Index: trunk/manipulate_input_files/generate_data_with_FH_HB5.F =================================================================== --- trunk/manipulate_input_files/generate_data_with_FH_HB5.F (revision 574) +++ trunk/manipulate_input_files/generate_data_with_FH_HB5.F (revision 575) @@ -1,1272 +1,1272 @@ ********************************************************************* * HBwithFH * * Updated demo program for HiggsBounds 4 using MSSM input from * FeynHiggs (FH version > 2.9.4 required) * * gfortran -L../HiggsBounds-5/ -L/Users/timstefaniak/Work/Codes/FeynHiggs-2.12.2/x86_64-Darwin/lib -I/Users/timstefaniak/Work/Codes/FeynHiggs-2.12.2/x86_64-Darwin/include generate_data_with_FH_HB5.F -o generate_data_with_FH_HB5 -lHB -lFH ********************************************************************* program generate_data_with_FH_HB5 implicit none integer error,status character(LEN=200) bashcommand c used by FHHiggsCorr double precision MHiggs(4) double complex SAeff, UHiggs(3,3), ZHiggs(3,3) c used by FHSelectUZ: integer uzint, uzext, mfeff c used by FHCouplings: #include "FHCouplings.h" double complex couplings(ncouplings), couplingsms(ncouplingsms) double precision gammas(ngammas), gammasms(ngammasms) integer fast c used by FHHiggsProd: double precision sqrts, prodxs(nprodxs) c used by FHGetPara: integer nmfv c This is for FH 2.10.x double precision MSf(2,5,3), MASf(6,5), MCha(2), MNeu(4) double complex USf(2,2,5,3), UASf(6,6,5) double complex UCha(2,2), VCha(2,2), ZNeu(4,4) double complex DeltaMB double precision MGl double precision MHtree(4), SAtree Cc used by FHGetPara: C integer nmfv C double precision MASf(6,4), MCha(2), MNeu(4) C double complex UASf(6,6,4) C double complex UCha(2,2), VCha(2,2), ZNeu(4,4) C double complex DeltaMB C double precision MGl C double precision MHtree(4), SAtree c used by FHRetrieveSMPara: double precision invAlfa, AlfasMZ, GF double precision ME, MU, MD, MM, MC, MS, ML, MB double precision MW, MZ double precision CKMlambda, CKMA, CKMrhobar, CKMetabar c used by initialize_HiggsBounds integer nHiggsneut,nHiggsplus parameter (nHiggsneut = 3) parameter (nHiggsplus = 1) character(LEN=5) whichanalyses c used by HiggsBounds_neutral_input_hadr character(LEN=5) collider_str double precision Mh(3),GammaTotal_hj(3) integer CP_value(3) double precision CS_lep_hjZ_ratio(3), & CS_lep_bbhj_ratio(3),CS_lep_tautauhj_ratio(3), & CS_lep_hjhi_ratio(3,3),CS_hj_ratio(4,3), & CS_gg_hj_ratio(4,3),CS_bb_hj_ratio(4,3), & CS_hjW_ratio(4,3),CS_hjZ_ratio(4,3), & CS_vbf_ratio(4,3),CS_tthj_ratio(4,3), & CS_thj_tchan_ratio(4,3),CS_thj_schan_ratio(4,3), & CS_hjhi(4,3,3), & BR_hjss(3),BR_hjcc(3), & BR_hjbb(3),BR_hjtt(3),BR_hjmumu(3),BR_hjtautau(3), & BR_hjWW(3),BR_hjZZ(3),BR_hjZga(3), & BR_hjgaga(3),BR_hjgg(3), & BR_hjinvisible(3),BR_hkhjhi(3,3,3), & BR_hjhiZ(3,3),BR_hjemu(3),BR_hjetau(3),BR_hjmutau(3), & BR_hjHpiW(3,1) c used by HiggsBounds_charged_input double precision Mhplus(1),GammaTotal_Hpj(1), & CS_lep_HpjHmj_ratio(1), & BR_tWpb,BR_tHpjb(1),BR_Hpjcs(1),BR_Hpjcb(1),BR_Hpjtaunu(1), & BR_Hpjtb(1),BR_HpjWZ(1),BR_HpjhiW(1,3), & CS_Hpjtb(4,1), CS_Hpjcb(4,1), CS_Hpjbjet(4,1), CS_Hpjcjet(4,1), & CS_Hpjjetjet(4,1), CS_HpjW(4,1),CS_HpjZ(4,1), & CS_vbf_Hpj(4,1), CS_HpjHmj(4,1), CS_Hpjhi(4,1,3) c used by set_mass_uncertainties double precision dmhneut(nHiggsneut) double precision dmhch(nHiggsplus) c used for hadronic HB input double precision TEV_XS_hj_ratio(3),TEV_XS_gg_hj_ratio(3), & TEV_XS_bb_hj_ratio(3),TEV_XS_hjW_ratio(3), & TEV_XS_hjZ_ratio(3),TEV_XS_vbf_ratio(3), & TEV_XS_hjtt_ratio(3),TEV_XS_hjt_tchan_ratio(3), & TEV_XS_hjt_schan_ratio(3) double precision LHC7_XS_hj_ratio(3),LHC7_XS_gg_hj_ratio(3), & LHC7_XS_bb_hj_ratio(3),LHC7_XS_hjW_ratio(3), & LHC7_XS_hjZ_ratio(3),LHC7_XS_vbf_ratio(3), & LHC7_XS_hjtt_ratio(3),LHC7_XS_hjt_tchan_ratio(3), & LHC7_XS_hjt_schan_ratio(3) double precision LHC8_XS_hj_ratio(3),LHC8_XS_gg_hj_ratio(3), & LHC8_XS_bb_hj_ratio(3),LHC8_XS_hjW_ratio(3), & LHC8_XS_hjZ_ratio(3),LHC8_XS_vbf_ratio(3), & LHC8_XS_hjtt_ratio(3),LHC8_XS_hjt_tchan_ratio(3), & LHC8_XS_hjt_schan_ratio(3) double precision LHC13_XS_hj_ratio(3),LHC13_XS_gg_hj_ratio(3), & LHC13_XS_bb_hj_ratio(3),LHC13_XS_hjW_ratio(3), & LHC13_XS_hjZ_ratio(3),LHC13_XS_vbf_ratio(3), & LHC13_XS_hjtt_ratio(3),LHC13_XS_hjt_tchan_ratio(3), & LHC13_XS_hjt_schan_ratio(3) c model parameter double precision TB, massA0, Xt, MSusy,MHp_in double complex mupar, At c misc: integer i,j,k,as,t,ii,x,y,collider double precision norm,CW2,Pi double precision ghjbb(3),ghjWW(3),ghjZZ(3),ghjZga(3), & ghjgg(3),ghjhiZ(3,3),ghjgaga(3) double precision ghjbb_s(3),ghjbb_p(3) double precision ghjtt_s(3),ghjtt_p(3) double precision ghjss_s(3),ghjss_p(3) double precision ghjcc_s(3),ghjcc_p(3) double precision ghjtautau_s(3),ghjtautau_p(3) double precision ghjmumu_s(3),ghjmumu_p(3) integer sneutrino_lspcandidate_number logical invisible_lsp double precision lspcandidate_mass character*100 stem Pi = 3.1415926535897932384626433832795029D0 * * * * * * * * * * * * * * * * * * * * * C dMhneut = (/2.D0, 2.D0, 0.D0/) dMhneut = (/2.D0, 2.D0, 0.D0/) dMhch = (/0.D0/) C call set_mass_uncertainties(dmhneut,dmhch) -C stem = "output/mhmod+_" - stem = "output/lowMHaltv_" + stem = "output/mhmod+_" +C stem = "output/lowMHaltv_" C stem = "output/test_" C stem = "output/try1_" write(*,*) trim(adjustl(stem)) ii=0 MSusy = 1500.0D0 C Xt = 1.5D0*MSusy C do x=1,1 C do y=1,1 C massA0 = 800.0D0 + 10.0D0*(x-1) C TB = 8D0 + 0.5D0*(y-1) C mupar = 7000.0D0 + 25.0D0*(x-1) C -- low MHaltv: do x= 1,21 do y= 1,46 At = -70.0D0 mupar = 6000.0D0 MHp_in = 180.0D0 + (x-1)*2.0D0 TB = 4.5D0 + 0.1D0*(y-1) C if(mod(x,10).eq.0) write(*,*) 'massA0 = ', massA0 c The string 'whichanalyses' determines which subset of experimental c results are used. In this example, we've used the option 'LandH', c which instructs HiggsBounds to use tables of results c from LEP, Tevatron and LHC (i.e. the full set of c results supplied with HiggsBounds). c whichanalyses='LandH' c The subroutine initialize_HiggsBounds reads in all necessary c tables etc. c It must be called before any of the other HiggsBounds subroutines. c call initialize_HiggsBounds(nHiggsneut,nHiggsplus,whichanalyses) c If you would like to perform scans over variables, the subroutine c initialize_HiggsBounds (and finish_HiggsBounds) should be called c outside the do-loops in order to save time. * * * * * * * * * * * * * * * * * * * * * c calls to FH subroutines: c the subroutines setFlags, setPara, setSLHA c are also contained in this file call setFlags * either use setPara to set the parameters directly * or use setSLHA to read them from an SLHA file Cprint*,"Setting parameters (MA,TB,Xt,MSusy) = ", C & massA0,TB,Xt,MSusy call setPara2(TB, Mhp_in, mupar, At, MSusy) Ccall setPara(TB, massA0, Xt, MSusy) c call setSLHA("tmp.slha") call FHGetPara(error, nmfv, MSf, USf,MASf, UASf, & MCha, UCha, VCha, MNeu, ZNeu, DeltaMB, MGl, & MHtree, SAtree) if( error .ne. 0 ) cycle call FHHiggsCorr(error, MHiggs, SAeff, UHiggs, ZHiggs) if( error .ne. 0 ) cycle c NOTE: we are setting uzint=uzext mfeff=1 uzint=2 uzext=2 call FHSelectUZ(error, uzint, uzext, mfeff) if( error .ne. 0 ) cycle fast=1 call FHCouplings(error, & couplings, couplingsms, gammas, gammasms, fast) if( error .ne. 0 ) cycle ii=ii+1 call FHRetrieveSMPara(error, & invAlfa, AlfasMZ, GF, & ME, MU, MD, MM, MC, MS, ML, MB, & MW, MZ, & CKMlambda, CKMA, CKMrhobar, CKMetabar) * * * * * * * * * * * * * * * * * * * * * do i=1,3 Mh(i)=MHiggs(i) GammaTotal_hj(i) = GammaTot(i) BR_hjss(i) = BR(H0FF(i,4,2,2)) BR_hjcc(i) = BR(H0FF(i,3,2,2)) BR_hjbb(i) = BR(H0FF(i,4,3,3)) BR_hjtt(i) = BR(H0FF(i,3,3,3)) BR_hjmumu(i) = BR(H0FF(i,2,2,2)) BR_hjtautau(i) = BR(H0FF(i,2,3,3)) BR_hjemu(i) = BR(H0FF(i,2,1,2)) BR_hjetau(i) = BR(H0FF(i,2,1,3)) BR_hjmutau(i) = BR(H0FF(i,2,2,3)) BR_hjWW(i) = BR(H0VV(i,4)) BR_hjgaga(i) = BR(H0VV(i,1)) BR_hjZga(i) = BR(H0VV(i,2)) BR_hjZZ(i) = BR(H0VV(i,3)) BR_hjgg(i) = BR(H0VV(i,5)) do collider=1,4 c We would like FH to calculate LHC cross sections select case(collider) case(1) sqrts=2.0D0 case(2) sqrts=7.0D0 case(3) sqrts=8.0D0 case(4) sqrts=13.0D0 end select call FHHiggsProd(error, sqrts, prodxs) if( error .ne. 0 ) stop CS_gg_hj_ratio(collider,i)=ggh(i)/gghSM(i) if(ggh(i).lt.0.0D0) CS_gg_hj_ratio(collider,i) =0.0D0 C write(*,*) "i,collider,CS_gghj_ratio = ", i,collider, C & CS_gg_hj_ratio(collider,i),ggh(i),gghSM(i) CS_bb_hj_ratio(collider,i)=bbh(i)/bbhSM(i) if(bbh(i).lt.0.0D0) CS_bb_hj_ratio(collider,i) =0.0D0 C write(*,*) "i,collider,CS_bbhj_ratio = ", i,collider, C & CS_bb_hj_ratio(collider,i),bbh(i),bbhSM(i) if(ggh(i).ge.0.0D0.and.bbh(i).ge.0.0D0) then CS_hj_ratio(collider,i)=(ggh(i)+bbh(i))/ & (gghSM(i)+bbhSM(i)) else CS_hj_ratio(collider,i)=0.0D0 endif CS_hjW_ratio(collider,i)=Wh(i)/WhSM(i) if(Wh(i).lt.0.0D0) CS_hjW_ratio(collider,i) =0.0D0 C write(*,*) "i,collider,CS_hjW_ratio = ", i,collider, C & CS_hjW_ratio(collider,i),Wh(i),WhSM(i) CS_hjZ_ratio(collider,i)=Zh(i)/ZhSM(i) if(Zh(i).lt.0.0D0) CS_hjZ_ratio(collider,i) =0.0D0 C write(*,*) "i,collider,CS_hjZ_ratio = ", i,collider, C & CS_hjZ_ratio(collider,i),Zh(i),ZhSM(i) CS_vbf_ratio(collider,i)=qqh(i)/qqhSM(i) if(qqh(i).lt.0.0D0) CS_vbf_ratio(collider,i) =0.0D0 C write(*,*) "i,collider,CS_qqhj_ratio = ", i,collider, C & CS_vbf_ratio(collider,i),qqh(i),qqhSM(i) CS_tthj_ratio(collider,i)=tth(i)/tthSM(i) if(tth(i).lt.0.0D0) CS_tthj_ratio(collider,i) =0.0D0 C write(*,*) "i,collider,CS_tthj_ratio = ", i,collider, C & CS_tthj_ratio(collider,i),tth(i),tthSM(i) CS_thj_tchan_ratio(collider,i)=CS_tthj_ratio(collider,i)! NOT CALCULATED YET BY FH CS_thj_schan_ratio(collider,i)=CS_tthj_ratio(collider,i)! NOT CALCULATED YET BY FH do j=1,3 CS_hjhi(collider,i,j) = 0.0D0 ! NOT CALCULATED YET BY FH enddo CS_Hpjtb(collider,1)=tHm2/1000.0D0 ! Charged Higgs cross section (fb->pb) C write(*,*) "Charged Higgs, collider ", tHm2/1000.0D0, collider enddo ghjgg(i) = sqrt(CS_gg_hj_ratio(4,i)) ghjZga(i) = sqrt(Gamma(H0VV(i,2))/GammaSM(H0VV(i,2))) ghjgaga(i) = sqrt(Gamma(H0VV(i,1))/GammaSM(H0VV(i,1))) BR_HpjhiW(1,i)=BR(HpHV(i)) BR_hjHpiW(i,1)=0.0D0 ! NOT CALCULATED BY FH ghjbb_s(i)=abs(RCoupling(H0FF(i,4,3,3)) & /RCouplingSM(H0FF(i,4,3,3))+ & LCoupling(H0FF(i,4,3,3)) & /LCouplingSM(H0FF(i,4,3,3)))/2.0D0 ghjbb_p(i)=abs(RCoupling(H0FF(i,4,3,3)) & /RCouplingSM(H0FF(i,4,3,3))- & LCoupling(H0FF(i,4,3,3)) & /LCouplingSM(H0FF(i,4,3,3)))/2.0D0 ghjtautau_s(i)=abs(RCoupling(H0FF(i,2,3,3)) & /RCouplingSM(H0FF(i,2,3,3))+ & LCoupling(H0FF(i,2,3,3)) & /LCouplingSM(H0FF(i,2,3,3)))/2.0D0 ghjtautau_p(i)=abs(RCoupling(H0FF(i,2,3,3)) & /RCouplingSM(H0FF(i,2,3,3))- & LCoupling(H0FF(i,2,3,3)) & /LCouplingSM(H0FF(i,2,3,3)))/2.0D0 ghjtt_s(i)=abs(RCoupling(H0FF(i,3,3,3)) & /RCouplingSM(H0FF(i,3,3,3))+ & LCoupling(H0FF(i,3,3,3)) & /LCouplingSM(H0FF(i,3,3,3)))/2.0D0 ghjtt_p(i)=abs(RCoupling(H0FF(i,3,3,3)) & /RCouplingSM(H0FF(i,3,3,3))- & LCoupling(H0FF(i,3,3,3)) & /LCouplingSM(H0FF(i,3,3,3)))/2.0D0 ghjss_s(i)=abs(RCoupling(H0FF(i,4,2,2)) & /RCouplingSM(H0FF(i,4,2,2))+ & LCoupling(H0FF(i,4,2,2)) & /LCouplingSM(H0FF(i,4,2,2)))/2.0D0 ghjss_p(i)=abs(RCoupling(H0FF(i,4,2,2)) & /RCouplingSM(H0FF(i,4,2,2))- & LCoupling(H0FF(i,4,2,2)) & /LCouplingSM(H0FF(i,4,2,2)))/2.0D0 ghjmumu_s(i)=abs(RCoupling(H0FF(i,2,2,2)) & /RCouplingSM(H0FF(i,2,2,2))+ & LCoupling(H0FF(i,2,2,2)) & /LCouplingSM(H0FF(i,2,2,2)))/2.0D0 ghjmumu_p(i)=abs(RCoupling(H0FF(i,2,2,2)) & /RCouplingSM(H0FF(i,2,2,2))- & LCoupling(H0FF(i,2,2,2)) & /LCouplingSM(H0FF(i,2,2,2)))/2.0D0 ghjcc_s(i)=abs(RCoupling(H0FF(i,3,2,2)) & /RCouplingSM(H0FF(i,3,2,2))+ & LCoupling(H0FF(i,3,2,2)) & /LCouplingSM(H0FF(i,3,2,2)))/2.0D0 ghjcc_p(i)=abs(RCoupling(H0FF(i,3,2,2)) & /RCouplingSM(H0FF(i,3,2,2))- & LCoupling(H0FF(i,3,2,2)) & /LCouplingSM(H0FF(i,3,2,2)))/2.0D0 if( ghjbb_p(i)**2.0D0.lt.1.0D-10)then CP_value(i) = 1 elseif( ghjbb_s(i)**2.0D0.lt.1.0D-10)then CP_value(i) = -1 else CP_value(i) = 0 endif CS_lep_bbhj_ratio(i) = ghjbb_s(i)**2.0D0+ghjbb_p(i)**2.0D0 CS_lep_tautauhj_ratio(i) = ghjtautau_s(i)**2.0D0+ghjtautau_p(i)**2.0D0 ghjWW(i)= sqrt(dble( Coupling(H0VV(i,4)) & / CouplingSM(H0VV(i,4)) )**2.0D0 & + dimag( Coupling(H0VV(i,4)) & / CouplingSM(H0VV(i,4)) )**2.0D0) ghjZZ(i)= sqrt(dble( Coupling(H0VV(i,3)) & / CouplingSM(H0VV(i,3)) )**2.0D0 & + dimag( Coupling(H0VV(i,3)) & / CouplingSM(H0VV(i,3)) )**2.0D0) CS_lep_hjZ_ratio(i) = ghjZZ(i)**2.0D0 enddo norm=GF*sqrt(2.0D0)*MZ**2.0D0 do j=1,3 do i=1,3 ghjhiZ(j,i)= sqrt(( & dble( Coupling(H0HV(j,i)) )**2.0D0 & + dimag( Coupling(H0HV(j,i)) )**2.0D0 & ) & /norm) CS_lep_hjhi_ratio(j,i) = ghjhiZ(j,i)**2.0D0 BR_hjhiZ(j,i)=BR(H0HV(j,i)) C write(*,*) "BR_hjhiZ(",j,i,") = ",BR_hjhiZ(j,i) do k=1,3 BR_hkhjhi(k,j,i)=BR(H0HH(k,j,i)) enddo enddo enddo c higgs->neutralino1 neutralino1 contributes the invisible Higgs decay width c when neutralino1 or sneutrino is the LSP do i=1,3 sneutrino_lspcandidate_number=0 invisible_lsp=.True. c first determine whether lightest sneutrino is lighter than the lightest neutralino c c sneutrino_lspcandidate_number=0 indicates that lightest neutralino is c lighter than all the sneutrinos lspcandidate_mass=MNeu(1) do as=1,3 if( MASf(as,1) .lt. lspcandidate_mass )then lspcandidate_mass=MASf(as,1) sneutrino_lspcandidate_number=as endif enddo if( MCha(1) .lt. lspcandidate_mass )then invisible_lsp=.False. elseif( MGl .lt. lspcandidate_mass )then invisible_lsp=.False. else do as=1,6 do t=2,4 if( MASf(as,t) .lt. lspcandidate_mass )then invisible_lsp=.False. endif enddo enddo endif if(invisible_lsp)then if(sneutrino_lspcandidate_number.eq.0)then BR_hjinvisible(i) = BR(H0NeuNeu(i,1,1)) else BR_hjinvisible(i) = BR(H0SfSf(i,1,1,1,as)) endif else BR_hjinvisible(i) = 0.0D0 endif enddo * * * * * * * * * * * * * * * * * * * * * c Charged Higgs input Mhplus(1) = MHiggs(4) GammaTotal_Hpj(1) = GammaTot(4) CS_lep_HpjHmj_ratio(1) = 1.0D0 BR_tWpb = BR( tBF(1) ) BR_tHpjb(1) = BR( tBF(2) ) BR_Hpjcs(1) = BR( HpFF(2,2,2) ) BR_Hpjcb(1) = BR( HpFF(2,2,3) ) BR_Hpjtaunu(1) = BR( HpFF(1,3,3) ) BR_Hpjtb(1) = BR( HpFF(2,3,3) ) BR_HpjWZ(1) = 0.0D0 ! NOT CALCULATED BY FH (0 in the MSSM at tree-level) c Get 13 TeV pp -> tbH+ cross section from external code, c using the 2HDM-II -> MSSM SUSY NLO QCD rescaling outlined at c https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGMSSMCharged C write(*,*) TB/sqrt(1+real(DeltaMB)) write(bashcommand,'(A,2F8.3,A)') & "chargedHiggsProduction_calculator/xsecHptb 2 ", & Mhplus(1), TB/sqrt(1+real(DeltaMB)), " > xsecHptb.out" C write(*,*) bashcommand call system(bashcommand) open(14,file='xsecHptb.out',action='read',status='old', & iostat=status) if(status.eq.0)then read(14,*,IOSTAT=status) CS_Hpjtb(4,1) if(status.ne.0) then CS_Hpjtb(4,1)=0.0D0 endif endif close(14) CS_Hpjcb(:,1) = 0.0D0 ! NOT CALCULATED BY FH CS_Hpjbjet(:,1) = 0.0D0 ! NOT CALCULATED BY FH CS_Hpjcjet(:,1) = 0.0D0 ! NOT CALCULATED BY FH CS_Hpjjetjet(:,1) = 0.0D0 ! NOT CALCULATED BY FH CS_HpjW(:,1) = 0.0D0 ! NOT CALCULATED BY FH CS_HpjZ(:,1) = 0.0D0 ! NOT CALCULATED BY FH CS_vbf_Hpj(:,1) = 0.0D0 ! NOT CALCULATED BY FH CS_HpjHmj(:,1) = 0.0D0 ! NOT CALCULATED BY FH CS_Hpjhi(:,1,:) = 0.0D0 ! NOT CALCULATED BY FH call write_MH_GammaTot(stem,ii,Mh,GammaTotal_hj) call write_MHall_uncertainties(stem,ii,dMhneut,dMhch) call write_MHplus_GammaTot(stem,ii,Mhplus,GammaTotal_Hpj) call write_effC(stem,ii,ghjss_s,ghjss_p,ghjcc_s, & ghjcc_p,ghjbb_s,ghjbb_p,ghjtt_s, & ghjtt_p,ghjmumu_s,ghjmumu_p,ghjtautau_s, & ghjtautau_p,ghjWW,ghjZZ,ghjZga,ghjgaga, & ghjgg,ghjhiZ) call write_LEP_HZ_CS_ratios(stem,ii,CS_lep_hjZ_ratio) call write_LEP_H_ff_CS_ratios(stem,ii, & CS_lep_bbhj_ratio,CS_lep_tautauhj_ratio) call write_LEP_2H_CS_ratios(stem,ii,CS_lep_hjhi_ratio) call write_LEP_HpHm_CS_ratios(stem,ii,CS_lep_HpjHmj_ratio) call write_TEV_1H_hadCS_ratios(stem,ii, & CS_hj_ratio(1,:),CS_gg_hj_ratio(1,:),CS_bb_hj_ratio(1,:), & CS_hjW_ratio(1,:),CS_hjZ_ratio(1,:), & CS_vbf_ratio(1,:),CS_tthj_ratio(1,:), & CS_thj_tchan_ratio(1,:),CS_thj_schan_ratio(1,:)) call write_LHC7_1H_hadCS_ratios(stem,ii, & CS_hj_ratio(2,:),CS_gg_hj_ratio(2,:),CS_bb_hj_ratio(2,:), & CS_hjW_ratio(2,:),CS_hjZ_ratio(2,:), & CS_vbf_ratio(2,:),CS_tthj_ratio(2,:), & CS_thj_tchan_ratio(2,:),CS_thj_schan_ratio(2,:)) call write_LHC8_1H_hadCS_ratios(stem,ii, & CS_hj_ratio(3,:),CS_gg_hj_ratio(3,:),CS_bb_hj_ratio(3,:), & CS_hjW_ratio(3,:),CS_hjZ_ratio(3,:), & CS_vbf_ratio(3,:),CS_tthj_ratio(3,:), & CS_thj_tchan_ratio(3,:),CS_thj_schan_ratio(3,:)) call write_LHC13_1H_hadCS_ratios(stem,ii, & CS_hj_ratio(4,:),CS_gg_hj_ratio(4,:),CS_bb_hj_ratio(4,:), & CS_hjW_ratio(4,:),CS_hjZ_ratio(4,:), & CS_vbf_ratio(4,:),CS_tthj_ratio(4,:), & CS_thj_tchan_ratio(4,:),CS_thj_schan_ratio(4,:)) call write_LHC8_Hplus_hadCS(stem,ii, & CS_Hpjtb(3,1), CS_Hpjcb(3,1), CS_Hpjbjet(3,1), CS_Hpjcjet(3,1), & CS_Hpjjetjet(3,1), CS_HpjW(3,1),CS_HpjZ(3,1), & CS_vbf_Hpj(3,1), CS_HpjHmj(3,1), CS_Hpjhi(3,1,:)) call write_LHC13_Hplus_hadCS(stem,ii, & CS_Hpjtb(4,1), CS_Hpjcb(4,1), CS_Hpjbjet(4,1), CS_Hpjcjet(4,1), & CS_Hpjjetjet(4,1), CS_HpjW(4,1),CS_HpjZ(4,1), & CS_vbf_Hpj(4,1), CS_HpjHmj(4,1), CS_Hpjhi(4,1,:)) call write_BR_H_OP(stem,ii, & BR_hjss,BR_hjcc, & BR_hjbb,BR_hjtt,BR_hjmumu,BR_hjtautau, & BR_hjWW,BR_hjZZ,BR_hjZga, BR_hjgaga,BR_hjgg) call write_BR_H_NP(stem,ii,BR_hjinvisible,BR_hkhjhi, & BR_hjhiZ,BR_hjemu,BR_hjetau,BR_hjmutau,BR_hjHpiW) call write_BR_t(stem,ii,BR_tWpb,BR_tHpjb) call write_BR_Hplus(stem,ii,BR_Hpjcs,BR_Hpjcb,BR_Hpjtaunu, & BR_Hpjtb,BR_HpjWZ,BR_HpjhiW) call write_CPvalues(stem,ii,CP_value) C print*,"Writing parameters (mupar,TB) = ",mupar,TB C call write_additional(stem,ii,dreal(mupar),TB) C call write_additional(stem,ii,massA0,TB) call write_additional(stem,ii,MHp_in,TB) enddo enddo end ************************************************************************ subroutine setFlags implicit none integer mssmpart, fieldren, tanbren, higgsmix, p2approx integer looplevel, loglevel, runningMT, botResum, tlCplxApprox c Using default (recommended) values of all FH flags parameter (mssmpart = 4) parameter (fieldren = 0) parameter (tanbren = 0) parameter (higgsmix = 2) parameter (p2approx = 4) parameter (looplevel = 2) parameter (loglevel = 3) parameter (runningMT = 1) parameter (botResum = 1) Cparameter (tlCplxApprox = 0) parameter (tlCplxApprox = 1) ! This is important if MHp is used as input! integer error call FHSetFlags(error, mssmpart, fieldren, tanbren, & higgsmix, p2approx, looplevel, loglevel, & runningMT, botResum, tlCplxApprox) if( error .ne. 0 ) stop end ************************************************************* subroutine setPara(TB, MA0, Xt, MSusy) implicit none double precision invAlfa, AlfasMZ, GF double precision ME, MU, MD, MM, MC, MS, ML, MB, MZ, MW double precision CKMlambda, CKMA, CKMrhobar, CKMetabar parameter (invAlfa = -1) parameter (AlfasMZ = -1) parameter (GF = -1) parameter (ME = -1) parameter (MU = -1) parameter (MD = -1) parameter (MM = -1) parameter (MC = -1) parameter (MS = -1) parameter (ML = -1) parameter (MB = -1) parameter (MW = -1) parameter (MZ = -1) parameter (CKMlambda = -1) parameter (CKMA = -1) parameter (CKMrhobar = -1) parameter (CKMetabar = -1) double precision MT, TB, MA0, MHp, Xt parameter (MT = 173.2) ! parameter (TB = 20.) ! parameter (MA0 = 300) parameter (MHp = -1) double complex MUE, M_1, M_2, M_3 parameter (MUE = 200) parameter (M_1 = 100) parameter (M_2 = 200) parameter (M_3 = 1500) double precision MSusy double precision M3SL, M2SL, M1SL double precision M3SE, M2SE, M1SE double precision M3SQ, M2SQ, M1SQ double precision M3SU, M2SU, M1SU double precision M3SD, M2SD, M1SD double complex Atau, At, Ab double complex Amu, Ac, As double complex Ae, Au, Ad double precision Qtau, Qt, Qb parameter (Qtau = 0) parameter (Qt = 0) parameter (Qb = 0) double precision scalefactor parameter (scalefactor = 1) integer error ! parameter (MSusy = 1000) C M3SL = MSusy C M2SL = M3SL C M1SL = M2SL C M3SE = MSusy C M2SE = M3SE C M1SE = M2SE M3SL = 1000.0D0 M2SL = MSusy M1SL = MSusy M3SE = 1000.0D0 M2SE = MSusy M1SE = MSusy M3SQ = MSusy M2SQ = M3SQ M1SQ = M2SQ M3SU = MSusy M2SU = M3SU M1SU = M2SU M3SD = MSusy M2SD = M3SD M1SD = M2SD c Derive At from Xt, TB, mu At = Xt + MUE/TB ! parameter (At = 0) Ab = At Atau = At Ac = At As = Ab Amu = Atau Au = Ac Ad = As Ae = Amu call FHSetSMPara(error, & invAlfa, AlfasMZ, GF, & ME, MU, MD, MM, MC, MS, ML, MB, & MW, MZ, & CKMlambda, CKMA, CKMrhobar, CKMetabar) if( error .ne. 0 ) stop call FHSetPara(error, scalefactor, & MT, TB, MA0, MHp, & M3SL, M3SE, M3SQ, M3SU, M3SD, & M2SL, M2SE, M2SQ, M2SU, M2SD, & M1SL, M1SE, M1SQ, M1SU, M1SD, & MUE, & Atau, At, Ab, & Amu, Ac, As, & Ae, Au, Ad, & M_1, M_2, M_3, & Qtau, Qt, Qb) if( error .ne. 0 ) stop end ************************************************************************ subroutine setPara2(TB, MHp, MUE, At, MSusy) implicit none double precision invAlfa, AlfasMZ, GF double precision ME, MU, MD, MM, MC, MS, ML, MB, MZ, MW double precision CKMlambda, CKMA, CKMrhobar, CKMetabar parameter (invAlfa = -1) parameter (AlfasMZ = -1) parameter (GF = -1) parameter (ME = -1) parameter (MU = -1) parameter (MD = -1) parameter (MM = -1) parameter (MC = -1) parameter (MS = -1) parameter (ML = -1) parameter (MB = -1) parameter (MW = -1) parameter (MZ = -1) parameter (CKMlambda = -1) parameter (CKMA = -1) parameter (CKMrhobar = -1) parameter (CKMetabar = -1) double precision MT, TB, MA0, MHp, Xt parameter (MT = 173.2) ! parameter (TB = 20.) parameter (MA0 = -1) Cparameter (MHp = 155.0D0) double complex MUE, M_1, M_2, M_3 ! parameter (MUE = 200) parameter (M_1 = -1) parameter (M_2 = 300) parameter (M_3 = 1500) double precision MSusy double precision M3SL, M2SL, M1SL double precision M3SE, M2SE, M1SE double precision M3SQ, M2SQ, M1SQ double precision M3SU, M2SU, M1SU double precision M3SD, M2SD, M1SD double complex Atau, At, Ab double complex Amu, Ac, As double complex Ae, Au, Ad double precision Qtau, Qt, Qb parameter (Qtau = 0) parameter (Qt = 0) parameter (Qb = 0) double precision scalefactor parameter (scalefactor = 1) integer error ! parameter (MSusy = 1000) C M3SL = MSusy C M2SL = M3SL C M1SL = M2SL C M3SE = MSusy C M2SE = M3SE C M1SE = M2SE M3SL = 500.0D0 M2SL = 250.0D0 M1SL = 250.0D0 M3SE = 500.0D0 M2SE = 250.0D0 M1SE = 250.0D0 M3SQ = 750.0D0 M2SQ = MSusy M1SQ = MSusy M3SU = M3SQ M2SU = MSusy M1SU = MSusy M3SD = M3SQ M2SD = MSusy M1SD = MSusy c Derive At from Xt, TB, mu C At = Xt + MUE/TB ! parameter (At = 0) Ab = At Atau = At Ac = At As = Ab Amu = Atau Au = Ac Ad = As Ae = Amu call FHSetSMPara(error, & invAlfa, AlfasMZ, GF, & ME, MU, MD, MM, MC, MS, ML, MB, & MW, MZ, & CKMlambda, CKMA, CKMrhobar, CKMetabar) if( error .ne. 0 ) stop call FHSetPara(error, scalefactor, & MT, TB, MA0, MHp, & M3SL, M3SE, M3SQ, M3SU, M3SD, & M2SL, M2SE, M2SQ, M2SU, M2SD, & M1SL, M1SE, M1SQ, M1SU, M1SD, & MUE, & Atau, At, Ab, & Amu, Ac, As, & Ae, Au, Ad, & M_1, M_2, M_3, & Qtau, Qt, Qb) if( error .ne. 0 ) stop end ************************************************************************ subroutine setSLHA(filename) implicit none character*(*) filename #include "SLHA.h" integer error double complex slhadata(nslhadata) call SLHARead(error, slhadata, filename, 1) if( error .ne. 0 ) stop call FHSetSLHA(error, slhadata) if( error .ne. 0 ) stop end ************************************************************************ subroutine open_file(stem,filename,fileid) character*100 stem, filename integer fileid integer ios OPEN(unit=fileid,file=trim(adjustl(stem))// & trim(adjustl(filename)), & status='old',form="formatted",access='append',iostat=ios) if(ios.ne.0) then OPEN(unit=fileid,file=trim(adjustl(stem))// & trim(adjustl(filename)), & status='new',form="formatted",iostat=ios) endif if(ios.ne.0) write(*,*) 'Failed to open ', & trim(adjustl(stem))//trim(adjustl(filename)) end ************************************************************************ subroutine write_MH_GammaTot(stem,i,Mh,GammaTotal_hj) implicit none double precision Mh(3), GammaTotal_hj(3) character*100 stem, filename integer i, fileid filename = 'MH_GammaTot.dat' fileid = 15 call open_file(stem,filename,fileid) write(fileid,'(I10,6F20.8)') i, Mh, GammaTotal_hj close(fileid) end ************************************************************************ subroutine write_MHall_uncertainties(stem,i,dmHn,dmHp) implicit none double precision dmHn(3),dmHp(1) character*100 stem, filename integer i, fileid filename = 'MHall_uncertainties.dat' fileid = 15 call open_file(stem,filename,fileid) write(fileid,'(I10,6F20.8)') i, dmHn, dmHp close(fileid) end ************************************************************************ subroutine write_MHplus_GammaTot(stem,i,Mhp,GammaTotal_hp) implicit none double precision Mhp(1), GammaTotal_hp(1) character*100 stem, filename integer i, fileid filename = 'MHplus_GammaTot.dat' fileid = 15 call open_file(stem,filename,fileid) write(fileid,'(I10,6F20.8)') i, Mhp, GammaTotal_hp close(fileid) end ************************************************************************ subroutine write_effC(stem,i,ghjss_s,ghjss_p, & ghjcc_s,ghjcc_p,ghjbb_s,ghjbb_p,ghjtt_s, & ghjtt_p,ghjmumu_s,ghjmumu_p,ghjtautau_s, & ghjtautau_p,ghjWW,ghjZZ,ghjZga,ghjgaga, & ghjgg,ghjhiZ) implicit none double precision ghjWW(3),ghjZZ(3),ghjZga(3), & ghjgg(3),ghjhiZ(3,3),ghjgaga(3) double precision ghjbb_s(3),ghjbb_p(3) double precision ghjtt_s(3),ghjtt_p(3) double precision ghjss_s(3),ghjss_p(3) double precision ghjcc_s(3),ghjcc_p(3) double precision ghjtautau_s(3),ghjtautau_p(3) double precision ghjmumu_s(3),ghjmumu_p(3) character*100 stem, filename integer i, j,k, fileid filename = 'effC.dat' fileid = 15 call open_file(stem,filename,fileid) write(fileid,'(I10,57F20.8)') i,ghjss_s,ghjss_p, & ghjcc_s,ghjcc_p,ghjbb_s,ghjbb_p,ghjtt_s, & ghjtt_p,ghjmumu_s,ghjmumu_p,ghjtautau_s, & ghjtautau_p,ghjWW,ghjZZ,ghjZga,ghjgaga, & ghjgg,((ghjhiZ(j,k),k=1,j),j=1,3) close(fileid) end ************************************************************************ subroutine write_LEP_HZ_CS_ratios(stem,i,CS_lep_hjZ_ratio) implicit none double precision CS_lep_hjZ_ratio(3) character*100 stem, filename integer i, fileid filename = 'LEP_HZ_CS_ratios.dat' fileid = 15 call open_file(stem,filename,fileid) write(fileid,'(I10,3F20.8)') i, CS_lep_hjZ_ratio close(fileid) end ************************************************************************ subroutine write_LEP_H_ff_CS_ratios(stem,i, & CS_lep_bbhj_ratio,CS_lep_tautauhj_ratio) implicit none double precision CS_lep_bbhj_ratio(3),CS_lep_tautauhj_ratio(3) character*100 stem, filename integer i, fileid filename = 'LEP_H_ff_CS_ratios.dat' fileid = 15 call open_file(stem,filename,fileid) write(fileid,'(I10,6F20.8)') i, CS_lep_bbhj_ratio, & CS_lep_tautauhj_ratio close(fileid) end ************************************************************************ subroutine write_LEP_2H_CS_ratios(stem,i, & CS_lep_hjhi_ratio_nHbynH) implicit none double precision CS_lep_hjhi_ratio_nHbynH(3,3) character*100 stem, filename integer i, fileid, j,k filename = 'LEP_2H_CS_ratios.dat' fileid = 15 call open_file(stem,filename,fileid) write(fileid,'(I10,9F20.8)') i, & ((CS_lep_hjhi_ratio_nHbynH(j,k),k=1,j),j=1,3) close(fileid) end ************************************************************************ subroutine write_LEP_HpHm_CS_ratios(stem,i, & CS_lep_HpjHmj_ratio) implicit none double precision CS_lep_HpjHmj_ratio(1) character*100 stem, filename integer i, fileid filename = 'LEP_HpHm_CS_ratios.dat' fileid = 15 call open_file(stem,filename,fileid) write(fileid,'(I10,1F20.8)') i, CS_lep_HpjHmj_ratio close(fileid) end ************************************************************************ subroutine write_TEV_1H_hadCS_ratios(stem,i, & TEV_XS_hj_ratio,TEV_XS_gg_hj_ratio,TEV_XS_bb_hj_ratio, & TEV_XS_hjW_ratio,TEV_XS_hjZ_ratio, & TEV_XS_vbf_ratio,TEV_XS_hjtt_ratio, & TEV_XS_hjt_tchan_ratio,TEV_XS_hjt_schan_ratio) implicit none double precision TEV_XS_hj_ratio(3),TEV_XS_gg_hj_ratio(3), & TEV_XS_bb_hj_ratio(3),TEV_XS_hjW_ratio(3), & TEV_XS_hjZ_ratio(3),TEV_XS_vbf_ratio(3), & TEV_XS_hjtt_ratio(3),TEV_XS_hjt_tchan_ratio(3), & TEV_XS_hjt_schan_ratio(3) character*100 stem, filename integer i, fileid filename = 'TEV_1H_hadCS_ratios.dat' fileid = 15 call open_file(stem,filename,fileid) write(fileid,'(I10,27F20.8)') i, TEV_XS_hj_ratio, & TEV_XS_gg_hj_ratio,TEV_XS_bb_hj_ratio, & TEV_XS_hjW_ratio,TEV_XS_hjZ_ratio, & TEV_XS_vbf_ratio,TEV_XS_hjtt_ratio, & TEV_XS_hjt_tchan_ratio,TEV_XS_hjt_schan_ratio close(fileid) end ************************************************************************ subroutine write_LHC7_1H_hadCS_ratios(stem,i, & LHC7_XS_hj_ratio,LHC7_XS_gg_hj_ratio,LHC7_XS_bb_hj_ratio, & LHC7_XS_hjW_ratio,LHC7_XS_hjZ_ratio, & LHC7_XS_vbf_ratio,LHC7_XS_hjtt_ratio, & LHC7_XS_hjt_tchan_ratio,LHC7_XS_hjt_schan_ratio) implicit none double precision LHC7_XS_hj_ratio(3),LHC7_XS_gg_hj_ratio(3), & LHC7_XS_bb_hj_ratio(3),LHC7_XS_hjW_ratio(3), & LHC7_XS_hjZ_ratio(3),LHC7_XS_vbf_ratio(3), & LHC7_XS_hjtt_ratio(3),LHC7_XS_hjt_tchan_ratio(3), & LHC7_XS_hjt_schan_ratio(3) character*100 stem, filename integer i, fileid filename = 'LHC7_1H_hadCS_ratios.dat' fileid = 15 call open_file(stem,filename,fileid) write(fileid,'(I10,27F20.8)') i, LHC7_XS_hj_ratio, & LHC7_XS_gg_hj_ratio,LHC7_XS_bb_hj_ratio, & LHC7_XS_hjW_ratio,LHC7_XS_hjZ_ratio, & LHC7_XS_vbf_ratio,LHC7_XS_hjtt_ratio, & LHC7_XS_hjt_tchan_ratio,LHC7_XS_hjt_schan_ratio close(fileid) end ************************************************************************ subroutine write_LHC8_1H_hadCS_ratios(stem,i, & LHC8_XS_hj_ratio,LHC8_XS_gg_hj_ratio,LHC8_XS_bb_hj_ratio, & LHC8_XS_hjW_ratio,LHC8_XS_hjZ_ratio, & LHC8_XS_vbf_ratio,LHC8_XS_hjtt_ratio, & LHC8_XS_hjt_tchan_ratio,LHC8_XS_hjt_schan_ratio) implicit none double precision LHC8_XS_hj_ratio(3),LHC8_XS_gg_hj_ratio(3), & LHC8_XS_bb_hj_ratio(3),LHC8_XS_hjW_ratio(3), & LHC8_XS_hjZ_ratio(3),LHC8_XS_vbf_ratio(3), & LHC8_XS_hjtt_ratio(3),LHC8_XS_hjt_tchan_ratio(3), & LHC8_XS_hjt_schan_ratio(3) character*100 stem, filename integer i, fileid filename = 'LHC8_1H_hadCS_ratios.dat' fileid = 15 call open_file(stem,filename,fileid) write(fileid,'(I10,27F20.8)') i, LHC8_XS_hj_ratio, & LHC8_XS_gg_hj_ratio,LHC8_XS_bb_hj_ratio, & LHC8_XS_hjW_ratio,LHC8_XS_hjZ_ratio, & LHC8_XS_vbf_ratio,LHC8_XS_hjtt_ratio, & LHC8_XS_hjt_tchan_ratio,LHC8_XS_hjt_schan_ratio close(fileid) end ************************************************************************ subroutine write_LHC13_1H_hadCS_ratios(stem,i, & LHC13_XS_hj_ratio,LHC13_XS_gg_hj_ratio,LHC13_XS_bb_hj_ratio, & LHC13_XS_hjW_ratio,LHC13_XS_hjZ_ratio, & LHC13_XS_vbf_ratio,LHC13_XS_hjtt_ratio, & LHC13_XS_hjt_tchan_ratio,LHC13_XS_hjt_schan_ratio) implicit none double precision LHC13_XS_hj_ratio(3),LHC13_XS_gg_hj_ratio(3), & LHC13_XS_bb_hj_ratio(3),LHC13_XS_hjW_ratio(3), & LHC13_XS_hjZ_ratio(3),LHC13_XS_vbf_ratio(3), & LHC13_XS_hjtt_ratio(3),LHC13_XS_hjt_tchan_ratio(3), & LHC13_XS_hjt_schan_ratio(3) character*100 stem, filename integer i, fileid filename = 'LHC13_1H_hadCS_ratios.dat' fileid = 15 call open_file(stem,filename,fileid) write(fileid,'(I10,27F20.8)') i, LHC13_XS_hj_ratio, & LHC13_XS_gg_hj_ratio,LHC13_XS_bb_hj_ratio, & LHC13_XS_hjW_ratio,LHC13_XS_hjZ_ratio, & LHC13_XS_vbf_ratio,LHC13_XS_hjtt_ratio, & LHC13_XS_hjt_tchan_ratio,LHC13_XS_hjt_schan_ratio close(fileid) end ************************************************************************ subroutine write_LHC8_Hplus_hadCS(stem,i, & CS_Hpjtb, CS_Hpjcb, CS_Hpjbjet, CS_Hpjcjet, & CS_Hpjjetjet, CS_HpjW,CS_HpjZ, & CS_vbf_Hpj, CS_HpjHmj, CS_Hpjhi) implicit none double precision CS_Hpjtb(1), CS_Hpjcb(1), CS_Hpjbjet(1), & CS_Hpjcjet(1), CS_Hpjjetjet(1), CS_HpjW(1),CS_HpjZ(1), & CS_vbf_Hpj(1), CS_HpjHmj(1), CS_Hpjhi(1,3) character*100 stem, filename integer i, fileid filename = 'LHC8_Hplus_hadCS.dat' fileid = 15 call open_file(stem,filename,fileid) write(fileid,'(I10,12F20.8)') i, CS_Hpjtb, CS_Hpjcb, CS_Hpjbjet, & CS_Hpjcjet, CS_Hpjjetjet, CS_HpjW,CS_HpjZ, & CS_vbf_Hpj, CS_HpjHmj, CS_Hpjhi end subroutine write_LHC8_Hplus_hadCS ************************************************************************ subroutine write_LHC13_Hplus_hadCS(stem,i, & CS_Hpjtb, CS_Hpjcb, CS_Hpjbjet, CS_Hpjcjet, & CS_Hpjjetjet, CS_HpjW,CS_HpjZ, & CS_vbf_Hpj, CS_HpjHmj, CS_Hpjhi) implicit none double precision CS_Hpjtb(1), CS_Hpjcb(1), CS_Hpjbjet(1), & CS_Hpjcjet(1), CS_Hpjjetjet(1), CS_HpjW(1),CS_HpjZ(1), & CS_vbf_Hpj(1), CS_HpjHmj(1), CS_Hpjhi(1,3) character*100 stem, filename integer i, fileid filename = 'LHC13_Hplus_hadCS.dat' fileid = 15 call open_file(stem,filename,fileid) write(fileid,'(I10,12F20.8)') i, CS_Hpjtb, CS_Hpjcb, CS_Hpjbjet, & CS_Hpjcjet, CS_Hpjjetjet, CS_HpjW,CS_HpjZ, & CS_vbf_Hpj, CS_HpjHmj, CS_Hpjhi end subroutine write_LHC13_Hplus_hadCS ************************************************************************ subroutine write_BR_H_OP(stem,i, & BR_hjss,BR_hjcc, & BR_hjbb,BR_hjtt,BR_hjmumu,BR_hjtautau, & BR_hjWW,BR_hjZZ,BR_hjZga, BR_hjgaga,BR_hjgg) implicit none double precision BR_hjss(3),BR_hjcc(3),BR_hjgg(3),BR_hjtt(3), & BR_hjbb(3),BR_hjmumu(3),BR_hjtautau(3), & BR_hjWW(3),BR_hjZZ(3),BR_hjZga(3),BR_hjgaga(3) character*100 stem, filename integer i, fileid filename = 'BR_H_OP.dat' fileid = 15 call open_file(stem,filename,fileid) write(fileid,'(I10,33F20.8)') i, BR_hjss,BR_hjcc, & BR_hjbb,BR_hjtt,BR_hjmumu,BR_hjtautau, & BR_hjWW,BR_hjZZ,BR_hjZga, BR_hjgaga,BR_hjgg close(fileid) end ************************************************************************ subroutine write_BR_H_NP(stem,i,BR_hjinvisible,BR_hkhjhi_all, & BR_hjhiZ_all,BR_hjemu,BR_hjetau,BR_hjmutau,BR_hjHpiW) implicit none double precision BR_hjinvisible(3),BR_hkhjhi_all(3,3,3), & BR_hjhiZ_all(3,3),BR_hjemu(3),BR_hjetau(3), & BR_hjmutau(3),BR_hjHpiW(3,1) character*100 stem, filename integer i, fileid filename = 'BR_H_NP.dat' fileid = 15 call open_file(stem,filename,fileid) write(fileid,'(I10,30F20.8)') i, BR_hjinvisible, & BR_hkhjhi_all(1,2,2),BR_hkhjhi_all(1,2,3),BR_hkhjhi_all(1,3,3), & BR_hkhjhi_all(2,1,1),BR_hkhjhi_all(2,1,3),BR_hkhjhi_all(2,3,3), & BR_hkhjhi_all(3,1,1),BR_hkhjhi_all(3,1,2),BR_hkhjhi_all(3,2,2), & BR_hjhiZ_all(1,2),BR_hjhiZ_all(1,3), & BR_hjhiZ_all(2,1),BR_hjhiZ_all(2,3), & BR_hjhiZ_all(3,1),BR_hjhiZ_all(3,2), & BR_hjemu, BR_hjetau,BR_hjmutau, & BR_hjHpiW(1,1),BR_hjHpiW(2,1),BR_hjHpiW(3,1) close(fileid) end ************************************************************************ subroutine write_BR_t(stem,i,BR_tWpb,BR_tHpjb) implicit none double precision BR_tWpb,BR_tHpjb(1) character*100 stem, filename integer i, fileid filename = 'BR_t.dat' fileid = 15 call open_file(stem,filename,fileid) write(fileid,'(I10,2F20.8)') i, BR_tWpb,BR_tHpjb close(fileid) end ************************************************************************ subroutine write_BR_Hplus(stem,i,BR_Hpjcs,BR_Hpjcb,BR_Hpjtaunu, & BR_Hpjtb,BR_HpjWZ,BR_HpjhiW_in) implicit none double precision BR_Hpjcs(1),BR_Hpjcb(1),BR_Hpjtaunu(1) double precision BR_Hpjtb(1),BR_HpjWZ(1),BR_HpjhiW_in(1,3) character*100 stem, filename integer i,j, fileid filename = 'BR_Hplus.dat' fileid = 15 call open_file(stem,filename,fileid) write(fileid,'(I10,8F20.8)') i,BR_Hpjcs,BR_Hpjcb,BR_Hpjtaunu, & BR_Hpjtb,BR_HpjWZ,(BR_HpjhiW_in(1,j),j=1,3) close(fileid) end ************************************************************************ subroutine write_CPvalues(stem,i,CP_value) implicit none integer CP_value(3) character*100 stem, filename integer i, fileid filename = 'CP_values.dat' fileid = 15 call open_file(stem,filename,fileid) write(fileid,'(I10,3I10)') i,CP_value close(fileid) end ************************************************************************ subroutine write_additional(stem,i,var1,var2) implicit none double precision var1,var2 character*100 stem, filename integer i, fileid filename = 'additional.dat' fileid = 15 call open_file(stem,filename,fileid) write(fileid,'(I10,2F20.8)') i,var1,var2 close(fileid) end ************************************************************************ Index: trunk/HiggsSignals-2/HiggsSignals_subroutines.F90 =================================================================== --- trunk/HiggsSignals-2/HiggsSignals_subroutines.F90 (revision 574) +++ trunk/HiggsSignals-2/HiggsSignals_subroutines.F90 (revision 575) @@ -1,2464 +1,2502 @@ !------------------------------------------------------------ ! This file is part of HiggsSignals (TS 03/03/2013). !------------------------------------------------------------ subroutine initialize_HiggsSignals_latestresults(nHiggsneut,nHiggsplus) !------------------------------------------------------------ ! Wrapper subroutine to intitialize HiggsSignals with the experimental ! dataset "latestresults", avoiding to specify this via a string argument. !------------------------------------------------------------ implicit none !--------------------------------------input integer,intent(in) :: nHiggsneut integer,intent(in) :: nHiggsplus character(LEN=13) :: Expt_string Expt_string = "latestresults" call initialize_HiggsSignals(nHiggsneut,nHiggsplus,Expt_string) end subroutine initialize_HiggsSignals_latestresults !------------------------------------------------------------ subroutine initialize_HiggsSignals_LHC13(nHiggsneut,nHiggsplus) !------------------------------------------------------------ ! Wrapper subroutine to intitialize HiggsSignals with the experimental ! dataset "latestresults", avoiding to specify this via a string argument. !------------------------------------------------------------ implicit none !--------------------------------------input integer,intent(in) :: nHiggsneut integer,intent(in) :: nHiggsplus character(LEN=13) :: Expt_string Expt_string = "LHC13" call initialize_HiggsSignals(nHiggsneut,nHiggsplus,Expt_string) end subroutine initialize_HiggsSignals_LHC13 !------------------------------------------------------------ subroutine initialize_HiggsSignals_empty(nHiggsneut,nHiggsplus) !------------------------------------------------------------ ! Wrapper subroutine to intitialize HiggsSignals without dataset. !------------------------------------------------------------ implicit none !--------------------------------------input integer,intent(in) :: nHiggsneut integer,intent(in) :: nHiggsplus character(LEN=13) :: Expt_string Expt_string = "none" call initialize_HiggsSignals(nHiggsneut,nHiggsplus,Expt_string) end subroutine initialize_HiggsSignals_empty !------------------------------------------------------------ subroutine initialize_HiggsSignals(nHiggsneut,nHiggsplus,Expt_string) !------------------------------------------------------------ ! This the first HiggsSignals subroutine that should be called ! by the user. ! It calls subroutines to read in the tables of Standard Model ! decay and production rates from HiggsBounds, sets up the ! experimental data from Tevatron and LHC, allocate arrays, etc. ! Arguments (input): ! * nHiggs = number of neutral Higgs in the model ! * nHiggsplus = number of singly, positively charged Higgs in the model ! * Expt_string = name of experimental dataset to be used !------------------------------------------------------------ use usefulbits, only : np,Hneut,Hplus,Chineut,Chiplus,debug,inputmethod,& & theo,whichanalyses,just_after_run,& & file_id_debug1,file_id_debug2,allocate_if_stats_required use usefulbits_HS, only : HiggsSignals_info, nanalys, eps, Exptdir, obs use datatables, only: setup_observables, setup_LHC_Run1_combination use STXS, only : load_STXS use input, only : check_number_of_particles,check_whichanalyses use io, only : setup_input_for_hs, setup_output_for_hs use theory_BRfunctions, only : setup_BRSM, BRSM use theory_XS_SM_functions, only : setup_XSSM, XSSM #if defined(NAGf90Fortran) use F90_UNIX_IO, only : flush #endif implicit none !--------------------------------------input integer,intent(in) :: nHiggsneut integer,intent(in) :: nHiggsplus character(LEN=*), intent(in) :: Expt_string !-----------------------------------internal integer :: i logical :: exptdirpresent = .False. !----------------------------------parameter eps=5.0D0 np(Hneut)=nHiggsneut np(Hplus)=nHiggsplus if(Expt_string.ne.'none') then Exptdir = Expt_string exptdirpresent = .True. endif np(Chineut)=0! not considering bounds on neutralinos here np(Chiplus)=0! not considering bounds on charginos here debug=.False. select case(whichanalyses) case('onlyL') whichanalyses='LandH' case('onlyH','onlyP','list ','LandH') case default whichanalyses='onlyH' end select call HiggsSignals_info if(inputmethod=='subrout') then if(allocated(theo))then if(debug) write(*,*) "HiggsBounds/HiggsSignals internal structure already initialized!" else if(debug)write(*,*)'doing other preliminary tasks...' ; call flush(6) call setup_input_for_hs ! allocate(inputsub( 2 )) !(1)np(Hneut)>0 (2)np(Hplus)>0 ! inputsub(1)%desc='HiggsBounds_neutral_input_*' ; inputsub(1)%req=req( 0, 1) ! inputsub(2)%desc='HiggsBounds_charged_input' ; inputsub(2)%req=req( 1, 0) ! ! do i=1,ubound(inputsub,dim=1) ! inputsub(i)%stat=0 ! enddo endif endif if(debug)write(*,*)'reading in Standard Model tables...' ; call flush(6) if(.not.allocated(BRSM)) call setup_BRSM if(.not.allocated(XSSM)) call setup_XSSM call setup_uncertainties if(debug)write(*,*)'reading in experimental data...' ; call flush(6) if(exptdirpresent) call setup_observables if(exptdirpresent) call load_STXS(Expt_string) call setup_LHC_Run1_combination if(debug)write(*,*)'sorting out processes to be checked...'; call flush(6) nanalys = size(obs) if(debug)write(*,*)'preparing output arrays...' ; call flush(6) call setup_output_for_hs if(debug)write(*,*)'HiggsSignals has been initialized...' ; call flush(6) just_after_run=.False. ! contains ! | np ! |Hneu Hcha ! | ==0 ==0 ! function req(Hneu,Hcha) ! integer, intent(in) ::Hneu,Hcha ! integer :: req ! ! req=1 ! if(np(Hneut)==0) req= Hneu * req ! if(np(Hplus)==0) req= Hcha * req ! ! end function req end subroutine initialize_HiggsSignals !------------------------------------------------------------ subroutine HiggsSignals_neutral_input_MassUncertainty(dMh) ! Sets the theoretical mass uncertainty of the Higgs bosons. !------------------------------------------------------------ use usefulbits, only: theo,np,Hneut implicit none double precision,intent(in) :: dMh(np(Hneut)) if(.not.allocated(theo))then stop 'subroutine HiggsSignals_initialize must be called first' endif if(np(Hneut).eq.0)then write(*,*)'subroutine HiggsSignal_neutral_input_MassUncertainty should' write(*,*)'only be called if np(Hneut)>0' stop 'error in subroutine HiggsSignal_neutral_input_MassUncertainty' endif theo(1)%particle(Hneut)%dM = dMh end subroutine HiggsSignals_neutral_input_MassUncertainty !------------------------------------------------------------ subroutine setup_uncertainties !------------------------------------------------------------ use usefulbits, only : file_id_common3 use store_pathname_hs, only : pathname_HS use usefulbits_hs, only : delta_rate use io, only : read_matrix_from_file logical :: BRmodel, BRSM, XSmodel, XSSM call read_matrix_from_file(9,pathname_HS//"BRcov.in",delta_rate%BRcov, BRmodel) call read_matrix_from_file(9,pathname_HS//"BRcovSM.in",delta_rate%BRcovSM, BRSM) call read_matrix_from_file(11,pathname_HS//"XScov.in",delta_rate%CScov, XSmodel) call read_matrix_from_file(11,pathname_HS//"XScovSM.in",delta_rate%CScovSM, XSSM) call read_matrix_from_file(11,pathname_HS//"XScov_13TeV.in",delta_rate%CS13cov, XSmodel) call read_matrix_from_file(11,pathname_HS//"XScovSM_13TeV.in",delta_rate%CS13covSM, XSSM) if(BRmodel.and.BRSM) then delta_rate%BRcov_ok=.True. write(*,*) "Covariance matrix for relative branching ratio uncertainties read in successfully." else write(*,*) "Covariance matrix for relative branching ratio uncertainties not provided. Using default values." endif if(XSmodel.and.XSSM) then delta_rate%CScov_ok=.True. write(*,*) "Covariance matrix for relative cross section uncertainties read in successfully." else write(*,*) "Covariance matrix for relative cross section uncertainties not provided. Using default values." endif end subroutine setup_uncertainties !------------------------------------------------------------ subroutine setup_rate_normalization(normalize_to_refmass, normalize_to_refmass_outside_dmtheo) use usefulbits_hs, only : normalize_rates_to_reference_position,& & normalize_rates_to_reference_position_outside_dmtheo implicit none logical, intent(in) :: normalize_to_refmass logical, intent(in) :: normalize_to_refmass_outside_dmtheo if(normalize_to_refmass) then write(*,*) "Using SM rate prediction at observed mass for signal strength calculation." else write(*,*) "Using SM rate prediction at predicted mass for signal strength calculation." endif if(normalize_to_refmass_outside_dmtheo) then write(*,*) "If predicted mass and observed mass do not agree within theory uncertainty:",& & " SM rate prediction at observed mass is used for signal strength calculation." else write(*,*) "If predicted mass and observed mass do not agree within theory uncertainty:",& & " SM rate prediction at predicted mass is used for signal strength calculation." endif normalize_rates_to_reference_position = normalize_to_refmass normalize_rates_to_reference_position_outside_dmtheo = normalize_to_refmass_outside_dmtheo end subroutine setup_rate_normalization !------------------------------------------------------------ subroutine setup_model_rate_uncertainties(filename_XS, filename_XS13, filename_BR) !------------------------------------------------------------ use usefulbits, only : file_id_common3 use store_pathname_hs, only : pathname_HS use usefulbits_hs, only : delta_rate use io, only : read_matrix_from_file character(LEN=*),intent(in) :: filename_XS, filename_XS13, filename_BR logical :: BRmodel, XSmodel call read_matrix_from_file(9,filename_BR,delta_rate%BRcov, BRmodel) call read_matrix_from_file(11,filename_XS,delta_rate%CScov, XSmodel) call read_matrix_from_file(11,filename_XS13,delta_rate%CS13cov, XSmodel) if(BRmodel.and.XSmodel) then delta_rate%BRcov_ok=.True. delta_rate%CScov_ok=.True. write(*,*) "Covariance matrices for rate uncertainties read in successfully." else write(*,*) "Covariance matrix for rate uncertainties not provided. Using default values." endif end subroutine setup_model_rate_uncertainties !------------------------------------------------------------ subroutine setup_rate_uncertainties( dCS, dBR ) !------------------------------------------------------------ ! Sets (relative) systematic uncertainties of the model for: ! dCS(1) - singleH dBR(1) - gamma gamma ! dCS(2) - VBF dBR(2) - W W ! dCS(3) - HW dBR(3) - Z Z ! dCS(4) - HZ dBR(4) - tau tau ! dCS(5) - ttH dBR(5) - b bbar !------------------------------------------------------------ use usefulbits_hs, only : delta_rate implicit none double precision, intent(in) :: dCS(5) double precision, intent(in) :: dBR(5) integer :: i delta_rate%dCS = dCS do i=lbound(dBR,dim=1),ubound(dBR,dim=1) call setup_dbr(i,dBR(i)) enddo end subroutine setup_rate_uncertainties !------------------------------------------------------------ subroutine setup_dbr(BRid, value) !------------------------------------------------------------ use usefulbits_hs, only : delta_rate integer,intent(in) :: BRid double precision, intent(in) :: value if(BRid.gt.0.and.BRid.lt.10) then delta_rate%dBR(BRid) = value else write(*,*) "Warning in setup_dbr: Unknown decay mode." endif end subroutine setup_dbr !------------------------------------------------------------ subroutine setup_correlations(corr_mu, corr_mh) !------------------------------------------------------------ ! With this subroutine the user may switch off/on correlations ! (default=on) by setting corr = 0/1. !------------------------------------------------------------ use usefulbits_hs, only : correlations_mu, correlations_mh implicit none integer, intent(in) :: corr_mu, corr_mh if(corr_mu.eq.0) then correlations_mu = .False. write(*,*) 'Correlations in signal strength observables are switched off.' elseif(corr_mu.eq.1) then correlations_mu = .True. else stop 'Error: Correlations must be switched on/off by an integer value of 0 or 1.' endif if(corr_mh.eq.0) then correlations_mh = .False. write(*,*) 'Correlations in Higgs mass observables are switched off.' elseif(corr_mh.eq.1) then correlations_mh = .True. else stop 'Error: Correlations must be switched on/off by an integer value of 0 or 1.' endif end subroutine setup_correlations !------------------------------------------------------------ subroutine setup_symmetricerrors(symm) ! Sets the measured rate uncertainties to either a symmetrical average ! of the upper and lower cyan band widths (symm==1) or else uses the ! original (asymmetrical) errors. !------------------------------------------------------------ use usefulbits_hs, only : symmetricerrors implicit none integer, intent(in) :: symm if(symm.eq.1) then write(*,*) "Using averaged (symmetrical) experimental rate uncertainties." symmetricerrors = .True. else write(*,*) "Using original (asymmetrical) experimental rate uncertainties." symmetricerrors = .False. endif end subroutine setup_symmetricerrors !------------------------------------------------------------ subroutine setup_absolute_errors(absol) ! Treats the measured rate uncertainties as either absolute ! uncertainties (1) or relative (0). By default, they are ! treated as relative uncertainties. !------------------------------------------------------------ use usefulbits_hs, only : absolute_errors implicit none integer, intent(in) :: absol if(absol.eq.1) then write(*,*) "Using absolute experimental rate uncertainties." absolute_errors = .True. else write(*,*) "Using relative experimental rate uncertainties." absolute_errors = .False. endif end subroutine setup_absolute_errors !------------------------------------------------------------ subroutine setup_correlated_rate_uncertainties(corr) !------------------------------------------------------------ use usefulbits_hs, only : delta_rate integer, intent(in) :: corr if(corr.eq.0) then delta_rate%usecov = .False. write(*,*) "Deactivated correlated CS and BR uncertainties. Using approximated maximum error." elseif(corr.eq.1) then delta_rate%usecov = .True. write(*,*) "Activated correlated CS and BR uncertainties. Using them if covariance matrices are present." else write(*,*) "Warning in subroutine setup_correlated_rate_uncertainties: Argument ",corr," is not equal to 0 or 1." endif end subroutine setup_correlated_rate_uncertainties !------------------------------------------------------------ subroutine setup_SMweights(useweight) ! If set to 1 (true), HiggsSignals assumes the same signal decomposition ! (weights) as in the SM for the given model. This will enter the determination ! of the theoretical rate uncertainty. !------------------------------------------------------------ use usefulbits_hs, only : useSMweights implicit none integer, intent(in) :: useweight if(useweight.eq.1) then write(*,*) "Using SM weights for theoretical rate uncertainties of the model." useSMweights = .True. else write(*,*) "Using true model weights for theoretical rate uncertainties of the model." useSMweights = .False. endif end subroutine setup_SMweights !------------------------------------------------------------ subroutine setup_anticorrelations_in_mu(acorr) ! Allows for anti-correlations in the signal strength covariance ! matrix if there is a relative sign difference in two mu measurements ! (acorr==1) or else uses only correlations irrespective of the relative ! (acorr==0). !------------------------------------------------------------ use usefulbits_hs, only : anticorrmu implicit none integer, intent(in) :: acorr if(acorr.eq.1) then write(*,*) "Allow anti-correlated signal strength measurements." anticorrmu = .True. else write(*,*) "Prohibit anti-correlated signal strength measurements." anticorrmu = .False. endif end subroutine setup_anticorrelations_in_mu !------------------------------------------------------------ subroutine setup_anticorrelations_in_mh(acorr) ! Allows for anti-correlations in the mass covariance ! matrix if there is a relative sign difference in two mu measurements ! (acorr==1) or else uses only correlations irrespective of the relative ! (acorr==0). !------------------------------------------------------------ use usefulbits_hs, only : anticorrmh implicit none integer, intent(in) :: acorr if(acorr.eq.1) then write(*,*) "Allow anti-correlated mass measurements." anticorrmh = .True. else write(*,*) "Prohibit anti-correlated mass measurements." anticorrmh = .False. endif end subroutine setup_anticorrelations_in_mh !------------------------------------------------------------ subroutine setup_assignmentrange(range) !------------------------------------------------------------ ! This sets up the mass range (in standard deviations) in which ! the Higgs is forced to be assigned to the peak observables. !------------------------------------------------------------ use usefulbits_hs, only : assignmentrange,assignmentrange_massobs, pdf implicit none double precision, intent(in) :: range if(range.le.0.0D0) then write(*,*) "Error: Bad assignment range ",range write(*,*) "Keeping the value ",assignmentrange else assignmentrange = range assignmentrange_massobs = range endif if(assignmentrange.ne.1.0D0.and.pdf.eq.1) then write(*,*) "Note: For a box pdf, only 1s mass range is used to force the Higgs-to-peak assignment." endif end subroutine setup_assignmentrange !------------------------------------------------------------ subroutine setup_assignmentrange_LHCrun1(range) !------------------------------------------------------------ ! This sets up the mass range (in standard deviations) in which ! the Higgs is forced to be assigned to the peak observables. !------------------------------------------------------------ use usefulbits_hs, only : assignmentrange_LHCrun1, pdf implicit none double precision, intent(in) :: range if(range.le.0.0D0) then write(*,*) "Error: Bad assignment range ",range write(*,*) "Keeping the value ",assignmentrange_LHCrun1 else assignmentrange_LHCrun1 = range endif ! if(assignmentrange_LHCrun1.ne.1.0D0.and.pdf.eq.1) then ! write(*,*) "Note: For a box pdf, only 1s mass range is used to force the Higgs-to-peak assignment." ! endif end subroutine setup_assignmentrange_LHCrun1 !------------------------------------------------------------ subroutine setup_assignmentrange_massobservables(range) !------------------------------------------------------------ ! This sets up the mass range (in standard deviations) in which ! the Higgs is forced to be assigned to the peak observables. !------------------------------------------------------------ use usefulbits_hs, only : assignmentrange_massobs, pdf implicit none double precision, intent(in) :: range if(range.le.0.0D0) then write(*,*) "Error: Bad assignment range ",range write(*,*) "Keeping the value ",assignmentrange_massobs else assignmentrange_massobs = range endif if(assignmentrange_massobs.ne.1.0D0.and.pdf.eq.1) then write(*,*) "Note: For a box pdf, only 1s mass range is used to force the Higgs-to-peak assignment." endif end subroutine setup_assignmentrange_massobservables !------------------------------------------------------------ +subroutine setup_assignmentrange_STXS(range) +!------------------------------------------------------------ +! This sets up the mass range (in standard deviations) in which +! the Higgs is forced to be assigned to the peak observables. +!------------------------------------------------------------ + use usefulbits_hs, only : assignmentrange_STXS + implicit none + + double precision, intent(in) :: range + + if(range.le.0.0D0) then + write(*,*) "Error: Bad assignment range ",range + write(*,*) "Keeping the value ",assignmentrange_STXS + else + assignmentrange_STXS = range + endif + +end subroutine setup_assignmentrange_STXS +!------------------------------------------------------------ + subroutine setup_nparam(Np) !------------------------------------------------------------ use usefulbits_hs, only : Nparam implicit none integer, intent(in) :: Np Nparam = Np end subroutine setup_nparam !------------------------------------------------------------ subroutine setup_Higgs_to_peaks_assignment_iterations(iter) ! Sets the number of iterations for the Higgs-to-peak-assignment. !------------------------------------------------------------ use usefulbits_hs, only : iterations implicit none integer, intent(in) :: iter iterations = iter end subroutine setup_Higgs_to_peaks_assignment_iterations !------------------------------------------------------------ subroutine setup_mcmethod_dm_theory(mode) use mc_chisq, only : mc_mode implicit none integer, intent(in) :: mode character(LEN=14) :: mode_desc(2) = (/'mass variation','convolution '/) if(mode.eq.1.or.mode.eq.2) then mc_mode = mode write(*,'(1X,A,A)') 'The mass-centered chi^2 method will treat the Higgs',& & ' boson mass theory uncertainty by '//trim(mode_desc(mode))//'.' else stop 'Error in subroutine setup_mcmethod_dm_theory: Unknown mode (1 or 2 possible)!' endif end subroutine setup_mcmethod_dm_theory !------------------------------------------------------------ subroutine setup_sm_test(int_SMtest,epsilon) ! With this subroutine the user may switch off the SM likeness test ! (default=on) or change the maximal deviation epsilon (default=5.0D-2) !------------------------------------------------------------ use usefulbits_hs, only : useSMtest, eps implicit none integer, intent(in) :: int_SMtest double precision, intent(in) :: epsilon if(int_SMtest.eq.0) then useSMtest = .False. write(*,*) 'SM likeness test has been switched off.' elseif(int_SMtest.eq.1) then useSMtest = .True. write(*,*) 'SM likeness test has been switched on.' else stop 'Error: SM test must be switched on/off by an integer value of 0 or 1.' endif eps = epsilon end subroutine setup_sm_test !------------------------------------------------------------ subroutine setup_thu_observables(thuobs) use usefulbits_hs, only : THU_included integer, intent(in) :: thuobs if(thuobs.eq.0) then THU_included = .False. write(*,*) 'Observables are assumed to NOT include theory errors.' else THU_included = .True. write(*,*) 'Observables are assumed to include theory errors.' endif end subroutine setup_thu_observables !------------------------------------------------------------ subroutine setup_output_level(level) ! Controls the level of information output: ! 0 : silent mode ! 1 : screen output for each analysis with its peak/mass-centered observables and ! their respective values predicted by the model ! 2 : screen output of detailed information on each analysis with its ! peak/mass-centered observables ! 3 : creates the files peak_information.txt and peak_massesandrates.txt !------------------------------------------------------------ use usefulbits_hs, only : output_level, additional_output implicit none integer, intent(in) :: level if(level.eq.0.or.level.eq.1.or.level.eq.2.or.level.eq.3) then output_level = level else stop 'Error in subroutine setup_output_level: level not equal to 0,1,2 or 3.' endif if(level.eq.3) additional_output = .True. end subroutine setup_output_level !------------------------------------------------------------ subroutine setup_pdf(pdf_in) ! Sets the probability density function for the Higgs mass uncertainty parametrization: ! 1 : box-shaped pdf ! 2 : Gaussian pdf ! 3 : box-shaped theory error + Gaussian experimental pdf !------------------------------------------------------------ use usefulbits_hs, only : pdf, assignmentrange implicit none integer, intent(in) :: pdf_in character(LEN=13) :: pdf_desc(3) = (/'box ','Gaussian ','box+Gaussian'/) pdf=pdf_in if((pdf.eq.1).or.(pdf.eq.2).or.(pdf.eq.3)) then write(*,'(1X,A,A,1I1,A)') 'Use a '//trim(pdf_desc(pdf))//' probability density function ',& & 'for the Higgs mass(es) (pdf=',pdf,')' endif if(assignmentrange.ne.1.0D0.and.pdf.eq.1) then write(*,*) "Note: For a box pdf, only 1s mass range is used to force the Higgs-to-peak assignment." endif end subroutine setup_pdf !------------------------------------------------------------ !subroutine assign_toyvalues_to_observables(ii, peakindex, npeaks, mu_obs, mh_obs) !! Assigns toy values to the peak's mass and mu value for analysis ii. !! ii :: analysis number (entry in mutables) !! peakindex :: index of the peak of analysis ii !! npeaks :: number of peaks found in analysis ii !! mu_obs :: toy value for mu to be given to the peak with peakindex !! mh_obs :: toy value for mh to be given to the peak with peakindex !------------------------------------------------------------ ! use usefulbits_hs, only: obs, usetoys ! ! integer, intent(in) :: ii, peakindex, npeaks ! double precision, intent(in) :: mh_obs, mu_obs ! ! if(peakindex.gt.npeaks) then ! stop 'Error in subroutine assign_toyvalues_to_observables: Observable does not exist!' ! endif ! ! obs(ii)%table%npeaks = npeaks ! if(.not.allocated(obs(ii)%table%Toys_muobs)) allocate(obs(ii)%table%Toys_muobs(npeaks)) ! if(.not.allocated(obs(ii)%table%Toys_mhobs)) allocate(obs(ii)%table%Toys_mhobs(npeaks)) ! ! obs(ii)%table%Toys_muobs(peakindex) = mu_obs ! obs(ii)%table%Toys_mhobs(peakindex) = mh_obs ! ! usetoys = .True. ! !end subroutine assign_toyvalues_to_observables !------------------------------------------------------------ subroutine assign_toyvalues_to_peak(ID, mu_obs, mh_obs) ! Assigns toy values to the peak's mass and mu value to a peak observable. ! ID :: observable ID ! mu_obs :: toy value for mu to be given to the peak ! mh_obs :: toy value for mh to be given to the peak ! ! n.B.: Do we also want to set mu uncertainties here? !------------------------------------------------------------ use usefulbits_hs, only: obs, usetoys implicit none integer, intent(in) :: ID double precision, intent(in) :: mh_obs, mu_obs integer :: pos, ii pos = -1 do ii=lbound(obs,dim=1),ubound(obs,dim=1) if(obs(ii)%id.eq.ID) then pos = ii exit endif enddo if(pos.ne.-1) then obs(pos)%peak%mpeak = mh_obs obs(pos)%peak%mu = mu_obs usetoys = .True. else write(*,*) "WARNING in assign_toyvalues_to_peak: ID unknown." endif end subroutine assign_toyvalues_to_peak !------------------------------------------------------------ subroutine assign_modelefficiencies_to_peak(ID, Nc, eff_ratios) ! Assigns to each channel of the observable the efficiency in the model ! w.r.t the SM efficiency (as a ratio!) ! ! ID :: observable ID ! Nc :: number of channels ! eff_ratios :: array of length (Number of channels) giving the efficiency ratios ! ! Note: You can first employ the subroutine get_peak_channels (io module) to obtain ! the relevant channel information of the observable. !------------------------------------------------------------ use usefulbits_hs, only: obs implicit none integer, intent(in) :: ID, Nc double precision, dimension(Nc), intent(in) :: eff_ratios integer :: pos, ii pos = -1 do ii=lbound(obs,dim=1),ubound(obs,dim=1) if(obs(ii)%id.eq.ID) then pos = ii exit endif enddo if(pos.ne.-1) then if(size(eff_ratios,dim=1).ne.obs(pos)%table%Nc) then write(*,*) "WARNING in assign modelefficiencies_to_peak: Number of channels (",& & size(eff_ratios,dim=1),"!=",obs(pos)%table%Nc,"does not match for observable ID = ",ID else obs(pos)%table%channel_eff_ratios = eff_ratios endif else write(*,*) "WARNING in assign_modelefficiencies_to_peak: ID unknown." endif end subroutine assign_modelefficiencies_to_peak !------------------------------------------------------------ subroutine assign_rate_uncertainty_scalefactor_to_peak(ID, scale_mu) ! Assigns a rate uncertainty scalefactor to the peak specified by ID. ! This scalefactor will only scale the experimental rate uncertainties. ! The theory rate uncertainties must be given manually via setup_rate_uncertainties. ! ! ID :: observable ID of the peak observable ! scale_mu :: scale_mu by which the mu uncertainty is scaled !------------------------------------------------------------ use usefulbits_hs, only: obs, usescalefactor implicit none integer, intent(in) :: ID double precision, intent(in) :: scale_mu integer :: pos, ii pos = -1 do ii=lbound(obs,dim=1),ubound(obs,dim=1) if(obs(ii)%id.eq.ID) then pos = ii exit endif enddo if(pos.ne.-1) then obs(pos)%peak%scale_mu = scale_mu else write(*,*) "WARNING in assign_uncertainty_scalefactors_to_peak: ID unknown." endif usescalefactor = .True. end subroutine assign_rate_uncertainty_scalefactor_to_peak !------------------------------------------------------------ subroutine run_HiggsSignals_LHC_Run1_combination(Chisq_mu, Chisq_mh, Chisq, nobs, Pvalue) use usefulbits, only : theo,just_after_run, ndat use theo_manip, only : HB5_complete_theo use usefulbits_HS, only : HSres, output_level, Nparam implicit none !----------------------------------------output integer,intent(out) :: nobs double precision,intent(out) :: Pvalue, Chisq, Chisq_mu, Chisq_mh !-------------------------------------internal integer :: n,i, nobs_mu, nobs_mh logical :: debug=.False. !--------------------------------------------- if(.not.allocated(theo))then stop 'subroutine HiggsSignals_initialize must be called first' endif call HB5_complete_theo do n=1,ndat call evaluate_LHC_Run1_combination(theo(n),n) Pvalue = HSres(n)%Pvalue_LHCRun1 Chisq = HSres(n)%Chisq_LHCRun1 Chisq_mu = HSres(n)%Chisq_LHCRun1_mu Chisq_mh = HSres(n)%Chisq_LHCRun1_mh nobs_mu = HSres(n)%nobs_LHCRun1_mu nobs_mh = HSres(n)%nobs_LHCRun1_mh nobs = nobs_mu+nobs_mh if(output_level.ne.0) then write(*,*) write(*,*) '#*************************************************************************#' write(*,*) '# HIGGSSIGNALS RESULTS (LHC ATLAS + CMS Run1 combination) #' write(*,*) '#*************************************************************************#' write(*,'(A55,F21.8)') 'chi^2 from signal rate observables = ',Chisq_mu write(*,'(A55,F21.8)') 'chi^2 from Higgs mass observables = ',Chisq_mh write(*,'(A55,F21.8)') 'chi^2 (total) = ',Chisq write(*,'(A55,I21)') 'Number of rate observables = ', nobs_mu write(*,'(A55,I21)') 'Number of mass observables = ', nobs_mh write(*,'(A55,I21)') 'Number of observables (total) = ', nobs write(*,'(A48,I3,A4,F21.8)') 'Probability (ndf =',nobs-Nparam,') = ', Pvalue write(*,*) '#*************************************************************************#' write(*,*) endif enddo just_after_run=.True. end subroutine run_HiggsSignals_LHC_Run1_combination !------------------------------------------------------------ subroutine setup_LHC_combination_run1_SMXS_from_paper(useSMXS_from_paper) !------------------------------------------------------------ use usefulbits_hs, only : LHC_combination_run1_SMXS_from_paper implicit none logical, intent(in) :: useSMXS_from_paper if(useSMXS_from_paper) then write(*,*) "Using SM cross sections from Tab.1 of arXiv:1606.02266 for LHC Run 1 combination chi^2 test." else write(*,*) "Using internal SM cross sections for LHC Run 1 combination chi^2 test." endif LHC_combination_run1_SMXS_from_paper = useSMXS_from_paper end subroutine setup_LHC_combination_run1_SMXS_from_paper !------------------------------------------------------------ subroutine evaluate_LHC_Run1_combination( t , n ) !------------------------------------------------------------ ! !------------------------------------------------------------ use usefulbits, only : np,Hneut,Hplus,dataset,results, vsmall use usefulbits_hs, only : HSresults, output_level, Nparam, & & LHCrun1_rates, LHCrun1_correlationmatrix, useaveragemass, & & assignmentrange_LHCrun1, HSres, normalize_rates_to_reference_position, & & normalize_rates_to_reference_position_outside_dmtheo use pc_chisq, only : csq_mh use numerics, only : invmatrix, matmult, gammp implicit none !--------------------------------------input type(dataset), intent(in) :: t integer, intent(in) :: n !--------------------------------------output ! type(HSresults), intent(inout) :: r !--------------------------------------internal integer :: p, d, id, i, j, k, ncomb double precision, allocatable :: covmat(:,:), invcovmat(:,:) double precision, allocatable :: covmatzero(:,:), invcovmatzero(:,:) double precision, dimension(20) :: v, v2, csq_mu, vzero, vzero2, csq_mu_max double precision, dimension(20,1) :: vmat, vzeromat double precision :: mobs = 125.09D0 double precision :: dmobs = 0.24D0 + double precision :: dmbbtautau = 20.0D0 + double precision :: dmWW = 5.0D0 + double precision :: expmassrange double precision :: Higgs_signal_k double precision :: num1, num2, dnum1, dnum2, denom1, denom2, mav, dmav allocate(covmat(20,20),invcovmat(20,20)) allocate(covmatzero(20,20),invcovmatzero(20,20)) + mav =0.0D0 dmav = 0.0D0 denom1 = 0.0D0 denom2 = 0.0D0 num1 = 0.0D0 num2 = 0.0D0 dnum1 = 0.0D0 dnum2 = 0.0D0 do i=lbound(LHCrun1_rates,dim=1),ubound(LHCrun1_rates,dim=1) id = LHCrun1_rates(i)%channel_id p = int((id-modulo(id,10))/dble(10)) d = modulo(id,10) + if(d.eq.4.or.d.eq.5) then + expmassrange = dmbbtautau + elseif(d.eq.2) then + expmassrange = dmWW + else + expmassrange = assignmentrange_LHCrun1*dmobs + endif + LHCrun1_rates(i)%r_pred = 0.0D0 ncomb = 0 do k=1,np(Hneut) if(abs(t%particle(Hneut)%M(k)-mobs).le.& -& abs(assignmentrange_LHCrun1*dmobs + t%particle(Hneut)%dM(k)) ) then +& sqrt(expmassrange**2.0D0 + t%particle(Hneut)%dM(k)**2.0D0) ) then Higgs_signal_k = signalrate(k,p,d,mobs,t%particle(Hneut)%M(k),t%particle(Hneut)%dM(k)) LHCrun1_rates(i)%r_pred = LHCrun1_rates(i)%r_pred + Higgs_signal_k if(id.eq.11) then ! gg -> h_k -> gaga weighted mass average num1 = num1 + Higgs_signal_k * t%particle(Hneut)%M(k) dnum1 = dnum1 + Higgs_signal_k * t%particle(Hneut)%dM(k) else if(id.eq.13) then ! gg -> h_k -> ZZ -> 4l weighted mass average num2 = num2 + Higgs_signal_k * t%particle(Hneut)%M(k) dnum2 = dnum2 + Higgs_signal_k * t%particle(Hneut)%dM(k) endif ncomb = ncomb+1 endif enddo if(id.eq.11) then denom1 = LHCrun1_rates(i)%r_pred else if(id.eq.13) then denom2 = LHCrun1_rates(i)%r_pred endif if(LHCrun1_rates(i)%r_pred.gt.LHCrun1_rates(i)%r) then LHCrun1_rates(i)%dr = LHCrun1_rates(i)%dr_up else LHCrun1_rates(i)%dr = LHCrun1_rates(i)%dr_low endif if(LHCrun1_rates(i)%r.lt.0.0D0) then LHCrun1_rates(i)%dr0 = LHCrun1_rates(i)%dr_up else LHCrun1_rates(i)%dr0 = LHCrun1_rates(i)%dr_low endif v(i) = LHCrun1_rates(i)%r_pred - LHCrun1_rates(i)%r vmat(i,1) = v(i) vzero(i) = LHCrun1_rates(i)%r vzeromat(i,1) = vzero(i) ! write(*,'(2I3,3F10.5)') p, d, LHCrun1_rates(i)%r_pred, LHCrun1_rates(i)%r, LHCrun1_rates(i)%r/LHCrun1_rates(i)%r_pred enddo if(denom1.gt.vsmall.and.denom2.gt.vsmall) then mav = 0.5D0 * (num1/denom1 + num2/denom2) dmav = 0.5D0 * (dnum1/denom1 + dnum2/denom2) ! write(*,*) "Averaged mass is ",mav, " +- ",dmav ! else ! write(*,*) "denom1 and denom2 are ",denom1, denom2 endif do i=lbound(LHCrun1_rates,dim=1),ubound(LHCrun1_rates,dim=1) do j=lbound(LHCrun1_rates,dim=1),ubound(LHCrun1_rates,dim=1) covmat(i,j) = LHCrun1_correlationmatrix(i,j) * & & LHCrun1_rates(i)%dr * LHCrun1_rates(j)%dr covmatzero(i,j) = LHCrun1_correlationmatrix(i,j) * & & LHCrun1_rates(i)%dr0 * LHCrun1_rates(j)%dr0 enddo enddo call invmatrix(covmat, invcovmat) call matmult(invcovmat,vmat,v2,20,1) call invmatrix(covmatzero, invcovmatzero) call matmult(invcovmatzero,vzeromat,vzero2,20,1) do i=1, 20 csq_mu(i) = v(i)*v2(i) enddo do i=1, 20 csq_mu_max(i) = vzero(i)*vzero2(i) enddo if(mav.lt.vsmall) then HSres(n)%Chisq_LHCRun1_mh=0.0D0 else HSres(n)%Chisq_LHCRun1_mh=csq_mh(mav,mobs,dmav,dmobs) endif if((HSres(n)%Chisq_LHCRun1_mh+sum(csq_mu)).gt.sum(csq_mu_max)) then HSres(n)%Chisq_LHCRun1_mu=sum(csq_mu_max) HSres(n)%Chisq_LHCRun1_mh=0.0D0 else HSres(n)%Chisq_LHCRun1_mu=sum(csq_mu) endif HSres(n)%Chisq_LHCRun1= HSres(n)%Chisq_LHCRun1_mu + HSres(n)%Chisq_LHCRun1_mh HSres(n)%nobs_LHCRun1_mu=20 HSres(n)%nobs_LHCRun1_mh=1 if(HSres(n)%Chisq_LHCRun1.gt.vsmall.and.(HSres(n)%nobs_LHCRun1_mu+HSres(n)%nobs_LHCRun1_mh-Nparam).gt.0) then HSres(n)%Pvalue_LHCRun1=1 - gammp(dble(HSres(n)%nobs_LHCRun1_mu + HSres(n)%nobs_LHCRun1_mh-Nparam)/2,HSres(n)%Chisq_LHCRun1/2) endif deallocate(covmat,invcovmat) deallocate(covmatzero,invcovmatzero) contains !------------------------------------------------------------ function signalrate(k,p,d,mobs,m,dmtheo) !------------------------------------------------------------ use usefulbits_hs, only : LHC_combination_run1_SMXS_from_paper !--------------------------------------external functions double precision :: SMCS_lhc8_gg_H,SMCS_lhc8_bb_H,SMCS_lhc8_vbf_H, & & SMCS_lhc8_HW, SMCS_lhc8_HZ, SMCS_lhc8_ttH, SMBR_Hgamgam,SMBR_HWW, & & SMBR_HZZ, SMBR_Htautau, SMBR_Hbb, SMBR_HZgam, SMBR_Hcc, SMBR_Hmumu, & & SMBR_Hgg double precision, intent(in) :: mobs, m, dmtheo integer, intent(in) :: k,p,d double precision :: signalrate, production_rate, decay_rate, mass double precision :: production_rate_scalefactor, decay_rate_scalefactor mass = t%particle(Hneut)%M(k) if(p.eq.1) then if(LHC_combination_run1_SMXS_from_paper) then production_rate= t%lhc8%XS_gg_hj_ratio(k) * 19.2D0 & & + t%lhc8%XS_bb_hj_ratio(k) * 0.203D0 else production_rate= t%lhc8%XS_gg_hj_ratio(k) * SMCS_lhc8_gg_H(mass) & & + t%lhc8%XS_bb_hj_ratio(k) * SMCS_lhc8_bb_H(mass) endif ! NOTE: Here we make a small error in the scalefactor. Correct would be to rescale ! the gg and bb contributions separately. production_rate_scalefactor = (SMCS_lhc8_gg_H(mobs)+SMCS_lhc8_bb_H(mobs))/& & (SMCS_lhc8_gg_H(mass)+SMCS_lhc8_bb_H(mass)) else if(p.eq.2) then if(LHC_combination_run1_SMXS_from_paper) then production_rate= t%lhc8%XS_vbf_ratio(k) * 1.58D0 else production_rate= t%lhc8%XS_vbf_ratio(k) * SMCS_lhc8_vbf_H(mass) endif production_rate_scalefactor = SMCS_lhc8_vbf_H(mobs)/SMCS_lhc8_vbf_H(mass) else if(p.eq.3) then if(LHC_combination_run1_SMXS_from_paper) then production_rate= t%lhc8%XS_hjW_ratio(k) * 0.703D0 else production_rate= t%lhc8%XS_hjW_ratio(k) * SMCS_lhc8_HW(mass) endif production_rate_scalefactor = SMCS_lhc8_HW(mobs)/SMCS_lhc8_HW(mass) else if(p.eq.4) then if(LHC_combination_run1_SMXS_from_paper) then production_rate= t%lhc8%XS_hjZ_ratio(k) * 0.446D0 else production_rate= t%lhc8%XS_hjZ_ratio(k) * SMCS_lhc8_HZ(mass) endif production_rate_scalefactor = SMCS_lhc8_HZ(mobs)/SMCS_lhc8_HZ(mass) else if(p.eq.5) then if(LHC_combination_run1_SMXS_from_paper) then production_rate= t%lhc8%XS_tthj_ratio(k) * 0.129D0 else production_rate= t%lhc8%XS_tthj_ratio(k) * SMCS_lhc8_ttH(mass) endif production_rate_scalefactor = SMCS_lhc8_ttH(mobs)/SMCS_lhc8_ttH(mass) endif if(d.eq.1) then decay_rate = t%BR_hjgaga(k) decay_rate_scalefactor = SMBR_Hgamgam(mobs)/SMBR_Hgamgam(mass) else if(d.eq.2) then decay_rate = t%BR_hjWW(k) decay_rate_scalefactor = SMBR_HWW(mobs)/SMBR_HWW(mass) else if(d.eq.3) then decay_rate = t%BR_hjZZ(k) decay_rate_scalefactor = SMBR_HZZ(mobs)/SMBR_HZZ(mass) else if(d.eq.4) then decay_rate = t%BR_hjtautau(k) decay_rate_scalefactor = SMBR_Htautau(mobs)/SMBR_Htautau(mass) else if(d.eq.5) then decay_rate = t%BR_hjbb(k) decay_rate_scalefactor = SMBR_Hbb(mobs)/SMBR_Hbb(mass) endif if(normalize_rates_to_reference_position) then signalrate = production_rate * decay_rate else signalrate = production_rate * production_rate_scalefactor * & & decay_rate * decay_rate_scalefactor endif if(normalize_rates_to_reference_position_outside_dmtheo) then if(abs(mobs-m).ge.dmtheo) then signalrate = production_rate * decay_rate endif endif end function signalrate !------------------------------------------------------------ end subroutine evaluate_LHC_Run1_combination !------------------------------------------------------------ subroutine run_HiggsSignals_STXS(Chisq_STXS_rates, Chisq_STXS_mh, Chisq_STXS, nobs_STXS, Pvalue_STXS) !------------------------------------------------------------ use STXS, only : evaluate_model_for_STXS, get_chisq_from_STXS, print_STXS, & & get_number_of_STXS_observables, STXSlist, print_STXS_to_file use usefulbits, only : theo,just_after_run, ndat, vsmall use usefulbits_hs, only : HSres, output_level use theo_manip, only : HB5_complete_theo use numerics, only : gammp double precision, intent(out) :: Chisq_STXS_rates, Chisq_STXS_mh, Chisq_STXS, Pvalue_STXS integer, intent(out) :: nobs_STXS double precision :: Pvalue integer :: nobs_STXS_rates, nobs_STXS_mh, i, n call HB5_complete_theo Chisq_STXS_mh = 0.0D0 do n=1, ndat do i=lbound(STXSlist,dim=1), ubound(STXSlist,dim=1) call evaluate_model_for_STXS(STXSlist(i),theo(n)) enddo call get_chisq_from_STXS(Chisq_STXS_rates, Pvalue_STXS) call get_number_of_STXS_observables(nobs_STXS_rates, nobs_STXS_mh) nobs_STXS = nobs_STXS_rates + nobs_STXS_mh ! Add routine for possible mh-observable in STXS here! Chisq_STXS = Chisq_STXS_rates + Chisq_STXS_mh HSres(n)%Chisq_STXS_rates = Chisq_STXS_rates HSres(n)%Chisq_STXS_mh = Chisq_STXS_mh HSres(n)%Chisq_STXS = Chisq_STXS HSres(n)%nobs_STXS_rates = nobs_STXS_rates HSres(n)%nobs_STXS_mh = nobs_STXS_mh HSres(n)%nobs_STXS = nobs_STXS Pvalue = 1.0D0 if(Chisq_STXS.gt.vsmall.and.(nobs_STXS-Nparam).gt.0) then Pvalue = 1 - gammp(dble(nobs_STXS-Nparam)/2,Chisq_STXS/2) endif HSres(n)%Pvalue_STXS = Pvalue enddo if(output_level.eq.1) call print_STXS if(output_level.eq.3) then call print_STXS_to_file endif if(output_level.ne.0) then write(*,*) write(*,*) '#*************************************************************************#' - write(*,*) '# HIGGSSIGNALS RESULTS (STXS observables) #' + write(*,*) '# HIGGSSIGNALS RESULTS (STXS observables) #' write(*,*) '#*************************************************************************#' write(*,'(A55,F21.8)') 'chi^2 (signal rate) from STXS observables = ',Chisq_STXS_rates write(*,'(A55,F21.8)') 'chi^2 (Higgs mass) from STXS observables = ',Chisq_STXS_mh write(*,'(A55,F21.8)') 'chi^2 (total) = ',Chisq_STXS write(*,'(A55,I21)') 'Number of STXS rate observables = ', nobs_STXS_rates write(*,'(A55,I21)') 'Number of STXS mass observables = ', nobs_STXS_mh write(*,'(A55,I21)') 'Number of STXS observables (total) = ', nobs_STXS write(*,'(A48,I3,A4,F21.8)') 'Probability (ndf =',nobs-Nparam,') = ', Pvalue write(*,*) '#*************************************************************************#' write(*,*) endif end subroutine run_HiggsSignals_STXS !------------------------------------------------------------------------------------ subroutine run_HiggsSignals(mode, Chisq_mu, Chisq_mh, Chisq, nobs, Pvalue) !------------------------------------------------------------ ! This subroutine can be called by the user after HiggsSignals_initialize has been called. ! The input routines, where required, should be called before calling run_HiggsSignals. ! It takes theoretical predictions for a particular parameter point ! in the model and calls subroutines which compare these predictions ! to the experimental results. ! Arguments (output): ! * mode = 1,2 or 3 for peak-centered, mass-centered chi^2 method or both, respectively. ! * Chisq_mu = total chi^2 contribution from signal strength measurements ! * Chisq_mh = total chi^2 contribution from Higgs mass measurements ! * Chisq = total chi^2 value for the combination of the considered Higgs signals ! * nobs = total number of observables ! * Pvalue = total chi^2 probability for the agreement between model and data, ! assuming number of observables == number of degrees of freedom ! (see manual for more precise definitions)) !------------------------------------------------------------ use usefulbits, only : theo,just_after_run, inputmethod, ndat!inputsub, use usefulbits_HS, only : HSres, runmode, output_level, usescalefactor, Nparam,Exptdir use channels, only : check_channels use theo_manip, only : HB5_complete_theo!, HB5_recalculate_theo_for_datapoint #if defined(NAGf90Fortran) use F90_UNIX_IO, only : flush #endif implicit none integer,intent(in) :: mode !----------------------------------------output integer,intent(out) :: nobs double precision,intent(out) :: Pvalue, Chisq, Chisq_mu, Chisq_mh !-------------------------------------internal integer :: n,i logical :: debug=.False. !--------------------------------------------- if(mode.eq.1) then runmode="peak" else if(mode.eq.2) then ! runmode="mass" write(*,*) "Warning: The 'mass' method (runmode = 2) is no longer maintained." write(*,*) " The peak-centered chi^2 method will be used instead." runmode="peak" else if(mode.eq.3) then ! runmode="both" write(*,*) "Warning: The 'both' method (runmode = 3) is no longer maintained." write(*,*) " The peak-centered chi^2 method will be used instead." runmode="peak" else stop'Error in subroutine run_HiggsSignals: mode unknown' endif if(.not.allocated(theo))then stop 'subroutine HiggsSignals_initialize must be called first' endif ! if(inputmethod.eq.'subrout') then ! do i=1,ubound(inputsub,dim=1) ! if( inputsub(i)%req .ne. inputsub(i)%stat )then ! write(*,*) inputsub(i)%req, inputsub(i)%stat ! write(*,*)'subroutine '//trim(adjustl(inputsub(i)%desc)) ! write(*,*)'should be called once and only once before each call to' ! write(*,*)'subroutine run_HiggsSignals.' ! stop'error in subroutine run_HiggsSignals' ! endif ! TS: Have to work on this bit to make it run simultaneously with HiggsBounds. Now, ! commented out the =0 statement. HS thus has to be run before HB. ! inputsub(i)%stat=0!now we have used this input, set back to zero ! enddo ! endif if(debug)write(*,*)'manipulating input...' ; call flush(6) call HB5_complete_theo if(debug)write(*,*)'compare each model to the experimental data...' ; call flush(6) do n=1,ndat ! call recalculate_theo_for_datapoint(n) call evaluate_model(theo(n),n) Pvalue = HSres(n)%Pvalue_peak Chisq = HSres(n)%Chisq_peak Chisq_mu = HSres(n)%Chisq_peak_mu Chisq_mh = HSres(n)%Chisq_peak_mh nobs = HSres(n)%nobs_peak if(output_level.ne.0) then write(*,*) write(*,*) '#*************************************************************************#' write(*,*) '# HIGGSSIGNALS RESULTS (',trim(adjustl(Exptdir)),') -- peak observables #' write(*,*) '#*************************************************************************#' write(*,'(A55,F21.8)') 'chi^2 (signal strength) from peak observables = ',& & HSres(n)%Chisq_peak_mu write(*,'(A55,F21.8)') 'chi^2 (Higgs mass) from peak observables = ',HSres(n)%Chisq_peak_mh ! write(*,'(A55,F21.8)') 'chi^2 from mass-centered observables = ',HSres(n)%Chisq_mpred ! write(*,'(A55,F21.8)') 'chi^2 from signal strength peak observables (total) = ',HSres(n)%Chisq_mu write(*,'(A55,F21.8)') 'chi^2 (total) from peak observables = ',HSres(n)%Chisq write(*,'(A55,I21)') 'Number of signal strength peak observables = ',& & HSres(n)%nobs_peak_mu write(*,'(A55,I21)') 'Number of Higgs mass peak observables = ',HSres(n)%nobs_peak_mh ! write(*,'(A55,I21)') 'Number of mass-centered observables = ',HSres(n)%nobs_mpred write(*,'(A55,I21)') 'Number of peak observables (total) = ',HSres(n)%nobs_peak write(*,'(A48,I3,A4,F21.8)') 'Probability (ndf =',HSres(n)%nobs-Nparam,') using peak observables = ',HSres(n)%Pvalue_peak write(*,*) '#*************************************************************************#' write(*,*) endif enddo just_after_run=.True. usescalefactor=.False. end subroutine run_HiggsSignals !------------------------------------------------------------ subroutine evaluate_model( t , n ) !------------------------------------------------------------ ! This subroutine evaluates the signal strength modifier for every Higgs boson and ! considered analysis. It fills a matrix neutHiggs(:,:) of type neutHiggs with dimensions ! (number(considered analyses),nH). !------------------------------------------------------------ use usefulbits, only : np,Hneut,Hplus,dataset,results, vsmall use usefulbits_hs, only : neutHiggses, nanalys, runmode, HSresults, cov, obs, analyses,& & cov_mhneut, iterations, deallocate_covariance_matrices, & & output_level, Nparam, nanalys use datatables, only : setup_tablelist, check_available_Higgses use pc_chisq use mc_chisq use all_chisq use numerics implicit none !--------------------------------------input type(dataset), intent(in) :: t integer, intent(in) :: n !-------------------------------------output ! type(HSresults), intent(out) :: r integer :: ii, jj, iii, jjj double precision :: totchisq, muchisq, mhchisq, mpchisq, mpredchisq integer :: nobs, Nmu, Nmh, Nmpred character(LEN=100), allocatable :: assignmentgroups(:) integer, allocatable :: assignmentgroups_domH(:) integer, allocatable :: assignmentgroups_Higgs_comb(:,:) allocate(assignmentgroups(nanalys),assignmentgroups_domH(nanalys)) allocate(assignmentgroups_Higgs_comb(nanalys,np(Hneut))) assignmentgroups = '' !---Initialize assignmentgroups arrays with default values do ii=lbound(assignmentgroups_domH,dim=1),ubound(assignmentgroups_domH,dim=1) assignmentgroups_domH(ii) = 0 assignmentgroups_Higgs_comb(ii,:) = 0 enddo !---First, evaluate the model predictions allocate(neutHiggses(nanalys,np(Hneut))) !-Loop over considered analyses do ii=lbound(neutHiggses,dim=1),ubound(neutHiggses,dim=1) !-Loop over the neutral Higgs bosons of the model do jj=lbound(neutHiggses,dim=2),ubound(neutHiggses,dim=2) !! write(*,*) "hello evaluate model:", ii, jj call calc_mupred(jj, t, obs(ii)%table, neutHiggses(ii,jj)) enddo if(.not.allocated(obs(ii)%Higgses)) allocate(obs(ii)%Higgses(np(Hneut))) obs(ii)%Higgses(:) = neutHiggses(ii,:) enddo !-Pass the observables and their predicted Higgs properties (obs%Higgses) !-to the tablelist "analyses" call setup_tablelist ! select case(runmode) ! ! case('peak') !-Peak-centered chisq method jjj=0 do ii=lbound(analyses,dim=1),ubound(analyses,dim=1) call deallocate_covariance_matrices call assign_Higgs_to_peaks(analyses(ii)%table, analyses(ii)%peaks,0) do iii=lbound(analyses(ii)%peaks,dim=1),ubound(analyses(ii)%peaks,dim=1) if(analyses(ii)%table%mhchisq.eq.1.and.& & len(trim(adjustl(analyses(ii)%peaks(iii)%assignmentgroup))).ne.0) then jjj=jjj+1 assignmentgroups(jjj)=analyses(ii)%peaks(iii)%assignmentgroup assignmentgroups_Higgs_comb(jjj,:)=analyses(ii)%peaks(iii)%Higgs_comb assignmentgroups_domH(jjj)=analyses(ii)%peaks(iii)%domH ! write(*,*) "Found leader of group ",assignmentgroups(jjj) ! write(*,*) "ID ",analyses(ii)%peaks(iii)%id ! write(*,*) "with Higgs combination ",assignmentgroups_Higgs_comb(jjj,:) ! write(*,*) "and dominant Higgs boson ",assignmentgroups_domH(jjj) endif enddo enddo do ii=lbound(analyses,dim=1),ubound(analyses,dim=1) do iii=lbound(analyses(ii)%peaks,dim=1),ubound(analyses(ii)%peaks,dim=1) if(analyses(ii)%table%mhchisq.eq.0.and.& & len(trim(adjustl(analyses(ii)%peaks(iii)%assignmentgroup))).ne.0) then !SELECT ASSIGNMENT GROUP FOLLOWERS do jjj=lbound(assignmentgroups,dim=1),ubound(assignmentgroups,dim=1) if(analyses(ii)%peaks(iii)%assignmentgroup.eq.assignmentgroups(jjj)) then !TAKE OVER THE HIGGS ASSIGNMENT OF THE LEADING PEAK analyses(ii)%peaks(iii)%Higgs_comb=assignmentgroups_Higgs_comb(jjj,:) analyses(ii)%peaks(iii)%domH=assignmentgroups_domH(jjj) if(assignmentgroups_domH(jjj).ne.0) then analyses(ii)%peaks(iii)%Higgs_assignment_forced=1 endif call evaluate_peak(analyses(ii)%peaks(iii),analyses(ii)%table) endif enddo endif enddo enddo ! write(*,*) "Starting assignment procedure..." ! Do the iterative Higgs-to-peak-assignment here: call assign_Higgs_to_peaks_with_correlations(iterations) ! write(*,*) "Calculating chi^2..." call calculate_total_pc_chisq(totchisq, muchisq, mhchisq, nobs, Nmu, Nmh) ! write(*,*) "...done." if(output_level.eq.1) call print_peakinformation if(output_level.eq.2) call print_peakinformation_essentials if(output_level.eq.3) then call print_peaks_to_file call print_peaks_signal_rates_to_file endif call add_peaks_to_HSresults(HSres(n)) HSres(n)%Chisq_peak=totchisq HSres(n)%Chisq_peak_mu = muchisq HSres(n)%Chisq_mpred = 0.0D0 HSres(n)%Chisq_peak_mu=muchisq HSres(n)%Chisq_peak_mh=mhchisq HSres(n)%nobs_mpred=0 HSres(n)%nobs_peak_mu=Nmu HSres(n)%nobs_peak_mh=Nmh HSres(n)%nanalysis=size(analyses) HSres(n)%nobs_peak=nobs if(HSres(n)%Chisq.gt.vsmall.and.(HSres(n)%nobs-Nparam).gt.0) then HSres(n)%Pvalue_peak = 1 - gammp(dble(HSres(n)%nobs-Nparam)/2,HSres(n)%Chisq/2) endif ! case('mass') ! do ii=lbound(analyses,dim=1),ubound(analyses,dim=1) ! call fill_mp_obs(ii) ! enddo ! if(mc_mode.eq.1) call mass_variation_by_theory_uncertainty ! call create_covariance_matrix_mp ! call calculate_mpred_chisq(mpchisq, nobs) ! ! if(output_level.eq.1) call print_mc_observables ! if(output_level.eq.2) call print_mc_observables_essentials ! if(output_level.eq.3) then ! call print_mc_tables_to_file ! call print_mc_observables_to_file ! endif ! ! HSres(n)%Chisq=mpchisq ! HSres(n)%Chisq_peak_mu = 0.0D0 ! HSres(n)%Chisq_mpred = mpchisq ! HSres(n)%Chisq_mu=mpchisq ! HSres(n)%Chisq_mh=0.0D0 ! HSres(n)%nobs_mpred=nobs ! HSres(n)%nobs_peak_mu=0 ! HSres(n)%nobs_peak_mh=0 ! HSres(n)%nanalysis=size(analyses) ! HSres(n)%nobs=nobs ! if(HSres(n)%Chisq.gt.vsmall.and.(HSres(n)%nobs-Nparam).gt.0) then ! HSres(n)%Pvalue=1 - gammp(dble(HSres(n)%nobs-Nparam)/2,HSres(n)%Chisq/2) ! endif ! ! case('both') ! jjj=0 ! do ii=lbound(analyses,dim=1),ubound(analyses,dim=1) ! call deallocate_covariance_matrices ! call assign_Higgs_to_peaks(analyses(ii)%table, analyses(ii)%peaks,0) ! do iii=lbound(analyses(ii)%peaks,dim=1),ubound(analyses(ii)%peaks,dim=1) ! if(analyses(ii)%table%mhchisq.eq.1.and.& ! & len(trim(analyses(ii)%peaks(iii)%assignmentgroup)).ne.0) then ! jjj=jjj+1 ! assignmentgroups(jjj)=analyses(ii)%peaks(iii)%assignmentgroup ! assignmentgroups_Higgs_comb(jjj,:)=analyses(ii)%peaks(iii)%Higgs_comb ! assignmentgroups_domH(jjj)=analyses(ii)%peaks(iii)%domH ! endif ! enddo ! enddo ! do ii=lbound(analyses,dim=1),ubound(analyses,dim=1) ! do iii=lbound(analyses(ii)%peaks,dim=1),ubound(analyses(ii)%peaks,dim=1) ! if(analyses(ii)%table%mhchisq.eq.0.and.& ! & len(trim(analyses(ii)%peaks(iii)%assignmentgroup)).ne.0) then ! do jjj=lbound(assignmentgroups,dim=1),ubound(assignmentgroups,dim=1) ! if(analyses(ii)%peaks(iii)%assignmentgroup.eq.assignmentgroups(jjj)) then ! !TAKE OVER THE HIGGS ASSIGNMENT OF THE LEADING PEAK ! analyses(ii)%peaks(iii)%Higgs_comb=assignmentgroups_Higgs_comb(jjj,:) ! analyses(ii)%peaks(iii)%domH=assignmentgroups_domH(jjj) ! if(assignmentgroups_domH(jjj).ne.0) then ! analyses(ii)%peaks(iii)%Higgs_assignment_forced=1 ! endif ! ! TODO: Need to evaluate everything else here! ! call evaluate_peak(analyses(ii)%peaks(iii),analyses(ii)%table) ! endif ! enddo ! endif ! enddo ! enddo ! ! call assign_Higgs_to_peaks_with_correlations(iterations) ! ! do ii=lbound(analyses,dim=1),ubound(analyses,dim=1) ! call check_available_Higgses(ii) ! call fill_mp_obs(ii) ! enddo ! if(mc_mode.eq.1) call mass_variation_by_theory_uncertainty ! ! call calculate_total_chisq(totchisq, muchisq, mhchisq, mpredchisq, nobs, Nmu, Nmh, Nmpred) ! ! !Have to write a new print method ! if(output_level.eq.1) call print_all_observables ! if(output_level.eq.2) call print_peakinformation_essentials ! if(output_level.eq.3) then ! call print_peaks_to_file ! call print_peaks_signal_rates_to_file ! endif ! ! call add_peaks_to_HSresults(r) ! ! HSres(n)%Chisq=totchisq ! HSres(n)%Chisq_peak_mu = muchisq ! HSres(n)%Chisq_mpred = mpredchisq ! HSres(n)%Chisq_mu=muchisq + mpredchisq ! HSres(n)%Chisq_mh=mhchisq ! HSres(n)%nobs_mpred=Nmpred ! HSres(n)%nobs_peak_mu=Nmu ! HSres(n)%nobs_peak_mh=Nmh ! HSres(n)%nanalysis=size(analyses) ! HSres(n)%nobs=nobs ! if(HSres(n)%Chisq.gt.vsmall.and.(HSres(n)%nobs-Nparam).gt.0) then ! HSres(n)%Pvalue=1 - gammp(dble(HSres(n)%nobs-Nparam)/2,HSres(n)%Chisq/2) ! endif ! ! case default ! stop "Error in subroutine evaluate_model: Please specify runmode!" ! ! end select deallocate(neutHiggses) deallocate(assignmentgroups, assignmentgroups_domH, assignmentgroups_Higgs_comb) end subroutine evaluate_model !------------------------------------------------------------ subroutine calc_mupred( j, t, mutab, Higgs ) ! Calculates the model-predicted signal strength modifier !------------------------------------------------------------ use usefulbits, only : dataset, div, vsmall use usefulbits_HS, only : neutHiggs, mutable, useSMtest, eps implicit none integer, intent(in) :: j ! Higgs index type(dataset), intent(in) :: t type(mutable), intent(inout) :: mutab type(neutHiggs), intent(inout) :: Higgs integer :: i double precision :: c, dcbyc integer :: testSMratios logical :: correct_properties Higgs%m = t%particle(mutab%particle_x)%M(j) Higgs%dm = t%particle(mutab%particle_x)%dM(j) Higgs%id = j call get_channelrates( j, t, mutab ) correct_properties=.True. !--Evaluate the predicted signal strength modifier c of the model c=0. do i=1,mutab%Nc !----use a weighted average of the channel rate ratios c=c+mutab%channel_w(i,j)*mutab%channel_mu(i,j) enddo !--Evaluate the deviation of each channel rate ratio to the signal !--strength modifier c and test SM likeness criterium, if this is !--activated. testSMratios= 1 !passes the SM-like ratios test do i=1,mutab%Nc dcbyc=div((mutab%channel_mu(i,j)-c),c,0.0D0,1.0D9) if(dcbyc*mutab%channel_w(i,j).gt.eps.and.useSMtest) then testSMratios= -1 !fails the SM-like ratios test endif enddo if(testSMratios.lt.0) correct_properties=.False. if(correct_properties) then Higgs%mu=c else Higgs%mu=0.0D0 endif end subroutine calc_mupred !------------------------------------------------------------ subroutine get_channelrates( j, t, mutab ) ! This subroutine assignes the rates, weights and systematic rate uncertainty of ! the Higgs boson (j) for the channels considered by the analysis (mutab). ! ! WARNING: if normalize_rates_to_reference_position is true ! The rates are normalized w.r.t. a reference rate at the (peak) mass position. ! This does not work with the mass-centered chi^2 method. ! Also, theoretical mass uncertainties are problematic! !------------------------------------------------------------ use usefulbits, only : dataset, div, small use usefulbits_HS, only : neutHiggs, mutable, delta_rate, normalize_rates_to_reference_position,& & normalize_rates_to_reference_position_outside_dmtheo use theory_XS_SM_functions use theory_BRfunctions integer, intent(in) :: j type(dataset), intent(in) :: t type(mutable), intent(inout) :: mutab integer :: i, p, d ! id integer :: ii, p1, p2, d1, d2 !id1, id2 double precision :: rate, SMrate, modelrate, drsq_SM, drsq, dBR, dBRSM,drcov,drcovSM !!NEW: double precision :: rate_SMref,refmass,BR_SMref!,BR_SMref_mpeak if(size(mutab%mass,dim=1).eq.1) then refmass = mutab%mass(1) else ! write(*,*) "mutab%id", mutab%id, "Mass measurements: ",size(mutab%mass,dim=1) ! write(*,*) "mutab%particle_x = ", mutab%particle_x, " j= ", j refmass = t%particle(mutab%particle_x)%M(j) endif !write(*,*) 'DEBUG HS: id = ', mutab%id !write(*,*) 'DEBUG HS, m = ', t%particle(mutab%particle_x)%M(j) do i=1,mutab%Nc ! id = mutab%channel_id(i) ! p = int((id-modulo(id,10))/dble(10)) ! d = modulo(id,10) p = mutab%channel_p_id(i) d = mutab%channel_d_id(i) !--Do the production rate for the relevant experiment and cms-energy if(mutab%collider.eq.'LHC') then if(abs(mutab%energy-7.0D0).le.small) then if(p.eq.1) then rate=t%lhc7%XS_hj_ratio(j) SMrate=t%lhc7%XS_H_SM(j) rate_SMref=XS_lhc7_gg_H_SM(refmass) mutab%channel_description(i,1)='singleH' else if(p.eq.2) then rate=t%lhc7%XS_vbf_ratio(j) SMrate=t%lhc7%XS_vbf_SM(j) rate_SMref=XS_lhc7_vbf_SM(refmass) mutab%channel_description(i,1)='VBF' else if(p.eq.3) then rate=t%lhc7%XS_hjW_ratio(j) SMrate=t%lhc7%XS_HW_SM(j) rate_SMref=XS_lhc7_HW_SM(refmass) mutab%channel_description(i,1)='HW' else if(p.eq.4) then rate=t%lhc7%XS_hjZ_ratio(j) SMrate=t%lhc7%XS_HZ_SM(j) rate_SMref=XS_lhc7_HZ_SM(refmass) mutab%channel_description(i,1)='HZ' else if(p.eq.5) then rate=t%lhc7%XS_tthj_ratio(j) SMrate=t%lhc7%XS_ttH_SM(j) rate_SMref=XS_lhc7_ttH_SM(refmass) mutab%channel_description(i,1)='ttH' else if(p.eq.6) then rate=t%lhc7%XS_gg_hj_ratio(j) SMrate=t%lhc7%XS_gg_H_SM(j) rate_SMref=XS_lhc7_gg_H_SM(refmass) mutab%channel_description(i,1)='ggH' else if(p.eq.7) then rate=t%lhc7%XS_bb_hj_ratio(j) SMrate=t%lhc7%XS_bb_H_SM(j) rate_SMref=XS_lhc7_bb_H_SM(refmass) mutab%channel_description(i,1)='bbH' else if(p.eq.8) then rate=t%lhc7%XS_thj_tchan_ratio(j) SMrate=t%lhc7%XS_tH_tchan_SM(j) rate_SMref=XS_lhc7_tH_tchan_SM(refmass) mutab%channel_description(i,1)='tH (t-channel)' else if(p.eq.9) then rate=t%lhc7%XS_thj_schan_ratio(j) SMrate=t%lhc7%XS_tH_schan_SM(j) rate_SMref=XS_lhc7_tH_schan_SM(refmass) mutab%channel_description(i,1)='tH (s-channel)' else if(p.eq.10) then rate=t%lhc7%XS_qq_hjZ_ratio(j) SMrate=t%lhc7%XS_qq_HZ_SM(j) rate_SMref=XS_lhc7_HZ_SM(refmass) ! WARNING: This is still the inclusive rate!!! ! rate_SMref=XS_lhc7_qq_HZ_SM(refmass) !Need to create this function yet! mutab%channel_description(i,1)='qq-HZ' else if(p.eq.11) then rate=t%lhc7%XS_gg_hjZ_ratio(j) SMrate=t%lhc7%XS_gg_HZ_SM(j) rate_SMref=XS_lhc7_HZ_SM(refmass) ! WARNING: This is still the inclusive rate!!! ! rate_SMref=XS_lhc7_gg_HZ_SM(refmass) !Need to create this function yet! mutab%channel_description(i,1)='gg-HZ' else if(p.eq.0) then rate=1.0D0 SMrate=1.0D0 rate_SMref=1.0D0 mutab%channel_description(i,1)='none' endif else if(abs(mutab%energy-8.0D0).le.small) then if(p.eq.1) then rate=t%lhc8%XS_hj_ratio(j) SMrate=t%lhc8%XS_H_SM(j) rate_SMref=XS_lhc8_gg_H_SM(refmass) mutab%channel_description(i,1)='singleH' else if(p.eq.2) then rate=t%lhc8%XS_vbf_ratio(j) SMrate=t%lhc8%XS_vbf_SM(j) rate_SMref=XS_lhc8_vbf_SM(refmass) mutab%channel_description(i,1)='VBF' else if(p.eq.3) then rate=t%lhc8%XS_hjW_ratio(j) SMrate=t%lhc8%XS_HW_SM(j) rate_SMref=XS_lhc8_HW_SM(refmass) mutab%channel_description(i,1)='HW' else if(p.eq.4) then rate=t%lhc8%XS_hjZ_ratio(j) SMrate=t%lhc8%XS_HZ_SM(j) rate_SMref=XS_lhc8_HZ_SM(refmass) mutab%channel_description(i,1)='HZ' else if(p.eq.5) then rate=t%lhc8%XS_tthj_ratio(j) SMrate=t%lhc8%XS_ttH_SM(j) rate_SMref=XS_lhc8_ttH_SM(refmass) mutab%channel_description(i,1)='ttH' else if(p.eq.0) then rate=1.0D0 SMrate=1.0D0 rate_SMref=1.0D0 mutab%channel_description(i,1)='none' endif else if(abs(mutab%energy-13.0D0).le.small) then if(p.eq.1) then rate=t%lhc13%XS_hj_ratio(j) SMrate=t%lhc13%XS_H_SM(j) rate_SMref=XS_lhc13_gg_H_SM(refmass) mutab%channel_description(i,1)='singleH' else if(p.eq.2) then rate=t%lhc13%XS_vbf_ratio(j) SMrate=t%lhc13%XS_vbf_SM(j) rate_SMref=XS_lhc13_vbf_SM(refmass) mutab%channel_description(i,1)='VBF' else if(p.eq.3) then rate=t%lhc13%XS_hjW_ratio(j) SMrate=t%lhc13%XS_HW_SM(j) rate_SMref=XS_lhc13_HW_SM(refmass) mutab%channel_description(i,1)='HW' else if(p.eq.4) then rate=t%lhc13%XS_hjZ_ratio(j) SMrate=t%lhc13%XS_HZ_SM(j) rate_SMref=XS_lhc13_HZ_SM(refmass) mutab%channel_description(i,1)='HZ' else if(p.eq.5) then rate=t%lhc13%XS_tthj_ratio(j) SMrate=t%lhc13%XS_ttH_SM(j) rate_SMref=XS_lhc13_ttH_SM(refmass) mutab%channel_description(i,1)='ttH' else if(p.eq.0) then rate=1.0D0 SMrate=1.0D0 rate_SMref=1.0D0 mutab%channel_description(i,1)='none' endif endif else if(mutab%collider.eq.'TEV') then if(p.eq.1) then rate=t%tev%XS_hj_ratio(j) SMrate=t%tev%XS_H_SM(j) rate_SMref=XS_tev_gg_H_SM(refmass) mutab%channel_description(i,1)='singleH' else if(p.eq.2) then rate=t%tev%XS_vbf_ratio(j) SMrate=t%tev%XS_vbf_SM(j) rate_SMref=XS_tev_vbf_SM(refmass) mutab%channel_description(i,1)='VBF' else if(p.eq.3) then rate=t%tev%XS_hjW_ratio(j) SMrate=t%tev%XS_HW_SM(j) rate_SMref=XS_tev_HW_SM(refmass) mutab%channel_description(i,1)='HW' else if(p.eq.4) then rate=t%tev%XS_hjZ_ratio(j) SMrate=t%tev%XS_HZ_SM(j) rate_SMref=XS_tev_HZ_SM(refmass) mutab%channel_description(i,1)='HZ' else if(p.eq.5) then rate=t%tev%XS_tthj_ratio(j) SMrate=t%tev%XS_ttH_SM(j) rate_SMref=XS_tev_ttH_SM(refmass) mutab%channel_description(i,1)='ttH' else if(p.eq.0) then rate=1.0D0 SMrate=1.0D0 rate_SMref=1.0D0 mutab%channel_description(i,1)='none' endif else if(mutab%collider.eq.'ILC') then !--n.B.: As a first attempt, we use the LHC8 normalized cross sections for ZH, VBF, ttH. ! In order to do this properly, a separate input for the ILC cross sections ! has to be provided! It works only for single production mode observables (no ! correct weighting of channels included!)Then, at least in the effective coupling ! approximation, there is no difference to a full implementation. ! The theoretical uncertainty of the ILC production modes will are defined in ! usefulbits_HS.f90. if(p.eq.1.or.p.eq.2) then write(*,*) 'Warning: Unknown ILC production mode (',p,') in table ',mutab%id rate=0.0D0 SMrate=1.0D0 rate_SMref=1.0D0 mutab%channel_description(i,1)='unknown' else if(p.eq.3) then rate=t%lhc8%XS_hjW_ratio(j) SMrate=t%lhc8%XS_HW_SM(j) rate_SMref=XS_lhc8_HW_SM(refmass) mutab%channel_description(i,1)='WBF' else if(p.eq.4) then rate=t%lhc8%XS_hjZ_ratio(j) SMrate=t%lhc8%XS_HZ_SM(j) rate_SMref=XS_lhc8_HZ_SM(refmass) mutab%channel_description(i,1)='HZ' else if(p.eq.5) then rate=t%lhc8%XS_tthj_ratio(j) SMrate=t%lhc8%XS_ttH_SM(j) rate_SMref=XS_lhc8_ttH_SM(refmass) mutab%channel_description(i,1)='ttH' else if(p.eq.0) then rate=1.0D0 SMrate=1.0D0 rate_SMref=1.0D0 mutab%channel_description(i,1)='none' endif endif !--Multiply now by the decay rate if(d.eq.1) then rate=rate*div(t%BR_hjgaga(j),t%BR_Hgaga_SM(j),0.0D0,1.0D0) SMrate=SMrate*t%BR_Hgaga_SM(j) rate_SMref = rate_SMref*BRSM_Hgaga(refmass) mutab%channel_description(i,2)='gammagamma' else if(d.eq.2) then rate=rate*div(t%BR_hjWW(j),t%BR_HWW_SM(j),0.0D0,1.0D0) SMrate=SMrate*t%BR_HWW_SM(j) rate_SMref = rate_SMref*BRSM_HWW(refmass) mutab%channel_description(i,2)='WW' else if(d.eq.3) then rate=rate*div(t%BR_hjZZ(j),t%BR_HZZ_SM(j),0.0D0,1.0D0) SMrate=SMrate*t%BR_HZZ_SM(j) rate_SMref = rate_SMref*BRSM_HZZ(refmass) mutab%channel_description(i,2)='ZZ' else if(d.eq.4) then rate=rate*div(t%BR_hjtautau(j),t%BR_Htautau_SM(j),0.0D0,1.0D0) SMrate=SMrate*t%BR_Htautau_SM(j) rate_SMref = rate_SMref*BRSM_Htautau(refmass) mutab%channel_description(i,2)='tautau' else if(d.eq.5) then rate=rate*div(t%BR_hjbb(j),t%BR_Hbb_SM(j),0.0D0,1.0D0) SMrate=SMrate*t%BR_Hbb_SM(j) rate_SMref = rate_SMref*BRSM_Hbb(refmass) mutab%channel_description(i,2)='bb' else if(d.eq.6) then rate=rate*div(t%BR_hjZga(j),t%BR_HZga_SM(j),0.0D0,1.0D0) SMrate=SMrate*t%BR_HZga_SM(j) rate_SMref = rate_SMref*BRSM_HZga(refmass) mutab%channel_description(i,2)='Zgamma' else if(d.eq.7) then rate=rate*div(t%BR_hjcc(j),t%BR_Hcc_SM(j),0.0D0,1.0D0) SMrate=SMrate*t%BR_Hcc_SM(j) rate_SMref = rate_SMref*BRSM_Hcc(refmass) mutab%channel_description(i,2)='cc' else if(d.eq.8) then rate=rate*div(t%BR_hjmumu(j),t%BR_Hmumu_SM(j),0.0D0,1.0D0) SMrate=SMrate*t%BR_Hmumu_SM(j) rate_SMref = rate_SMref*BRSM_Hmumu(refmass) mutab%channel_description(i,2)='mumu' else if(d.eq.9) then rate=rate*div(t%BR_hjgg(j),t%BR_Hgg_SM(j),0.0D0,1.0D0) SMrate=SMrate*t%BR_Hgg_SM(j) rate_SMref = rate_SMref*BRSM_Hgg(refmass) mutab%channel_description(i,2)='gg' else if(d.eq.10) then rate=rate*div(t%BR_hjss(j),t%BR_Hss_SM(j),0.0D0,1.0D0) SMrate=SMrate*t%BR_Hss_SM(j) rate_SMref = rate_SMref*BRSM_Hss(refmass) mutab%channel_description(i,2)='ss' else if(d.eq.11) then rate=rate*div(t%BR_hjtt(j),t%BR_Htt_SM(j),0.0D0,1.0D0) SMrate=SMrate*t%BR_Htt_SM(j) rate_SMref = rate_SMref*BRSM_Htoptop(refmass) mutab%channel_description(i,2)='tt' else if(d.eq.0) then rate=rate*1.0D0 SMrate=SMrate*1.0D0 rate_SMref = rate_SMref*1.0D0 mutab%channel_description(i,2)='none' endif !------------------------- ! NEW FEATURE (since HB-5.2): Enable to set channelrates directly. if(p.ne.0.and.d.ne.0) then select case(d) case(1) BR_SMref = t%BR_Hgaga_SM(j) ! BR_SMref_mpeak = BRSM_Hgaga(refmass) case(2) BR_SMref = t%BR_HWW_SM(j) ! BR_SMref_mpeak = BRSM_HWW(refmass) case(3) BR_SMref = t%BR_HZZ_SM(j) ! BR_SMref_mpeak = BRSM_HZZ(refmass) case(4) BR_SMref = t%BR_Htautau_SM(j) ! BR_SMref_mpeak = BRSM_Htautau(refmass) case(5) BR_SMref = t%BR_Hbb_SM(j) ! BR_SMref_mpeak = BRSM_Hbb(refmass) case(6) BR_SMref = t%BR_HZga_SM(j) ! BR_SMref_mpeak = BRSM_HZga(refmass) case(7) BR_SMref = t%BR_Hcc_SM(j) ! BR_SMref_mpeak = BRSM_Hcc(refmass) case(8) BR_SMref = t%BR_Hmumu_SM(j) ! BR_SMref_mpeak = BRSM_Hmumu(refmass) case(9) BR_SMref = t%BR_Hgg_SM(j) ! BR_SMref_mpeak = BRSM_Hgg(refmass) case(10) BR_SMref = t%BR_Hss_SM(j) case(11) BR_SMref = t%BR_Htt_SM(j) end select if(mutab%collider.eq.'LHC') then if(abs(mutab%energy-7.0D0).le.small) then if(t%lhc7%channelrates(j,p,d).ge.0.0d0) then rate=div(t%lhc7%channelrates(j,p,d),BR_SMref,0.0D0,1.0D0) endif else if(abs(mutab%energy-8.0D0).le.small) then if(t%lhc8%channelrates(j,p,d).ge.0.0d0) then rate=div(t%lhc8%channelrates(j,p,d),BR_SMref,0.0D0,1.0D0) endif else if(abs(mutab%energy-13.0D0).le.small) then if(t%lhc13%channelrates(j,p,d).ge.0.0d0) then rate=div(t%lhc13%channelrates(j,p,d),BR_SMref,0.0D0,1.0D0) endif endif else if(mutab%collider.eq.'TEV') then if(t%tev%channelrates(j,p,d).ge.0.0d0) then rate=div(t%tev%channelrates(j,p,d),BR_SMref,0.0D0,1.0D0) endif endif endif !------------------------- ! write(*,*) 'DEBUG HS: SM BRs = ', t%BR_HWW_SM(j), t%BR_HZZ_SM(j), t%BR_Hgaga_SM(j) ! write(*,*) 'DEBUG HS: rate, SMrate(i) = ', rate, SMrate ! write(*,*) 'DEBUG HS: eff(i) = ', mutab%channel_eff(i) if(normalize_rates_to_reference_position) then !! THIS IS STILL IN TESTING PHASE !! mutab%channel_mu(i,j)=rate*SMrate/(rate_SMref) else mutab%channel_mu(i,j)=rate !! OLD WAY endif if(normalize_rates_to_reference_position_outside_dmtheo) then if(abs(refmass-t%particle(mutab%particle_x)%M(j)).ge.t%particle(mutab%particle_x)%dM(j)) then mutab%channel_mu(i,j)=rate*SMrate/(rate_SMref) endif endif mutab%channel_w(i,j)=mutab%channel_eff(i)*SMrate ! mutab%channel_w_corrected_eff(i,j)=mutab%channel_eff_ratios(i)*mutab%channel_eff(i)*SMrate enddo ! write(*,*) 'DEBUG HS: BRs = ', t%BR_hjWW, t%BR_hjZZ, t%BR_hjgaga ! write(*,*) 'DEBUG HS: LHC8 = ', t%lhc8%XS_hj_ratio, t%lhc8%XS_vbf_ratio, t%lhc8%XS_hjW_ratio,& ! t%lhc8%XS_hjZ_ratio, t%lhc8%XS_tthj_ratio SMrate=sum(mutab%channel_w(:,j)) ! write(*,*) 'DEBUG HS: SMrate = ', SMrate ! modelrate=sum(mutab%channel_w_corrected_eff(:,j)) do i=1,mutab%Nc mutab%channel_w(i,j)=div(mutab%channel_w(i,j),SMrate,0.0D0,1.0D9) ! mutab%channel_w_corrected_eff(i,j)=div(mutab%channel_w_corrected_eff(i,j),modelrate,0.0D0,1.0D9) enddo ! (TS 30/10/2013): ! write(*,*) "get_channelrates (mu, w, weff):" ! write(*,*) mutab%channel_mu ! write(*,*) mutab%channel_w ! write(*,*) mutab%channel_eff_ratios do i=1,mutab%Nc mutab%channel_w_corrected_eff(i,j)=mutab%channel_eff_ratios(i)*mutab%channel_w(i,j) ! n.b.: model weights are not normalized to 1! enddo ! write(*,*) j,mutab%id, "SM = ", mutab%channel_w(:,j) ! write(*,*) j,mutab%id, "SM effcorr = ",mutab%channel_w_corrected_eff(:,j) do i=1,mutab%Nc drsq_SM = 0.0D0 drsq = 0.0D0 ! id1 = mutab%channel_id(i) ! p1 = int((id1-modulo(id1,10))/dble(10)) ! d1 = modulo(id1,10) p1 = mutab%channel_p_id(i) d1 = mutab%channel_d_id(i) if(mutab%collider.ne.'ILC') then do ii=1,mutab%Nc p2 = mutab%channel_p_id(ii) d2 = mutab%channel_d_id(ii) ! id2 = mutab%channel_id(ii) ! p2 = int((id2-modulo(id2,10))/dble(10)) ! d2 = modulo(id2,10) if(p1.eq.p2.and.p1.ne.0) then if(delta_rate%CScov_ok.and.delta_rate%usecov) then !-- TS 29/03/2017: Add 13 TeV XS covariance matrix here if(abs(mutab%energy-13.0D0).le.small) then drcov=delta_rate%CS13cov(p1,p1) drcovSM=delta_rate%CS13covSM(p1,p1) else drcov=delta_rate%CScov(p1,p1) drcovSM=delta_rate%CScovSM(p1,p1) endif drsq=drsq+drcov*mutab%channel_w_corrected_eff(i,j)*mutab%channel_w_corrected_eff(ii,j) drsq_SM=drsq_SM+drcovSM*mutab%channel_w(i,j)*mutab%channel_w(ii,j) else drsq=drsq+delta_rate%dCS(p1)**2*mutab%channel_w_corrected_eff(i,j)*mutab%channel_w_corrected_eff(ii,j) drsq_SM=drsq_SM+delta_rate%dCS_SM(p1)**2*mutab%channel_w(i,j)*mutab%channel_w(ii,j) endif endif if(d1.eq.d2.and.d1.ne.0) then if(delta_rate%BRcov_ok.and.delta_rate%usecov) then dBRSM = delta_rate%BRcovSM(d1,d1) dBR = delta_rate%BRcov(d1,d1) else dBRSM = delta_rate%dBR_SM(d1)**2 dBR = delta_rate%dBR(d1)**2 endif drsq=drsq+dBR*mutab%channel_w_corrected_eff(i,j)*mutab%channel_w_corrected_eff(ii,j) drsq_SM=drsq_SM+dBRSM*mutab%channel_w(i,j)*mutab%channel_w(ii,j) endif enddo endif mutab%channel_syst(i,j)=sqrt(drsq) mutab%channel_systSM(i,j)=sqrt(drsq_SM) enddo !write(*,*) 'DEBUG HS: mu = ', mutab%channel_mu !write(*,*) 'DEBUG HS: w = ', mutab%channel_w !write(*,*) 'DEBUG HS: eff = ', mutab%channel_eff end subroutine get_channelrates !------------------------------------------------------------ subroutine get_Rvalues(ii,collider,R_H_WW, R_H_ZZ, R_H_gaga, R_H_tautau, R_H_bb, R_VH_bb) ! Returns SM normalized signal rates of some relevant channels (w/o efficiencies) ! for Higgs boson "ii" for a specific collider (see subroutine get_rates). !------------------------------------------------------------ ! use usefulbits, only : theo, np,Hneut ! use usefulbits_HS, only : mutable integer, intent(in) :: ii, collider double precision, intent(out) :: R_H_WW, R_H_ZZ, R_H_gaga, R_H_tautau, R_H_bb, R_VH_bb ! type(mutable) :: dummytable ! integer :: i call get_rates(ii,collider,5,(/ 12, 22, 32, 42, 52 /),R_H_WW) call get_rates(ii,collider,5,(/ 13, 23, 33, 43, 53 /),R_H_ZZ) call get_rates(ii,collider,5,(/ 11, 21, 31, 41, 51 /),R_H_gaga) call get_rates(ii,collider,5,(/ 14, 24, 34, 44, 54 /),R_H_tautau) call get_rates(ii,collider,5,(/ 15, 25, 35, 45, 55 /),R_H_bb) call get_rates(ii,collider,2,(/ 35, 45 /),R_VH_bb) end subroutine get_Rvalues !************************************************************ subroutine get_rates(ii,collider,Nchannels,IDchannels,rate) ! Returns SM normalized signal rates (w/o efficiencies) for Higgs boson "ii" and collider ! experiment "collider"(=1,2,3 for TEV, LHC7, LHC8). "Nchannels" gives the total number ! and IDchannels the two-digit ID of the subchannels, which should be included in the rates. ! IDchannels is an array of size(Nchannels). !------------------------------------------------------------ use usefulbits, only : theo, np,Hneut use usefulbits_HS, only : mutable integer, intent(in) :: ii, collider, Nchannels integer, dimension(Nchannels), intent(in) :: IDchannels double precision, intent(out) :: rate !-Internal type(mutable) :: dummytable integer :: i !-Initialize a dummy mutable in order to run get_channelrates for the channels we want. if(collider.eq.1) then dummytable%collider = 'TEV' else if(collider.eq.2) then dummytable%collider = 'LHC' dummytable%energy = 7.0D0 else if(collider.eq.3) then dummytable%collider = 'LHC' dummytable%energy = 8.0D0 else if(collider.eq.4) then dummytable%collider = 'LHC' dummytable%energy = 13.0D0 else write(*,*) 'WARNING: collider experiment for get_rates unknown.' continue endif dummytable%id = 999999 dummytable%particle_x = 1 dummytable%Nc=Nchannels allocate(dummytable%mass(10)) ! allocate(dummytable%channel_id(Nchannels)) allocate(dummytable%channel_p_id(Nchannels)) allocate(dummytable%channel_d_id(Nchannels)) allocate(dummytable%channel_eff(Nchannels)) allocate(dummytable%channel_eff_ratios(Nchannels)) !-Set all efficiencies equal: dummytable%channel_eff = 1.0D0 dummytable%channel_eff_ratios = 1.0D0 allocate(dummytable%channel_description(Nchannels,2)) allocate(dummytable%channel_w(Nchannels,np(Hneut))) allocate(dummytable%channel_w_corrected_eff(Nchannels,np(Hneut))) allocate(dummytable%channel_systSM(Nchannels,np(Hneut))) allocate(dummytable%channel_syst(Nchannels,np(Hneut))) allocate(dummytable%channel_mu(Nchannels,np(Hneut))) do i=1,Nchannels if(IDchannels(i).le.99) then dummytable%channel_p_id(i) = int((IDchannels(i)-modulo(id,10))/dble(10)) dummytable%channel_d_id(i) = modulo(IDchannels(i),10) else write(*,*) "Error in get_rates: channel-ID not supported. Use get_rates_str instead!" endif enddo call get_channelrates(ii, theo(1), dummytable) rate=0.0D0 do i=lbound(dummytable%channel_mu,dim=1),ubound(dummytable%channel_mu,dim=1) rate = rate + dummytable%channel_mu(i,ii)*dummytable%channel_w(i,ii) enddo deallocate(dummytable%channel_p_id,dummytable%channel_d_id,dummytable%channel_eff,& & dummytable%channel_w,dummytable%channel_systSM,dummytable%channel_syst, & & dummytable%channel_mu,dummytable%channel_eff_ratios,dummytable%channel_description, & & dummytable%channel_w_corrected_eff,dummytable%mass) end subroutine get_rates !************************************************************ subroutine get_rates_str(ii,collider,Nchannels,IDchannels_str,rate) ! Returns SM normalized signal rates (w/o efficiencies) for Higgs boson "ii" and collider ! experiment "collider"(=1,2,3 for TEV, LHC7, LHC8). "Nchannels" gives the total number ! and IDchannels_str the channel ID string of the subchannels, which should be included in the rates. ! IDchannels_str is an array of size(Nchannels). !------------------------------------------------------------ use usefulbits, only : theo, np,Hneut use usefulbits_HS, only : mutable integer, intent(in) :: ii, collider, Nchannels - character(LEN=5), dimension(Nchannels), intent(in) :: IDchannels_str + character(LEN=*), dimension(Nchannels), intent(in) :: IDchannels_str double precision, intent(out) :: rate !-Internal type(mutable) :: dummytable integer :: i,id,posperiod !-Initialize a dummy mutable in order to run get_channelrates for the channels we want. if(collider.eq.1) then dummytable%collider = 'TEV' else if(collider.eq.2) then dummytable%collider = 'LHC' dummytable%energy = 7.0D0 else if(collider.eq.3) then dummytable%collider = 'LHC' dummytable%energy = 8.0D0 else if(collider.eq.4) then dummytable%collider = 'LHC' dummytable%energy = 13.0D0 else write(*,*) 'WARNING: collider experiment for get_rates unknown.' continue endif dummytable%id = 999999 dummytable%particle_x = 1 dummytable%Nc=Nchannels allocate(dummytable%mass(10)) ! allocate(dummytable%channel_id(Nchannels)) allocate(dummytable%channel_p_id(Nchannels)) allocate(dummytable%channel_d_id(Nchannels)) allocate(dummytable%channel_eff(Nchannels)) allocate(dummytable%channel_eff_ratios(Nchannels)) !-Set all efficiencies equal: dummytable%channel_eff = 1.0D0 dummytable%channel_eff_ratios = 1.0D0 allocate(dummytable%channel_description(Nchannels,2)) allocate(dummytable%channel_w(Nchannels,np(Hneut))) allocate(dummytable%channel_w_corrected_eff(Nchannels,np(Hneut))) allocate(dummytable%channel_systSM(Nchannels,np(Hneut))) allocate(dummytable%channel_syst(Nchannels,np(Hneut))) allocate(dummytable%channel_mu(Nchannels,np(Hneut))) +! do i = 1,Nchannels +! write(*,*) i, IDchannels_str(i) +! enddo + do i=1,Nchannels posperiod = index(IDchannels_str(i),'.') +! write(*,*) IDchannels_str(i) if(posperiod.eq.0) then if(len(trim(adjustl(IDchannels_str(i)))).eq.2) then read(IDchannels_str(i),*) id dummytable%channel_p_id(i) = int((id-modulo(id,10))/dble(10)) dummytable%channel_d_id(i) = modulo(id,10) else stop " Error in get_rates_str: Cannot handle channel IDs!" endif else +! write(*,*) dummytable%channel_p_id(i), dummytable%channel_d_id(i) read(IDchannels_str(i)(:posperiod-1),*) dummytable%channel_p_id(i) read(IDchannels_str(i)(posperiod+1:),*) dummytable%channel_d_id(i) endif enddo call get_channelrates(ii, theo(1), dummytable) rate=0.0D0 do i=lbound(dummytable%channel_mu,dim=1),ubound(dummytable%channel_mu,dim=1) rate = rate + dummytable%channel_mu(i,ii)*dummytable%channel_w(i,ii) enddo deallocate(dummytable%channel_p_id,dummytable%channel_d_id,dummytable%channel_eff,& & dummytable%channel_w,dummytable%channel_systSM,dummytable%channel_syst, & & dummytable%channel_mu,dummytable%channel_eff_ratios,dummytable%channel_description, & & dummytable%channel_w_corrected_eff,dummytable%mass) end subroutine get_rates_str !------------------------------------------------------------ subroutine get_Pvalue(nparam, Pvalue) ! Calculates the Chi^2 probability for the total Chi^2 value ! and the number of degrees of freedom given by the ! number of observables - nparam !------------------------------------------------------------ use usefulbits, only : vsmall use usefulbits_hs, only: HSres use numerics implicit none integer, intent(in) :: nparam double precision, intent(out) :: Pvalue if(allocated(HSres)) then if(HSres(1)%Chisq.gt.vsmall.and.(HSres(1)%nobs-nparam).gt.0) then HSres(1)%Pvalue = 1 - gammp(dble(HSres(1)%nobs-nparam)/2,HSres(1)%Chisq/2) endif else write(*,*) "Warning: subroutine get_Pvalue should be called after run_HiggsSignals." endif Pvalue = HSres(1)%Pvalue end subroutine get_Pvalue !------------------------------------------------------------ subroutine get_neutral_Higgs_masses(Mh, dMh) ! Sets the theoretical mass uncertainty of the Higgs bosons. !------------------------------------------------------------ use usefulbits, only: theo,np,Hneut implicit none double precision,intent(out) :: Mh(np(Hneut)), dMh(np(Hneut)) if(.not.allocated(theo))then stop 'No model information given!' endif if(np(Hneut).eq.0)then write(*,*)'Cannot access the neutral Higgs boson masses' write(*,*)'because np(Hneut) == 0.' stop 'error in subroutine get_neutral_Higgs_masses' endif Mh = theo(1)%particle(Hneut)%M dMh = theo(1)%particle(Hneut)%dM end subroutine get_neutral_Higgs_masses !------------------------------------------------------------ subroutine complete_HS_results() !------------------------------------------------------------ use usefulbits, only : just_after_run, ndat use usefulbits_HS, only : HSres, Nparam use numerics, only : gammp integer :: n if(just_after_run) then do n=1,ndat HSres(n)%Chisq_mu = HSres(n)%Chisq_peak_mu + & !HSres(n)%Chisq_mpred + & & HSres(n)%Chisq_STXS_rates + HSres(n)%Chisq_LHCRun1_mu HSres(n)%Chisq_mh = HSres(n)%Chisq_peak_mh + HSres(n)%Chisq_LHCRun1_mh + & & HSres(n)%Chisq_STXS_mh HSres(n)%Chisq_STXS = HSres(n)%Chisq_STXS_rates + HSres(n)%Chisq_STXS_mh HSres(n)%Chisq_peak = HSres(n)%Chisq_peak_mu + HSres(n)%Chisq_peak_mh HSres(n)%Chisq_LHCRun1 = HSres(n)%Chisq_LHCRun1_mu + HSres(n)%Chisq_LHCRun1_mh HSres(n)%Chisq = HSres(n)%Chisq_mu + HSres(n)%Chisq_mh HSres(n)%nobs_mu = HSres(n)%nobs_peak_mu + &!HSres(n)%nobs_mpred + & & HSres(n)%nobs_LHCRun1_mu + HSres(n)%nobs_STXS_rates HSres(n)%nobs_mh = HSres(n)%nobs_peak_mh + HSres(n)%nobs_LHCRun1_mh + & & HSres(n)%nobs_STXS_mh HSres(n)%nobs_peak = HSres(n)%nobs_peak_mu + HSres(n)%nobs_peak_mh HSres(n)%nobs_STXS = HSres(n)%nobs_STXS_rates + HSres(n)%nobs_STXS_mh HSres(n)%nobs_LHCRun1 = HSres(n)%nobs_LHCRun1_mu + HSres(n)%nobs_LHCRun1_mh HSres(n)%nobs = HSres(n)%nobs_mu + HSres(n)%nobs_mh if(HSres(n)%Chisq.gt.vsmall.and.(HSres(n)%nobs-Nparam).gt.0) then HSres(n)%Pvalue=1 - gammp(dble(HSres(n)%nobs-Nparam)/2.0D0,HSres(n)%Chisq/2.0D0) endif if(HSres(n)%Chisq_peak.gt.vsmall.and.(HSres(n)%nobs_peak-Nparam).gt.0) then HSres(n)%Pvalue_peak=1 - gammp(dble(HSres(n)%nobs_peak-Nparam)/2.0D0,HSres(n)%Chisq_peak/2.0D0) endif if(HSres(n)%Chisq_LHCRun1.gt.vsmall.and.(HSres(n)%nobs_LHCRun1-Nparam).gt.0) then HSres(n)%Pvalue_LHCRun1=1 - gammp(dble(HSres(n)%nobs_LHCRun1-Nparam)/2.0D0,HSres(n)%Chisq_LHCRun1/2.0D0) endif if(HSres(n)%Chisq_STXS.gt.vsmall.and.(HSres(n)%nobs_STXS-Nparam).gt.0) then HSres(n)%Pvalue_STXS=1 - gammp(dble(HSres(n)%nobs_STXS-Nparam)/2.0D0,HSres(n)%Chisq_STXS/2.0D0) endif enddo else write(*,*) "Warning: complete_HS_results was called but just_after_run is", just_after_run endif !------------------------------------------------------------ end subroutine complete_HS_results !------------------------------------------------------------ subroutine finish_HiggsSignals ! This subroutine needs to be called right at the end, to close files ! and deallocate arrays !------------------------------------------------------------ use usefulbits, only : deallocate_usefulbits,debug,theo,debug, &!,inputsub & file_id_debug1,file_id_debug2 use S95tables, only : deallocate_Exptranges use theory_BRfunctions, only : deallocate_BRSM use datatables, only : deallocate_observables use usefulbits_HS, only : deallocate_usefulbits_HS, analyses use mc_chisq, only : deallocate_mc_observables use store_pathname_HS !#if defined(NAGf90Fortran) ! use F90_UNIX_IO, only : flush !#endif if(debug)then close(file_id_debug2) close(file_id_debug1) endif if(debug) write(*,*)'finishing off...' ; call flush(6) if(.not.allocated(theo))then ! stop 'HiggsBounds_initialize should be called first' if(debug) write(*,*) "HiggsBounds/HiggsSignals internal structure already deallocated!" else call deallocate_BRSM call deallocate_Exptranges call deallocate_usefulbits ! if (allocated(inputsub)) deallocate(inputsub) endif ! write(*,*) "before deallocate mc observables." call deallocate_mc_observables ! write(*,*) "after deallocate mc observables." call deallocate_observables if(allocated(analyses)) deallocate(analyses) call deallocate_usefulbits_HS ! call system('rm -f '//trim(adjustl(pathname_HS))//'Expt_tables/analyses.txt') call system('rm -f HS_analyses.txt') if(debug) write(*,*)'finished' ; call flush(6) end subroutine finish_HiggsSignals !------------------------------------------------------------ subroutine finish_HiggsSignals_only !------------------------------------------------------------ use datatables, only : deallocate_observables use usefulbits_HS, only : deallocate_usefulbits_HS, analyses use mc_chisq, only : deallocate_mc_observables use store_pathname_HS call deallocate_mc_observables call deallocate_observables if(allocated(analyses)) deallocate(analyses) call deallocate_usefulbits_HS call system('rm -f HS_analyses.txt') end subroutine finish_HiggsSignals_only !------------------------------------------------------------ ! SOME HANDY WRAPPER SUBROUTINES !------------------------------------------------------------ subroutine initialize_HiggsSignals_for_Fittino(nHiggsneut,nHiggsplus) !------------------------------------------------------------ ! Wrapper subroutine to intitialize HiggsSignals with the experimental ! dataset "latestresults", avoiding to specify this via a string argument. !------------------------------------------------------------ implicit none !--------------------------------------input integer,intent(in) :: nHiggsneut integer,intent(in) :: nHiggsplus ! character(LEN=19) :: Expt_string character(LEN=33) :: Expt_string ! Expt_string = "Moriond2013_Fittino" Expt_string = "latestresults_April2013_inclusive" call initialize_HiggsSignals(nHiggsneut,nHiggsplus,Expt_string) end subroutine initialize_HiggsSignals_for_Fittino !------------------------------------------------------------ subroutine get_number_of_observables_wrapper(ntotal, npeakmu, npeakmh, nmpred, nanalyses) !------------------------------------------------------------ use io, only : get_number_of_observables implicit none integer, intent(out) :: ntotal, npeakmu, npeakmh, nmpred, nanalyses call get_number_of_observables(ntotal, npeakmu, npeakmh, nmpred, nanalyses) end subroutine get_number_of_observables_wrapper !------------------------------------------------------------ subroutine get_ID_of_peakobservable_wrapper(ii, ID) !------------------------------------------------------------ use io, only : get_ID_of_peakobservable implicit none integer, intent(in) :: ii integer, intent(out) :: ID call get_ID_of_peakobservable(ii, ID) end subroutine get_ID_of_peakobservable_wrapper !------------------------------------------------------------ subroutine get_peakinfo_from_HSresults_wrapper(obsID, mupred, domH, nHcomb) !-------------------------------------------------------------------- use io, only : get_peakinfo_from_HSresults implicit none integer, intent(in) :: obsID double precision, intent(out) :: mupred integer, intent(out) :: domH, nHcomb call get_peakinfo_from_HSresults(obsID, mupred, domH, nHcomb) end subroutine get_peakinfo_from_HSresults_wrapper !------------------------------------------------------------ subroutine print_cov_mh_to_file_wrapper(Hindex) !------------------------------------------------------------ use pc_chisq, only : print_cov_mh_to_file implicit none integer, intent(in) :: Hindex call print_cov_mh_to_file(Hindex) end subroutine print_cov_mh_to_file_wrapper !------------------------------------------------------------ subroutine print_cov_mu_to_file_wrapper !------------------------------------------------------------ use pc_chisq, only : print_cov_mu_to_file implicit none call print_cov_mu_to_file end subroutine print_cov_mu_to_file_wrapper !------------------------------------------------------------ subroutine print_corr_mu_to_file_wrapper !------------------------------------------------------------ use pc_chisq, only : print_corr_mu_to_file implicit none call print_corr_mu_to_file end subroutine print_corr_mu_to_file_wrapper !------------------------------------------------------------ Index: trunk/HiggsSignals-2/makefile.in =================================================================== --- trunk/HiggsSignals-2/makefile.in (revision 574) +++ trunk/HiggsSignals-2/makefile.in (revision 575) @@ -1,121 +1,124 @@ MODS = usefulbits_HS.mod store_pathname_HS.mod datatables.mod combinatorics.mod \ numerics.mod io.mod expt_syst.mod pc_chisq.mod mc_chisq.mod all_chisq.mod \ STXS.mod tempMODS = $(MODS:.mod=.o) OBJSbasic = $(tempMODS:.MOD=.o) OBJScommandline = $(OBJSbasic) \ HiggsSignals.o OBJSsubroutines = $(OBJSbasic) \ HiggsSignals_subroutines.o .SUFFIXES: .exe .o .mod .f90 .F .F90 .MOD #as advised in http://gcc.gnu.org/wiki/GfortranFAQ %.o : %.mod default: HiggsSignals .f90.mod: $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) $(ADDITIONALDEFINE) -c $< -o $*.o -lHB .f90.o: $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) $(ADDITIONALDEFINE) -c $< -o $*.o -lHB .F90.MOD: $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) $(ADDITIONALDEFINE) -c $< -o $*.o -lHB .F90.o: $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) $(ADDITIONALDEFINE) -c $< -o $*.o -lHB .F.o: $(F77C) -c $< -o $*.o .mod.o: $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) -c $*.f90 -o $*.o -lHB .MOD.o: $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) -c $*.F90 -o $*.o -lHB HiggsSignals: libHS.a $(MODS) $(OBJScommandline) $(F90C) $(F90FLAGS) $(HBINCLUDE) $(OBJScommandline) -o $(EXE) $(HSLIBS) -lHS $(HBLIBS) -lHB libHS: $(MODS) $(OBJSsubroutines) ar -rv libHS.a $(OBJSsubroutines) ranlib libHS.a libHS.a: libHS HSexamples: libHS.a $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HSeffC.f90 -o example_programs/HSeffC $(HSLIBS) -lHB $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HShadr.f90 -o example_programs/HShadr $(HSLIBS) -lHB $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HSscaleUncertainties.f90 -o example_programs/HSscaleUncertainties $(HSLIBS) -lHB $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HSwithToys.f90 -o example_programs/HSwithToys $(HSLIBS) -lHB $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HS_efficiencies.f90 -o example_programs/HS_efficiencies $(HSLIBS) -lHB $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HSwithSLHA.f90 -o example_programs/HSwithSLHA $(HSLIBS) -lHB $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HBandHSwithSLHA.f90 -o example_programs/HBandHSwithSLHA $(HSLIBS) -lHB $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HS_mass.f90 -o example_programs/HS_mass $(HSLIBS) -lHB $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HS_2Higgses.f90 -o example_programs/HS_2Higgses $(HSLIBS) -lHB + $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HS_SM_LHCRun1.f90 -o example_programs/HS_SM_LHCRun1 $(HSLIBS) -lHB + $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HSwithSTXS.f90 -o example_programs/HSwithSTXS $(HSLIBS) -lHB + HSeffC: libHS.a $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HSeffC.f90 -o example_programs/HSeffC $(HSLIBS) -lHB HSgga: libHS.a $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HSgga.f90 -o example_programs/HSgga $(HSLIBS) -lHB HS_mass: libHS.a $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HS_mass.f90 -o example_programs/HS_mass $(HSLIBS) -lHB HS_SM_LHCRun1: libHS.a $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HS_SM_LHCRun1.f90 -o example_programs/HS_SM_LHCRun1 $(HSLIBS) -lHB HSwithSTXS: libHS.a $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HSwithSTXS.f90 -o example_programs/HSwithSTXS $(HSLIBS) -lHB $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HSeffCwithSTXS.f90 -o example_programs/HSeffCwithSTXS $(HSLIBS) -lHB $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HShadrwithSTXS.f90 -o example_programs/HShadrwithSTXS $(HSLIBS) -lHB HShadr: libHS.a $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HShadr.f90 -o example_programs/HShadr $(HSLIBS) -lHB HSscaleUncertainties: libHS.a $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HSscaleUncertainties.f90 -o example_programs/HSscaleUncertainties $(HSLIBS) -lHB HSwithToys: libHS.a $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HSwithToys.f90 -o example_programs/HSwithToys $(HSLIBS) -lHB HS_efficiencies: libHS.a $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HS_efficiencies.f90 -o example_programs/HS_efficiencies $(HSLIBS) -lHB HSwithSLHA: libHS.a $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HSwithSLHA.f90 -o example_programs/HSwithSLHA $(HSLIBS) -lHB HBandHSwithSLHA: libHS.a $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HBandHSwithSLHA.f90 -o example_programs/HBandHSwithSLHA $(HSLIBS) -lHB HBandHSwithFH: libHS.a $(F77C) $(FHINCLUDE) $(HBLIBS) $(HBINCLUDE) example_programs/HBandHSwithFH.F -o example_programs/HBandHSwithFH $(FHLIBS) $(HSLIBS) -lHB HS_2Higgses: libHS.a $(F90C) $(F90FLAGS) $(HBLIBS) $(HBINCLUDE) example_programs/HS_2Higgses.f90 -o example_programs/HS_2Higgses $(HSLIBS) -lHB clean: rm -f *.o *.mod *.MOD *.a rm -f store_pathname_HS.f90 hyperclean: rm -f *.o *.mod *.MOD *.a *~ rm -f example_programs/*~ rm -f example_data/*-fromHB rm -f example_data/*-fromHS rm -f example_data/*-fromHBandHS rm -f store_pathname_HS.f90 rm -f example_programs/*.txt rm -f example_programs/tmp/* rm -f Expt_tables/mutables.binary rm -f Expt_tables/analyses.txt rm -f temp*.txt rm -f HiggsSignals Index: trunk/HiggsSignals-2/example_data/SLHA/MSSMexample.fh.1 =================================================================== --- trunk/HiggsSignals-2/example_data/SLHA/MSSMexample.fh.1 (revision 574) +++ trunk/HiggsSignals-2/example_data/SLHA/MSSMexample.fh.1 (revision 575) @@ -1,1653 +1,481 @@ BLOCK SPINFO 1 FeynHiggs 2 2.14.3 2 built on Aug 01, 2018 BLOCK MODSEL 1 0 # Model 2 1 # GridPts 3 0 # Content 4 0 # RPV 5 0 # CPV 6 0 # FV BLOCK SMINPUTS 1 1.28952896E+02 # invAlfaMZ 2 1.16637002E-05 # GF 3 1.18000000E-01 # AlfasMZ 4 9.11876000E+01 # MZ 5 4.17999983E+00 # Mb 6 1.72500000E+02 # Mt 7 1.77703000E+00 # Mtau 11 5.10998902E-04 # Me 13 1.05658357E-01 # Mmu 21 6.00000000E-03 # Md 22 3.00000000E-03 # Mu 23 9.50000000E-02 # Ms 24 1.28600000E+00 # Mc BLOCK MINPAR 3 2.00000000E+01 # TB BLOCK EXTPAR 0 0.00000000E+00 # Q 1 1.80000000E+02 # M1 2 3.00000000E+02 # M2 3 2.50000000E+03 # M3 11 2.85000000E+03 # At 12 2.85000000E+03 # Ab 13 8.00000000E+02 # Atau 23 1.00000000E+03 # MUE 25 2.00000000E+01 # TB 26 1.00000000E+03 # MA0 27 1.00322567E+03 # MHp 31 2.00000000E+03 # MSL(1) 32 2.00000000E+03 # MSL(2) 33 3.50000000E+02 # MSL(3) 34 2.00000000E+03 # MSE(1) 35 2.00000000E+03 # MSE(2) 36 3.50000000E+02 # MSE(3) 41 2.00000000E+03 # MSQ(1) 42 2.00000000E+03 # MSQ(2) 43 1.50000000E+03 # MSQ(3) 44 2.00000000E+03 # MSU(1) 45 2.00000000E+03 # MSU(2) 46 1.50000000E+03 # MSU(3) 47 2.00000000E+03 # MSD(1) 48 2.00000000E+03 # MSD(2) 49 1.50000000E+03 # MSD(3) BLOCK MASS 1000012 1.99896552E+03 # MSf(1,1,1) 1000011 2.00057313E+03 # MSf(1,2,1) 2000011 2.00046095E+03 # MSf(2,2,1) 1000002 1.99927301E+03 # MSf(1,3,1) 2000002 1.99969262E+03 # MSf(2,3,1) 1000001 2.00088111E+03 # MSf(1,4,1) 2000001 2.00015290E+03 # MSf(2,4,1) 1000014 1.99896552E+03 # MSf(1,1,2) 1000013 2.00097334E+03 # MSf(1,2,2) 2000013 2.00006064E+03 # MSf(2,2,2) 1000004 1.99855848E+03 # MSf(1,3,2) 2000004 2.00040758E+03 # MSf(2,3,2) 1000003 2.00103927E+03 # MSf(1,4,2) 2000003 1.99999468E+03 # MSf(2,4,2) 1000016 3.44039455E+02 # MSf(1,1,3) 1000015 3.00752176E+02 # MSf(1,2,3) 2000015 3.98360763E+02 # MSf(2,2,3) 1000006 1.33965932E+03 # MSf(1,3,3) 2000006 1.66153199E+03 # MSf(2,3,3) 1000005 1.48076973E+03 # MSf(1,4,3) 2000005 1.52035582E+03 # MSf(2,4,3) 25 1.25446331E+02 # Mh0 35 9.99859026E+02 # MHH 36 1.00000000E+03 # MA0 37 1.00352099E+03 # MHp 1000022 1.79456889E+02 # MNeu(1) 1000023 2.97205684E+02 # MNeu(2) 1000025 -1.00294285E+03 # MNeu(3) 1000035 1.00628028E+03 # MNeu(4) 1000024 2.97193887E+02 # MCha(1) 1000037 1.00727320E+03 # MCha(2) 1000021 2.50000000E+03 # MGl BLOCK DMASS 0 1.72500000E+02 # Q 25 1.98374186E+00 # Delta Mh0 35 3.20482021E-02 # Delta MHH 36 0.00000000E+00 # Delta MA0 37 5.13172661E-02 # Delta MHp BLOCK NMIX 1 1 9.98876349E-01 # ZNeu(1,1) 1 2 -8.40320482E-03 # ZNeu(1,2) 1 3 4.54802158E-02 # ZNeu(1,3) 1 4 -1.03429432E-02 # ZNeu(1,4) 2 1 1.27116592E-02 # ZNeu(2,1) 2 2 9.95548058E-01 # ZNeu(2,2) 2 3 -8.83657886E-02 # ZNeu(2,3) 2 4 3.02318502E-02 # ZNeu(2,4) 3 1 2.44324084E-02 # ZNeu(3,1) 3 2 -4.14182340E-02 # ZNeu(3,2) 3 3 -7.05140858E-01 # ZNeu(3,3) 3 4 -7.07434773E-01 # ZNeu(3,4) 4 1 -3.85682707E-02 # ZNeu(4,1) 4 2 8.42495085E-02 # ZNeu(4,2) 4 3 7.02067951E-01 # ZNeu(4,3) 4 4 -7.06056019E-01 # ZNeu(4,4) BLOCK UMIX 1 1 9.92105591E-01 # UCha(1,1) 1 2 -1.25405328E-01 # UCha(1,2) 2 1 1.25405328E-01 # UCha(2,1) 2 2 9.92105591E-01 # UCha(2,2) BLOCK VMIX 1 1 9.99077591E-01 # VCha(1,1) 1 2 -4.29414463E-02 # VCha(1,2) 2 1 4.29414463E-02 # VCha(2,1) 2 2 9.99077591E-01 # VCha(2,2) BLOCK STAUMIX 1 1 7.04779339E-01 # USf(1,1) 1 2 7.09426587E-01 # USf(1,2) 2 1 7.09426587E-01 # USf(2,1) 2 2 -7.04779339E-01 # USf(2,2) BLOCK STOPMIX 1 1 7.07720635E-01 # USf(1,1) 1 2 -7.06492394E-01 # USf(1,2) 2 1 7.06492394E-01 # USf(2,1) 2 2 7.07720635E-01 # USf(2,2) BLOCK SBOTMIX 1 1 6.98400871E-01 # USf(1,1) 1 2 7.15706800E-01 # USf(1,2) 2 1 7.15706800E-01 # USf(2,1) 2 2 -6.98400871E-01 # USf(2,2) BLOCK ALPHA -5.11239780E-02 # Alpha BLOCK DALPHA 7.94658769E-05 # Delta Alpha BLOCK HMIX Q= -0.99900000E+03 1 1.00000000E+03 # MUE 2 2.00000000E+01 # TB BLOCK MSOFT Q= 0.00000000E+00 1 1.80000000E+02 # M1 2 3.00000000E+02 # M2 3 2.50000000E+03 # M3 31 2.00000000E+03 # MSL(1) 32 2.00000000E+03 # MSL(2) 33 3.50000000E+02 # MSL(3) 34 2.00000000E+03 # MSE(1) 35 2.00000000E+03 # MSE(2) 36 3.50000000E+02 # MSE(3) 41 2.00000000E+03 # MSQ(1) 42 2.00000000E+03 # MSQ(2) 43 1.50000000E+03 # MSQ(3) 44 2.00000000E+03 # MSU(1) 45 2.00000000E+03 # MSU(2) 46 1.50000000E+03 # MSU(3) 47 2.00000000E+03 # MSD(1) 48 2.00000000E+03 # MSD(2) 49 1.50000000E+03 # MSD(3) BLOCK AE Q= 0.00000000E+00 1 1 2.85000000E+03 # Af(1,1) 2 2 2.85000000E+03 # Af(2,2) 3 3 8.00000000E+02 # Af(3,3) BLOCK AU Q= 0.00000000E+00 1 1 2.85000000E+03 # Af(1,1) 2 2 2.85000000E+03 # Af(2,2) 3 3 2.85000000E+03 # Af(3,3) BLOCK AD Q= 0.00000000E+00 1 1 2.85000000E+03 # Af(1,1) 2 2 2.85000000E+03 # Af(2,2) 3 3 2.85000000E+03 # Af(3,3) BLOCK YE Q= 0.00000000E+00 1 1 5.87736719E-05 # Yf(1,1) 2 2 1.21525302E-02 # Yf(2,2) 3 3 2.04389046E-01 # Yf(3,3) BLOCK YU Q= 0.00000000E+00 1 1 1.72525826E-05 # Yf(1,1) 2 2 7.39560709E-03 # Yf(2,2) 3 3 9.92023502E-01 # Yf(3,3) BLOCK YD Q= 0.00000000E+00 1 1 6.35951590E-04 # Yf(1,1) 2 2 1.00679551E-02 # Yf(2,2) 3 3 3.98258811E-01 # Yf(3,3) BLOCK VCKMIN 1 2.25300000E-01 # lambda 2 8.08000000E-01 # A 3 1.32000000E-01 # rhobar 4 3.41000000E-01 # etabar BLOCK MSL2 Q= 0.00000000E+00 1 1 4.00000000E+06 # MSL2(1,1) 2 2 4.00000000E+06 # MSL2(2,2) 3 3 1.22500000E+05 # MSL2(3,3) BLOCK MSE2 Q= 0.00000000E+00 1 1 4.00000000E+06 # MSE2(1,1) 2 2 4.00000000E+06 # MSE2(2,2) 3 3 1.22500000E+05 # MSE2(3,3) BLOCK MSQ2 Q= 0.00000000E+00 1 1 4.00000000E+06 # MSQ2(1,1) 2 2 4.00000000E+06 # MSQ2(2,2) 3 3 2.25000000E+06 # MSQ2(3,3) BLOCK MSU2 Q= 0.00000000E+00 1 1 4.00000000E+06 # MSU2(1,1) 2 2 4.00000000E+06 # MSU2(2,2) 3 3 2.25000000E+06 # MSU2(3,3) BLOCK MSD2 Q= 0.00000000E+00 1 1 4.00000000E+06 # MSD2(1,1) 2 2 4.00000000E+06 # MSD2(2,2) 3 3 2.25000000E+06 # MSD2(3,3) BLOCK TE Q= 0.00000000E+00 1 1 1.67504965E-01 # Tf(1,1) 2 2 3.46347112E+01 # Tf(2,2) 3 3 1.63511237E+02 # Tf(3,3) BLOCK TU Q= 0.00000000E+00 1 1 4.91698605E-02 # Tf(1,1) 2 2 2.10774802E+01 # Tf(2,2) 3 3 2.82726698E+03 # Tf(3,3) BLOCK TD Q= 0.00000000E+00 1 1 1.81246203E+00 # Tf(1,1) 2 2 2.86936721E+01 # Tf(2,2) 3 3 1.13503761E+03 # Tf(3,3) BLOCK SELMIX 1 1 9.99809281E-01 # UASf(1,1) 1 4 -1.95295227E-02 # UASf(1,4) 2 2 7.49270774E-01 # UASf(2,2) 2 5 -6.62263775E-01 # UASf(2,5) 3 3 7.04779339E-01 # UASf(3,3) 3 6 7.09426587E-01 # UASf(3,6) 4 1 1.95295227E-02 # UASf(4,1) 4 4 9.99809281E-01 # UASf(4,4) 5 2 6.62263775E-01 # UASf(5,2) 5 5 7.49270774E-01 # UASf(5,5) 6 3 7.09426587E-01 # UASf(6,3) 6 6 -7.04779339E-01 # UASf(6,6) BLOCK USQMIX 1 1 9.99987470E-01 # UASf(1,1) 1 4 -5.00595551E-03 # UASf(1,4) 2 2 7.83236011E-01 # UASf(2,2) 2 5 -6.21724498E-01 # UASf(2,5) 3 3 7.07720635E-01 # UASf(3,3) 3 6 -7.06492394E-01 # UASf(3,6) 4 1 5.00595551E-03 # UASf(4,1) 4 4 9.99987470E-01 # UASf(4,4) 5 2 6.21724498E-01 # UASf(5,2) 5 5 7.83236011E-01 # UASf(5,5) 6 3 7.06492394E-01 # UASf(6,3) 6 6 7.07720635E-01 # UASf(6,6) BLOCK DSQMIX 1 1 9.99469672E-01 # UASf(1,1) 1 4 -3.25633860E-02 # UASf(1,4) 2 2 9.20773138E-01 # UASf(2,2) 2 5 -3.90098486E-01 # UASf(2,5) 3 3 6.98400871E-01 # UASf(3,3) 3 6 7.15706800E-01 # UASf(3,6) 4 1 3.25633860E-02 # UASf(4,1) 4 4 9.99469672E-01 # UASf(4,4) 5 2 3.90098486E-01 # UASf(5,2) 5 5 9.20773138E-01 # UASf(5,5) 6 3 7.15706800E-01 # UASf(6,3) 6 6 -6.98400871E-01 # UASf(6,6) BLOCK CVHMIX 1 1 9.99999944E-01 # UH(1,1) 1 2 3.33494451E-04 # UH(1,2) 1 3 0.00000000E+00 # UH(1,3) 2 1 -3.33494451E-04 # UH(2,1) 2 2 9.99999944E-01 # UH(2,2) 2 3 0.00000000E+00 # UH(2,3) 3 1 0.00000000E+00 # UH(3,1) 3 2 0.00000000E+00 # UH(3,2) 3 3 1.00000000E+00 # UH(3,3) BLOCK PRECOBS 1 3.70801438E-02 # DeltaR 2 5.73493744E-05 # DeltaRho 3 8.03580769E+01 # MWMSSM 4 8.03532994E+01 # MWSM 5 2.31519688E-01 # SW2effMSSM 6 2.31537613E-01 # SW2effSM 11 1.55628199E-10 # gminus2mu 21 0.00000000E+00 # EDMeTh 22 0.00000000E+00 # EDMn 23 0.00000000E+00 # EDMHg 31 4.42059407E-04 # bsgammaMSSM 32 3.92583816E-04 # bsgammaSM 33 2.09482130E+01 # DeltaMsMSSM 34 2.08767455E+01 # DeltaMsSM 35 6.06876785E-08 # BsmumuMSSM 36 3.35592960E-09 # BsmumuSM DECAY 25 4.03250828E-03 # Gamma(h0) 2.31128319E-03 2 22 22 # BR(h0 -> photon photon) 1.50311516E-03 2 22 23 # BR(h0 -> photon Z) 2.81285945E-02 2 23 23 # BR(h0 -> Z Z) 2.30327715E-01 2 -24 24 # BR(h0 -> W W) 6.91739636E-02 2 21 21 # BR(h0 -> gluon gluon) 5.16700736E-09 2 -11 11 # BR(h0 -> Electron electron) 2.29837940E-04 2 -13 13 # BR(h0 -> Muon muon) 6.63595508E-02 2 -15 15 # BR(h0 -> Tau tau) 2.04401275E-07 2 -2 2 # BR(h0 -> Up up) 2.86468550E-02 2 -4 4 # BR(h0 -> Charm charm) 8.63906818E-07 2 -1 1 # BR(h0 -> Down down) 2.16956394E-04 2 -3 3 # BR(h0 -> Strange strange) 5.73101055E-01 2 -5 5 # BR(h0 -> Bottom bottom) DECAY 35 4.84215254E+00 # Gamma(HH) 7.01532225E-07 2 22 22 # BR(HH -> photon photon) 1.48943143E-06 2 22 23 # BR(HH -> photon Z) 5.88610434E-05 2 23 23 # BR(HH -> Z Z) 7.90218210E-05 2 -24 24 # BR(HH -> W W) 2.90176556E-05 2 21 21 # BR(HH -> gluon gluon) 1.26713589E-08 2 -11 11 # BR(HH -> Electron electron) 5.63997808E-04 2 -13 13 # BR(HH -> Muon muon) 1.69514757E-01 2 -15 15 # BR(HH -> Tau tau) 1.60333008E-12 2 -2 2 # BR(HH -> Up up) 2.24577074E-07 2 -4 4 # BR(HH -> Charm charm) 1.20781980E-02 2 -6 6 # BR(HH -> Top top) 1.28529222E-06 2 -1 1 # BR(HH -> Down down) 3.22736531E-04 2 -3 3 # BR(HH -> Strange strange) 7.07323382E-01 2 -5 5 # BR(HH -> Bottom bottom) 1.32833438E-02 2 -1000024 1000024 # BR(HH -> Chargino1 chargino1) 8.17648278E-04 2 1000022 1000022 # BR(HH -> neutralino1 neutralino1) 4.77219537E-03 2 1000022 1000023 # BR(HH -> neutralino1 neutralino2) 6.45783335E-03 2 1000023 1000023 # BR(HH -> neutralino2 neutralino2) 9.13887154E-04 2 25 25 # BR(HH -> h0 h0) 4.68826918E-02 2 -1000015 1000015 # BR(HH -> Stau1 stau1) 1.09393449E-06 2 -1000015 2000015 # BR(HH -> Stau1 stau2) 1.09393449E-06 2 -2000015 1000015 # BR(HH -> Stau2 stau1) 3.68631158E-02 2 -2000015 2000015 # BR(HH -> Stau2 stau2) DECAY 36 4.86015881E+00 # Gamma(A0) 9.57405804E-07 2 22 22 # BR(A0 -> photon photon) 2.82671580E-06 2 22 23 # BR(A0 -> photon Z) 1.28712044E-04 2 21 21 # BR(A0 -> gluon gluon) 1.24418936E-08 2 -11 11 # BR(A0 -> Electron electron) 5.53785038E-04 2 -13 13 # BR(A0 -> Muon muon) 1.66442344E-01 2 -15 15 # BR(A0 -> Tau tau) 1.53459338E-12 2 -2 2 # BR(A0 -> Up up) 2.14918378E-07 2 -4 4 # BR(A0 -> Charm charm) 1.32833979E-02 2 -6 6 # BR(A0 -> Top top) 1.26199784E-06 2 -1 1 # BR(A0 -> Down down) 3.16887390E-04 2 -3 3 # BR(A0 -> Strange strange) 6.94548917E-01 2 -5 5 # BR(A0 -> Bottom bottom) 2.19326967E-02 2 -1000024 1000024 # BR(A0 -> Chargino1 chargino1) 9.79429746E-04 2 1000022 1000022 # BR(A0 -> neutralino1 neutralino1) 6.43193791E-03 2 1000022 1000023 # BR(A0 -> neutralino1 neutralino2) 1.06677808E-02 2 1000023 1000023 # BR(A0 -> neutralino2 neutralino2) 8.51998309E-05 2 23 25 # BR(A0 -> Z h0) 6.37923825E-37 2 25 25 # BR(A0 -> h0 h0) 4.23118188E-02 2 -1000015 2000015 # BR(A0 -> Stau1 stau2) 4.23118188E-02 2 -2000015 1000015 # BR(A0 -> Stau2 stau1) DECAY 37 4.64425412E+00 # Gamma(Hp) 1.42932534E-08 2 -11 12 # BR(Hp -> Electron nu_e) 6.11081106E-04 2 -13 14 # BR(Hp -> Muon nu_mu) 1.72853411E-01 2 -15 16 # BR(Hp -> Tau nu_tau) 1.29523838E-06 2 -1 2 # BR(Hp -> Down up) 1.49763113E-05 2 -3 2 # BR(Hp -> Strange up) 7.73575675E-06 2 -5 2 # BR(Hp -> Bottom up) 7.48090776E-08 2 -1 4 # BR(Hp -> Down charm) 3.24402846E-04 2 -3 4 # BR(Hp -> Strange charm) 1.08328003E-03 2 -5 4 # BR(Hp -> Bottom charm) 1.48273253E-06 2 -1 6 # BR(Hp -> Down top) 3.27765366E-05 2 -3 6 # BR(Hp -> Strange top) 7.24519543E-01 2 -5 6 # BR(Hp -> Bottom top) 1.14825567E-02 2 1000022 1000024 # BR(Hp -> neutralino1 chargino1) 1.73930211E-06 2 1000023 1000024 # BR(Hp -> neutralino2 chargino1) 9.06810606E-05 2 24 25 # BR(Hp -> W h0) 1.92294506E-10 2 24 35 # BR(Hp -> W HH) 1.58042563E-10 2 24 36 # BR(Hp -> W A0) 4.59711000E-02 2 -1000015 1000016 # BR(Hp -> Stau1 snu_tau1) 4.30038481E-02 2 -2000015 1000016 # BR(Hp -> Stau2 snu_tau1) DECAY 6 1.35305515E+00 # Gamma(top) 1.00000000E+00 2 5 24 # BR(top -> bottom W) # Block HiggsCouplingsBosons # For exact definitions of NormEffCoup see HiggsBounds manual 0.999999 3 25 24 24 # higgs-W-W effective coupling, normalised to SM 0.116558E-02 3 35 24 24 # higgs-W-W effective coupling, normalised to SM 0.00000 3 36 24 24 # higgs-W-W effective coupling, normalised to SM 0.999999 3 25 23 23 # higgs-Z-Z effective coupling, normalised to SM 0.116558E-02 3 35 23 23 # higgs-Z-Z effective coupling, normalised to SM 0.00000 3 36 23 23 # higgs-Z-Z effective coupling, normalised to SM 0.952977 3 25 21 21 # higgs-gluon-gluon effective coupling, normalised to SM 0.501981E-01 3 35 21 21 # higgs-gluon-gluon effective coupling, normalised to SM 0.113261 3 36 21 21 # higgs-gluon-gluon effective coupling, normalised to SM 0.00000 3 25 25 23 # higgs-higgs-Z effective coupling, normalised 0.00000 3 35 25 23 # higgs-higgs-Z effective coupling, normalised 0.00000 3 35 35 23 # higgs-higgs-Z effective coupling, normalised 0.145434E-03 3 36 25 23 # higgs-higgs-Z effective coupling, normalised 0.124773 3 36 35 23 # higgs-higgs-Z effective coupling, normalised 0.00000 3 36 36 23 # higgs-higgs-Z effective coupling, normalised # Block HiggsCouplingsFermions # For exact definitions of NormEffCoup see HiggsBounds manual # ScalarNormEffCoup PseudoSNormEffCoup NP IP1 IP2 IP3 # Scalar, Pseudoscalar Normalised Effective Coupling 1.0193000674322237 1.7565995677947101E-029 3 25 5 5 # higgs-b-b eff. coupling, normalised to SM 16.557714685947133 1.5070568169751837E-026 3 35 5 5 # higgs-b-b eff. coupling, normalised to SM 1.5070578407059939E-026 16.558891516303152 3 36 5 5 # higgs-b-b eff. coupling, normalised to SM 0.99994104160649944 0.0000000000000000 3 25 6 6 # higgs-top-top eff. coupling, normalised to SM 5.1165548085686831E-002 0.0000000000000000 3 35 6 6 # higgs-top-top eff. coupling, normalised to SM 0.0000000000000000 5.0000000000000003E-002 3 36 6 6 # higgs-top-top eff. coupling, normalised to SM 1.0233109617137364 0.0000000000000000 3 25 15 15 # higgs-tau-tau eff. coupling, normalised to SM 19.998820832129994 0.0000000000000000 3 35 15 15 # higgs-tau-tau eff. coupling, normalised to SM 0.0000000000000000 20.000000000000000 3 36 15 15 # higgs-tau-tau eff. coupling, normalised to SM # Block ChargedHiggsLHC8 5 6 37 0.239848E-03 # t-b-Hp production (in pb) 4 5 37 0.00000 # c-b-Hp production (in pb) 2 5 37 0.00000 # u-b-Hp production (in pb) 3 4 37 0.00000 # c-s-Hp production (in pb) 1 4 37 0.00000 # c-d-Hp production (in pb) 1 2 37 0.00000 # u-d-Hp production (in pb) 2 3 37 0.00000 # u-s-Hp production (in pb) 0 24 37 0.00000 # W-Hp production (in pb) 0 23 37 0.00000 # Z-Hp production (in pb) 1 1 37 0.00000 # Hp VBF production (in pb) 0 -37 37 0.00000 # Hp-Hm production (in pb) 0 25 37 0.00000 # h0-Hp production (in pb) 0 35 37 0.00000 # h0-Hp production (in pb) 0 36 37 0.00000 # h0-Hp production (in pb) # Block ChargedHiggsLHC13 5 6 37 0.147262E-02 # t-b-Hp production (in pb) 4 5 37 0.00000 # c-b-Hp production (in pb) 2 5 37 0.00000 # u-b-Hp production (in pb) 3 4 37 0.00000 # c-s-Hp production (in pb) 1 4 37 0.00000 # c-d-Hp production (in pb) 1 2 37 0.00000 # u-d-Hp production (in pb) 2 3 37 0.00000 # u-s-Hp production (in pb) 0 24 37 0.00000 # W-Hp production (in pb) 0 23 37 0.00000 # Z-Hp production (in pb) 1 1 37 0.00000 # Hp VBF production (in pb) 0 -37 37 0.00000 # Hp-Hm production (in pb) 0 25 37 0.00000 # h0-Hp production (in pb) 0 35 37 0.00000 # h0-Hp production (in pb) 0 36 37 0.00000 # h0-Hp production (in pb) +Block HiggsBoundsResults # results from HiggsBounds http://projects.hepforge.org/higgsbounds +# HBresult : scenario allowed flag (1: allowed, 0: excluded, -1: unphysical) +# chan id number: most sensitive channel (see below). chan=0 if no channel applies +# obsratio : ratio [sig x BR]_model/[sig x BR]_limit (<1: allowed, >1: excluded) +# ncomb : number of Higgs bosons combined in most sensitive channel +# Note that the HB channel id number varies depending on the HB version and setting "whichanalyses" +# + 0 5.2.0beta ||LandH|| # version of HB used to produce these results,the HB setting "whichanalyses" +# +#CHANNEL info: ranked from highest statistical sensitivity + 1 1 293 # channel id number + 1 2 1 # HBresult + 1 3 0.51718961186868451 # obsratio + 1 4 1 # ncombined + 1 5 ||(p p)->h1 ->Z Z-> l l l l (low mass) where h1 is SM-like (CMS-PAS-HIG-13-002)|| # text description of channel + 2 1 275 # channel id number + 2 2 1 # HBresult + 2 3 0.43504503554179880 # obsratio + 2 4 1 # ncombined + 2 5 ||(p p)->h1 ->Z Z-> l l l l where h1 is SM-like (ATLAS-CONF-2013-013)|| # text description of channel + 3 1 227 # channel id number + 3 2 1 # HBresult + 3 3 0.74017055298088097 # obsratio + 3 4 1 # ncombined + 3 5 ||(p p)->h1 +...->W W +... where h1 is SM-like (CMS-PAS-HIG-13-003)|| # text description of channel +# BLOCK HiggsSignalsResults 0 ||2.2.0beta|| # HiggsSignals version 1 ||LHC13|| # experimental data set 2 1 # Chi-squared method ("peak"(1) or "mass"(2)-centered or "both"(3)) 3 2 # Parametrization of Higgs mass uncertainty (1:box, 2:gaussian, 3:box+gaussian) - 4 57 # Number of signal strength peak observables - 5 22 # Number of simplified template cross section (STXS) signal rate observables + 4 56 # Number of signal strength peak observables + 5 24 # Number of simplified template cross section (STXS) signal rate observables 6 20 # Number of LHC Run-1 signal rate observables 7 2 # Number of Higgs mass observables - 8 101 # Number of observables (total) - 9 45.92076947 # chi^2 from signal strength peak observables - 10 26.07280206 # chi^2 from STXS signal rate observables - 11 21.77184515 # chi^2 from LHC Run-1 signal rate observables - 12 0.00865033 # chi^2 from Higgs mass peak observables - 13 0.00000000 # chi^2 from STXS mass observables - 14 0.03179993 # chi^2 from LHC Run-1 mass observables - 15 93.76541668 # chi^2 from signal strength (total) - 16 93.80586694 # chi^2 (total) - 17 0.87419352 # Probability for peak observables - 18 0.41089986 # Probability for LHC-Run1 observables - 19 0.24856940 # Probability for STXS observables - 20 0.68136119 # Probability (total chi^2, total number observables) -BLOCK HiggsSignalsPeakObservables -# OBS FLAG VALUE # DESCRIPTION - 1 1 20161121 # Analysis ID - 1 2 ||ATLAS-CONF-2016-112|| # Reference to publication - 1 3 ||(pp)->h->WW(VBF)|| # Description (Search channel) - 1 4 13.00 # Center-of-mass energy - 1 5 5.80 # Luminosity - 1 6 2.00 # Luminosity uncertainty (in %) - 1 7 5.00 # Mass resolution (GeV) - 1 8 125.00 # Mass value at peak position (in GeV) - 1 9 1.7000 # Observed signal strength modifier (mu) - 1 10 0.9000 # Lower 68%C.L. uncertainty on observed mu - 1 11 1.1000 # Upper 68%C.L. uncertainty on observed mu - 1 12 001 # Assigned Higgs combination - 1 13 1 # Index of dominant Higgs boson - 1 14 25 # pdg number of dominant Higgs boson - 1 15 125.4463 # Mass of dominant Higgs boson - 1 16 1.0675 # Signal strength modifier of dominant Higgs boson - 1 17 1.0675 # Total predicted signal strength modifier mu - 1 18 0.4867 # Chi-squared value (mu-part) - 1 19 0.0000 # Chi-squared value (mh-part) - 1 20 0.4867 # Chi-squared value (total) - 1 21 3.5798 # Chi-squared value for no predicted signal (mu=0) - 2 1 20161122 # Analysis ID - 2 2 ||ATLAS-CONF-2016-112|| # Reference to publication - 2 3 ||(pp)->h->WW(WH)|| # Description (Search channel) - 2 4 13.00 # Center-of-mass energy - 2 5 5.80 # Luminosity - 2 6 2.00 # Luminosity uncertainty (in %) - 2 7 5.00 # Mass resolution (GeV) - 2 8 125.00 # Mass value at peak position (in GeV) - 2 9 3.2000 # Observed signal strength modifier (mu) - 2 10 4.2000 # Lower 68%C.L. uncertainty on observed mu - 2 11 4.4000 # Upper 68%C.L. uncertainty on observed mu - 2 12 001 # Assigned Higgs combination - 2 13 1 # Index of dominant Higgs boson - 2 14 25 # pdg number of dominant Higgs boson - 2 15 125.4463 # Mass of dominant Higgs boson - 2 16 1.0675 # Signal strength modifier of dominant Higgs boson - 2 17 1.0675 # Total predicted signal strength modifier mu - 2 18 0.2548 # Chi-squared value (mu-part) - 2 19 0.0000 # Chi-squared value (mh-part) - 2 20 0.2548 # Chi-squared value (total) - 2 21 0.5807 # Chi-squared value for no predicted signal (mu=0) - 3 1 20171751 # Analysis ID - 3 2 ||ATLAS-CONF-2017-175|| # Reference to publication - 3 3 ||(pp)->h->bb(WH)|| # Description (Search channel) - 3 4 13.00 # Center-of-mass energy - 3 5 36.10 # Luminosity - 3 6 3.20 # Luminosity uncertainty (in %) - 3 7 2.50 # Mass resolution (GeV) - 3 8 125.09 # Mass value at peak position (in GeV) - 3 9 1.3500 # Observed signal strength modifier (mu) - 3 10 0.5900 # Lower 68%C.L. uncertainty on observed mu - 3 11 0.6800 # Upper 68%C.L. uncertainty on observed mu - 3 12 001 # Assigned Higgs combination - 3 13 1 # Index of dominant Higgs boson - 3 14 25 # pdg number of dominant Higgs boson - 3 15 125.4463 # Mass of dominant Higgs boson - 3 16 0.9820 # Signal strength modifier of dominant Higgs boson - 3 17 0.9820 # Total predicted signal strength modifier mu - 3 18 0.3773 # Chi-squared value (mu-part) - 3 19 0.0000 # Chi-squared value (mh-part) - 3 20 0.3773 # Chi-squared value (total) - 3 21 5.2422 # Chi-squared value for no predicted signal (mu=0) - 4 1 20171752 # Analysis ID - 4 2 ||ATLAS-CONF-2017-175|| # Reference to publication - 4 3 ||(pp)->h->bb(ZH)|| # Description (Search channel) - 4 4 13.00 # Center-of-mass energy - 4 5 36.10 # Luminosity - 4 6 3.20 # Luminosity uncertainty (in %) - 4 7 2.50 # Mass resolution (GeV) - 4 8 125.09 # Mass value at peak position (in GeV) - 4 9 1.1200 # Observed signal strength modifier (mu) - 4 10 0.4500 # Lower 68%C.L. uncertainty on observed mu - 4 11 0.5000 # Upper 68%C.L. uncertainty on observed mu - 4 12 001 # Assigned Higgs combination - 4 13 1 # Index of dominant Higgs boson - 4 14 25 # pdg number of dominant Higgs boson - 4 15 125.4463 # Mass of dominant Higgs boson - 4 16 0.9820 # Signal strength modifier of dominant Higgs boson - 4 17 0.9820 # Total predicted signal strength modifier mu - 4 18 0.0862 # Chi-squared value (mu-part) - 4 19 0.0000 # Chi-squared value (mh-part) - 4 20 0.0862 # Chi-squared value (total) - 4 21 6.2083 # Chi-squared value for no predicted signal (mu=0) - 5 1 20172911 # Analysis ID - 5 2 ||ATLAS-CONF-2017-291|| # Reference to publication - 5 3 ||(pp)->h->bb(ttH)|| # Description (Search channel) - 5 4 13.00 # Center-of-mass energy - 5 5 36.10 # Luminosity - 5 6 2.10 # Luminosity uncertainty (in %) - 5 7 2.50 # Mass resolution (GeV) - 5 8 125.09 # Mass value at peak position (in GeV) - 5 9 0.8400 # Observed signal strength modifier (mu) - 5 10 0.6100 # Lower 68%C.L. uncertainty on observed mu - 5 11 0.6400 # Upper 68%C.L. uncertainty on observed mu - 5 12 001 # Assigned Higgs combination - 5 13 1 # Index of dominant Higgs boson - 5 14 25 # pdg number of dominant Higgs boson - 5 15 125.4463 # Mass of dominant Higgs boson - 5 16 0.9819 # Signal strength modifier of dominant Higgs boson - 5 17 0.9819 # Total predicted signal strength modifier mu - 5 18 0.0634 # Chi-squared value (mu-part) - 5 19 0.0000 # Chi-squared value (mh-part) - 5 20 0.0634 # Chi-squared value (total) - 5 21 1.8870 # Chi-squared value for no predicted signal (mu=0) - 6 1 20172812 # Analysis ID - 6 2 ||CERN-EP-2017-281|| # Reference to publication - 6 3 ||(pp)->tth->multilepton(1l2tau_h)|| # Description (Search channel) - 6 4 13.00 # Center-of-mass energy - 6 5 36.10 # Luminosity - 6 6 2.10 # Luminosity uncertainty (in %) - 6 7 10.00 # Mass resolution (GeV) - 6 8 125.00 # Mass value at peak position (in GeV) - 6 9 -0.6000 # Observed signal strength modifier (mu) - 6 10 1.5000 # Lower 68%C.L. uncertainty on observed mu - 6 11 1.6000 # Upper 68%C.L. uncertainty on observed mu - 6 12 001 # Assigned Higgs combination - 6 13 1 # Index of dominant Higgs boson - 6 14 25 # pdg number of dominant Higgs boson - 6 15 125.4463 # Mass of dominant Higgs boson - 6 16 1.0572 # Signal strength modifier of dominant Higgs boson - 6 17 1.0572 # Total predicted signal strength modifier mu - 6 18 1.0974 # Chi-squared value (mu-part) - 6 19 0.0000 # Chi-squared value (mh-part) - 6 20 1.0974 # Chi-squared value (total) - 6 21 0.1403 # Chi-squared value for no predicted signal (mu=0) - 7 1 20172811 # Analysis ID - 7 2 ||CERN-EP-2017-281|| # Reference to publication - 7 3 ||(pp)->tth->multilepton(2lOS1tau_h)|| # Description (Search channel) - 7 4 13.00 # Center-of-mass energy - 7 5 36.10 # Luminosity - 7 6 2.10 # Luminosity uncertainty (in %) - 7 7 10.00 # Mass resolution (GeV) - 7 8 125.00 # Mass value at peak position (in GeV) - 7 9 1.7000 # Observed signal strength modifier (mu) - 7 10 1.9000 # Lower 68%C.L. uncertainty on observed mu - 7 11 2.1000 # Upper 68%C.L. uncertainty on observed mu - 7 12 001 # Assigned Higgs combination - 7 13 1 # Index of dominant Higgs boson - 7 14 25 # pdg number of dominant Higgs boson - 7 15 125.4463 # Mass of dominant Higgs boson - 7 16 1.0584 # Signal strength modifier of dominant Higgs boson - 7 17 1.0584 # Total predicted signal strength modifier mu - 7 18 0.1054 # Chi-squared value (mu-part) - 7 19 0.0000 # Chi-squared value (mh-part) - 7 20 0.1054 # Chi-squared value (total) - 7 21 0.8033 # Chi-squared value for no predicted signal (mu=0) - 8 1 20172815 # Analysis ID - 8 2 ||CERN-EP-2017-281|| # Reference to publication - 8 3 ||(pp)->tth->multilepton(2lSS1tau_h)|| # Description (Search channel) - 8 4 13.00 # Center-of-mass energy - 8 5 36.10 # Luminosity - 8 6 2.10 # Luminosity uncertainty (in %) - 8 7 10.00 # Mass resolution (GeV) - 8 8 125.00 # Mass value at peak position (in GeV) - 8 9 3.5000 # Observed signal strength modifier (mu) - 8 10 1.3000 # Lower 68%C.L. uncertainty on observed mu - 8 11 1.7000 # Upper 68%C.L. uncertainty on observed mu - 8 12 001 # Assigned Higgs combination - 8 13 1 # Index of dominant Higgs boson - 8 14 25 # pdg number of dominant Higgs boson - 8 15 125.4463 # Mass of dominant Higgs boson - 8 16 1.0605 # Signal strength modifier of dominant Higgs boson - 8 17 1.0605 # Total predicted signal strength modifier mu - 8 18 3.6253 # Chi-squared value (mu-part) - 8 19 0.0000 # Chi-squared value (mh-part) - 8 20 3.6253 # Chi-squared value (total) - 8 21 7.6013 # Chi-squared value for no predicted signal (mu=0) - 9 1 20172817 # Analysis ID - 9 2 ||CERN-EP-2017-281|| # Reference to publication - 9 3 ||(pp)->tth->multilepton(2lSS)|| # Description (Search channel) - 9 4 13.00 # Center-of-mass energy - 9 5 36.10 # Luminosity - 9 6 2.10 # Luminosity uncertainty (in %) - 9 7 10.00 # Mass resolution (GeV) - 9 8 125.00 # Mass value at peak position (in GeV) - 9 9 1.5000 # Observed signal strength modifier (mu) - 9 10 0.6000 # Lower 68%C.L. uncertainty on observed mu - 9 11 0.7000 # Upper 68%C.L. uncertainty on observed mu - 9 12 001 # Assigned Higgs combination - 9 13 1 # Index of dominant Higgs boson - 9 14 25 # pdg number of dominant Higgs boson - 9 15 125.4463 # Mass of dominant Higgs boson - 9 16 1.0641 # Signal strength modifier of dominant Higgs boson - 9 17 1.0641 # Total predicted signal strength modifier mu - 9 18 0.4891 # Chi-squared value (mu-part) - 9 19 0.0000 # Chi-squared value (mh-part) - 9 20 0.4891 # Chi-squared value (total) - 9 21 6.3897 # Chi-squared value for no predicted signal (mu=0) - 10 1 20172814 # Analysis ID - 10 2 ||CERN-EP-2017-281|| # Reference to publication - 10 3 ||(pp)->tth->multilepton(3l1tau_h)|| # Description (Search channel) - 10 4 13.00 # Center-of-mass energy - 10 5 36.10 # Luminosity - 10 6 2.10 # Luminosity uncertainty (in %) - 10 7 10.00 # Mass resolution (GeV) - 10 8 125.00 # Mass value at peak position (in GeV) - 10 9 1.6000 # Observed signal strength modifier (mu) - 10 10 1.3000 # Lower 68%C.L. uncertainty on observed mu - 10 11 1.8000 # Upper 68%C.L. uncertainty on observed mu - 10 12 001 # Assigned Higgs combination - 10 13 1 # Index of dominant Higgs boson - 10 14 25 # pdg number of dominant Higgs boson - 10 15 125.4463 # Mass of dominant Higgs boson - 10 16 1.0591 # Signal strength modifier of dominant Higgs boson - 10 17 1.0591 # Total predicted signal strength modifier mu - 10 18 0.1584 # Chi-squared value (mu-part) - 10 19 0.0000 # Chi-squared value (mh-part) - 10 20 0.1584 # Chi-squared value (total) - 10 21 1.5239 # Chi-squared value for no predicted signal (mu=0) - 11 1 20172816 # Analysis ID - 11 2 ||CERN-EP-2017-281|| # Reference to publication - 11 3 ||(pp)->tth->multilepton(3l)|| # Description (Search channel) - 11 4 13.00 # Center-of-mass energy - 11 5 36.10 # Luminosity - 11 6 2.10 # Luminosity uncertainty (in %) - 11 7 10.00 # Mass resolution (GeV) - 11 8 125.00 # Mass value at peak position (in GeV) - 11 9 1.8000 # Observed signal strength modifier (mu) - 11 10 0.7000 # Lower 68%C.L. uncertainty on observed mu - 11 11 0.9000 # Upper 68%C.L. uncertainty on observed mu - 11 12 001 # Assigned Higgs combination - 11 13 1 # Index of dominant Higgs boson - 11 14 25 # pdg number of dominant Higgs boson - 11 15 125.4463 # Mass of dominant Higgs boson - 11 16 1.0620 # Signal strength modifier of dominant Higgs boson - 11 17 1.0620 # Total predicted signal strength modifier mu - 11 18 1.0859 # Chi-squared value (mu-part) - 11 19 0.0000 # Chi-squared value (mh-part) - 11 20 1.0859 # Chi-squared value (total) - 11 21 6.8197 # Chi-squared value for no predicted signal (mu=0) - 12 1 20172813 # Analysis ID - 12 2 ||CERN-EP-2017-281|| # Reference to publication - 12 3 ||(pp)->tth->multilepton(4l)|| # Description (Search channel) - 12 4 13.00 # Center-of-mass energy - 12 5 36.10 # Luminosity - 12 6 2.10 # Luminosity uncertainty (in %) - 12 7 10.00 # Mass resolution (GeV) - 12 8 125.00 # Mass value at peak position (in GeV) - 12 9 -0.5000 # Observed signal strength modifier (mu) - 12 10 0.9000 # Lower 68%C.L. uncertainty on observed mu - 12 11 1.3000 # Upper 68%C.L. uncertainty on observed mu - 12 12 001 # Assigned Higgs combination - 12 13 1 # Index of dominant Higgs boson - 12 14 25 # pdg number of dominant Higgs boson - 12 15 125.4463 # Mass of dominant Higgs boson - 12 16 1.0614 # Signal strength modifier of dominant Higgs boson - 12 17 1.0614 # Total predicted signal strength modifier mu - 12 18 1.4785 # Chi-squared value (mu-part) - 12 19 0.0000 # Chi-squared value (mh-part) - 12 20 1.4785 # Chi-squared value (total) - 12 21 0.1474 # Chi-squared value for no predicted signal (mu=0) - 13 1 160421 # Analysis ID - 13 2 ||CMS-PAS-HIG-16-042|| # Reference to publication - 13 3 ||(pp)->h->WW(0-jetDFggH-tagged)|| # Description (Search channel) - 13 4 13.00 # Center-of-mass energy - 13 5 35.90 # Luminosity - 13 6 2.50 # Luminosity uncertainty (in %) - 13 7 15.00 # Mass resolution (GeV) - 13 8 125.09 # Mass value at peak position (in GeV) - 13 9 1.3000 # Observed signal strength modifier (mu) - 13 10 0.2300 # Lower 68%C.L. uncertainty on observed mu - 13 11 0.2400 # Upper 68%C.L. uncertainty on observed mu - 13 12 001 # Assigned Higgs combination - 13 13 1 # Index of dominant Higgs boson - 13 14 25 # pdg number of dominant Higgs boson - 13 15 125.4463 # Mass of dominant Higgs boson - 13 16 0.9753 # Signal strength modifier of dominant Higgs boson - 13 17 0.9753 # Total predicted signal strength modifier mu - 13 18 1.6076 # Chi-squared value (mu-part) - 13 19 0.0000 # Chi-squared value (mh-part) - 13 20 1.6076 # Chi-squared value (total) - 13 21 33.1009 # Chi-squared value for no predicted signal (mu=0) - 14 1 160424 # Analysis ID - 14 2 ||CMS-PAS-HIG-16-042|| # Reference to publication - 14 3 ||(pp)->h->WW(0-jetSFggH-tagged)|| # Description (Search channel) - 14 4 13.00 # Center-of-mass energy - 14 5 35.90 # Luminosity - 14 6 2.50 # Luminosity uncertainty (in %) - 14 7 15.00 # Mass resolution (GeV) - 14 8 125.09 # Mass value at peak position (in GeV) - 14 9 1.7500 # Observed signal strength modifier (mu) - 14 10 0.5400 # Lower 68%C.L. uncertainty on observed mu - 14 11 1.6100 # Upper 68%C.L. uncertainty on observed mu - 14 12 001 # Assigned Higgs combination - 14 13 1 # Index of dominant Higgs boson - 14 14 25 # pdg number of dominant Higgs boson - 14 15 125.4463 # Mass of dominant Higgs boson - 14 16 0.9738 # Signal strength modifier of dominant Higgs boson - 14 17 0.9738 # Total predicted signal strength modifier mu - 14 18 1.8482 # Chi-squared value (mu-part) - 14 19 0.0000 # Chi-squared value (mh-part) - 14 20 1.8482 # Chi-squared value (total) - 14 21 10.7002 # Chi-squared value for no predicted signal (mu=0) - 15 1 160422 # Analysis ID - 15 2 ||CMS-PAS-HIG-16-042|| # Reference to publication - 15 3 ||(pp)->h->WW(1-jetDFggH-tagged)|| # Description (Search channel) - 15 4 13.00 # Center-of-mass energy - 15 5 35.90 # Luminosity - 15 6 2.50 # Luminosity uncertainty (in %) - 15 7 15.00 # Mass resolution (GeV) - 15 8 125.09 # Mass value at peak position (in GeV) - 15 9 1.2900 # Observed signal strength modifier (mu) - 15 10 0.2700 # Lower 68%C.L. uncertainty on observed mu - 15 11 0.3200 # Upper 68%C.L. uncertainty on observed mu - 15 12 001 # Assigned Higgs combination - 15 13 1 # Index of dominant Higgs boson - 15 14 25 # pdg number of dominant Higgs boson - 15 15 125.4463 # Mass of dominant Higgs boson - 15 16 0.9840 # Signal strength modifier of dominant Higgs boson - 15 17 0.9840 # Total predicted signal strength modifier mu - 15 18 0.9897 # Chi-squared value (mu-part) - 15 19 0.0000 # Chi-squared value (mh-part) - 15 20 0.9897 # Chi-squared value (total) - 15 21 23.2980 # Chi-squared value for no predicted signal (mu=0) - 16 1 160425 # Analysis ID - 16 2 ||CMS-PAS-HIG-16-042|| # Reference to publication - 16 3 ||(pp)->h->WW(1-jetSFggH-tagged)|| # Description (Search channel) - 16 4 13.00 # Center-of-mass energy - 16 5 35.90 # Luminosity - 16 6 2.50 # Luminosity uncertainty (in %) - 16 7 15.00 # Mass resolution (GeV) - 16 8 125.09 # Mass value at peak position (in GeV) - 16 9 2.1800 # Observed signal strength modifier (mu) - 16 10 0.9700 # Lower 68%C.L. uncertainty on observed mu - 16 11 0.9400 # Upper 68%C.L. uncertainty on observed mu - 16 12 001 # Assigned Higgs combination - 16 13 1 # Index of dominant Higgs boson - 16 14 25 # pdg number of dominant Higgs boson - 16 15 125.4463 # Mass of dominant Higgs boson - 16 16 0.9815 # Signal strength modifier of dominant Higgs boson - 16 17 0.9815 # Total predicted signal strength modifier mu - 16 18 1.3982 # Chi-squared value (mu-part) - 16 19 0.0000 # Chi-squared value (mh-part) - 16 20 1.3982 # Chi-squared value (total) - 16 21 5.0957 # Chi-squared value for no predicted signal (mu=0) - 17 1 160423 # Analysis ID - 17 2 ||CMS-PAS-HIG-16-042|| # Reference to publication - 17 3 ||(pp)->h->WW(2-jetDFggH-tagged)|| # Description (Search channel) - 17 4 13.00 # Center-of-mass energy - 17 5 35.90 # Luminosity - 17 6 2.50 # Luminosity uncertainty (in %) - 17 7 15.00 # Mass resolution (GeV) - 17 8 125.09 # Mass value at peak position (in GeV) - 17 9 0.8200 # Observed signal strength modifier (mu) - 17 10 0.5000 # Lower 68%C.L. uncertainty on observed mu - 17 11 0.5400 # Upper 68%C.L. uncertainty on observed mu - 17 12 001 # Assigned Higgs combination - 17 13 1 # Index of dominant Higgs boson - 17 14 25 # pdg number of dominant Higgs boson - 17 15 125.4463 # Mass of dominant Higgs boson - 17 16 0.9917 # Signal strength modifier of dominant Higgs boson - 17 17 0.9917 # Total predicted signal strength modifier mu - 17 18 0.1405 # Chi-squared value (mu-part) - 17 19 0.0000 # Chi-squared value (mh-part) - 17 20 0.1405 # Chi-squared value (total) - 17 21 2.6840 # Chi-squared value for no predicted signal (mu=0) - 18 1 160426 # Analysis ID - 18 2 ||CMS-PAS-HIG-16-042|| # Reference to publication - 18 3 ||(pp)->h->WW(2-jetVBF-tagged)|| # Description (Search channel) - 18 4 13.00 # Center-of-mass energy - 18 5 35.90 # Luminosity - 18 6 2.50 # Luminosity uncertainty (in %) - 18 7 15.00 # Mass resolution (GeV) - 18 8 125.09 # Mass value at peak position (in GeV) - 18 9 0.7200 # Observed signal strength modifier (mu) - 18 10 0.4100 # Lower 68%C.L. uncertainty on observed mu - 18 11 0.4400 # Upper 68%C.L. uncertainty on observed mu - 18 12 001 # Assigned Higgs combination - 18 13 1 # Index of dominant Higgs boson - 18 14 25 # pdg number of dominant Higgs boson - 18 15 125.4463 # Mass of dominant Higgs boson - 18 16 1.0312 # Signal strength modifier of dominant Higgs boson - 18 17 1.0312 # Total predicted signal strength modifier mu - 18 18 0.5730 # Chi-squared value (mu-part) - 18 19 0.0000 # Chi-squared value (mh-part) - 18 20 0.5730 # Chi-squared value (total) - 18 21 3.0735 # Chi-squared value for no predicted signal (mu=0) - 19 1 160427 # Analysis ID - 19 2 ||CMS-PAS-HIG-16-042|| # Reference to publication - 19 3 ||(pp)->h->WW(2-jetVH-tagged)|| # Description (Search channel) - 19 4 13.00 # Center-of-mass energy - 19 5 35.90 # Luminosity - 19 6 2.50 # Luminosity uncertainty (in %) - 19 7 15.00 # Mass resolution (GeV) - 19 8 125.09 # Mass value at peak position (in GeV) - 19 9 3.9200 # Observed signal strength modifier (mu) - 19 10 1.1700 # Lower 68%C.L. uncertainty on observed mu - 19 11 1.3200 # Upper 68%C.L. uncertainty on observed mu - 19 12 001 # Assigned Higgs combination - 19 13 1 # Index of dominant Higgs boson - 19 14 25 # pdg number of dominant Higgs boson - 19 15 125.4463 # Mass of dominant Higgs boson - 19 16 0.9986 # Signal strength modifier of dominant Higgs boson - 19 17 0.9986 # Total predicted signal strength modifier mu - 19 18 6.0135 # Chi-squared value (mu-part) - 19 19 0.0000 # Chi-squared value (mh-part) - 19 20 6.0135 # Chi-squared value (total) - 19 21 11.4010 # Chi-squared value for no predicted signal (mu=0) - 20 1 160428 # Analysis ID - 20 2 ||CMS-PAS-HIG-16-042|| # Reference to publication - 20 3 ||(pp)->h->WW(3-leptonWH-tagged)|| # Description (Search channel) - 20 4 13.00 # Center-of-mass energy - 20 5 35.90 # Luminosity - 20 6 2.50 # Luminosity uncertainty (in %) - 20 7 15.00 # Mass resolution (GeV) - 20 8 125.09 # Mass value at peak position (in GeV) - 20 9 2.2300 # Observed signal strength modifier (mu) - 20 10 1.5300 # Lower 68%C.L. uncertainty on observed mu - 20 11 1.7600 # Upper 68%C.L. uncertainty on observed mu - 20 12 001 # Assigned Higgs combination - 20 13 1 # Index of dominant Higgs boson - 20 14 25 # pdg number of dominant Higgs boson - 20 15 125.4463 # Mass of dominant Higgs boson - 20 16 1.0675 # Signal strength modifier of dominant Higgs boson - 20 17 1.0675 # Total predicted signal strength modifier mu - 20 18 0.5379 # Chi-squared value (mu-part) - 20 19 0.0000 # Chi-squared value (mh-part) - 20 20 0.5379 # Chi-squared value (total) - 20 21 2.1261 # Chi-squared value for no predicted signal (mu=0) - 21 1 160429 # Analysis ID - 21 2 ||CMS-PAS-HIG-16-042|| # Reference to publication - 21 3 ||(pp)->h->WW(4-leptonZH-tagged)|| # Description (Search channel) - 21 4 13.00 # Center-of-mass energy - 21 5 35.90 # Luminosity - 21 6 2.50 # Luminosity uncertainty (in %) - 21 7 15.00 # Mass resolution (GeV) - 21 8 125.09 # Mass value at peak position (in GeV) - 21 9 0.7700 # Observed signal strength modifier (mu) - 21 10 1.2000 # Lower 68%C.L. uncertainty on observed mu - 21 11 1.4900 # Upper 68%C.L. uncertainty on observed mu - 21 12 001 # Assigned Higgs combination - 21 13 1 # Index of dominant Higgs boson - 21 14 25 # pdg number of dominant Higgs boson - 21 15 125.4463 # Mass of dominant Higgs boson - 21 16 1.0675 # Signal strength modifier of dominant Higgs boson - 21 17 1.0675 # Total predicted signal strength modifier mu - 21 18 0.0444 # Chi-squared value (mu-part) - 21 19 0.0000 # Chi-squared value (mh-part) - 21 20 0.0444 # Chi-squared value (total) - 21 21 0.4115 # Chi-squared value for no predicted signal (mu=0) - 22 1 1706099362 # Analysis ID - 22 2 ||arXiv:1706.09936|| # Reference to publication - 22 3 ||(pp)->h->ZZ->4l(VBF-1j)|| # Description (Search channel) - 22 4 13.00 # Center-of-mass energy - 22 5 35.90 # Luminosity - 22 6 6.20 # Luminosity uncertainty (in %) - 22 7 5.00 # Mass resolution (GeV) - 22 8 125.09 # Mass value at peak position (in GeV) - 22 9 0.9700 # Observed signal strength modifier (mu) - 22 10 0.3200 # Lower 68%C.L. uncertainty on observed mu - 22 11 0.4000 # Upper 68%C.L. uncertainty on observed mu - 22 12 001 # Assigned Higgs combination - 22 13 1 # Index of dominant Higgs boson - 22 14 25 # pdg number of dominant Higgs boson - 22 15 125.4463 # Mass of dominant Higgs boson - 22 16 0.9475 # Signal strength modifier of dominant Higgs boson - 22 17 0.9475 # Total predicted signal strength modifier mu - 22 18 -0.0229 # Chi-squared value (mu-part) - 22 19 0.0000 # Chi-squared value (mh-part) - 22 20 -0.0229 # Chi-squared value (total) - 22 21 9.2001 # Chi-squared value for no predicted signal (mu=0) - 23 1 1706099363 # Analysis ID - 23 2 ||arXiv:1706.09936|| # Reference to publication - 23 3 ||(pp)->h->ZZ->4l(VBF-2j)|| # Description (Search channel) - 23 4 13.00 # Center-of-mass energy - 23 5 35.90 # Luminosity - 23 6 6.20 # Luminosity uncertainty (in %) - 23 7 5.00 # Mass resolution (GeV) - 23 8 125.09 # Mass value at peak position (in GeV) - 23 9 0.6300 # Observed signal strength modifier (mu) - 23 10 0.3400 # Lower 68%C.L. uncertainty on observed mu - 23 11 0.5100 # Upper 68%C.L. uncertainty on observed mu - 23 12 001 # Assigned Higgs combination - 23 13 1 # Index of dominant Higgs boson - 23 14 25 # pdg number of dominant Higgs boson - 23 15 125.4463 # Mass of dominant Higgs boson - 23 16 0.9824 # Signal strength modifier of dominant Higgs boson - 23 17 0.9824 # Total predicted signal strength modifier mu - 23 18 0.5855 # Chi-squared value (mu-part) - 23 19 0.0000 # Chi-squared value (mh-part) - 23 20 0.5855 # Chi-squared value (total) - 23 21 3.4156 # Chi-squared value for no predicted signal (mu=0) - 24 1 1706099366 # Analysis ID - 24 2 ||arXiv:1706.09936|| # Reference to publication - 24 3 ||(pp)->h->ZZ->4l(VH-METtagged)|| # Description (Search channel) - 24 4 13.00 # Center-of-mass energy - 24 5 35.90 # Luminosity - 24 6 6.20 # Luminosity uncertainty (in %) - 24 7 5.00 # Mass resolution (GeV) - 24 8 125.09 # Mass value at peak position (in GeV) - 24 9 0.0000 # Observed signal strength modifier (mu) - 24 10 0.0000 # Lower 68%C.L. uncertainty on observed mu - 24 11 10.9400 # Upper 68%C.L. uncertainty on observed mu - 24 12 001 # Assigned Higgs combination - 24 13 1 # Index of dominant Higgs boson - 24 14 25 # pdg number of dominant Higgs boson - 24 15 125.4463 # Mass of dominant Higgs boson - 24 16 1.0186 # Signal strength modifier of dominant Higgs boson - 24 17 1.0186 # Total predicted signal strength modifier mu - 24 18 0.0087 # Chi-squared value (mu-part) - 24 19 0.0000 # Chi-squared value (mh-part) - 24 20 0.0087 # Chi-squared value (total) - 24 21 0.0000 # Chi-squared value for no predicted signal (mu=0) - 25 1 1706099364 # Analysis ID - 25 2 ||arXiv:1706.09936|| # Reference to publication - 25 3 ||(pp)->h->ZZ->4l(VH-hadronictagged)|| # Description (Search channel) - 25 4 13.00 # Center-of-mass energy - 25 5 35.90 # Luminosity - 25 6 6.20 # Luminosity uncertainty (in %) - 25 7 5.00 # Mass resolution (GeV) - 25 8 125.09 # Mass value at peak position (in GeV) - 25 9 0.7600 # Observed signal strength modifier (mu) - 25 10 0.4800 # Lower 68%C.L. uncertainty on observed mu - 25 11 0.7800 # Upper 68%C.L. uncertainty on observed mu - 25 12 001 # Assigned Higgs combination - 25 13 1 # Index of dominant Higgs boson - 25 14 25 # pdg number of dominant Higgs boson - 25 15 125.4463 # Mass of dominant Higgs boson - 25 16 0.9636 # Signal strength modifier of dominant Higgs boson - 25 17 0.9636 # Total predicted signal strength modifier mu - 25 18 0.1012 # Chi-squared value (mu-part) - 25 19 0.0000 # Chi-squared value (mh-part) - 25 20 0.1012 # Chi-squared value (total) - 25 21 2.5019 # Chi-squared value for no predicted signal (mu=0) - 26 1 1706099365 # Analysis ID - 26 2 ||arXiv:1706.09936|| # Reference to publication - 26 3 ||(pp)->h->ZZ->4l(VH-leptonictagged)|| # Description (Search channel) - 26 4 13.00 # Center-of-mass energy - 26 5 35.90 # Luminosity - 26 6 6.20 # Luminosity uncertainty (in %) - 26 7 5.00 # Mass resolution (GeV) - 26 8 125.09 # Mass value at peak position (in GeV) - 26 9 0.0000 # Observed signal strength modifier (mu) - 26 10 0.0000 # Lower 68%C.L. uncertainty on observed mu - 26 11 2.0900 # Upper 68%C.L. uncertainty on observed mu - 26 12 001 # Assigned Higgs combination - 26 13 1 # Index of dominant Higgs boson - 26 14 25 # pdg number of dominant Higgs boson - 26 15 125.4463 # Mass of dominant Higgs boson - 26 16 1.0050 # Signal strength modifier of dominant Higgs boson - 26 17 1.0050 # Total predicted signal strength modifier mu - 26 18 0.2349 # Chi-squared value (mu-part) - 26 19 0.0000 # Chi-squared value (mh-part) - 26 20 0.2349 # Chi-squared value (total) - 26 21 0.0000 # Chi-squared value for no predicted signal (mu=0) - 27 1 1706099367 # Analysis ID - 27 2 ||arXiv:1706.09936|| # Reference to publication - 27 3 ||(pp)->h->ZZ->4l(ttHtagged)|| # Description (Search channel) - 27 4 13.00 # Center-of-mass energy - 27 5 35.90 # Luminosity - 27 6 6.20 # Luminosity uncertainty (in %) - 27 7 5.00 # Mass resolution (GeV) - 27 8 125.09 # Mass value at peak position (in GeV) - 27 9 0.0000 # Observed signal strength modifier (mu) - 27 10 0.0000 # Lower 68%C.L. uncertainty on observed mu - 27 11 0.8700 # Upper 68%C.L. uncertainty on observed mu - 27 12 001 # Assigned Higgs combination - 27 13 1 # Index of dominant Higgs boson - 27 14 25 # pdg number of dominant Higgs boson - 27 15 125.4463 # Mass of dominant Higgs boson - 27 16 1.0088 # Signal strength modifier of dominant Higgs boson - 27 17 1.0088 # Total predicted signal strength modifier mu - 27 18 1.3924 # Chi-squared value (mu-part) - 27 19 0.0000 # Chi-squared value (mh-part) - 27 20 1.3924 # Chi-squared value (total) - 27 21 0.0000 # Chi-squared value for no predicted signal (mu=0) - 28 1 1706099361 # Analysis ID - 28 2 ||arXiv:1706.09936|| # Reference to publication - 28 3 ||(pp)->h->ZZ->4l(untagged)|| # Description (Search channel) - 28 4 13.00 # Center-of-mass energy - 28 5 35.90 # Luminosity - 28 6 6.20 # Luminosity uncertainty (in %) - 28 7 0.28 # Mass resolution (GeV) - 28 8 125.26 # Mass value at peak position (in GeV) - 28 9 1.1700 # Observed signal strength modifier (mu) - 28 10 0.2100 # Lower 68%C.L. uncertainty on observed mu - 28 11 0.2300 # Upper 68%C.L. uncertainty on observed mu - 28 12 001 # Assigned Higgs combination - 28 13 1 # Index of dominant Higgs boson - 28 14 25 # pdg number of dominant Higgs boson - 28 15 125.4463 # Mass of dominant Higgs boson - 28 16 0.9387 # Signal strength modifier of dominant Higgs boson - 28 17 0.9387 # Total predicted signal strength modifier mu - 28 18 0.5806 # Chi-squared value (mu-part) - 28 19 0.0087 # Chi-squared value (mh-part) - 28 20 0.5893 # Chi-squared value (total) - 28 21 31.9173 # Chi-squared value for no predicted signal (mu=0) - 29 1 1604005 # Analysis ID - 29 2 ||CMS-PAS-HIG-16-040|| # Reference to publication - 29 3 ||(pp)->h->gaga(VBF0)|| # Description (Search channel) - 29 4 13.00 # Center-of-mass energy - 29 5 35.90 # Luminosity - 29 6 2.50 # Luminosity uncertainty (in %) - 29 7 2.50 # Mass resolution (GeV) - 29 8 125.09 # Mass value at peak position (in GeV) - 29 9 0.6000 # Observed signal strength modifier (mu) - 29 10 0.3300 # Lower 68%C.L. uncertainty on observed mu - 29 11 0.4600 # Upper 68%C.L. uncertainty on observed mu - 29 12 001 # Assigned Higgs combination - 29 13 1 # Index of dominant Higgs boson - 29 14 25 # pdg number of dominant Higgs boson - 29 15 125.4463 # Mass of dominant Higgs boson - 29 16 0.9815 # Signal strength modifier of dominant Higgs boson - 29 17 0.9815 # Total predicted signal strength modifier mu - 29 18 0.7484 # Chi-squared value (mu-part) - 29 19 0.0000 # Chi-squared value (mh-part) - 29 20 0.7484 # Chi-squared value (total) - 29 21 3.2846 # Chi-squared value for no predicted signal (mu=0) - 30 1 1604006 # Analysis ID - 30 2 ||CMS-PAS-HIG-16-040|| # Reference to publication - 30 3 ||(pp)->h->gaga(VBF1)|| # Description (Search channel) - 30 4 13.00 # Center-of-mass energy - 30 5 35.90 # Luminosity - 30 6 2.50 # Luminosity uncertainty (in %) - 30 7 2.50 # Mass resolution (GeV) - 30 8 125.09 # Mass value at peak position (in GeV) - 30 9 1.1000 # Observed signal strength modifier (mu) - 30 10 0.6000 # Lower 68%C.L. uncertainty on observed mu - 30 11 0.8000 # Upper 68%C.L. uncertainty on observed mu - 30 12 001 # Assigned Higgs combination - 30 13 1 # Index of dominant Higgs boson - 30 14 25 # pdg number of dominant Higgs boson - 30 15 125.4463 # Mass of dominant Higgs boson - 30 16 0.9705 # Signal strength modifier of dominant Higgs boson - 30 17 0.9705 # Total predicted signal strength modifier mu - 30 18 0.0271 # Chi-squared value (mu-part) - 30 19 0.0000 # Chi-squared value (mh-part) - 30 20 0.0271 # Chi-squared value (total) - 30 21 3.3637 # Chi-squared value for no predicted signal (mu=0) - 31 1 1604007 # Analysis ID - 31 2 ||CMS-PAS-HIG-16-040|| # Reference to publication - 31 3 ||(pp)->h->gaga(VBF2)|| # Description (Search channel) - 31 4 13.00 # Center-of-mass energy - 31 5 35.90 # Luminosity - 31 6 2.50 # Luminosity uncertainty (in %) - 31 7 2.50 # Mass resolution (GeV) - 31 8 125.09 # Mass value at peak position (in GeV) - 31 9 1.0000 # Observed signal strength modifier (mu) - 31 10 0.5000 # Lower 68%C.L. uncertainty on observed mu - 31 11 0.6000 # Upper 68%C.L. uncertainty on observed mu - 31 12 001 # Assigned Higgs combination - 31 13 1 # Index of dominant Higgs boson - 31 14 25 # pdg number of dominant Higgs boson - 31 15 125.4463 # Mass of dominant Higgs boson - 31 16 0.9551 # Signal strength modifier of dominant Higgs boson - 31 17 0.9551 # Total predicted signal strength modifier mu - 31 18 -0.0024 # Chi-squared value (mu-part) - 31 19 0.0000 # Chi-squared value (mh-part) - 31 20 -0.0024 # Chi-squared value (total) - 31 21 4.0019 # Chi-squared value for no predicted signal (mu=0) - 32 1 1604014 # Analysis ID - 32 2 ||CMS-PAS-HIG-16-040|| # Reference to publication - 32 3 ||(pp)->h->gaga(VHMET)|| # Description (Search channel) - 32 4 13.00 # Center-of-mass energy - 32 5 35.90 # Luminosity - 32 6 2.50 # Luminosity uncertainty (in %) - 32 7 2.50 # Mass resolution (GeV) - 32 8 125.09 # Mass value at peak position (in GeV) - 32 9 0.5000 # Observed signal strength modifier (mu) - 32 10 1.3000 # Lower 68%C.L. uncertainty on observed mu - 32 11 1.3000 # Upper 68%C.L. uncertainty on observed mu - 32 12 001 # Assigned Higgs combination - 32 13 1 # Index of dominant Higgs boson - 32 14 25 # pdg number of dominant Higgs boson - 32 15 125.4463 # Mass of dominant Higgs boson - 32 16 0.9799 # Signal strength modifier of dominant Higgs boson - 32 17 0.9799 # Total predicted signal strength modifier mu - 32 18 0.1470 # Chi-squared value (mu-part) - 32 19 0.0000 # Chi-squared value (mh-part) - 32 20 0.1470 # Chi-squared value (total) - 32 21 0.1479 # Chi-squared value for no predicted signal (mu=0) - 33 1 1604013 # Analysis ID - 33 2 ||CMS-PAS-HIG-16-040|| # Reference to publication - 33 3 ||(pp)->h->gaga(VHhadronic)|| # Description (Search channel) - 33 4 13.00 # Center-of-mass energy - 33 5 35.90 # Luminosity - 33 6 2.50 # Luminosity uncertainty (in %) - 33 7 2.50 # Mass resolution (GeV) - 33 8 125.09 # Mass value at peak position (in GeV) - 33 9 2.0000 # Observed signal strength modifier (mu) - 33 10 0.7000 # Lower 68%C.L. uncertainty on observed mu - 33 11 0.8000 # Upper 68%C.L. uncertainty on observed mu - 33 12 001 # Assigned Higgs combination - 33 13 1 # Index of dominant Higgs boson - 33 14 25 # pdg number of dominant Higgs boson - 33 15 125.4463 # Mass of dominant Higgs boson - 33 16 0.9470 # Signal strength modifier of dominant Higgs boson - 33 17 0.9470 # Total predicted signal strength modifier mu - 33 18 2.0820 # Chi-squared value (mu-part) - 33 19 0.0000 # Chi-squared value (mh-part) - 33 20 2.0820 # Chi-squared value (total) - 33 21 8.2232 # Chi-squared value for no predicted signal (mu=0) - 34 1 1604012 # Analysis ID - 34 2 ||CMS-PAS-HIG-16-040|| # Reference to publication - 34 3 ||(pp)->h->gaga(VHleptonic-loose)|| # Description (Search channel) - 34 4 13.00 # Center-of-mass energy - 34 5 35.90 # Luminosity - 34 6 2.50 # Luminosity uncertainty (in %) - 34 7 2.50 # Mass resolution (GeV) - 34 8 125.09 # Mass value at peak position (in GeV) - 34 9 2.6000 # Observed signal strength modifier (mu) - 34 10 2.1000 # Lower 68%C.L. uncertainty on observed mu - 34 11 2.4000 # Upper 68%C.L. uncertainty on observed mu - 34 12 001 # Assigned Higgs combination - 34 13 1 # Index of dominant Higgs boson - 34 14 25 # pdg number of dominant Higgs boson - 34 15 125.4463 # Mass of dominant Higgs boson - 34 16 0.9929 # Signal strength modifier of dominant Higgs boson - 34 17 0.9929 # Total predicted signal strength modifier mu - 34 18 0.5501 # Chi-squared value (mu-part) - 34 19 0.0000 # Chi-squared value (mh-part) - 34 20 0.5501 # Chi-squared value (total) - 34 21 1.5337 # Chi-squared value for no predicted signal (mu=0) - 35 1 1604011 # Analysis ID - 35 2 ||CMS-PAS-HIG-16-040|| # Reference to publication - 35 3 ||(pp)->h->gaga(WHleptonic)|| # Description (Search channel) - 35 4 13.00 # Center-of-mass energy - 35 5 35.90 # Luminosity - 35 6 2.50 # Luminosity uncertainty (in %) - 35 7 2.50 # Mass resolution (GeV) - 35 8 125.09 # Mass value at peak position (in GeV) - 35 9 2.9000 # Observed signal strength modifier (mu) - 35 10 1.3000 # Lower 68%C.L. uncertainty on observed mu - 35 11 1.5000 # Upper 68%C.L. uncertainty on observed mu - 35 12 001 # Assigned Higgs combination - 35 13 1 # Index of dominant Higgs boson - 35 14 25 # pdg number of dominant Higgs boson - 35 15 125.4463 # Mass of dominant Higgs boson - 35 16 0.9998 # Signal strength modifier of dominant Higgs boson - 35 17 0.9998 # Total predicted signal strength modifier mu - 35 18 2.0258 # Chi-squared value (mu-part) - 35 19 0.0000 # Chi-squared value (mh-part) - 35 20 2.0258 # Chi-squared value (total) - 35 21 4.9874 # Chi-squared value for no predicted signal (mu=0) - 36 1 1604010 # Analysis ID - 36 2 ||CMS-PAS-HIG-16-040|| # Reference to publication - 36 3 ||(pp)->h->gaga(ZHleptonic)|| # Description (Search channel) - 36 4 13.00 # Center-of-mass energy - 36 5 35.90 # Luminosity - 36 6 2.50 # Luminosity uncertainty (in %) - 36 7 2.50 # Mass resolution (GeV) - 36 8 125.09 # Mass value at peak position (in GeV) - 36 9 0.0000 # Observed signal strength modifier (mu) - 36 10 1.0000 # Lower 68%C.L. uncertainty on observed mu - 36 11 1.0000 # Upper 68%C.L. uncertainty on observed mu - 36 12 001 # Assigned Higgs combination - 36 13 1 # Index of dominant Higgs boson - 36 14 25 # pdg number of dominant Higgs boson - 36 15 125.4463 # Mass of dominant Higgs boson - 36 16 1.0017 # Signal strength modifier of dominant Higgs boson - 36 17 1.0017 # Total predicted signal strength modifier mu - 36 18 1.0109 # Chi-squared value (mu-part) - 36 19 0.0000 # Chi-squared value (mh-part) - 36 20 1.0109 # Chi-squared value (total) - 36 21 0.0000 # Chi-squared value for no predicted signal (mu=0) - 37 1 1604008 # Analysis ID - 37 2 ||CMS-PAS-HIG-16-040|| # Reference to publication - 37 3 ||(pp)->h->gaga(ttHhadronic)|| # Description (Search channel) - 37 4 13.00 # Center-of-mass energy - 37 5 35.90 # Luminosity - 37 6 2.50 # Luminosity uncertainty (in %) - 37 7 2.50 # Mass resolution (GeV) - 37 8 125.09 # Mass value at peak position (in GeV) - 37 9 1.5000 # Observed signal strength modifier (mu) - 37 10 0.8000 # Lower 68%C.L. uncertainty on observed mu - 37 11 1.0000 # Upper 68%C.L. uncertainty on observed mu - 37 12 001 # Assigned Higgs combination - 37 13 1 # Index of dominant Higgs boson - 37 14 25 # pdg number of dominant Higgs boson - 37 15 125.4463 # Mass of dominant Higgs boson - 37 16 0.9899 # Signal strength modifier of dominant Higgs boson - 37 17 0.9899 # Total predicted signal strength modifier mu - 37 18 0.3419 # Chi-squared value (mu-part) - 37 19 0.0000 # Chi-squared value (mh-part) - 37 20 0.3419 # Chi-squared value (total) - 37 21 3.5499 # Chi-squared value for no predicted signal (mu=0) - 38 1 1604009 # Analysis ID - 38 2 ||CMS-PAS-HIG-16-040|| # Reference to publication - 38 3 ||(pp)->h->gaga(ttHleptonic)|| # Description (Search channel) - 38 4 13.00 # Center-of-mass energy - 38 5 35.90 # Luminosity - 38 6 2.50 # Luminosity uncertainty (in %) - 38 7 2.50 # Mass resolution (GeV) - 38 8 125.09 # Mass value at peak position (in GeV) - 38 9 2.9000 # Observed signal strength modifier (mu) - 38 10 1.1000 # Lower 68%C.L. uncertainty on observed mu - 38 11 1.4000 # Upper 68%C.L. uncertainty on observed mu - 38 12 001 # Assigned Higgs combination - 38 13 1 # Index of dominant Higgs boson - 38 14 25 # pdg number of dominant Higgs boson - 38 15 125.4463 # Mass of dominant Higgs boson - 38 16 0.9997 # Signal strength modifier of dominant Higgs boson - 38 17 0.9997 # Total predicted signal strength modifier mu - 38 18 2.9120 # Chi-squared value (mu-part) - 38 19 0.0000 # Chi-squared value (mh-part) - 38 20 2.9120 # Chi-squared value (total) - 38 21 7.2382 # Chi-squared value for no predicted signal (mu=0) - 39 1 1604001 # Analysis ID - 39 2 ||CMS-PAS-HIG-16-040|| # Reference to publication - 39 3 ||(pp)->h->gaga(untagged0)|| # Description (Search channel) - 39 4 13.00 # Center-of-mass energy - 39 5 35.90 # Luminosity - 39 6 2.50 # Luminosity uncertainty (in %) - 39 7 2.50 # Mass resolution (GeV) - 39 8 125.09 # Mass value at peak position (in GeV) - 39 9 1.0100 # Observed signal strength modifier (mu) - 39 10 0.2800 # Lower 68%C.L. uncertainty on observed mu - 39 11 0.3200 # Upper 68%C.L. uncertainty on observed mu - 39 12 001 # Assigned Higgs combination - 39 13 1 # Index of dominant Higgs boson - 39 14 25 # pdg number of dominant Higgs boson - 39 15 125.4463 # Mass of dominant Higgs boson - 39 16 0.9281 # Signal strength modifier of dominant Higgs boson - 39 17 0.9281 # Total predicted signal strength modifier mu - 39 18 0.0117 # Chi-squared value (mu-part) - 39 19 0.0000 # Chi-squared value (mh-part) - 39 20 0.0117 # Chi-squared value (total) - 39 21 13.0635 # Chi-squared value for no predicted signal (mu=0) - 40 1 1604002 # Analysis ID - 40 2 ||CMS-PAS-HIG-16-040|| # Reference to publication - 40 3 ||(pp)->h->gaga(untagged1)|| # Description (Search channel) - 40 4 13.00 # Center-of-mass energy - 40 5 35.90 # Luminosity - 40 6 2.50 # Luminosity uncertainty (in %) - 40 7 2.50 # Mass resolution (GeV) - 40 8 125.09 # Mass value at peak position (in GeV) - 40 9 0.9100 # Observed signal strength modifier (mu) - 40 10 0.1600 # Lower 68%C.L. uncertainty on observed mu - 40 11 0.2000 # Upper 68%C.L. uncertainty on observed mu - 40 12 001 # Assigned Higgs combination - 40 13 1 # Index of dominant Higgs boson - 40 14 25 # pdg number of dominant Higgs boson - 40 15 125.4463 # Mass of dominant Higgs boson - 40 16 0.9219 # Signal strength modifier of dominant Higgs boson - 40 17 0.9219 # Total predicted signal strength modifier mu - 40 18 0.0258 # Chi-squared value (mu-part) - 40 19 0.0000 # Chi-squared value (mh-part) - 40 20 0.0258 # Chi-squared value (total) - 40 21 32.3197 # Chi-squared value for no predicted signal (mu=0) - 41 1 1604003 # Analysis ID - 41 2 ||CMS-PAS-HIG-16-040|| # Reference to publication - 41 3 ||(pp)->h->gaga(untagged2)|| # Description (Search channel) - 41 4 13.00 # Center-of-mass energy - 41 5 35.90 # Luminosity - 41 6 2.50 # Luminosity uncertainty (in %) - 41 7 2.50 # Mass resolution (GeV) - 41 8 125.09 # Mass value at peak position (in GeV) - 41 9 1.1200 # Observed signal strength modifier (mu) - 41 10 0.2400 # Lower 68%C.L. uncertainty on observed mu - 41 11 0.2900 # Upper 68%C.L. uncertainty on observed mu - 41 12 001 # Assigned Higgs combination - 41 13 1 # Index of dominant Higgs boson - 41 14 25 # pdg number of dominant Higgs boson - 41 15 125.4463 # Mass of dominant Higgs boson - 41 16 0.9193 # Signal strength modifier of dominant Higgs boson - 41 17 0.9193 # Total predicted signal strength modifier mu - 41 18 0.4557 # Chi-squared value (mu-part) - 41 19 0.0000 # Chi-squared value (mh-part) - 41 20 0.4557 # Chi-squared value (total) - 41 21 22.1465 # Chi-squared value for no predicted signal (mu=0) - 42 1 1604004 # Analysis ID - 42 2 ||CMS-PAS-HIG-16-040|| # Reference to publication - 42 3 ||(pp)->h->gaga(untagged3)|| # Description (Search channel) - 42 4 13.00 # Center-of-mass energy - 42 5 35.90 # Luminosity - 42 6 2.50 # Luminosity uncertainty (in %) - 42 7 2.50 # Mass resolution (GeV) - 42 8 125.09 # Mass value at peak position (in GeV) - 42 9 1.7000 # Observed signal strength modifier (mu) - 42 10 0.4000 # Lower 68%C.L. uncertainty on observed mu - 42 11 0.5000 # Upper 68%C.L. uncertainty on observed mu - 42 12 001 # Assigned Higgs combination - 42 13 1 # Index of dominant Higgs boson - 42 14 25 # pdg number of dominant Higgs boson - 42 15 125.4463 # Mass of dominant Higgs boson - 42 16 0.9181 # Signal strength modifier of dominant Higgs boson - 42 17 0.9181 # Total predicted signal strength modifier mu - 42 18 3.5271 # Chi-squared value (mu-part) - 42 19 0.0000 # Chi-squared value (mh-part) - 42 20 3.5271 # Chi-squared value (total) - 42 21 18.6239 # Chi-squared value for no predicted signal (mu=0) - 43 1 170191 # Analysis ID - 43 2 ||CMS-PAS-HIG-17-019|| # Reference to publication - 43 3 ||(pp)->h->mumu|| # Description (Search channel) - 43 4 13.00 # Center-of-mass energy - 43 5 35.90 # Luminosity - 43 6 2.50 # Luminosity uncertainty (in %) - 43 7 2.50 # Mass resolution (GeV) - 43 8 125.09 # Mass value at peak position (in GeV) - 43 9 0.9000 # Observed signal strength modifier (mu) - 43 10 0.9000 # Lower 68%C.L. uncertainty on observed mu - 43 11 1.0000 # Upper 68%C.L. uncertainty on observed mu - 43 12 001 # Assigned Higgs combination - 43 13 1 # Index of dominant Higgs boson - 43 14 25 # pdg number of dominant Higgs boson - 43 15 125.4463 # Mass of dominant Higgs boson - 43 16 0.9517 # Signal strength modifier of dominant Higgs boson - 43 17 0.9517 # Total predicted signal strength modifier mu - 43 18 0.0063 # Chi-squared value (mu-part) - 43 19 0.0000 # Chi-squared value (mh-part) - 43 20 0.0063 # Chi-squared value (total) - 43 21 0.9998 # Chi-squared value for no predicted signal (mu=0) - 44 1 1708003731 # Analysis ID - 44 2 ||arXiv:1708.00373|| # Reference to publication - 44 3 ||(pp)->h->tautau(0-jet)|| # Description (Search channel) - 44 4 13.00 # Center-of-mass energy - 44 5 35.90 # Luminosity - 44 6 2.50 # Luminosity uncertainty (in %) - 44 7 20.00 # Mass resolution (GeV) - 44 8 125.09 # Mass value at peak position (in GeV) - 44 9 0.8400 # Observed signal strength modifier (mu) - 44 10 0.8900 # Lower 68%C.L. uncertainty on observed mu - 44 11 0.8900 # Upper 68%C.L. uncertainty on observed mu - 44 12 001 # Assigned Higgs combination - 44 13 1 # Index of dominant Higgs boson - 44 14 25 # pdg number of dominant Higgs boson - 44 15 125.4463 # Mass of dominant Higgs boson - 44 16 0.9639 # Signal strength modifier of dominant Higgs boson - 44 17 0.9639 # Total predicted signal strength modifier mu - 44 18 0.0310 # Chi-squared value (mu-part) - 44 19 0.0000 # Chi-squared value (mh-part) - 44 20 0.0310 # Chi-squared value (total) - 44 21 0.8902 # Chi-squared value for no predicted signal (mu=0) - 45 1 1708003733 # Analysis ID - 45 2 ||arXiv:1708.00373|| # Reference to publication - 45 3 ||(pp)->h->tautau(VBF)|| # Description (Search channel) - 45 4 13.00 # Center-of-mass energy - 45 5 35.90 # Luminosity - 45 6 2.50 # Luminosity uncertainty (in %) - 45 7 20.00 # Mass resolution (GeV) - 45 8 125.09 # Mass value at peak position (in GeV) - 45 9 1.1100 # Observed signal strength modifier (mu) - 45 10 0.3500 # Lower 68%C.L. uncertainty on observed mu - 45 11 0.3400 # Upper 68%C.L. uncertainty on observed mu - 45 12 001 # Assigned Higgs combination - 45 13 1 # Index of dominant Higgs boson - 45 14 25 # pdg number of dominant Higgs boson - 45 15 125.4463 # Mass of dominant Higgs boson - 45 16 1.0266 # Signal strength modifier of dominant Higgs boson - 45 17 1.0266 # Total predicted signal strength modifier mu - 45 18 0.0197 # Chi-squared value (mu-part) - 45 19 0.0000 # Chi-squared value (mh-part) - 45 20 0.0197 # Chi-squared value (total) - 45 21 10.0671 # Chi-squared value for no predicted signal (mu=0) - 46 1 1708003732 # Analysis ID - 46 2 ||arXiv:1708.00373|| # Reference to publication - 46 3 ||(pp)->h->tautau(boosted)|| # Description (Search channel) - 46 4 13.00 # Center-of-mass energy - 46 5 35.90 # Luminosity - 46 6 2.50 # Luminosity uncertainty (in %) - 46 7 20.00 # Mass resolution (GeV) - 46 8 125.09 # Mass value at peak position (in GeV) - 46 9 1.1700 # Observed signal strength modifier (mu) - 46 10 0.4000 # Lower 68%C.L. uncertainty on observed mu - 46 11 0.4700 # Upper 68%C.L. uncertainty on observed mu - 46 12 001 # Assigned Higgs combination - 46 13 1 # Index of dominant Higgs boson - 46 14 25 # pdg number of dominant Higgs boson - 46 15 125.4463 # Mass of dominant Higgs boson - 46 16 0.9811 # Signal strength modifier of dominant Higgs boson - 46 17 0.9811 # Total predicted signal strength modifier mu - 46 18 0.1345 # Chi-squared value (mu-part) - 46 19 0.0000 # Chi-squared value (mh-part) - 46 20 0.1345 # Chi-squared value (total) - 46 21 8.5976 # Chi-squared value for no predicted signal (mu=0) - 47 1 74971 # Analysis ID - 47 2 ||arXiv:1709.07497|| # Reference to publication - 47 3 ||(pp)->Wh,h->bb|| # Description (Search channel) - 47 4 13.00 # Center-of-mass energy - 47 5 35.90 # Luminosity - 47 6 2.50 # Luminosity uncertainty (in %) - 47 7 20.00 # Mass resolution (GeV) - 47 8 125.09 # Mass value at peak position (in GeV) - 47 9 1.7000 # Observed signal strength modifier (mu) - 47 10 0.7000 # Lower 68%C.L. uncertainty on observed mu - 47 11 0.7000 # Upper 68%C.L. uncertainty on observed mu - 47 12 001 # Assigned Higgs combination - 47 13 1 # Index of dominant Higgs boson - 47 14 25 # pdg number of dominant Higgs boson - 47 15 125.4463 # Mass of dominant Higgs boson - 47 16 0.9820 # Signal strength modifier of dominant Higgs boson - 47 17 0.9820 # Total predicted signal strength modifier mu - 47 18 0.9728 # Chi-squared value (mu-part) - 47 19 0.0000 # Chi-squared value (mh-part) - 47 20 0.9728 # Chi-squared value (total) - 47 21 5.9099 # Chi-squared value for no predicted signal (mu=0) - 48 1 74972 # Analysis ID - 48 2 ||arXiv:1709.07497|| # Reference to publication - 48 3 ||(pp)->Zh,h->bb|| # Description (Search channel) - 48 4 13.00 # Center-of-mass energy - 48 5 35.90 # Luminosity - 48 6 2.50 # Luminosity uncertainty (in %) - 48 7 20.00 # Mass resolution (GeV) - 48 8 125.09 # Mass value at peak position (in GeV) - 48 9 1.7000 # Observed signal strength modifier (mu) - 48 10 0.7000 # Lower 68%C.L. uncertainty on observed mu - 48 11 0.7000 # Upper 68%C.L. uncertainty on observed mu - 48 12 001 # Assigned Higgs combination - 48 13 1 # Index of dominant Higgs boson - 48 14 25 # pdg number of dominant Higgs boson - 48 15 125.4463 # Mass of dominant Higgs boson - 48 16 0.9820 # Signal strength modifier of dominant Higgs boson - 48 17 0.9820 # Total predicted signal strength modifier mu - 48 18 0.9759 # Chi-squared value (mu-part) - 48 19 0.0000 # Chi-squared value (mh-part) - 48 20 0.9759 # Chi-squared value (total) - 48 21 5.9339 # Chi-squared value for no predicted signal (mu=0) - 49 1 1709055431 # Analysis ID - 49 2 ||arXiv:1709.05543|| # Reference to publication - 49 3 ||(pp)->h->bb|| # Description (Search channel) - 49 4 13.00 # Center-of-mass energy - 49 5 35.90 # Luminosity - 49 6 2.50 # Luminosity uncertainty (in %) - 49 7 10.00 # Mass resolution (GeV) - 49 8 125.09 # Mass value at peak position (in GeV) - 49 9 2.3000 # Observed signal strength modifier (mu) - 49 10 1.6000 # Lower 68%C.L. uncertainty on observed mu - 49 11 1.8000 # Upper 68%C.L. uncertainty on observed mu - 49 12 001 # Assigned Higgs combination - 49 13 1 # Index of dominant Higgs boson - 49 14 25 # pdg number of dominant Higgs boson - 49 15 125.4463 # Mass of dominant Higgs boson - 49 16 0.8932 # Signal strength modifier of dominant Higgs boson - 49 17 0.8932 # Total predicted signal strength modifier mu - 49 18 0.7135 # Chi-squared value (mu-part) - 49 19 0.0000 # Chi-squared value (mh-part) - 49 20 0.7135 # Chi-squared value (total) - 49 21 2.0761 # Chi-squared value for no predicted signal (mu=0) - 50 1 20180651 # Analysis ID - 50 2 ||CERN-EP-2018-065|| # Reference to publication - 50 3 ||(pp)->tth->tt(bb)|| # Description (Search channel) - 50 4 13.00 # Center-of-mass energy - 50 5 35.90 # Luminosity - 50 6 2.50 # Luminosity uncertainty (in %) - 50 7 25.00 # Mass resolution (GeV) - 50 8 125.00 # Mass value at peak position (in GeV) - 50 9 0.7200 # Observed signal strength modifier (mu) - 50 10 0.4500 # Lower 68%C.L. uncertainty on observed mu - 50 11 0.4500 # Upper 68%C.L. uncertainty on observed mu - 50 12 001 # Assigned Higgs combination - 50 13 1 # Index of dominant Higgs boson - 50 14 25 # pdg number of dominant Higgs boson - 50 15 125.4463 # Mass of dominant Higgs boson - 50 16 0.9819 # Signal strength modifier of dominant Higgs boson - 50 17 0.9819 # Total predicted signal strength modifier mu - 50 18 0.4219 # Chi-squared value (mu-part) - 50 19 0.0000 # Chi-squared value (mh-part) - 50 20 0.4219 # Chi-squared value (total) - 50 21 2.5206 # Chi-squared value for no predicted signal (mu=0) - 51 1 54856 # Analysis ID - 51 2 ||arXiv:1803.05485|| # Reference to publication - 51 3 ||(pp)->tth,h->multilepton(1l+2tau_h)|| # Description (Search channel) - 51 4 13.00 # Center-of-mass energy - 51 5 35.90 # Luminosity - 51 6 2.50 # Luminosity uncertainty (in %) - 51 7 20.00 # Mass resolution (GeV) - 51 8 125.00 # Mass value at peak position (in GeV) - 51 9 -1.5200 # Observed signal strength modifier (mu) - 51 10 1.7200 # Lower 68%C.L. uncertainty on observed mu - 51 11 1.7600 # Upper 68%C.L. uncertainty on observed mu - 51 12 001 # Assigned Higgs combination - 51 13 1 # Index of dominant Higgs boson - 51 14 25 # pdg number of dominant Higgs boson - 51 15 125.4463 # Mass of dominant Higgs boson - 51 16 1.0577 # Signal strength modifier of dominant Higgs boson - 51 17 1.0577 # Total predicted signal strength modifier mu - 51 18 2.1474 # Chi-squared value (mu-part) - 51 19 0.0000 # Chi-squared value (mh-part) - 51 20 2.1474 # Chi-squared value (total) - 51 21 0.7479 # Chi-squared value for no predicted signal (mu=0) - 52 1 54854 # Analysis ID - 52 2 ||arXiv:1803.05485|| # Reference to publication - 52 3 ||(pp)->tth,h->multilepton(2lss+1tau_h)|| # Description (Search channel) - 52 4 13.00 # Center-of-mass energy - 52 5 35.90 # Luminosity - 52 6 2.50 # Luminosity uncertainty (in %) - 52 7 20.00 # Mass resolution (GeV) - 52 8 125.00 # Mass value at peak position (in GeV) - 52 9 0.9400 # Observed signal strength modifier (mu) - 52 10 0.6700 # Lower 68%C.L. uncertainty on observed mu - 52 11 0.8000 # Upper 68%C.L. uncertainty on observed mu - 52 12 001 # Assigned Higgs combination - 52 13 1 # Index of dominant Higgs boson - 52 14 25 # pdg number of dominant Higgs boson - 52 15 125.4463 # Mass of dominant Higgs boson - 52 16 1.0615 # Signal strength modifier of dominant Higgs boson - 52 17 1.0615 # Total predicted signal strength modifier mu - 52 18 0.0373 # Chi-squared value (mu-part) - 52 19 0.0000 # Chi-squared value (mh-part) - 52 20 0.0373 # Chi-squared value (total) - 52 21 1.9605 # Chi-squared value for no predicted signal (mu=0) - 53 1 54851 # Analysis ID - 53 2 ||arXiv:1803.05485|| # Reference to publication - 53 3 ||(pp)->tth,h->multilepton(2lss)|| # Description (Search channel) - 53 4 13.00 # Center-of-mass energy - 53 5 35.90 # Luminosity - 53 6 2.50 # Luminosity uncertainty (in %) - 53 7 20.00 # Mass resolution (GeV) - 53 8 125.00 # Mass value at peak position (in GeV) - 53 9 1.6100 # Observed signal strength modifier (mu) - 53 10 0.5100 # Lower 68%C.L. uncertainty on observed mu - 53 11 0.5800 # Upper 68%C.L. uncertainty on observed mu - 53 12 001 # Assigned Higgs combination - 53 13 1 # Index of dominant Higgs boson - 53 14 25 # pdg number of dominant Higgs boson - 53 15 125.4463 # Mass of dominant Higgs boson - 53 16 1.0643 # Signal strength modifier of dominant Higgs boson - 53 17 1.0643 # Total predicted signal strength modifier mu - 53 18 1.0209 # Chi-squared value (mu-part) - 53 19 0.0000 # Chi-squared value (mh-part) - 53 20 1.0209 # Chi-squared value (total) - 53 21 10.3757 # Chi-squared value for no predicted signal (mu=0) - 54 1 54855 # Analysis ID - 54 2 ||arXiv:1803.05485|| # Reference to publication - 54 3 ||(pp)->tth,h->multilepton(3l+1tau_h)|| # Description (Search channel) - 54 4 13.00 # Center-of-mass energy - 54 5 35.90 # Luminosity - 54 6 2.50 # Luminosity uncertainty (in %) - 54 7 20.00 # Mass resolution (GeV) - 54 8 125.00 # Mass value at peak position (in GeV) - 54 9 1.3400 # Observed signal strength modifier (mu) - 54 10 1.0700 # Lower 68%C.L. uncertainty on observed mu - 54 11 1.4200 # Upper 68%C.L. uncertainty on observed mu - 54 12 001 # Assigned Higgs combination - 54 13 1 # Index of dominant Higgs boson - 54 14 25 # pdg number of dominant Higgs boson - 54 15 125.4463 # Mass of dominant Higgs boson - 54 16 1.0600 # Signal strength modifier of dominant Higgs boson - 54 17 1.0600 # Total predicted signal strength modifier mu - 54 18 0.0478 # Chi-squared value (mu-part) - 54 19 0.0000 # Chi-squared value (mh-part) - 54 20 0.0478 # Chi-squared value (total) - 54 21 1.5748 # Chi-squared value for no predicted signal (mu=0) - 55 1 54852 # Analysis ID - 55 2 ||arXiv:1803.05485|| # Reference to publication - 55 3 ||(pp)->tth,h->multilepton(3l)|| # Description (Search channel) - 55 4 13.00 # Center-of-mass energy - 55 5 35.90 # Luminosity - 55 6 2.50 # Luminosity uncertainty (in %) - 55 7 20.00 # Mass resolution (GeV) - 55 8 125.00 # Mass value at peak position (in GeV) - 55 9 0.8200 # Observed signal strength modifier (mu) - 55 10 0.7100 # Lower 68%C.L. uncertainty on observed mu - 55 11 0.7700 # Upper 68%C.L. uncertainty on observed mu - 55 12 001 # Assigned Higgs combination - 55 13 1 # Index of dominant Higgs boson - 55 14 25 # pdg number of dominant Higgs boson - 55 15 125.4463 # Mass of dominant Higgs boson - 55 16 1.0636 # Signal strength modifier of dominant Higgs boson - 55 17 1.0636 # Total predicted signal strength modifier mu - 55 18 0.1296 # Chi-squared value (mu-part) - 55 19 0.0000 # Chi-squared value (mh-part) - 55 20 0.1296 # Chi-squared value (total) - 55 21 1.3252 # Chi-squared value for no predicted signal (mu=0) - 56 1 54853 # Analysis ID - 56 2 ||arXiv:1803.05485|| # Reference to publication - 56 3 ||(pp)->tth,h->multilepton(4l)|| # Description (Search channel) - 56 4 13.00 # Center-of-mass energy - 56 5 35.90 # Luminosity - 56 6 2.50 # Luminosity uncertainty (in %) - 56 7 20.00 # Mass resolution (GeV) - 56 8 125.00 # Mass value at peak position (in GeV) - 56 9 0.5700 # Observed signal strength modifier (mu) - 56 10 1.5700 # Lower 68%C.L. uncertainty on observed mu - 56 11 2.2900 # Upper 68%C.L. uncertainty on observed mu - 56 12 001 # Assigned Higgs combination - 56 13 1 # Index of dominant Higgs boson - 56 14 25 # pdg number of dominant Higgs boson - 56 15 125.4463 # Mass of dominant Higgs boson - 56 16 1.0612 # Signal strength modifier of dominant Higgs boson - 56 17 1.0612 # Total predicted signal strength modifier mu - 56 18 0.0517 # Chi-squared value (mu-part) - 56 19 0.0000 # Chi-squared value (mh-part) - 56 20 0.0517 # Chi-squared value (total) - 56 21 0.1315 # Chi-squared value for no predicted signal (mu=0) - 57 1 180306986 # Analysis ID - 57 2 ||arXiv:1803.06986|| # Reference to publication - 57 3 ||(pp)->tth,h->bb|| # Description (Search channel) - 57 4 13.00 # Center-of-mass energy - 57 5 35.90 # Luminosity - 57 6 2.50 # Luminosity uncertainty (in %) - 57 7 20.00 # Mass resolution (GeV) - 57 8 125.00 # Mass value at peak position (in GeV) - 57 9 0.9000 # Observed signal strength modifier (mu) - 57 10 1.5000 # Lower 68%C.L. uncertainty on observed mu - 57 11 1.5000 # Upper 68%C.L. uncertainty on observed mu - 57 12 001 # Assigned Higgs combination - 57 13 1 # Index of dominant Higgs boson - 57 14 25 # pdg number of dominant Higgs boson - 57 15 125.4463 # Mass of dominant Higgs boson - 57 16 0.9819 # Signal strength modifier of dominant Higgs boson - 57 17 0.9819 # Total predicted signal strength modifier mu - 57 18 0.0053 # Chi-squared value (mu-part) - 57 19 0.0000 # Chi-squared value (mh-part) - 57 20 0.0053 # Chi-squared value (total) - 57 21 0.3598 # Chi-squared value for no predicted signal (mu=0) + 8 102 # Number of observables (total) + 9 45.42847706 # chi^2 (signal strength) from peak observables + 10 28.97009881 # chi^2 (signal strength) from STXS observables + 11 21.77184515 # chi^2 (signal strength) from LHC Run-1 observables + 12 0.00851296 # chi^2 (Higgs mass) from peak observables + 13 0.00000000 # chi^2 (Higgs mass) from STXS observables + 14 0.03129234 # chi^2 (Higgs mass) from LHC Run-1 observables + 15 96.17042102 # chi^2 (signal strength) (total) + 16 0.03980529 # chi^2 (Higgs mass) (total) + 17 96.21022631 # chi^2 (total) + 18 0.86492217 # Probability for peak observables + 19 0.41092949 # Probability for LHC-Run1 observables + 20 0.22125823 # Probability for STXS observables + 21 0.64295835 # Probability (total chi^2, total number observables) Index: trunk/HiggsSignals-2/example_data/SLHA/SLHA_FHexample.fh.1 =================================================================== --- trunk/HiggsSignals-2/example_data/SLHA/SLHA_FHexample.fh.1 (revision 574) +++ trunk/HiggsSignals-2/example_data/SLHA/SLHA_FHexample.fh.1 (revision 575) @@ -1,2159 +1,390 @@ BLOCK SPINFO 1 FeynHiggs 2 2.8.6 2 built on Feb 23, 2012 BLOCK MODSEL 1 1 # Model 3 0 # Content 4 0 # RPV 5 2 # CPV 6 0 # FV BLOCK SMINPUTS 1 1.28936827E+02 # invAlfaMZ 2 1.16639000E-05 # GF 3 1.18000000E-01 # AlfasMZ 4 9.11870000E+01 # MZ 5 4.25000000E+00 # Mb 6 1.75000000E+02 # Mt 7 1.77703000E+00 # Mtau 11 5.10998902E-04 # Me 13 1.05658357E-01 # Mmu 21 6.00000000E-03 # Md 22 3.00000000E-03 # Mu 23 9.50000000E-02 # Ms 24 1.28600000E+00 # Mc BLOCK MINPAR 1 0.00000000E+00 # M0 2 0.00000000E+00 # M12 3 1.00000000E+01 # TB 4 1.00000000E+00 # signMUE 5 -0.00000000E+00 # A BLOCK EXTPAR 0 4.84786694E+02 # Q 1 3.00000000E+02 # M1 2 6.00000000E+02 # M2 3 1.00000000E+03 # M3 11 1.00000000E+03 # At 12 3.00000000E+02 # Ab 13 2.00000000E+02 # Atau 23 1.00000000E+02 # MUE 24 1.40000000E+05 # MA02 25 1.00000000E+01 # TB 26 3.74165739E+02 # MA0 27 3.82704682E+02 # MHp 31 2.06630723E+02 # MSL(1) 32 2.06645846E+02 # MSL(2) 33 1.34514453E+02 # MSL(3) 34 1.43872558E+02 # MSE(1) 35 1.43838140E+02 # MSE(2) 36 2.10401949E+02 # MSE(3) 41 5.64892619E+02 # MSQ(1) 42 5.64902784E+02 # MSQ(2) 43 4.58749215E+02 # MSQ(3) 44 5.47790210E+02 # MSU(1) 45 5.47775859E+02 # MSU(2) 46 5.89079372E+02 # MSU(3) 47 5.47601268E+02 # MSD(1) 48 5.47594947E+02 # MSD(2) 49 5.47471349E+02 # MSD(3) BLOCK MASS 1000012 1.96522387E+02 # MSf(1,1,1) 2000012 1.00000000+123 # MSf(2,1,1) 1000011 1.50049429E+02 # MSf(1,2,1) 2000011 2.12028169E+02 # MSf(2,2,1) 1000002 5.46684341E+02 # MSf(1,3,1) 2000002 5.62350503E+02 # MSf(2,3,1) 1000001 5.48153556E+02 # MSf(1,4,1) 2000001 5.67955726E+02 # MSf(2,4,1) 1000014 1.96538288E+02 # MSf(1,1,2) 2000014 1.00000000+123 # MSf(2,1,2) 1000013 1.50015405E+02 # MSf(1,2,2) 2000013 2.12043684E+02 # MSf(2,2,2) 1000004 5.46585835E+02 # MSf(1,3,2) 2000004 5.62283026E+02 # MSf(2,3,2) 1000003 5.48147074E+02 # MSf(1,4,2) 2000003 5.67966013E+02 # MSf(2,4,2) 1000016 1.18401567E+02 # MSf(1,1,3) 2000016 1.00000000+123 # MSf(2,1,3) 1000015 1.42403224E+02 # MSf(1,2,3) 2000015 2.14862660E+02 # MSf(2,2,3) 1000006 3.29129281E+02 # MSf(1,3,3) 2000006 6.76789745E+02 # MSf(2,3,3) 1000005 4.50942677E+02 # MSf(1,4,3) 2000005 5.51183125E+02 # MSf(2,4,3) 25 1.22651152E+02 # Mh0 35 3.74749649E+02 # MHH 36 3.74165739E+02 # MA0 37 3.82764933E+02 # MHp 1000022 8.77717849E+01 # MNeu(1) 1000023 1.05731705E+02 # MNeu(2) 1000025 3.06628639E+02 # MNeu(3) 1000035 6.11331282E+02 # MNeu(4) 1000024 9.60565070E+01 # MCha(1) 1000037 6.11309165E+02 # MCha(2) 1000021 1.00000000E+03 # MGl BLOCK DMASS 0 1.75000000E+02 # Q 25 9.72174332E-01 # Delta Mh0 35 1.06946442E-02 # Delta MHH 36 0.00000000E+00 # Delta MA0 37 8.06715487E-02 # Delta MHp BLOCK NMIX 1 1 1.47271688E-01 # ZNeu(1,1) 1 2 -1.13979916E-01 # ZNeu(1,2) 1 3 7.30717872E-01 # ZNeu(1,3) 1 4 -6.56788414E-01 # ZNeu(1,4) 2 1 -0.00000000E+00 # ZNeu(2,1) 2 2 0.00000000E+00 # ZNeu(2,2) 2 3 0.00000000E+00 # ZNeu(2,3) 2 4 0.00000000E+00 # ZNeu(2,4) 3 1 9.86458640E-01 # ZNeu(3,1) 3 2 4.16346543E-02 # ZNeu(3,2) 3 3 -6.05146385E-02 # ZNeu(3,3) 3 4 1.46642030E-01 # ZNeu(3,4) 4 1 -1.92855611E-02 # ZNeu(4,1) 4 2 9.89795429E-01 # ZNeu(4,2) 4 3 3.54417152E-02 # ZNeu(4,3) 4 4 -1.36663681E-01 # ZNeu(4,4) BLOCK IMNMIX 1 1 0.00000000E+00 # ZNeu(1,1) 1 2 0.00000000E+00 # ZNeu(1,2) 1 3 0.00000000E+00 # ZNeu(1,3) 1 4 0.00000000E+00 # ZNeu(1,4) 2 1 -6.95590979E-02 # ZNeu(2,1) 2 2 7.47003613E-02 # ZNeu(2,2) 2 3 6.79067931E-01 # ZNeu(2,3) 2 4 7.26944381E-01 # ZNeu(2,4) 3 1 0.00000000E+00 # ZNeu(3,1) 3 2 0.00000000E+00 # ZNeu(3,2) 3 3 0.00000000E+00 # ZNeu(3,3) 3 4 0.00000000E+00 # ZNeu(3,4) 4 1 0.00000000E+00 # ZNeu(4,1) 4 2 0.00000000E+00 # ZNeu(4,2) 4 3 0.00000000E+00 # ZNeu(4,3) 4 4 0.00000000E+00 # ZNeu(4,4) BLOCK UMIX 1 1 -4.97233578E-02 # UCha(1,1) 1 2 9.98763029E-01 # UCha(1,2) 2 1 9.98763029E-01 # UCha(2,1) 2 2 4.97233578E-02 # UCha(2,2) BLOCK VMIX 1 1 -1.92962310E-01 # VCha(1,1) 1 2 9.81206170E-01 # VCha(1,2) 2 1 9.81206170E-01 # VCha(2,1) 2 2 1.92962310E-01 # VCha(2,2) BLOCK STAUMIX 1 1 9.98486400E-01 # USf(1,1) 1 2 5.49991646E-02 # USf(1,2) 2 1 -5.49991646E-02 # USf(2,1) 2 2 9.98486400E-01 # USf(2,2) BLOCK STOPMIX 1 1 8.23605275E-01 # USf(1,1) 1 2 -5.67163425E-01 # USf(1,2) 2 1 5.67163425E-01 # USf(2,1) 2 2 8.23605275E-01 # USf(2,2) BLOCK SBOTMIX 1 1 9.99954439E-01 # USf(1,1) 1 2 9.54568581E-03 # USf(1,2) 2 1 -9.54568581E-03 # USf(2,1) 2 2 9.99954439E-01 # USf(2,2) BLOCK ALPHA -1.17451823E-01 # Alpha BLOCK DALPHA 1.46801249E-03 # Delta Alpha BLOCK VCKMIN 1 2.25300000E-01 # lambda 2 8.08000000E-01 # A 3 1.32000000E-01 # rhobar 4 3.41000000E-01 # etabar BLOCK MSL2IN 1 1 4.26962557E+04 # MSL2(1,1) 2 2 4.27025057E+04 # MSL2(2,2) 3 3 1.80941381E+04 # MSL2(3,3) BLOCK MSE2IN 1 1 2.06993129E+04 # MSE2(1,1) 2 2 2.06894105E+04 # MSE2(2,2) 3 3 4.42689801E+04 # MSE2(3,3) BLOCK MSQ2IN 1 1 3.19103671E+05 # MSQ2(1,1) 2 2 3.19115155E+05 # MSQ2(2,2) 3 3 1.99881446E+05 # MSQ2(3,3) BLOCK MSU2IN 1 1 3.00074114E+05 # MSU2(1,1) 2 2 3.00058392E+05 # MSU2(2,2) 3 3 3.16134306E+05 # MSU2(3,3) BLOCK MSD2IN 1 1 2.99867149E+05 # MSD2(1,1) 2 2 2.99860226E+05 # MSD2(2,2) 3 3 3.03181540E+05 # MSD2(3,3) BLOCK TEIN 1 1 5.89936191E-04 # Tf(1,1) 2 2 1.21980083E-01 # Tf(2,2) 3 3 2.05153926E+00 # Tf(3,3) BLOCK TUIN 1 1 1.73171465E-01 # Tf(1,1) 2 2 7.42328349E+01 # Tf(2,2) 3 3 9.53077892E+03 # Tf(3,3) BLOCK TDIN 1 1 1.03902879E-02 # Tf(1,1) 2 2 1.64512892E-01 # Tf(2,2) 3 3 1.56232003E+01 # Tf(3,3) BLOCK CVHMIX 1 1 9.99984377E-01 # UH(1,1) 1 2 5.58985436E-03 # UH(1,2) 1 3 0.00000000E+00 # UH(1,3) 2 1 -5.58985436E-03 # UH(2,1) 2 2 9.99984377E-01 # UH(2,2) 2 3 0.00000000E+00 # UH(2,3) 3 1 0.00000000E+00 # UH(3,1) 3 2 0.00000000E+00 # UH(3,2) 3 3 1.00000000E+00 # UH(3,3) BLOCK PRECOBS 1 4.58620642E-04 # DeltaRho 2 8.03985711E+01 # MWMSSM 3 8.03727370E+01 # MWSM 4 2.31309273E-01 # SW2effMSSM 5 2.31452470E-01 # SW2effSM 11 1.47612393E-09 # gminus2mu 21 0.00000000E+00 # EDMeTh 22 0.00000000E+00 # EDMn 23 0.00000000E+00 # EDMHg 31 7.83340682E-04 # bsgammaMSSM 32 3.84151628E-04 # bsgammaSM 33 2.29365346E+01 # DeltaMsMSSM 34 2.19915791E+01 # DeltaMsSM DECAY 25 4.66729789E-03 # Gamma(h0) 1.67729727E-03 2 22 22 # BR(h0 -> photon photon) 1.72630719E-02 2 23 23 # BR(h0 -> Z Z) 1.49508769E-01 2 -24 24 # BR(h0 -> W W) 4.98888879E-02 2 21 21 # BR(h0 -> gluon gluon) 5.91016012E-09 2 -11 11 # BR(h0 -> Electron electron) 2.62892978E-04 2 -13 13 # BR(h0 -> Muon muon) 7.57524936E-02 2 -15 15 # BR(h0 -> Tau tau) 1.71225452E-07 2 -2 2 # BR(h0 -> Up up) 2.39510771E-02 2 -4 4 # BR(h0 -> Charm charm) 9.86900853E-07 2 -1 1 # BR(h0 -> Down down) 2.47844298E-04 2 -3 3 # BR(h0 -> Strange strange) 6.81446502E-01 2 -5 5 # BR(h0 -> Bottom bottom) DECAY 35 7.83706554E-01 # Gamma(HH) 3.06707834E-06 2 22 22 # BR(HH -> photon photon) 1.74379832E-03 2 23 23 # BR(HH -> Z Z) 3.80819738E-03 2 -24 24 # BR(HH -> W W) 6.56064077E-04 2 21 21 # BR(HH -> gluon gluon) 7.54257349E-09 2 -11 11 # BR(HH -> Electron electron) 3.35617824E-04 2 -13 13 # BR(HH -> Muon muon) 9.73136619E-02 2 -15 15 # BR(HH -> Tau tau) 3.26751691E-11 2 -2 2 # BR(HH -> Up up) 4.57357974E-06 2 -4 4 # BR(HH -> Charm charm) 2.51100369E-02 2 -6 6 # BR(HH -> Top top) 1.00572923E-06 2 -1 1 # BR(HH -> Down down) 2.52571792E-04 2 -3 3 # BR(HH -> Strange strange) 6.71514561E-01 2 -5 5 # BR(HH -> Bottom bottom) 8.67236607E-02 2 -1000024 1000024 # BR(HH -> Chargino1 chargino1) 4.30707320E-02 2 1000022 1000022 # BR(HH -> neutralino1 neutralino1) 9.07746163E-03 2 1000022 1000023 # BR(HH -> neutralino1 neutralino2) 1.60515467E-02 2 1000023 1000023 # BR(HH -> neutralino2 neutralino2) 3.42640993E-02 2 25 25 # BR(HH -> h0 h0) 4.05662328E-04 2 -1000011 1000011 # BR(HH -> Selectron1 selectron1) 3.21302032E-10 2 -1000011 2000011 # BR(HH -> Selectron1 selectron2) 3.21302032E-10 2 -2000011 1000011 # BR(HH -> Selectron2 selectron1) 4.03871097E-04 2 -1000013 1000013 # BR(HH -> Smuon1 smuon1) 1.37454954E-05 2 -1000013 2000013 # BR(HH -> Smuon1 smuon2) 1.37454954E-05 2 -2000013 1000013 # BR(HH -> Smuon2 smuon1) 1.80571224E-04 2 -1000015 1000015 # BR(HH -> Stau1 stau1) 4.52587015E-03 2 -1000015 2000015 # BR(HH -> Stau1 stau2) 4.52587015E-03 2 -2000015 1000015 # BR(HH -> Stau2 stau1) DECAY 36 8.89538917E-01 # Gamma(A0) 6.11274373E-06 2 22 22 # BR(A0 -> photon photon) 6.30977419E-04 2 21 21 # BR(A0 -> gluon gluon) 6.58260322E-09 2 -11 11 # BR(A0 -> Electron electron) 2.92902511E-04 2 -13 13 # BR(A0 -> Muon muon) 8.49304516E-02 2 -15 15 # BR(A0 -> Tau tau) 1.88836298E-11 2 -2 2 # BR(A0 -> Up up) 2.64328808E-06 2 -4 4 # BR(A0 -> Charm charm) 1.16717546E-01 2 -6 6 # BR(A0 -> Top top) 8.77995484E-07 2 -1 1 # BR(A0 -> Down down) 2.20493704E-04 2 -3 3 # BR(A0 -> Strange strange) 5.86468722E-01 2 -5 5 # BR(A0 -> Bottom bottom) 1.14286977E-01 2 -1000024 1000024 # BR(A0 -> Chargino1 chargino1) 7.10303312E-02 2 1000022 1000022 # BR(A0 -> neutralino1 neutralino1) 8.23874194E-04 2 1000022 1000023 # BR(A0 -> neutralino1 neutralino2) 1.29641313E-02 2 1000023 1000023 # BR(A0 -> neutralino2 neutralino2) 3.87218821E-03 2 23 25 # BR(A0 -> Z h0) 6.41227277E-35 2 25 25 # BR(A0 -> h0 h0) 2.72541936E-10 2 -1000011 2000011 # BR(A0 -> Selectron1 selectron2) 2.72541936E-10 2 -2000011 1000011 # BR(A0 -> Selectron2 selectron1) 1.16605248E-05 2 -1000013 2000013 # BR(A0 -> Smuon1 smuon2) 1.16605248E-05 2 -2000013 1000013 # BR(A0 -> Smuon2 smuon1) 3.86422166E-03 2 -1000015 2000015 # BR(A0 -> Stau1 stau2) 3.86422166E-03 2 -2000015 1000015 # BR(A0 -> Stau2 stau1) DECAY 37 5.77103523E-01 # Gamma(Hp) 1.09735497E-08 2 -11 12 # BR(Hp -> Electron nu_e) 4.69153370E-04 2 -13 14 # BR(Hp -> Muon nu_mu) 1.32702162E-01 2 -15 16 # BR(Hp -> Tau nu_tau) 1.30918860E-06 2 -1 2 # BR(Hp -> Down up) 3.32233240E-04 2 -3 4 # BR(Hp -> Strange charm) 8.18940930E-01 2 -5 6 # BR(Hp -> Bottom top) 1.11828834E-03 2 1000022 1000024 # BR(Hp -> neutralino1 chargino1) 1.56473147E-02 2 1000023 1000024 # BR(Hp -> neutralino2 chargino1) 6.98960586E-03 2 -25 24 # BR(Hp -> H0 W) 7.69953813E-08 2 -35 24 # BR(Hp -> HH W) 1.07948719E-07 2 -36 24 # BR(Hp -> A0 W) 1.33187463E-09 2 -1000011 1000012 # BR(Hp -> Selectron1 snu_e1) 5.69556904E-05 2 -1000013 1000014 # BR(Hp -> Smuon1 snu_mu1) 2.27100515E-03 2 -1000015 1000016 # BR(Hp -> Stau1 snu_tau1) 1.96608875E-02 2 -2000015 1000016 # BR(Hp -> Stau2 snu_tau1) DECAY 6 1.42276225E+00 # Gamma(top) 1.00000000E+00 2 5 24 # BR(top -> bottom W) # Block HiggsBoundsInputHiggsCouplingsBosons # For exact definitions of NormEffCoupSq see HiggsBounds manual 1.01380 3 25 24 24 # higgs-W-W effective coupling^2, normalised to SM 0.224092E-03 3 35 24 24 # higgs-W-W effective coupling^2, normalised to SM 0.00000 3 36 24 24 # higgs-W-W effective coupling^2, normalised to SM 1.01380 3 25 23 23 # higgs-Z-Z effective coupling^2, normalised to SM 0.224092E-03 3 35 23 23 # higgs-Z-Z effective coupling^2, normalised to SM 0.00000 3 36 23 23 # higgs-Z-Z effective coupling^2, normalised to SM 0.842307 3 25 21 21 # higgs-gluon-gluon effective coupling^2, normalised to SM 0.303613E-01 3 35 21 21 # higgs-gluon-gluon effective coupling^2, normalised to SM 0.415637E-01 3 36 21 21 # higgs-gluon-gluon effective coupling^2, normalised to SM 0.00000 3 25 25 23 # higgs-higgs-Z effective coupling^2, normalised 0.00000 3 35 25 23 # higgs-higgs-Z effective coupling^2, normalised 0.00000 3 35 35 23 # higgs-higgs-Z effective coupling^2, normalised 0.344859E-03 3 36 25 23 # higgs-higgs-Z effective coupling^2, normalised 0.952528 3 36 35 23 # higgs-higgs-Z effective coupling^2, normalised 0.00000 3 36 36 23 # higgs-higgs-Z effective coupling^2, normalised 0.00000 4 25 21 21 23 # higgs-gluon-gluon-Z effective coupling^2, normalised to SM 0.00000 4 35 21 21 23 # higgs-gluon-gluon-Z effective coupling^2, normalised to SM 0.00000 4 36 21 21 23 # higgs-gluon-gluon-Z effective coupling^2, normalised to SM # Block HiggsBoundsInputHiggsCouplingsFermions # For exact definitions of NormEffCoupSq see HiggsBounds manual # ScalarNormEffCoupSq PseudoSNormEffCoupSq NP IP1 IP2 IP3 # Scalar, Pseudoscalar Normalised Effective Coupling Squared 1.4201311968339043 0.0000000000000000 3 25 5 5 # higgs-b-b eff. coupling^2, normalised to SM 94.055378696286240 0.0000000000000000 3 35 5 5 # higgs-b-b eff. coupling^2, normalised to SM 2.11691722613467644E-042 93.199701998261276 3 36 5 5 # higgs-b-b eff. coupling^2, normalised to SM 1.0099456255672334 0.0000000000000000 3 25 6 6 # higgs-top-top eff. coupling^2, normalised to SM 1.33592532043404228E-002 0.0000000000000000 3 35 6 6 # higgs-top-top eff. coupling^2, normalised to SM 0.0000000000000000 1.00000000000000019E-002 3 36 6 6 # higgs-top-top eff. coupling^2, normalised to SM 1.4359623579970071 0.0000000000000000 3 25 15 15 # higgs-tau-tau eff. coupling^2, normalised to SM 100.92889030196287 0.0000000000000000 3 35 15 15 # higgs-tau-tau eff. coupling^2, normalised to SM 0.0000000000000000 100.00000000000000 3 36 15 15 # higgs-tau-tau eff. coupling^2, normalised to SM Block HiggsBoundsResults # results from HiggsBounds http://projects.hepforge.org/higgsbounds # HBresult : scenario allowed flag (1: allowed, 0: excluded, -1: unphysical) # chan id number: most sensitive channel (see below). chan=0 if no channel applies # obsratio : ratio [sig x BR]_model/[sig x BR]_limit (<1: allowed, >1: excluded) # ncomb : number of Higgs bosons combined in most sensitive channel # Note that the HB channel id number varies depending on the HB version and setting "whichanalyses" # - 0 4.3.1 ||LandH|| # version of HB used to produce these results,the HB setting "whichanalyses" + 0 5.2.0beta ||LandH|| # version of HB used to produce these results,the HB setting "whichanalyses" # -#CHANNELTYPE 1: channel with the highest statistical sensitivity - 1 1 554 # channel id number - 1 2 1 # HBresult - 1 3 0.44814004376367617 # obsratio - 1 4 2 # ncombined - 1 5 ||(pp)->h3->tautau, using -2ln(L) reconstruction (CMS-HIG-PAS 14-029)|| # text description of channel +#CHANNEL info: ranked from highest statistical sensitivity + 1 1 746 # channel id number + 1 2 0 # HBresult + 1 3 2.9854227405247813 # obsratio + 1 4 2 # ncombined + 1 5 ||(pp)->h3->tautau, using -2ln(L) reconstruction (CMS-HIG-PAS 17-020)|| # text description of channel + 2 1 745 # channel id number + 2 2 0 # HBresult + 2 3 2.9724238026124818 # obsratio + 2 4 2 # ncombined + 2 5 ||(pp)->h2->tautau, using -2ln(L) reconstruction (CMS-HIG-PAS 17-020)|| # text description of channel + 3 1 749 # channel id number + 3 2 0 # HBresult + 3 3 1.9393939393939394 # obsratio + 3 4 2 # ncombined + 3 5 ||(pp)->h3->tautau, using -2ln(L) reconstruction (arXiv:1709.07242 [hep-ex] (ATLAS))|| # text description of channel # BLOCK HiggsSignalsResults - 0 ||1.4.0|| # HiggsSignals version - 1 ||latestresults|| # experimental data set + 0 ||2.2.0beta|| # HiggsSignals version + 1 ||LHC13|| # experimental data set 2 1 # Chi-squared method ("peak"(1) or "mass"(2)-centered or "both"(3)) 3 2 # Parametrization of Higgs mass uncertainty (1:box, 2:gaussian, 3:box+gaussian) - 4 85 # Number of signal strength peak observables - 5 4 # Number of Higgs mass peak observables - 6 0 # Number of mass-centered observables - 7 89 # Number of observables (total) - 8 118.01595877 # chi^2 from signal strength peak observables - 9 1.06580222 # chi^2 from Higgs mass peak observables - 10 0.00000000 # chi^2 from mass-centered observables - 11 118.01595877 # chi^2 from signal strength (total) - 12 119.08176098 # chi^2 (total) - 13 0.01830391 # Probability (total chi^2, total number observables) -BLOCK HiggsSignalsPeakObservables -# OBS FLAG VALUE # DESCRIPTION - 1 1 201406002 # Analysis ID - 1 2 ||ATL-CONF-2014-060|| # Reference to publication - 1 3 ||(pp)->h->WW->lnulnu(VBFenhanced)|| # Description (Search channel) - 1 4 8.00 # Center-of-mass energy - 1 5 24.80 # Luminosity - 1 6 2.80 # Luminosity uncertainty (in %) - 1 7 8.00 # Mass resolution (GeV) - 1 8 125.36 # Mass value at peak position (in GeV) - 1 9 1.2700 # Observed signal strength modifier (mu) - 1 10 0.4500 # Lower 68%C.L. uncertainty on observed mu - 1 11 0.5300 # Upper 68%C.L. uncertainty on observed mu - 1 12 001 # Assigned Higgs combination - 1 13 1 # Index of dominant Higgs boson - 1 14 25 # pdg number of dominant Higgs boson - 1 15 122.6512 # Mass of dominant Higgs boson - 1 16 0.8080 # Signal strength modifier of dominant Higgs boson - 1 17 0.8080 # Total predicted signal strength modifier mu - 1 18 0.8922 # Chi-squared value (mu-part) - 1 19 0.0000 # Chi-squared value (mh-part) - 1 20 0.8922 # Chi-squared value (total) - 1 21 8.0463 # Chi-squared value for no predicted signal (mu=0) - 2 1 201406001 # Analysis ID - 2 2 ||ATL-CONF-2014-060|| # Reference to publication - 2 3 ||(pp)->h->WW->lnulnu(ggFenhanced)|| # Description (Search channel) - 2 4 8.00 # Center-of-mass energy - 2 5 24.80 # Luminosity - 2 6 2.80 # Luminosity uncertainty (in %) - 2 7 8.00 # Mass resolution (GeV) - 2 8 125.36 # Mass value at peak position (in GeV) - 2 9 1.0100 # Observed signal strength modifier (mu) - 2 10 0.2500 # Lower 68%C.L. uncertainty on observed mu - 2 11 0.2700 # Upper 68%C.L. uncertainty on observed mu - 2 12 001 # Assigned Higgs combination - 2 13 1 # Index of dominant Higgs boson - 2 14 25 # pdg number of dominant Higgs boson - 2 15 122.6512 # Mass of dominant Higgs boson - 2 16 0.7074 # Signal strength modifier of dominant Higgs boson - 2 17 0.7074 # Total predicted signal strength modifier mu - 2 18 1.0800 # Chi-squared value (mu-part) - 2 19 0.0000 # Chi-squared value (mh-part) - 2 20 1.0800 # Chi-squared value (total) - 2 21 17.9750 # Chi-squared value for no predicted signal (mu=0) - 3 1 519103 # Analysis ID - 3 2 ||arXiv:1408.5191|| # Reference to publication - 3 3 ||(pp)->h->ZZ->4l(VBF/VH-like)|| # Description (Search channel) - 3 4 8.00 # Center-of-mass energy - 3 5 25.30 # Luminosity - 3 6 2.80 # Luminosity uncertainty (in %) - 3 7 2.00 # Mass resolution (GeV) - 3 8 125.36 # Mass value at peak position (in GeV) - 3 9 0.2600 # Observed signal strength modifier (mu) - 3 10 0.9400 # Lower 68%C.L. uncertainty on observed mu - 3 11 1.6400 # Upper 68%C.L. uncertainty on observed mu - 3 12 001 # Assigned Higgs combination - 3 13 1 # Index of dominant Higgs boson - 3 14 25 # pdg number of dominant Higgs boson - 3 15 122.6512 # Mass of dominant Higgs boson - 3 16 0.7654 # Signal strength modifier of dominant Higgs boson - 3 17 0.7654 # Total predicted signal strength modifier mu - 3 18 0.1032 # Chi-squared value (mu-part) - 3 19 0.0000 # Chi-squared value (mh-part) - 3 20 0.1032 # Chi-squared value (total) - 3 21 0.0764 # Chi-squared value for no predicted signal (mu=0) - 4 1 519102 # Analysis ID - 4 2 ||arXiv:1408.5191|| # Reference to publication - 4 3 ||(pp)->h->ZZ->4l(ggH-like)|| # Description (Search channel) - 4 4 8.00 # Center-of-mass energy - 4 5 24.80 # Luminosity - 4 6 2.80 # Luminosity uncertainty (in %) - 4 7 0.52 # Mass resolution (GeV) - 4 8 124.51 # Mass value at peak position (in GeV) - 4 9 1.6600 # Observed signal strength modifier (mu) - 4 10 0.4400 # Lower 68%C.L. uncertainty on observed mu - 4 11 0.5100 # Upper 68%C.L. uncertainty on observed mu - 4 12 001 # Assigned Higgs combination - 4 13 1 # Index of dominant Higgs boson - 4 14 25 # pdg number of dominant Higgs boson - 4 15 122.6512 # Mass of dominant Higgs boson - 4 16 0.6939 # Signal strength modifier of dominant Higgs boson - 4 17 0.6939 # Total predicted signal strength modifier mu - 4 18 4.8235 # Chi-squared value (mu-part) - 4 19 -0.6433 # Chi-squared value (mh-part) - 4 20 4.1803 # Chi-squared value (total) - 4 21 16.0800 # Chi-squared value for no predicted signal (mu=0) - 5 1 708405 # Analysis ID - 5 2 ||arXiv:1408.7084|| # Reference to publication - 5 3 ||(pp)->h->gammagamma(VBF-loose)|| # Description (Search channel) - 5 4 8.00 # Center-of-mass energy - 5 5 20.30 # Luminosity - 5 6 2.80 # Luminosity uncertainty (in %) - 5 7 2.00 # Mass resolution (GeV) - 5 8 125.40 # Mass value at peak position (in GeV) - 5 9 1.3270 # Observed signal strength modifier (mu) - 5 10 0.7732 # Lower 68%C.L. uncertainty on observed mu - 5 11 0.9150 # Upper 68%C.L. uncertainty on observed mu - 5 12 000 # Assigned Higgs combination - 5 13 0 # Index of dominant Higgs boson - 5 14 NaN # pdg number of dominant Higgs boson - 5 15 NaN # Mass of the dominant Higgs boson - 5 16 NaN # Signal strength modifier of the dominant Higgs boson - 5 17 0.0000 # Total predicted signal strength modifier mu - 5 18 2.9708 # Chi-squared value (mu-part) - 5 19 0.0000 # Chi-squared value (mh-part) - 5 20 2.9708 # Chi-squared value (total) - 5 21 2.9708 # Chi-squared value for no predicted signal (mu=0) - 6 1 708406 # Analysis ID - 6 2 ||arXiv:1408.7084|| # Reference to publication - 6 3 ||(pp)->h->gammagamma(VBF-tight)|| # Description (Search channel) - 6 4 8.00 # Center-of-mass energy - 6 5 20.30 # Luminosity - 6 6 2.80 # Luminosity uncertainty (in %) - 6 7 2.00 # Mass resolution (GeV) - 6 8 125.40 # Mass value at peak position (in GeV) - 6 9 0.6820 # Observed signal strength modifier (mu) - 6 10 0.5082 # Lower 68%C.L. uncertainty on observed mu - 6 11 0.6670 # Upper 68%C.L. uncertainty on observed mu - 6 12 000 # Assigned Higgs combination - 6 13 0 # Index of dominant Higgs boson - 6 14 NaN # pdg number of dominant Higgs boson - 6 15 NaN # Mass of the dominant Higgs boson - 6 16 NaN # Signal strength modifier of the dominant Higgs boson - 6 17 0.0000 # Total predicted signal strength modifier mu - 6 18 1.8075 # Chi-squared value (mu-part) - 6 19 0.0000 # Chi-squared value (mh-part) - 6 20 1.8075 # Chi-squared value (total) - 6 21 1.8075 # Chi-squared value for no predicted signal (mu=0) - 7 1 708408 # Analysis ID - 7 2 ||arXiv:1408.7084|| # Reference to publication - 7 3 ||(pp)->h->gammagamma(VH-ETmiss)|| # Description (Search channel) - 7 4 8.00 # Center-of-mass energy - 7 5 20.30 # Luminosity - 7 6 2.80 # Luminosity uncertainty (in %) - 7 7 1.56 # Mass resolution (GeV) - 7 8 125.40 # Mass value at peak position (in GeV) - 7 9 3.5100 # Observed signal strength modifier (mu) - 7 10 2.4170 # Lower 68%C.L. uncertainty on observed mu - 7 11 3.3040 # Upper 68%C.L. uncertainty on observed mu - 7 12 000 # Assigned Higgs combination - 7 13 0 # Index of dominant Higgs boson - 7 14 NaN # pdg number of dominant Higgs boson - 7 15 NaN # Mass of the dominant Higgs boson - 7 16 NaN # Signal strength modifier of the dominant Higgs boson - 7 17 0.0000 # Total predicted signal strength modifier mu - 7 18 2.1147 # Chi-squared value (mu-part) - 7 19 0.0000 # Chi-squared value (mh-part) - 7 20 2.1147 # Chi-squared value (total) - 7 21 2.1147 # Chi-squared value for no predicted signal (mu=0) - 8 1 708407 # Analysis ID - 8 2 ||arXiv:1408.7084|| # Reference to publication - 8 3 ||(pp)->h->gammagamma(VH-dijet)|| # Description (Search channel) - 8 4 8.00 # Center-of-mass energy - 8 5 20.30 # Luminosity - 8 6 2.80 # Luminosity uncertainty (in %) - 8 7 2.00 # Mass resolution (GeV) - 8 8 125.40 # Mass value at peak position (in GeV) - 8 9 0.2268 # Observed signal strength modifier (mu) - 8 10 1.3878 # Lower 68%C.L. uncertainty on observed mu - 8 11 1.6742 # Upper 68%C.L. uncertainty on observed mu - 8 12 000 # Assigned Higgs combination - 8 13 0 # Index of dominant Higgs boson - 8 14 NaN # pdg number of dominant Higgs boson - 8 15 NaN # Mass of the dominant Higgs boson - 8 16 NaN # Signal strength modifier of the dominant Higgs boson - 8 17 0.0000 # Total predicted signal strength modifier mu - 8 18 0.0267 # Chi-squared value (mu-part) - 8 19 0.0000 # Chi-squared value (mh-part) - 8 20 0.0267 # Chi-squared value (total) - 8 21 0.0267 # Chi-squared value for no predicted signal (mu=0) - 9 1 708409 # Analysis ID - 9 2 ||arXiv:1408.7084|| # Reference to publication - 9 3 ||(pp)->h->gammagamma(VH-onelepton)|| # Description (Search channel) - 9 4 8.00 # Center-of-mass energy - 9 5 20.30 # Luminosity - 9 6 2.80 # Luminosity uncertainty (in %) - 9 7 2.00 # Mass resolution (GeV) - 9 8 125.40 # Mass value at peak position (in GeV) - 9 9 0.4080 # Observed signal strength modifier (mu) - 9 10 1.0560 # Lower 68%C.L. uncertainty on observed mu - 9 11 1.4270 # Upper 68%C.L. uncertainty on observed mu - 9 12 000 # Assigned Higgs combination - 9 13 0 # Index of dominant Higgs boson - 9 14 NaN # pdg number of dominant Higgs boson - 9 15 NaN # Mass of the dominant Higgs boson - 9 16 NaN # Signal strength modifier of the dominant Higgs boson - 9 17 0.0000 # Total predicted signal strength modifier mu - 9 18 0.1493 # Chi-squared value (mu-part) - 9 19 0.0000 # Chi-squared value (mh-part) - 9 20 0.1493 # Chi-squared value (total) - 9 21 0.1493 # Chi-squared value for no predicted signal (mu=0) - 10 1 708402 # Analysis ID - 10 2 ||arXiv:1408.7084|| # Reference to publication - 10 3 ||(pp)->h->gammagamma(central-highpT)|| # Description (Search channel) - 10 4 8.00 # Center-of-mass energy - 10 5 20.30 # Luminosity - 10 6 2.80 # Luminosity uncertainty (in %) - 10 7 2.00 # Mass resolution (GeV) - 10 8 125.40 # Mass value at peak position (in GeV) - 10 9 1.6190 # Observed signal strength modifier (mu) - 10 10 0.8311 # Lower 68%C.L. uncertainty on observed mu - 10 11 1.0030 # Upper 68%C.L. uncertainty on observed mu - 10 12 000 # Assigned Higgs combination - 10 13 0 # Index of dominant Higgs boson - 10 14 NaN # pdg number of dominant Higgs boson - 10 15 NaN # Mass of the dominant Higgs boson - 10 16 NaN # Signal strength modifier of the dominant Higgs boson - 10 17 0.0000 # Total predicted signal strength modifier mu - 10 18 3.8902 # Chi-squared value (mu-part) - 10 19 0.0000 # Chi-squared value (mh-part) - 10 20 3.8902 # Chi-squared value (total) - 10 21 3.8902 # Chi-squared value for no predicted signal (mu=0) - 11 1 708401 # Analysis ID - 11 2 ||arXiv:1408.7084|| # Reference to publication - 11 3 ||(pp)->h->gammagamma(central-lowpT)|| # Description (Search channel) - 11 4 8.00 # Center-of-mass energy - 11 5 20.30 # Luminosity - 11 6 2.80 # Luminosity uncertainty (in %) - 11 7 0.50 # Mass resolution (GeV) - 11 8 125.98 # Mass value at peak position (in GeV) - 11 9 0.6244 # Observed signal strength modifier (mu) - 11 10 0.3976 # Lower 68%C.L. uncertainty on observed mu - 11 11 0.4246 # Upper 68%C.L. uncertainty on observed mu - 11 12 000 # Assigned Higgs combination - 11 13 0 # Index of dominant Higgs boson - 11 14 NaN # pdg number of dominant Higgs boson - 11 15 NaN # Mass of the dominant Higgs boson - 11 16 NaN # Signal strength modifier of the dominant Higgs boson - 11 17 0.0000 # Total predicted signal strength modifier mu - 11 18 2.5294 # Chi-squared value (mu-part) - 11 19 0.0000 # Chi-squared value (mh-part) - 11 20 2.5294 # Chi-squared value (total) - 11 21 2.5294 # Chi-squared value for no predicted signal (mu=0) - 12 1 708404 # Analysis ID - 12 2 ||arXiv:1408.7084|| # Reference to publication - 12 3 ||(pp)->h->gammagamma(forward-highpT)|| # Description (Search channel) - 12 4 8.00 # Center-of-mass energy - 12 5 20.30 # Luminosity - 12 6 2.80 # Luminosity uncertainty (in %) - 12 7 2.00 # Mass resolution (GeV) - 12 8 125.40 # Mass value at peak position (in GeV) - 12 9 1.7290 # Observed signal strength modifier (mu) - 12 10 1.1800 # Lower 68%C.L. uncertainty on observed mu - 12 11 1.3430 # Upper 68%C.L. uncertainty on observed mu - 12 12 000 # Assigned Higgs combination - 12 13 0 # Index of dominant Higgs boson - 12 14 NaN # pdg number of dominant Higgs boson - 12 15 NaN # Mass of the dominant Higgs boson - 12 16 NaN # Signal strength modifier of the dominant Higgs boson - 12 17 0.0000 # Total predicted signal strength modifier mu - 12 18 2.1763 # Chi-squared value (mu-part) - 12 19 0.0000 # Chi-squared value (mh-part) - 12 20 2.1763 # Chi-squared value (total) - 12 21 2.1763 # Chi-squared value for no predicted signal (mu=0) - 13 1 708403 # Analysis ID - 13 2 ||arXiv:1408.7084|| # Reference to publication - 13 3 ||(pp)->h->gammagamma(forward-lowpT)|| # Description (Search channel) - 13 4 8.00 # Center-of-mass energy - 13 5 20.30 # Luminosity - 13 6 2.80 # Luminosity uncertainty (in %) - 13 7 2.00 # Mass resolution (GeV) - 13 8 125.40 # Mass value at peak position (in GeV) - 13 9 2.0340 # Observed signal strength modifier (mu) - 13 10 0.5260 # Lower 68%C.L. uncertainty on observed mu - 13 11 0.5700 # Upper 68%C.L. uncertainty on observed mu - 13 12 000 # Assigned Higgs combination - 13 13 0 # Index of dominant Higgs boson - 13 14 NaN # pdg number of dominant Higgs boson - 13 15 NaN # Mass of the dominant Higgs boson - 13 16 NaN # Signal strength modifier of the dominant Higgs boson - 13 17 0.0000 # Total predicted signal strength modifier mu - 13 18 17.5779 # Chi-squared value (mu-part) - 13 19 0.0000 # Chi-squared value (mh-part) - 13 20 17.5779 # Chi-squared value (total) - 13 21 17.5779 # Chi-squared value for no predicted signal (mu=0) - 14 1 708410 # Analysis ID - 14 2 ||arXiv:1408.7084|| # Reference to publication - 14 3 ||(pp)->h->gammagamma(ttH-hadronic)|| # Description (Search channel) - 14 4 8.00 # Center-of-mass energy - 14 5 20.30 # Luminosity - 14 6 2.80 # Luminosity uncertainty (in %) - 14 7 2.00 # Mass resolution (GeV) - 14 8 125.40 # Mass value at peak position (in GeV) - 14 9 -0.8424 # Observed signal strength modifier (mu) - 14 10 1.2503 # Lower 68%C.L. uncertainty on observed mu - 14 11 3.2294 # Upper 68%C.L. uncertainty on observed mu - 14 12 000 # Assigned Higgs combination - 14 13 0 # Index of dominant Higgs boson - 14 14 NaN # pdg number of dominant Higgs boson - 14 15 NaN # Mass of the dominant Higgs boson - 14 16 NaN # Signal strength modifier of the dominant Higgs boson - 14 17 0.0000 # Total predicted signal strength modifier mu - 14 18 0.0681 # Chi-squared value (mu-part) - 14 19 0.0000 # Chi-squared value (mh-part) - 14 20 0.0681 # Chi-squared value (total) - 14 21 0.0681 # Chi-squared value for no predicted signal (mu=0) - 15 1 708411 # Analysis ID - 15 2 ||arXiv:1408.7084|| # Reference to publication - 15 3 ||(pp)->h->gammagamma(ttH-leptonic)|| # Description (Search channel) - 15 4 8.00 # Center-of-mass energy - 15 5 20.30 # Luminosity - 15 6 2.80 # Luminosity uncertainty (in %) - 15 7 2.00 # Mass resolution (GeV) - 15 8 125.40 # Mass value at peak position (in GeV) - 15 9 2.4230 # Observed signal strength modifier (mu) - 15 10 2.0681 # Lower 68%C.L. uncertainty on observed mu - 15 11 3.2120 # Upper 68%C.L. uncertainty on observed mu - 15 12 000 # Assigned Higgs combination - 15 13 0 # Index of dominant Higgs boson - 15 14 NaN # pdg number of dominant Higgs boson - 15 15 NaN # Mass of the dominant Higgs boson - 15 16 NaN # Signal strength modifier of the dominant Higgs boson - 15 17 0.0000 # Total predicted signal strength modifier mu - 15 18 1.3851 # Chi-squared value (mu-part) - 15 19 0.0000 # Chi-squared value (mh-part) - 15 20 1.3851 # Chi-squared value (total) - 15 21 1.3851 # Chi-squared value for no predicted signal (mu=0) - 16 1 201406106 # Analysis ID - 16 2 ||ATLAS-CONF-2014-061|| # Reference to publication - 16 3 ||(pp)->h->tautau(VBF,hadhad)|| # Description (Search channel) - 16 4 8.00 # Center-of-mass energy - 16 5 24.80 # Luminosity - 16 6 2.80 # Luminosity uncertainty (in %) - 16 7 20.00 # Mass resolution (GeV) - 16 8 125.36 # Mass value at peak position (in GeV) - 16 9 1.4000 # Observed signal strength modifier (mu) - 16 10 0.7000 # Lower 68%C.L. uncertainty on observed mu - 16 11 0.9000 # Upper 68%C.L. uncertainty on observed mu - 16 12 001 # Assigned Higgs combination - 16 13 1 # Index of dominant Higgs boson - 16 14 25 # pdg number of dominant Higgs boson - 16 15 122.6512 # Mass of dominant Higgs boson - 16 16 1.0965 # Signal strength modifier of dominant Higgs boson - 16 17 1.0965 # Total predicted signal strength modifier mu - 16 18 0.0641 # Chi-squared value (mu-part) - 16 19 0.0000 # Chi-squared value (mh-part) - 16 20 0.0641 # Chi-squared value (total) - 16 21 4.0180 # Chi-squared value for no predicted signal (mu=0) - 17 1 201406105 # Analysis ID - 17 2 ||ATLAS-CONF-2014-061|| # Reference to publication - 17 3 ||(pp)->h->tautau(boosted,hadhad)|| # Description (Search channel) - 17 4 8.00 # Center-of-mass energy - 17 5 24.80 # Luminosity - 17 6 2.80 # Luminosity uncertainty (in %) - 17 7 20.00 # Mass resolution (GeV) - 17 8 125.36 # Mass value at peak position (in GeV) - 17 9 3.6000 # Observed signal strength modifier (mu) - 17 10 1.6000 # Lower 68%C.L. uncertainty on observed mu - 17 11 2.0000 # Upper 68%C.L. uncertainty on observed mu - 17 12 001 # Assigned Higgs combination - 17 13 1 # Index of dominant Higgs boson - 17 14 25 # pdg number of dominant Higgs boson - 17 15 122.6512 # Mass of dominant Higgs boson - 17 16 1.0235 # Signal strength modifier of dominant Higgs boson - 17 17 1.0235 # Total predicted signal strength modifier mu - 17 18 2.2951 # Chi-squared value (mu-part) - 17 19 0.0000 # Chi-squared value (mh-part) - 17 20 2.2951 # Chi-squared value (total) - 17 21 5.2142 # Chi-squared value for no predicted signal (mu=0) - 18 1 201406104 # Analysis ID - 18 2 ||ATLAS-CONF-2014-061|| # Reference to publication - 18 3 ||(pp)->h->tautau(VBF,lephad)|| # Description (Search channel) - 18 4 8.00 # Center-of-mass energy - 18 5 24.80 # Luminosity - 18 6 2.80 # Luminosity uncertainty (in %) - 18 7 20.00 # Mass resolution (GeV) - 18 8 125.36 # Mass value at peak position (in GeV) - 18 9 1.0000 # Observed signal strength modifier (mu) - 18 10 0.5000 # Lower 68%C.L. uncertainty on observed mu - 18 11 0.6000 # Upper 68%C.L. uncertainty on observed mu - 18 12 001 # Assigned Higgs combination - 18 13 1 # Index of dominant Higgs boson - 18 14 25 # pdg number of dominant Higgs boson - 18 15 122.6512 # Mass of dominant Higgs boson - 18 16 1.1211 # Signal strength modifier of dominant Higgs boson - 18 17 1.1211 # Total predicted signal strength modifier mu - 18 18 0.0968 # Chi-squared value (mu-part) - 18 19 0.0000 # Chi-squared value (mh-part) - 18 20 0.0968 # Chi-squared value (total) - 18 21 3.9914 # Chi-squared value for no predicted signal (mu=0) - 19 1 201406103 # Analysis ID - 19 2 ||ATL-CONF-2014-061|| # Reference to publication - 19 3 ||(pp)->h->tautau(boosted,lephad)|| # Description (Search channel) - 19 4 8.00 # Center-of-mass energy - 19 5 24.80 # Luminosity - 19 6 2.80 # Luminosity uncertainty (in %) - 19 7 20.00 # Mass resolution (GeV) - 19 8 125.36 # Mass value at peak position (in GeV) - 19 9 0.9000 # Observed signal strength modifier (mu) - 19 10 0.9000 # Lower 68%C.L. uncertainty on observed mu - 19 11 1.0000 # Upper 68%C.L. uncertainty on observed mu - 19 12 001 # Assigned Higgs combination - 19 13 1 # Index of dominant Higgs boson - 19 14 25 # pdg number of dominant Higgs boson - 19 15 122.6512 # Mass of dominant Higgs boson - 19 16 1.0168 # Signal strength modifier of dominant Higgs boson - 19 17 1.0168 # Total predicted signal strength modifier mu - 19 18 0.0541 # Chi-squared value (mu-part) - 19 19 0.0000 # Chi-squared value (mh-part) - 19 20 0.0541 # Chi-squared value (total) - 19 21 0.9988 # Chi-squared value for no predicted signal (mu=0) - 20 1 201406102 # Analysis ID - 20 2 ||ATL-CONF-2014-061|| # Reference to publication - 20 3 ||(pp)->h->tautau(VBF,leplep)|| # Description (Search channel) - 20 4 8.00 # Center-of-mass energy - 20 5 24.80 # Luminosity - 20 6 2.80 # Luminosity uncertainty (in %) - 20 7 20.00 # Mass resolution (GeV) - 20 8 125.36 # Mass value at peak position (in GeV) - 20 9 1.8000 # Observed signal strength modifier (mu) - 20 10 0.9000 # Lower 68%C.L. uncertainty on observed mu - 20 11 1.1000 # Upper 68%C.L. uncertainty on observed mu - 20 12 001 # Assigned Higgs combination - 20 13 1 # Index of dominant Higgs boson - 20 14 25 # pdg number of dominant Higgs boson - 20 15 122.6512 # Mass of dominant Higgs boson - 20 16 1.1245 # Signal strength modifier of dominant Higgs boson - 20 17 1.1245 # Total predicted signal strength modifier mu - 20 18 0.4362 # Chi-squared value (mu-part) - 20 19 0.0000 # Chi-squared value (mh-part) - 20 20 0.4362 # Chi-squared value (total) - 20 21 4.0219 # Chi-squared value for no predicted signal (mu=0) - 21 1 201406101 # Analysis ID - 21 2 ||ATL-CONF-2014-061|| # Reference to publication - 21 3 ||(pp)->h->tautau(boosted,leplep)|| # Description (Search channel) - 21 4 8.00 # Center-of-mass energy - 21 5 24.80 # Luminosity - 21 6 2.80 # Luminosity uncertainty (in %) - 21 7 20.00 # Mass resolution (GeV) - 21 8 125.36 # Mass value at peak position (in GeV) - 21 9 3.0000 # Observed signal strength modifier (mu) - 21 10 1.7000 # Lower 68%C.L. uncertainty on observed mu - 21 11 1.9000 # Upper 68%C.L. uncertainty on observed mu - 21 12 001 # Assigned Higgs combination - 21 13 1 # Index of dominant Higgs boson - 21 14 25 # pdg number of dominant Higgs boson - 21 15 122.6512 # Mass of dominant Higgs boson - 21 16 1.0204 # Signal strength modifier of dominant Higgs boson - 21 17 1.0204 # Total predicted signal strength modifier mu - 21 18 1.0167 # Chi-squared value (mu-part) - 21 19 0.0000 # Chi-squared value (mh-part) - 21 20 1.0167 # Chi-squared value (total) - 21 21 3.1714 # Chi-squared value for no predicted signal (mu=0) - 22 1 621201 # Analysis ID - 22 2 ||arXiv:1409.6212|| # Reference to publication - 22 3 ||(pp)->Vh->Vbb(0lepton)|| # Description (Search channel) - 22 4 8.00 # Center-of-mass energy - 22 5 25.00 # Luminosity - 22 6 2.80 # Luminosity uncertainty (in %) - 22 7 15.00 # Mass resolution (GeV) - 22 8 125.00 # Mass value at peak position (in GeV) - 22 9 -0.3500 # Observed signal strength modifier (mu) - 22 10 0.5200 # Lower 68%C.L. uncertainty on observed mu - 22 11 0.5500 # Upper 68%C.L. uncertainty on observed mu - 22 12 001 # Assigned Higgs combination - 22 13 1 # Index of dominant Higgs boson - 22 14 25 # pdg number of dominant Higgs boson - 22 15 122.6512 # Mass of dominant Higgs boson - 22 16 1.1325 # Signal strength modifier of dominant Higgs boson - 22 17 1.1325 # Total predicted signal strength modifier mu - 22 18 7.1153 # Chi-squared value (mu-part) - 22 19 0.0000 # Chi-squared value (mh-part) - 22 20 7.1153 # Chi-squared value (total) - 22 21 0.4020 # Chi-squared value for no predicted signal (mu=0) - 23 1 621202 # Analysis ID - 23 2 ||arXiv:1409.6212|| # Reference to publication - 23 3 ||(pp)->Vh->Vbb(1lepton)|| # Description (Search channel) - 23 4 8.00 # Center-of-mass energy - 23 5 25.00 # Luminosity - 23 6 2.60 # Luminosity uncertainty (in %) - 23 7 15.00 # Mass resolution (GeV) - 23 8 125.00 # Mass value at peak position (in GeV) - 23 9 1.1700 # Observed signal strength modifier (mu) - 23 10 0.6000 # Lower 68%C.L. uncertainty on observed mu - 23 11 0.6600 # Upper 68%C.L. uncertainty on observed mu - 23 12 001 # Assigned Higgs combination - 23 13 1 # Index of dominant Higgs boson - 23 14 25 # pdg number of dominant Higgs boson - 23 15 122.6512 # Mass of dominant Higgs boson - 23 16 1.1325 # Signal strength modifier of dominant Higgs boson - 23 17 1.1325 # Total predicted signal strength modifier mu - 23 18 0.0004 # Chi-squared value (mu-part) - 23 19 0.0000 # Chi-squared value (mh-part) - 23 20 0.0004 # Chi-squared value (total) - 23 21 3.8027 # Chi-squared value for no predicted signal (mu=0) - 24 1 621203 # Analysis ID - 24 2 ||arXiv:1409.6212|| # Reference to publication - 24 3 ||(pp)->Vh->Vbb(2lepton)|| # Description (Search channel) - 24 4 8.00 # Center-of-mass energy - 24 5 25.00 # Luminosity - 24 6 2.80 # Luminosity uncertainty (in %) - 24 7 15.00 # Mass resolution (GeV) - 24 8 125.00 # Mass value at peak position (in GeV) - 24 9 0.9400 # Observed signal strength modifier (mu) - 24 10 0.7900 # Lower 68%C.L. uncertainty on observed mu - 24 11 0.8800 # Upper 68%C.L. uncertainty on observed mu - 24 12 001 # Assigned Higgs combination - 24 13 1 # Index of dominant Higgs boson - 24 14 25 # pdg number of dominant Higgs boson - 24 15 122.6512 # Mass of dominant Higgs boson - 24 16 1.1325 # Signal strength modifier of dominant Higgs boson - 24 17 1.1325 # Total predicted signal strength modifier mu - 24 18 0.0539 # Chi-squared value (mu-part) - 24 19 0.0000 # Chi-squared value (mh-part) - 24 20 0.0539 # Chi-squared value (total) - 24 21 1.4138 # Chi-squared value for no predicted signal (mu=0) - 25 1 20150053 # Analysis ID - 25 2 ||ATL-CONF-2015-005|| # Reference to publication - 25 3 ||(pp)->Vh->VWW(2l)|| # Description (Search channel) - 25 4 8.00 # Center-of-mass energy - 25 5 24.80 # Luminosity - 25 6 2.80 # Luminosity uncertainty (in %) - 25 7 20.00 # Mass resolution (GeV) - 25 8 125.36 # Mass value at peak position (in GeV) - 25 9 3.7000 # Observed signal strength modifier (mu) - 25 10 1.8000 # Lower 68%C.L. uncertainty on observed mu - 25 11 1.9000 # Upper 68%C.L. uncertainty on observed mu - 25 12 001 # Assigned Higgs combination - 25 13 1 # Index of dominant Higgs boson - 25 14 25 # pdg number of dominant Higgs boson - 25 15 122.6512 # Mass of dominant Higgs boson - 25 16 0.8413 # Signal strength modifier of dominant Higgs boson - 25 17 0.8413 # Total predicted signal strength modifier mu - 25 18 2.3955 # Chi-squared value (mu-part) - 25 19 0.0000 # Chi-squared value (mh-part) - 25 20 2.3955 # Chi-squared value (total) - 25 21 4.2451 # Chi-squared value for no predicted signal (mu=0) - 26 1 20150052 # Analysis ID - 26 2 ||ATL-CONF-2015-005|| # Reference to publication - 26 3 ||(pp)->Vh->VWW(3l)|| # Description (Search channel) - 26 4 8.00 # Center-of-mass energy - 26 5 24.80 # Luminosity - 26 6 2.80 # Luminosity uncertainty (in %) - 26 7 20.00 # Mass resolution (GeV) - 26 8 125.36 # Mass value at peak position (in GeV) - 26 9 0.7200 # Observed signal strength modifier (mu) - 26 10 1.1000 # Lower 68%C.L. uncertainty on observed mu - 26 11 1.3000 # Upper 68%C.L. uncertainty on observed mu - 26 12 001 # Assigned Higgs combination - 26 13 1 # Index of dominant Higgs boson - 26 14 25 # pdg number of dominant Higgs boson - 26 15 122.6512 # Mass of dominant Higgs boson - 26 16 0.8413 # Signal strength modifier of dominant Higgs boson - 26 17 0.8413 # Total predicted signal strength modifier mu - 26 18 0.0113 # Chi-squared value (mu-part) - 26 19 0.0000 # Chi-squared value (mh-part) - 26 20 0.0113 # Chi-squared value (total) - 26 21 0.4283 # Chi-squared value for no predicted signal (mu=0) - 27 1 20150051 # Analysis ID - 27 2 ||ATL-CONF-2015-005|| # Reference to publication - 27 3 ||(pp)->Vh->VWW(4l)|| # Description (Search channel) - 27 4 8.00 # Center-of-mass energy - 27 5 24.80 # Luminosity - 27 6 2.80 # Luminosity uncertainty (in %) - 27 7 20.00 # Mass resolution (GeV) - 27 8 125.36 # Mass value at peak position (in GeV) - 27 9 4.9000 # Observed signal strength modifier (mu) - 27 10 3.1000 # Lower 68%C.L. uncertainty on observed mu - 27 11 4.6000 # Upper 68%C.L. uncertainty on observed mu - 27 12 001 # Assigned Higgs combination - 27 13 1 # Index of dominant Higgs boson - 27 14 25 # pdg number of dominant Higgs boson - 27 15 122.6512 # Mass of dominant Higgs boson - 27 16 0.8413 # Signal strength modifier of dominant Higgs boson - 27 17 0.8413 # Total predicted signal strength modifier mu - 27 18 1.6358 # Chi-squared value (mu-part) - 27 19 0.0000 # Chi-squared value (mh-part) - 27 20 1.6358 # Chi-squared value (total) - 27 21 2.5130 # Chi-squared value for no predicted signal (mu=0) - 28 1 20150065 # Analysis ID - 28 2 ||ATL-CONF-2015-006|| # Reference to publication - 28 3 ||(pp)->tth->multilepton(1l2tau_had)|| # Description (Search channel) - 28 4 8.00 # Center-of-mass energy - 28 5 20.30 # Luminosity - 28 6 2.80 # Luminosity uncertainty (in %) - 28 7 20.00 # Mass resolution (GeV) - 28 8 125.00 # Mass value at peak position (in GeV) - 28 9 -9.6000 # Observed signal strength modifier (mu) - 28 10 9.7000 # Lower 68%C.L. uncertainty on observed mu - 28 11 9.6000 # Upper 68%C.L. uncertainty on observed mu - 28 12 001 # Assigned Higgs combination - 28 13 1 # Index of dominant Higgs boson - 28 14 25 # pdg number of dominant Higgs boson - 28 15 122.6512 # Mass of dominant Higgs boson - 28 16 1.1386 # Signal strength modifier of dominant Higgs boson - 28 17 1.1386 # Total predicted signal strength modifier mu - 28 18 1.2293 # Chi-squared value (mu-part) - 28 19 0.0000 # Chi-squared value (mh-part) - 28 20 1.2293 # Chi-squared value (total) - 28 21 1.0117 # Chi-squared value for no predicted signal (mu=0) - 29 1 20150061 # Analysis ID - 29 2 ||ATL-CONF-2015-006|| # Reference to publication - 29 3 ||(pp)->tth->multilepton(2l0tau_had)|| # Description (Search channel) - 29 4 8.00 # Center-of-mass energy - 29 5 20.30 # Luminosity - 29 6 2.80 # Luminosity uncertainty (in %) - 29 7 20.00 # Mass resolution (GeV) - 29 8 125.00 # Mass value at peak position (in GeV) - 29 9 2.8000 # Observed signal strength modifier (mu) - 29 10 1.9000 # Lower 68%C.L. uncertainty on observed mu - 29 11 2.1000 # Upper 68%C.L. uncertainty on observed mu - 29 12 001 # Assigned Higgs combination - 29 13 1 # Index of dominant Higgs boson - 29 14 25 # pdg number of dominant Higgs boson - 29 15 122.6512 # Mass of dominant Higgs boson - 29 16 0.9006 # Signal strength modifier of dominant Higgs boson - 29 17 0.9006 # Total predicted signal strength modifier mu - 29 18 0.9176 # Chi-squared value (mu-part) - 29 19 0.0000 # Chi-squared value (mh-part) - 29 20 0.9176 # Chi-squared value (total) - 29 21 2.2203 # Chi-squared value for no predicted signal (mu=0) - 30 1 20150063 # Analysis ID - 30 2 ||ATL-CONF-2015-006|| # Reference to publication - 30 3 ||(pp)->tth->multilepton(2l1tau_had)|| # Description (Search channel) - 30 4 8.00 # Center-of-mass energy - 30 5 20.30 # Luminosity - 30 6 2.80 # Luminosity uncertainty (in %) - 30 7 20.00 # Mass resolution (GeV) - 30 8 125.00 # Mass value at peak position (in GeV) - 30 9 -0.9000 # Observed signal strength modifier (mu) - 30 10 2.0000 # Lower 68%C.L. uncertainty on observed mu - 30 11 3.1000 # Upper 68%C.L. uncertainty on observed mu - 30 12 001 # Assigned Higgs combination - 30 13 1 # Index of dominant Higgs boson - 30 14 25 # pdg number of dominant Higgs boson - 30 15 122.6512 # Mass of dominant Higgs boson - 30 16 1.0496 # Signal strength modifier of dominant Higgs boson - 30 17 1.0496 # Total predicted signal strength modifier mu - 30 18 0.4066 # Chi-squared value (mu-part) - 30 19 0.0000 # Chi-squared value (mh-part) - 30 20 0.4066 # Chi-squared value (total) - 30 21 0.0843 # Chi-squared value for no predicted signal (mu=0) - 31 1 20150062 # Analysis ID - 31 2 ||ATL-CONF-2015-006|| # Reference to publication - 31 3 ||(pp)->tth->multilepton(3l)|| # Description (Search channel) - 31 4 8.00 # Center-of-mass energy - 31 5 20.30 # Luminosity - 31 6 2.80 # Luminosity uncertainty (in %) - 31 7 20.00 # Mass resolution (GeV) - 31 8 125.00 # Mass value at peak position (in GeV) - 31 9 2.8000 # Observed signal strength modifier (mu) - 31 10 1.8000 # Lower 68%C.L. uncertainty on observed mu - 31 11 2.2000 # Upper 68%C.L. uncertainty on observed mu - 31 12 001 # Assigned Higgs combination - 31 13 1 # Index of dominant Higgs boson - 31 14 25 # pdg number of dominant Higgs boson - 31 15 122.6512 # Mass of dominant Higgs boson - 31 16 0.9064 # Signal strength modifier of dominant Higgs boson - 31 17 0.9064 # Total predicted signal strength modifier mu - 31 18 1.0188 # Chi-squared value (mu-part) - 31 19 0.0000 # Chi-squared value (mh-part) - 31 20 1.0188 # Chi-squared value (total) - 31 21 2.4799 # Chi-squared value for no predicted signal (mu=0) - 32 1 20150064 # Analysis ID - 32 2 ||ATL-CONF-2015-006|| # Reference to publication - 32 3 ||(pp)->tth->multilepton(4l)|| # Description (Search channel) - 32 4 8.00 # Center-of-mass energy - 32 5 20.30 # Luminosity - 32 6 2.80 # Luminosity uncertainty (in %) - 32 7 20.00 # Mass resolution (GeV) - 32 8 125.00 # Mass value at peak position (in GeV) - 32 9 1.8000 # Observed signal strength modifier (mu) - 32 10 6.9000 # Lower 68%C.L. uncertainty on observed mu - 32 11 6.9000 # Upper 68%C.L. uncertainty on observed mu - 32 12 001 # Assigned Higgs combination - 32 13 1 # Index of dominant Higgs boson - 32 14 25 # pdg number of dominant Higgs boson - 32 15 122.6512 # Mass of dominant Higgs boson - 32 16 0.9013 # Signal strength modifier of dominant Higgs boson - 32 17 0.9013 # Total predicted signal strength modifier mu - 32 18 0.0140 # Chi-squared value (mu-part) - 32 19 0.0000 # Chi-squared value (mh-part) - 32 20 0.0140 # Chi-squared value (total) - 32 21 0.0681 # Chi-squared value for no predicted signal (mu=0) - 33 1 50661 # Analysis ID - 33 2 ||arXiv:1503.05066|| # Reference to publication - 33 3 ||(pp)->tth->tt(bb)|| # Description (Search channel) - 33 4 8.00 # Center-of-mass energy - 33 5 20.30 # Luminosity - 33 6 2.80 # Luminosity uncertainty (in %) - 33 7 25.00 # Mass resolution (GeV) - 33 8 125.00 # Mass value at peak position (in GeV) - 33 9 1.5000 # Observed signal strength modifier (mu) - 33 10 1.1000 # Lower 68%C.L. uncertainty on observed mu - 33 11 1.1000 # Upper 68%C.L. uncertainty on observed mu - 33 12 001 # Assigned Higgs combination - 33 13 1 # Index of dominant Higgs boson - 33 14 25 # pdg number of dominant Higgs boson - 33 15 122.6512 # Mass of dominant Higgs boson - 33 16 1.1282 # Signal strength modifier of dominant Higgs boson - 33 17 1.1282 # Total predicted signal strength modifier mu - 33 18 0.0715 # Chi-squared value (mu-part) - 33 19 0.0000 # Chi-squared value (mh-part) - 33 20 0.0715 # Chi-squared value (total) - 33 21 1.8766 # Chi-squared value for no predicted signal (mu=0) - 34 1 130166683 # Analysis ID - 34 2 ||arXiv:1301.6668|| # Reference to publication - 34 3 ||(ppbar)->h->WW|| # Description (Search channel) - 34 4 1.96 # Center-of-mass energy - 34 5 9.70 # Luminosity - 34 6 6.00 # Luminosity uncertainty (in %) - 34 7 30.00 # Mass resolution (GeV) - 34 8 125.00 # Mass value at peak position (in GeV) - 34 9 0.0000 # Observed signal strength modifier (mu) - 34 10 1.7800 # Lower 68%C.L. uncertainty on observed mu - 34 11 1.7800 # Upper 68%C.L. uncertainty on observed mu - 34 12 001 # Assigned Higgs combination - 34 13 1 # Index of dominant Higgs boson - 34 14 25 # pdg number of dominant Higgs boson - 34 15 122.6512 # Mass of dominant Higgs boson - 34 16 0.7351 # Signal strength modifier of dominant Higgs boson - 34 17 0.7351 # Total predicted signal strength modifier mu - 34 18 0.1852 # Chi-squared value (mu-part) - 34 19 0.0000 # Chi-squared value (mh-part) - 34 20 0.1852 # Chi-squared value (total) - 34 21 0.0000 # Chi-squared value for no predicted signal (mu=0) - 35 1 130166682 # Analysis ID - 35 2 ||arXiv:1301.6668|| # Reference to publication - 35 3 ||(ppbar)->h->gammagamma|| # Description (Search channel) - 35 4 1.96 # Center-of-mass energy - 35 5 9.70 # Luminosity - 35 6 6.00 # Luminosity uncertainty (in %) - 35 7 5.00 # Mass resolution (GeV) - 35 8 125.00 # Mass value at peak position (in GeV) - 35 9 7.8100 # Observed signal strength modifier (mu) - 35 10 4.4200 # Lower 68%C.L. uncertainty on observed mu - 35 11 4.6100 # Upper 68%C.L. uncertainty on observed mu - 35 12 001 # Assigned Higgs combination - 35 13 1 # Index of dominant Higgs boson - 35 14 25 # pdg number of dominant Higgs boson - 35 15 122.6512 # Mass of dominant Higgs boson - 35 16 0.6591 # Signal strength modifier of dominant Higgs boson - 35 17 0.6591 # Total predicted signal strength modifier mu - 35 18 2.6218 # Chi-squared value (mu-part) - 35 19 0.0000 # Chi-squared value (mh-part) - 35 20 2.6218 # Chi-squared value (total) - 35 21 3.1939 # Chi-squared value for no predicted signal (mu=0) - 36 1 130166684 # Analysis ID - 36 2 ||arXiv:1301.6668|| # Reference to publication - 36 3 ||(ppbar)->h->tautau|| # Description (Search channel) - 36 4 1.96 # Center-of-mass energy - 36 5 9.70 # Luminosity - 36 6 6.00 # Luminosity uncertainty (in %) - 36 7 25.00 # Mass resolution (GeV) - 36 8 125.00 # Mass value at peak position (in GeV) - 36 9 0.0000 # Observed signal strength modifier (mu) - 36 10 8.4400 # Lower 68%C.L. uncertainty on observed mu - 36 11 8.4400 # Upper 68%C.L. uncertainty on observed mu - 36 12 001 # Assigned Higgs combination - 36 13 1 # Index of dominant Higgs boson - 36 14 25 # pdg number of dominant Higgs boson - 36 15 122.6512 # Mass of dominant Higgs boson - 36 16 1.0080 # Signal strength modifier of dominant Higgs boson - 36 17 1.0080 # Total predicted signal strength modifier mu - 36 18 0.0155 # Chi-squared value (mu-part) - 36 19 0.0000 # Chi-squared value (mh-part) - 36 20 0.0155 # Chi-squared value (total) - 36 21 0.0000 # Chi-squared value for no predicted signal (mu=0) - 37 1 130166685 # Analysis ID - 37 2 ||arXiv:1301.6668|| # Reference to publication - 37 3 ||(ppbar)->Vh->Vbb|| # Description (Search channel) - 37 4 1.96 # Center-of-mass energy - 37 5 9.70 # Luminosity - 37 6 6.00 # Luminosity uncertainty (in %) - 37 7 20.00 # Mass resolution (GeV) - 37 8 125.00 # Mass value at peak position (in GeV) - 37 9 1.7200 # Observed signal strength modifier (mu) - 37 10 0.8700 # Lower 68%C.L. uncertainty on observed mu - 37 11 0.9200 # Upper 68%C.L. uncertainty on observed mu - 37 12 001 # Assigned Higgs combination - 37 13 1 # Index of dominant Higgs boson - 37 14 25 # pdg number of dominant Higgs boson - 37 15 122.6512 # Mass of dominant Higgs boson - 37 16 1.1325 # Signal strength modifier of dominant Higgs boson - 37 17 1.1325 # Total predicted signal strength modifier mu - 37 18 0.4461 # Chi-squared value (mu-part) - 37 19 0.0000 # Chi-squared value (mh-part) - 37 20 0.4461 # Chi-squared value (total) - 37 21 3.9140 # Chi-squared value for no predicted signal (mu=0) - 38 1 130166681 # Analysis ID - 38 2 ||arXiv:1301.6668|| # Reference to publication - 38 3 ||(ppbar)->tth->ttbb|| # Description (Search channel) - 38 4 1.96 # Center-of-mass energy - 38 5 9.70 # Luminosity - 38 6 6.00 # Luminosity uncertainty (in %) - 38 7 30.00 # Mass resolution (GeV) - 38 8 125.00 # Mass value at peak position (in GeV) - 38 9 9.4900 # Observed signal strength modifier (mu) - 38 10 6.2800 # Lower 68%C.L. uncertainty on observed mu - 38 11 6.6000 # Upper 68%C.L. uncertainty on observed mu - 38 12 001 # Assigned Higgs combination - 38 13 1 # Index of dominant Higgs boson - 38 14 25 # pdg number of dominant Higgs boson - 38 15 122.6512 # Mass of dominant Higgs boson - 38 16 1.1282 # Signal strength modifier of dominant Higgs boson - 38 17 1.1282 # Total predicted signal strength modifier mu - 38 18 1.7717 # Chi-squared value (mu-part) - 38 19 0.0000 # Chi-squared value (mh-part) - 38 20 1.7717 # Chi-squared value (total) - 38 21 2.3432 # Chi-squared value for no predicted signal (mu=0) - 39 1 131211291 # Analysis ID - 39 2 ||arXiv:1312.1129|| # Reference to publication - 39 3 ||(pp)->h->WW->2l2nu(0/1jet)|| # Description (Search channel) - 39 4 8.00 # Center-of-mass energy - 39 5 25.30 # Luminosity - 39 6 2.60 # Luminosity uncertainty (in %) - 39 7 20.00 # Mass resolution (GeV) - 39 8 125.60 # Mass value at peak position (in GeV) - 39 9 0.7400 # Observed signal strength modifier (mu) - 39 10 0.2000 # Lower 68%C.L. uncertainty on observed mu - 39 11 0.2200 # Upper 68%C.L. uncertainty on observed mu - 39 12 001 # Assigned Higgs combination - 39 13 1 # Index of dominant Higgs boson - 39 14 25 # pdg number of dominant Higgs boson - 39 15 122.6512 # Mass of dominant Higgs boson - 39 16 0.7238 # Signal strength modifier of dominant Higgs boson - 39 17 0.7238 # Total predicted signal strength modifier mu - 39 18 -0.0368 # Chi-squared value (mu-part) - 39 19 0.0000 # Chi-squared value (mh-part) - 39 20 -0.0368 # Chi-squared value (total) - 39 21 13.8348 # Chi-squared value for no predicted signal (mu=0) - 40 1 131211292 # Analysis ID - 40 2 ||arXiv:1312.1129|| # Reference to publication - 40 3 ||(pp)->h->WW->2l2nu(VBF)|| # Description (Search channel) - 40 4 8.00 # Center-of-mass energy - 40 5 25.30 # Luminosity - 40 6 2.60 # Luminosity uncertainty (in %) - 40 7 20.00 # Mass resolution (GeV) - 40 8 125.60 # Mass value at peak position (in GeV) - 40 9 0.6000 # Observed signal strength modifier (mu) - 40 10 0.4600 # Lower 68%C.L. uncertainty on observed mu - 40 11 0.5700 # Upper 68%C.L. uncertainty on observed mu - 40 12 001 # Assigned Higgs combination - 40 13 1 # Index of dominant Higgs boson - 40 14 25 # pdg number of dominant Higgs boson - 40 15 122.6512 # Mass of dominant Higgs boson - 40 16 0.8080 # Signal strength modifier of dominant Higgs boson - 40 17 0.8080 # Total predicted signal strength modifier mu - 40 18 0.1628 # Chi-squared value (mu-part) - 40 19 0.0000 # Chi-squared value (mh-part) - 40 20 0.1628 # Chi-squared value (total) - 40 21 1.6969 # Chi-squared value for no predicted signal (mu=0) - 41 1 1400901 # Analysis ID - 41 2 ||CMS-PAS-HIG-14-009,arXiv:1312.5353|| # Reference to publication - 41 3 ||(pp)->h->ZZ->4l(0/1jet)|| # Description (Search channel) - 41 4 8.00 # Center-of-mass energy - 41 5 24.70 # Luminosity - 41 6 2.80 # Luminosity uncertainty (in %) - 41 7 0.45 # Mass resolution (GeV) - 41 8 125.63 # Mass value at peak position (in GeV) - 41 9 0.8830 # Observed signal strength modifier (mu) - 41 10 0.2720 # Lower 68%C.L. uncertainty on observed mu - 41 11 0.3360 # Upper 68%C.L. uncertainty on observed mu - 41 12 000 # Assigned Higgs combination - 41 13 0 # Index of dominant Higgs boson - 41 14 NaN # pdg number of dominant Higgs boson - 41 15 NaN # Mass of the dominant Higgs boson - 41 16 NaN # Signal strength modifier of the dominant Higgs boson - 41 17 0.0000 # Total predicted signal strength modifier mu - 41 18 11.7565 # Chi-squared value (mu-part) - 41 19 0.0000 # Chi-squared value (mh-part) - 41 20 11.7565 # Chi-squared value (total) - 41 21 11.7565 # Chi-squared value for no predicted signal (mu=0) - 42 1 1400902 # Analysis ID - 42 2 ||CMS-PAS-HIG-14-009,arXiv:1312.5353|| # Reference to publication - 42 3 ||(pp)->h->ZZ->4l(2jet)|| # Description (Search channel) - 42 4 8.00 # Center-of-mass energy - 42 5 24.70 # Luminosity - 42 6 4.40 # Luminosity uncertainty (in %) - 42 7 2.00 # Mass resolution (GeV) - 42 8 125.00 # Mass value at peak position (in GeV) - 42 9 1.5490 # Observed signal strength modifier (mu) - 42 10 0.6610 # Lower 68%C.L. uncertainty on observed mu - 42 11 0.9530 # Upper 68%C.L. uncertainty on observed mu - 42 12 000 # Assigned Higgs combination - 42 13 0 # Index of dominant Higgs boson - 42 14 NaN # pdg number of dominant Higgs boson - 42 15 NaN # Mass of the dominant Higgs boson - 42 16 NaN # Signal strength modifier of the dominant Higgs boson - 42 17 0.0000 # Total predicted signal strength modifier mu - 42 18 5.7125 # Chi-squared value (mu-part) - 42 19 0.0000 # Chi-squared value (mh-part) - 42 20 5.7125 # Chi-squared value (total) - 42 21 5.7125 # Chi-squared value for no predicted signal (mu=0) - 43 1 55805 # Analysis ID - 43 2 ||arXiv:1407.0558|| # Reference to publication - 43 3 ||(pp)->h->gammagamma(VBFdijet0)|| # Description (Search channel) - 43 4 7.00 # Center-of-mass energy - 43 5 5.10 # Luminosity - 43 6 2.20 # Luminosity uncertainty (in %) - 43 7 2.00 # Mass resolution (GeV) - 43 8 124.70 # Mass value at peak position (in GeV) - 43 9 4.8470 # Observed signal strength modifier (mu) - 43 10 1.7590 # Lower 68%C.L. uncertainty on observed mu - 43 11 2.1700 # Upper 68%C.L. uncertainty on observed mu - 43 12 001 # Assigned Higgs combination - 43 13 1 # Index of dominant Higgs boson - 43 14 25 # pdg number of dominant Higgs boson - 43 15 122.6512 # Mass of dominant Higgs boson - 43 16 0.7296 # Signal strength modifier of dominant Higgs boson - 43 17 0.7296 # Total predicted signal strength modifier mu - 43 18 4.9779 # Chi-squared value (mu-part) - 43 19 0.0000 # Chi-squared value (mh-part) - 43 20 4.9779 # Chi-squared value (total) - 43 21 7.7092 # Chi-squared value for no predicted signal (mu=0) - 44 1 55816 # Analysis ID - 44 2 ||arXiv:1407.0558|| # Reference to publication - 44 3 ||(pp)->h->gammagamma(VBFdijet0)|| # Description (Search channel) - 44 4 8.00 # Center-of-mass energy - 44 5 19.60 # Luminosity - 44 6 2.60 # Luminosity uncertainty (in %) - 44 7 2.00 # Mass resolution (GeV) - 44 8 124.70 # Mass value at peak position (in GeV) - 44 9 0.8170 # Observed signal strength modifier (mu) - 44 10 0.5780 # Lower 68%C.L. uncertainty on observed mu - 44 11 0.7520 # Upper 68%C.L. uncertainty on observed mu - 44 12 001 # Assigned Higgs combination - 44 13 1 # Index of dominant Higgs boson - 44 14 25 # pdg number of dominant Higgs boson - 44 15 122.6512 # Mass of dominant Higgs boson - 44 16 0.7323 # Signal strength modifier of dominant Higgs boson - 44 17 0.7323 # Total predicted signal strength modifier mu - 44 18 0.0210 # Chi-squared value (mu-part) - 44 19 0.0000 # Chi-squared value (mh-part) - 44 20 0.0210 # Chi-squared value (total) - 44 21 1.9996 # Chi-squared value for no predicted signal (mu=0) - 45 1 55806 # Analysis ID - 45 2 ||arXiv:1407.0558|| # Reference to publication - 45 3 ||(pp)->h->gammagamma(VBFdijet1)|| # Description (Search channel) - 45 4 7.00 # Center-of-mass energy - 45 5 5.10 # Luminosity - 45 6 2.20 # Luminosity uncertainty (in %) - 45 7 2.00 # Mass resolution (GeV) - 45 8 124.70 # Mass value at peak position (in GeV) - 45 9 2.6000 # Observed signal strength modifier (mu) - 45 10 1.7570 # Lower 68%C.L. uncertainty on observed mu - 45 11 2.1610 # Upper 68%C.L. uncertainty on observed mu - 45 12 001 # Assigned Higgs combination - 45 13 1 # Index of dominant Higgs boson - 45 14 25 # pdg number of dominant Higgs boson - 45 15 122.6512 # Mass of dominant Higgs boson - 45 16 0.7059 # Signal strength modifier of dominant Higgs boson - 45 17 0.7059 # Total predicted signal strength modifier mu - 45 18 0.8235 # Chi-squared value (mu-part) - 45 19 0.0000 # Chi-squared value (mh-part) - 45 20 0.8235 # Chi-squared value (total) - 45 21 2.2027 # Chi-squared value for no predicted signal (mu=0) - 46 1 55817 # Analysis ID - 46 2 ||arXiv:1407.0558|| # Reference to publication - 46 3 ||(pp)->h->gammagamma(VBFdijet1)|| # Description (Search channel) - 46 4 8.00 # Center-of-mass energy - 46 5 19.60 # Luminosity - 46 6 2.60 # Luminosity uncertainty (in %) - 46 7 2.00 # Mass resolution (GeV) - 46 8 124.70 # Mass value at peak position (in GeV) - 46 9 -0.2090 # Observed signal strength modifier (mu) - 46 10 0.6890 # Lower 68%C.L. uncertainty on observed mu - 46 11 0.7460 # Upper 68%C.L. uncertainty on observed mu - 46 12 001 # Assigned Higgs combination - 46 13 1 # Index of dominant Higgs boson - 46 14 25 # pdg number of dominant Higgs boson - 46 15 122.6512 # Mass of dominant Higgs boson - 46 16 0.7190 # Signal strength modifier of dominant Higgs boson - 46 17 0.7190 # Total predicted signal strength modifier mu - 46 18 1.7417 # Chi-squared value (mu-part) - 46 19 0.0000 # Chi-squared value (mh-part) - 46 20 1.7417 # Chi-squared value (total) - 46 21 0.0783 # Chi-squared value for no predicted signal (mu=0) - 47 1 55818 # Analysis ID - 47 2 ||arXiv:1407.0558|| # Reference to publication - 47 3 ||(pp)->h->gammagamma(VBFdijet2)|| # Description (Search channel) - 47 4 8.00 # Center-of-mass energy - 47 5 19.60 # Luminosity - 47 6 2.60 # Luminosity uncertainty (in %) - 47 7 2.00 # Mass resolution (GeV) - 47 8 124.70 # Mass value at peak position (in GeV) - 47 9 2.5960 # Observed signal strength modifier (mu) - 47 10 0.9940 # Lower 68%C.L. uncertainty on observed mu - 47 11 1.3260 # Upper 68%C.L. uncertainty on observed mu - 47 12 001 # Assigned Higgs combination - 47 13 1 # Index of dominant Higgs boson - 47 14 25 # pdg number of dominant Higgs boson - 47 15 122.6512 # Mass of dominant Higgs boson - 47 16 0.7002 # Signal strength modifier of dominant Higgs boson - 47 17 0.7002 # Total predicted signal strength modifier mu - 47 18 3.5791 # Chi-squared value (mu-part) - 47 19 0.0000 # Chi-squared value (mh-part) - 47 20 3.5791 # Chi-squared value (total) - 47 21 6.9631 # Chi-squared value for no predicted signal (mu=0) - 48 1 55808 # Analysis ID - 48 2 ||arXiv:1407.0558|| # Reference to publication - 48 3 ||(pp)->h->gammagamma(VHETmiss)|| # Description (Search channel) - 48 4 7.00 # Center-of-mass energy - 48 5 5.10 # Luminosity - 48 6 2.20 # Luminosity uncertainty (in %) - 48 7 2.00 # Mass resolution (GeV) - 48 8 124.70 # Mass value at peak position (in GeV) - 48 9 4.3240 # Observed signal strength modifier (mu) - 48 10 4.1520 # Lower 68%C.L. uncertainty on observed mu - 48 11 6.7180 # Upper 68%C.L. uncertainty on observed mu - 48 12 001 # Assigned Higgs combination - 48 13 1 # Index of dominant Higgs boson - 48 14 25 # pdg number of dominant Higgs boson - 48 15 122.6512 # Mass of dominant Higgs boson - 48 16 0.7482 # Signal strength modifier of dominant Higgs boson - 48 17 0.7482 # Total predicted signal strength modifier mu - 48 18 0.7140 # Chi-squared value (mu-part) - 48 19 0.0000 # Chi-squared value (mh-part) - 48 20 0.7140 # Chi-squared value (total) - 48 21 1.0860 # Chi-squared value for no predicted signal (mu=0) - 49 1 55821 # Analysis ID - 49 2 ||arXiv:1407.0558|| # Reference to publication - 49 3 ||(pp)->h->gammagamma(VHETmiss)|| # Description (Search channel) - 49 4 8.00 # Center-of-mass energy - 49 5 19.60 # Luminosity - 49 6 2.60 # Luminosity uncertainty (in %) - 49 7 2.00 # Mass resolution (GeV) - 49 8 124.70 # Mass value at peak position (in GeV) - 49 9 0.0760 # Observed signal strength modifier (mu) - 49 10 1.2770 # Lower 68%C.L. uncertainty on observed mu - 49 11 1.8620 # Upper 68%C.L. uncertainty on observed mu - 49 12 001 # Assigned Higgs combination - 49 13 1 # Index of dominant Higgs boson - 49 14 25 # pdg number of dominant Higgs boson - 49 15 122.6512 # Mass of dominant Higgs boson - 49 16 0.7341 # Signal strength modifier of dominant Higgs boson - 49 17 0.7341 # Total predicted signal strength modifier mu - 49 18 0.1268 # Chi-squared value (mu-part) - 49 19 0.0000 # Chi-squared value (mh-part) - 49 20 0.1268 # Chi-squared value (total) - 49 21 0.0035 # Chi-squared value for no predicted signal (mu=0) - 50 1 55809 # Analysis ID - 50 2 ||arXiv:1407.0558|| # Reference to publication - 50 3 ||(pp)->h->gammagamma(VHdijet)|| # Description (Search channel) - 50 4 7.00 # Center-of-mass energy - 50 5 5.10 # Luminosity - 50 6 2.20 # Luminosity uncertainty (in %) - 50 7 2.00 # Mass resolution (GeV) - 50 8 124.70 # Mass value at peak position (in GeV) - 50 9 7.8550 # Observed signal strength modifier (mu) - 50 10 6.3990 # Lower 68%C.L. uncertainty on observed mu - 50 11 8.8550 # Upper 68%C.L. uncertainty on observed mu - 50 12 001 # Assigned Higgs combination - 50 13 1 # Index of dominant Higgs boson - 50 14 25 # pdg number of dominant Higgs boson - 50 15 122.6512 # Mass of dominant Higgs boson - 50 16 0.7197 # Signal strength modifier of dominant Higgs boson - 50 17 0.7197 # Total predicted signal strength modifier mu - 50 18 1.1501 # Chi-squared value (mu-part) - 50 19 0.0000 # Chi-squared value (mh-part) - 50 20 1.1501 # Chi-squared value (total) - 50 21 1.5109 # Chi-squared value for no predicted signal (mu=0) - 51 1 55822 # Analysis ID - 51 2 ||arXiv:1407.0558|| # Reference to publication - 51 3 ||(pp)->h->gammagamma(VHdijet)|| # Description (Search channel) - 51 4 8.00 # Center-of-mass energy - 51 5 19.60 # Luminosity - 51 6 2.60 # Luminosity uncertainty (in %) - 51 7 2.00 # Mass resolution (GeV) - 51 8 124.70 # Mass value at peak position (in GeV) - 51 9 0.3920 # Observed signal strength modifier (mu) - 51 10 1.4820 # Lower 68%C.L. uncertainty on observed mu - 51 11 2.1580 # Upper 68%C.L. uncertainty on observed mu - 51 12 001 # Assigned Higgs combination - 51 13 1 # Index of dominant Higgs boson - 51 14 25 # pdg number of dominant Higgs boson - 51 15 122.6512 # Mass of dominant Higgs boson - 51 16 0.7175 # Signal strength modifier of dominant Higgs boson - 51 17 0.7175 # Total predicted signal strength modifier mu - 51 18 0.0270 # Chi-squared value (mu-part) - 51 19 0.0000 # Chi-squared value (mh-part) - 51 20 0.0270 # Chi-squared value (total) - 51 21 0.0699 # Chi-squared value for no predicted signal (mu=0) - 52 1 55807 # Analysis ID - 52 2 ||arXiv:1407.0558|| # Reference to publication - 52 3 ||(pp)->h->gammagamma(VHloose)|| # Description (Search channel) - 52 4 7.00 # Center-of-mass energy - 52 5 5.10 # Luminosity - 52 6 2.20 # Luminosity uncertainty (in %) - 52 7 2.00 # Mass resolution (GeV) - 52 8 124.70 # Mass value at peak position (in GeV) - 52 9 3.1000 # Observed signal strength modifier (mu) - 52 10 5.3420 # Lower 68%C.L. uncertainty on observed mu - 52 11 8.2890 # Upper 68%C.L. uncertainty on observed mu - 52 12 001 # Assigned Higgs combination - 52 13 1 # Index of dominant Higgs boson - 52 14 25 # pdg number of dominant Higgs boson - 52 15 122.6512 # Mass of dominant Higgs boson - 52 16 0.7497 # Signal strength modifier of dominant Higgs boson - 52 17 0.7497 # Total predicted signal strength modifier mu - 52 18 0.1854 # Chi-squared value (mu-part) - 52 19 0.0000 # Chi-squared value (mh-part) - 52 20 0.1854 # Chi-squared value (total) - 52 21 0.3369 # Chi-squared value for no predicted signal (mu=0) - 53 1 55820 # Analysis ID - 53 2 ||arXiv:1407.0558|| # Reference to publication - 53 3 ||(pp)->h->gammagamma(VHloose)|| # Description (Search channel) - 53 4 8.00 # Center-of-mass energy - 53 5 19.60 # Luminosity - 53 6 2.60 # Luminosity uncertainty (in %) - 53 7 2.00 # Mass resolution (GeV) - 53 8 124.70 # Mass value at peak position (in GeV) - 53 9 1.2430 # Observed signal strength modifier (mu) - 53 10 2.6240 # Lower 68%C.L. uncertainty on observed mu - 53 11 3.6940 # Upper 68%C.L. uncertainty on observed mu - 53 12 001 # Assigned Higgs combination - 53 13 1 # Index of dominant Higgs boson - 53 14 25 # pdg number of dominant Higgs boson - 53 15 122.6512 # Mass of dominant Higgs boson - 53 16 0.7510 # Signal strength modifier of dominant Higgs boson - 53 17 0.7510 # Total predicted signal strength modifier mu - 53 18 0.0326 # Chi-squared value (mu-part) - 53 19 0.0000 # Chi-squared value (mh-part) - 53 20 0.0326 # Chi-squared value (total) - 53 21 0.2244 # Chi-squared value for no predicted signal (mu=0) - 54 1 55819 # Analysis ID - 54 2 ||arXiv:1407.0558|| # Reference to publication - 54 3 ||(pp)->h->gammagamma(VHtight)|| # Description (Search channel) - 54 4 8.00 # Center-of-mass energy - 54 5 19.60 # Luminosity - 54 6 2.60 # Luminosity uncertainty (in %) - 54 7 2.00 # Mass resolution (GeV) - 54 8 124.70 # Mass value at peak position (in GeV) - 54 9 -0.3430 # Observed signal strength modifier (mu) - 54 10 0.6290 # Lower 68%C.L. uncertainty on observed mu - 54 11 1.3000 # Upper 68%C.L. uncertainty on observed mu - 54 12 001 # Assigned Higgs combination - 54 13 1 # Index of dominant Higgs boson - 54 14 25 # pdg number of dominant Higgs boson - 54 15 122.6512 # Mass of dominant Higgs boson - 54 16 0.7539 # Signal strength modifier of dominant Higgs boson - 54 17 0.7539 # Total predicted signal strength modifier mu - 54 18 0.7800 # Chi-squared value (mu-part) - 54 19 0.0000 # Chi-squared value (mh-part) - 54 20 0.7800 # Chi-squared value (total) - 54 21 0.0696 # Chi-squared value for no predicted signal (mu=0) - 55 1 55824 # Analysis ID - 55 2 ||arXiv:1407.0558|| # Reference to publication - 55 3 ||(pp)->h->gammagamma(ttHmultijet)|| # Description (Search channel) - 55 4 8.00 # Center-of-mass energy - 55 5 19.60 # Luminosity - 55 6 2.60 # Luminosity uncertainty (in %) - 55 7 2.00 # Mass resolution (GeV) - 55 8 124.70 # Mass value at peak position (in GeV) - 55 9 1.2430 # Observed signal strength modifier (mu) - 55 10 2.6970 # Lower 68%C.L. uncertainty on observed mu - 55 11 4.2350 # Upper 68%C.L. uncertainty on observed mu - 55 12 001 # Assigned Higgs combination - 55 13 1 # Index of dominant Higgs boson - 55 14 25 # pdg number of dominant Higgs boson - 55 15 122.6512 # Mass of dominant Higgs boson - 55 16 0.7466 # Signal strength modifier of dominant Higgs boson - 55 17 0.7466 # Total predicted signal strength modifier mu - 55 18 0.0260 # Chi-squared value (mu-part) - 55 19 0.0000 # Chi-squared value (mh-part) - 55 20 0.0260 # Chi-squared value (total) - 55 21 0.2127 # Chi-squared value for no predicted signal (mu=0) - 56 1 55823 # Analysis ID - 56 2 ||arXiv:1407.0558|| # Reference to publication - 56 3 ||(pp)->h->gammagamma(ttHlepton)|| # Description (Search channel) - 56 4 8.00 # Center-of-mass energy - 56 5 19.60 # Luminosity - 56 6 2.60 # Luminosity uncertainty (in %) - 56 7 2.00 # Mass resolution (GeV) - 56 8 124.70 # Mass value at peak position (in GeV) - 56 9 3.5210 # Observed signal strength modifier (mu) - 56 10 2.4500 # Lower 68%C.L. uncertainty on observed mu - 56 11 3.8920 # Upper 68%C.L. uncertainty on observed mu - 56 12 001 # Assigned Higgs combination - 56 13 1 # Index of dominant Higgs boson - 56 14 25 # pdg number of dominant Higgs boson - 56 15 122.6512 # Mass of dominant Higgs boson - 56 16 0.7515 # Signal strength modifier of dominant Higgs boson - 56 17 0.7515 # Total predicted signal strength modifier mu - 56 18 0.7705 # Chi-squared value (mu-part) - 56 19 0.0000 # Chi-squared value (mh-part) - 56 20 0.7705 # Chi-squared value (total) - 56 21 2.1101 # Chi-squared value for no predicted signal (mu=0) - 57 1 55810 # Analysis ID - 57 2 ||arXiv:1407.0558|| # Reference to publication - 57 3 ||(pp)->h->gammagamma(ttHtags)|| # Description (Search channel) - 57 4 7.00 # Center-of-mass energy - 57 5 5.10 # Luminosity - 57 6 2.20 # Luminosity uncertainty (in %) - 57 7 2.00 # Mass resolution (GeV) - 57 8 124.70 # Mass value at peak position (in GeV) - 57 9 0.7140 # Observed signal strength modifier (mu) - 57 10 3.5630 # Lower 68%C.L. uncertainty on observed mu - 57 11 6.1970 # Upper 68%C.L. uncertainty on observed mu - 57 12 001 # Assigned Higgs combination - 57 13 1 # Index of dominant Higgs boson - 57 14 25 # pdg number of dominant Higgs boson - 57 15 122.6512 # Mass of dominant Higgs boson - 57 16 0.7465 # Signal strength modifier of dominant Higgs boson - 57 17 0.7465 # Total predicted signal strength modifier mu - 57 18 0.0001 # Chi-squared value (mu-part) - 57 19 0.0000 # Chi-squared value (mh-part) - 57 20 0.0001 # Chi-squared value (total) - 57 21 0.0402 # Chi-squared value for no predicted signal (mu=0) - 58 1 55801 # Analysis ID - 58 2 ||arXiv:1407.0558|| # Reference to publication - 58 3 ||(pp)->h->gammagamma(untagged0)|| # Description (Search channel) - 58 4 7.00 # Center-of-mass energy - 58 5 5.10 # Luminosity - 58 6 2.20 # Luminosity uncertainty (in %) - 58 7 2.00 # Mass resolution (GeV) - 58 8 124.70 # Mass value at peak position (in GeV) - 58 9 1.9730 # Observed signal strength modifier (mu) - 58 10 1.2500 # Lower 68%C.L. uncertainty on observed mu - 58 11 1.5050 # Upper 68%C.L. uncertainty on observed mu - 58 12 001 # Assigned Higgs combination - 58 13 1 # Index of dominant Higgs boson - 58 14 25 # pdg number of dominant Higgs boson - 58 15 122.6512 # Mass of dominant Higgs boson - 58 16 0.6551 # Signal strength modifier of dominant Higgs boson - 58 17 0.6551 # Total predicted signal strength modifier mu - 58 18 1.1027 # Chi-squared value (mu-part) - 58 19 0.0000 # Chi-squared value (mh-part) - 58 20 1.1027 # Chi-squared value (total) - 58 21 2.5354 # Chi-squared value for no predicted signal (mu=0) - 59 1 55811 # Analysis ID - 59 2 ||arXiv:1407.0558|| # Reference to publication - 59 3 ||(pp)->h->gammagamma(untagged0)|| # Description (Search channel) - 59 4 8.00 # Center-of-mass energy - 59 5 19.60 # Luminosity - 59 6 2.60 # Luminosity uncertainty (in %) - 59 7 2.00 # Mass resolution (GeV) - 59 8 124.70 # Mass value at peak position (in GeV) - 59 9 0.1300 # Observed signal strength modifier (mu) - 59 10 0.7440 # Lower 68%C.L. uncertainty on observed mu - 59 11 1.0940 # Upper 68%C.L. uncertainty on observed mu - 59 12 001 # Assigned Higgs combination - 59 13 1 # Index of dominant Higgs boson - 59 14 25 # pdg number of dominant Higgs boson - 59 15 122.6512 # Mass of dominant Higgs boson - 59 16 0.6614 # Signal strength modifier of dominant Higgs boson - 59 17 0.6614 # Total predicted signal strength modifier mu - 59 18 0.2608 # Chi-squared value (mu-part) - 59 19 0.0000 # Chi-squared value (mh-part) - 59 20 0.2608 # Chi-squared value (total) - 59 21 0.0304 # Chi-squared value for no predicted signal (mu=0) - 60 1 55802 # Analysis ID - 60 2 ||arXiv:1407.0558|| # Reference to publication - 60 3 ||(pp)->h->gammagamma(untagged1)|| # Description (Search channel) - 60 4 7.00 # Center-of-mass energy - 60 5 5.10 # Luminosity - 60 6 2.20 # Luminosity uncertainty (in %) - 60 7 2.00 # Mass resolution (GeV) - 60 8 124.70 # Mass value at peak position (in GeV) - 60 9 1.2330 # Observed signal strength modifier (mu) - 60 10 0.8800 # Lower 68%C.L. uncertainty on observed mu - 60 11 0.9790 # Upper 68%C.L. uncertainty on observed mu - 60 12 001 # Assigned Higgs combination - 60 13 1 # Index of dominant Higgs boson - 60 14 25 # pdg number of dominant Higgs boson - 60 15 122.6512 # Mass of dominant Higgs boson - 60 16 0.6409 # Signal strength modifier of dominant Higgs boson - 60 17 0.6409 # Total predicted signal strength modifier mu - 60 18 0.4920 # Chi-squared value (mu-part) - 60 19 0.0000 # Chi-squared value (mh-part) - 60 20 0.4920 # Chi-squared value (total) - 60 21 1.9918 # Chi-squared value for no predicted signal (mu=0) - 61 1 55812 # Analysis ID - 61 2 ||arXiv:1407.0558|| # Reference to publication - 61 3 ||(pp)->h->gammagamma(untagged1)|| # Description (Search channel) - 61 4 8.00 # Center-of-mass energy - 61 5 19.60 # Luminosity - 61 6 2.60 # Luminosity uncertainty (in %) - 61 7 2.00 # Mass resolution (GeV) - 61 8 124.70 # Mass value at peak position (in GeV) - 61 9 0.9190 # Observed signal strength modifier (mu) - 61 10 0.4870 # Lower 68%C.L. uncertainty on observed mu - 61 11 0.5670 # Upper 68%C.L. uncertainty on observed mu - 61 12 001 # Assigned Higgs combination - 61 13 1 # Index of dominant Higgs boson - 61 14 25 # pdg number of dominant Higgs boson - 61 15 122.6512 # Mass of dominant Higgs boson - 61 16 0.6498 # Signal strength modifier of dominant Higgs boson - 61 17 0.6498 # Total predicted signal strength modifier mu - 61 18 0.3071 # Chi-squared value (mu-part) - 61 19 0.0000 # Chi-squared value (mh-part) - 61 20 0.3071 # Chi-squared value (total) - 61 21 3.6185 # Chi-squared value for no predicted signal (mu=0) - 62 1 55803 # Analysis ID - 62 2 ||arXiv:1407.0558|| # Reference to publication - 62 3 ||(pp)->h->gammagamma(untagged2)|| # Description (Search channel) - 62 4 7.00 # Center-of-mass energy - 62 5 5.10 # Luminosity - 62 6 2.20 # Luminosity uncertainty (in %) - 62 7 2.00 # Mass resolution (GeV) - 62 8 124.70 # Mass value at peak position (in GeV) - 62 9 1.6020 # Observed signal strength modifier (mu) - 62 10 1.1740 # Lower 68%C.L. uncertainty on observed mu - 62 11 1.2460 # Upper 68%C.L. uncertainty on observed mu - 62 12 001 # Assigned Higgs combination - 62 13 1 # Index of dominant Higgs boson - 62 14 25 # pdg number of dominant Higgs boson - 62 15 122.6512 # Mass of dominant Higgs boson - 62 16 0.6409 # Signal strength modifier of dominant Higgs boson - 62 17 0.6409 # Total predicted signal strength modifier mu - 62 18 0.7360 # Chi-squared value (mu-part) - 62 19 0.0000 # Chi-squared value (mh-part) - 62 20 0.7360 # Chi-squared value (total) - 62 21 1.8916 # Chi-squared value for no predicted signal (mu=0) - 63 1 55813 # Analysis ID - 63 2 ||arXiv:1407.0558|| # Reference to publication - 63 3 ||(pp)->h->gammagamma(untagged2)|| # Description (Search channel) - 63 4 8.00 # Center-of-mass energy - 63 5 19.60 # Luminosity - 63 6 2.60 # Luminosity uncertainty (in %) - 63 7 0.34 # Mass resolution (GeV) - 63 8 124.70 # Mass value at peak position (in GeV) - 63 9 1.1020 # Observed signal strength modifier (mu) - 63 10 0.4400 # Lower 68%C.L. uncertainty on observed mu - 63 11 0.4770 # Upper 68%C.L. uncertainty on observed mu - 63 12 001 # Assigned Higgs combination - 63 13 1 # Index of dominant Higgs boson - 63 14 25 # pdg number of dominant Higgs boson - 63 15 122.6512 # Mass of dominant Higgs boson - 63 16 0.6424 # Signal strength modifier of dominant Higgs boson - 63 17 0.6424 # Total predicted signal strength modifier mu - 63 18 1.0171 # Chi-squared value (mu-part) - 63 19 1.7091 # Chi-squared value (mh-part) - 63 20 2.7261 # Chi-squared value (total) - 63 21 6.5393 # Chi-squared value for no predicted signal (mu=0) - 64 1 55804 # Analysis ID - 64 2 ||arXiv:1407.0558|| # Reference to publication - 64 3 ||(pp)->h->gammagamma(untagged3)|| # Description (Search channel) - 64 4 7.00 # Center-of-mass energy - 64 5 5.10 # Luminosity - 64 6 2.20 # Luminosity uncertainty (in %) - 64 7 2.00 # Mass resolution (GeV) - 64 8 124.70 # Mass value at peak position (in GeV) - 64 9 2.6120 # Observed signal strength modifier (mu) - 64 10 1.6530 # Lower 68%C.L. uncertainty on observed mu - 64 11 1.7380 # Upper 68%C.L. uncertainty on observed mu - 64 12 001 # Assigned Higgs combination - 64 13 1 # Index of dominant Higgs boson - 64 14 25 # pdg number of dominant Higgs boson - 64 15 122.6512 # Mass of dominant Higgs boson - 64 16 0.6406 # Signal strength modifier of dominant Higgs boson - 64 17 0.6406 # Total predicted signal strength modifier mu - 64 18 1.4480 # Chi-squared value (mu-part) - 64 19 0.0000 # Chi-squared value (mh-part) - 64 20 1.4480 # Chi-squared value (total) - 64 21 2.5569 # Chi-squared value for no predicted signal (mu=0) - 65 1 55814 # Analysis ID - 65 2 ||arXiv:1407.0558|| # Reference to publication - 65 3 ||(pp)->h->gammagamma(untagged3)|| # Description (Search channel) - 65 4 8.00 # Center-of-mass energy - 65 5 19.60 # Luminosity - 65 6 2.60 # Luminosity uncertainty (in %) - 65 7 2.00 # Mass resolution (GeV) - 65 8 124.70 # Mass value at peak position (in GeV) - 65 9 0.6480 # Observed signal strength modifier (mu) - 65 10 0.8870 # Lower 68%C.L. uncertainty on observed mu - 65 11 0.6530 # Upper 68%C.L. uncertainty on observed mu - 65 12 001 # Assigned Higgs combination - 65 13 1 # Index of dominant Higgs boson - 65 14 25 # pdg number of dominant Higgs boson - 65 15 122.6512 # Mass of dominant Higgs boson - 65 16 0.6420 # Signal strength modifier of dominant Higgs boson - 65 17 0.6420 # Total predicted signal strength modifier mu - 65 18 -0.0000 # Chi-squared value (mu-part) - 65 19 0.0000 # Chi-squared value (mh-part) - 65 20 -0.0000 # Chi-squared value (total) - 65 21 0.5338 # Chi-squared value for no predicted signal (mu=0) - 66 1 55815 # Analysis ID - 66 2 ||arXiv:1407.0558|| # Reference to publication - 66 3 ||(pp)->h->gammagamma(untagged4)|| # Description (Search channel) - 66 4 8.00 # Center-of-mass energy - 66 5 19.60 # Luminosity - 66 6 2.60 # Luminosity uncertainty (in %) - 66 7 2.00 # Mass resolution (GeV) - 66 8 124.70 # Mass value at peak position (in GeV) - 66 9 1.4570 # Observed signal strength modifier (mu) - 66 10 1.2380 # Lower 68%C.L. uncertainty on observed mu - 66 11 1.2890 # Upper 68%C.L. uncertainty on observed mu - 66 12 001 # Assigned Higgs combination - 66 13 1 # Index of dominant Higgs boson - 66 14 25 # pdg number of dominant Higgs boson - 66 15 122.6512 # Mass of dominant Higgs boson - 66 16 0.6400 # Signal strength modifier of dominant Higgs boson - 66 17 0.6400 # Total predicted signal strength modifier mu - 66 18 0.3777 # Chi-squared value (mu-part) - 66 19 0.0000 # Chi-squared value (mh-part) - 66 20 0.3777 # Chi-squared value (total) - 66 21 1.4010 # Chi-squared value for no predicted signal (mu=0) - 67 1 1300701 # Analysis ID - 67 2 ||CMS-PAS-HIG-13-007|| # Reference to publication - 67 3 ||(pp)->h->mumu|| # Description (Search channel) - 67 4 8.00 # Center-of-mass energy - 67 5 25.40 # Luminosity - 67 6 2.60 # Luminosity uncertainty (in %) - 67 7 2.00 # Mass resolution (GeV) - 67 8 125.70 # Mass value at peak position (in GeV) - 67 9 2.9000 # Observed signal strength modifier (mu) - 67 10 2.7000 # Lower 68%C.L. uncertainty on observed mu - 67 11 2.8000 # Upper 68%C.L. uncertainty on observed mu - 67 12 000 # Assigned Higgs combination - 67 13 0 # Index of dominant Higgs boson - 67 14 NaN # pdg number of dominant Higgs boson - 67 15 NaN # Mass of the dominant Higgs boson - 67 16 NaN # Signal strength modifier of the dominant Higgs boson - 67 17 0.0000 # Total predicted signal strength modifier mu - 67 18 1.1680 # Chi-squared value (mu-part) - 67 19 0.0000 # Chi-squared value (mh-part) - 67 20 1.1680 # Chi-squared value (total) - 67 21 1.1680 # Chi-squared value for no predicted signal (mu=0) - 68 1 1300401 # Analysis ID - 68 2 ||CMS-PAS-HIG-13-004|| # Reference to publication - 68 3 ||(pp)->h->tautau(0jet)|| # Description (Search channel) - 68 4 8.00 # Center-of-mass energy - 68 5 24.30 # Luminosity - 68 6 2.60 # Luminosity uncertainty (in %) - 68 7 25.00 # Mass resolution (GeV) - 68 8 125.00 # Mass value at peak position (in GeV) - 68 9 0.4000 # Observed signal strength modifier (mu) - 68 10 1.1300 # Lower 68%C.L. uncertainty on observed mu - 68 11 0.7300 # Upper 68%C.L. uncertainty on observed mu - 68 12 001 # Assigned Higgs combination - 68 13 1 # Index of dominant Higgs boson - 68 14 25 # pdg number of dominant Higgs boson - 68 15 122.6512 # Mass of dominant Higgs boson - 68 16 0.9686 # Signal strength modifier of dominant Higgs boson - 68 17 0.9686 # Total predicted signal strength modifier mu - 68 18 0.7388 # Chi-squared value (mu-part) - 68 19 0.0000 # Chi-squared value (mh-part) - 68 20 0.7388 # Chi-squared value (total) - 68 21 0.1244 # Chi-squared value for no predicted signal (mu=0) - 69 1 1300402 # Analysis ID - 69 2 ||CMS-PAS-HIG-13-004|| # Reference to publication - 69 3 ||(pp)->h->tautau(1jet)|| # Description (Search channel) - 69 4 8.00 # Center-of-mass energy - 69 5 24.30 # Luminosity - 69 6 2.60 # Luminosity uncertainty (in %) - 69 7 25.00 # Mass resolution (GeV) - 69 8 125.00 # Mass value at peak position (in GeV) - 69 9 1.0600 # Observed signal strength modifier (mu) - 69 10 0.4700 # Lower 68%C.L. uncertainty on observed mu - 69 11 0.4700 # Upper 68%C.L. uncertainty on observed mu - 69 12 001 # Assigned Higgs combination - 69 13 1 # Index of dominant Higgs boson - 69 14 25 # pdg number of dominant Higgs boson - 69 15 122.6512 # Mass of dominant Higgs boson - 69 16 1.0040 # Signal strength modifier of dominant Higgs boson - 69 17 1.0040 # Total predicted signal strength modifier mu - 69 18 -0.0184 # Chi-squared value (mu-part) - 69 19 0.0000 # Chi-squared value (mh-part) - 69 20 -0.0184 # Chi-squared value (total) - 69 21 5.1188 # Chi-squared value for no predicted signal (mu=0) - 70 1 1300404 # Analysis ID - 70 2 ||CMS-PAS-HIG-13-004|| # Reference to publication - 70 3 ||(pp)->h->tautau(VBF)|| # Description (Search channel) - 70 4 8.00 # Center-of-mass energy - 70 5 24.50 # Luminosity - 70 6 2.60 # Luminosity uncertainty (in %) - 70 7 20.00 # Mass resolution (GeV) - 70 8 125.00 # Mass value at peak position (in GeV) - 70 9 0.9300 # Observed signal strength modifier (mu) - 70 10 0.4100 # Lower 68%C.L. uncertainty on observed mu - 70 11 0.4100 # Upper 68%C.L. uncertainty on observed mu - 70 12 001 # Assigned Higgs combination - 70 13 1 # Index of dominant Higgs boson - 70 14 25 # pdg number of dominant Higgs boson - 70 15 122.6512 # Mass of dominant Higgs boson - 70 16 1.1139 # Signal strength modifier of dominant Higgs boson - 70 17 1.1139 # Total predicted signal strength modifier mu - 70 18 0.2735 # Chi-squared value (mu-part) - 70 19 0.0000 # Chi-squared value (mh-part) - 70 20 0.2735 # Chi-squared value (total) - 70 21 5.1208 # Chi-squared value for no predicted signal (mu=0) - 71 1 131211293 # Analysis ID - 71 2 ||arXiv:1312.1129|| # Reference to publication - 71 3 ||(pp)->h->WW->2l2nu(VH)|| # Description (Search channel) - 71 4 8.00 # Center-of-mass energy - 71 5 25.30 # Luminosity - 71 6 2.60 # Luminosity uncertainty (in %) - 71 7 20.00 # Mass resolution (GeV) - 71 8 125.60 # Mass value at peak position (in GeV) - 71 9 0.3900 # Observed signal strength modifier (mu) - 71 10 1.8700 # Lower 68%C.L. uncertainty on observed mu - 71 11 1.9700 # Upper 68%C.L. uncertainty on observed mu - 71 12 001 # Assigned Higgs combination - 71 13 1 # Index of dominant Higgs boson - 71 14 25 # pdg number of dominant Higgs boson - 71 15 122.6512 # Mass of dominant Higgs boson - 71 16 0.7597 # Signal strength modifier of dominant Higgs boson - 71 17 0.7597 # Total predicted signal strength modifier mu - 71 18 0.0412 # Chi-squared value (mu-part) - 71 19 0.0000 # Chi-squared value (mh-part) - 71 20 0.0412 # Chi-squared value (total) - 71 21 0.0435 # Chi-squared value for no predicted signal (mu=0) - 72 1 1301701 # Analysis ID - 72 2 ||CMS-PAS-HIG-13-017|| # Reference to publication - 72 3 ||(pp)->Vh->VWW(hadronicV)|| # Description (Search channel) - 72 4 8.00 # Center-of-mass energy - 72 5 25.40 # Luminosity - 72 6 4.40 # Luminosity uncertainty (in %) - 72 7 20.00 # Mass resolution (GeV) - 72 8 125.00 # Mass value at peak position (in GeV) - 72 9 1.0000 # Observed signal strength modifier (mu) - 72 10 2.0000 # Lower 68%C.L. uncertainty on observed mu - 72 11 2.0000 # Upper 68%C.L. uncertainty on observed mu - 72 12 001 # Assigned Higgs combination - 72 13 1 # Index of dominant Higgs boson - 72 14 25 # pdg number of dominant Higgs boson - 72 15 122.6512 # Mass of dominant Higgs boson - 72 16 0.7548 # Signal strength modifier of dominant Higgs boson - 72 17 0.7548 # Total predicted signal strength modifier mu - 72 18 0.0082 # Chi-squared value (mu-part) - 72 19 0.0000 # Chi-squared value (mh-part) - 72 20 0.0082 # Chi-squared value (total) - 72 21 0.2502 # Chi-squared value for no predicted signal (mu=0) - 73 1 1301201 # Analysis ID - 73 2 ||CMS-PAS-HIG-13-012|| # Reference to publication - 73 3 ||(pp)->Vh->Vbb|| # Description (Search channel) - 73 4 8.00 # Center-of-mass energy - 73 5 24.00 # Luminosity - 73 6 4.40 # Luminosity uncertainty (in %) - 73 7 12.50 # Mass resolution (GeV) - 73 8 125.70 # Mass value at peak position (in GeV) - 73 9 1.0000 # Observed signal strength modifier (mu) - 73 10 0.4857 # Lower 68%C.L. uncertainty on observed mu - 73 11 0.5070 # Upper 68%C.L. uncertainty on observed mu - 73 12 001 # Assigned Higgs combination - 73 13 1 # Index of dominant Higgs boson - 73 14 25 # pdg number of dominant Higgs boson - 73 15 122.6512 # Mass of dominant Higgs boson - 73 16 1.1325 # Signal strength modifier of dominant Higgs boson - 73 17 1.1325 # Total predicted signal strength modifier mu - 73 18 0.0923 # Chi-squared value (mu-part) - 73 19 0.0000 # Chi-squared value (mh-part) - 73 20 0.0923 # Chi-squared value (total) - 73 21 4.2236 # Chi-squared value for no predicted signal (mu=0) - 74 1 1300403 # Analysis ID - 74 2 ||CMS-PAS-HIG-13-004|| # Reference to publication - 74 3 ||(pp)->Vh->tautau|| # Description (Search channel) - 74 4 8.00 # Center-of-mass energy - 74 5 24.30 # Luminosity - 74 6 4.40 # Luminosity uncertainty (in %) - 74 7 20.00 # Mass resolution (GeV) - 74 8 125.70 # Mass value at peak position (in GeV) - 74 9 0.9810 # Observed signal strength modifier (mu) - 74 10 1.4960 # Lower 68%C.L. uncertainty on observed mu - 74 11 1.6800 # Upper 68%C.L. uncertainty on observed mu - 74 12 001 # Assigned Higgs combination - 74 13 1 # Index of dominant Higgs boson - 74 14 25 # pdg number of dominant Higgs boson - 74 15 122.6512 # Mass of dominant Higgs boson - 74 16 1.0871 # Signal strength modifier of dominant Higgs boson - 74 17 1.0871 # Total predicted signal strength modifier mu - 74 18 0.0064 # Chi-squared value (mu-part) - 74 19 0.0000 # Chi-squared value (mh-part) - 74 20 0.0064 # Chi-squared value (total) - 74 21 0.4298 # Chi-squared value for no predicted signal (mu=0) - 75 1 131211294 # Analysis ID - 75 2 ||arXiv:1312.1129|| # Reference to publication - 75 3 ||(pp)->h->WW->3l3nu(WH)|| # Description (Search channel) - 75 4 8.00 # Center-of-mass energy - 75 5 25.30 # Luminosity - 75 6 2.60 # Luminosity uncertainty (in %) - 75 7 20.00 # Mass resolution (GeV) - 75 8 125.60 # Mass value at peak position (in GeV) - 75 9 0.5600 # Observed signal strength modifier (mu) - 75 10 0.9500 # Lower 68%C.L. uncertainty on observed mu - 75 11 1.2700 # Upper 68%C.L. uncertainty on observed mu - 75 12 001 # Assigned Higgs combination - 75 13 1 # Index of dominant Higgs boson - 75 14 25 # pdg number of dominant Higgs boson - 75 15 122.6512 # Mass of dominant Higgs boson - 75 16 0.8413 # Signal strength modifier of dominant Higgs boson - 75 17 0.8413 # Total predicted signal strength modifier mu - 75 18 0.0534 # Chi-squared value (mu-part) - 75 19 0.0000 # Chi-squared value (mh-part) - 75 20 0.0534 # Chi-squared value (total) - 75 21 0.3473 # Chi-squared value for no predicted signal (mu=0) - 76 1 168204 # Analysis ID - 76 2 ||arXiv:1408.1682|| # Reference to publication - 76 3 ||(pp)->tth->2leptons(samesign)|| # Description (Search channel) - 76 4 8.00 # Center-of-mass energy - 76 5 19.60 # Luminosity - 76 6 2.60 # Luminosity uncertainty (in %) - 76 7 25.00 # Mass resolution (GeV) - 76 8 125.60 # Mass value at peak position (in GeV) - 76 9 5.3000 # Observed signal strength modifier (mu) - 76 10 1.8000 # Lower 68%C.L. uncertainty on observed mu - 76 11 2.1000 # Upper 68%C.L. uncertainty on observed mu - 76 12 001 # Assigned Higgs combination - 76 13 1 # Index of dominant Higgs boson - 76 14 25 # pdg number of dominant Higgs boson - 76 15 122.6512 # Mass of dominant Higgs boson - 76 16 0.9231 # Signal strength modifier of dominant Higgs boson - 76 17 0.9231 # Total predicted signal strength modifier mu - 76 18 6.1892 # Chi-squared value (mu-part) - 76 19 0.0000 # Chi-squared value (mh-part) - 76 20 6.1892 # Chi-squared value (total) - 76 21 9.5729 # Chi-squared value for no predicted signal (mu=0) - 77 1 168205 # Analysis ID - 77 2 ||arXiv:1408.1682|| # Reference to publication - 77 3 ||(pp)->tth->3leptons|| # Description (Search channel) - 77 4 8.00 # Center-of-mass energy - 77 5 19.60 # Luminosity - 77 6 2.60 # Luminosity uncertainty (in %) - 77 7 25.00 # Mass resolution (GeV) - 77 8 125.60 # Mass value at peak position (in GeV) - 77 9 3.1000 # Observed signal strength modifier (mu) - 77 10 2.0000 # Lower 68%C.L. uncertainty on observed mu - 77 11 2.4000 # Upper 68%C.L. uncertainty on observed mu - 77 12 001 # Assigned Higgs combination - 77 13 1 # Index of dominant Higgs boson - 77 14 25 # pdg number of dominant Higgs boson - 77 15 122.6512 # Mass of dominant Higgs boson - 77 16 0.9256 # Signal strength modifier of dominant Higgs boson - 77 17 0.9256 # Total predicted signal strength modifier mu - 77 18 1.1100 # Chi-squared value (mu-part) - 77 19 0.0000 # Chi-squared value (mh-part) - 77 20 1.1100 # Chi-squared value (total) - 77 21 2.4628 # Chi-squared value for no predicted signal (mu=0) - 78 1 168206 # Analysis ID - 78 2 ||arXiv:1408.1682|| # Reference to publication - 78 3 ||(pp)->tth->4leptons|| # Description (Search channel) - 78 4 8.00 # Center-of-mass energy - 78 5 19.60 # Luminosity - 78 6 2.60 # Luminosity uncertainty (in %) - 78 7 25.00 # Mass resolution (GeV) - 78 8 125.60 # Mass value at peak position (in GeV) - 78 9 -4.7000 # Observed signal strength modifier (mu) - 78 10 1.3000 # Lower 68%C.L. uncertainty on observed mu - 78 11 5.0000 # Upper 68%C.L. uncertainty on observed mu - 78 12 001 # Assigned Higgs combination - 78 13 1 # Index of dominant Higgs boson - 78 14 25 # pdg number of dominant Higgs boson - 78 15 122.6512 # Mass of dominant Higgs boson - 78 16 0.9447 # Signal strength modifier of dominant Higgs boson - 78 17 0.9447 # Total predicted signal strength modifier mu - 78 18 1.2690 # Chi-squared value (mu-part) - 78 19 0.0000 # Chi-squared value (mh-part) - 78 20 1.2690 # Chi-squared value (total) - 78 21 0.8920 # Chi-squared value for no predicted signal (mu=0) - 79 1 168202 # Analysis ID - 79 2 ||arXiv:1408.1682|| # Reference to publication - 79 3 ||(pp)->tth->tt(bb)|| # Description (Search channel) - 79 4 8.00 # Center-of-mass energy - 79 5 24.50 # Luminosity - 79 6 2.60 # Luminosity uncertainty (in %) - 79 7 25.00 # Mass resolution (GeV) - 79 8 125.60 # Mass value at peak position (in GeV) - 79 9 0.7000 # Observed signal strength modifier (mu) - 79 10 1.9000 # Lower 68%C.L. uncertainty on observed mu - 79 11 1.9000 # Upper 68%C.L. uncertainty on observed mu - 79 12 001 # Assigned Higgs combination - 79 13 1 # Index of dominant Higgs boson - 79 14 25 # pdg number of dominant Higgs boson - 79 15 122.6512 # Mass of dominant Higgs boson - 79 16 1.1282 # Signal strength modifier of dominant Higgs boson - 79 17 1.1282 # Total predicted signal strength modifier mu - 79 18 0.0632 # Chi-squared value (mu-part) - 79 19 0.0000 # Chi-squared value (mh-part) - 79 20 0.0632 # Chi-squared value (total) - 79 21 0.1354 # Chi-squared value for no predicted signal (mu=0) - 80 1 168201 # Analysis ID - 80 2 ||arXiv:1408.1682|| # Reference to publication - 80 3 ||(pp)->tth->tt(gammagamma)|| # Description (Search channel) - 80 4 8.00 # Center-of-mass energy - 80 5 19.60 # Luminosity - 80 6 2.60 # Luminosity uncertainty (in %) - 80 7 15.00 # Mass resolution (GeV) - 80 8 125.60 # Mass value at peak position (in GeV) - 80 9 2.7000 # Observed signal strength modifier (mu) - 80 10 1.8000 # Lower 68%C.L. uncertainty on observed mu - 80 11 2.6000 # Upper 68%C.L. uncertainty on observed mu - 80 12 001 # Assigned Higgs combination - 80 13 1 # Index of dominant Higgs boson - 80 14 25 # pdg number of dominant Higgs boson - 80 15 122.6512 # Mass of dominant Higgs boson - 80 16 0.7514 # Signal strength modifier of dominant Higgs boson - 80 17 0.7514 # Total predicted signal strength modifier mu - 80 18 1.1049 # Chi-squared value (mu-part) - 80 19 0.0000 # Chi-squared value (mh-part) - 80 20 1.1049 # Chi-squared value (total) - 80 21 2.3054 # Chi-squared value for no predicted signal (mu=0) - 81 1 168203 # Analysis ID - 81 2 ||arXiv:1408.1682|| # Reference to publication - 81 3 ||(pp)->tth->tt(tautau)|| # Description (Search channel) - 81 4 8.00 # Center-of-mass energy - 81 5 24.50 # Luminosity - 81 6 2.60 # Luminosity uncertainty (in %) - 81 7 25.00 # Mass resolution (GeV) - 81 8 125.60 # Mass value at peak position (in GeV) - 81 9 -1.3000 # Observed signal strength modifier (mu) - 81 10 5.5000 # Lower 68%C.L. uncertainty on observed mu - 81 11 6.3000 # Upper 68%C.L. uncertainty on observed mu - 81 12 001 # Assigned Higgs combination - 81 13 1 # Index of dominant Higgs boson - 81 14 25 # pdg number of dominant Higgs boson - 81 15 122.6512 # Mass of dominant Higgs boson - 81 16 1.1492 # Signal strength modifier of dominant Higgs boson - 81 17 1.1492 # Total predicted signal strength modifier mu - 81 18 0.1546 # Chi-squared value (mu-part) - 81 19 0.0000 # Chi-squared value (mh-part) - 81 20 0.1546 # Chi-squared value (total) - 81 21 0.0426 # Chi-squared value for no predicted signal (mu=0) - 82 1 130308232 # Analysis ID - 82 2 ||arXiv:1303.0823|| # Reference to publication - 82 3 ||(ppbar)->h->WW|| # Description (Search channel) - 82 4 1.96 # Center-of-mass energy - 82 5 9.70 # Luminosity - 82 6 6.10 # Luminosity uncertainty (in %) - 82 7 25.00 # Mass resolution (GeV) - 82 8 125.00 # Mass value at peak position (in GeV) - 82 9 1.9000 # Observed signal strength modifier (mu) - 82 10 1.5200 # Lower 68%C.L. uncertainty on observed mu - 82 11 1.6300 # Upper 68%C.L. uncertainty on observed mu - 82 12 001 # Assigned Higgs combination - 82 13 1 # Index of dominant Higgs boson - 82 14 25 # pdg number of dominant Higgs boson - 82 15 122.6512 # Mass of dominant Higgs boson - 82 16 0.7351 # Signal strength modifier of dominant Higgs boson - 82 17 0.7351 # Total predicted signal strength modifier mu - 82 18 0.5550 # Chi-squared value (mu-part) - 82 19 0.0000 # Chi-squared value (mh-part) - 82 20 0.5550 # Chi-squared value (total) - 82 21 1.5777 # Chi-squared value for no predicted signal (mu=0) - 83 1 130308234 # Analysis ID - 83 2 ||arXiv:1303.0823|| # Reference to publication - 83 3 ||(ppbar)->h->bb|| # Description (Search channel) - 83 4 1.96 # Center-of-mass energy - 83 5 9.70 # Luminosity - 83 6 6.10 # Luminosity uncertainty (in %) - 83 7 25.00 # Mass resolution (GeV) - 83 8 125.00 # Mass value at peak position (in GeV) - 83 9 1.2300 # Observed signal strength modifier (mu) - 83 10 1.1700 # Lower 68%C.L. uncertainty on observed mu - 83 11 1.2400 # Upper 68%C.L. uncertainty on observed mu - 83 12 001 # Assigned Higgs combination - 83 13 1 # Index of dominant Higgs boson - 83 14 25 # pdg number of dominant Higgs boson - 83 15 122.6512 # Mass of dominant Higgs boson - 83 16 1.1325 # Signal strength modifier of dominant Higgs boson - 83 17 1.1325 # Total predicted signal strength modifier mu - 83 18 0.0071 # Chi-squared value (mu-part) - 83 19 0.0000 # Chi-squared value (mh-part) - 83 20 0.0071 # Chi-squared value (total) - 83 21 1.1049 # Chi-squared value for no predicted signal (mu=0) - 84 1 130308231 # Analysis ID - 84 2 ||arXiv:1303.0823|| # Reference to publication - 84 3 ||(ppbar)->h->gammagamma|| # Description (Search channel) - 84 4 1.96 # Center-of-mass energy - 84 5 9.70 # Luminosity - 84 6 6.10 # Luminosity uncertainty (in %) - 84 7 5.00 # Mass resolution (GeV) - 84 8 125.00 # Mass value at peak position (in GeV) - 84 9 4.2000 # Observed signal strength modifier (mu) - 84 10 4.2000 # Lower 68%C.L. uncertainty on observed mu - 84 11 4.6000 # Upper 68%C.L. uncertainty on observed mu - 84 12 001 # Assigned Higgs combination - 84 13 1 # Index of dominant Higgs boson - 84 14 25 # pdg number of dominant Higgs boson - 84 15 122.6512 # Mass of dominant Higgs boson - 84 16 0.6591 # Signal strength modifier of dominant Higgs boson - 84 17 0.6591 # Total predicted signal strength modifier mu - 84 18 0.6982 # Chi-squared value (mu-part) - 84 19 0.0000 # Chi-squared value (mh-part) - 84 20 0.6982 # Chi-squared value (total) - 84 21 1.0071 # Chi-squared value for no predicted signal (mu=0) - 85 1 130308233 # Analysis ID - 85 2 ||arXiv:1303.0823|| # Reference to publication - 85 3 ||(ppbar)->h->tautau|| # Description (Search channel) - 85 4 1.96 # Center-of-mass energy - 85 5 9.70 # Luminosity - 85 6 6.10 # Luminosity uncertainty (in %) - 85 7 25.00 # Mass resolution (GeV) - 85 8 125.00 # Mass value at peak position (in GeV) - 85 9 3.9600 # Observed signal strength modifier (mu) - 85 10 3.3800 # Lower 68%C.L. uncertainty on observed mu - 85 11 4.1100 # Upper 68%C.L. uncertainty on observed mu - 85 12 001 # Assigned Higgs combination - 85 13 1 # Index of dominant Higgs boson - 85 14 25 # pdg number of dominant Higgs boson - 85 15 122.6512 # Mass of dominant Higgs boson - 85 16 1.0080 # Signal strength modifier of dominant Higgs boson - 85 17 1.0080 # Total predicted signal strength modifier mu - 85 18 0.7414 # Chi-squared value (mu-part) - 85 19 0.0000 # Chi-squared value (mh-part) - 85 20 0.7414 # Chi-squared value (total) - 85 21 1.3860 # Chi-squared value for no predicted signal (mu=0) + 4 56 # Number of signal strength peak observables + 5 24 # Number of simplified template cross section (STXS) signal rate observables + 6 20 # Number of LHC Run-1 signal rate observables + 7 2 # Number of Higgs mass observables + 8 102 # Number of observables (total) + 9 72.36597559 # chi^2 (signal strength) from peak observables + 10 49.70540658 # chi^2 (signal strength) from STXS observables + 11 90.74818082 # chi^2 (signal strength) from LHC Run-1 observables + 12 6.64966820 # chi^2 (Higgs mass) from peak observables + 13 0.00000000 # chi^2 (Higgs mass) from STXS observables + 14 0.00000000 # chi^2 (Higgs mass) from LHC Run-1 observables + 15 212.81956299 # chi^2 (signal strength) (total) + 16 6.64966820 # chi^2 (Higgs mass) (total) + 17 219.46923119 # chi^2 (total) + 18 0.02842025 # Probability for peak observables + 19 0.00000000 # Probability for LHC-Run1 observables + 20 0.00154333 # Probability for STXS observables + 21 0.00000000 # Probability (total chi^2, total number observables) Index: trunk/HiggsSignals-2/run_tests.bat =================================================================== --- trunk/HiggsSignals-2/run_tests.bat (revision 574) +++ trunk/HiggsSignals-2/run_tests.bat (revision 575) @@ -1,217 +1,209 @@ #!/bin/bash startdir="$PWD" # Checking for a eps viewer -if hash gv 2>/dev/null; then - openeps=gv -elif hash open 2>/dev/null; then - openeps=open -elif hash ggv 2>/dev/null; then - openeps=ggv -elif hash eog 2>/dev/null; then - openeps=eog -else - echo 'Note: No eps viewer found. The .eps files will not be displayed.' - openeps='#' -fi +# if hash gv 2>/dev/null; then +# openeps=gv +# elif hash open 2>/dev/null; then +# openeps=open +# elif hash ggv 2>/dev/null; then +# openeps=ggv +# elif hash eog 2>/dev/null; then +# openeps=eog +# else +# echo 'Note: No eps viewer found. The .eps files will not be displayed.' +# openeps='#' +# fi # Checking for a eps viewer if hash open 2>/dev/null; then openpdf=open elif hash acroread 2>/dev/null; then openpdf=acroread else echo 'Note: No pdf viewer found. The .pdf files will not be displayed.' openpdf='#' fi # Checking for a gnuplot -if hash gnuplot 2>/dev/null; then - gnplt=gnuplot -else - echo 'Note: Gnuplot not found. Will not run plotting scripts.' - gnplt='#' -fi +# if hash gnuplot 2>/dev/null; then +# gnplt=gnuplot +# else +# echo 'Note: Gnuplot not found. Will not run plotting scripts.' +# gnplt='#' +# fi -if hash python 2>/dev/null; then +if python -c 'import matplotlib' 2>/dev/null; then pthn=python else - echo 'Note: python not found. Will not run plotting scripts.' + echo 'Note: python/matplotlib not found. Will not run plotting scripts.' pthn='#' fi - - echo '*********************************************************************' echo '* Running HiggsSignals test script *' echo '* *' echo '* This may take a while so better go and get a cup of coffee/tea... *' echo '*********************************************************************' echo 'cleaning HiggsSignals distribution...' rm temp_error*.txt temp_output*.txt > /dev/null make hyperclean 2>> temp_error.txt 1>> temp_output.txt echo 'running configure script...' ./configure 2>> temp_error.txt 1>> temp_output.txt echo 'make HiggsSignals...' make HiggsSignals 2>> temp_error.txt 1>> temp_output.txt if [ $(grep -c 'Error' temp_error.txt) == 0 ]; then echo 'Compilation successfully.' else echo 'Compilation failed with' grep 'Error' temp_error.txt echo '---------------------------------------------------------------------' echo 'Here are some things you might want to check:' echo ' - Have you set the HiggsBounds path correctly in the configure script?' echo ' - Does the HiggsBounds library exist?' echo ' - Is it compiled with the same Fortran compiler?' echo '---------------------------------------------------------------------' exit 0 fi echo '---------------------------------------------------------------------' echo ' TEST 1: Run HiggsSignals command-line version on random test points:' echo '---------------------------------------------------------------------' echo './HiggsSignals latestresults peak 2 effC 3 1 example_data/rmhmodplus/mhmod+_' ./HiggsSignals latestresults peak 2 effC 3 1 example_data/mhmodplus/mhmod+_ 2>> temp_error1.txt 1>> temp_output1.txt -# echo './HiggsSignals latestresults peak 2 part 3 1 example_data/random/HB_randomtest50points_' -# ./HiggsSignals latestresults peak 2 part 3 1 example_data/random/HB_randomtest50points_ 2>> temp_error1.txt 1>> temp_output1.txt -# echo './HiggsSignals latestresults peak 2 hadr 3 1 example_data/random/HB_randomtest50points_' -# ./HiggsSignals latestresults peak 2 hadr 3 1 example_data/random/HB_randomtest50points_ 2>> temp_error1.txt 1>> temp_output1.txt -# echo './HiggsSignals latestresults mass 2 effC 3 1 example_data/random/HB_randomtest50points_' -# ./HiggsSignals latestresults mass 2 effC 3 1 example_data/random/HB_randomtest50points_ 2>> temp_error1.txt 1>> temp_output1.txt -# echo './HiggsSignals latestresults mass 2 part 3 1 example_data/random/HB_randomtest50points_' -# ./HiggsSignals latestresults mass 2 part 3 1 example_data/random/HB_randomtest50points_ 2>> temp_error1.txt 1>> temp_output1.txt -# echo './HiggsSignals latestresults mass 2 hadr 3 1 example_data/random/HB_randomtest50points_' -# ./HiggsSignals latestresults mass 2 hadr 3 1 example_data/random/HB_randomtest50points_ 2>> temp_error1.txt 1>> temp_output1.txt -# echo './HiggsSignals latestresults both 2 effC 3 1 example_data/random/HB_randomtest50points_' -# ./HiggsSignals latestresults both 2 effC 3 1 example_data/random/HB_randomtest50points_ 2>> temp_error1.txt 1>> temp_output1.txt -# echo './HiggsSignals latestresults both 2 part 3 1 example_data/random/HB_randomtest50points_' -# /./HiggsSignals latestresults both 2 part 3 1 example_data/random/HB_randomtest50points_ 2>> temp_error1.txt 1>> temp_output1.txt -# echo './HiggsSignals latestresults both 2 hadr 3 1 example_data/random/HB_randomtest50points_' -# ./HiggsSignals latestresults both 2 hadr 3 1 example_data/random/HB_randomtest50points_ 2>> temp_error1.txt 1>> temp_output1.txt - +echo './HiggsSignals latestresults peak 2 hadr 3 1 example_data/rmhmodplus/mhmod+_' +./HiggsSignals latestresults peak 2 hadr 3 1 example_data/mhmodplus/mhmod+_ 2>> temp_error1.txt 1>> temp_output1.txt echo '---------------------------------------------------------------------' echo 'There were' $(grep -c 'WARNING' temp_output1.txt) 'warnings.' echo 'There were' $(grep -c 'Interrupt' temp_error1.txt) 'interrupts.' echo 'There were' $(grep -c 'Error' temp_error1.txt) 'errors.' echo 'There were' $(grep -c 'stop' temp_error1.txt) 'stops.' echo '---------------------------------------------------------------------' echo 'make HiggsSignals example programs...' make HSexamples 2> temp_error.txt 1> temp_output.txt if [ $(grep -c 'Error' temp_error.txt) == 0 ]; then echo 'Compilation successfully.' else echo 'Compilation failed with' grep 'Error' temp_error.txt fi echo '---------------------------------------------------------------------' echo ' TEST 2: Run HiggsSignals example programs:' echo '---------------------------------------------------------------------' -# echo -n '1) Running HSscaleUncertainties...' -# cd example_programs -# ./HSscaleUncertainties 2 > ../temp_error2.txt 1 > ../temp_output2.txt -# if [ $(grep -c 'Error' ../temp_error2.txt) == 0 ] || [ $(grep -c 'stop' ../temp_error2.txt) == 0 ]; then -# echo ' done.' -# echo -n ' Running gnuplot script...' -# cd results -# $gnplt plot_scaleUncertainties.gnu > /dev/null -# echo 'done (created example_programs/results/scaling_mu.eps).' -# $openeps scaling_dmu.eps 2>/dev/null & -# cd .. -# else -# echo ' an error occured. Going to next example...' -# fi -echo -n '2) Running HS_2Higgses...' + +echo -n '1) Running HS_2Higgses...' cd example_programs ./HS_2Higgses 2 > ../temp_error2.txt 1 > ../temp_output2.txt if [ $(grep -c 'Error' ../temp_error2.txt) == 0 ] || [ $(grep -c 'stop' ../temp_error2.txt) == 0 ]; then echo ' done.' echo -n ' Running python script...' cd results $pthn plot_2Higgses.py > /dev/null echo 'done (created example_programs/results/2Higgses.pdf).' $openpdf 2Higgses.pdf 2>/dev/null & cd .. else echo ' an error occured. Going to next example...' fi - -# echo -n '2) Running HShadr...' -# ./HShadr 2 > ../temp_error2.txt 1 > ../temp_output2.txt -# if [ $(grep -c 'Error' ../temp_error2.txt) == 0 ] || [ $(grep -c 'stop' ../temp_error2.txt) == 0 ]; then -# echo ' done.' -# echo -n ' Running gnuplot script...' -# cd results -# $gnplt plot_CSscaling.gnu > /dev/null -# echo 'done (created example_programs/results/CSscaling.eps).' -# $openeps CSscaling.eps 2>/dev/null & -# cd .. -# else -# echo ' an error occured. Going to next example...' -# fi -echo -n '3) Running HSeffC...' +echo -n '2) Running HSeffC...' ./HSeffC 2 > ../temp_error2.txt 1 > ../temp_output2.txt if [ $(grep -c 'Error' ../temp_error2.txt) == 0 ] || [ $(grep -c 'stop' ../temp_error2.txt) == 0 ]; then echo ' done.' - echo -n ' Running gnuplot script...' + echo -n ' Running python script...' cd results - $gnplt plot_HSeffC.gnu > /dev/null - echo 'done (created example_programs/results/Hgg_Hbb.eps).' - $openeps Hgg_Hbb.eps 2>/dev/null & +# $gnplt plot_HSeffC.gnu > /dev/null + $pthn plot_HSeffC.py > /dev/null + echo 'done (created example_programs/results/Hgg_Hbb.pdf).' + $openpdf HSeffC.pdf 2>/dev/null & + cd .. +else + echo ' an error occured. Going to next example...' +fi +echo -n '3) Running HShadr...' +./HShadr 2 > ../temp_error2.txt 1 > ../temp_output2.txt +if [ $(grep -c 'Error' ../temp_error2.txt) == 0 ] || [ $(grep -c 'stop' ../temp_error2.txt) == 0 ]; then + echo ' done.' + echo -n ' Running python script...' + cd results +# $gnplt plot_HSeffC.gnu > /dev/null + $pthn plot_HShadr.py > /dev/null + echo 'done (created example_programs/results/HShadr.pdf).' + $openpdf HShadr.pdf 2>/dev/null & cd .. else echo ' an error occured. Going to next example...' fi echo -n '4) Running HSwithSLHA on provided example SLHA file...' -./HSwithSLHA 1 ../example_data/SLHA/SLHA_FHexample.fh 2> ../temp_error2.txt 1> ../temp_output2.txt +./HSwithSLHA 1 ../example_data/SLHA/MSSMexample.fh 2> ../temp_error2.txt 1> ../temp_output2.txt if [ $(grep -c 'Error' ../temp_error2.txt) == 0 ] || [ $(grep -c 'stop' ../temp_error2.txt) == 0 ]; then echo ' done.' else echo ' an error occured. Going to next example...' fi echo -n '5) Running HBandHSwithSLHA on provided example SLHA file...' -./HBandHSwithSLHA 1 ../example_data/SLHA/SLHA_FHexample.fh 2> ../temp_error2.txt 1> ../temp_output2.txt +./HBandHSwithSLHA 1 ../example_data/SLHA/MSSMexample.fh 2> ../temp_error2.txt 1> ../temp_output2.txt if [ $(grep -c 'Error' ../temp_error2.txt) == 0 ] || [ $(grep -c 'stop' ../temp_error2.txt) == 0 ]; then echo ' done.' else echo ' an error occured. Going to next example...' fi echo -n '6) Running HSwithToys...' ./HSwithToys 2 > ../temp_error2.txt 1 > ../temp_output2.txt if [ $(grep -c 'Error' ../temp_error2.txt) == 0 ]; then echo ' done.' else echo ' an error occured. Going to next example...' fi echo -n '7) Running HS_mass...' ./HS_mass 2 > ../temp_error2.txt 1 > ../temp_output2.txt if [ $(grep -c 'Error' ../temp_error2.txt) == 0 ] || [ $(grep -c 'stop' ../temp_error2.txt) == 0 ]; then echo ' done.' - echo -n ' Running gnuplot script...' + echo -n ' Running python script...' cd results - $gnplt plot_mh.gnu > /dev/null - echo 'done (created example_programs/results/HS_mass.eps).' - $openeps HS_mass.eps 2>/dev/null & + $pthn plot_HS_mass.py > /dev/null + echo 'done (created example_programs/results/HS_mass.pdf).' + $openpdf HS_mass.pdf 2>/dev/null & cd .. else echo ' an error occured. Going to next example...' fi -echo -n '8) Running HS_efficiencies...' +echo -n '8) Running HS_mass with LHC Run 1 results...' +./HS_SM_LHCRun1 2 > ../temp_error2.txt 1 > ../temp_output2.txt +if [ $(grep -c 'Error' ../temp_error2.txt) == 0 ] || [ $(grep -c 'stop' ../temp_error2.txt) == 0 ]; then + echo ' done.' + echo -n ' Running python script...' + cd results + $pthn plot_HS_SM_LHCRun1.py > /dev/null + echo 'done (created example_programs/results/HS_mass.pdf).' + $openpdf HS_SM_LHCRun1.pdf 2>/dev/null & + cd .. +else + echo ' an error occured. Going to next example...' +fi +echo -n '9) Running HSwitSTXS...' +./HSwithSTXS 2 > ../temp_error2.txt 1 > ../temp_output2.txt +if [ $(grep -c 'Error' ../temp_error2.txt) == 0 ]; then + echo ' done.' +else + echo ' an error occured. Going to next example...' +fi + +echo -n '10) Running HS_efficiencies...' ./HS_efficiencies 2 > ../temp_error2.txt 1 > ../temp_output2.txt if [ $(grep -c 'Error' ../temp_error2.txt) == 0 ] || [ $(grep -c 'stop' ../temp_error2.txt) == 0 ]; then echo ' done.' echo -n ' Running gnuplot script...' cd results - $gnplt plot_efficiencies.gnu > /dev/null - echo 'done (created example_programs/results/HS_efficiencies.eps).' - $openeps HS_efficiencies.eps 2>/dev/null & + $pthn plot_efficiencies.py > /dev/null + echo 'done (created example_programs/results/HS_efficiencies.pdf).' + $openpdf HS_efficiencies.pdf 2>/dev/null & cd .. else echo ' an error occured.' fi echo '---------------------------------------------------------------------' echo ' FINISHED WITH ALL TESTS. ENJOY!' echo '---------------------------------------------------------------------' rm -f results/tmp/* \ No newline at end of file Index: trunk/HiggsSignals-2/example_programs/HSeffCwithSTXS.f90 =================================================================== --- trunk/HiggsSignals-2/example_programs/HSeffCwithSTXS.f90 (revision 574) +++ trunk/HiggsSignals-2/example_programs/HSeffCwithSTXS.f90 (revision 575) @@ -1,168 +1,168 @@ !-------------------------------------------------------------------------------------- ! This example program is part of HiggsSignals-2 (TS 29/03/2017). !-------------------------------------------------------------------------------------- !-------------------------------------------------------------------------------------- program HSeffCwithSTXS !-------------------------------------------------------------------------------------- ! In this example we scan over two kappa scale factors, kappaF and kappaV, of the ! 125 GeV Higgs boson, using the effective couplings input. The kappa ! factor for the H to gamma-gamma partial width is derived from the two kappa factors. ! ! The output is written into /results/HSeffC.dat, which can be plotted with the ! python script plot_HSeffC.py in the results folder. !-------------------------------------------------------------------------------------- use theory_colliderSfunctions use STXS use usefulbits, only : vsmall implicit none integer :: nHzero, nHplus, ndf, i, j, k, ii, jj double precision :: obsratio, mass, chisq_tot, pval double precision :: SMGammaTotal double precision :: kappaF, kappaV double precision :: Mh,GammaTotal,ghjss_s,ghjss_p,ghjcc_s,ghjcc_p, & & ghjbb_s,ghjbb_p,ghjtt_s,ghjtt_p, & & ghjmumu_s,ghjmumu_p,ghjtautau_s,ghjtautau_p, & & ghjWW,ghjZZ,ghjZga,ghjgaga,ghjgg, & & ghjhiZ character(len=100)::filename double precision :: dm !-HiggsBounds internal functions to obtain SM branching ratios double precision :: SMBR_Htoptop,SMBR_Hss, SMBR_Hcc, SMBR_Hbb, SMBR_Hmumu, SMBR_Htautau,& & SMBR_HWW, SMBR_HZZ, SMBR_HZgam, SMBR_Hgamgam, SMBR_Hgg,SMGamma_h double precision :: Htogaga_rate, HtoVV_rate, HtoFF_rate nHzero=1 nHplus=0 !--Setting up the output filename='results/HSeffCwithSTXS.dat' open(21,file=filename) write(21,*) '# mh kappaF kappaV Chisq_mu Pval' write(21,*) '#----------------------------#' !--Enter the Higgs mass and its theory uncertainty here: Mh = 125.09D0 dm = 0.0D0 !---- Initialize HiggsSignals and pass the name of the experimental analysis folder ----! call initialize_HiggsSignals_empty(nHzero,nHplus) !---- Set the output level (0: silent, 1: screen output, 2: even more output,...) ----! ! call setup_output_level(0) !---- Set the assignment range for the peak-centered method (optional) ----! ! call setup_assignmentrange_massobservables(4.0D0) !---- Set the Higgs mass parametrization (1: box, 2:gaussian, 3:box+gaussian) ----! ! pdf = 2 ! call setup_pdf(pdf) !---- Pass the Higgs mass uncertainty to HiggsSignals (if relevant) ----! ! call HiggsSignals_neutral_input_MassUncertainty(dm) !---- Set number of free model parameters ----! call setup_Nparam(2) ! call load_STXS("STXS_ATL_H-gaga_13TeV") ! do i=1,71!81 ! do j=1,61!81 ! kappaF = 0.0D0+(i-1)*0.02D0 ! kappaV = 0.6D0+(j-1)*0.01D0 - call load_STXS("STXS_ATL_H-ZZ_13TeV") + call load_STXS("LHC13") - do i=101,101!81 - do j=26,26!1,76!81 + do i=1,101!81 + do j=1,76!81 kappaF = 0.0D0+(i-1)*0.04D0 kappaV = 0.5D0+(j-1)*0.02D0 SMGammaTotal=SMGamma_h(Mh) if(.not. (SMGammaTotal .lt. 0)) then ghjss_s=kappaF ghjss_p=0.0d0 ghjcc_s=kappaF ghjcc_p=0.0d0 ghjbb_s=kappaF ghjbb_p=0.0d0 ghjtt_s=kappaF ghjtt_p=0.0d0 ghjmumu_s=kappaF ghjmumu_p=0.0d0 ghjtautau_s=kappaF ghjtautau_p=0.0d0 ghjWW=kappaV ghjZZ=kappaV ghjZga=kappaV ghjgg=kappaF ghjhiZ=0d0 ghjgaga=sqrt(get_g2hgaga(kappaF,kappaF,kappaF,kappaV,kappaV)) !----Calculate the new total decay width: GammaTotal = SMGammaTotal*(1 + & & (ghjWW**2.0 - 1)*SMBR_HWW(Mh)+(ghjZZ**2.0 - 1)*SMBR_HZZ(Mh) + & & (ghjgg**2.0 - 1)*SMBR_Hgg(Mh)+(ghjtt_s**2.0 - 1)*SMBR_Htoptop(Mh)+ & & (ghjbb_s**2.0 - 1)*SMBR_Hbb(Mh)+(ghjtautau_s**2.0 - 1)*SMBR_Htautau(Mh)+ & & (ghjss_s**2.0 - 1)*SMBR_Hss(Mh)+(ghjcc_s**2.0 - 1)*SMBR_Hcc(Mh)+ & & (ghjZga**2.0 - 1)*SMBR_HZgam(Mh)+(ghjmumu_s**2.0 - 1)*SMBR_Hmumu(Mh)+ & & (ghjgaga**2.0 - 1)*SMBR_Hgamgam(Mh) ) call HiggsBounds_neutral_input_properties(Mh,GammaTotal) call HiggsBounds_neutral_input_effC( & & ghjss_s,ghjss_p,ghjcc_s,ghjcc_p, & & ghjbb_s,ghjbb_p,ghjtt_s,ghjtt_p, & & ghjmumu_s,ghjmumu_p, & & ghjtautau_s,ghjtautau_p, & & ghjWW,ghjZZ,ghjZga, & & ghjgaga,ghjgg,ghjhiZ) call calculate_model_predictions_for_STXS() call get_chisq_from_STXS(chisq_tot, pval) - call print_STXS() +! call print_STXS() ! call run_HiggsSignals( 1, Chisq_mu, Chisq_mh, Chisq, ndf, Pvalue) ! This will get the SM normalized rates for inclusive Higgs production, ! with H-> gamma gamma, VV and FF decays: ! call get_rates(1,4,5,(/11,21,31,41,51/),Htogaga_rate) ! call get_rates(1,4,5,(/12,22,32,42,52/),HtoVV_rate) ! call get_rates(1,4,5,(/14,24,34,44,54/),HtoFF_rate) ! write(*,*) "Htogaga_rate, Chi2 = ", Htogaga_rate, Chisq_mu ! Try new interface: ! call HiggsBounds_neutral_input_hadr_channelrates_single(13,1,1,1,2.0d0*SMBR_Hgamgam(Mh)) ! call run_HiggsSignals( 1, Chisq_mu, Chisq_mh, Chisq, ndf, Pvalue) ! call get_rates(1,4,5,(/11,21,31,41,51/),Htogaga_rate) ! write(*,*) "Htogaga_rate (mod), Chi2 = ", Htogaga_rate, Chisq_mu ! This will collect the main HiggsSignals results together into one file write(21,*) mh,kappaF,kappaV,chisq_tot, pval endif enddo enddo close(21) write(*,*) "Finishing HiggsSignals..." call finish_HiggsSignals contains !************************************************************** function get_g2hgaga(ghbb,ghtt,ghtautau,ghWW,ghZZ) ! Evaluates g2hgaga from other effective couplings, using partial widths informations ! at a Higgs mass of 126 GeV (calculated with HDECAY and taken from ! http://people.web.psi.ch/spira/higgscoup/ ). !************************************************************** double precision, intent(in) :: ghbb,ghtt,ghtautau,ghWW,ghZZ double precision :: get_g2hgaga get_g2hgaga = (ghtt**2)*0.70904D-01 + (ghbb**2)*0.18760D-04 + (ghWW**2)*1.5863 + & & ghtt*ghbb*(-0.17319D-02) + ghtt*ghWW*(-0.67074) + & & ghbb*ghWW*0.82093D-02 + (ghtautau**2)*0.22663E-04 + & & ghtt*ghtautau*(-0.18696E-02) + ghbb*ghtautau*0.41239E-04 +& & ghtautau*ghWW*0.88634E-02 end function get_g2hgaga !************************************************************** end program HSeffCwithSTXS Index: trunk/HiggsSignals-2/example_programs/HSwithSLHA.f90 =================================================================== --- trunk/HiggsSignals-2/example_programs/HSwithSLHA.f90 (revision 574) +++ trunk/HiggsSignals-2/example_programs/HSwithSLHA.f90 (revision 575) @@ -1,186 +1,189 @@ !-------------------------------------------------------------------------------------- program HSwithSLHA !-------------------------------------------------------------------------------------- ! This example program is part of HiggsSignals (TS 29/01/2013). ! ! In this example we demonstrate how HiggsSignals can be run on SLHA files. The SLHA ! file has to contain the two HiggsBounds SLHA input blocks ! HiggsBoundsInputHiggsCouplingsBosons ! HiggsBoundsInputHiggsCouplingsFermions ! (see HiggsBounds (version 3 or more) manual for more details) ! ! Run with ! ./HSwithSLHA npoints ! where npoints is the number of parameter points you would like to ! look at and each parameter point has a corresponding SLHA file ! e.g. the corresponding SLHA for the 5th point should be found at ! .5 ! ! Output: ! The HiggsSignals SLHA output blocks will be added to each SLHA file. ! The results are summarized in an additional file -fromHS ! ! We furthermore demonstrate how to get the signal rates directly from HiggsSignals ! after a successful run. !-------------------------------------------------------------------------------------- use io, only : HiggsSignals_SLHA_output, get_peakinfo_from_HSresults use pc_chisq, only : print_cov_mu_to_file, print_peaks_to_file implicit none - integer :: nH,nHplus,ndf - double precision :: Chisq, Chisq_mu, Chisq_mh, Pvalue - double precision :: dCS(5),dBR(5) + integer :: nH,nHplus,nobs_peak, nobs_STXS, nobs_LHCRun1 + double precision :: Pvalue_peak, Chisq_peak, Chisq_peak_mu, Chisq_peak_mh + double precision :: Pvalue_STXS, Chisq_STXS, Chisq_STXS_rates, Chisq_STXS_mh + double precision :: Pvalue_LHCRun1, Chisq_LHCRun1, Chisq_LHCRun1_mu, Chisq_LHCRun1_mh double precision :: R_H_WW, R_H_ZZ, R_H_gaga, R_H_tautau, R_H_bb, R_VH_bb, & & totalrate, ggf_rate, hgaga_rate, gghgg_rate double precision, allocatable :: dMh(:), masses(:), dmasses(:) integer :: i,npoints integer,parameter :: fileid=78, fileid2=79 character(len=8) :: istring character(len=300) :: inputfilename,outputfilename character(len=300) :: stem character(LEN=300) :: temp, tmpstring integer :: number_args, ios !-------------------------------------------------------------------------------------- nH=3 nHplus=1 allocate(dMh(nH),masses(nH),dmasses(nH)) -!--Give estimates on (relative!) systematic uncertainties for: -! dCS(1) - singleH dBR(1) - gamma gamma -! dCS(2) - VBF dBR(2) - W W -! dCS(3) - HW dBR(3) - Z Z -! dCS(4) - HZ dBR(4) - tau tau -! dCS(5) - ttH dBR(5) - b bbar -!--Enter now the rate uncertainties for your model (typical MSSM estimates): - dCS = (/ 0.20D0, 0.028D0, 0.037D0, 0.051D0, 0.12D0 /) - dBR = (/ 0.054D0, 0.048D0, 0.048D0, 0.061D0, 0.028D0 /) -!--n.b. have to set theoretical uncertainties on Higgs masses dMh (in GeV) for h,H,A: ! These are default values. In SLHA mode, these values are read in from the Block "DMASS". dMh = (/ 2.0D0, 2.0D0, 0.0D0 /) !----------------------------------- preprocessing --------------------------------------! number_args = IARGC() if( number_args .ne. 2)then stop "Incorrect number of arguments given to HSwithSLHA" endif ! Read arguments into text strings. i=1 temp="" call GETARG(i,temp) read(temp,*) npoints i=i+1 temp="" call GETARG(i,temp) stem = "" stem = trim(temp) !------------------------------ HiggsSignals options ------------------------------------! !---- Initialize HiggsSignals and pass the name of the experimental analysis folder ----! - call initialize_HiggsSignals(nH,nHplus,"latestresults") + call initialize_HiggsSignals(nH,nHplus,"LHC13") !---- Set the output level (0: silent, 1: screen output, 2: even more output,...) ----! call setup_output_level(1) !---- Set the Higgs mass parametrization (1: box, 2:gaussian, 3:box+gaussian) ----! call setup_pdf(2) !---- Set the assignment range for the peak-centered method (optional) ----! - call setup_assignmentrange_massobservables(2.0D0) +! call setup_assignmentrange_massobservables(2.0D0) !---- If the mass-centered chi^2 method is used, can specify the dm_theory treatment ----! ! 1: mass variation, 2: smearing of mu-plot with mass pdf ! call setup_mcmethod_dm_theory(1) !---- Use symmetric rate errors? (0: original(default), 1: averaged-symmetrical) ----! ! call setup_symmetricerrors(0) !---- Are SM rate uncertainties included in signal strength measurements? ----! ! (0: no, 1: yes(default) ) ! call setup_thu_observables(1) !---- Allow anti-correlated signal strength measurements? (0: no, 1: yes(default) ) ----! ! call setup_anticorrelations_in_mu(1) !---- outputfilename=trim(adjustl(stem))//'-fromHS' open(fileid, file=trim(outputfilename)) do i=1,npoints if(i.gt.99999999)stop'need to increase the size of istring in HSwithSLHA' write(istring,'(I8)')i inputfilename=trim(adjustl(stem))//'.'//trim(adjustl(istring)) !--Test if input file exists and is non-empty open(fileid2, file=inputfilename, form='formatted') read(fileid2,'(A)',iostat=ios) tmpstring if(ios.eq.0) then close(fileid2) !-------------------------------- HiggsSignals run --------------------------------------! !---- Feed HiggsSignals with the the model input using HiggsBounds subroutine ----! call HiggsBounds_input_SLHA(inputfilename) !---- Checking the Higgs mass uncertainty ----! ! The theoretical Higgs mass uncertainties are read in from the SLHA Block "DMASS" ! in the call of the subroutine HiggsBounds_input_SLHA. If the block "DMASS" is absent, ! they are set to zero. If the user wants to change the values obtained from the SLHA ! file, he/she can call the subroutine ! HiggsSignals_neutral_input_MassUncertainty ! AFTER reading in the SLHA file. ! Here, we only print out the values which have been stored already in ! HiggsBounds/HiggsSignals. If their sum is <= zero, the Block DMASS was probably absent ! and we set the default values as specified above. ! call get_neutral_Higgs_masses(masses, dmasses) write(*,*) "Neutral Higgs boson mass spectrum (from SLHA): " - write(*,'(2X,A,F6.2,A,F4.2)') "mass(h0) = ",masses(1)," +- ",dmasses(1) - write(*,'(2X,A,F6.2,A,F4.2)') "mass(H0) = ",masses(2)," +- ",dmasses(2) - write(*,'(2X,A,F6.2,A,F4.2)') "mass(A0) = ",masses(3)," +- ",dmasses(3) + write(*,'(2X,A,F8.2,A,F4.2)') "mass(h0) = ",masses(1)," +- ",dmasses(1) + write(*,'(2X,A,F8.2,A,F4.2)') "mass(H0) = ",masses(2)," +- ",dmasses(2) + write(*,'(2X,A,F8.2,A,F4.2)') "mass(A0) = ",masses(3)," +- ",dmasses(3) if(sum(dmasses).le.0.0D0) then write(*,*) "BLOCK DMASS not found, changing mass uncertainies to ", dMh call HiggsSignals_neutral_input_MassUncertainty(dMh) endif -!---- Set the production and decay rate uncertainties for the model ----! - call setup_rate_uncertainties(dCS, dBR) -!---- Run HiggsSignals (runmode: 1 (peak-centered), 2 (mass-centered), 3 (both) - call run_HiggsSignals(1, Chisq_mu, Chisq_mh, Chisq, ndf, Pvalue) +!---- Run HiggsSignals on peak observables (13 TeV) + call run_HiggsSignals(1,Chisq_peak_mu,Chisq_peak_mh,Chisq_peak,nobs_peak,Pvalue_peak) +!---- Run HiggsSignals on STXS observables (13 TeV) + call run_HiggsSignals_STXS(Chisq_STXS_rates,Chisq_STXS_mh,Chisq_STXS,nobs_STXS,Pvalue_STXS) +!---- Run HiggsSignals on LHC Run 1 observables (7/8 TeV) + call run_HiggsSignals_LHC_Run1_combination(Chisq_LHCRun1_mu,Chisq_LHCRun1_mh,& + & Chisq_LHCRun1, nobs_LHCRun1, Pvalue_LHCRun1) + call complete_HS_results() !----------------------------- HiggsSignals output --------------------------------------! !---- Attach HiggsSignals SLHA blocks to SLHA file ----! ! integer argument gives level of details: ! 0 : writes only HiggsSignalsResults block ! else : writes all blocks - call HiggsSignals_SLHA_output(1) + call HiggsSignals_SLHA_output(0) !---- Now, some examples of how to read out the signal rates. Note, that these subroutines ! have to be called after run_HiggsSignals ! -!---- Get signal-rate ratios (without efficiencies) for lightest Higgs boson and LHC8----! - call get_Rvalues(1, 3, R_H_WW, R_H_ZZ, R_H_gaga, R_H_tautau, R_H_bb, R_VH_bb) +!---- Get signal-rate ratios (without efficiencies) for lightest Higgs boson and LHC13----! + call get_Rvalues(1, 4, R_H_WW, R_H_ZZ, R_H_gaga, R_H_tautau, R_H_bb, R_VH_bb) !---- Get the total signal rate (without efficiencies) ----! - call get_rates(1,3,25,(/11,12,13,14,15,21,22,23,24,25,31,32,33,34,35, & -& 41,42,43,44,45,51,52,53,54,55/),totalrate) +! call get_rates(1,3,25,(/11,12,13,14,15,21,22,23,24,25,31,32,33,34,35, & +! & 41,42,43,44,45,51,52,53,54,55/),totalrate) + call get_rates_str(1,4,25,(/"1.1","1.2","1.3","1.4","1.5","2.1","2.2","2.3","2.4","2.5",& + & "3.1","3.2","3.3","3.4","3.5","4.1","4.2","4.3","4.4","4.5","5.1","5.2","5.3","5.4",& + & "5.5"/),totalrate) !---- Get the gluon gluon fusion rate (without efficiencies) ----! - call get_rates(1,3,1,(/10/),ggf_rate) +! call get_rates(1,3,1,(/10/),ggf_rate) + call get_rates_str(1,4,1,(/"1.0"/),ggf_rate) !---- Get the H -> gamma gamma rate (without efficiencies) ----! - call get_rates(1,3,1,(/01/),hgaga_rate) +! call get_rates(1,3,1,(/01/),hgaga_rate) + call get_rates_str(1,4,1,(/"0.1"/),hgaga_rate) ! NEW SINCE HiggsSignals-1.1.0: more decay modes accessible via get_rates: ! Decay mode ID (Final state): 6 (Zgamma), 7 (cc), 8 (mumu), 9 (gg) !---- Get the gg->H->gg (without efficiencies) ----! - call get_rates(1,3,1,(/19/),gghgg_rate) +! call get_rates(1,3,1,(/19/),gghgg_rate) + call get_rates_str(1,4,1,(/"1.9"/),gghgg_rate) write(*,'(A,F10.4)') "R_H_WW = ", R_H_WW write(*,'(A,F10.4)') "R_H_ZZ = ", R_H_ZZ write(*,'(A,F10.4)') "R_H_gaga = ", R_H_gaga write(*,'(A,F10.4)') "R_H_tautau = ", R_H_tautau write(*,'(A,F10.4)') "R_H_bb = ", R_H_bb write(*,'(A,F10.4)') "R_VH_bb = ", R_VH_bb write(*,'(A,F10.4)') "totalrate = ", totalrate write(*,'(A,F10.4)') "ggf_rate = ", ggf_rate write(*,'(A,F10.4)') "h->gaga = ", hgaga_rate write(*,'(A,F10.4)') "gg->h->gg = ", gghgg_rate !--This will collect the main HiggsSignals results together into one file - write(fileid,*)i,Pvalue,Chisq,Chisq_mu,Chisq_mh,ndf + write(fileid,*) i,Chisq_peak_mu+Chisq_STXS_rates+Chisq_LHCRun1_mu,& + & Chisq_peak_mh+Chisq_STXS_mh+Chisq_LHCRun1_mh,& + & nobs_peak+nobs_STXS+nobs_LHCRun1 else close(fileid2) call system("rm -f "//inputfilename) endif enddo close(fileid) ! call print_peaks_to_file ! call print_cov_mu_to_file call finish_HiggsSignals end program HSwithSLHA \ No newline at end of file Index: trunk/HiggsSignals-2/example_programs/HSwithToys.f90 =================================================================== --- trunk/HiggsSignals-2/example_programs/HSwithToys.f90 (revision 574) +++ trunk/HiggsSignals-2/example_programs/HSwithToys.f90 (revision 575) @@ -1,184 +1,208 @@ !-------------------------------------------------------------------------------------- program HSwithToys ! ! This example program is part of HiggsSignals (TS 25/01/2013). !-------------------------------------------------------------------------------------- ! This example program shows how HiggsSignals (HS) can be run on toy experiments. We ! first run HS with SM input with a Higgs mass of 126 GeV. From the result of this ! run we can obtain the predicted signal strength modifiers for each peak observable ! directly from HiggsSignals. As a demonstration, these are then set as observed (toy) ! signal rates of the various observables. We then re-run HiggsSignals on the new ! observables on the same model, i.e. observed and predicted signal rates are equal, ! thus the resulting chi^2 should be zero. !-------------------------------------------------------------------------------------- use theory_colliderSfunctions use usefulbits, only : vsmall use usefulbits_hs,only : analyses use pc_chisq, only : print_peaks_to_LaTeX,print_cov_mu_to_file use io, only : get_peakinfo_from_HSresults, get_number_of_observables,& & get_ID_of_peakobservable, HiggsSignals_create_SLHA_output,& & HiggsSignals_create_SLHA_output_default implicit none integer :: nH,nHplus,ndf, ii, jj, kk double precision :: Chisq, Chisq_mu, Chisq_mh, Pvalue ! double precision, allocatable :: dMh(:) ! double precision :: dCS(5),dBR(5),dggh, dbbh double precision :: SMGamma_h, dMh double precision :: Mh,GammaTotal,ghjss_s,ghjss_p,ghjcc_s,ghjcc_p, & & ghjbb_s,ghjbb_p,ghjtt_s,ghjtt_p, & & ghjmumu_s,ghjmumu_p,ghjtautau_s,ghjtautau_p, & & ghjWW,ghjZZ,ghjZga,ghjgaga,ghjgg, & & ghjhiZ double precision :: mupred integer :: domH, nHcomb integer :: ntotal, npeakmu, npeakmh, nmpred, nanalyses, ID integer :: i,npoints character(len=8) :: istring character(len=300) :: inputfilename,outputfilename character(len=300) :: stem character(LEN=300) :: temp integer :: number_args, stat double precision :: SMCS_lhc13_gg_H,SMCS_lhc13_bb_H,SMCS_lhc13_vbf_H,& & SMCS_lhc13_HW, SMCS_lhc13_HZ, SMCS_lhc13_ttH,SMBR_Hbb,SMBR_Hmumu,SMBR_Htautau,& & SMBR_HWW,SMBR_HZZ + double precision :: Chisq_peak_mu, Chisq_peak_mh, Chisq_peak, Pvalue_peak double precision :: Chisq_STXS_rates, Chisq_STXS_mh, Chisq_STXS, Pvalue_STXS - integer :: nobs_STXS + double precision :: Chisq_LHCRun1_mu, Chisq_LHCRun1_mh, Chisq_LHCRun1, Pvalue_LHCRun1 + integer :: nobs_STXS, nobs_peak, nobs_LHCRun1 nH=1 nHplus=0 Mh = 125.09D0 dMh = 0.0D0 !-------------------------- HiggsSignals ------------------------------! !---- Initialize HiggsSignals and pass the name of the experimental analysis folder ----! call initialize_HiggsSignals(nH,nHplus,"LHC13") ! call initialize_HiggsSignals(nH,nHplus,"latestresults-1.4.0-LHCinclusive") ! call setup_thu_observables(1) !---- Set the Higgs mass parametrization (1: box, 2:gaussian, 3:box+gaussian) ----! call setup_pdf(2) !---- Set the output level (0: silent, 1: screen output, 2: even more output,...) ----! call setup_output_level(3) !---- Pass the Higgs mass uncertainty to HiggsSignals ----! call HiggsSignals_neutral_input_MassUncertainty(dMh) !---- Use symmetric rate errors? (0: original(default), 1: averaged-symmetrical) ----! ! call setup_symmetricerrors(0) !---- Allow anti-correlated signal strength measurements? (0: no, 1: yes(default) ) ----! ! call setup_anticorrelations_in_mu(1) !---- Setup a wider assignment range ----! - call setup_assignmentrange_massobservables(4.0D0) - call setup_assignmentrange_LHCRun1(10.0D0) +! call setup_assignmentrange_massobservables(4.0D0) +! call setup_assignmentrange_LHCRun1(10.0D0) write(*,*) 'gg->H = ', SMCS_lhc13_gg_H(Mh) write(*,*) 'bb->H = ', SMCS_lhc13_bb_H(Mh) write(*,*) 'pp->H = ', SMCS_lhc13_gg_H(Mh)+SMCS_lhc13_bb_H(Mh) write(*,*) 'pp->Hqq = ', SMCS_lhc13_vbf_H(Mh) write(*,*) 'pp->HW = ', SMCS_lhc13_HW(Mh) write(*,*) 'pp->HZ = ', SMCS_lhc13_HZ(Mh) write(*,*) 'pp->Htt = ', SMCS_lhc13_ttH(Mh) write(*,*) 'BR(H->bb) = ', SMBR_Hbb(Mh) write(*,*) 'BR(H->mumu) = ', SMBR_Hmumu(Mh) write(*,*) 'BR(H->tautau) = ', SMBR_Htautau(Mh) write(*,*) 'BR(H->WW) = ', SMBR_HWW(Mh) write(*,*) 'BR(H->ZZ) = ', SMBR_HZZ(Mh) !----HiggsBounds/Signals effective couplings input. ! These have to be inserted for the model which we want to test, i.e. we would have ! to write an interface to set via arguments in the executables call, or reading ! in a text file, etc. !----For now, we set them by hand to the SM values (for demonstration): ghjss_s=1d0 ghjss_p=0d0 ghjcc_s=1d0 ghjcc_p=0d0 ghjbb_s=1d0 ghjbb_p=0d0 ghjtt_s=1d0 ghjtt_p=0d0 ghjmumu_s=1d0 ghjmumu_p=0d0 ghjtautau_s=1d0 ghjtautau_p=0d0 ghjWW=1d0 ghjZZ=1d0 ghjZga=1d0 ghjgaga=1d0 ghjgg=1d0 ghjhiZ=0d0 GammaTotal=SMGamma_h(Mh) call HiggsBounds_neutral_input_properties(Mh,GammaTotal) call HiggsBounds_neutral_input_effC( & & ghjss_s,ghjss_p,ghjcc_s,ghjcc_p, & & ghjbb_s,ghjbb_p,ghjtt_s,ghjtt_p, & & ghjmumu_s,ghjmumu_p, & & ghjtautau_s,ghjtautau_p, & & ghjWW,ghjZZ,ghjZga, & & ghjgaga,ghjgg,ghjhiZ) !-Run HS on the original experimental data in order to evaluate the model predictions - call run_HiggsSignals(1, Chisq_mu, Chisq_mh, Chisq, ndf, Pvalue) + call run_HiggsSignals(1, Chisq_peak_mu, Chisq_peak_mh, Chisq_peak, nobs_peak, & + & Pvalue_peak) - call run_HiggsSignals_LHC_Run1_combination(Chisq_mu, Chisq_mh, Chisq, ndf, Pvalue) + call run_HiggsSignals_LHC_Run1_combination(Chisq_LHCRun1_mu, Chisq_LHCRun1_mh, & + & Chisq_LHCRun1, nobs_LHCRun1, Pvalue_LHCRun1) call run_HiggsSignals_STXS(Chisq_STXS_rates, Chisq_STXS_mh, Chisq_STXS,& & nobs_STXS, Pvalue_STXS) - write(*,*) Chisq_STXS_rates, Chisq_STXS_mh, Chisq_STXS, nobs_STXS, Pvalue_STXS + call complete_HS_results() + + write(*,*) "#--------------------------------------------------#" + write(*,*) " Results for SM Higgs boson (M=",Mh,") with original data:" + write(*,*) "#--------------------------------------------------#" + write(*,*) " Chi^2_mu (peak, STXS, LHC-run1):" , Chisq_peak_mu, Chisq_STXS_rates, Chisq_LHCRun1_mu + write(*,*) " Chi^2_mh (peak, STXS, LHC-run1):" , Chisq_peak_mh, Chisq_STXS_mh, Chisq_LHCRun1_mh + write(*,*) " Nobs (peak, STXS, LHC-run1)", nobs_peak, nobs_STXS, nobs_LHCRun1 + write(*,*) "#--------------------------------------------------#" !-Print out the observables to a LaTeX table ! call print_peaks_to_LaTeX ! call print_cov_mu_to_file +!-- Now, we modify the peak observables by toy-values (in this example, toy values are the SM predictions!) + !-Get the number of the peak-observables (Don't care about ntotal, npeakmh, nmpred, nanalyses) call get_number_of_observables(ntotal, npeakmu, npeakmh, nmpred, nanalyses) !-We now want to set the measurements to those values predicted by the model. !-The mass measurement for each peak observable will be set to Mh here. !-Loop over the number of peak observables do kk=1,npeakmu !--Get for each peak observable its unique ID: call get_ID_of_peakobservable(kk, ID) !--Get the predicted signal strength modifier (mupred) for this peak observable: call get_peakinfo_from_HSresults(ID, mupred, domH, nHcomb) !--Assign this value as (toy) measurement for this peak observable: call assign_toyvalues_to_peak(ID, mupred, Mh) enddo call setup_output_level(0) !-Do a print-out to the screen !-Set the HiggsSignals input (again!) call HiggsBounds_neutral_input_effC( & & ghjss_s,ghjss_p,ghjcc_s,ghjcc_p, & & ghjbb_s,ghjbb_p,ghjtt_s,ghjtt_p, & & ghjmumu_s,ghjmumu_p, & & ghjtautau_s,ghjtautau_p, & & ghjWW,ghjZZ,ghjZga, & & ghjgaga,ghjgg,ghjhiZ) !-Now, we run on the toy observables with the same input, i.e. model predictions and !-measurements are equal and thus the chi^2 should be zero. - call run_HiggsSignals(1, Chisq_mu, Chisq_mh, Chisq, ndf, Pvalue) + call run_HiggsSignals(1, Chisq_peak_mu, Chisq_peak_mh, Chisq_peak, nobs_peak, & + & Pvalue_peak) + + call run_HiggsSignals_LHC_Run1_combination(Chisq_LHCRun1_mu, Chisq_LHCRun1_mh, & + & Chisq_LHCRun1, nobs_LHCRun1, Pvalue_LHCRun1) + call run_HiggsSignals_STXS(Chisq_STXS_rates, Chisq_STXS_mh, Chisq_STXS,& +& nobs_STXS, Pvalue_STXS) + + + + call complete_HS_results() !-Create a new SLHA file with the HiggsSignals output blocks. !-The second argument controls how much is written ! (0: only the BLOCK 'HiggsSignalsResults', 1: full HiggsSignals SLHA output) !-The new file must not exist: ! (note: this system call does not work with ifort) call system('rm -f results/HSwithToys.slha',status=stat) call HiggsSignals_create_SLHA_output("results/HSwithToys.slha",0) !-Alternatively, we could use ! call HiggsSignals_create_SLHA_output_default(0) !-where the filename is set to "HS-output.slha". call finish_HiggsSignals end program HSwithToys !-------------------------------------------------------------------------------------- Index: trunk/HiggsSignals-2/example_programs/HShadrwithSTXS.f90 =================================================================== --- trunk/HiggsSignals-2/example_programs/HShadrwithSTXS.f90 (revision 574) +++ trunk/HiggsSignals-2/example_programs/HShadrwithSTXS.f90 (revision 575) @@ -1,153 +1,153 @@ !****************************************************** ! This example program is part of HiggsSignals-2 (TS 29/03/2017). !****************************************************** program HShadrwithSTXS ! This example program uses the hadronic cross section input format ! to scan over the two scale factors: ! scale_ggf scales the SM single Higgs production cross section ! scale_VBF scales the SM VBF production cross section ! The remaining cross sections (ttH, VH) are fixed to their SM values. ! We use a set of Simplified Template Cross Section (STXS) measurements ! for the chi-2 test. ! ! The output is written into /results/HShadrwithSTXS.dat, which can be plotted with the ! python script plot_HShadr.py in the results folder. !****************************************************** use STXS implicit none integer :: nHzero,nHplus,ndf, i, j, k, ii, jj, CP_value double precision :: Pvalue,Chisq,Chisq_mu,Chisq_mh,scale_ggf,scale_VBF double precision :: SMGammaTotal, SMGamma_h double precision :: SMBR_Htoptop,SMBR_Hss, SMBR_Hcc, SMBR_Hbb, SMBR_Htt, & & SMBR_Hmumu, SMBR_Htautau, SMBR_HWW, SMBR_HZZ, SMBR_HZgam, SMBR_Hgamgam, SMBR_Hgg ! Entries of CS arrays: TEV, LHC7, LHC8, LHC13 double precision :: Mh,GammaTotal,CS_hj_ratio(4), & & CS_gg_hj_ratio(4),CS_bb_hj_ratio(4), & & CS_hjW_ratio(4),CS_hjZ_ratio(4), & & CS_vbf_ratio(4),CS_tthj_ratio(4), & & CS_hjhi(4),CS_thj_schan_ratio(4), & & CS_thj_tchan_ratio(4), & & BR_hjss,BR_hjcc, & & BR_hjbb,BR_hjtt, & & BR_hjmumu, & & BR_hjtautau, & & BR_hjWW,BR_hjZZ,BR_hjZga,BR_hjgaga, & & BR_hjgg character(len=100)::filename double precision :: dm integer :: collider,collider_s nHzero=1 nHplus=0 dm = 0.0D0 !---- Initialize HiggsSignals and pass the name of the experimental analysis folder ----! call initialize_HiggsSignals_empty(nHzero,nHplus) - call load_STXS("STXS_ATL_H-ZZ_13TeV") + call load_STXS("LHC13") !---- Set the output level (0: silent, 1: screen output, 2: even more output,...) ----! ! call setup_output_level(0) !---- Set the Higgs mass parametrization (1: box, 2:gaussian, 3:box+gaussian) ----! ! call setup_pdf(2) !---- Set the assignment range for the peak-centered method (optional) ----! ! call setup_assignmentrange_massobservables(4.0D0) !---- Pass the Higgs mass uncertainty to HiggsSignals ----! ! call HiggsSignals_neutral_input_MassUncertainty(dm) !---- Set number of free model parameters ----! call setup_Nparam(2) !---- Open output text file ----! filename='results/HShadrwithSTXS.dat' open(21,file=filename) write(21,*) '# Mh scale_ggf scale_VBF Chisq Pvalue' write(21,*) '#--------------------------------------------------------------------------' do i=1,81 do j=1,201 scale_ggf = 0.0D0 +(i-1)*0.025D0 scale_VBF = 0.0D0 +(j-1)*0.05D0 ! do i=1,2 ! do j=1,2 ! scale_ggf = 1.0D0 +(i-1)*1.D0 ! scale_VBF = 1.0D0 +(j-1)*1.D0 write(*,*) "kappa_ggf , kappa_VBF = ", scale_ggf, scale_VBF Mh=125.09D0 SMGammaTotal=SMGamma_h(Mh) if(.not. (SMGammaTotal .lt. 0)) then GammaTotal=SMGammaTotal ! CP even CP_value=1 ! This applies to all 4 elements: CS_hj_ratio=1.0D0*scale_ggf CS_gg_hj_ratio=1.0D0*scale_ggf CS_bb_hj_ratio=1.0D0*scale_ggf CS_hjW_ratio=1.0D0 CS_hjZ_ratio=1.0D0 CS_vbf_ratio=1.0D0*scale_VBF CS_tthj_ratio=1.0D0 CS_hjhi=0.0D0 CS_thj_tchan_ratio=1.0D0 CS_thj_schan_ratio=1.0D0 BR_hjss=SMBR_Hss(Mh) BR_hjcc=SMBR_Hcc(Mh) BR_hjbb=SMBR_Hbb(Mh) BR_hjmumu=SMBR_Hmumu(Mh) BR_hjtautau=SMBR_Htautau(Mh) BR_hjWW=SMBR_HWW(Mh) BR_hjZZ=SMBR_HZZ(Mh) BR_hjZga=SMBR_HZgam(Mh) BR_hjgaga=SMBR_Hgamgam(Mh) BR_hjgg=SMBR_Hgg(Mh) call HiggsBounds_neutral_input_properties(Mh,GammaTotal,CP_value) do collider=1,4 select case(collider) case(1) collider_s = 2 case(2) collider_s = 7 case(3) collider_s = 8 case(4) collider_s = 13 end select call HiggsBounds_neutral_input_hadr(collider_s,CS_hj_ratio(collider), & & CS_gg_hj_ratio(collider),CS_bb_hj_ratio(collider), & & CS_hjW_ratio(collider),CS_hjZ_ratio(collider), & & CS_vbf_ratio(collider),CS_tthj_ratio(collider), & & CS_thj_tchan_ratio(collider),CS_thj_schan_ratio(collider), & & CS_hjhi(collider)) enddo call HiggsBounds_neutral_input_SMBR(BR_hjss,BR_hjcc,BR_hjbb,BR_hjtt, & & BR_hjmumu,BR_hjtautau,BR_hjWW,BR_hjZZ, & & BR_hjZga,BR_hjgaga,BR_hjgg) call calculate_model_predictions_for_STXS() call get_chisq_from_STXS(Chisq, Pvalue) ! call print_STXS() ! call run_HiggsSignals(1, Chisq_mu, Chisq_mh, Chisq, ndf, Pvalue) write(21,*) Mh,scale_ggf,scale_VBF,Chisq,Pvalue endif enddo enddo close(21) call finish_HiggsSignals end program HShadrwithSTXS Index: trunk/HiggsSignals-2/example_programs/HSwithSTXS.f90 =================================================================== --- trunk/HiggsSignals-2/example_programs/HSwithSTXS.f90 (revision 574) +++ trunk/HiggsSignals-2/example_programs/HSwithSTXS.f90 (revision 575) @@ -1,73 +1,83 @@ - +!****************************************************** +! This example program is part of HiggsSignals-2 (TS 09/08/2018). +!****************************************************** program HSwithSTXS +! This example program runs on a model with inclusive XS equal to the SM. +! We then modify the relative signal efficiency (r-value) of one STXS bin +! in the range [0,2]. +!****************************************************** + + use STXS use theory_BRfunctions implicit none double precision :: BR_hjss,BR_hjcc,BR_hjbb, & & BR_hjtt,BR_hjmumu, BR_hjtautau,BR_hjWW, & & BR_hjZZ,BR_hjZga,BR_hjgaga, BR_hjgg, GammaTotal, & & chisq_tot, pval double precision :: scale integer :: i call initialize_HiggsSignals_empty(1,0) call load_STXS("LHC13_CMS_H-ZZ_36.1fb01_Higgs-pT") ! Take SM predictions at 125 GeV GammaTotal=BRSM_GammaTot(125.0D0) BR_hjss = BRSM_Hss(125.0D0) BR_hjcc = BRSM_Hcc(125.0D0) BR_hjbb = BRSM_Hbb(125.0D0) BR_hjtt = BRSM_Htoptop(125.0D0) BR_hjmumu = BRSM_Hmumu(125.0D0) BR_hjtautau = BRSM_Htautau(125.0D0) BR_hjWW = BRSM_HWW(125.0D0) BR_hjZZ = BRSM_HZZ(125.0D0) BR_hjZga = BRSM_HZga(125.0D0) BR_hjgaga = BRSM_Hgaga(125.0D0) BR_hjgg = BRSM_Hgg(125.0D0) call HiggsBounds_neutral_input_properties(125.0D0,GammaTotal,1) -do i=1,11 -scale = 0.1*(i-1) + +!do i=11,11 +!scale = 0.1*(i-1) + +scale = 1.0D0 call HiggsBounds_neutral_input_hadr_single(13,"XS_hj_ratio",1.0D0) call HiggsBounds_neutral_input_hadr_single(13,"XS_vbf_ratio",scale) call HiggsBounds_neutral_input_hadr_single(13,"XS_hjZ_ratio",scale) call HiggsBounds_neutral_input_hadr_single(13,"XS_hjW_ratio",scale) call HiggsBounds_neutral_input_hadr_single(13,"XS_tthj_ratio",scale) call HiggsBounds_neutral_input_SMBR(BR_hjss,BR_hjcc,BR_hjbb, & & BR_hjtt,BR_hjmumu, & & BR_hjtautau,BR_hjWW, & & BR_hjZZ,BR_hjZga,BR_hjgaga, & & BR_hjgg) -! call load_STXS("STXS_ATL_H-gaga_13TeV") -! -! call load_STXS("LHC13") -! do i=1,11 -! call assign_modelefficiencies_to_STXS(1712023045, 1, (/ 1.0D0 + 0.1D0*(i-1) /)) -! call calculate_model_predictions_for_STXS -! call get_chisq_from_STXS(chisq_tot, pval) -! write(*,*) "r-value, chisq, pval = ", 1.0D0 + 0.1D0*(i-1), chisq_tot, pval -! enddo + +write(*,*) "Modifying r-value of STXS observable with ID = 99365 (bin 5):" +do i=1,21 + call assign_modelefficiencies_to_STXS(99365, 5, (/ 0.0D0 + 0.1D0*(i-1),1.0D0,1.0D0,1.0D0,1.0D0 /)) + call calculate_model_predictions_for_STXS + call get_chisq_from_STXS(chisq_tot, pval) + write(*,*) "r-value, chisq, pval = ", 0.0D0 + 0.1D0*(i-1), chisq_tot, pval +enddo ! call load_STXS("STXS_ATL_H-ZZ_13TeV") ! call load_STXS("LHC13") - call calculate_model_predictions_for_STXS - call get_chisq_from_STXS(chisq_tot, pval) - write(*,*) "chisq, pval = ", chisq_tot, pval +! call calculate_model_predictions_for_STXS +! call get_chisq_from_STXS(chisq_tot, pval) +! write(*,*) "chisq, pval = ", chisq_tot, pval -enddo +!enddo ! call print_STXS() end program HSwithSTXS \ No newline at end of file Index: trunk/HiggsSignals-2/example_programs/HS_mass.f90 =================================================================== --- trunk/HiggsSignals-2/example_programs/HS_mass.f90 (revision 574) +++ trunk/HiggsSignals-2/example_programs/HS_mass.f90 (revision 575) @@ -1,142 +1,173 @@ !-------------------------------------------------------------------------------------- ! This example program is part of HiggsSignals (TS 26/09/2013). !-------------------------------------------------------------------------------------- program HS_mass ! In this example the peak-centered chi^2 method is applied to a SM-like Higgs boson ! (overall signal strength scale factor mu) within the mass range 110 - 140 GeV. ! All three mass pdf choices are considered. Theoretical mass uncertainties and ! assignment range can be changed. !-------------------------------------------------------------------------------------- use theory_colliderSfunctions use usefulbits, only : vsmall use pc_chisq, only : print_cov_mh_to_file,print_cov_mu_to_file,print_inverse_cov_mh_to_file,& & get_peakchi2, print_corr_mu_to_file use io, only : get_number_of_observables,get_ID_of_peakobservable,get_peakinfo_from_HSresults implicit none - integer :: nHzero, nHplus, ndf, i, j, k, ii, jj - double precision :: obsratio, mass, Pvalue, Chisq, mu, Chisq_mu, Chisq_mh, Lambda + integer :: nHzero, nHplus, i, j, k, ii, jj + double precision :: obsratio, mass, Lambda double precision :: SMGammaTotal double precision :: Mh,GammaTotal,ghjss_s,ghjss_p,ghjcc_s,ghjcc_p, & & ghjbb_s,ghjbb_p,ghjtt_s,ghjtt_p, & & ghjmumu_s,ghjmumu_p,ghjtautau_s,ghjtautau_p, & & ghjWW,ghjZZ,ghjZga,ghjgaga,ghjgg, & & ghjhiZ character(len=100)::filename double precision :: dm integer :: pdf integer :: ntotal, npeakmu, npeakmh, nmpred, nanalyses, ID, domH, nHcomb, Nassigned + + double precision :: Chisq_peak_mu, Chisq_peak_mh, Chisq_peak, Pvalue_peak + double precision :: Chisq_STXS_rates, Chisq_STXS_mh, Chisq_STXS, Pvalue_STXS + double precision :: Chisq_LHCRun1_mu, Chisq_LHCRun1_mh, Chisq_LHCRun1, Pvalue_LHCRun1 + integer :: nobs_STXS, nobs_peak, nobs_LHCRun1 + + double precision :: mupred double precision, allocatable :: csqmu(:),csqmh(:),csqmax(:),csqtot(:) integer, allocatable :: ncomb(:) !-HiggsBounds internal functions to obtain SM branching ratios double precision :: SMBR_Htoptop,SMBR_Hss, SMBR_Hcc, SMBR_Hbb, SMBR_Hmumu, SMBR_Htautau,& & SMBR_HWW, SMBR_HZZ, SMBR_HZgam, SMBR_Hgamgam, SMBR_Hgg,SMGamma_h - + logical :: use_assignmentrange + nHzero=1 nHplus=0 !---- Initialize HiggsSignals and pass the name of the experimental analysis folder ----! - call initialize_HiggsSignals(nHzero,nHplus,"latestresults") + call initialize_HiggsSignals(nHzero,nHplus,"LHC13") ! call initialize_HiggsSignals(nHzero,nHplus,"latestresults-1.4.0-LHCinclusive") !---- Set the output level (0: silent, 1: screen output, 2: even more output,...) ----! call setup_output_level(0) !--Enter the Higgs mass and its theory uncertainty here: - dm = 2.0D0 + dm = 1.0D0 Lambda = 1.0D0 + use_assignmentrange = .False. !---- Pass the Higgs mass uncertainty to HiggsSignals ----! call HiggsSignals_neutral_input_MassUncertainty(dm) -!---- Set the assignment range for the peak-centered method (optional) ----! -! This can be done either to all observables or only to the -! mass-sensitive observables, which contribute to the Higgs mass chi^2 -! call setup_assignmentrange(Lambda) - call setup_assignmentrange_massobservables(Lambda) +!---- Set the assignment range for various observables ----! +! Could have different values, too... +if(use_assignmentrange) then + call setup_assignmentrange(Lambda) + call setup_assignmentrange_massobservables(Lambda) + call setup_assignmentrange_LHCrun1(Lambda) + call setup_assignmentrange_STXS(Lambda) +else + Lambda = 0.0D0 +endif + +! Normalize rate prediction w.r.t. predicted Higgs mass (for any mass): + call setup_rate_normalization(.False.,.False.) +! Instead, normalize rate prediction w.r.t. observed Higgs mass (for any predicted mass): +! call setup_rate_normalization(.True.,.True.) -! call setup_correlations(1,1) ! mu, mass do pdf=1,3 !---- Set the Higgs mass parametrization (1: box, 2:gaussian, 3:box+gaussian) ----! call setup_pdf(pdf) select case(pdf) case(1) filename='results/HS_mass_pdf1.dat' case(2) filename='results/HS_mass_pdf2.dat' case(3) filename='results/HS_mass_pdf3.dat' case default end select open(21,file=filename) write(21,*) '# mh dmh Chisq_mu Chisq_mh Chisq Nassigned ndf Lambda' write(21,*) '#----------------------------------------------------' do j=1,101 !181,181! mh = 120.0D0 +(j-1)*0.1D0 SMGammaTotal=SMGamma_h(Mh) ! SMGamma_h(Mh), SMBR_Hgg(Mh), SMBR_Hgg(Mh) are set to -1 if called ! with Mh out of range [0.8 GeV, 500 GeV]. The calculation is then bypassed. if(.not. (SMGammaTotal .lt. 0)) then ghjss_s=1.0d0 ghjss_p=0.0d0 ghjcc_s=1.0d0 ghjcc_p=0.0d0 ghjbb_s=1.0d0 ghjbb_p=0.0d0 ghjtt_s=1.0d0 ghjtt_p=0.0d0 ghjmumu_s=1.0d0 ghjmumu_p=0.0d0 ghjtautau_s=1.0d0 ghjtautau_p=0.0d0 ghjWW=1.0d0 ghjZZ=1.0d0 ghjZga=1.0d0 ghjgg=1.0d0 ghjhiZ=0d0 ghjgaga=1.0d0 call HiggsBounds_neutral_input_properties(Mh,SMGammaTotal) call HiggsBounds_neutral_input_effC( & & ghjss_s,ghjss_p,ghjcc_s,ghjcc_p, & & ghjbb_s,ghjbb_p,ghjtt_s,ghjtt_p, & & ghjmumu_s,ghjmumu_p, & & ghjtautau_s,ghjtautau_p, & & ghjWW,ghjZZ,ghjZga, & & ghjgaga,ghjgg,ghjhiZ) - call run_HiggsSignals( 1, Chisq_mu, Chisq_mh, Chisq, ndf, Pvalue) + call run_HiggsSignals(1, Chisq_peak_mu, Chisq_peak_mh, Chisq_peak, nobs_peak, & + & Pvalue_peak) + + call run_HiggsSignals_LHC_Run1_combination(Chisq_LHCRun1_mu, Chisq_LHCRun1_mh, & + & Chisq_LHCRun1, nobs_LHCRun1, Pvalue_LHCRun1) + + call run_HiggsSignals_STXS(Chisq_STXS_rates, Chisq_STXS_mh, Chisq_STXS,& +& nobs_STXS, Pvalue_STXS) + + call complete_HS_results() +! PEAK OBSERVABLES ONLY! call get_number_of_observables(ntotal, npeakmu, npeakmh, nmpred, nanalyses) allocate(csqmu(npeakmu),csqmh(npeakmu),csqmax(npeakmu),csqtot(npeakmu),ncomb(npeakmu)) Nassigned=0 do ii=1,npeakmu call get_ID_of_peakobservable(ii, ID) call get_peakinfo_from_HSresults(ID, mupred, domH, nHcomb) ncomb(ii)=nHcomb call get_peakchi2(ID, csqmu(ii), csqmh(ii), csqmax(ii), csqtot(ii)) Nassigned=Nassigned+nHcomb enddo deallocate(csqmu,csqmh,csqmax,csqtot,ncomb) - write(21,*) mh,dm,Chisq_mu,Chisq_mh,Chisq,Nassigned,ndf,Lambda + write(21,*) mh,dm,Chisq_peak_mu+Chisq_STXS_rates+Chisq_LHCRun1_mu,& +& Chisq_peak_mh+Chisq_STXS_mh+Chisq_LHCRun1_mh,& +& Chisq_peak+Chisq_STXS+Chisq_LHCRun1,Nassigned,& +& nobs_peak+nobs_STXS+nobs_LHCRun1,Lambda endif enddo close(21) enddo write(*,*) "Finishing HiggsSignals..." call finish_HiggsSignals end program HS_mass Index: trunk/HiggsSignals-2/example_programs/HSeffC.f90 =================================================================== --- trunk/HiggsSignals-2/example_programs/HSeffC.f90 (revision 574) +++ trunk/HiggsSignals-2/example_programs/HSeffC.f90 (revision 575) @@ -1,154 +1,160 @@ !-------------------------------------------------------------------------------------- ! This example program is part of HiggsSignals-2 (TS 29/03/2017). !-------------------------------------------------------------------------------------- !-------------------------------------------------------------------------------------- program HSeffC !-------------------------------------------------------------------------------------- ! In this example we scan over two kappa scale factors, kappaF and kappaV, of the ! 125 GeV Higgs boson, using the effective couplings input. The kappa ! factor for the H to gamma-gamma partial width is derived from the two kappa factors. -! +! Experimental input are the LHC13 measurements, both peak and STXS observables. ! The output is written into /results/HSeffC.dat, which can be plotted with the ! python script plot_HSeffC.py in the results folder. !-------------------------------------------------------------------------------------- use theory_colliderSfunctions use usefulbits, only : vsmall implicit none - integer :: nHzero, nHplus, ndf, i, j, k, ii, jj - double precision :: obsratio, mass, Pvalue, Chisq, mu, Chisq_mu, Chisq_mh + integer :: nHzero, nHplus, nobs_peak, nobs_STXS, i, j, k, ii, jj + double precision :: obsratio, mass, mu + double precision :: Pvalue_peak, Chisq_peak, Chisq_peak_mu, Chisq_peak_mh + double precision :: Pvalue_STXS, Chisq_STXS, Chisq_STXS_rates, Chisq_STXS_mh double precision :: SMGammaTotal double precision :: kappaF, kappaV double precision :: Mh,GammaTotal,ghjss_s,ghjss_p,ghjcc_s,ghjcc_p, & & ghjbb_s,ghjbb_p,ghjtt_s,ghjtt_p, & & ghjmumu_s,ghjmumu_p,ghjtautau_s,ghjtautau_p, & & ghjWW,ghjZZ,ghjZga,ghjgaga,ghjgg, & & ghjhiZ character(len=100)::filename double precision :: dm integer :: pdf !-HiggsBounds internal functions to obtain SM branching ratios double precision :: SMBR_Htoptop,SMBR_Hss, SMBR_Hcc, SMBR_Hbb, SMBR_Hmumu, SMBR_Htautau,& & SMBR_HWW, SMBR_HZZ, SMBR_HZgam, SMBR_Hgamgam, SMBR_Hgg,SMGamma_h double precision :: Htogaga_rate, HtoVV_rate, HtoFF_rate nHzero=1 nHplus=0 !--Setting up the output filename='results/HSeffC.dat' open(21,file=filename) write(21,*) '# mh kappaF kappaV Chisq_mu Chisq ndf Htogaga_rate HtoVV_rate HtoFF_rate' write(21,*) '#--------------------------------------------------------------------#' !--Enter the Higgs mass and its theory uncertainty here: Mh = 125.09D0 dm = 0.0D0 !---- Initialize HiggsSignals and pass the name of the experimental analysis folder ----! ! call initialize_HiggsSignals(nHzero,nHplus,"LHC13_CMS_H-gaga") - call initialize_HiggsSignals(nHzero,nHplus,"test") + call initialize_HiggsSignals(nHzero,nHplus,"LHC13") !---- Set the output level (0: silent, 1: screen output, 2: even more output,...) ----! call setup_output_level(0) !---- Set the assignment range for the peak-centered method (optional) ----! - call setup_assignmentrange_massobservables(4.0D0) +! call setup_assignmentrange_massobservables(4.0D0) !---- Set the Higgs mass parametrization (1: box, 2:gaussian, 3:box+gaussian) ----! pdf = 2 call setup_pdf(pdf) !---- Pass the Higgs mass uncertainty to HiggsSignals (if relevant) ----! ! call HiggsSignals_neutral_input_MassUncertainty(dm) !---- Set number of free model parameters ----! call setup_Nparam(2) - do i=1,81!81 - do j=1,81!81 - kappaF = -1.0D0+(i-1)*0.05D0 - kappaV = 0.0D0+(j-1)*0.025D0 + do i=1,26!81 + do j=1,16!81 + kappaF = 0.80D0+(i-1)*0.02D0 + kappaV = 0.90D0+(j-1)*0.02D0 SMGammaTotal=SMGamma_h(Mh) if(.not. (SMGammaTotal .lt. 0)) then ghjss_s=kappaF ghjss_p=0.0d0 ghjcc_s=kappaF ghjcc_p=0.0d0 ghjbb_s=kappaF ghjbb_p=0.0d0 ghjtt_s=kappaF ghjtt_p=0.0d0 ghjmumu_s=kappaF ghjmumu_p=0.0d0 ghjtautau_s=kappaF ghjtautau_p=0.0d0 ghjWW=kappaV ghjZZ=kappaV ghjZga=kappaV ghjgg=kappaF ghjhiZ=0d0 ghjgaga=sqrt(get_g2hgaga(kappaF,kappaF,kappaF,kappaV,kappaV)) -!----Calculate the new total decay width: +!----Calculate the new total decay width (not 100% accurate due to independent BR fit functions): GammaTotal = SMGammaTotal*(1 + & & (ghjWW**2.0 - 1)*SMBR_HWW(Mh)+(ghjZZ**2.0 - 1)*SMBR_HZZ(Mh) + & & (ghjgg**2.0 - 1)*SMBR_Hgg(Mh)+(ghjtt_s**2.0 - 1)*SMBR_Htoptop(Mh)+ & & (ghjbb_s**2.0 - 1)*SMBR_Hbb(Mh)+(ghjtautau_s**2.0 - 1)*SMBR_Htautau(Mh)+ & & (ghjss_s**2.0 - 1)*SMBR_Hss(Mh)+(ghjcc_s**2.0 - 1)*SMBR_Hcc(Mh)+ & & (ghjZga**2.0 - 1)*SMBR_HZgam(Mh)+(ghjmumu_s**2.0 - 1)*SMBR_Hmumu(Mh)+ & & (ghjgaga**2.0 - 1)*SMBR_Hgamgam(Mh) ) call HiggsBounds_neutral_input_properties(Mh,GammaTotal) call HiggsBounds_neutral_input_effC( & & ghjss_s,ghjss_p,ghjcc_s,ghjcc_p, & & ghjbb_s,ghjbb_p,ghjtt_s,ghjtt_p, & & ghjmumu_s,ghjmumu_p, & & ghjtautau_s,ghjtautau_p, & & ghjWW,ghjZZ,ghjZga, & & ghjgaga,ghjgg,ghjhiZ) - call run_HiggsSignals( 1, Chisq_mu, Chisq_mh, Chisq, ndf, Pvalue) + call run_HiggsSignals( 1, Chisq_peak_mu, Chisq_peak_mh, Chisq_peak, nobs_peak, Pvalue_peak) + + call run_HiggsSignals_STXS(Chisq_STXS_rates, Chisq_STXS_mh, Chisq_STXS, nobs_STXS, Pvalue_STXS) ! This will get the SM normalized rates for inclusive Higgs production, ! with H-> gamma gamma, VV and FF decays: call get_rates(1,4,5,(/11,21,31,41,51/),Htogaga_rate) call get_rates(1,4,5,(/12,22,32,42,52/),HtoVV_rate) call get_rates(1,4,5,(/14,24,34,44,54/),HtoFF_rate) ! write(*,*) "Htogaga_rate, Chi2 = ", Htogaga_rate, Chisq_mu ! Try new interface: ! call HiggsBounds_neutral_input_hadr_channelrates_single(13,1,1,1,2.0d0*SMBR_Hgamgam(Mh)) ! call run_HiggsSignals( 1, Chisq_mu, Chisq_mh, Chisq, ndf, Pvalue) ! call get_rates(1,4,5,(/11,21,31,41,51/),Htogaga_rate) ! write(*,*) "Htogaga_rate (mod), Chi2 = ", Htogaga_rate, Chisq_mu ! This will collect the main HiggsSignals results together into one file - write(21,*) mh,kappaF,kappaV,Chisq_mu,Chisq,ndf,Htogaga_rate,HtoVV_rate,HtoFF_rate + write(21,*) mh,kappaF,kappaV,Chisq_peak_mu+Chisq_STXS_rates & + & ,Chisq_peak+Chisq_STXS,nobs_peak+nobs_STXS,Htogaga_rate,& + & HtoVV_rate,HtoFF_rate endif enddo enddo close(21) write(*,*) "Finishing HiggsSignals..." call finish_HiggsSignals contains !************************************************************** function get_g2hgaga(ghbb,ghtt,ghtautau,ghWW,ghZZ) ! Evaluates g2hgaga from other effective couplings, using partial widths informations ! at a Higgs mass of 126 GeV (calculated with HDECAY and taken from ! http://people.web.psi.ch/spira/higgscoup/ ). !************************************************************** double precision, intent(in) :: ghbb,ghtt,ghtautau,ghWW,ghZZ double precision :: get_g2hgaga get_g2hgaga = (ghtt**2)*0.70904D-01 + (ghbb**2)*0.18760D-04 + (ghWW**2)*1.5863 + & & ghtt*ghbb*(-0.17319D-02) + ghtt*ghWW*(-0.67074) + & & ghbb*ghWW*0.82093D-02 + (ghtautau**2)*0.22663E-04 + & & ghtt*ghtautau*(-0.18696E-02) + ghbb*ghtautau*0.41239E-04 +& & ghtautau*ghWW*0.88634E-02 end function get_g2hgaga !************************************************************** end program HSeffC Index: trunk/HiggsSignals-2/example_programs/results/plot_efficiencies.gnu =================================================================== --- trunk/HiggsSignals-2/example_programs/results/plot_efficiencies.gnu (revision 574) +++ trunk/HiggsSignals-2/example_programs/results/plot_efficiencies.gnu (revision 575) @@ -1,29 +0,0 @@ -set term postscript enhanced color font ",20" eps - -set output "HS_efficiencies.eps" - -at(file, row, col) = system( sprintf("awk -v row=%d -v col=%d 'NR == row {print $col}' %s", row, col, file) ) - -row=21 # Row for the SM efficiency value ! - -sf0p5eff1 = at("HS_efficiencies_kv0p5.dat",row,3) -sf1p0eff1 = at("HS_efficiencies_kv1p0.dat",row,3) -sf1p5eff1 = at("HS_efficiencies_kv1p5.dat",row,3) -sf2p0eff1 = at("HS_efficiencies_kv2p0.dat",row,3) - -set xrange [0.:2.5] - -set xlabel "{/Symbol z} = {/Symbol e}^{model}/{/Symbol e}^{SM} (VBF, WH, ZH)" -set ylabel "{/Symbol c}^2 / {/Symbol c}^2_{({/Symbol z}=1)} -1" - -set grid - -set key Left reverse spacing 1.5 box width 0 at screen 0.4,0.8 opaque - -set label 1 'Coupling scale factor {/Symbol k}_V varied.' at screen 0.2,0.9 font ',18' #at 2.,-0.25 font ',18' -set label 2 'Others as in SM.' at screen 0.2,0.85 font ',18' - -plot "HS_efficiencies_kv0p5.dat" u ($2):(($3)/sf0p5eff1 -1.0) w l lt 1 lc 1 lw 4 title "{/Symbol k}_V^2 = 0.5",\ - "HS_efficiencies_kv1p0.dat" u ($2):(($3)/sf1p0eff1 -1.0) w l lt 2 lc 2 lw 4 title "{/Symbol k}_V^2 = 1.0",\ - "HS_efficiencies_kv1p5.dat" u ($2):(($3)/sf1p5eff1 -1.0) w l lt 3 lc 3 lw 4 title "{/Symbol k}_V^2 = 1.5",\ - "HS_efficiencies_kv2p0.dat" u ($2):(($3)/sf2p0eff1 -1.0) w l lt 4 lc 4 lw 4 title "{/Symbol k}_V^2 = 2.0" \ No newline at end of file Index: trunk/HiggsSignals-2/example_programs/results/plot_HSeffC.gnu =================================================================== --- trunk/HiggsSignals-2/example_programs/results/plot_HSeffC.gnu (revision 574) +++ trunk/HiggsSignals-2/example_programs/results/plot_HSeffC.gnu (revision 575) @@ -1,112 +0,0 @@ -set term postscript enhanced color eps - -filename ='HSeffC.dat' -filename_out = 'Hgg_Hbb.eps' - -set xrange [0.:1.5] -set yrange [0.:2.] -set dgrid3d 21,31,1 - -set pm3d map corners2color c4 clip1in -# Find minimum -set output 'tmp/tmp.eps' -splot filename u ($2):($3):($6) notit w pm3d -min_z = GPVAL_DATA_Z_MIN -plot filename u ($2):($6 < min_z+0.0000001 ? $6 : 1/0) notit w p -min_pos_x = GPVAL_DATA_X_MIN -plot filename u ($3):($6 < min_z+0.0000001 ? $6 : 1/0) notit w p -min_pos_y = GPVAL_DATA_X_MIN - -# print " best-fit point:" -# print " -------------- " -# print " minimal Chi^2 Value = ", min_z -# print " (mu_ggf, mu_VH) = (", min_pos_x,",", min_pos_y,")" - -set contour -unset surface -set cntrparam bspline -#unset clip -#unset colorbox - -set table 'tmp/1sigmacontour.dat' -set cntrparam levels discrete 2.2958 -splot filename u ($2):($3):($6-min_z) notit w pm3d -unset table - -set table 'tmp/2sigmacontour.dat' -set cntrparam levels discrete 5.99 -splot filename u ($2):($3):($6-min_z) notit w pm3d -unset table - -set table 'tmp/R_Htobb.dat' -set cntrparam levels discrete 0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5 -splot filename u ($2):($3):($9) notit w pm3d -unset table - -set table 'tmp/dCS1.dat' -set cntrparam levels discrete 0.15,0.16,0.17,0.18,0.19 -splot filename u ($2):($3):($4) notit w pm3d -unset table - -reset - -set size 0.7,1 - -set pm3d map corners2color c4 clip1in -# -#set pm3d flush begin ftriangles scansforward interpolate 10,1 -set palette rgbformulae 30,31,32 - -set xrange [0.:1.5] -set yrange [0.:2.] -set dgrid3d 21,31,1 - -set xlabel 'g_{Hgg}' -set ylabel 'g_{Hbb}' offset -1 -set xtics 0.,0.25 -set mxtics 5 -set ytics 0.,0.5 -set mytics 5 - -set zrange [0:20] -set cbrange [0:20] - -set output filename_out - -set multiplot - -set grid - -set label 1 point ps 1.5 pt 3 lc rgb 'green' at min_pos_x, min_pos_y front -set label 2 point ps 1.5 pt 13 lc rgb '#F0E68C' at 1.0,1.0 front -set label 3 point ps 1.5 pt 12 lc rgb '#BB0000' at 1.0,1.0 front -set label 4 '{/Symbol D}{/Symbol c}^2' at 1.53,2.2 front - -splot filename u ($2):($3):($6-min_z+0.0000001) notit w pm3d - -set size 0.538,0.727 -set origin 0.0837,0.15 - -unset xtics -unset ytics -unset xlabel -unset ylabel -unset clabel -unset label 1 -unset label 2 -unset label 3 -unset label 4 -unset surface -set cntrparam bspline -unset colorbox - -#set key Left reverse spacing 1.5 box width 0 at 1.45, 9.7 opaque -set key Left reverse spacing 1.5 box width 2 at 1.45, 0.55 - -plot 'tmp/1sigmacontour.dat' u ($1):($2) w l lt 1 lw 4 lc rgb '#CCCCCC' title '68% C.L.',\ - 'tmp/2sigmacontour.dat' u ($1):($2) w l lt 2 lw 4 lc rgb '#AAAAAA' title '95% C.L.',\ - 'tmp/R_Htobb.dat' u ($1):($2) w l lt 3 lw 2 lc rgb '#00BB00' title 'R(pp{/Symbol \256}H{/Symbol \256}bb)',\ - 'tmp/dCS1.dat' u ($1):($2) w l lt 3 lw 2 lc rgb'#BB00BB' title '{/Symbol D}{/Symbol s}(pp{/Symbol \256}H)' - -unset multiplot - Index: trunk/HiggsSignals-2/example_programs/results/plot_mh.gnu =================================================================== --- trunk/HiggsSignals-2/example_programs/results/plot_mh.gnu (revision 574) +++ trunk/HiggsSignals-2/example_programs/results/plot_mh.gnu (revision 575) @@ -1,35 +0,0 @@ -set term postscript enhanced color font ",24" - -set xrange [110.:140.] -set yrange [50:150] -set yrange [*:*] -set y2range [0:*] - - -set xtics 110.,5. -set mxtics 5 -set mytics 5 -set ytics nomirror -set y2tics 0.,10. nomirror - -set grid front - -set xlabel 'm_{H} [GeV]' -set ylabel '{/Symbol c}^2' -set y2label 'Number of assignments' - -# set key right font ',16' at 140,74 samplen 2 -set key bottom right font ',16' samplen 2 - -file1 = "HS_mass_pdf1.dat" -file2 = "HS_mass_pdf2.dat" -file3 = "HS_mass_pdf3.dat" -fileout = "HS_mass.eps" - -set output fileout -plot file1 u ($1):($6) axes x1y2 w l lt 1 lc rgb "#FFBBBB" lw 4 notit,\ - file2 u ($1):($6) axes x1y2 w l lt 2 lc rgb "#BBFFBB" lw 4 notit,\ - file3 u ($1):($6) axes x1y2 w l lt 3 lc rgb "#BBBBFF" lw 4 notit,\ - file1 u ($1):($5) w l lt 1 lc 1 lw 6 title "box",\ - file2 u ($1):($5) w l lt 2 lc 2 lw 6 title "Gaussian",\ - file3 u ($1):($5) w l lt 3 lc 3 lw 6 title "box+Gaussian" Index: trunk/HiggsSignals-2/example_programs/results/plot_scaleUncertainties.gnu =================================================================== --- trunk/HiggsSignals-2/example_programs/results/plot_scaleUncertainties.gnu (revision 574) +++ trunk/HiggsSignals-2/example_programs/results/plot_scaleUncertainties.gnu (revision 575) @@ -1,14 +0,0 @@ -set term postscript enhanced color font ",20" eps - -set output 'scaling_dmu.eps' - -set xlabel 'Uncertainty scalefactor (in %)' -set ylabel '{/Symbol c}^2_{total}' -set grid - -set xrange[50:100.] -set yrange[*:*] -plot 'scaling_dmu_exp.dat' u ($1)*100.0 : ($2) w l lt 1 lc 1 lw 4 title "only exp. uncertainty",\ - 'scaling_dmu_th.dat' u ($1)*100.0 : ($2) w l lt 2 lc 2 lw 4 title "only th. uncertainty",\ - 'scaling_dmu_both.dat' u ($1)*100.0 : ($2) w l lt 3 lc 3 lw 4 title "exp.+th. uncertainty" - Index: trunk/HiggsSignals-2/example_programs/results/plot_CSscaling.gnu =================================================================== --- trunk/HiggsSignals-2/example_programs/results/plot_CSscaling.gnu (revision 574) +++ trunk/HiggsSignals-2/example_programs/results/plot_CSscaling.gnu (revision 575) @@ -1,102 +0,0 @@ -set term postscript enhanced color eps - -filename ='HShadr.dat' -filename_out = 'CSscaling.eps' - -set xrange [0.:2.] -set yrange [0.:2.] -set dgrid3d 21,21,1 - -set pm3d map corners2color c1 clip4in - -# set zrange [*:90.] -# set cbrange [*:90.] - -# Find minimum -set output 'tmp/tmp.eps' -splot filename u ($2):($3):($6) notit w pm3d -min_z = GPVAL_DATA_Z_MIN -plot filename u ($2):($6 < min_z+0.0000001 ? $6 : 1/0) notit w p -min_pos_x = GPVAL_DATA_X_MIN -plot filename u ($3):($6 < min_z+0.0000001 ? $6 : 1/0) notit w p -min_pos_y = GPVAL_DATA_X_MIN - -# print " best-fit point:" -# print " -------------- " -# print " minimal Chi^2 Value = ", min_z -# print " (mu_ggf, mu_VH) = (", min_pos_x,",", min_pos_y,")" - -set contour -unset surface -set cntrparam bspline -unset clip -unset colorbox - -set table 'tmp/1sigmacontour.dat' -set cntrparam levels discrete 2.2958 -splot filename u ($2):($3):($6-min_z) notit w pm3d -unset table - -set table 'tmp/2sigmacontour.dat' -set cntrparam levels discrete 5.99 -splot filename u ($2):($3):($6-min_z) notit w pm3d -unset table - -reset - -set size 0.7,1 - -set pm3d map corners2color c1 clip4in -set palette rgbformulae 30,31,32 - -set xrange [0.:2.] -set yrange [0.:2.] -set dgrid3d 21,21,1 - -set xlabel '{/Symbol m}_{ggF+ttH} x B/B_{SM}' -set ylabel '{/Symbol m}_{VBF+VH} x B/B_{SM}' offset -1 -set xtics -1.,1 -set mxtics 5 -set ytics -1.,1. -set mytics 5 - -set zrange [0:20] -set cbrange [0:20] - -set output filename_out - -set multiplot - -set grid - -set label 1 point ps 1.5 pt 3 lc rgb 'green' at min_pos_x, min_pos_y front -set label 2 point ps 1.5 pt 13 lc rgb '#F0E68C' at 1.0,1.0 front -set label 3 point ps 1.5 pt 12 lc rgb '#BB0000' at 1.0,1.0 front -set label 4 '{/Symbol D}{/Symbol c}^2' at 2.07,2.1 front - -splot filename u ($2):($3):($6-min_z+0.0000001) notit w pm3d - -set size 0.538,0.727 -set origin 0.0837,0.15 - -unset xtics -unset ytics -unset xlabel -unset ylabel -unset clabel -unset label 1 -unset label 2 -unset label 3 -unset label 4 -unset surface -set cntrparam bspline -unset colorbox - -#set key Left reverse spacing 1.5 box width 0 at 1.9, 1.9 opaque -set key Left reverse spacing 1.5 box width 0 at 1.9, 1.9 - -plot 'tmp/1sigmacontour.dat' u ($1):($2) w l lt 1 lw 4 lc rgb '#CCCCCC' title '68% C.L.',\ - 'tmp/2sigmacontour.dat' u ($1):($2) w l lt 2 lw 4 lc rgb '#AAAAAA' title '95% C.L.' - -unset multiplot - Index: trunk/HiggsSignals-2/example_programs/results/plot_efficiencies.py =================================================================== --- trunk/HiggsSignals-2/example_programs/results/plot_efficiencies.py (revision 0) +++ trunk/HiggsSignals-2/example_programs/results/plot_efficiencies.py (revision 575) @@ -0,0 +1,44 @@ +import matplotlib.pyplot as plt +import pylab as P +import numpy as np + +P.rc('text', usetex=True) +P.rc('text.latex', preamble='\usepackage{amsmath}\usepackage{color}') +font = {'size' : 16} +P.rc('font', **font) +P.rc('grid', linewidth=1,color='#666666') + +files = ["HS_efficiencies_kv0p9.dat",\ + "HS_efficiencies_kv1p0.dat",\ + "HS_efficiencies_kv1p1.dat"] + +ls = [ ['red','solid'], ['green','dashed'],['blue','dotted']] +labels = ['$\kappa_V =0.9$', '$\kappa_V =1.0$', '$\kappa_V =1.1$'] + +fig, ax = plt.subplots() + +for i,f in enumerate(files): + data = np.loadtxt(f) + dataT = zip(*data) + + chi2min = min(dataT[2]) + print chi2min +# minindex = dataT[5].index(chi2min) + + ax.plot(dataT[1],dataT[2],color=ls[i][0],linestyle=ls[i][1], linewidth=2, label=labels[i]) + +ax.set_xlim([min(dataT[1]),max(dataT[1])]) +ax.set_ylim([40.,100.]) + +# ax.text(0.02,1.015,r"$\Delta m_H^\text{theo} = "+format(dataT[1][0],'4.2f')+"~\mathrm{GeV}$, $\Lambda = "+format(dataT[7][0],'3.1f')+"$",transform=ax.transAxes) +# ax.text(0.42,1.02,r",transform=ax.transAxes) +plt.grid() + +leg = plt.legend(fancybox = True, fontsize=14, loc=3) +leg.get_frame().set_alpha(0.5) + +plt.xlabel(r'$\xi_V$') +plt.ylabel(r'$\chi^2$') + +plt.savefig('HS_efficiencies.pdf') + Index: trunk/HiggsSignals-2/example_programs/results/plot_HS_mass.py =================================================================== --- trunk/HiggsSignals-2/example_programs/results/plot_HS_mass.py (revision 0) +++ trunk/HiggsSignals-2/example_programs/results/plot_HS_mass.py (revision 575) @@ -0,0 +1,47 @@ +import matplotlib.pyplot as plt +import pylab as P +import numpy as np + +P.rc('text', usetex=True) +P.rc('text.latex', preamble='\usepackage{amsmath}\usepackage{color}') +font = {'size' : 16} +P.rc('font', **font) +P.rc('grid', linewidth=1,color='#666666') + +files = ["HS_mass_pdf1.dat",\ + "HS_mass_pdf2.dat",\ + "HS_mass_pdf3.dat"] + +ls = [ ['red','solid'], ['green','dashed'],['blue','dotted']] +labels = ['box', 'Gaussian', 'box+Gaussian'] + +fig, ax = plt.subplots() + +for i,f in enumerate(files): + data = np.loadtxt(f) + dataT = zip(*data) + + chi2min = min(dataT[4]) + print chi2min +# minindex = dataT[5].index(chi2min) + + ax.plot(dataT[0],dataT[4],color=ls[i][0],linestyle=ls[i][1], linewidth=2, label=labels[i]) + +ax.set_xlim([min(dataT[0]),max(dataT[0])]) +# ax.set_ylim([0.,200.]) + +if dataT[7][0] == 0: + ax.text(0.02,1.015,r"$\Delta m_H^\text{theo} = "+format(dataT[1][0],'4.2f')+"~\mathrm{GeV}$, $\Lambda = \mathrm{default}$",transform=ax.transAxes) +else: + ax.text(0.02,1.015,r"$\Delta m_H^\text{theo} = "+format(dataT[1][0],'4.2f')+"~\mathrm{GeV}$, $\Lambda = "+format(dataT[7][0],'3.1f')+"$",transform=ax.transAxes) +# ax.text(0.42,1.02,r",transform=ax.transAxes) +plt.grid() + +leg = plt.legend(fancybox = True, fontsize=14, loc=3) +leg.get_frame().set_alpha(0.5) + +plt.xlabel(r'$m_{H}~[\mathrm{GeV}]$') +plt.ylabel(r'$\chi^2$') + +plt.savefig('HS_mass.pdf') + Index: trunk/HiggsSignals-2/example_programs/results/plot_HSeffC.py =================================================================== --- trunk/HiggsSignals-2/example_programs/results/plot_HSeffC.py (revision 574) +++ trunk/HiggsSignals-2/example_programs/results/plot_HSeffC.py (revision 575) @@ -1,40 +1,40 @@ import matplotlib.pyplot as plt import pylab as P import numpy as np P.rc('text', usetex=True) P.rc('text.latex', preamble='\usepackage{amsmath}\usepackage{color}') font = {'size' : 16} P.rc('font', **font) P.rc('grid', linewidth=1,color='#666666') data = np.loadtxt("HSeffC.dat") dataT = zip(*data) fig, ax = plt.subplots() chi2min = min(dataT[3]) minindex = dataT[3].index(chi2min) # 1/2sigma filled regions: -ax.tricontourf(dataT[2],dataT[1],map(lambda d: d-chi2min, dataT[3]),levels=[0,2.3,5.99],colors=['green','yellow','none']) +ax.tricontourf(dataT[2],dataT[1],map(lambda d: d-chi2min, dataT[3]),levels=np.arange(0,10,step=0.5),cmap=plt.cm.YlOrRd)#,levels=[0,2.3,5.99],colors=['green','yellow','none']) # 1/2sigma contours: ax.tricontour(dataT[2],dataT[1],map(lambda d: d-chi2min, dataT[3]),levels=[2.3,5.99],colors=['k','k'],linewidths=2) # SM point: ax.plot(1.,1.,'+',markersize=10,color='k') # BF point: ax.plot(dataT[2][minindex],dataT[1][minindex],'*',markersize=10,color='w') # H->gammagamma rate contours: -Hgaga = ax.tricontour(dataT[2],dataT[1],dataT[6],levels=[0.6,0.8,1,1.2,1.4],colors=['b'],linewidths=1) -ax.clabel(Hgaga, fontsize=8, inline=1) +Hgaga = ax.tricontour(dataT[2],dataT[1],dataT[6],levels=[0.6,0.8,1,1.2,1.4,1.6],colors=['gray'],linestyles=['dashed'],linewidth=2) +ax.clabel(Hgaga, fontsize=10, inline=1) ax.set_xlim([min(dataT[2]),max(dataT[2])]) ax.set_ylim([min(dataT[1]),max(dataT[1])]) plt.grid() plt.xlabel(r'$\kappa_V$') plt.ylabel(r'$\kappa_F$') plt.savefig('HSeffC.pdf') Index: trunk/HiggsSignals-2/example_programs/results/plot_HS_SM_LHCRun1.py =================================================================== --- trunk/HiggsSignals-2/example_programs/results/plot_HS_SM_LHCRun1.py (revision 0) +++ trunk/HiggsSignals-2/example_programs/results/plot_HS_SM_LHCRun1.py (revision 575) @@ -0,0 +1,47 @@ +import matplotlib.pyplot as plt +import pylab as P +import numpy as np + +P.rc('text', usetex=True) +P.rc('text.latex', preamble='\usepackage{amsmath}\usepackage{color}') +font = {'size' : 16} +P.rc('font', **font) +P.rc('grid', linewidth=1,color='#666666') + +files = ["HS_mass_pdf1.dat",\ + "HS_mass_pdf2.dat",\ + "HS_mass_pdf3.dat"] + +ls = [ ['red','solid'], ['green','dashed'],['blue','dotted']] +labels = ['box', 'Gaussian', 'box+Gaussian'] + +fig, ax = plt.subplots() + +for i,f in enumerate(files): + data = np.loadtxt(f) + dataT = zip(*data) + + chi2min = min(dataT[4]) + print chi2min +# minindex = dataT[5].index(chi2min) + + ax.plot(dataT[0],dataT[4],color=ls[i][0],linestyle=ls[i][1], linewidth=2, label=labels[i]) + +ax.set_xlim([min(dataT[0]),max(dataT[0])]) +# ax.set_ylim([0.,200.]) + +if dataT[7][0] == 0: + ax.text(0.02,1.015,r"$\Delta m_H^\text{theo} = "+format(dataT[1][0],'4.2f')+"~\mathrm{GeV}$, $\Lambda = \mathrm{default}$",transform=ax.transAxes) +else: + ax.text(0.02,1.015,r"$\Delta m_H^\text{theo} = "+format(dataT[1][0],'4.2f')+"~\mathrm{GeV}$, $\Lambda = "+format(dataT[7][0],'3.1f')+"$",transform=ax.transAxes) +# ax.text(0.42,1.02,r",transform=ax.transAxes) +plt.grid() + +leg = plt.legend(fancybox = True, fontsize=14, loc=3) +leg.get_frame().set_alpha(0.5) + +plt.xlabel(r'$m_{H}~[\mathrm{GeV}]$') +plt.ylabel(r'$\chi^2$') + +plt.savefig('HS_mass.pdf') + Index: trunk/HiggsSignals-2/example_programs/results/plot_HShadr.py =================================================================== --- trunk/HiggsSignals-2/example_programs/results/plot_HShadr.py (revision 574) +++ trunk/HiggsSignals-2/example_programs/results/plot_HShadr.py (revision 575) @@ -1,41 +1,41 @@ import matplotlib.pyplot as plt import pylab as P import numpy as np P.rc('text', usetex=True) P.rc('text.latex', preamble='\usepackage{amsmath}\usepackage{color}') font = {'size' : 16} P.rc('font', **font) P.rc('grid', linewidth=1,color='#666666') data = np.loadtxt("HShadr.dat") dataT = zip(*data) fig, ax = plt.subplots() chi2min = min(dataT[3]) minindex = dataT[3].index(chi2min) # 1/2sigma filled regions: -ax.tricontourf(dataT[1],dataT[2],map(lambda d: d-chi2min, dataT[3]),levels=[0,2.3,5.99],colors=['green','yellow','none']) +ax.tricontourf(dataT[1],dataT[2],map(lambda d: d-chi2min, dataT[3]),levels=np.arange(0,10,step=0.5),cmap=plt.cm.YlOrRd)#,levels=[0,2.3,5.99],colors=['green','yellow','none']) # 1/2sigma contours: ax.tricontour(dataT[1],dataT[2],map(lambda d: d-chi2min, dataT[3]),levels=[2.3,5.99],colors=['k','k'],linewidths=2) # SM point: ax.plot(1.,1.,'+',markersize=10,color='k') # BF point: -ax.plot(dataT[2][minindex],dataT[1][minindex],'*',markersize=10,color='w') +ax.plot(dataT[1][minindex],dataT[2][minindex],'*',markersize=10,color='w') # H->gammagamma rate contours: # Hgaga = ax.tricontour(dataT[2],dataT[1],dataT[6],levels=[0.6,0.8,1,1.2,1.4],colors=['b'],linewidths=1) # ax.clabel(Hgaga, fontsize=8, inline=1) ax.set_ylim([min(dataT[2]),max(dataT[2])]) ax.set_xlim([min(dataT[1]),max(dataT[1])]) plt.grid() plt.xlabel(r'$\sigma_{\mathrm{ggF},bbH,ttH}/\sigma_\mathrm{SM}$') plt.ylabel(r'$\sigma_{VH,\mathrm{VBF}}/\sigma_\mathrm{SM}$') plt.savefig('HShadr.pdf') Index: trunk/HiggsSignals-2/example_programs/HS_SM_LHCRun1.f90 =================================================================== --- trunk/HiggsSignals-2/example_programs/HS_SM_LHCRun1.f90 (revision 574) +++ trunk/HiggsSignals-2/example_programs/HS_SM_LHCRun1.f90 (revision 575) @@ -1,145 +1,145 @@ !-------------------------------------------------------------------------------------- ! This example program is part of HiggsSignals (TS 26/09/2013). !-------------------------------------------------------------------------------------- program HS_SM_LHCRun1 ! In this example the peak-centered chi^2 method is applied to a SM-like Higgs boson ! (overall signal strength scale factor mu) within the mass range 110 - 140 GeV. ! All three mass pdf choices are considered. Theoretical mass uncertainties and ! assignment range can be changed. !-------------------------------------------------------------------------------------- use theory_colliderSfunctions use usefulbits, only : vsmall use pc_chisq, only : print_cov_mh_to_file,print_cov_mu_to_file,print_inverse_cov_mh_to_file,& & get_peakchi2, print_corr_mu_to_file use io, only : get_number_of_observables,get_ID_of_peakobservable,get_peakinfo_from_HSresults implicit none integer :: nHzero, nHplus, ndf, i, j, k, ii, jj double precision :: obsratio, mass, Pvalue, Chisq, mu, Chisq_mu, Chisq_mh, Lambda double precision :: SMGammaTotal double precision :: Mh,GammaTotal,ghjss_s,ghjss_p,ghjcc_s,ghjcc_p, & & ghjbb_s,ghjbb_p,ghjtt_s,ghjtt_p, & & ghjmumu_s,ghjmumu_p,ghjtautau_s,ghjtautau_p, & & ghjWW,ghjZZ,ghjZga,ghjgaga,ghjgg, & & ghjhiZ character(len=100)::filename double precision :: dm integer :: pdf integer :: ntotal, npeakmu, npeakmh, nmpred, nanalyses, ID, domH, nHcomb, Nassigned double precision :: mupred double precision, allocatable :: csqmu(:),csqmh(:),csqmax(:),csqtot(:) integer, allocatable :: ncomb(:) !-HiggsBounds internal functions to obtain SM branching ratios double precision :: SMBR_Htoptop,SMBR_Hss, SMBR_Hcc, SMBR_Hbb, SMBR_Hmumu, SMBR_Htautau,& & SMBR_HWW, SMBR_HZZ, SMBR_HZgam, SMBR_Hgamgam, SMBR_Hgg,SMGamma_h nHzero=1 nHplus=0 !---- Initialize HiggsSignals and pass the name of the experimental analysis folder ----! ! call initialize_HiggsSignals(nHzero,nHplus,"latestresults") call initialize_HiggsSignals_empty(nHzero,nHplus) ! call initialize_HiggsSignals(nHzero,nHplus,"latestresults-1.4.0-LHCinclusive") !---- Set the output level (0: silent, 1: screen output, 2: even more output,...) ----! call setup_output_level(0) !--Enter the Higgs mass and its theory uncertainty here: - dm = 0.0D0 + dm = 1.0D0 Lambda = 10.0D0 !---- Pass the Higgs mass uncertainty to HiggsSignals ----! call HiggsSignals_neutral_input_MassUncertainty(dm) !---- Set the assignment range for the peak-centered method (optional) ----! ! This can be done either to all observables or only to the ! mass-sensitive observables, which contribute to the Higgs mass chi^2 ! call setup_assignmentrange(Lambda) call setup_assignmentrange_LHCrun1(Lambda) ! call setup_correlations(1,1) ! mu, mass do pdf=1,3 !---- Set the Higgs mass parametrization (1: box, 2:gaussian, 3:box+gaussian) ----! call setup_pdf(pdf) select case(pdf) case(1) filename='results/HS_SM_LHCrun1_mass_pdf1.dat' case(2) filename='results/HS_SM_LHCrun1_mass_pdf2.dat' case(3) filename='results/HS_SM_LHCrun1_mass_pdf3.dat' case default end select open(21,file=filename) write(21,*) '# mh dmh Chisq_mu Chisq_mh Chisq Nassigned ndf Lambda' write(21,*) '#----------------------------------------------------' do j=1,101 !181,181! mh = 120.D0 +(j-1)*0.1D0 SMGammaTotal=SMGamma_h(Mh) ! SMGamma_h(Mh), SMBR_Hgg(Mh), SMBR_Hgg(Mh) are set to -1 if called ! with Mh out of range [0.8 GeV, 500 GeV]. The calculation is then bypassed. if(.not. (SMGammaTotal .lt. 0)) then ghjss_s=1.0d0 ghjss_p=0.0d0 ghjcc_s=1.0d0 ghjcc_p=0.0d0 ghjbb_s=1.0d0 ghjbb_p=0.0d0 ghjtt_s=1.0d0 ghjtt_p=0.0d0 ghjmumu_s=1.0d0 ghjmumu_p=0.0d0 ghjtautau_s=1.0d0 ghjtautau_p=0.0d0 ghjWW=1.0d0 ghjZZ=1.0d0 ghjZga=1.0d0 ghjgg=1.0d0 ghjhiZ=0d0 ghjgaga=1.0d0 call HiggsBounds_neutral_input_properties(Mh,SMGammaTotal) call HiggsBounds_neutral_input_effC( & & ghjss_s,ghjss_p,ghjcc_s,ghjcc_p, & & ghjbb_s,ghjbb_p,ghjtt_s,ghjtt_p, & & ghjmumu_s,ghjmumu_p, & & ghjtautau_s,ghjtautau_p, & & ghjWW,ghjZZ,ghjZga, & & ghjgaga,ghjgg,ghjhiZ) call run_HiggsSignals_LHC_Run1_combination(Chisq_mu, Chisq_mh, Chisq, ndf, Pvalue) ! call run_HiggsSignals( 1, Chisq_mu, Chisq_mh, Chisq, ndf, Pvalue) ! call get_number_of_observables(ntotal, npeakmu, npeakmh, nmpred, nanalyses) ! allocate(csqmu(npeakmu),csqmh(npeakmu),csqmax(npeakmu),csqtot(npeakmu),ncomb(npeakmu)) ! Nassigned=0 ! do ii=1,npeakmu ! call get_ID_of_peakobservable(ii, ID) ! call get_peakinfo_from_HSresults(ID, mupred, domH, nHcomb) ! ncomb(ii)=nHcomb ! call get_peakchi2(ID, csqmu(ii), csqmh(ii), csqmax(ii), csqtot(ii)) ! Nassigned=Nassigned+nHcomb ! enddo ! ! deallocate(csqmu,csqmh,csqmax,csqtot,ncomb) write(21,*) mh,dm,Chisq_mu,Chisq_mh,Chisq,ndf,Lambda endif enddo close(21) enddo write(*,*) "Finishing HiggsSignals..." call finish_HiggsSignals end program HS_SM_LHCRun1 Index: trunk/HiggsSignals-2/example_programs/HS_efficiencies.f90 =================================================================== --- trunk/HiggsSignals-2/example_programs/HS_efficiencies.f90 (revision 574) +++ trunk/HiggsSignals-2/example_programs/HS_efficiencies.f90 (revision 575) @@ -1,193 +1,199 @@ !-------------------------------------------------------------------------------------- program HS_efficiencies ! ! This example program is part of HiggsSignals (TS 27/08/2013). !-------------------------------------------------------------------------------------- ! This example program demonstrates how models with different channel efficiencies ! of the Higgs searches can be treated in HiggsSignals (HS). !-------------------------------------------------------------------------------------- ! use theory_colliderSfunctions ! use usefulbits, only : vsmall ! use usefulbits_hs,only : analyses ! use pc_chisq, only : print_peaks_to_LaTeX use io, only : get_peakinfo_from_HSresults, get_number_of_observables,& & get_ID_of_peakobservable, get_peak_channels implicit none integer :: nH,nHplus,ndf, jj, kk, ll, mm double precision :: Chisq, Chisq_mu, Chisq_mh, Pvalue - double precision, allocatable :: dMh(:) - double precision :: dCS(5),dBR(5),dggh, dbbh +! double precision, allocatable :: dMh(:) +! double precision :: dCS(5),dBR(5),dggh, dbbh double precision :: SMGamma_h - double precision :: Mh,GammaTotal,g2hjss_s,g2hjss_p,g2hjcc_s,g2hjcc_p,& -& g2hjbb_s,g2hjbb_p,g2hjtt_s,g2hjtt_p,& -& g2hjmumu_s,g2hjmumu_p,g2hjtautau_s,g2hjtautau_p,& -& g2hjWW,g2hjZZ,g2hjZga,g2hjgaga,g2hjgg,g2hjggZ,& -& g2hjhiZ,BR_hjhihi,BR_hjinvisible + double precision :: Mh,GammaTotal,ghjss_s,ghjss_p,ghjcc_s,ghjcc_p, & +& ghjbb_s,ghjbb_p,ghjtt_s,ghjtt_p, & +& ghjmumu_s,ghjmumu_p,ghjtautau_s,ghjtautau_p, & +& ghjWW,ghjZZ,ghjZga,ghjgaga,ghjgg, & +& ghjhiZ double precision :: mupred, etaZ, sf, mu_average integer :: domH, nHcomb integer :: ntotal, npeakmu, npeakmh, nmpred, nanalyses, ID, pID integer :: i,npoints character(len=8) :: istring character(len=300) :: inputfilename,outputfilename character(len=300) :: stem character(LEN=300) :: temp integer :: number_args, stat integer :: Nc integer, allocatable :: channel_p_IDs(:),channel_d_IDs(:) double precision, allocatable :: efficiencies(:),eff_ratio(:) !---Note here: We only run HiggsSignals on the lightest Higgs boson. This can be easily !---extended to all 3 MSSM neutral Higgs bosons. In that case, the effective couplings !---and mass uncertainties have to be given as arrays of size=nH (Cf. the Higgsbounds !---manual for HB-3.x.x for how to call HiggsBounds_neutral_input_effC correctly!) nH=1 nHplus=0 - allocate(dMh(nH)) +! allocate(dMh(nH)) !--n.b. have to set theoretical uncertainties on Higgs mass dMh (in GeV): - dMh = (/ 0.0D0 /) +! dMh = (/ 0.0D0 /) !-------------------------- HiggsSignals ------------------------------! !---- Initialize HiggsSignals and pass the name of the experimental analysis folder ----! - call initialize_HiggsSignals(nH,nHplus,"latestresults") + call initialize_HiggsSignals(nH,nHplus,"LHC13") !---- Set the Higgs mass parametrization (1: box, 2:gaussian, 3:box+gaussian) ----! call setup_pdf(2) !---- Set the output level (0: silent, 1: screen output, 2: even more output,...) ----! call setup_output_level(0) !---- Pass the Higgs mass uncertainty to HiggsSignals ----! - call HiggsSignals_neutral_input_MassUncertainty(dMh) +! call HiggsSignals_neutral_input_MassUncertainty(dMh) !---- Use symmetric rate errors? (0: original(default), 1: averaged-symmetrical) ----! - call setup_symmetricerrors(0) +! call setup_symmetricerrors(0) !---- Allow anti-correlated signal strength measurements? (0: no, 1: yes(default) ) ----! - call setup_anticorrelations_in_mu(0) +! call setup_anticorrelations_in_mu(0) !---- Setup a wider assignment range ----! - call setup_assignmentrange(10.0D0) +! call setup_assignmentrange(10.0D0) !----HiggsBounds/Signals effective couplings input. ! These have to be inserted for the model which we want to test, i.e. we would have ! to write an interface to set via arguments in the executables call, or reading ! in a text file, etc. !----For now, we set them by hand to the SM values except for the vector boson couplings, ! where we set them to a scale factor sf (for demonstration): - do mm=1,4 + do mm=1,3 select case(mm) case(1) - outputfilename="results/HS_efficiencies_kv0p5.dat" + outputfilename="results/HS_efficiencies_kv0p9.dat" case(2) outputfilename="results/HS_efficiencies_kv1p0.dat" case(3) - outputfilename="results/HS_efficiencies_kv1p5.dat" - case(4) - outputfilename="results/HS_efficiencies_kv2p0.dat" + outputfilename="results/HS_efficiencies_kv1p1.dat" +! case(4) +! outputfilename="results/HS_efficiencies_kv2p0.dat" case default end select open(21,file=outputfilename) - sf = 0.0D0+(mm)*0.5D0 - g2hjss_s=1d0 - g2hjss_p=0d0 - g2hjcc_s=1d0 - g2hjcc_p=0d0 - g2hjbb_s=1d0 - g2hjbb_p=0d0 - g2hjtt_s=1d0 - g2hjtt_p=0d0 - g2hjmumu_s=1d0 - g2hjmumu_p=0d0 - g2hjtautau_s=1d0 - g2hjtautau_p=0d0 - g2hjWW=sf - g2hjZZ=sf - g2hjZga=sf - g2hjgaga=1d0 - g2hjgg=1d0 - g2hjggZ=sf - g2hjhiZ=0d0 - BR_hjhihi=0d0 - BR_hjinvisible=0d0 - Mh=dble(125.8) - GammaTotal=SMGamma_h(Mh) + sf = 0.9D0+(mm-1)*0.1D0 + ghjss_s=1.0d0 + ghjss_p=0.0d0 + ghjcc_s=1.0d0 + ghjcc_p=0.0d0 + ghjbb_s=1.0d0 + ghjbb_p=0.0d0 + ghjtt_s=1.0d0 + ghjtt_p=0.0d0 + ghjmumu_s=1.0d0 + ghjmumu_p=0.0d0 + ghjtautau_s=1.0d0 + ghjtautau_p=0.0d0 + ghjWW=sf + ghjZZ=sf + ghjZga=1.0d0 + ghjgg=1.0d0 + ghjhiZ=0d0 + ghjgaga=1.0d0 + + Mh=125.09D0 + GammaTotal=SMGamma_h(Mh) !-Set the HiggsSignals input - call HiggsBounds_neutral_input_effC(Mh,GammaTotal,& -& g2hjss_s,g2hjss_p,g2hjcc_s,g2hjcc_p,g2hjbb_s,g2hjbb_p,& -& g2hjtt_s,g2hjtt_p,& -& g2hjmumu_s,g2hjmumu_p,g2hjtautau_s,g2hjtautau_p,& -& g2hjWW,g2hjZZ,g2hjZga,g2hjgaga,g2hjgg,g2hjggZ,& -& g2hjhiZ, BR_hjinvisible,BR_hjhihi) + call HiggsBounds_neutral_input_properties(Mh,GammaTotal) + + call HiggsBounds_neutral_input_effC( & + & ghjss_s,ghjss_p,ghjcc_s,ghjcc_p, & + & ghjbb_s,ghjbb_p,ghjtt_s,ghjtt_p, & + & ghjmumu_s,ghjmumu_p, & + & ghjtautau_s,ghjtautau_p, & + & ghjWW,ghjZZ,ghjZga, & + & ghjgaga,ghjgg,ghjhiZ) !-Run HS on the original experimental data in order to evaluate the model predictions call run_HiggsSignals(1, Chisq_mu, Chisq_mh, Chisq, ndf, Pvalue) !-Get the number of the peak-observables (Don't care about ntotal, npeakmh, nmpred, nanalyses) call get_number_of_observables(ntotal, npeakmu, npeakmh, nmpred, nanalyses) ! We now want to set different efficiencies as evaluated e.g. from a MC analysis. ! Note that these are given as relative changes with respect to the SM efficiencies, i.e. ! in the MC you should both test your model and the SM with the analysis cuts and ! estimate the ratio eta = efficiency(model)/efficiency(SM) for each Higgs channel. ! ! As an example, we want to give all VBF,WH,ZH channels a factor of etaZ in all implemented ! searches where these channels are present. do ll=1,51 etaZ = 0.0D0 + (ll-1)*0.05D0 !-Loop over the number of peak observables do kk=1,npeakmu !--Get for each peak observable its unique ID: call get_ID_of_peakobservable(kk, ID) !--Get the predicted signal strength modifier (mupred) for this peak observable: ! call get_peakinfo_from_HSresults(ID, mupred, domH, nHcomb) !--Get channel information +! (Nc),dIDs(Nc),efficiencies(Nc)) call get_peak_channels(ID, Nc, channel_p_IDs, channel_d_IDs, efficiencies) ! write(*,*) ID, Nc -! write(*,*) channel_IDs +! write(*,*) channel_p_IDs +! write(*,*) channel_d_IDs ! write(*,*) efficiencies allocate(eff_ratio(Nc)) eff_ratio = 1.0D0 do jj=lbound(channel_p_IDs,dim=1),ubound(channel_p_IDs,dim=1) !---Get the ID for the production mode (2:VBF, 3:WH, 4:ZH): - pID = channel_p_IDs(i) + pID = channel_p_IDs(jj) if(pID.eq.2.or.pID.eq.3.or.pID.eq.4) then eff_ratio(jj)=etaZ endif enddo !---Hand over the efficiency ratios: call assign_modelefficiencies_to_peak(ID, Nc, eff_ratio) - deallocate(channel_IDs,efficiencies,eff_ratio) + deallocate(channel_p_IDs,channel_d_IDs,efficiencies,eff_ratio) enddo !-Set the HiggsSignals input (again!) - call HiggsBounds_neutral_input_effC(Mh,GammaTotal,& -& g2hjss_s,g2hjss_p,g2hjcc_s,g2hjcc_p,g2hjbb_s,g2hjbb_p,& -& g2hjtt_s,g2hjtt_p,& -& g2hjmumu_s,g2hjmumu_p,g2hjtautau_s,g2hjtautau_p,& -& g2hjWW,g2hjZZ,g2hjZga,g2hjgaga,g2hjgg,g2hjggZ,& -& g2hjhiZ, BR_hjinvisible,BR_hjhihi) + call HiggsBounds_neutral_input_properties(Mh,GammaTotal) + + call HiggsBounds_neutral_input_effC( & + & ghjss_s,ghjss_p,ghjcc_s,ghjcc_p, & + & ghjbb_s,ghjbb_p,ghjtt_s,ghjtt_p, & + & ghjmumu_s,ghjmumu_p, & + & ghjtautau_s,ghjtautau_p, & + & ghjWW,ghjZZ,ghjZga, & + & ghjgaga,ghjgg,ghjhiZ) call run_HiggsSignals(1, Chisq_mu, Chisq_mh, Chisq, ndf, Pvalue) mu_average = 0.0D0 do kk=1,npeakmu !--Get for each peak observable its unique ID: call get_ID_of_peakobservable(kk, ID) !--Get the predicted signal strength modifier (mupred) for this peak observable: call get_peakinfo_from_HSresults(ID, mupred, domH, nHcomb) mu_average = mu_average + mupred enddo mu_average = mu_average / npeakmu - write(21,*) g2hjWW, etaZ, Chisq_mu, mu_average + write(21,*) sf, etaZ, Chisq_mu, mu_average enddo close(21) enddo call finish_HiggsSignals !-------------------------------------------------------------------------------------- end program HS_efficiencies !-------------------------------------------------------------------------------------- Index: trunk/HiggsSignals-2/example_programs/HBandHSwithFH.F =================================================================== --- trunk/HiggsSignals-2/example_programs/HBandHSwithFH.F (revision 574) +++ trunk/HiggsSignals-2/example_programs/HBandHSwithFH.F (revision 575) @@ -1,788 +1,788 @@ !-------------------------------------------------------------------- program HBandHSwithFH !-------------------------------------------------------------------- ! This example program is part of HiggsSignals (TS 06/03/2013). ! ! The program runs FeynHiggs (FH version > 2.9.4 required) to evaluate ! the partonic input of HiggsBounds/HiggsSignals for a example MSSM point. ! Then, we run HiggsBounds and HiggsSignals. ! ! Note: You have to set the correct FeynHiggs path in the configure file. ! Then, this example program can be compiled by running ! ! make HBandHSwithFH ! ! in the HiggsSignals main directory. !-------------------------------------------------------------------- use usefulbits_hs, only : HSres use STXS, only : print_STXS implicit none integer error c used by FHHiggsCorr double precision MHiggs(4) double complex SAeff, DeltaSAeff, UHiggs(3,3), ZHiggs(3,3) c used by FHSelectUZ: integer uzint, uzext, mfeff c used by FHCouplings: #include "FHCouplings.h" double complex couplings(ncouplings), couplingsms(ncouplingsms) double precision gammas(ngammas), gammasms(ngammasms) integer fast c used by FHHiggsProd: double precision sqrts, prodxs(nprodxs) c used by FHGetPara: integer nmfv c This is for FH 2.14.x double precision MSf(2,5,3), MASf(6,5), MCha(2), MNeu(4) double complex USf(2,2,5,3), UASf(6,6,5) double complex UCha(2,2), VCha(2,2), ZNeu(4,4) double complex DeltaMB double precision MGl, MHp double precision MHtree(4), SAtree double precision AlfasMT Cdouble precision MHiggs(4) Cdouble complex SAeff, DeltaSAeff, UHiggs(3,3), ZHiggs(3,3) c used by FHRetrieveSMPara: double precision invAlfa0,invAlfaMZ, AlfasMZ, GF double precision ME, MU, MD, MM, MC, MS, ML, MB double precision MW, MZ, GammaW, GammaZ double precision CKMlambda, CKMA, CKMrhobar, CKMetabar double precision RMUE, RAt, RM2 c used by initialize_HiggsBounds integer nHiggsneut,nHiggsplus parameter (nHiggsneut = 3) parameter (nHiggsplus = 1) character(LEN=5) whichanalyses c used by HiggsBounds_neutral_input_part double precision Mh(3),GammaTotal_hj(3) integer CP_value(3) double precision CS_hj_ratio(4,3), & CS_gg_hj_ratio(4,3),CS_bb_hj_ratio(4,3), & CS_hjW_ratio(4,3),CS_hjZ_ratio(4,3), & CS_vbf_ratio(4,3),CS_tthj_ratio(4,3), & CS_thj_tchan_ratio(4,3),CS_thj_schan_ratio(4,3), & CS_hjhi(4,3,3) double precision CS_ee_hjZ_ratio(3),CS_ee_bbhj_ratio(3), & CS_ee_tautauhj_ratio(3),CS_ee_hjhi_ratio(3,3) double precision BR_hjss(3),BR_hjcc(3), & BR_hjbb(3),BR_hjmumu(3),BR_hjtautau(3), & BR_hjWW(3),BR_hjZZ(3),BR_hjZga(3), & BR_hjgaga(3),BR_hjgg(3),BR_hjtt(3), & BR_hjinvisible(3),BR_hkhjhi(3,3,3),BR_hjhiZ(3,3), & BR_hjemu(3),BR_hjetau(3),BR_hjmutau(3),BR_hjHpiW(3,1) c used by HiggsBounds_charged_input double precision Mhplus(1),GammaTotal_Hpj(1), & CS_ee_HpjHmj_ratio(1), & BR_tWpb(1),BR_tHpjb(1), & BR_Hpjcs(1),BR_Hpjcb(1),BR_Hpjtaunu(1), & BR_Hpjtb(1),BR_HpjWZ(1),BR_HpjhiW(1,3),CS_Hpjtb(4) c used in HiggsBounds double precision dmhneut_hb(nHiggsneut) double precision dmhch_hb(nHiggsplus) c used in HiggsSignals (can be different) double precision dmhneut_hs(nHiggsneut) double precision obsratio_tmp,predratio_tmp integer HBresult_tmp,chan_tmp,ncombined_tmp c return values of run_HiggsBounds integer HBresult,chan,ncombined double precision obsratio c used by set_rate_uncertainties in HiggsSignals double precision dCS(5),dBR(5) double precision dggh, dbbh c return values of run_HiggsSignals double precision Chisq_mu, Chisq_mh, Chisq, Pvalue integer nobs c run options in HiggsSignals integer pdf, output_level, mass_centered_method,runmode double precision :: dmhneut(3) double precision :: dmhch(1) c HiggsSignals output double precision Chisq_LHCRun1_mu,Chisq_LHCRun1_mh double precision Chisq_LHCRun1, Pvalue_LHCRun1 integer nobs_LHCRun1 double precision Chisq_STXS_rates, Chisq_STXS_mh double precision Chisq_STXS, Pvalue_STXS integer nobs_STXS integer ntotal, npeakmu, npeakmh, nmpred, nanalyses c misc: integer i,j,k,as,t, collider double precision norm,CW2,Pi double precision & g2hjbb(3),g2hjWW(3),g2hjZZ(3), & g2hjgg(3),g2hjhiZ_nHbynH(3,3) double precision g2hjbb_s(3),g2hjbb_p(3) double precision g2hjtautau_s(3),g2hjtautau_p(3) integer sneutrino_lspcandidate_number logical invisible_lsp double precision lspcandidate_mass Pi = 3.1415926535897932384626433832795029D0 !--------------------------------------- Run Options ------------------------------------! c The string 'whichanalyses' determines which subset of experimental c results are used. In this example, we've used the option 'LandH', c which instructs HiggsBounds to use tables of results c from LEP, Tevatron and LHC (i.e. the full set of c results supplied with HiggsBounds). whichanalyses='LandH' c Choose a Higgs mass parametrization for HiggsSignals c (1: box, 2:gaussian, 3:box+gaussian) pdf = 2 c Choose the output level of HiggsSignals c (0: silent, 1: screen output, 2: even more output,...) output_level = 0 c Set the HiggsSignals runmode (1: peak-centered, 2: mass-centered, 3: both) Chi^2 method(s) runmode = 1 dmhneut = (/3.0D0, 0.0D0, 0.0D0/) dmhch = (/0.D0/) !---------------------------- HiggsBounds and HiggsSignals ------------------------------! c c If you would like to perform scans over variables, the subroutines c initialize_HiggsBounds, initialize_HiggsSignals (and finish_HiggsBounds, c finish HiggsSignals) should be called outside the do-loops in order to save time. c !---- Initialize HiggsBounds and specify the dataset it should use ----! call initialize_HiggsBounds(nHiggsneut,nHiggsplus,whichanalyses) !---- Initialize HiggsSignals and pass the name of the experimental analysis folder ----! call initialize_HiggsSignals(nHiggsneut,nHiggsplus,"LHC13") call HiggsBounds_set_mass_uncertainties(dmhneut,dmhch) call HiggsSignals_neutral_input_MassUncertainty(dmhneut) !------------------------------ HiggsSignals options ------------------------------------! !---- Set the output level ----! call setup_output_level(output_level) !---- Set the Higgs mass parametrization ----! call setup_pdf(pdf) - call setup_assignmentrange_massobservables(3.0D0) +C call setup_assignmentrange_massobservables(3.0D0) !---------------------------------- Run FeynHiggs ---------------------------------------! c the subroutines setFlags, setPara, setSLHA c are also contained in this file call setFlags * either use setPara to set the parameters directly * or use setSLHA to read them from an SLHA file call setPara c call setSLHA("tmp.slha") call FHGetPara(error, nmfv, MSf, USf,MASf, UASf, & MCha, UCha, VCha, MNeu, ZNeu, DeltaMB, MGl, & MHtree, SAtree, AlfasMT) if( error .ne. 0 ) stop call FHHiggsCorr(error, MHiggs, SAeff, UHiggs, ZHiggs) if( error .ne. 0 ) stop c NOTE: we are setting uzint=uzext C mfeff=1 C uzint=2 C uzext=2 C call FHSelectUZ(error, uzint, uzext, mfeff) C if( error .ne. 0 ) stop fast=1 call FHCouplings(error, & couplings, couplingsms, gammas, gammasms, fast) if( error .ne. 0 ) stop call FHRetrieveSMPara(error, & invAlfa0, invAlfaMZ, AlfasMZ, GF, & ME, MU, MD, MM, MC, MS, ML, MB, & MW, MZ, GammaW, GammaZ, & CKMlambda, CKMA, CKMrhobar, CKMetabar) !--------------- Turn FeynHiggs results into HiggsBounds/Signals input ------------------! c Set variables needed by HiggsBounds (using results from FeynHiggs). c See HiggsBounds documentation for definition of variables used c as arguments to HiggsBounds_neutral_input_part and run_HiggsBounds c and FeynHiggs documentation for all other variables. c Note: It is slightly more accurate to use the subroutine HiggsBounds_neutral_input_part c rather than the subroutine HiggsBounds_neutral_input_effC because the SM branching ratios c used internally in HiggsBounds (from HDecay) are not identical to the SM branching c ratios used in FeynHiggs do i=1,3 Mh(i)=MHiggs(i) GammaTotal_hj(i) = GammaTot(i) BR_hjss(i) = BR(H0FF(i,4,2,2)) BR_hjcc(i) = BR(H0FF(i,3,2,2)) BR_hjbb(i) = BR(H0FF(i,4,3,3)) BR_hjmumu(i) = BR(H0FF(i,2,2,2)) BR_hjtautau(i) = BR(H0FF(i,2,3,3)) - BR_hjtt(i) = BR(H0FF(i,3,3,3)) + BR_hjtt(i) = BR(H0FF(i,3,3,3)) BR_hjWW(i) = BR(H0VV(i,4)) BR_hjgaga(i) = BR(H0VV(i,1)) BR_hjZga(i) = BR(H0VV(i,2)) BR_hjZZ(i) = BR(H0VV(i,3)) BR_hjgg(i) = BR(H0VV(i,5)) BR_hjHpiW(i,1) = 0.0D0 BR_hjemu(i) = BR(H0FF(i,2,1,2)) BR_hjetau(i) = BR(H0FF(i,2,1,3)) BR_hjmutau(i) = BR(H0FF(i,2,2,3)) if(GammaSM(H0FF(i,4,3,3)).le.0.0D0)then g2hjbb(i)=0.0D0 else g2hjbb(i)=Gamma(H0FF(i,4,3,3)) & /GammaSM(H0FF(i,4,3,3)) endif g2hjbb_s(i)=(abs(RCoupling(H0FF(i,4,3,3)) & /RCouplingSM(H0FF(i,4,3,3))+ & LCoupling(H0FF(i,4,3,3)) & /LCouplingSM(H0FF(i,4,3,3)))/2.0D0)**2.0D0 g2hjbb_p(i)=(abs(RCoupling(H0FF(i,4,3,3)) & /RCouplingSM(H0FF(i,4,3,3))- & LCoupling(H0FF(i,4,3,3)) & /LCouplingSM(H0FF(i,4,3,3)))/2.0D0)**2.0D0 g2hjtautau_s(i)=(abs(RCoupling(H0FF(i,2,3,3)) & /RCouplingSM(H0FF(i,2,3,3))+ & LCoupling(H0FF(i,2,3,3)) & /LCouplingSM(H0FF(i,2,3,3)))/2.0D0)**2.0D0 g2hjtautau_p(i)=(abs(RCoupling(H0FF(i,2,3,3)) & /RCouplingSM(H0FF(i,2,3,3))- & LCoupling(H0FF(i,2,3,3)) & /LCouplingSM(H0FF(i,2,3,3)))/2.0D0)**2.0D0 if( g2hjbb_p(i).lt.1.0D-10)then CP_value(i) = 1 elseif( g2hjbb_s(i).lt.1.0D-10)then CP_value(i) = -1 else CP_value(i) = 0 endif CS_ee_bbhj_ratio(i) = g2hjbb_s(i)+g2hjbb_p(i) CS_ee_tautauhj_ratio(i) = g2hjtautau_s(i)+g2hjtautau_p(i) g2hjWW(i)= dble( Coupling(H0VV(i,4)) & / CouplingSM(H0VV(i,4)) )**2.0D0 & + dimag( Coupling(H0VV(i,4)) & / CouplingSM(H0VV(i,4)) )**2.0D0 g2hjZZ(i)= dble( Coupling(H0VV(i,3)) & / CouplingSM(H0VV(i,3)) )**2.0D0 & + dimag( Coupling(H0VV(i,3)) & / CouplingSM(H0VV(i,3)) )**2.0D0 CS_ee_hjZ_ratio(i) = g2hjZZ(i) enddo norm=GF*sqrt(2.0D0)*MZ**2.0D0 do j=1,3 do i=1,3 g2hjhiZ_nHbynH(j,i)= ( & dble( Coupling(H0HV(j,i)) )**2.0D0 & + dimag( Coupling(H0HV(j,i)) )**2.0D0 & ) & /norm CS_ee_hjhi_ratio(j,i) = g2hjhiZ_nHbynH(j,i) BR_hjhiZ(j,i) = BR(H0HV(j,i)) do k=1,3 BR_hkhjhi(k,j,i) = BR(H0HH(k,j,i)) enddo enddo enddo c higgs->neutralino1 neutralino1 contributes the invisible Higgs decay width c when neutralino1 or sneutrino is the LSP do i=1,3 sneutrino_lspcandidate_number=0 invisible_lsp=.True. c first determine whether lightest sneutrino is lighter than the lightest neutralino c c sneutrino_lspcandidate_number=0 indicates that lightest neutralino is c lighter than all the sneutrinos lspcandidate_mass=MNeu(1) do as=1,3 if( MASf(as,1) .lt. lspcandidate_mass )then lspcandidate_mass=MASf(as,1) sneutrino_lspcandidate_number=as endif enddo if( MCha(1) .lt. lspcandidate_mass )then invisible_lsp=.False. elseif( MGl .lt. lspcandidate_mass )then invisible_lsp=.False. else do as=1,6 do t=2,4 if( MASf(as,t) .lt. lspcandidate_mass )then invisible_lsp=.False. endif enddo enddo endif if(invisible_lsp)then if(sneutrino_lspcandidate_number.eq.0)then BR_hjinvisible(i) = BR(H0NeuNeu(i,1,1)) else BR_hjinvisible(i) = BR(H0SfSf(i,1,1,1,as)) endif else BR_hjinvisible(i) = 0.0D0 endif enddo do j=1,4 select case(j) case(1) collider = 2 sqrts = 2.0D0 case(2) collider = 7 sqrts = 7.0D0 case(3) collider = 8 sqrts = 8.0D0 case(4) collider = 13 sqrts = 13.0D0 end select call FHHiggsProd(error, sqrts, prodxs) if( error .ne. 0 ) stop do i=1,3 CS_gg_hj_ratio(j,i) = ggh(i)/gghSM(i) CS_bb_hj_ratio(j,i) = bbh(i)/bbhSM(i) CS_hj_ratio(j,i) = (ggh(i)+bbh(i))/ & (gghSM(i)+bbhSM(i)) CS_vbf_ratio(j,i) = qqh(i)/qqhSM(i) CS_hjW_ratio(j,i) = Wh(i)/WhSM(i) CS_hjZ_ratio(j,i) = Zh(i)/ZhSM(i) CS_tthj_ratio(j,i) = tth(i)/tthSM(i) CS_thj_tchan_ratio(j,i) = tth(i)/tthSM(i) ! Use tth cross section here CS_thj_schan_ratio(j,i) = tth(i)/tthSM(i) ! Use tth cross section here enddo CS_Hpjtb(j) = tHm enddo * * * * * * * * * * * * * * * * * * * * * c Charged Higgs input Mhplus(1) = MHiggs(4) GammaTotal_Hpj(1) = GammaTot(4) CS_ee_HpjHmj_ratio(1) = 1.0D0 BR_tWpb(1) = BR( tBF(1) ) BR_tHpjb(1) = BR( tBF(2) ) BR_Hpjcs(1) = BR( HpFF(2,2,2) ) BR_Hpjcb(1) = BR( HpFF(2,2,3) ) BR_Hpjtaunu(1) = BR( HpFF(1,3,3) ) BR_Hpjtb(1) = BR( HpFF(2,3,3) ) BR_HpjWZ(1) = 0.0D0 do i=1,3 BR_HpjhiW(1,i) = BR( HpHV(i) ) enddo print*,' ' print*,'The Higgs boson masses are (h, H, A, H+):' print*,Mh,Mhplus !--------------------------------- Run HiggsBounds --------------------------------------! call HiggsBounds_neutral_input_properties(Mh, & GammaTotal_hj,CP_value) call HiggsBounds_neutral_input_SMBR(BR_hjss,BR_hjcc, & BR_hjbb,BR_hjtt,BR_hjmumu,BR_hjtautau,BR_hjWW, & BR_hjZZ,BR_hjZga,BR_hjgaga,BR_hjgg) call HiggsBounds_neutral_input_nonSMBR(BR_hjinvisible, & BR_hkhjhi,BR_hjhiZ, BR_hjemu,BR_hjetau,BR_hjmutau,BR_hjHpiW) call HiggsBounds_neutral_input_LEP(CS_ee_hjZ_ratio, & CS_ee_bbhj_ratio, CS_ee_tautauhj_ratio,CS_ee_hjhi_ratio) do i=1,4 select case(i) case(1) collider = 2 case(2) collider = 7 case(3) collider = 8 case(4) collider = 13 end select call HiggsBounds_neutral_input_hadr(collider,CS_hj_ratio(i,:), & CS_gg_hj_ratio(i,:),CS_bb_hj_ratio(i,:),CS_hjW_ratio(i,:), & CS_hjZ_ratio(i,:),CS_vbf_ratio(i,:),CS_tthj_ratio(i,:), & CS_thj_tchan_ratio(i,:),CS_thj_schan_ratio(i,:),CS_hjhi(i,:,:)) ! Only H+tb production can be calculated by FeynHiggs at the moment, set ! the other cross sections to zero (no experimental limits anyways, except on ! VBF->H+, which is zero in the MSSM.) call HiggsBounds_charged_input_hadr(collider, CS_Hpjtb(i), 0.0D0, & 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0) enddo call HiggsBounds_charged_input(Mhplus,GammaTotal_Hpj, & CS_ee_HpjHmj_ratio, BR_tWpb,BR_tHpjb,BR_Hpjcs,BR_Hpjcb, & BR_Hpjtaunu,BR_Hpjtb,BR_HpjWZ,BR_HpjhiW) * * * * * * * * * * * * * * * * * * * * * c call to run_HiggsBounds call run_HiggsBounds( HBresult,chan,obsratio,ncombined) write(*,*) ' ' write(*,*) '************* HiggsBounds Results **************' write(*,*) ' ' write(*,*) 'Is this parameter point excluded by LEP, Tevatron' write(*,*) 'or LHC data?' write(*,*) HBresult, ', where' write(*,*) ' 0 = yes, it is excluded' write(*,*) ' 1 = no, it has not been excluded' write(*,*) ' -1 = invalid parameter set' write(*,*) ' ' write(*,*) 'The process with the highest statistical sensitivity' write(*,*) 'is' write(*,*) chan,'(see Key.dat)' write(*,*) 'This process has a theoretical rate vs. limit of' write(*,*) obsratio write(*,*) ' ' write(*,*) 'The number of Higgs which have contributed to the' write(*,*) 'theoretical rate of this process was' write(*,*) ncombined write(*,*) ' ' call HiggsBounds_get_most_sensitive_channels_per_Higgs(1, & 1,HBresult_tmp,chan_tmp,obsratio_tmp,predratio_tmp, & ncombined_tmp) write(*,*) 'Detailed information about the most sensitive ', &'channels (per Higgs):' write(*,*) ' ' write(*,*) ' Higgs boson HBresult channel obsratio ', & ' predratio ncombined' write(*,'(A10,2I10,2F15.5,1I5)') ' h ',HBresult_tmp,chan_tmp, & obsratio_tmp,predratio_tmp, ncombined_tmp call HiggsBounds_get_most_sensitive_channels_per_Higgs(2, & 1,HBresult_tmp,chan_tmp,obsratio_tmp,predratio_tmp, & ncombined_tmp) write(*,'(A10,2I10,2F15.5,1I5)') ' H ',HBresult_tmp,chan_tmp, & obsratio_tmp, predratio_tmp, ncombined_tmp call HiggsBounds_get_most_sensitive_channels_per_Higgs(3, & 1,HBresult_tmp,chan_tmp,obsratio_tmp,predratio_tmp, & ncombined_tmp) write(*,'(A10,2I10,2F15.5,1I5)') ' A ',HBresult_tmp,chan_tmp, & obsratio_tmp, predratio_tmp, ncombined_tmp write(*,*) 'See HiggsBounds documentation for more information.' write(*,*) '****************************************************' write(*,*) ' ' !--------------------------------- Run HiggsSignals -------------------------------------! c Set the theory mass uncertainties. This will affect the Chi^2 contribution c from the mass measurements as well as the Higgs-to-peaks assignment in c HiggsSignals . C dmhneut_hs = (/2.D0, 0.D0, 0.D0/) C call HiggsSignals_neutral_input_MassUncertainty(dmhneut_hs) c Set the MSSM rate uncertainties: !---dCS and dBR hold the model's rate uncertainties. Can be changed by user !---with subroutine setup_rate_uncertainties. First, set to SM values. C dCS = (/ 0.147D0, 0.028D0, 0.037D0, 0.051D0, 0.12D0 /) C dBR = (/ 0.054D0, 0.048D0, 0.048D0, 0.061D0, 0.028D0 /) c Now, we set relative uncertainties for the processes gg->H and bb->H c and interpolate from the effective couplings/CS-ratios (of the lightest Higgs) c the uncertainty of single Higgs production, dCS(1). C dggh = 0.147D0 C dbbh = 0.200D0 C call get_singleH_uncertainty(dCS(1),dggh,dbbh,CS_gg_hj_ratio(1), C & g2hjbb_s(1)+g2hjbb_p(1),Mh(1)) C print*,"Interpolated singleH uncertainty (in %): ",dCS(1) C call setup_rate_uncertainties(dCS, dBR) !---- Run HiggsSignals ----! call run_HiggsSignals(runmode,Chisq_mu,Chisq_mh, & Chisq,nobs,Pvalue) call run_HiggsSignals_LHC_Run1_combination(Chisq_LHCRun1_mu, & Chisq_LHCRun1_mh, Chisq_LHCRun1, nobs_LHCRun1, Pvalue_LHCRun1) call run_HiggsSignals_STXS(Chisq_STXS_rates, Chisq_STXS_mh, & Chisq_STXS, nobs_STXS, Pvalue_STXS) call complete_HS_results() C call print_STXS() write(*,*) ' ' write(*,*) '************* HiggsSignals Results **************' write(*,*) ' ' write(*,'(A40,1F10.5,A, 1I4)') & "Chi^2 (signal strength obs.)/nobs = ", & Chisq_mu, " / ", HSres(1)%nobs_peak_mu write(*,'(A40,1F10.5,A, 1I4)') & "Chi^2 (STXS obs.)/nobs = ", & Chisq_STXS, " / ", HSres(1)%nobs_STXS_rates write(*,'(A40,1F10.5,A, 1I4)') & "Chi^2 (LHC-Run1 rate obs.)/nobs = ", & Chisq_LHCRun1_mu, " / ", HSres(1)%nobs_LHCRun1_mu write(*,'(A40,1F10.5,A, 1I4)') & "Chi^2 (mass obs.)/nobs = ", & Chisq_mh + Chisq_LHCRun1_mh + Chisq_STXS_mh, " / ", & HSres(1)%nobs_mh write(*,*) ' ' write(*,*) 'The total chi^2 is ', HSres(1)%Chisq write(*,*) 'The number of observables is ',HSres(1)%nobs C write(*,*) ' ' C write(*,*) 'In the case that the number of observables is equal' C write(*,*) 'to the number of degrees of freedom, this corresponds' C write(*,*) 'to a probability of' C write(*,*) Pvalue write(*,*) ' ' write(*,*) 'See HiggsSignals documentation for more information.' write(*,*) '****************************************************' write(*,*) ' ' !---------------------- Finish HiggsBounds and HiggsSignals -----------------------------! c deallocates arrays used by HiggsBounds: call finish_HiggsBounds call finish_HiggsSignals end ************************************************************************ subroutine setFlags implicit none integer mssmpart, fieldren, tanbren, higgsmix, p2approx integer looplevel, loglevel, runningMT, botResum, tlCplxApprox c Using default (recommended) values of all FH flags parameter (mssmpart = 4) parameter (fieldren = 0) parameter (tanbren = 0) parameter (higgsmix = 2) parameter (p2approx = 4) parameter (looplevel = 2) parameter (loglevel = 3) parameter (runningMT = 1) parameter (botResum = 1) parameter (tlCplxApprox = 0) integer error c Since FH 2.14: call FHSetFlags(error, mssmpart, higgsmix, p2approx, looplevel, & loglevel, runningMT, botResum, tlCplxApprox) if( error .ne. 0 ) stop end ************************************************************************ subroutine setPara implicit none double precision invAlfa0, invAlfaMZ, AlfasMZ, GF double precision ME, MU, MD, MM, MC, MS, ML, MB, MZ, MW double precision GammaW, GammaZ double precision CKMlambda, CKMA, CKMrhobar, CKMetabar parameter (invAlfa0 = -1) parameter (invAlfaMZ = -1) parameter (AlfasMZ = -1) parameter (GammaW = -1) parameter (GammaZ = -1) parameter (GF = -1) parameter (ME = -1) parameter (MU = -1) parameter (MD = -1) parameter (MM = -1) parameter (MC = -1) parameter (MS = -1) parameter (ML = -1) parameter (MB = -1) parameter (MW = -1) parameter (MZ = -1) parameter (CKMlambda = -1) parameter (CKMA = -1) parameter (CKMrhobar = -1) parameter (CKMetabar = -1) double precision MT, TB, MA0, MHp parameter (MT = 173.2) parameter (TB = 10.) parameter (MA0 = 500) parameter (MHp = -1) double precision MSusy double precision M3SL, M2SL, M1SL double precision M3SE, M2SE, M1SE double precision M3SQ, M2SQ, M1SQ double precision M3SU, M2SU, M1SU double precision M3SD, M2SD, M1SD parameter (MSusy = 2000) parameter (M3SL = MSusy) parameter (M2SL = M3SL) parameter (M1SL = M2SL) parameter (M3SE = MSusy) parameter (M2SE = M3SE) parameter (M1SE = M2SE) parameter (M3SQ = MSusy) parameter (M2SQ = M3SQ) parameter (M1SQ = M2SQ) parameter (M3SU = MSusy) parameter (M2SU = M3SU) parameter (M1SU = M2SU) parameter (M3SD = MSusy) parameter (M2SD = M3SD) parameter (M1SD = M2SD) double complex Atau, At, Ab double complex Amu, Ac, As double complex Ae, Au, Ad parameter (At = 2500) parameter (Ab = At) parameter (Atau = At) parameter (Ac = At) parameter (As = Ab) parameter (Amu = Atau) parameter (Au = Ac) parameter (Ad = As) parameter (Ae = Amu) double complex MUE, M_1, M_2, M_3 parameter (MUE = 200) parameter (M_1 = 100) parameter (M_2 = 200) parameter (M_3 = 800) double precision Qtau, Qt, Qb parameter (Qtau = 0) parameter (Qt = 0) parameter (Qb = 0) double precision scalefactor parameter (scalefactor = 1) integer error call FHSetSMPara(error, & invAlfa0, invAlfaMZ, AlfasMZ, GF, & ME, MU, MD, MM, MC, MS, ML, MB, & MW, MZ, GammaW, GammaZ, & CKMlambda, CKMA, CKMrhobar, CKMetabar) if( error .ne. 0 ) stop call FHSetPara(error, scalefactor, & MT, TB, MA0, MHp, & M3SL, M3SE, M3SQ, M3SU, M3SD, & M2SL, M2SE, M2SQ, M2SU, M2SD, & M1SL, M1SE, M1SQ, M1SU, M1SD, & MUE, & Atau, At, Ab, & Amu, Ac, As, & Ae, Au, Ad, & M_1, M_2, M_3, & Qtau, Qt, Qb) if( error .ne. 0 ) stop end ************************************************************************ subroutine setSLHA(filename) implicit none character*(*) filename #include "SLHA.h" integer error double complex slhadata(nslhadata) call SLHARead(error, slhadata, filename, 1) if( error .ne. 0 ) stop call FHSetSLHA(error, slhadata) if( error .ne. 0 ) stop end !************************************************************** subroutine get_singleH_uncertainty(dCS,dggh,dbbh,g2hgg,g2hbb,mh) use theory_colliderSfunctions implicit none double precision dCS double precision dggh, dbbh, g2hgg, g2hbb, mh double precision vsmall vsmall=1.0D-10 if(g2hgg.le.vsmall.and.g2hbb.le.vsmall) then dCS = 0.0D0 else dCS=(g2hgg*LHC8_rH_gg(mh)*dggh+ & g2hbb*LHC8_rH_bb(mh)*dbbh)/ & (g2hgg*LHC8_rH_gg(mh)+g2hbb*LHC8_rH_bb(mh)) endif end !************************************************************** Index: trunk/HiggsSignals-2/example_programs/HShadr.f90 =================================================================== --- trunk/HiggsSignals-2/example_programs/HShadr.f90 (revision 574) +++ trunk/HiggsSignals-2/example_programs/HShadr.f90 (revision 575) @@ -1,141 +1,141 @@ !****************************************************** ! This example program is part of HiggsSignals-2 (TS 29/03/2017). !****************************************************** program HShadr ! This example program uses the hadronic cross section input format ! to scan over the two scale factors: ! scale_ggf scales the SM single Higgs and ttH production cross section ! scale_VH scales the SM VBF, HZ and HW production cross section ! ! The output is written into /results/HShadr.dat, which can be plotted with the ! python script plot_HShadr.py in the results folder. !****************************************************** implicit none integer :: nHzero,nHplus,ndf, i, j, k, ii, jj, CP_value double precision :: Pvalue,Chisq,Chisq_mu,Chisq_mh,scale_ggf,scale_VH double precision :: SMGammaTotal, SMGamma_h double precision :: SMBR_Htoptop,SMBR_Hss, SMBR_Hcc, SMBR_Hbb, SMBR_Htt, & & SMBR_Hmumu, SMBR_Htautau, SMBR_HWW, SMBR_HZZ, SMBR_HZgam, SMBR_Hgamgam, SMBR_Hgg ! Entries of CS arrays: TEV, LHC7, LHC8, LHC13 double precision :: Mh,GammaTotal,CS_hj_ratio(4), & & CS_gg_hj_ratio(4),CS_bb_hj_ratio(4), & & CS_hjW_ratio(4),CS_hjZ_ratio(4), & & CS_vbf_ratio(4),CS_tthj_ratio(4), & & CS_hjhi(4),CS_thj_schan_ratio(4), & & CS_thj_tchan_ratio(4), & & BR_hjss,BR_hjcc, & & BR_hjbb,BR_hjtt, & & BR_hjmumu, & & BR_hjtautau, & & BR_hjWW,BR_hjZZ,BR_hjZga,BR_hjgaga, & & BR_hjgg character(len=100)::filename double precision :: dm integer :: collider,collider_s nHzero=1 nHplus=0 dm = 0.0D0 !---- Initialize HiggsSignals and pass the name of the experimental analysis folder ----! - call initialize_HiggsSignals(nHzero,nHplus,"LHC13_CMS_H-gaga") + call initialize_HiggsSignals(nHzero,nHplus,"LHC13") !---- Set the output level (0: silent, 1: screen output, 2: even more output,...) ----! call setup_output_level(0) !---- Set the Higgs mass parametrization (1: box, 2:gaussian, 3:box+gaussian) ----! call setup_pdf(2) !---- Set the assignment range for the peak-centered method (optional) ----! - call setup_assignmentrange_massobservables(4.0D0) +! call setup_assignmentrange_massobservables(4.0D0) !---- Pass the Higgs mass uncertainty to HiggsSignals ----! - call HiggsSignals_neutral_input_MassUncertainty(dm) +! call HiggsSignals_neutral_input_MassUncertainty(dm) !---- Set number of free model parameters ----! call setup_Nparam(2) !---- Open output text file ----! filename='results/HShadr.dat' open(21,file=filename) write(21,*) '# Mh scale_ggf scale_VH Chisq_mu Chisq_mh Chisq ndf Pvalue' write(21,*) '#--------------------------------------------------------------------------' - do i=1,81 - do j=1,81 - scale_ggf = 0.0D0 +(i-1)*0.025D0 - scale_VH = 0.0D0 +(j-1)*0.05D0 + do i=1,21 + do j=1,21 + scale_ggf = 0.5D0 +(i-1)*0.05D0 + scale_VH = 0.5D0 +(j-1)*0.05D0 ! do i=1,21 ! do j=1,21 ! scale_ggf = 0.5D0 +(i-1)*0.05D0 ! scale_VH = 0.5D0 +(j-1)*0.05D0 Mh=125.09D0 SMGammaTotal=SMGamma_h(Mh) if(.not. (SMGammaTotal .lt. 0)) then GammaTotal=SMGammaTotal ! CP even CP_value=1 ! This applies to all 4 elements: CS_hj_ratio=1.0D0*scale_ggf CS_gg_hj_ratio=1.0D0*scale_ggf CS_bb_hj_ratio=1.0D0*scale_ggf CS_hjW_ratio=1.0D0*scale_VH CS_hjZ_ratio=1.0D0*scale_VH CS_vbf_ratio=1.0D0*scale_VH CS_tthj_ratio=1.0D0*scale_ggf CS_hjhi=0.0D0 CS_thj_tchan_ratio=1.0D0*scale_ggf CS_thj_schan_ratio=1.0D0*scale_ggf BR_hjss=SMBR_Hss(Mh) BR_hjcc=SMBR_Hcc(Mh) BR_hjbb=SMBR_Hbb(Mh) BR_hjmumu=SMBR_Hmumu(Mh) BR_hjtautau=SMBR_Htautau(Mh) BR_hjWW=SMBR_HWW(Mh) BR_hjZZ=SMBR_HZZ(Mh) BR_hjZga=SMBR_HZgam(Mh) BR_hjgaga=SMBR_Hgamgam(Mh) BR_hjgg=SMBR_Hgg(Mh) call HiggsBounds_neutral_input_properties(Mh,GammaTotal,CP_value) do collider=1,4 select case(collider) case(1) collider_s = 2 case(2) collider_s = 7 case(3) collider_s = 8 case(4) collider_s = 13 end select call HiggsBounds_neutral_input_hadr(collider_s,CS_hj_ratio(collider), & & CS_gg_hj_ratio(collider),CS_bb_hj_ratio(collider), & & CS_hjW_ratio(collider),CS_hjZ_ratio(collider), & & CS_vbf_ratio(collider),CS_tthj_ratio(collider), & & CS_thj_tchan_ratio(collider),CS_thj_schan_ratio(collider), & & CS_hjhi(collider)) enddo call HiggsBounds_neutral_input_SMBR(BR_hjss,BR_hjcc,BR_hjbb,BR_hjtt, & & BR_hjmumu,BR_hjtautau,BR_hjWW,BR_hjZZ, & & BR_hjZga,BR_hjgaga,BR_hjgg) call run_HiggsSignals(1, Chisq_mu, Chisq_mh, Chisq, ndf, Pvalue) write(21,*) Mh,scale_ggf,scale_VH,Chisq_mu,Chisq_mh,Chisq,ndf,Pvalue endif enddo enddo close(21) call finish_HiggsSignals end program HShadr Index: trunk/HiggsSignals-2/example_programs/HBandHSwithSLHA.f90 =================================================================== --- trunk/HiggsSignals-2/example_programs/HBandHSwithSLHA.f90 (revision 574) +++ trunk/HiggsSignals-2/example_programs/HBandHSwithSLHA.f90 (revision 575) @@ -1,149 +1,142 @@ !****************************************************** ! This example program is part of HiggsSignals (TS 05/03/2013). !****************************************************** program HBandHSwithSLHA ! ! In this example we run both HiggsBounds and HiggsSignals simultaneously ! on SLHA file(s). NOTE: The feature of selecting different experimental ! data in HiggsBounds is not fully supported here. In particular, the onlyL ! option of HiggsBounds does not work (it will be turned into LandH). ! If you want to take into account only LEP limits in HiggsBounds, you have ! to run both programs separately, using e.g. the example programs ! HBwithSLHA and HSwithSLHA. ! ! The SLHA file(s) has to contain the two HiggsBounds SLHA ! input blocks ! HiggsBoundsInputHiggsCouplingsBosons ! HiggsBoundsInputHiggsCouplingsFermions ! (see HiggsBounds (version 3 or more) manual for more details) ! ! Run with -! ./HSwithSLHA npoints +! ./HBandHSwithSLHA npoints ! where npoints is the number of parameter points you would like to ! look at and each parameter point has a corresponding SLHA file ! e.g. the corresponding SLHA for the 5th point should be found at ! .5 ! ! Output ! The block HiggsSignalsResults will be added to each SLHA file. ! !****************************************************** use io, only : HiggsSignals_SLHA_output, get_peakinfo_from_HSresults implicit none - integer :: nH,nHplus,ndf,iter,HBresult,chan,ncombined - double precision :: obsratio - double precision :: Chisq, Chisq_mu, Chisq_mh, Pvalue + integer :: nH,nHplus,nobs_peak, nobs_STXS, nobs_LHCRun1,HBresult,chan,ncombined + double precision :: Pvalue_peak, Chisq_peak, Chisq_peak_mu, Chisq_peak_mh + double precision :: Pvalue_STXS, Chisq_STXS, Chisq_STXS_rates, Chisq_STXS_mh + double precision :: Pvalue_LHCRun1, Chisq_LHCRun1, Chisq_LHCRun1_mu, Chisq_LHCRun1_mh + double precision :: obsratio double precision, allocatable :: dMh(:), dCS(:), dBR(:) integer :: i,npoints integer,parameter :: fileid=78, fileid2=79 character(len=8) :: istring character(len=300) :: inputfilename,outputfilename character(len=300) :: stem character(LEN=300) :: temp, tmpstring integer :: number_args, ios nH=3 nHplus=1 allocate(dMh(nH)) -!--Give estimates on (relative!) systematic uncertainties for: -! dCS(1) - singleH dBR(1) - gamma gamma -! dCS(2) - VBF dBR(2) - W W -! dCS(3) - HW dBR(3) - Z Z -! dCS(4) - HZ dBR(4) - tau tau -! dCS(5) - ttH dBR(5) - b bbar - allocate(dCS(5),dBR(5)) -!--Enter now the rate uncertainties for your model (typical MSSM estimates): - dCS = (/ 0.20D0, 0.028D0, 0.037D0, 0.051D0, 0.12D0 /) - dBR = (/ 0.054D0, 0.048D0, 0.048D0, 0.061D0, 0.028D0 /) !--n.b. have to set theoretical uncertainties on Higgs masses dMh (in GeV) for h,H,A: dMh = (/ 2.0D0, 2.0D0, 0.0D0 /) !-------------------------- preprocessing ------------------------------! number_args = IARGC() if( number_args .ne. 2)then stop "Incorrect number of arguments given to HSwithSLHA" endif ! Read arguments into text strings. i=1 temp="" call GETARG(i,temp) read(temp,*) npoints i=i+1 temp="" call GETARG(i,temp) stem = "" stem = trim(temp) !---------------------------- HiggsBounds and HiggsSignals ------------------------------! !---- Initialize HiggsBounds and specify the dataset it should use ----! call initialize_HiggsBounds(nH,nHplus,'LandH') !---- Initialize HiggsSignals and pass the name of the experimental analysis folder ----! - call initialize_HiggsSignals(nH,nHplus,"latestresults") + call initialize_HiggsSignals(nH,nHplus,"LHC13") !------------------------------ HiggsSignals options ------------------------------------! !---- Set the output level (0: silent, 1: screen output, 2: even more output,...) ----! - call setup_output_level(1) + call setup_output_level(0) !---- Set the Higgs mass parametrization (1: box, 2:gaussian, 3:box+gaussian) ----! call setup_pdf(2) -!---- Set number of iterations to find the (best) Higgs-to-peaks assignment ----! - call setup_Higgs_to_peaks_assignment_iterations(0) -!---- If the mass-centered chi^2 method is used, can specify the dm_theory treatment ----! -! 1: mass variation, 2: smearing of mu-plot with mass pdf - call setup_mcmethod_dm_theory(1) outputfilename=trim(adjustl(stem))//'-fromHBandHS' open(fileid, file=trim(outputfilename)) do i=1,npoints if(i.gt.99999999)stop'need to increase the size of istring in HSwithSLHA' write(istring,'(I8)')i inputfilename=trim(adjustl(stem))//'.'//trim(adjustl(istring)) !--Test if input file exists and is non-empty open(fileid2, file=inputfilename, form='formatted') read(fileid2,'(A)',iostat=ios) tmpstring if(ios.eq.0) then close(fileid2) !---------------------- HiggsBounds and HiggsSignals run --------------------------------! !---- Feed HiggsBounds/Signals with the the model input using HiggsBounds subroutine ----! call HiggsBounds_input_SLHA(inputfilename) !---- We want to use the mass variation treatment for the theoretical uncertainty ----! ! HiggsBounds. Thus we set the mass uncertainties here (neutral Higgses mass errors ! set to dMh, charged Higgs mass error set to 0.0D0) call HiggsBounds_set_mass_uncertainties(dMh,0.0D0) -!---- First, run HiggsBounds ----! +!---- First, run HiggsBounds ----! call run_HiggsBounds(HBresult, chan, obsratio, ncombined) -!---- Now, we have to fill again the input for the HiggsSignals run ----! +!---- Now, we have to fill again the input for the HiggsSignals run ----! call HiggsBounds_input_SLHA(inputfilename) -!---- Pass the Higgs mass uncertainty to HiggsSignals ----! - call HiggsSignals_neutral_input_MassUncertainty(dMh) -!---- Set the production and decay rate uncertainties for the model ----! - call setup_rate_uncertainties(dCS, dBR) -!---- Run HiggsSignals ----! - call run_HiggsSignals(1, Chisq_mu, Chisq_mh, Chisq, ndf, Pvalue) +!---- Pass the Higgs mass uncertainty to HiggsSignals ----! + call HiggsSignals_neutral_input_MassUncertainty(dMh) +!---- Run HiggsSignals on peak observables (13 TeV) ----! + call run_HiggsSignals(1,Chisq_peak_mu,Chisq_peak_mh,Chisq_peak,nobs_peak,Pvalue_peak) +!---- Run HiggsSignals on STXS observables (13 TeV) ----! + call run_HiggsSignals_STXS(Chisq_STXS_rates,Chisq_STXS_mh,Chisq_STXS,nobs_STXS,Pvalue_STXS) +!---- Run HiggsSignals on LHC Run 1 observables (7/8 TeV) ----! + call run_HiggsSignals_LHC_Run1_combination(Chisq_LHCRun1_mu,Chisq_LHCRun1_mh,& + & Chisq_LHCRun1, nobs_LHCRun1, Pvalue_LHCRun1) + call complete_HS_results() !----------------------------- HiggsSignals output --------------------------------------! !---- Attach HiggsBounds SLHA output block to SLHA file ----! call HiggsBounds_SLHA_output !---- Attach HiggsSignals SLHA output blocks to SLHA file ----! ! integer argument gives level of details: ! 0 : writes only HiggsSignalsResults block ! else : writes all blocks - call HiggsSignals_SLHA_output(1) + call HiggsSignals_SLHA_output(0) !---- This will collect the main HiggsSignals results together into one file ----! - write(fileid,*)i,Pvalue,Chisq,ndf,HBresult,chan,obsratio,ncombined + write(fileid,*)i,Chisq_peak_mu+Chisq_STXS_rates+Chisq_LHCRun1_mu,& + & Chisq_peak_mh+Chisq_STXS_mh+Chisq_LHCRun1_mh,& + & nobs_peak+nobs_STXS+nobs_LHCRun1,HBresult,chan,obsratio,ncombined else close(fileid2) call system("rm -f "//inputfilename) endif enddo close(fileid) call finish_HiggsBounds call finish_HiggsSignals end program HBandHSwithSLHA \ No newline at end of file