diff --git a/Shower/QTilde/SplittingFunctions/HalfHalfOneSplitFn.h b/Shower/QTilde/SplittingFunctions/HalfHalfOneSplitFn.h --- a/Shower/QTilde/SplittingFunctions/HalfHalfOneSplitFn.h +++ b/Shower/QTilde/SplittingFunctions/HalfHalfOneSplitFn.h @@ -1,183 +1,183 @@ // -*- C++ -*- // // HalfHalfOneSplitFn.h is a part of Herwig - A multi-purpose Monte Carlo event generator // Copyright (C) 2002-2019 The Herwig Collaboration // // Herwig is licenced under version 3 of the GPL, see COPYING for details. // Please respect the MCnet academic guidelines, see GUIDELINES for details. // #ifndef HERWIG_HalfHalfOneSplitFn_H #define HERWIG_HalfHalfOneSplitFn_H // // This is the declaration of the HalfHalfOneSplitFn class. // -#include "Herwig/Shower/QTilde/SplittingFunctions/Sudakov1to2FormFactor.h" +#include "Sudakov1to2FormFactor.h" namespace Herwig { using namespace ThePEG; /**\ingroup Shower * * This class provides the concrete implementation of the exact leading-order * splitting function for \f$\frac12\to q\frac12 1\f$. * * In this case the splitting function is given by * \f[P(z,t) =C\left(\frac{1+z^2}{1-z}-2\frac{m^2_q}{t}\right),\f] * where \f$C\f$ is the corresponding colour factor. * Our choice for the overestimate is * \f[P_{\rm over}(z) = \frac{2C}{1-z},\f] * therefore the integral is * \f[\int P_{\rm over}(z) {\rm d}z = -2C\ln(1-z),\f] * and its inverse is * \f[1-\exp\left(\frac{r}{2C}\right).\f] * * @see \ref HalfHalfOneSplitFnInterfaces "The interfaces" * defined for HalfHalfOneSplitFn. */ class HalfHalfOneSplitFn: public SplittingFunction { public: /** * Concrete implementation of the method to determine whether this splitting * function can be used for a given set of particles. * @param ids The PDG codes for the particles in the splitting. */ virtual bool accept(const IdList & ids) const; /** * Methods to return the splitting function. */ //@{ /** * The concrete implementation of the splitting function, \f$P(z,t)\f$. * @param z The energy fraction. * @param t The scale. * @param ids The PDG codes for the particles in the splitting. * @param mass Whether or not to include the mass dependent terms * @param rho The spin density matrix */ virtual double P(const double z, const Energy2 t, const IdList & ids, const bool mass, const RhoDMatrix & rho) const; /** * The concrete implementation of the overestimate of the splitting function, * \f$P_{\rm over}\f$. * @param z The energy fraction. * @param ids The PDG codes for the particles in the splitting. */ virtual double overestimateP(const double z, const IdList & ids) const; /** * The concrete implementation of the * the ratio of the splitting function to the overestimate, i.e. * \f$P(z,t)/P_{\rm over}(z)\f$. * @param z The energy fraction. * @param t The scale. * @param ids The PDG codes for the particles in the splitting. * @param mass Whether or not to include the mass dependent terms * @param rho The spin density matrix */ virtual double ratioP(const double z, const Energy2 t, const IdList & ids, const bool mass, const RhoDMatrix & rho) const; /** * The concrete implementation of the indefinite integral of the * overestimated splitting function, \f$P_{\rm over}\f$. * @param z The energy fraction. * @param ids The PDG codes for the particles in the splitting. * @param PDFfactor Which additional factor to include for the PDF * 0 is no additional factor, * 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$ */ virtual double integOverP(const double z, const IdList & ids, unsigned int PDFfactor=0) const; /** * The concrete implementation of the inverse of the indefinite integral. * @param r Value of the splitting function to be inverted * @param ids The PDG codes for the particles in the splitting. * @param PDFfactor Which additional factor to include for the PDF * 0 is no additional factor, * 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$ */ virtual double invIntegOverP(const double r, const IdList & ids, unsigned int PDFfactor=0) const; //@} /** * Method to calculate the azimuthal angle * @param z The energy fraction * @param t The scale \f$t=2p_j\cdot p_k\f$. * @param ids The PDG codes for the particles in the splitting. * @param The azimuthal angle, \f$\phi\f$. * @return The weight */ virtual vector<pair<int,Complex> > generatePhiForward(const double z, const Energy2 t, const IdList & ids, const RhoDMatrix &); /** * Method to calculate the azimuthal angle for backward evolution * @param z The energy fraction * @param t The scale \f$t=2p_j\cdot p_k\f$. * @param ids The PDG codes for the particles in the splitting. * @param The azimuthal angle, \f$\phi\f$. * @return The weight */ virtual vector<pair<int,Complex> > generatePhiBackward(const double z, const Energy2 t, const IdList & ids, const RhoDMatrix &); /** * Calculate the matrix element for the splitting * @param z The energy fraction * @param t The scale \f$t=2p_j\cdot p_k\f$. * @param ids The PDG codes for the particles in the splitting. * @param The azimuthal angle, \f$\phi\f$. */ virtual DecayMEPtr matrixElement(const double z, const Energy2 t, const IdList & ids, const double phi, bool timeLike); public: /** * The standard Init function used to initialize the interfaces. * Called exactly once for each class by the class description system * before the main function starts or * when this class is dynamically loaded. */ static void Init(); protected: /** @name Clone Methods. */ //@{ /** * Make a simple clone of this object. * @return a pointer to the new object. */ virtual IBPtr clone() const {return new_ptr(*this);} /** Make a clone of this object, possibly modifying the cloned object * to make it sane. * @return a pointer to the new object. */ virtual IBPtr fullclone() const {return new_ptr(*this);} //@} private: /** * The assignment operator is private and must never be called. * In fact, it should not even be implemented. */ HalfHalfOneSplitFn & operator=(const HalfHalfOneSplitFn &) = delete; }; } #endif /* HERWIG_HalfHalfOneSplitFn_H */ diff --git a/Shower/QTilde/SplittingFunctions/HalfOneHalfSplitFn.h b/Shower/QTilde/SplittingFunctions/HalfOneHalfSplitFn.h --- a/Shower/QTilde/SplittingFunctions/HalfOneHalfSplitFn.h +++ b/Shower/QTilde/SplittingFunctions/HalfOneHalfSplitFn.h @@ -1,183 +1,183 @@ // -*- C++ -*- // // HalfOneHalfSplitFn.h is a part of Herwig - A multi-purpose Monte Carlo event generator // Copyright (C) 2002-2019 The Herwig Collaboration // // Herwig is licenced under version 3 of the GPL, see COPYING for details. // Please respect the MCnet academic guidelines, see GUIDELINES for details. // #ifndef HERWIG_HalfOneHalfSplitFn_H #define HERWIG_HalfOneHalfSplitFn_H // // This is the declaration of the HalfOneHalfSplitFn class. // -#include "Herwig/Shower/QTilde/SplittingFunctions/Sudakov1to2FormFactor.h" +#include "Sudakov1to2FormFactor.h" namespace Herwig { using namespace ThePEG; /** \ingroup Shower * * This classs provides the concrete implementation of the exact leading-order * splitting function for \f$\frac12\to 1\frac12\f$. * * In this case the splitting function is given by * \f[P(z,t) = C\left(\frac{2(1-z)+z^2}{z}-2\frac{m^2_q}t\right),\f] * where \f$C\f$ is the corresponding colour factor. * Our choice for the overestimate is * \f[P_{\rm over}(z) = 2C\frac1z,\f] * therefore the integral is * \f[\int P_{\rm over}(z) {\rm d}z = 2C\ln z,\f] * and its inverse is * \f[\exp\left(\frac{r}{2C}\right).\f] * * @see SplittingFunction */ class HalfOneHalfSplitFn: public SplittingFunction { public: /** * Concrete implementation of the method to determine whether this splitting * function can be used for a given set of particles. * @param ids The PDG codes for the particles in the splitting. */ virtual bool accept(const IdList & ids) const; /** * Methods to return the splitting function. */ //@{ /** * The concrete implementation of the splitting function, \f$P(z,t)\f$. * @param z The energy fraction. * @param t The scale. * @param ids The PDG codes for the particles in the splitting. * @param mass Whether or not to include the mass dependent terms * @param rho The spin density matrix */ virtual double P(const double z, const Energy2 t, const IdList & ids, const bool mass, const RhoDMatrix & rho) const; /** * The concrete implementation of the overestimate of the splitting function, * \f$P_{\rm over}\f$. * @param z The energy fraction. * @param ids The PDG codes for the particles in the splitting. */ virtual double overestimateP(const double z, const IdList & ids) const; /** * The concrete implementation of the * the ratio of the splitting function to the overestimate, i.e. * \f$P(z,t)/P_{\rm over}(z)\f$. * @param z The energy fraction. * @param t The scale. * @param ids The PDG codes for the particles in the splitting. * @param mass Whether or not to include the mass dependent terms * @param rho The spin density matrix */ virtual double ratioP(const double z, const Energy2 t, const IdList & ids, const bool mass, const RhoDMatrix & rho) const; /** * The concrete implementation of the indefinite integral of the * overestimated splitting function, \f$P_{\rm over}\f$. * @param z The energy fraction. * @param ids The PDG codes for the particles in the splitting. * @param PDFfactor Which additional factor to include for the PDF * 0 is no additional factor, * 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$ */ virtual double integOverP(const double z, const IdList & ids, unsigned int PDFfactor=0) const; /** * The concrete implementation of the inverse of the indefinite integral. * @param r Value of the splitting function to be inverted * @param ids The PDG codes for the particles in the splitting. * @param PDFfactor Which additional factor to include for the PDF * 0 is no additional factor, * 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$ */ virtual double invIntegOverP(const double r, const IdList & ids, unsigned int PDFfactor=0) const; //@} /** * Method to calculate the azimuthal angle for forward evolution * @param z The energy fraction * @param t The scale \f$t=2p_j\cdot p_k\f$. * @param ids The PDG codes for the particles in the splitting. * @param The azimuthal angle, \f$\phi\f$. * @return The weight */ virtual vector<pair<int,Complex> > generatePhiForward(const double z, const Energy2 t, const IdList & ids, const RhoDMatrix &); /** * Method to calculate the azimuthal angle for backward evolution * @param z The energy fraction * @param t The scale \f$t=2p_j\cdot p_k\f$. * @param ids The PDG codes for the particles in the splitting. * @param The azimuthal angle, \f$\phi\f$. * @return The weight */ virtual vector<pair<int,Complex> > generatePhiBackward(const double z, const Energy2 t, const IdList & ids, const RhoDMatrix &); /** * Calculate the matrix element for the splitting * @param z The energy fraction * @param t The scale \f$t=2p_j\cdot p_k\f$. * @param ids The PDG codes for the particles in the splitting. * @param The azimuthal angle, \f$\phi\f$. */ virtual DecayMEPtr matrixElement(const double z, const Energy2 t, const IdList & ids, const double phi, bool timeLike); public: /** * The standard Init function used to initialize the interfaces. * Called exactly once for each class by the class description system * before the main function starts or * when this class is dynamically loaded. */ static void Init(); protected: /** @name Clone Methods. */ //@{ /** * Make a simple clone of this object. * @return a pointer to the new object. */ virtual IBPtr clone() const {return new_ptr(*this);} /** Make a clone of this object, possibly modifying the cloned object * to make it sane. * @return a pointer to the new object. */ virtual IBPtr fullclone() const {return new_ptr(*this);} //@} private: /** * The assignment operator is private and must never be called. * In fact, it should not even be implemented. */ HalfOneHalfSplitFn & operator=(const HalfOneHalfSplitFn &) = delete; }; } #endif /* HERWIG_HalfOneHalfSplitFn_H */ diff --git a/Shower/QTilde/SplittingFunctions/OneHalfHalfSplitFn.h b/Shower/QTilde/SplittingFunctions/OneHalfHalfSplitFn.h --- a/Shower/QTilde/SplittingFunctions/OneHalfHalfSplitFn.h +++ b/Shower/QTilde/SplittingFunctions/OneHalfHalfSplitFn.h @@ -1,188 +1,188 @@ // -*- C++ -*- // // OneHalfHalfSplitFn.h is a part of Herwig - A multi-purpose Monte Carlo event generator // Copyright (C) 2002-2019 The Herwig Collaboration // // Herwig is licenced under version 3 of the GPL, see COPYING for details. // Please respect the MCnet academic guidelines, see GUIDELINES for details. // #ifndef HERWIG_OneHalfHalfSplitFn_H #define HERWIG_OneHalfHalfSplitFn_H // // This is the declaration of the OneHalfHalfSplitFn class. // -#include "Herwig/Shower/QTilde/SplittingFunctions/Sudakov1to2FormFactor.h" +#include "Sudakov1to2FormFactor.h" namespace Herwig { using namespace ThePEG; /**\ingroup Shower * * This class provides the concrete implementation of the exact leading-order * splitting function for \f$1\to \frac12\frac12\f$. * * In this case the splitting function is given by * \f[P(z,t) =C\left(1-2z(1-z)+2\frac{m_q^2}{t}\right),\f] * where \f$C\f$ is the corresponding colour factor * Our choice for the overestimate is * \f[P_{\rm over}(z) = C,\f] * therefore the integral is * \f[\int P_{\rm over}(z) {\rm d}z =Cz,\f] * and its inverse is * \f[\frac{r}{C}\f] * * @see \ref OneHalfHalfSplitFnInterfaces "The interfaces" * defined for OneHalfHalfSplitFn. */ class OneHalfHalfSplitFn: public SplittingFunction { public: /** * Concrete implementation of the method to determine whether this splitting * function can be used for a given set of particles. * @param ids The PDG codes for the particles in the splitting. */ virtual bool accept(const IdList & ids) const; /** * Methods to return the splitting function. */ //@{ /** * The concrete implementation of the splitting function, \f$P\f$. * @param z The energy fraction. * @param t The scale. * @param ids The PDG codes for the particles in the splitting. * @param mass Whether or not to include the mass dependent terms * @param rho The spin density matrix */ virtual double P(const double z, const Energy2 t, const IdList & ids, const bool mass, const RhoDMatrix & rho) const; /** * The concrete implementation of the overestimate of the splitting function, * \f$P_{\rm over}\f$. * @param z The energy fraction. * @param ids The PDG codes for the particles in the splitting. */ virtual double overestimateP(const double z, const IdList & ids) const; /** * The concrete implementation of the * the ratio of the splitting function to the overestimate, i.e. * \f$P(z,\tilde{q}^2)/P_{\rm over}(z)\f$. * @param z The energy fraction. * @param t The scale. * @param ids The PDG codes for the particles in the splitting. * @param mass Whether or not to include the mass dependent terms * @param rho The spin density matrix */ virtual double ratioP(const double z, const Energy2 t, const IdList & ids, const bool mass, const RhoDMatrix & rho) const; /** * The concrete implementation of the indefinite integral of the * overestimated splitting function, \f$P_{\rm over}\f$. * @param z The energy fraction. * @param ids The PDG codes for the particles in the splitting. * @param PDFfactor Which additional factor to include for the PDF * 0 is no additional factor, * 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$ */ virtual double integOverP(const double z, const IdList & ids, unsigned int PDFfactor=0) const; /** * The concrete implementation of the inverse of the indefinite integral. * @param r Value of the splitting function to be inverted * @param ids The PDG codes for the particles in the splitting. * @param PDFfactor Which additional factor to include for the PDF * 0 is no additional factor, * 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$ */ virtual double invIntegOverP(const double r, const IdList & ids, unsigned int PDFfactor=0) const; //@} /** * Method to calculate the azimuthal angle * @param particle The particle which is branching * @param showerkin The ShowerKinematics object * @param z The energy fraction * @param t The scale \f$t=2p_j\cdot p_k\f$. * @param ids The PDG codes for the particles in the splitting. * @param The azimuthal angle, \f$\phi\f$. * @return The weight */ virtual vector<pair<int,Complex> > generatePhiForward(const double z, const Energy2 t, const IdList & ids, const RhoDMatrix &); /** * Method to calculate the azimuthal angle * @param particle The particle which is branching * @param showerkin The ShowerKinematics object * @param z The energy fraction * @param t The scale \f$t=2p_j\cdot p_k\f$. * @param ids The PDG codes for the particles in the splitting. * @param The azimuthal angle, \f$\phi\f$. * @return The weight */ virtual vector<pair<int,Complex> > generatePhiBackward(const double z, const Energy2 t, const IdList & ids, const RhoDMatrix &); /** * Calculate the matrix element for the splitting * @param z The energy fraction * @param t The scale \f$t=2p_j\cdot p_k\f$. * @param ids The PDG codes for the particles in the splitting. * @param The azimuthal angle, \f$\phi\f$. */ virtual DecayMEPtr matrixElement(const double z, const Energy2 t, const IdList & ids, const double phi, bool timeLike); public: /** * The standard Init function used to initialize the interfaces. * Called exactly once for each class by the class description system * before the main function starts or * when this class is dynamically loaded. */ static void Init(); protected: /** @name Clone Methods. */ //@{ /** * Make a simple clone of this object. * @return a pointer to the new object. */ virtual IBPtr clone() const {return new_ptr(*this);} /** Make a clone of this object, possibly modifying the cloned object * to make it sane. * @return a pointer to the new object. */ virtual IBPtr fullclone() const {return new_ptr(*this);} //@} private: /** * The assignment operator is private and must never be called. * In fact, it should not even be implemented. */ OneHalfHalfSplitFn & operator=(const OneHalfHalfSplitFn &) = delete; }; } #endif /* HERWIG_OneHalfHalfSplitFn_H */ diff --git a/Shower/QTilde/SplittingFunctions/OneOneOneMassiveSplitFn.h b/Shower/QTilde/SplittingFunctions/OneOneOneMassiveSplitFn.h --- a/Shower/QTilde/SplittingFunctions/OneOneOneMassiveSplitFn.h +++ b/Shower/QTilde/SplittingFunctions/OneOneOneMassiveSplitFn.h @@ -1,184 +1,184 @@ // -*- C++ -*- // // OneOneOneSplitFn.h is a part of Herwig - A multi-purpose Monte Carlo event generator // Copyright (C) 2002-2019 The Herwig Collaboration // // Herwig is licenced under version 3 of the GPL, see COPYING for details. // Please respect the MCnet academic guidelines, see GUIDELINES for details. // #ifndef HERWIG_OneOneOneMassiveSplitFn_H #define HERWIG_OneOneOneMassiveSplitFn_H // // This is the declaration of the OneOneOneMassiveSplitFn class. // -#include "Herwig/Shower/QTilde/SplittingFunctions/Sudakov1to2FormFactor.h" +#include "Sudakov1to2FormFactor.h" namespace Herwig { using namespace ThePEG; /** \ingroup Shower * * This class provides the concrete implementation of the exact leading-order * splitting function for \f$1\to 11\f$ where the emitting particle is massi e * * In this case the splitting function is given by * \f[P(z) =2C\left( \frac{z}{1-z}-\frac{m^2}{q^2-m^2} +2\rho_{00}\frac{(1-z)^2m^2}{q^2-m^2} + (1-\rho_{00})\left(\frac{1-z}{z}+z(1-z)-\frac{(1-z)^2m^2}{q^2-m^2}\right)\right),\f] * where \f$C=\f$ is the corresponding colour factor. * Our choice for the overestimate is * \f[P_{\rm over}(z) = 2C\left(\frac1z+\frac1{1-z}\right),\f] * therefore the integral is * \f[\int P_{\rm over}(z) {\rm d}z =2C\ln\left(\frac{z}{1-z}\right),\f] * and its inverse is * \f[\frac{\exp\left(\frac{r}{2C}\right)}{(1+\exp\left(\frac{r}{2C}\right)}\f] * * * @see \ref OneOneOneMassiveSplitFnInterfaces "The interfaces" * defined for OneOneOneMassiveSplitFn. */ class OneOneOneMassiveSplitFn: public SplittingFunction { public: /** * Concrete implementation of the method to determine whether this splitting * function can be used for a given set of particles. * @param ids The PDG codes for the particles in the splitting. */ virtual bool accept(const IdList & ids) const; /** * Methods to return the splitting function. */ //@{ /** * The concrete implementation of the splitting function, \f$P(z,t)\f$. * @param z The energy fraction. * @param t The scale. * @param ids The PDG codes for the particles in the splitting. * @param mass Whether or not to include the mass dependent terms * @param rho The spin density matrix */ virtual double P(const double z, const Energy2 t, const IdList & ids, const bool mass, const RhoDMatrix & rho) const; /** * The concrete implementation of the overestimate of the splitting function, * \f$P_{\rm over}\f$. * @param z The energy fraction. * @param ids The PDG codes for the particles in the splitting. */ virtual double overestimateP(const double z, const IdList & ids) const; /** * The concrete implementation of the * the ratio of the splitting function to the overestimate, i.e. * \f$P(z,t)/P_{\rm over}(z)\f$. * @param z The energy fraction. * @param t The scale. * @param ids The PDG codes for the particles in the splitting. * @param mass Whether or not to include the mass dependent terms * @param rho The spin density matrix */ virtual double ratioP(const double z, const Energy2 t, const IdList & ids, const bool mass, const RhoDMatrix & rho) const; /** * The concrete implementation of the indefinite integral of the * overestimated splitting function, \f$P_{\rm over}\f$. * @param z The energy fraction. * @param ids The PDG codes for the particles in the splitting. * @param PDFfactor Which additional factor to include for the PDF * 0 is no additional factor, * 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$ */ virtual double integOverP(const double z, const IdList & ids, unsigned int PDFfactor=0) const; /** * The concrete implementation of the inverse of the indefinite integral. * @param r Value of the splitting function to be inverted * @param ids The PDG codes for the particles in the splitting. * @param PDFfactor Which additional factor to include for the PDF * 0 is no additional factor, * 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$ */ virtual double invIntegOverP(const double r, const IdList & ids, unsigned int PDFfactor=0) const; //@} /** * Method to calculate the azimuthal angle for forward evolution * @param z The energy fraction * @param t The scale \f$t=2p_j\cdot p_k\f$. * @param ids The PDG codes for the particles in the splitting. * @param The azimuthal angle, \f$\phi\f$. * @return The weight */ virtual vector<pair<int,Complex> > generatePhiForward(const double z, const Energy2 t, const IdList & ids, const RhoDMatrix &); /** * Method to calculate the azimuthal angle for backward evolution * @param z The energy fraction * @param t The scale \f$t=2p_j\cdot p_k\f$. * @param ids The PDG codes for the particles in the splitting. * @param The azimuthal angle, \f$\phi\f$. * @return The weight */ virtual vector<pair<int,Complex> > generatePhiBackward(const double z, const Energy2 t, const IdList & ids, const RhoDMatrix &); /** * Calculate the matrix element for the splitting * @param z The energy fraction * @param t The scale \f$t=2p_j\cdot p_k\f$. * @param ids The PDG codes for the particles in the splitting. * @param The azimuthal angle, \f$\phi\f$. */ virtual DecayMEPtr matrixElement(const double z, const Energy2 t, const IdList & ids, const double phi, bool timeLike); public: /** * The standard Init function used to initialize the interfaces. * Called exactly once for each class by the class description system * before the main function starts or * when this class is dynamically loaded. */ static void Init(); protected: /** @name Clone Methods. */ //@{ /** * Make a simple clone of this object. * @return a pointer to the new object. */ virtual IBPtr clone() const {return new_ptr(*this);} /** Make a clone of this object, possibly modifying the cloned object * to make it sane. * @return a pointer to the new object. */ virtual IBPtr fullclone() const {return new_ptr(*this);} //@} private: /** * The assignment operator is private and must never be called. * In fact, it should not even be implemented. */ OneOneOneMassiveSplitFn & operator=(const OneOneOneMassiveSplitFn &) = delete; }; } #endif /* HERWIG_OneOneOneMassiveSplitFn_H */ diff --git a/Shower/QTilde/SplittingFunctions/OneOneOneSplitFn.h b/Shower/QTilde/SplittingFunctions/OneOneOneSplitFn.h --- a/Shower/QTilde/SplittingFunctions/OneOneOneSplitFn.h +++ b/Shower/QTilde/SplittingFunctions/OneOneOneSplitFn.h @@ -1,184 +1,184 @@ // -*- C++ -*- // // OneOneOneSplitFn.h is a part of Herwig - A multi-purpose Monte Carlo event generator // Copyright (C) 2002-2019 The Herwig Collaboration // // Herwig is licenced under version 3 of the GPL, see COPYING for details. // Please respect the MCnet academic guidelines, see GUIDELINES for details. // #ifndef HERWIG_OneOneOneSplitFn_H #define HERWIG_OneOneOneSplitFn_H // // This is the declaration of the OneOneOneSplitFn class. // -#include "Herwig/Shower/QTilde/SplittingFunctions/Sudakov1to2FormFactor.h" +#include "Sudakov1to2FormFactor.h" namespace Herwig { using namespace ThePEG; /** \ingroup Shower * * This class provides the concrete implementation of the exact leading-order * splitting function for \f$1\to 11\f$. * * In this case the splitting function is given by * \f[P(z) =2C*\left(\frac{z}{1-z}+\frac{1-z}{z}+z(1-z)\right),\f] * where \f$C=\f$ is the corresponding colour factor. * Our choice for the overestimate is * \f[P_{\rm over}(z) = 2C\left(\frac1z+\frac1{1-z}\right),\f] * therefore the integral is * \f[\int P_{\rm over}(z) {\rm d}z =2C\ln\left(\frac{z}{1-z}\right),\f] * and its inverse is * \f[\frac{\exp\left(\frac{r}{2C}\right)}{(1+\exp\left(\frac{r}{2C}\right)}\f] * * * @see \ref OneOneOneSplitFnInterfaces "The interfaces" * defined for OneOneOneSplitFn. */ class OneOneOneSplitFn: public SplittingFunction { public: /** * Concrete implementation of the method to determine whether this splitting * function can be used for a given set of particles. * @param ids The PDG codes for the particles in the splitting. */ virtual bool accept(const IdList & ids) const; /** * Methods to return the splitting function. */ //@{ /** * The concrete implementation of the splitting function, \f$P(z,t)\f$. * @param z The energy fraction. * @param t The scale. * @param ids The PDG codes for the particles in the splitting. * @param mass Whether or not to include the mass dependent terms * @param rho The spin density matrix */ virtual double P(const double z, const Energy2 t, const IdList & ids, const bool mass, const RhoDMatrix & rho) const; /** * The concrete implementation of the overestimate of the splitting function, * \f$P_{\rm over}\f$. * @param z The energy fraction. * @param ids The PDG codes for the particles in the splitting. */ virtual double overestimateP(const double z, const IdList & ids) const; /** * The concrete implementation of the * the ratio of the splitting function to the overestimate, i.e. * \f$P(z,t)/P_{\rm over}(z)\f$. * @param z The energy fraction. * @param t The scale. * @param ids The PDG codes for the particles in the splitting. * @param mass Whether or not to include the mass dependent terms * @param rho The spin density matrix */ virtual double ratioP(const double z, const Energy2 t, const IdList & ids, const bool mass, const RhoDMatrix & rho) const; /** * The concrete implementation of the indefinite integral of the * overestimated splitting function, \f$P_{\rm over}\f$. * @param z The energy fraction. * @param ids The PDG codes for the particles in the splitting. * @param PDFfactor Which additional factor to include for the PDF * 0 is no additional factor, * 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$ */ virtual double integOverP(const double z, const IdList & ids, unsigned int PDFfactor=0) const; /** * The concrete implementation of the inverse of the indefinite integral. * @param r Value of the splitting function to be inverted * @param ids The PDG codes for the particles in the splitting. * @param PDFfactor Which additional factor to include for the PDF * 0 is no additional factor, * 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$ */ virtual double invIntegOverP(const double r, const IdList & ids, unsigned int PDFfactor=0) const; //@} /** * Method to calculate the azimuthal angle for forward evolution * @param z The energy fraction * @param t The scale \f$t=2p_j\cdot p_k\f$. * @param ids The PDG codes for the particles in the splitting. * @param The azimuthal angle, \f$\phi\f$. * @return The weight */ virtual vector<pair<int,Complex> > generatePhiForward(const double z, const Energy2 t, const IdList & ids, const RhoDMatrix &); /** * Method to calculate the azimuthal angle for backward evolution * @param z The energy fraction * @param t The scale \f$t=2p_j\cdot p_k\f$. * @param ids The PDG codes for the particles in the splitting. * @param The azimuthal angle, \f$\phi\f$. * @return The weight */ virtual vector<pair<int,Complex> > generatePhiBackward(const double z, const Energy2 t, const IdList & ids, const RhoDMatrix &); /** * Calculate the matrix element for the splitting * @param z The energy fraction * @param t The scale \f$t=2p_j\cdot p_k\f$. * @param ids The PDG codes for the particles in the splitting. * @param The azimuthal angle, \f$\phi\f$. */ virtual DecayMEPtr matrixElement(const double z, const Energy2 t, const IdList & ids, const double phi, bool timeLike); public: /** * The standard Init function used to initialize the interfaces. * Called exactly once for each class by the class description system * before the main function starts or * when this class is dynamically loaded. */ static void Init(); protected: /** @name Clone Methods. */ //@{ /** * Make a simple clone of this object. * @return a pointer to the new object. */ virtual IBPtr clone() const {return new_ptr(*this);} /** Make a clone of this object, possibly modifying the cloned object * to make it sane. * @return a pointer to the new object. */ virtual IBPtr fullclone() const {return new_ptr(*this);} //@} private: /** * The assignment operator is private and must never be called. * In fact, it should not even be implemented. */ OneOneOneSplitFn & operator=(const OneOneOneSplitFn &) = delete; }; } #endif /* HERWIG_OneOneOneSplitFn_H */ diff --git a/Shower/QTilde/SplittingFunctions/SudakovFormFactor.h b/Shower/QTilde/SplittingFunctions/SudakovFormFactor.h --- a/Shower/QTilde/SplittingFunctions/SudakovFormFactor.h +++ b/Shower/QTilde/SplittingFunctions/SudakovFormFactor.h @@ -1,626 +1,626 @@ // -*- C++ -*- // // SudakovFormFactor.h is a part of Herwig - A multi-purpose Monte Carlo event generator // Copyright (C) 2002-2019 The Herwig Collaboration // // Herwig is licenced under version 3 of the GPL, see COPYING for details. // Please respect the MCnet academic guidelines, see GUIDELINES for details. // #ifndef HERWIG_SudakovFormFactor_H #define HERWIG_SudakovFormFactor_H // // This is the declaration of the SudakovFormFactor class. // #include "ThePEG/Interface/Interfaced.h" -#include "Herwig/Shower/QTilde/SplittingFunctions/Sudakov1to2FormFactor.h" +#include "Sudakov1to2FormFactor.h" #include "Herwig/Shower/ShowerAlpha.h" #include "Herwig/Shower/QTilde/SplittingFunctions/SplittingGenerator.fh" #include "ThePEG/Repository/UseRandom.h" #include "ThePEG/PDF/BeamParticleData.h" #include "ThePEG/EventRecord/RhoDMatrix.h" #include "ThePEG/EventRecord/SpinInfo.h" #include "Herwig/Shower/QTilde/Kinematics/ShowerKinematics.fh" #include "SudakovFormFactor.fh" #include "SudakovCutOff.h" namespace Herwig { using namespace ThePEG; /** * A typedef for the BeamParticleData */ typedef Ptr<BeamParticleData>::transient_const_pointer tcBeamPtr; /** \ingroup Shower * * This is the definition of the Sudakov form factor class. In general this * is the base class for the implementation of Sudakov form factors in Herwig. * The methods generateNextTimeBranching(), generateNextDecayBranching() and * generateNextSpaceBranching need to be implemented in classes inheriting from this * one. * * In addition a number of methods are implemented to assist with the calculation * of the form factor using the veto algorithm in classes inheriting from this one. * * In general the Sudakov form-factor, for final-state radiation, is given * by * \f[\Delta_{ba}(\tilde{q}_{i+1},\tilde{q}_i)= * \exp\left\{ * -\int^{\tilde{q}^2_i}_{\tilde{q}^2_{i+1}} * \frac{{\rm d}\tilde{q}^2}{\tilde{q}^2} * \int\frac{\alpha_S(z,\tilde{q})}{2\pi} * P_{ba}(z,\tilde{q})\Theta(p_T) * \right\}. * \f] * We can solve this to obtain the next value of the scale \f$\tilde{q}_{i+1}\f$ * given the previous value \f$\tilde{q}_i\f$ * in the following way. First we obtain a simplified form of the integrand * which is greater than or equal to the true integrand for all values of * \f$\tilde{q}\f$. * * In practice it is easiest to obtain this over estimate in pieces. The ShowerAlpha * object contains an over estimate for \f$\alpha_S\f$, the splitting function * contains both an over estimate of the spltting function and its integral * which is needed to compute the over estimate of the \f$\tilde{q}\f$ integrand, * together with an over estimate of the limit of the \f$z\f$ integral. * * This gives an overestimate of the integrand * \f[g(\tilde{q}^2) = \frac{c}{\tilde{q}^2}, \f] * where because the over estimates are chosen to be independent of \f$\tilde{q}\f$ the * parameter * \f[c = \frac{\alpha_{\rm over}}{2\pi}\int^{z_1}_{z_0}P_{\rm over}(z),\f] * is a constant independent of \f$\tilde{q}\f$. * * The guesstz() member can then be used to generate generate the value of * \f$\tilde{q}^2\f$ according to this result. This is done by solving the Sudakov * form factor, with the over estimates, is equal to a random number * \f$r\f$ in the interval \f$[0,1]\f$. This gives * \f[\tilde{q}^2_{i+1}=G^{-1}\left[G(\tilde{q}^2_i)+\ln r\right],\f] * where \f$G(\tilde{q}^2)=c\ln(\tilde{q}^2)\f$ is the infinite integral * of \f$g(\tilde{q}^2)\f$ and \f$G^{-1}(x)=\exp\left(\frac{x}c\right)\f$ * is its inverse. * It this case we therefore obtain * \f[\tilde{q}^2_{i+1}=\tilde{q}^2_ir^{\frac1c}.\f] * The value of \f$z\f$ can then be calculated in a similar way * \f[z = I^{-1}\left[I(z_0)+r\left(I(z_1)-I(z_0)\right)\right],\f] * using the guesstz() member, * where \f$I=\int P(z){\rm d}z\f$ and \f$I^{-1}\f$ is its inverse. * * The veto algorithm then uses rejection using the ratio of the * true value to the overestimated one to obtain the original distribution. * This is accomplished using the * - alphaSVeto() member for the \f$\alpha_S\f$ veto * - SplittingFnVeto() member for the veto on the value of the splitting function. * in general there must also be a chech that the emission is in the allowed * phase space but this is left to the inheriting classes as it will depend * on the ordering variable. * * The Sudakov form factor for the initial-scale shower is different because * it must include the PDF which guides the backward evolution. * It is given by * \f[\Delta_{ba}(\tilde{q}_{i+1},\tilde{q}_i)= * \exp\left\{ * -\int^{\tilde{q}^2_i}_{\tilde{q}^2_{i+1}} * \frac{{\rm d}\tilde{q}^2}{\tilde{q}^2} * \int\frac{\alpha_S(z,\tilde{q})}{2\pi} * P_{ba}(z,\tilde{q})\frac{x'f_a(\frac{x}z,\tilde{q}^2)}{xf_b(x,\tilde{q^2})} * \right\}, * \f] * where \f$x\f$ is the fraction of the beam momentum the parton \f$b\f$ had before * the backward evolution. * This can be solve in the same way as for the final-state branching but the constant * becomes * \f[c = \frac{\alpha_{\rm over}}{2\pi}\int^{z_1}_{z_0}P_{\rm over}(z)PDF_{\rm max},\f] * where * \f[PDF_{\rm max}=\max\frac{x'f_a(\frac{x}z,\tilde{q}^2)}{xf_b(x,\tilde{q^2})},\f] * which can be set using an interface. * In addition the PDFVeto() member then is needed to implement the relevant veto. * * @see SplittingGenerator * @see SplittingFunction * @see ShowerAlpha * @see \ref SudakovFormFactorInterfaces "The interfaces" * defined for SudakovFormFactor. */ class SudakovFormFactor: public Interfaced { /** * The SplittingGenerator is a friend to insert the particles in the * branchings at initialisation */ friend class SplittingGenerator; public: /** * The default constructor. */ SudakovFormFactor() : pdfmax_(35.0), pdffactor_(0), z_( 0.0 ),phi_(0.0), pT_(){} /** * Members to generate the scale of the next branching */ //@{ /** * Return the scale of the next time-like branching. If there is no * branching then it returns ZERO. * @param startingScale starting scale for the evolution * @param ids The PDG codes of the particles in the splitting * @param enhance The radiation enhancement factor * defined. */ virtual ShoKinPtr generateNextTimeBranching(const Energy startingScale, const IdList &ids, const RhoDMatrix & rho, double enhance, double detuning); /** * Return the scale of the next space-like decay branching. If there is no * branching then it returns ZERO. * @param startingScale starting scale for the evolution * @param stoppingScale stopping scale for the evolution * @param minmass The minimum mass allowed for the spake-like particle. * @param ids The PDG codes of the particles in the splitting * defined. * @param enhance The radiation enhancement factor */ virtual ShoKinPtr generateNextDecayBranching(const Energy startingScale, const Energy stoppingScale, const Energy minmass, const IdList &ids, const RhoDMatrix & rho, double enhance, double detuning); /** * Return the scale of the next space-like branching. If there is no * branching then it returns ZERO. * @param startingScale starting scale for the evolution * @param ids The PDG codes of the particles in the splitting * @param x The fraction of the beam momentum * defined. * @param beam The beam particle * @param enhance The radiation enhancement factor */ virtual ShoKinPtr generateNextSpaceBranching(const Energy startingScale, const IdList &ids,double x, const RhoDMatrix & rho, double enhance, tcBeamPtr beam, double detuning); //@} /** * Generate the azimuthal angle of the branching for forward evolution * @param particle The branching particle * @param ids The PDG codes of the particles in the branchings * @param The Shower kinematics */ virtual double generatePhiForward(ShowerParticle & particle,const IdList & ids, ShoKinPtr kinematics, const RhoDMatrix & rho); /** * Generate the azimuthal angle of the branching for backward evolution * @param particle The branching particle * @param ids The PDG codes of the particles in the branchings * @param The Shower kinematics */ virtual double generatePhiBackward(ShowerParticle & particle,const IdList & ids, ShoKinPtr kinematics, const RhoDMatrix & rho); /** * Generate the azimuthal angle of the branching for ISR in decays * @param particle The branching particle * @param ids The PDG codes of the particles in the branchings * @param The Shower kinematics */ virtual double generatePhiDecay(ShowerParticle & particle,const IdList & ids, ShoKinPtr kinematics, const RhoDMatrix & rho); /** * Methods to provide public access to the private member variables */ //@{ /** * Return the pointer to the SplittingFunction object. */ tSplittingFnPtr splittingFn() const { return splittingFn_; } /** * Return the pointer to the ShowerAlpha object. */ tShowerAlphaPtr alpha() const { return alpha_; } /** * The type of interaction */ inline ShowerInteraction interactionType() const {return splittingFn_->interactionType();} //@} public: /** * Methods to access the kinematic variables for the branching */ //@{ /** * The energy fraction */ double z() const { return z_; } /** * The azimuthal angle */ double phi() const { return phi_; } /** * The transverse momentum */ Energy pT() const { return pT_; } //@} /** * Access the maximum weight for the PDF veto */ double pdfMax() const { return pdfmax_;} /** * Method to return the evolution scale given the * transverse momentum, \f$p_T\f$ and \f$z\f$. */ virtual Energy calculateScale(double z, Energy pt, IdList ids,unsigned int iopt); public: /** @name Functions used by the persistent I/O system. */ //@{ /** * Function used to write out object persistently. * @param os the persistent output stream written to. */ void persistentOutput(PersistentOStream & os) const; /** * Function used to read in object persistently. * @param is the persistent input stream read from. * @param version the version number of the object when written. */ void persistentInput(PersistentIStream & is, int version); //@} /** * The standard Init function used to initialize the interfaces. * Called exactly once for each class by the class description system * before the main function starts or * when this class is dynamically loaded. */ static void Init(); protected: /** * Methods to provide the next value of the scale before the vetos * are applied. */ //@{ /** * Value of the energy fraction and scale for time-like branching * @param t The scale * @param tmin The minimum scale * @param enhance The radiation enhancement factor * @return False if scale less than minimum, true otherwise */ bool guessTimeLike(Energy2 &t, Energy2 tmin, double enhance, double detune); /** * Value of the energy fraction and scale for time-like branching * @param t The scale * @param tmax The maximum scale * @param minmass The minimum mass of the particle after the branching * @param enhance The radiation enhancement factor */ bool guessDecay(Energy2 &t, Energy2 tmax,Energy minmass, double enhance, double detune); /** * Value of the energy fraction and scale for space-like branching * @param t The scale * @param tmin The minimum scale * @param x Fraction of the beam momentum. * @param enhance The radiation enhancement factor */ bool guessSpaceLike(Energy2 &t, Energy2 tmin, const double x, double enhance, double detune); //@} /** * Initialize the values of the cut-offs and scales * @param tmin The minimum scale * @param ids The ids of the partics in the branching */ void initialize(const IdList & ids,Energy2 &tmin); /** * Phase Space veto member to implement the \f$\Theta\f$ function as a veto * so that the emission is within the allowed phase space. * @param t The scale * @param maxQ2 The maximum virtuality * @return true if vetoed */ bool PSVeto(const Energy2 t); /** * Compute the limits on \f$z\f$ for time-like branching * @param scale The scale of the particle * @return True if lower limit less than upper, otherwise false */ bool computeTimeLikeLimits(Energy2 & scale); /** * Compute the limits on \f$z\f$ for space-like branching * @param scale The scale of the particle * @param x The energy fraction of the parton * @return True if lower limit less than upper, otherwise false */ bool computeSpaceLikeLimits(Energy2 & scale, double x); protected: /** * Methods to implement the veto algorithm to generate the scale of * the next branching */ //@{ /** * Value of the energy fraction and value of the scale for the veto algorithm * @param iopt The option for calculating z * @param ids The PDG codes of the particles in the splitting * - 0 is final-state * - 1 is initial-state for the hard process * - 2 is initial-state for particle decays * @param t1 The starting valoe of the scale * @param enhance The radiation enhancement factor * @param identical Whether or not the outgoing particles are identical * @param t_main rerurns the value of the energy fraction for the veto algorithm * @param z_main returns the value of the scale for the veto algorithm */ void guesstz(Energy2 t1,unsigned int iopt, const IdList &ids, double enhance,bool ident, double detune, Energy2 &t_main, double &z_main); /** * Veto on the PDF for the initial-state shower * @param t The scale * @param x The fraction of the beam momentum * @param parton0 Pointer to the particleData for the * new parent (this is the particle we evolved back to) * @param parton1 Pointer to the particleData for the * original particle * @param beam The BeamParticleData object */ bool PDFVeto(const Energy2 t, const double x, const tcPDPtr parton0, const tcPDPtr parton1, tcBeamPtr beam) const; /** * The PDF veto ratio */ double PDFVetoRatio(const Energy2 t, const double x, const tcPDPtr parton0, const tcPDPtr parton1, tcBeamPtr beam,double factor) const; /** * The veto on the splitting function. * @param t The scale * @param ids The PDG codes of the particles in the splitting * @param mass Whether or not to use the massive splitting functions * @return true if vetoed */ bool SplittingFnVeto(const Energy2 t, const IdList &ids, const bool mass, const RhoDMatrix & rho, const double & detune) const { return UseRandom::rnd()>SplittingFnVetoRatio(t,ids,mass,rho,detune); } /** * The Splitting function veto ratio */ double SplittingFnVetoRatio(const Energy2 t, const IdList &ids, const bool mass, const RhoDMatrix & rho, const double & detune) const { return splittingFn_->ratioP(z_, t, ids,mass,rho)/detune; } /** * The veto on the coupling constant * @param pt2 The value of ther transverse momentum squared, \f$p_T^2\f$. * @return true if vetoed */ bool alphaSVeto(Energy2 pt2) const; /** * The alpha S veto ratio */ double alphaSVetoRatio(Energy2 pt2,double factor) const; //@} /** * Set the particles in the splittings */ void addSplitting(const IdList &); /** * Delete the particles in the splittings */ void removeSplitting(const IdList &); /** * Access the potential branchings */ const vector<IdList> & particles() const { return particles_; } public: /** * Set the PDF */ void setPDF(tcPDFPtr pdf, Energy scale) { pdf_ = pdf; freeze_ = scale; } public: /** * Calculate the virtual masses for a branchings */ const vector<Energy> & virtualMasses(const IdList & ids) { return cutoff_->virtualMasses(ids); } /** * The minimum pT2 */ Energy2 pT2min() { return cutoff_->pT2min(); } protected: /** @name Clone Methods. */ //@{ /** * Make a simple clone of this object. * @return a pointer to the new object. */ virtual IBPtr clone() const {return new_ptr(*this);} /** Make a clone of this object, possibly modifying the cloned object * to make it sane. * @return a pointer to the new object. */ virtual IBPtr fullclone() const {return new_ptr(*this);} //@} private: /** * The assignment operator is private and must never be called. * In fact, it should not even be implemented. */ SudakovFormFactor & operator=(const SudakovFormFactor &) = delete; private: /** * Pointer to the splitting function for this Sudakov form factor */ SplittingFnPtr splittingFn_; /** * Pointer to the coupling for this Sudakov form factor */ ShowerAlphaPtr alpha_; /** * Pointer to the coupling for this Sudakov form factor */ SudakovCutOffPtr cutoff_; /** * Maximum value of the PDF weight */ double pdfmax_; /** * List of the particles this Sudakov is used for to aid in setting up * interpolation tables if needed */ vector<IdList> particles_; /** * Option for the inclusion of a factor \f$1/(1-z)\f$ in the PDF estimate */ unsigned pdffactor_; private: /** * Member variables to keep the shower kinematics information * generated by a call to generateNextTimeBranching or generateNextSpaceBranching */ //@{ /** * The energy fraction */ double z_; /** * The azimuthal angle */ double phi_; /** * The transverse momentum */ Energy pT_; //@} /** * The limits of \f$z\f$ in the splitting */ pair<double,double> zlimits_; /** * Stuff for the PDFs */ //@{ /** * PDf */ tcPDFPtr pdf_; /** * Freezing scale */ Energy freeze_; //@} private: /** * The evolution scale, \f$\tilde{q}\f$. */ Energy q_; /** * The Ids of the particles in the current branching */ IdList ids_; /** * The masses of the particles in the current branching */ vector<Energy> masses_; /** * The mass squared of the particles in the current branching */ vector<Energy2> masssquared_; }; } #endif /* HERWIG_SudakovFormFactor_H */ diff --git a/Shower/QTilde/SplittingFunctions/ZeroZeroOneSplitFn.h b/Shower/QTilde/SplittingFunctions/ZeroZeroOneSplitFn.h --- a/Shower/QTilde/SplittingFunctions/ZeroZeroOneSplitFn.h +++ b/Shower/QTilde/SplittingFunctions/ZeroZeroOneSplitFn.h @@ -1,188 +1,188 @@ // -*- C++ -*- // // ZeroZeroOneSplitFn.h is a part of Herwig - A multi-purpose Monte Carlo event generator // Copyright (C) 2002-2019 The Herwig Collaboration // // Herwig is licenced under version 3 of the GPL, see COPYING for details. // Please respect the MCnet academic guidelines, see GUIDELINES for details. // #ifndef HERWIG_ZeroZeroOneSplitFn_H #define HERWIG_ZeroZeroOneSplitFn_H // // This is the declaration of the ZeroZeroOneSplitFn class. // -#include "Herwig/Shower/QTilde/SplittingFunctions/Sudakov1to2FormFactor.h" +#include "Sudakov1to2FormFactor.h" namespace Herwig { using namespace ThePEG; /** \ingroup Shower * This class provides the concrete implementation of the exact leading-order * splitting function for \f$\phi\to \phi g\f$. * * In this case the splitting function is given by * \f[P(z,t) = 2C\left(\frac{z}{1-z}-\frac{m^2_\phi}{t}\right),\f] * where \f$C\f$ is the corresponding colour factor. * Our choice for the overestimate is * \f[P_{\rm over}(z) = \frac{2C}{1-z},\f] * therefore the integral is * \f[\int P_{\rm over}(z) {\rm d}z = -2C\ln(1-z),\f] * and its inverse is * \f[1-\exp\left(\frac{r}{2C}\right).\f] * * @see \ref ZeroZeroOneSplitFnInterfaces "The interfaces" * defined for ZeroZeroOneSplitFn. */ class ZeroZeroOneSplitFn: public SplittingFunction { public: /** * Concrete implementation of the method to determine whether this splitting * function can be used for a given set of particles. * @param ids The PDG codes for the particles in the splitting. */ virtual bool accept(const IdList & ids) const; /** * Methods to return the splitting function. */ //@{ /** * The concrete implementation of the splitting function, \f$P\f$. * @param z The energy fraction. * @param t The scale. * @param ids The PDG codes for the particles in the splitting. * @param mass Whether or not to include the mass dependent terms * @param rho The spin density matrix */ virtual double P(const double z, const Energy2 t, const IdList & ids, bool mass, const RhoDMatrix & rho) const; /** * The concrete implementation of the overestimate of the splitting function, * \f$P_{\rm over}\f$. * @param z The energy fraction. * @param ids The PDG codes for the particles in the splitting. */ virtual double overestimateP(const double z, const IdList & ids) const; /** * The concrete implementation of the * the ratio of the splitting function to the overestimate, i.e. * \f$P(z,\tilde{q}^2)/P_{\rm over}(z)\f$. * @param z The energy fraction. * @param t The scale. * @param ids The PDG codes for the particles in the splitting. * @param mass Whether or not to include the mass dependent terms * @param rho The spin density matrix */ virtual double ratioP(const double z, const Energy2 t, const IdList & ids, bool mass, const RhoDMatrix & rho) const; /** * The concrete implementation of the indefinite integral of the * overestimated splitting function, \f$P_{\rm over}\f$. * @param z The energy fraction. * @param ids The PDG codes for the particles in the splitting. * @param PDFfactor Which additional factor to include for the PDF * 0 is no additional factor, * 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$ */ virtual double integOverP(const double z, const IdList & ids, unsigned int PDFfactor=0) const; /** * The concrete implementation of the inverse of the indefinite integral. * @param r Value of the splitting function to be inverted * @param ids The PDG codes for the particles in the splitting. * @param PDFfactor Which additional factor to include for the PDF * 0 is no additional factor, * 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$ */ virtual double invIntegOverP(const double r, const IdList & ids, unsigned int PDFfactor=0) const; //@} /** * Method to calculate the azimuthal angle for forward evolution * @param particle The particle which is branching * @param showerkin The ShowerKinematics object * @param z The energy fraction * @param t The scale \f$t=2p_j\cdot p_k\f$. * @param ids The PDG codes for the particles in the splitting. * @param The azimuthal angle, \f$\phi\f$. * @return The weight */ virtual vector<pair<int,Complex> > generatePhiForward(const double z, const Energy2 t, const IdList & ids, const RhoDMatrix &); /** * Method to calculate the azimuthal angle for backward * Shouldn't be needed and NOT IMPLEMENTED * @param particle The particle which is branching * @param showerkin The ShowerKinematics object * @param z The energy fraction * @param t The scale \f$t=2p_j\cdot p_k\f$. * @param ids The PDG codes for the particles in the splitting. * @param The azimuthal angle, \f$\phi\f$. * @return The weight */ virtual vector<pair<int,Complex> > generatePhiBackward(const double z, const Energy2 t, const IdList & ids, const RhoDMatrix &); /** * Calculate the matrix element for the splitting * @param particle The particle which is branching * @param showerkin The ShowerKinematics object * @param z The energy fraction * @param t The scale \f$t=2p_j\cdot p_k\f$. * @param ids The PDG codes for the particles in the splitting. * @param The azimuthal angle, \f$\phi\f$. */ virtual DecayMEPtr matrixElement(const double z, const Energy2 t, const IdList & ids, const double phi, bool timeLike); public: /** * The standard Init function used to initialize the interfaces. * Called exactly once for each class by the class description system * before the main function starts or * when this class is dynamically loaded. */ static void Init(); protected: /** @name Clone Methods. */ //@{ /** * Make a simple clone of this object. * @return a pointer to the new object. */ virtual IBPtr clone() const {return new_ptr(*this);} /** Make a clone of this object, possibly modifying the cloned object * to make it sane. * @return a pointer to the new object. */ virtual IBPtr fullclone() const {return new_ptr(*this);} //@} private: /** * The assignment operator is private and must never be called. * In fact, it should not even be implemented. */ ZeroZeroOneSplitFn & operator=(const ZeroZeroOneSplitFn &) = delete; }; } #endif /* HERWIG_ZeroZeroOneSplitFn_H */