguments define the type of Delta t PDF (Delta, Exp, ExpTrig or ExpHypTrig ), the number of gaussians // and whether or not the gaussian parameters should be scaled by the per-event errors on Delta t // First check whether the scale vector is nGauss in size if (nGauss_ != scaleMeans_.size() || nGauss_ != scaleWidths_.size()) { std::cerr<<"ERROR in LauDecayTimePdf::initialise : scale vector size not the same as nGauss."<Exit(EXIT_FAILURE); } // TODO - need to sort out the categories if (type_ == Hist) { if (this->nParameters() != 0){ std::cerr<<"ERROR in LauDecayTimePdf::initialise : Hist PDF should have 0 parameters"<Exit(EXIT_FAILURE); } } else { TString meanName("mean_"); TString sigmaName("sigma_"); TString fracName("frac_"); Bool_t foundParams(kTRUE); for (UInt_t i(0); ifindParameter(tempName); foundParams &= (mean_[i] != 0); sigma_[i] = this->findParameter(tempName2); foundParams &= (sigma_[i] != 0); if (i!=0) { frac_[i-1] = this->findParameter(tempName3); foundParams &= (frac_[i-1] != 0); } } if (type_ == Delta) { if ((this->nParameters() != (3*nGauss_-1)) || (!foundParams)) { std::cerr<<"ERROR in LauDecayTimePdf::initialise : Delta type PDF requires:"<Exit(EXIT_FAILURE); } } else if (type_ == Exp) { tau_ = this->findParameter("tau"); foundParams &= (tau_ != 0); if ((this->nParameters() != (3*nGauss_-1+1)) || (!foundParams)) { std::cerr<<"ERROR in LauDecayTimePdf::initialise : Exp type PDF requires:"<Exit(EXIT_FAILURE); } } else if (type_ == DeltaExp) { tau_ = this->findParameter("tau"); fracPrompt_ = this->findParameter("frac_prompt"); foundParams &= (tau_ != 0); foundParams &= (fracPrompt_ != 0); if ((this->nParameters() != (3*nGauss_-1+2)) || (!foundParams)) { std::cerr<<"ERROR in LauDecayTimePdf::initialise : DeltaExp type PDF requires:"<Exit(EXIT_FAILURE); } } else if (type_ == ExpTrig) { tau_ = this->findParameter("tau"); deltaM_ = this->findParameter("deltaM"); foundParams &= (tau_ != 0); foundParams &= (deltaM_ != 0); if ((this->nParameters() != (3*nGauss_-1+2)) || (!foundParams)) { std::cerr<<"ERROR in LauDecayTimePdf::initialise : ExpTrig type PDF requires:"<Exit(EXIT_FAILURE); } } else if (type_ == ExpHypTrig) { tau_ = this->findParameter("tau"); deltaM_ = this->findParameter("deltaM"); deltaGamma_ = this->findParameter("deltaGamma"); foundParams &= (tau_ != 0); foundParams &= (deltaM_ != 0); foundParams &= (deltaGamma_ != 0); if ((this->nParameters() != (3*nGauss_-1+3)) || (!foundParams)) { std::cerr<<"ERROR in LauDecayTimePdf::initialise : ExpHypTrig type PDF requires:"<Exit(EXIT_FAILURE); } } } } Double_t LauDecayTimePdf::effectiveResolution() const { Double_t dilution = 0.; Double_t dMSq = deltaM_->unblindValue() * deltaM_->unblindValue(); // Might be cleaner to just append this to the vector in the init step, // the the consistency can also be checked Double_t fracSum = 0; for (auto f : frac_) fracSum += f->unblindValue(); Double_t lastFrac = 1. - fracSum; for (size_t i = 0; i < sigma_.size(); i++) { Double_t sigSq = sigma_[i]->unblindValue() * sigma_[i]->unblindValue(); Double_t thisFrac = lastFrac; if (i < sigma_.size() - 1) thisFrac = frac_[i]->unblindValue(); dilution += thisFrac * TMath::Exp(-dMSq * sigSq / 2.); } return TMath::Sqrt(-2. * TMath::Log(dilution)) / deltaM_->unblindValue(); } void LauDecayTimePdf::cacheInfo(const LauFitDataTree& inputData) { Bool_t hasBranch = inputData.haveBranch(this->varName()); if (!hasBranch) { std::cerr<<"ERROR in LauDecayTimePdf::cacheInfo : Input data does not contain variable \""<varName()<<"\"."<varErrName()); if (!hasBranch) { std::cerr<<"ERROR in LauDecayTimePdf::cacheInfo : Input data does not contain variable \""<varErrName()<<"\"."<cacheInfo(inputData); } if (type_ == Hist) { // Pass the data to the decay-time PDF for caching if ( pdfHist_ ) { pdfHist_->cacheInfo(inputData); } } else { // determine whether we are caching our PDF value //TODO //Bool_t doCaching( this->nFixedParameters() == this->nParameters() ); //this->cachePDF( doCaching ); // clear the vectors and reserve enough space const UInt_t nEvents = inputData.nEvents(); abscissas_.clear(); abscissas_.reserve(nEvents); abscissaErrors_.clear(); abscissaErrors_.reserve(nEvents); expTerms_.clear(); expTerms_.reserve(nEvents); cosTerms_.clear(); cosTerms_.reserve(nEvents); sinTerms_.clear(); sinTerms_.reserve(nEvents); coshTerms_.clear(); coshTerms_.reserve(nEvents); sinhTerms_.clear(); sinhTerms_.reserve(nEvents); normTermsExp_.clear(); normTermsExp_.reserve(nEvents); normTermsCos_.clear(); normTermsCos_.reserve(nEvents); normTermsSin_.clear(); normTermsSin_.reserve(nEvents); normTermsCosh_.clear(); normTermsCosh_.reserve(nEvents); normTermsSinh_.clear(); normTermsSinh_.reserve(nEvents); effiTerms_.clear(); effiTerms_.reserve(nEvents); for (UInt_t iEvt = 0; iEvt < nEvents; iEvt++) { const LauFitData& dataValues = inputData.getData(iEvt); LauFitData::const_iterator iter = dataValues.find(this->varName()); const Double_t abscissa = iter->second; if (abscissa > this->maxAbscissa() || abscissa < this->minAbscissa()) { std::cerr<<"ERROR in LauDecayTimePdf::cacheInfo : Given value of the decay time: "<minAbscissa()<<","<maxAbscissa()<<"]."<Exit(EXIT_FAILURE); } abscissas_.push_back( abscissa ); iter = dataValues.find(this->varErrName()); Double_t abscissaErr = iter->second; if (abscissaErr > this->maxAbscissaError() || abscissaErr < this->minAbscissaError()) { std::cerr<<"ERROR in LauDecayTimePdf::cacheInfo : Given value of the decay-time error: "<minAbscissaError()<<","<maxAbscissaError()<<"]."<Exit(EXIT_FAILURE); } abscissaErrors_.push_back(abscissaErr); this->calcLikelihoodInfo(abscissa, abscissaErr); expTerms_.push_back(expTerm_); cosTerms_.push_back(cosTerm_); sinTerms_.push_back(sinTerm_); coshTerms_.push_back(coshTerm_); sinhTerms_.push_back(sinhTerm_); normTermsExp_.push_back(normTermExp_); normTermsCos_.push_back(normTermCos_); normTermsSin_.push_back(normTermSin_); normTermsCosh_.push_back(normTermCosh_); normTermsSinh_.push_back(normTermSinh_); effiTerms_.push_back(effiTerm_); } } } void LauDecayTimePdf::calcLikelihoodInfo(UInt_t iEvt) { if (type_ == Hist) { if ( pdfHist_ ) { pdfHist_->calcLikelihoodInfo(iEvt); pdfTerm_ = pdfHist_->getLikelihood(); } else { pdfTerm_ = 1.0; } } else { expTerm_ = expTerms_[iEvt]; cosTerm_ = cosTerms_[iEvt]; sinTerm_ = sinTerms_[iEvt]; coshTerm_ = coshTerms_[iEvt]; sinhTerm_ = sinhTerms_[iEvt]; normTermExp_ = normTermsExp_[iEvt]; normTermCos_ = normTermsCos_[iEvt]; normTermSin_ = normTermsSin_[iEvt]; normTermCosh_ = normTermsCosh_[iEvt]; normTermSinh_ = normTermsSinh_[iEvt]; } if ( errHist_ ) { errHist_->calcLikelihoodInfo(iEvt); errTerm_ = errHist_->getLikelihood(); } else { errTerm_ = 1.0; } //TODO Parameters will change in some cases update things! Need to make this intelligent! const Double_t abscissa = abscissas_[iEvt]; const Double_t abscissaErr = abscissaErrors_[iEvt]; this->calcLikelihoodInfo(abscissa,abscissaErr); this->calcNorm(); switch( effMethod_ ) /* < If you're going to add an effMethod, extend this switch*/ { case EfficiencyMethod::Spline : if ( effiFun_ ) { this->updateEffiSpline(effiPars_); effiTerm_ = effiFun_->evaluate(abscissa); //EDITED XXX if (effiTerm_>1.0){effiTerm_=1.0;} if (effiTerm_<0.0){effiTerm_=0.0;} } else { effiTerm_ = 1.0; } break; default : effiTerm_ = effiTerms_[iEvt]; break; } } void LauDecayTimePdf::calcLikelihoodInfo(Double_t abscissa) { // Check whether any of the gaussians should be scaled - if any of them should we need the per-event error Bool_t scale(kFALSE); for (std::vector::const_iterator iter = scaleMeans_.begin(); iter != scaleMeans_.end(); ++iter) { scale |= (*iter); } for (std::vector::const_iterator iter = scaleWidths_.begin(); iter != scaleWidths_.end(); ++iter) { scale |= (*iter); } if (scale) { std::cerr<<"ERROR in LauDecayTimePdf::calcLikelihoodInfo : Per-event error on Delta t not provided, cannot calculate anything."<calcLikelihoodInfo(abscissa, 0.0); } } // void LauDecayTimePdf::calcLikelihoodInfo(Double_t abscissa, Double_t abscissaErr) // { // if (abscissa > this->maxAbscissa() || abscissa < this->minAbscissa()) { // std::cerr<<"ERROR in LauDecayTimePdf::calcLikelihoodInfo : Given value of the decay time: "<minAbscissa()<<","<maxAbscissa()<<"]."<Exit(EXIT_FAILURE); // } // // if (abscissaErr > this->maxAbscissaError() || abscissaErr < this->minAbscissaError()) { // std::cerr<<"ERROR in LauDecayTimePdf::calcLikelihoodInfo : Given value of Delta t error: "<minAbscissaError()<<","<maxAbscissaError()<<"]."<Exit(EXIT_FAILURE); // } // // switch( effMethod_ ) // { // case EfficiencyMethod::Spline : effiTerm_ = effiFun_ ? effiFun_ -> evaluate(abscissa) : 1.0 ; break; // case EfficiencyMethod::Binned : effiTerm_ = effiHist_ ? effiHist_-> GetBinContent(effiHist_-> FindFixBin(abscissa)) : 1.0 ; break; // case EfficiencyMethod::Flat : effiTerm_ = 1.0 ; break; // // default : std::cerr << "Warning: EFFICIENCY INPUT METHOD NOT SET" << std::endl; effiTerms_.push_back( 1.0 ); // } // // // Initialise the various terms to zero // if (type_ == Hist){ // if ( pdfHist_ ) { // pdfHist_->calcLikelihoodInfo(abscissa); // pdfTerm_ = pdfHist_->getLikelihood(); // } else { // pdfTerm_ = 1.0; // } // }else{ // // // Reset the state to Good // this->state(Good); // // // If we're not using the resolution function calculate the simple terms and return // if (!this->doSmearing()) { // this->calcNonSmearedTerms(abscissa); // return; // } // // //TODO how much to be added below for SimFitNormBd/SimFitNormBs/SimFitSigBd/SimFitSigBs // // // Get all the up to date parameter values // std::vector frac(nGauss_); // std::vector mean(nGauss_); // std::vector sigma(nGauss_); // Double_t tau(0.0); // Double_t deltaM(0.0); // Double_t fracPrompt(0.0); // Double_t Delta_gamma(0.0); // frac[0] = 1.0; // for (UInt_t i(0); iunblindValue(); // sigma[i] = sigma_[i]->unblindValue(); // if (i != 0) { // frac[i] = frac_[i-1]->unblindValue(); // frac[0] -= frac[i]; // } // } // if (type_ != Delta) { // tau = tau_->unblindValue(); // if (type_ == ExpTrig) { // deltaM = deltaM_->unblindValue(); // } // if (type_ == DeltaExp) { // fracPrompt = fracPrompt_->unblindValue(); // } // if (type_ == ExpHypTrig){ // deltaM = deltaM_->unblindValue(); // Delta_gamma = deltaGamma_->unblindValue(); // } // } // // // Scale the gaussian parameters by the per-event error on Delta t (if appropriate) // for (UInt_t i(0); i x(nGauss_); // const Double_t xMax = this->maxAbscissa(); // const Double_t xMin = this->minAbscissa(); // for (UInt_t i(0); i 1e-10) { // Double_t exponent(0.0); // Double_t norm(0.0); // Double_t scale = LauConstants::root2*sigma[i]; // Double_t scale2 = LauConstants::rootPiBy2*sigma[i]; // exponent = -0.5*x[i]*x[i]/(sigma[i]*sigma[i]); // norm = scale2*(TMath::Erf((xMax - mean[i])/scale) // - TMath::Erf((xMin - mean[i])/scale)); // value += frac[i]*TMath::Exp(exponent)/norm; // } // } // } // // if (type_ != Delta) { // // std::vector expTerms(nGauss_); // std::vector cosTerms(nGauss_); // std::vector sinTerms(nGauss_); // std::vector coshTerms(nGauss_); // std::vector sinhTerms(nGauss_); // // std::vector expTermsNorm(nGauss_); // // TODO - TEL changed this name to make it compile - please check! // std::vector SinhTermsNorm(nGauss_); // // // Calculate values of the PDF convoluated with each Gaussian for a given value of the abscsissa // for (UInt_t i(0); icalcTrigExponent(deltaM, tau, x[i], sigma[i], exponentTermRe, exponentTermIm); // // // Elements related to the trigonometric function, i.e. convolution of Exp*Sin or Cos with Gauss // Double_t sinTrigTermRe, sinTrigTermIm, cosTrigTermRe, cosTrigTermIm; // this->calcTrigConv(deltaM, tau, x[i], sigma[i], sinTrigTermRe, sinTrigTermIm, kFALSE); // this->calcTrigConv(deltaM, tau, x[i], sigma[i], cosTrigTermRe, cosTrigTermIm, kTRUE); // // // Combining elements of the full pdf // LauComplex zExp(exponentTermRe, exponentTermIm); // LauComplex zTrigSin(sinTrigTermRe, sinTrigTermIm); // LauComplex zTrigCos(cosTrigTermRe, cosTrigTermIm); // // LauComplex sinConv = zExp * zTrigSin; // LauComplex cosConv = zExp * zTrigCos; // sinConv.scale(1.0/4.0); // cosConv.scale(1.0/4.0); // // // Cosine*Exp and Sine*Exp terms // cosTerms[i] = cosConv.re(); // sinTerms[i] = sinConv.im(); // // // Normalisation // Double_t umax = xMax - mean[i]; // Double_t umin = xMin - mean[i]; // // expTermsNorm[i] = (1.0/2.0) * tau * (-1.0 + TMath::Erf(umax/(LauConstants::root2 * sigma[i])) + TMath::Erfc(umin/(LauConstants::root2 * sigma[i])) + // TMath::Exp((pow(sigma[i], 2) - 2.0 * tau * (xMax + xMin - mean[i]))/(2.0 * pow(tau, 2))) * // (TMath::Exp(xMax/tau) * TMath::Erfc((pow(sigma[i], 2) - xMin)/(LauConstants::root2 * tau))) + // (TMath::Exp(xMin/tau) * TMath::Erfc((pow(sigma[i], 2) - xMax)/(LauConstants::root2 * tau)))); // } else { // // // } // } // // Typical case (2): B0s/B0sbar // if (type_ == ExpHypTrig) { // // LHCb convention // if (method_ == DecayTime) { // // Convolution of Exp*cosh (Exp*sinh) with a gaussian // //Double_t OverallExpFactor = 0.25*TMath::Exp(-(x[i]-mean[i])*(x[i]-mean[i])/(2*sigma[i]*sigma[i])); // //Double_t ExpFirstTerm = TMath::Exp((2*(x[i]-mean[i])*tau+sigma[i]*sigma[i]*(-2+Delta_gamma*tau))*(2*(x[i]-mean[i])*tau+sigma[i]*sigma[i]*(-2+Delta_gamma*tau))/(8*sigma[i]*sigma[i]*tau*tau)); // //Double_t ExpSecondTerm = TMath::Exp((2*(-x[i]+mean[i])*tau+sigma[i]*sigma[i]*(2+Delta_gamma*tau))*(2*(-x[i]+mean[i])*tau+sigma[i]*sigma[i]*(2+Delta_gamma*tau))/(8*sigma[i]*sigma[i]*tau*tau)); // //Double_t ErfFirstTerm = TMath::Erf((2*(x[i]-mean[i])*tau+sigma[i]*sigma[i]*(-2+Delta_gamma*tau))/(2*TMath::Sqrt(2)*sigma[i]*tau)); // //Double_t ErfSecondTerm = TMath::Erf((2*(-x[i]+mean[i])*tau+sigma[i]*sigma[i]*(2+Delta_gamma*tau))/(2*TMath::Sqrt(2)*sigma[i]*tau)); // // //Double_t sinhConv = OverallExpFactor*(ExpFirstTerm*(1+ErfFirstTerm) + ExpSecondTerm*(-1+ErfSecondTerm)); // //Double_t coshConv = OverallExpFactor*(ExpFirstTerm*(1+ErfFirstTerm) - ExpSecondTerm*(-1+ErfSecondTerm)); // // //cosTerms[i] = sinhConv; // // sinTerms[i] = coshConv; // // //TODO: check this formula and try to simplify it! // double OverallExpTerm_max = (1/(2*(-4 + Delta_gamma*Delta_gamma*tau*tau)))*tau*TMath::Exp(-0.5*Delta_gamma*(xMax + mean[i]) - xMax/tau); // double ErfTerm_max = -2*Delta_gamma*tau*TMath::Exp(0.5*Delta_gamma*(xMax+mean[i])+xMax/tau)*TMath::Erf((xMax-mean[i])/(TMath::Sqrt(2)*sigma[i])); // double ExpFirstTerm_max = TMath::Exp(xMax*Delta_gamma+(sigma[i]*sigma[i]*(-2 + Delta_gamma*tau)*(-2 + Delta_gamma*tau))/(8*tau*tau)); // double ErfcFirstTerm_max = TMath::Erfc((2*(-xMax + mean[i])*tau + sigma[i]*sigma[i]*(2 - Delta_gamma*tau))/(2*TMath::Sqrt(2)*sigma[i]*tau)); // double ExpSecondTerm_max = TMath::Exp(Delta_gamma*mean[i] + (sigma[i]*sigma[i]*(2 + Delta_gamma*tau)*(2 + Delta_gamma*tau))/(8*tau*tau)); // double ErfcSecondTerm_max = TMath::Erfc((2*(-xMax + mean[i])*tau + sigma[i]*sigma[i]*(2 + Delta_gamma*tau))/(2*TMath::Sqrt(2)*sigma[i]*tau)); // double MaxVal= OverallExpTerm_max*(ErfTerm_max + TMath::Exp(mean[i]/tau)*(ExpFirstTerm_max*(2+Delta_gamma*tau)* ErfcFirstTerm_max + ExpSecondTerm_max*(-2+Delta_gamma*tau)* ErfcSecondTerm_max)); // // double OverallExpTerm_min = (1/(2*(-4 + Delta_gamma*Delta_gamma*tau*tau)))*tau*TMath::Exp(-0.5*Delta_gamma*(xMin + mean[i]) - xMin/tau); // double ErfTerm_min = -2*Delta_gamma*tau*TMath::Exp(0.5*Delta_gamma*(xMin+mean[i])+xMin/tau)*TMath::Erf((xMin-mean[i])/(TMath::Sqrt(2)*sigma[i])); // double ExpFirstTerm_min = TMath::Exp(xMin*Delta_gamma+(sigma[i]*sigma[i]*(-2 + Delta_gamma*tau)*(-2 + Delta_gamma*tau))/(8*tau*tau)); // double ErfcFirstTerm_min = TMath::Erfc((2*(-xMin + mean[i])*tau + sigma[i]*sigma[i]*(2 - Delta_gamma*tau))/(2*TMath::Sqrt(2)*sigma[i]*tau)); // // TODO - TEL added this (currently identical to ExpSecondTerm_max) to get this to compile - please check!! // double ExpSecondTerm_min = TMath::Exp(Delta_gamma*mean[i] + (sigma[i]*sigma[i]*(2 + Delta_gamma*tau)*(2 + Delta_gamma*tau))/(8*tau*tau)); // double ErfcSecondTerm_min = TMath::Erfc((2*(-xMin + mean[i])*tau + sigma[i]*sigma[i]*(2 + Delta_gamma*tau))/(2*TMath::Sqrt(2)*sigma[i]*tau)); // double minVal= OverallExpTerm_min*(ErfTerm_min + TMath::Exp(mean[i]/tau)*(ExpFirstTerm_min*(2+Delta_gamma*tau)* ErfcFirstTerm_min + ExpSecondTerm_min*(-2+Delta_gamma*tau)* ErfcSecondTerm_min)); // SinhTermsNorm[i] = MaxVal - minVal; // // } else { // // } // } // // } // // for (UInt_t i(0); icalcLikelihoodInfo(abscissaErr); // errTerm_ = errHist_->getLikelihood(); // } else { // errTerm_ = 1.0; // } // } void LauDecayTimePdf::calcLikelihoodInfo(Double_t abscissa, Double_t abscissaErr) { if (abscissa > this->maxAbscissa() || abscissa < this->minAbscissa()) { std::cerr<<"ERROR in LauDecayTimePdf::calcLikelihoodInfo : Given value of the decay time: "<minAbscissa()<<","<maxAbscissa()<<"]."<Exit(EXIT_FAILURE); } if (abscissaErr > this->maxAbscissaError() || abscissaErr < this->minAbscissaError()) { std::cerr<<"ERROR in LauDecayTimePdf::calcLikelihoodInfo : Given value of Delta t error: "<minAbscissaError()<<","<maxAbscissaError()<<"]."<Exit(EXIT_FAILURE); } switch( effMethod_ ) { case EfficiencyMethod::Spline : effiTerm_ = effiFun_ ? effiFun_ -> evaluate(abscissa) : 1.0 ; break; case EfficiencyMethod::Binned : effiTerm_ = effiHist_ ? effiHist_-> GetBinContent(effiHist_-> FindFixBin(abscissa)) : 1.0 ; break; case EfficiencyMethod::Flat : effiTerm_ = 1.0 ; break; } // Initialise the various terms to zero if (type_ == Hist){ if ( pdfHist_ ) { pdfHist_->calcLikelihoodInfo(abscissa); pdfTerm_ = pdfHist_->getLikelihood(); } else { pdfTerm_ = 1.0; } // TODO - should return here? } // Reset the state to Good //this->state(Good); // If we're not using the resolution function calculate the simple terms and return if (!this->doSmearing()) { this->calcNonSmearedTerms(abscissa); return; } // Get all the up to date parameter values std::vector frac(nGauss_); std::vector mean(nGauss_); std::vector sigma(nGauss_); Double_t fracPrompt(0.0); // TODO - why do we do the fractions this way around? frac[0] = 1.0; for (UInt_t i(0); iunblindValue(); sigma[i] = sigma_[i]->unblindValue(); if (i != 0) { frac[i] = frac_[i-1]->unblindValue(); frac[0] -= frac[i]; } } if (type_ == DeltaExp) { fracPrompt = fracPrompt_->unblindValue(); } // Scale the gaussian parameters by the per-event error on Delta t (if appropriate) for (UInt_t i(0); i x(nGauss_); const Double_t xMax = this->maxAbscissa(); const Double_t xMin = this->minAbscissa(); for (UInt_t i(0); i 1e-10) { Double_t exponent(0.0); Double_t norm(0.0); Double_t scale = LauConstants::root2*sigma[i]; Double_t scale2 = LauConstants::rootPiBy2*sigma[i]; exponent = -0.5*x[i]*x[i]/(sigma[i]*sigma[i]); norm = scale2*(TMath::Erf((xMax - mean[i])/scale) - TMath::Erf((xMin - mean[i])/scale)); value += frac[i]*TMath::Exp(exponent)/norm; } } } if (type_ != Delta) { // Reset values of terms expTerm_ = 0.0; cosTerm_ = 0.0; sinTerm_ = 0.0; coshTerm_ = 0.0; sinhTerm_ = 0.0; // Calculate values of the PDF convoluted with each Gaussian for a given value of the abscsissa for (UInt_t i(0); icalcLikelihoodInfo(abscissaErr); errTerm_ = errHist_->getLikelihood(); } else { errTerm_ = 1.0; } } //void LauDecayTimePdf::calcTrigExponent(Double_t deltaM, Double_t tau, Double_t x, Double_t sigma, Double_t& reTerm, Double_t& imTerm) //{ // // Double_t exponentTerm = TMath::Exp(-(2.0 * tau * x + pow(sigma, 2) * (pow(deltaM, 2) * pow(tau, 2) - 1.0))/(2.0 * pow(tau,2))); // reTerm = exponentTerm * TMath::Cos(deltaM * (x - pow(sigma,2)/tau)); // imTerm = - exponentTerm * TMath::Sin(deltaM * (x - pow(sigma,2)/tau)); // //} // void LauDecayTimePdf::calcTrigConv(Double_t deltaM, Double_t tau, Double_t x, Double_t sigma, Double_t& reOutTerm, Double_t& imOutTerm, Bool_t trig) // { // // Double_t reExpTerm, imExpTerm; // LauComplex zExp; // LauComplex zTrig1; // LauComplex zTrig2; // // // Calculation for the sine or cosine term // if (!trig) { // reExpTerm = TMath::Sin(2.0 * deltaM * (x + pow(sigma,2)/tau)); // imExpTerm = 2.0 * TMath::Sin(pow(deltaM * (x + pow(sigma,2)/tau), 2)); // } else { // reExpTerm = TMath::Cos(2.0 * deltaM * (x + pow(sigma,2)/tau)); // imExpTerm = TMath::Sin(2.0 * deltaM * (x + pow(sigma,2)/tau)); // } // // // Exponential term in front of Erfc/Erfi terms // zExp.setRealPart(reExpTerm); // zExp.setImagPart(imExpTerm); // // // Nominal Erfc term (common to both sine and cosine expressions // zTrig1.setRealPart(-(tau * x - pow(sigma,2))/(LauConstants::root2 * tau * sigma)); // zTrig1.setImagPart(-(deltaM * sigma)/ LauConstants::root2); // // // Second term for sine (Erfi) or cosine (Erfc) - notice the re-im swap and sign change // zTrig2.setRealPart(-zTrig1.im()); // zTrig2.setImagPart(-zTrig1.re()); // // // Calculation of Erfc and Erfi (if necessary) // LauComplex term1 = ComplexErfc(zTrig1.re(), zTrig1.im()); // LauComplex term2; // if (!trig) { // term2 = Erfi(zTrig2.re(), zTrig2.im()); // } else { // term2 = ComplexErfc(zTrig2.re(), zTrig2.im()); // } // // // Multiplying all elemnets of the convolution // LauComplex output = zExp * term1 + term2; // reOutTerm = output.re(); // imOutTerm = output.im(); // // } // LauComplex LauDecayTimePdf::ComplexErf(Double_t x, Double_t y) // { // // Evaluate Erf(x + iy) using an infinite series approximation // // From Abramowitz & Stegun (http://people.math.sfu.ca/~cbm/aands/page_299.htm) // if (x==0){ // // std::cout << "WARNING: Set x value to 1e-100 to avoid division by 0." << std::endl; // x = 1e-100; // } // int n = 20; // this cotrols the number of iterations of the sum // LauComplex ErfTerm(TMath::Erf(x),0.); // LauComplex CosSineTerm(1-cos(2*x*y), sin(2*x*y)); // CosSineTerm.rescale(TMath::Exp(-x*x)/(2*TMath::Pi()*x)); // LauComplex firstPart = ErfTerm + CosSineTerm; // LauComplex SumTerm(0,0); // // for (int k = 1; k<=n; k++){ // Double_t f_k = 2*x*(1 - cos(2*x*y)*cosh(k*y)) + k*sin(2*x*y)*sinh(k*y); // Double_t g_k = 2*x*sin(2*x*y)*cosh(k*y) + k*cos(2*x*y)*sinh(k*y); // LauComplex fgTerm(f_k, g_k); // fgTerm.rescale(TMath::Exp(-0.25*k*k)/(k*k + 4*x*x)); // SumTerm += fgTerm; // } // SumTerm.rescale((2/TMath::Pi())*TMath::Exp(-x*x)); // LauComplex result = firstPart + SumTerm; // return result; // } // LauComplex LauDecayTimePdf::Erfi(Double_t x, Double_t y) // { // // Erfi(z) = -I*Erf(I*z) where z = x + iy // double x_prime = -y; // double y_prime = x; // LauComplex a = ComplexErf(x_prime, y_prime); // LauComplex result(a.im(), -a.re()); // return result; // } // LauComplex LauDecayTimePdf::ComplexErfc(Double_t x, Double_t y) // { // // Erfc(z) = 1 - Erf(z) (z = x + iy) // LauComplex one(1., 0.); // LauComplex result = one - ComplexErf(x,y); // return result; // } //Double_t LauDecayTimePdf::normExpHypTerm(Double_t Abs) //{ // Double_t tau = tau_->unblindValue(); // Double_t deltaGamma = deltaGamma_->unblindValue(); // // Double_t y = tau*deltaGamma/2; // Double_t nonTrigTerm = -(TMath::Exp(-Abs/tau))/(1 - y*y); // // Double_t cosHTerm = TMath::CosH(deltaGamma*Abs/2); // Double_t sinHTerm = TMath::SinH(deltaGamma*Abs/2); // // Double_t normTerm = nonTrigTerm*(cosHTerm + y*sinHTerm); // return normTerm; //} //Double_t LauDecayTimePdf::normExpHypTermDep(Double_t Abs) //{ // Double_t tau = tau_->unblindValue(); // Double_t deltaGamma = deltaGamma_->unblindValue(); // // Double_t y = tau*deltaGamma/2; // Double_t nonTrigTerm = -(TMath::Exp(-Abs/tau))/(1 - y*y); // // Double_t cosHTerm = TMath::CosH(deltaGamma*Abs/2); // Double_t sinHTerm = TMath::SinH(deltaGamma*Abs/2); // // Double_t normTerm = nonTrigTerm*(sinHTerm + y*cosHTerm); // return normTerm; //} void LauDecayTimePdf::calcNonSmearedTerms(Double_t abscissa) { if ( type_ == Hist || type_ == Delta ){ return; } const Double_t tau { tau_->unblindValue() }; const Double_t gamma { 1.0 / tau }; if (method_ == DecayTime) { expTerm_ = TMath::Exp(-abscissa*gamma); } else if (method_ == DecayTimeDiff) { expTerm_ = TMath::Exp(-TMath::Abs(abscissa)*gamma); } // Calculate also the terms related to cosine and sine if (type_ == ExpTrig) { const Double_t deltaM = deltaM_->unblindValue(); coshTerm_ = expTerm_; sinhTerm_ = 0.0; cosTerm_ = TMath::Cos(deltaM*abscissa)*expTerm_; sinTerm_ = TMath::Sin(deltaM*abscissa)*expTerm_; } // Calculate also the terms related to cosh, sinh, cosine, and sine else if (type_ == ExpHypTrig) { const Double_t deltaM = deltaM_->unblindValue(); const Double_t deltaGamma = deltaGamma_->unblindValue(); coshTerm_ = TMath::CosH(0.5*deltaGamma*abscissa)*expTerm_; sinhTerm_ = TMath::SinH(0.5*deltaGamma*abscissa)*expTerm_; cosTerm_ = TMath::Cos(deltaM*abscissa)*expTerm_; sinTerm_ = TMath::Sin(deltaM*abscissa)*expTerm_; } } std::pair LauDecayTimePdf::smearedCosSinTerm(Double_t t, Double_t sigma, Double_t mu) { using namespace std::complex_literals; const Double_t gamma = 1. / this->tau_->unblindValue(); const Double_t x = (t - mu) / (LauConstants::root2 * sigma); const std::complex z = std::complex(gamma * sigma / LauConstants::root2, -this->deltaM_->unblindValue() * sigma / LauConstants::root2); const std::complex arg1 = std::complex(0., 1.) * (z - x); const std::complex arg2 { -(x*x) - (arg1 * arg1) }; // const std::complex conv = 0.5 * std::exp(arg2) * RooMath::erfc( -1i * arg1 ); const std::complex conv = arg1.imag() < -5.? 0.5 * std::exp(arg2) * RooMath::erfc( -1i * arg1 ) : 0.5 * TMath::Exp(-(x * x)) * RooMath::faddeeva(arg1) ; const Double_t cos_conv = conv.real(); const Double_t sin_conv = conv.imag(); return {cos_conv, sin_conv}; } std::pair LauDecayTimePdf::smearedCoshSinhTerm(Double_t t, Double_t sigma, Double_t mu) { + using namespace std::complex_literals; + Double_t gamma = 1. / this->tau_->unblindValue(); - Double_t x = (t - mu) / (LauConstants::root2 * sigma); + std::complex x((t - mu) / (LauConstants::root2 * sigma),0.); + Double_t xRe = x.real(); Double_t z_H = ((gamma - deltaGamma_->unblindValue() / 2.) * sigma) / LauConstants::root2; Double_t z_L = ((gamma + deltaGamma_->unblindValue() / 2.) * sigma) / LauConstants::root2; - std::complex arg_H(0., z_H - x); - std::complex arg_L(0., z_L - x); + //Doing H + std::complex arg_H1(0., z_H - x.real()); + std::complex arg_H2 = -(x*x) - (arg_H1 * arg_H1); + + std::complex conv_H = arg_H1.imag() < -5. ? (0.5 * std::exp(arg_H2)) * RooMath::erfc(-1i * arg_H1) : 0.5 * TMath::Exp(-( xRe * xRe )) * RooMath::faddeeva(arg_H1); + + //Doing L + std::complex arg_L1(0., z_L - x.real()); + std::complex arg_L2 = -(x*x) - (arg_L1 * arg_L1); - std::complex conv_H = 0.5 * TMath::Exp(-(x * x)) * RooMath::faddeeva(arg_H); - std::complex conv_L = 0.5 * TMath::Exp(-(x * x)) * RooMath::faddeeva(arg_L); + std::complex conv_L = arg_L1.imag() < -5. ? (0.5 * std::exp(arg_L2)) * RooMath::erfc(-1i * arg_L1) : 0.5 * TMath::Exp(-( xRe * xRe )) * RooMath::faddeeva(arg_L1); std::complex cosh_conv = 0.5 * (conv_H + conv_L); std::complex sinh_conv = 0.5 * (conv_H - conv_L); return {cosh_conv.real(), sinh_conv.real()}; } Double_t LauDecayTimePdf::smearedExpTerm(Double_t t, Double_t sigma, Double_t mu) { using namespace std::complex_literals; const Double_t gamma = 1. / this->tau_->unblindValue(); const std::complex x((t - mu) / (LauConstants::root2 * sigma),0.); const Double_t xRe = x.real(); const Double_t z = (gamma * sigma) / LauConstants::root2; const std::complex arg1(0., z - x.real()); const std::complex arg2 = -(x * x) - (arg1 * arg1); const std::complex conv = arg1.imag() < -5. ? 0.5 * (std::exp(arg2)) * RooMath::erfc(-1i * arg1) : 0.5 * TMath::Exp(-(xRe * xRe)) * RooMath::faddeeva(arg1) ; // const std::complex conv = 0.5 * (std::exp(arg2)) * RooMath::erfc(-1i * arg1); return conv.real(); } std::pair LauDecayTimePdf::nonSmearedCosSinIntegral(Double_t minAbs, Double_t maxAbs) { // From 1407.0748, not clear whether complex is faster in this case Double_t gamma = 1. / this->tau_->unblindValue(); LauComplex denom = LauComplex(gamma, -this->deltaM_->unblindValue()); LauComplex exponent = LauComplex(-gamma, this->deltaM_->unblindValue()); LauComplex num0 = -exponent.scale(minAbs).exp(); LauComplex num1 = -exponent.scale(maxAbs).exp(); LauComplex integral = (num1 - num0) / denom; return {integral.re(), integral.im()}; } std::pair LauDecayTimePdf::smearedCosSinIntegral(Double_t minAbs, Double_t maxAbs, Double_t sigma, Double_t mu) { using namespace std::complex_literals; Double_t gamma = 1. / this->tau_->unblindValue(); Double_t x1 = (maxAbs - mu) / (LauConstants::root2 * sigma); Double_t x0 = (minAbs - mu) / (LauConstants::root2 * sigma); std::complex z = std::complex(gamma * sigma / LauConstants::root2, -this->deltaM_->unblindValue() * sigma / LauConstants::root2); std::complex arg1 = std::complex(0., 1.) * (z - x1); std::complex arg0 = std::complex(0., 1.) * (z - x0); std::complex integral = 0. + 0i; if(arg1.imag() < -5.) {integral = RooMath::erf(x1) - std::exp(-(x1 * x1) - (arg1 * arg1)) * RooMath::erfc(-1i * arg1);} else {integral = RooMath::erf(x1) - TMath::Exp(-(x1 * x1)) * RooMath::faddeeva(arg1);} if(arg0.imag() < -5.) {integral -= RooMath::erf(x0) - std::exp(-(x0 * x0) - (arg0 * arg0)) * RooMath::erfc(-1i * arg0);} else {integral -= RooMath::erf(x0) - TMath::Exp(-(x0 * x0)) * RooMath::faddeeva(arg0);} integral *= (sigma / (2. * LauConstants::root2 * z)); Double_t cos_integral = integral.real(); Double_t sin_integral = integral.imag(); return {cos_integral, sin_integral}; } Double_t LauDecayTimePdf::nonSmearedExpIntegral(Double_t minAbs, Double_t maxAbs) { const Double_t tau = tau_->unblindValue(); const Double_t Gamma = 1.0 / tau; return tau * ( TMath::Exp(-minAbs*Gamma) - TMath::Exp(-maxAbs*Gamma) ); } Double_t LauDecayTimePdf::smearedExpIntegral(Double_t minAbs, Double_t maxAbs, Double_t sigma, Double_t mu) { using namespace std::complex_literals; const Double_t gamma = 1. / this->tau_->unblindValue(); const Double_t x1 = (maxAbs - mu) / (LauConstants::root2 * sigma); const Double_t x0 = (minAbs - mu) / (LauConstants::root2 * sigma); const Double_t z = (gamma * sigma) / LauConstants::root2; std::complex arg1(0., z - x1); std::complex arg0(0., z - x0); std::complex integral = 0. + 0i; if(arg1.imag() < -5.) {integral = RooMath::erf(x1) - std::exp(-(x1 * x1) - (arg1 * arg1)) * RooMath::erfc(-1i * arg1);} else {integral = RooMath::erf(x1) - TMath::Exp(-(x1 * x1)) * RooMath::faddeeva(arg1);} if(arg0.imag() < -5.) {integral -= RooMath::erf(x0) - std::exp(-(x0 * x0) - (arg0 * arg0)) * RooMath::erfc(-1i * arg0);} else {integral -= RooMath::erf(x0) - TMath::Exp(-(x0 * x0)) * RooMath::faddeeva(arg0);} integral *= (sigma / (2. * LauConstants::root2 * z)); return integral.real(); } std::pair LauDecayTimePdf::nonSmearedCoshSinhIntegral(Double_t minAbs, Double_t maxAbs) { // Use exponential formualtion rather than cosh, sinh. // Fewer terms (reused for each), but not guaranteed to be faster. Double_t gamma = 1. / this->tau_->unblindValue(); Double_t gammaH = gamma - 0.5 * deltaGamma_->unblindValue(); Double_t gammaL = gamma - 0.5 * deltaGamma_->unblindValue(); Double_t nL1 = -TMath::Exp(-gammaL * maxAbs) / gammaL; Double_t nH1 = -TMath::Exp(-gammaH * maxAbs) / gammaH; Double_t nL0 = -TMath::Exp(-gammaL * minAbs) / gammaL; Double_t nH0 = -TMath::Exp(-gammaH * minAbs) / gammaH; Double_t cosh_integral = 0.5 * ( (nH1 + nL1) - (nH0 + nL0) ); Double_t sinh_integral = 0.5 * ( (nH1 - nL1) - (nH0 - nL0) ); return {cosh_integral, sinh_integral}; } std::pair LauDecayTimePdf::smearedCoshSinhIntegral(Double_t minAbs, Double_t maxAbs, Double_t sigma, Double_t mu) { using namespace std::complex_literals; Double_t gamma = 1. / this->tau_->unblindValue(); Double_t x1 = (maxAbs - mu) / (LauConstants::root2 * sigma); Double_t x0 = (minAbs - mu) / (LauConstants::root2 * sigma); Double_t z_H = ((gamma - deltaGamma_->unblindValue() / 2.) * sigma) / LauConstants::root2; std::complex arg1_H(0., z_H - x1); std::complex arg0_H(0., z_H - x0); std::complex integral_H = 0. + 0i; if(arg1_H.imag() < -5.) {integral_H = RooMath::erf(x1) - std::exp(-(x1 * x1) - (arg1_H * arg1_H)) * RooMath::erfc(-1i * arg1_H);} else {integral_H = RooMath::erf(x1) - TMath::Exp(-(x1 * x1)) * RooMath::faddeeva(arg1_H);} if(arg0_H.imag() < -5.) {integral_H -= RooMath::erf(x0) - std::exp(-(x0 * x0) - (arg0_H * arg0_H)) * RooMath::erfc(-1i * arg0_H);} else {integral_H -= RooMath::erf(x0) - TMath::Exp(-(x0 * x0)) * RooMath::faddeeva(arg0_H);} integral_H *= (sigma / (2. * LauConstants::root2 * z_H)); // Same for light (L) Double_t z_L = ((gamma + deltaGamma_->unblindValue() / 2.) * sigma) / LauConstants::root2; std::complex arg1_L(0., z_L - x1); std::complex arg0_L(0., z_L - x0); std::complex integral_L = 0. + 0i; if(arg1_L.imag() < -5.) {integral_L = RooMath::erf(x1) - std::exp(-(x1 * x1) - (arg1_L * arg1_L)) * RooMath::erfc(-1i * arg1_L);} else {integral_L = RooMath::erf(x1) - TMath::Exp(-(x1 * x1)) * RooMath::faddeeva(arg1_L);} if(arg0_L.imag() < -5.) {integral_L -= RooMath::erf(x0) - std::exp(-(x0 * x0) - (arg0_L * arg0_L)) * RooMath::erfc(-1i * arg0_L);} else {integral_L -= RooMath::erf(x0) - TMath::Exp(-(x0 * x0)) * RooMath::faddeeva(arg0_L);} integral_L *= (sigma / (2. * LauConstants::root2 * z_L)); std::complex cosh_integral = 0.5 * (integral_H + integral_L); std::complex sinh_integral = 0.5 * (integral_H - integral_L); return {cosh_integral.real(), sinh_integral.real()}; } void LauDecayTimePdf::calcNorm() { // first reset integrals to zero normTermExp_ = 0.0; normTermCos_ = 0.0; normTermSin_ = 0.0; normTermCosh_ = 0.0; normTermSinh_ = 0.0; // Get all the up to date parameter values std::vector frac(nGauss_); std::vector mean(nGauss_); std::vector sigma(nGauss_); // TODO - why do we do the fractions this way around? frac[0] = 1.0; for (UInt_t i(0); iunblindValue(); sigma[i] = sigma_[i]->unblindValue(); if (i != 0) { frac[i] = frac_[i-1]->unblindValue(); frac[0] -= frac[i]; } } // Scale the gaussian parameters by the per-event error on Delta t (if appropriate) for (UInt_t i(0); i doSmearing() ) {this->calcSmearedPartialIntegrals( minAbscissa_, maxAbscissa_ , 1., mean, sigma, frac);} else {this->calcNonSmearedPartialIntegrals( minAbscissa_, maxAbscissa_ );} break; case EfficiencyMethod::Binned : // Efficiency varies as piecewise constant // Total integral is sum of integrals in each bin, each weighted by efficiency in that bin for ( Int_t bin{1}; bin <= effiHist_->GetNbinsX(); ++bin ) { const Double_t loEdge {effiHist_->GetBinLowEdge(bin)}; const Double_t hiEdge {loEdge + effiHist_->GetBinWidth(bin)}; const Double_t effVal {effiHist_->GetBinContent(bin)}; if ( this -> doSmearing() ) {this->calcSmearedPartialIntegrals( loEdge, hiEdge, effVal, mean, sigma, frac );} else {this->calcNonSmearedPartialIntegrals( loEdge, hiEdge, effVal );} } break; case EfficiencyMethod::Spline : // Efficiency varies as piecewise polynomial // TODO - to be worked out what to do here std::cerr << "WARNING in LauDecayTimePdf::calcNorm : normalisation integrals for spline acceptance not yet implemented - effect of acceptance will be neglected!" << std::endl; if ( this -> doSmearing() ) {this->calcSmearedPartialIntegrals( minAbscissa_, maxAbscissa_ , 1., mean, sigma, frac);} else {this->calcNonSmearedPartialIntegrals( minAbscissa_, maxAbscissa_ );} break; } // TODO - should we check here that all terms we expect to use are now non-zero? } // TODO - Mildly concerned this is void rather than returning the integrals // (but this would require refactoring for different return values). // As long as it doesn't get called outside of calcNorm() it should be fine - DPO void LauDecayTimePdf::calcNonSmearedPartialIntegrals(const Double_t minAbs, const Double_t maxAbs, const Double_t weight) { // TODO - this is all neglecting resolution at the moment Double_t normTermExp {0.0}; if (method_ == DecayTime) { normTermExp = weight * this -> nonSmearedExpIntegral(minAbs, maxAbs); } else if (method_ == DecayTimeDiff) { const Double_t tau = tau_->unblindValue(); const Double_t Gamma = 1.0 / tau; // TODO - there should be some TMath::Abs here surely? normTermExp = weight * tau * (2.0 - TMath::Exp(-maxAbs*Gamma) - TMath::Exp(-minAbs*Gamma)); } normTermExp_ += normTermExp; // Normalisation factor for B0 decays if ( type_ == ExpTrig ) { normTermCosh_ += normTermExp; auto [cosIntegral, sinIntegral] = this->nonSmearedCosSinIntegral(minAbs, maxAbs); normTermCos_ += weight * cosIntegral; normTermSin_ += weight * sinIntegral; } // Normalisation factor for Bs decays else if ( type_ == ExpHypTrig ) { auto [coshIntegral, sinhIntegral] = this->nonSmearedCoshSinhIntegral(minAbs, maxAbs); normTermCosh_ += weight * coshIntegral; normTermSinh_ += weight * sinhIntegral; auto [cosIntegral, sinIntegral] = this->nonSmearedCosSinIntegral(minAbs, maxAbs); normTermCos_ += weight * cosIntegral; normTermSin_ += weight * sinIntegral; } } void LauDecayTimePdf::calcSmearedPartialIntegrals(const Double_t minAbs, const Double_t maxAbs, const Double_t weight, const std::vector& means, const std::vector& sigmas, const std::vector& fractions) { // TODO - this is all neglecting resolution at the moment for (UInt_t i(0); i smearedExpIntegral(minAbs, maxAbs, sigmas[i], means[i]); } else if (method_ == DecayTimeDiff) { const Double_t tau = tau_->unblindValue(); const Double_t Gamma = 1.0 / tau; // TODO - there should be some TMath::Abs here surely? normTermExp = weight * tau * (2.0 - TMath::Exp(-maxAbs*Gamma) - TMath::Exp(-minAbs*Gamma)); } normTermExp_ += fractions[i] * normTermExp; // Normalisation factor for B0 decays if ( type_ == ExpTrig ) { normTermCosh_ += fractions[i] * normTermExp; auto [cosIntegral, sinIntegral] = this->smearedCosSinIntegral(minAbs, maxAbs, sigmas[i], means[i]); normTermCos_ += fractions[i] * weight * cosIntegral; normTermSin_ += fractions[i] * weight * sinIntegral; } // Normalisation factor for Bs decays else if ( type_ == ExpHypTrig ) { auto [coshIntegral, sinhIntegral] = this->smearedCoshSinhIntegral(minAbs, maxAbs, sigmas[i], means[i]); normTermCosh_ += fractions[i] * weight * coshIntegral; normTermSinh_ += fractions[i] * weight * sinhIntegral; auto [cosIntegral, sinIntegral] = this->smearedCosSinIntegral(minAbs, maxAbs, sigmas[i], means[i]); normTermCos_ += fractions[i] * weight * cosIntegral; normTermSin_ += fractions[i] * weight * sinIntegral; } } } Double_t LauDecayTimePdf::generateError(Bool_t forceNew) { if (errHist_ && (forceNew || !abscissaErrorGenerated_)) { LauFitData errData = errHist_->generate(0); abscissaError_ = errData.find(this->varErrName())->second; abscissaErrorGenerated_ = kTRUE; } else { while (forceNew || !abscissaErrorGenerated_) { abscissaError_ = LauRandom::randomFun()->Landau(errorDistMPV_,errorDistSigma_); if (abscissaError_ < maxAbscissaError_ && abscissaError_ > minAbscissaError_) { abscissaErrorGenerated_ = kTRUE; forceNew = kFALSE; } } } return abscissaError_; } /* LauFitData LauDecayTimePdf::generate(const LauKinematics* kinematics) { // generateError SHOULD have been called before this // function but will call it here just to make sure // (has ns effect if has already been called) abscissaError_ = this->generateError(); // If the PDF is scaled by the per-event error then need to update the PDF height for each event Bool_t scale(kFALSE); for (std::vector::const_iterator iter = scaleMeans_.begin(); iter != scaleMeans_.end(); ++iter) { scale |= (*iter); } for (std::vector::const_iterator iter = scaleWidths_.begin(); iter != scaleWidths_.end(); ++iter) { scale |= (*iter); } if (scale || (!this->heightUpToDate() && !this->cachePDF())) { this->calcPDFHeight(kinematics); this->heightUpToDate(kTRUE); } // Generate the value of the abscissa. Bool_t gotAbscissa(kFALSE); Double_t genVal(0.0); Double_t genPDFVal(0.0); LauFitData genAbscissa; const Double_t xMin = this->minAbscissa(); const Double_t xMax = this->maxAbscissa(); const Double_t xRange = xMax - xMin; while (!gotAbscissa) { genVal = LauRandom::randomFun()->Rndm()*xRange + xMin; this->calcLikelihoodInfo(genVal, abscissaError_); genPDFVal = this->getUnNormLikelihood(); if (LauRandom::randomFun()->Rndm() <= genPDFVal/this->getMaxHeight()) {gotAbscissa = kTRUE;} if (genPDFVal > this->getMaxHeight()) { std::cerr<<"Warning in LauDecayTimePdf::generate()." <<" genPDFVal = "<getMaxHeight()<<" for the abscissa = "<varName()] = genVal; // mark that we need a new error to be generated next time abscissaErrorGenerated_ = kFALSE; return genAbscissa; } */ void LauDecayTimePdf::setErrorHisto(const TH1* hist) { if ( errHist_ != 0 ) { std::cerr<<"WARNING in LauDecayTimePdf::setErrorHisto : Error histogram already set, not doing it again."<varErrName(), hist, this->minAbscissaError(), this->maxAbscissaError()); } void LauDecayTimePdf::setHistoPdf(const TH1* hist) { if ( pdfHist_ != 0 ) { std::cerr<<"WARNING in LauDecayTimePdf::setHistoPdf : PDF histogram already set, not doing it again."<varName(), hist, this->minAbscissa(), this->maxAbscissa()); } void LauDecayTimePdf::setEffiHist(const TH1* hist) { if ( effiHist_ != nullptr ) { std::cerr << "WARNING in LauDecayTimePdf::setEffiHist : efficiency histogram already set, not doing it again." << std::endl; return; } if ( hist == nullptr ) { std::cerr << "WARNING in LauDecayTimePdf::setEffiHist : supplied efficiency histogram pointer is null." << std::endl; return; } // Check boundaries of histogram align with our abscissa's range const Double_t axisMin {hist->GetXaxis()->GetXmin()}; const Double_t axisMax {hist->GetXaxis()->GetXmax()}; if ( TMath::Abs(minAbscissa_ - axisMin)>1e-6 || TMath::Abs(maxAbscissa_ - axisMax)>1e-6 ) { std::cerr << "WARNING in LauDecayTimePdf::setEffiHist : mismatch in range between supplied histogram and abscissa\n" << " : histogram range: " << axisMin << " - " << axisMax << "\n" << " : abscissa range: " << minAbscissa_ << " - " << maxAbscissa_ << "\n" << " : Disregarding this histogram." << std::endl; return; } effiHist_ = dynamic_cast( hist->Clone() ); //Since we didn't do it in the constructor this -> calcNorm(); } void LauDecayTimePdf::setEffiSpline(Lau1DCubicSpline* spline) { if ( effiFun_ != 0 ) { std::cerr<<"WARNING in LauDecayTimePdf::setEffiPdf : efficiency function already set, not doing it again."< effis = effiFun_->getYValues(); effiPars_.resize( effis.size() ); size_t index = 0; for( Double_t& effi : effis ) { effiPars_[ index ] = new LauParameter( Form( "%s_Knot_%lu", varName_.Data() ,index ), effi, 0.0, 1.0, kTRUE ); ++index; } } LauAbsRValue* LauDecayTimePdf::findParameter(const TString& parName) { for ( std::vector::iterator iter = param_.begin(); iter != param_.end(); ++iter ) { if ((*iter)->name().Contains(parName)) { return (*iter); } } std::cerr << "ERROR in LauDecayTimePdf::findParameter : Parameter \"" << parName << "\" not found." << std::endl; return 0; } const LauAbsRValue* LauDecayTimePdf::findParameter(const TString& parName) const { for ( std::vector::const_iterator iter = param_.begin(); iter != param_.end(); ++iter ) { if ((*iter)->name().Contains(parName)) { return (*iter); } } std::cerr << "ERROR in LauDecayTimePdf::findParameter : Parameter \"" << parName << "\" not found." << std::endl; return 0; } void LauDecayTimePdf::updatePulls() { for ( std::vector::iterator iter = param_.begin(); iter != param_.end(); ++iter ) { std::vector params = (*iter)->getPars(); for (std::vector::iterator params_iter = params.begin(); params_iter != params.end(); ++params_iter ) { if (!(*iter)->fixed()) { (*params_iter)->updatePull(); } } } } void LauDecayTimePdf::updateEffiSpline(std::vector effiPars) { if (effiPars.size() != effiFun_->getnKnots()){ std::cerr<<"ERROR in LauDecayTimePdf::updateEffiSpline : number of efficiency parameters is not equal to the number of spline knots."<Exit(EXIT_FAILURE); } effiFun_->updateYValues(effiPars); }