diff --git a/Shower/Core/Base/ShowerParticle.cc b/Shower/Core/Base/ShowerParticle.cc --- a/Shower/Core/Base/ShowerParticle.cc +++ b/Shower/Core/Base/ShowerParticle.cc @@ -1,595 +1,584 @@ // -*- C++ -*- // // ShowerParticle.cc is a part of Herwig - A multi-purpose Monte Carlo event generator // Copyright (C) 2002-2017 The Herwig Collaboration // // Herwig is licenced under version 3 of the GPL, see COPYING for details. // Please respect the MCnet academic guidelines, see GUIDELINES for details. // // // This is the implementation of the non-inlined, non-templated member // functions of the ShowerParticle class. // #include "ShowerParticle.h" #include "ThePEG/Interface/ClassDocumentation.h" #include "ThePEG/Persistency/PersistentOStream.h" #include "ThePEG/Persistency/PersistentIStream.h" #include "ThePEG/Helicity/WaveFunction/SpinorWaveFunction.h" #include "ThePEG/Helicity/WaveFunction/SpinorBarWaveFunction.h" #include "ThePEG/Helicity/WaveFunction/VectorWaveFunction.h" #include "ThePEG/Helicity/WaveFunction/ScalarWaveFunction.h" #include <ostream> using namespace Herwig; PPtr ShowerParticle::clone() const { return new_ptr(*this); } PPtr ShowerParticle::fullclone() const { return new_ptr(*this); } ClassDescription<ShowerParticle> ShowerParticle::initShowerParticle; // Definition of the static class description member. void ShowerParticle::vetoEmission(ShowerPartnerType, Energy scale) { scales_.QED = min(scale,scales_.QED ); scales_.QED_noAO = min(scale,scales_.QED_noAO ); scales_.QCD_c = min(scale,scales_.QCD_c ); scales_.QCD_c_noAO = min(scale,scales_.QCD_c_noAO ); scales_.QCD_ac = min(scale,scales_.QCD_ac ); scales_.QCD_ac_noAO = min(scale,scales_.QCD_ac_noAO); } void ShowerParticle::addPartner(EvolutionPartner in ) { partners_.push_back(in); } namespace { LorentzRotation boostToShower(Lorentz5Momentum & porig, tShowerBasisPtr basis) { LorentzRotation output; assert(basis); if(basis->frame()==ShowerBasis::BackToBack) { // we are doing the evolution in the back-to-back frame // work out the boostvector Boost boostv(-(basis->pVector()+basis->nVector()).boostVector()); // momentum of the parton Lorentz5Momentum ptest(basis->pVector()); // construct the Lorentz boost output = LorentzRotation(boostv); ptest *= output; Axis axis(ptest.vect().unit()); // now rotate so along the z axis as needed for the splitting functions if(axis.perp2()>1e-10) { double sinth(sqrt(1.-sqr(axis.z()))); output.rotate(-acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.)); } else if(axis.z()<0.) { output.rotate(Constants::pi,Axis(1.,0.,0.)); } porig = output*basis->pVector(); porig.setX(ZERO); porig.setY(ZERO); } else { output = LorentzRotation(-basis->pVector().boostVector()); porig = output*basis->pVector(); porig.setX(ZERO); porig.setY(ZERO); porig.setZ(ZERO); } return output; } RhoDMatrix bosonMapping(ShowerParticle & particle, const Lorentz5Momentum & porig, VectorSpinPtr vspin, const LorentzRotation & rot) { // rotate the original basis vector<LorentzPolarizationVector> sbasis; for(unsigned int ix=0;ix<3;++ix) { sbasis.push_back(vspin->getProductionBasisState(ix)); sbasis.back().transform(rot); } // splitting basis vector<LorentzPolarizationVector> fbasis; bool massless(particle.id()==ParticleID::g||particle.id()==ParticleID::gamma); VectorWaveFunction wave(porig,particle.dataPtr(),outgoing); for(unsigned int ix=0;ix<3;++ix) { if(massless&&ix==1) { fbasis.push_back(LorentzPolarizationVector()); } else { wave.reset(ix); fbasis.push_back(wave.wave()); } } // work out the mapping RhoDMatrix mapping=RhoDMatrix(PDT::Spin1,false); for(unsigned int ix=0;ix<3;++ix) { for(unsigned int iy=0;iy<3;++iy) { mapping(ix,iy)= sbasis[iy].dot(fbasis[ix].conjugate()); if(particle.id()<0) mapping(ix,iy)=conj(mapping(ix,iy)); } } - // \todo need to fix this - mapping = RhoDMatrix(PDT::Spin1,false); - if(massless) { - mapping(0,0) = 1.; - mapping(2,2) = 1.; - } - else { - mapping(0,0) = 1.; - mapping(1,1) = 1.; - mapping(2,2) = 1.; - } return mapping; } RhoDMatrix fermionMapping(ShowerParticle & particle, const Lorentz5Momentum & porig, FermionSpinPtr fspin, const LorentzRotation & rot) { // extract the original basis states vector<LorentzSpinor<SqrtEnergy> > sbasis; for(unsigned int ix=0;ix<2;++ix) { sbasis.push_back(fspin->getProductionBasisState(ix)); sbasis.back().transform(rot); } // calculate the states in the splitting basis vector<LorentzSpinor<SqrtEnergy> > fbasis; SpinorWaveFunction wave(porig,particle.dataPtr(), particle.id()>0 ? incoming : outgoing); for(unsigned int ix=0;ix<2;++ix) { wave.reset(ix); fbasis.push_back(wave.dimensionedWave()); } RhoDMatrix mapping=RhoDMatrix(PDT::Spin1Half,false); for(unsigned int ix=0;ix<2;++ix) { if(fbasis[0].s2()==complex<SqrtEnergy>()) { mapping(ix,0) = sbasis[ix].s3()/fbasis[0].s3(); mapping(ix,1) = sbasis[ix].s2()/fbasis[1].s2(); } else { mapping(ix,0) = sbasis[ix].s2()/fbasis[0].s2(); mapping(ix,1) = sbasis[ix].s3()/fbasis[1].s3(); } } return mapping; } FermionSpinPtr createFermionSpinInfo(ShowerParticle & particle, const Lorentz5Momentum & porig, const LorentzRotation & rot, Helicity::Direction dir) { // calculate the splitting basis for the branching // and rotate back to construct the basis states LorentzRotation rinv = rot.inverse(); SpinorWaveFunction wave; if(particle.id()>0) wave=SpinorWaveFunction(porig,particle.dataPtr(),incoming); else wave=SpinorWaveFunction(porig,particle.dataPtr(),outgoing); FermionSpinPtr fspin = new_ptr(FermionSpinInfo(particle.momentum(),dir==outgoing)); for(unsigned int ix=0;ix<2;++ix) { wave.reset(ix); LorentzSpinor<SqrtEnergy> basis = wave.dimensionedWave(); basis.transform(rinv); fspin->setBasisState(ix,basis); fspin->setDecayState(ix,basis); } particle.spinInfo(fspin); return fspin; } VectorSpinPtr createVectorSpinInfo(ShowerParticle & particle, const Lorentz5Momentum & porig, const LorentzRotation & rot, Helicity::Direction dir) { // calculate the splitting basis for the branching // and rotate back to construct the basis states LorentzRotation rinv = rot.inverse(); bool massless(particle.id()==ParticleID::g||particle.id()==ParticleID::gamma); VectorWaveFunction wave(porig,particle.dataPtr(),dir); VectorSpinPtr vspin = new_ptr(VectorSpinInfo(particle.momentum(),dir==outgoing)); for(unsigned int ix=0;ix<3;++ix) { LorentzPolarizationVector basis; if(massless&&ix==1) { basis = LorentzPolarizationVector(); } else { wave.reset(ix); basis = wave.wave(); } basis *= rinv; vspin->setBasisState(ix,basis); vspin->setDecayState(ix,basis); } particle.spinInfo(vspin); vspin-> DMatrix() = RhoDMatrix(PDT::Spin1); vspin->rhoMatrix() = RhoDMatrix(PDT::Spin1); if(massless) { vspin-> DMatrix()(0,0) = 0.5; vspin->rhoMatrix()(0,0) = 0.5; vspin-> DMatrix()(2,2) = 0.5; vspin->rhoMatrix()(2,2) = 0.5; } return vspin; } } RhoDMatrix ShowerParticle::extractRhoMatrix(bool forward) { // get the spin density matrix and the mapping RhoDMatrix mapping; SpinPtr inspin; bool needMapping = getMapping(inspin,mapping); // set the decayed flag inspin->decay(); // get the spin density matrix RhoDMatrix rho = forward ? inspin->rhoMatrix() : inspin->DMatrix(); // map to the shower basis if needed if(needMapping) { RhoDMatrix rhop(rho.iSpin(),false); for(int ixb=0;ixb<rho.iSpin();++ixb) { for(int iyb=0;iyb<rho.iSpin();++iyb) { if(mapping(iyb,ixb)==0.)continue; for(int iya=0;iya<rho.iSpin();++iya) { if(rho(iya,iyb)==0.)continue; for(int ixa=0;ixa<rho.iSpin();++ixa) { rhop(ixa,ixb) += rho(iya,iyb)*mapping(iya,ixa)*conj(mapping(iyb,ixb)); } } } } rhop.normalize(); rho = rhop; } return rho; } bool ShowerParticle::getMapping(SpinPtr & output, RhoDMatrix & mapping) { // if the particle is not from the hard process if(!this->perturbative()) { // mapping is the identity output=this->spinInfo(); mapping=RhoDMatrix(this->dataPtr()->iSpin()); if(output) { return false; } else { Lorentz5Momentum porig; LorentzRotation rot = boostToShower(porig,showerBasis()); Helicity::Direction dir = this->isFinalState() ? outgoing : incoming; if(this->dataPtr()->iSpin()==PDT::Spin0) { assert(false); } else if(this->dataPtr()->iSpin()==PDT::Spin1Half) { output = createFermionSpinInfo(*this,porig,rot,dir); } else if(this->dataPtr()->iSpin()==PDT::Spin1) { output = createVectorSpinInfo(*this,porig,rot,dir); } else { assert(false); } return false; } } // if particle is final-state and is from the hard process else if(this->isFinalState()) { assert(this->perturbative()==1 || this->perturbative()==2); // get transform to shower frame Lorentz5Momentum porig; LorentzRotation rot = boostToShower(porig,showerBasis()); // the rest depends on the spin of the particle PDT::Spin spin(this->dataPtr()->iSpin()); mapping=RhoDMatrix(spin,false); // do the spin dependent bit if(spin==PDT::Spin0) { ScalarSpinPtr sspin=dynamic_ptr_cast<ScalarSpinPtr>(this->spinInfo()); if(!sspin) { ScalarWaveFunction::constructSpinInfo(this,outgoing,true); } output=this->spinInfo(); return false; } else if(spin==PDT::Spin1Half) { FermionSpinPtr fspin=dynamic_ptr_cast<FermionSpinPtr>(this->spinInfo()); // spin info exists get information from it if(fspin) { output=fspin; mapping = fermionMapping(*this,porig,fspin,rot); return true; } // spin info does not exist create it else { output = createFermionSpinInfo(*this,porig,rot,outgoing); return false; } } else if(spin==PDT::Spin1) { VectorSpinPtr vspin=dynamic_ptr_cast<VectorSpinPtr>(this->spinInfo()); // spin info exists get information from it if(vspin) { output=vspin; mapping = bosonMapping(*this,porig,vspin,rot); return true; } else { output = createVectorSpinInfo(*this,porig,rot,outgoing); return false; } } // not scalar/fermion/vector else assert(false); } // incoming to hard process else if(this->perturbative()==1 && !this->isFinalState()) { // get the basis vectors // get transform to shower frame Lorentz5Momentum porig; LorentzRotation rot = boostToShower(porig,showerBasis()); porig *= this->x(); // the rest depends on the spin of the particle PDT::Spin spin(this->dataPtr()->iSpin()); mapping=RhoDMatrix(spin); // do the spin dependent bit if(spin==PDT::Spin0) { cerr << "testing spin 0 not yet implemented " << endl; assert(false); } // spin-1/2 else if(spin==PDT::Spin1Half) { FermionSpinPtr fspin=dynamic_ptr_cast<FermionSpinPtr>(this->spinInfo()); // spin info exists get information from it if(fspin) { output=fspin; mapping = fermionMapping(*this,porig,fspin,rot); return true; } // spin info does not exist create it else { output = createFermionSpinInfo(*this,porig,rot,incoming); return false; } } // spin-1 else if(spin==PDT::Spin1) { VectorSpinPtr vspin=dynamic_ptr_cast<VectorSpinPtr>(this->spinInfo()); // spinInfo exists map it if(vspin) { output=vspin; mapping = bosonMapping(*this,porig,vspin,rot); return true; } // create the spininfo else { output = createVectorSpinInfo(*this,porig,rot,incoming); return false; } } assert(false); } // incoming to decay else if(this->perturbative() == 2 && !this->isFinalState()) { // get the basis vectors Lorentz5Momentum porig; LorentzRotation rot=boostToShower(porig,showerBasis()); // the rest depends on the spin of the particle PDT::Spin spin(this->dataPtr()->iSpin()); mapping=RhoDMatrix(spin); // do the spin dependent bit if(spin==PDT::Spin0) { cerr << "testing spin 0 not yet implemented " << endl; assert(false); } // spin-1/2 else if(spin==PDT::Spin1Half) { // FermionSpinPtr fspin=dynamic_ptr_cast<FermionSpinPtr>(this->spinInfo()); // // spin info exists get information from it // if(fspin) { // output=fspin; // mapping = fermionMapping(*this,porig,fspin,rot); // return true; // // spin info does not exist create it // else { // output = createFermionSpinInfo(*this,porig,rot,incoming); // return false; // } // } assert(false); } // // spin-1 // else if(spin==PDT::Spin1) { // VectorSpinPtr vspin=dynamic_ptr_cast<VectorSpinPtr>(this->spinInfo()); // // spinInfo exists map it // if(vspin) { // output=vspin; // mapping = bosonMapping(*this,porig,vspin,rot); // return true; // } // // create the spininfo // else { // output = createVectorSpinInfo(*this,porig,rot,incoming); // return false; // } // } // assert(false); assert(false); } else assert(false); return true; } void ShowerParticle::constructSpinInfo(bool timeLike) { // now construct the required spininfo and calculate the basis states PDT::Spin spin(dataPtr()->iSpin()); if(spin==PDT::Spin0) { ScalarWaveFunction::constructSpinInfo(this,outgoing,timeLike); } // calculate the basis states and construct the SpinInfo for a spin-1/2 particle else if(spin==PDT::Spin1Half) { // outgoing particle if(id()>0) { vector<LorentzSpinorBar<SqrtEnergy> > stemp; SpinorBarWaveFunction::calculateWaveFunctions(stemp,this,outgoing); SpinorBarWaveFunction::constructSpinInfo(stemp,this,outgoing,timeLike); } // outgoing antiparticle else { vector<LorentzSpinor<SqrtEnergy> > stemp; SpinorWaveFunction::calculateWaveFunctions(stemp,this,outgoing); SpinorWaveFunction::constructSpinInfo(stemp,this,outgoing,timeLike); } } // calculate the basis states and construct the SpinInfo for a spin-1 particle else if(spin==PDT::Spin1) { bool massless(id()==ParticleID::g||id()==ParticleID::gamma); vector<Helicity::LorentzPolarizationVector> vtemp; VectorWaveFunction::calculateWaveFunctions(vtemp,this,outgoing,massless); VectorWaveFunction::constructSpinInfo(vtemp,this,outgoing,timeLike,massless); } else { throw Exception() << "Spins higher than 1 are not yet implemented in " << "FS_QtildaShowerKinematics1to2::constructVertex() " << Exception::runerror; } } void ShowerParticle::initializeDecay() { Lorentz5Momentum p, n, ppartner, pcm; assert(perturbative()!=1); // this is for the initial decaying particle if(perturbative()==2) { ShowerBasisPtr newBasis; p = momentum(); Lorentz5Momentum ppartner(partner()->momentum()); // removed to make inverse recon work properly //if(partner->thePEGBase()) ppartner=partner->thePEGBase()->momentum(); pcm=ppartner; Boost boost(p.findBoostToCM()); pcm.boost(boost); n = Lorentz5Momentum( ZERO,0.5*p.mass()*pcm.vect().unit()); n.boost( -boost); newBasis = new_ptr(ShowerBasis()); newBasis->setBasis(p,n,ShowerBasis::Rest); showerBasis(newBasis,false); } else { showerBasis(dynamic_ptr_cast<ShowerParticlePtr>(parents()[0])->showerBasis(),true); } } void ShowerParticle::initializeInitialState(PPtr parent) { // For the time being we are considering only 1->2 branching Lorentz5Momentum p, n, pthis, pcm; assert(perturbative()!=2); if(perturbative()==1) { ShowerBasisPtr newBasis; // find the partner and its momentum if(!partner()) return; if(partner()->isFinalState()) { Lorentz5Momentum pa = -momentum()+partner()->momentum(); Lorentz5Momentum pb = momentum(); Energy scale=parent->momentum().t(); Lorentz5Momentum pbasis(ZERO,parent->momentum().vect().unit()*scale); Axis axis(pa.vect().unit()); LorentzRotation rot; double sinth(sqrt(sqr(axis.x())+sqr(axis.y()))); if(axis.perp2()>1e-20) { rot.setRotate(-acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.)); rot.rotateX(Constants::pi); } if(abs(1.-pa.e()/pa.vect().mag())>1e-6) rot.boostZ( pa.e()/pa.vect().mag()); pb *= rot; if(pb.perp2()/GeV2>1e-20) { Boost trans = -1./pb.e()*pb.vect(); trans.setZ(0.); rot.boost(trans); } pbasis *=rot; rot.invert(); n = rot*Lorentz5Momentum(ZERO,-pbasis.vect()); p = rot*Lorentz5Momentum(ZERO, pbasis.vect()); } else { pcm = parent->momentum(); p = Lorentz5Momentum(ZERO, pcm.vect()); n = Lorentz5Momentum(ZERO, -pcm.vect()); } newBasis = new_ptr(ShowerBasis()); newBasis->setBasis(p,n,ShowerBasis::BackToBack); showerBasis(newBasis,false); } else { showerBasis(dynamic_ptr_cast<ShowerParticlePtr>(children()[0])->showerBasis(),true); } } void ShowerParticle::initializeFinalState() { // set the basis vectors Lorentz5Momentum p,n; if(perturbative()!=0) { ShowerBasisPtr newBasis; // find the partner() and its momentum if(!partner()) return; Lorentz5Momentum ppartner(partner()->momentum()); // momentum of the emitting particle p = momentum(); Lorentz5Momentum pcm; // if the partner is a final-state particle then the reference // vector is along the partner in the rest frame of the pair if(partner()->isFinalState()) { Boost boost=(p + ppartner).findBoostToCM(); pcm = ppartner; pcm.boost(boost); n = Lorentz5Momentum(ZERO,pcm.vect()); n.boost( -boost); } else if(!partner()->isFinalState()) { // if the partner is an initial-state particle then the reference // vector is along the partner which should be massless if(perturbative()==1) { n = Lorentz5Momentum(ZERO,ppartner.vect()); } // if the partner is an initial-state decaying particle then the reference // vector is along the backwards direction in rest frame of decaying particle else { Boost boost=ppartner.findBoostToCM(); pcm = p; pcm.boost(boost); n = Lorentz5Momentum( ZERO, -pcm.vect()); n.boost( -boost); } } newBasis = new_ptr(ShowerBasis()); newBasis->setBasis(p,n,ShowerBasis::BackToBack); showerBasis(newBasis,false); } else if(initiatesTLS()) { showerBasis(dynamic_ptr_cast<ShowerParticlePtr>(parents()[0]->children()[0])->showerBasis(),true); } else { showerBasis(dynamic_ptr_cast<ShowerParticlePtr>(parents()[0])->showerBasis(),true); } } void ShowerParticle::setShowerMomentum(bool timeLike) { Energy m = this->mass() > ZERO ? this->mass() : this->data().mass(); // calculate the momentum of the assuming on-shell Energy2 pt2 = sqr(this->showerParameters().pt); double alpha = timeLike ? this->showerParameters().alpha : this->x(); double beta = 0.5*(sqr(m) + pt2 - sqr(alpha)*showerBasis()->pVector().m2())/(alpha*showerBasis()->p_dot_n()); Lorentz5Momentum porig=showerBasis()->sudakov2Momentum(alpha,beta, this->showerParameters().ptx, this->showerParameters().pty); porig.setMass(m); this->set5Momentum(porig); } diff --git a/Shower/Core/Base/ShowerParticle.h b/Shower/Core/Base/ShowerParticle.h --- a/Shower/Core/Base/ShowerParticle.h +++ b/Shower/Core/Base/ShowerParticle.h @@ -1,530 +1,528 @@ // -*- C++ -*- // // ShowerParticle.h is a part of Herwig - A multi-purpose Monte Carlo event generator // Copyright (C) 2002-2017 The Herwig Collaboration // // Herwig is licenced under version 3 of the GPL, see COPYING for details. // Please respect the MCnet academic guidelines, see GUIDELINES for details. // #ifndef HERWIG_ShowerParticle_H #define HERWIG_ShowerParticle_H // // This is the declaration of the ShowerParticle class. // #include "ThePEG/EventRecord/Particle.h" #include "Herwig/Shower/Core/SplittingFunctions/SplittingFunction.fh" #include "Herwig/Shower/Core/ShowerConfig.h" #include "ShowerBasis.h" #include "ShowerKinematics.h" #include "ShowerParticle.fh" #include <iosfwd> namespace Herwig { using namespace ThePEG; /** \ingroup Shower * This class represents a particle in the showering process. * It inherits from the Particle class of ThePEG and has some * specifics information useful only during the showering process. * * Notice that: * - for forward evolution, it is clear what is meant by parent/child; * for backward evolution, however, it depends whether we want * to keep a physical picture or a Monte-Carlo effective one. * In the former case, an incoming particle (emitting particle) * splits into an emitted particle and the emitting particle after * the emission: the latter two are then children of the * emitting particle, the parent. In the Monte-Carlo effective * picture, we have that the particle close to the hard subprocess, * with higher (space-like) virtuality, splits into an emitted particle * and the emitting particle at lower virtuality: the latter two are, * in this case, the children of the first one, the parent. However we * choose a more physical picture where the new emitting particle is the * parented of the emitted final-state particle and the original emitting * particle. * - the pointer to a SplitFun object is set only in the case * that the particle has undergone a shower emission. This is similar to * the case of the decay of a normal Particle where * the pointer to a Decayer object is set only in the case * that the particle has undergone to a decay. * In the case of particle connected directly to the hard subprocess, * there is no pointer to the hard subprocess, but there is a method * isFromHardSubprocess() which returns true only in this case. * * @see Particle * @see ShowerConfig * @see ShowerKinematics */ class ShowerParticle: public Particle { public: /** * Struct for all the info on an evolution partner */ struct EvolutionPartner { /** * Constructor */ EvolutionPartner(tShowerParticlePtr p,double w, ShowerPartnerType t, Energy s) : partner(p), weight(w), type(t), scale(s) {} /** * The partner */ tShowerParticlePtr partner; /** * Weight */ double weight; /** * Type */ ShowerPartnerType type; /** * The assoicated evolution scale */ Energy scale; }; /** * Struct to store the evolution scales */ struct EvolutionScales { /** * Constructor */ EvolutionScales() : QED(),QCD_c(),QCD_ac(), QED_noAO(),QCD_c_noAO(),QCD_ac_noAO(), Max_Q2(Constants::MaxEnergy2) {} /** * QED scale */ Energy QED; /** * QCD colour scale */ Energy QCD_c; /** * QCD anticolour scale */ Energy QCD_ac; /** * QED scale */ Energy QED_noAO; /** * QCD colour scale */ Energy QCD_c_noAO; /** * QCD anticolour scale */ Energy QCD_ac_noAO; /** * Maximum allowed virtuality of the particle */ Energy2 Max_Q2; }; /** @name Construction and descruction functions. */ //@{ /** * Standard Constructor. Note that the default constructor is * private - there is no particle without a pointer to a * ParticleData object. * @param x the ParticleData object * @param fs Whether or not the particle is an inital or final-state particle * @param tls Whether or not the particle initiates a time-like shower */ ShowerParticle(tcEventPDPtr x, bool fs, bool tls=false) : Particle(x), _isFinalState(fs), _perturbative(0), _initiatesTLS(tls), _x(1.0), _showerKinematics(), _vMass(ZERO), _thePEGBase() {} /** * Copy constructor from a ThePEG Particle * @param x ThePEG particle * @param pert Where the particle came from * @param fs Whether or not the particle is an inital or final-state particle * @param tls Whether or not the particle initiates a time-like shower */ ShowerParticle(const Particle & x, unsigned int pert, bool fs, bool tls=false) : Particle(x), _isFinalState(fs), _perturbative(pert), _initiatesTLS(tls), _x(1.0), _showerKinematics(), _vMass(ZERO), _thePEGBase(&x) {} //@} public: /** * Set a preliminary momentum for the particle */ void setShowerMomentum(bool timelike); /** * Construct the spin info object for a shower particle */ void constructSpinInfo(bool timelike); /** * Perform any initial calculations needed after the branching has been selected */ void initializeDecay(); /** * Perform any initial calculations needed after the branching has been selected * @param parent The beam particle */ void initializeInitialState(PPtr parent); /** * Perform any initial calculations needed after the branching has been selected */ void initializeFinalState(); /** * Access/Set various flags about the state of the particle */ //@{ /** * Access the flag that tells if the particle is final state * or initial state. */ bool isFinalState() const { return _isFinalState; } /** * Access the flag that tells if the particle is initiating a * time like shower when it has been emitted in an initial state shower. */ bool initiatesTLS() const { return _initiatesTLS; } /** * Access the flag which tells us where the particle came from * This is 0 for a particle produced in the shower, 1 if the particle came * from the hard sub-process and 2 is it came from a decay. */ unsigned int perturbative() const { return _perturbative; } //@} /** * Set/Get the momentum fraction for initial-state particles */ //@{ /** * For an initial state particle get the fraction of the beam momentum */ void x(double x) { _x = x; } /** * For an initial state particle set the fraction of the beam momentum */ double x() const { return _x; } //@} /** * Set/Get methods for the ShowerKinematics objects */ //@{ /** * Access/ the ShowerKinematics object. */ const ShoKinPtr & showerKinematics() const { return _showerKinematics; } /** * Set the ShowerKinematics object. */ void showerKinematics(const ShoKinPtr in) { _showerKinematics = in; } //@} /** * Set/Get methods for the ShowerBasis objects */ //@{ /** * Access/ the ShowerBasis object. */ const ShowerBasisPtr & showerBasis() const { return _showerBasis; } /** * Set the ShowerBasis object. */ void showerBasis(const ShowerBasisPtr in, bool copy) { if(!copy) _showerBasis = in; else { _showerBasis = new_ptr(ShowerBasis()); _showerBasis->setBasis(in->pVector(),in->nVector(),in->frame()); } } //@} /** * Members relating to the initial evolution scale and partner for the particle */ //@{ /** * Veto emission at a given scale */ void vetoEmission(ShowerPartnerType type, Energy scale); /** * Access to the evolution scales */ const EvolutionScales & scales() const {return scales_;} /** * Access to the evolution scales */ EvolutionScales & scales() {return scales_;} /** * Return the virtual mass\f$ */ Energy virtualMass() const { return _vMass; } /** * Set the virtual mass */ void virtualMass(Energy mass) { _vMass = mass; } /** * Return the partner */ tShowerParticlePtr partner() const { return _partner; } /** * Set the partner */ void partner(const tShowerParticlePtr partner) { _partner = partner; } /** * Get the possible partners */ vector<EvolutionPartner> & partners() { return partners_; } /** * Add a possible partners */ void addPartner(EvolutionPartner in ); /** * Clear the evolution partners */ void clearPartners() { partners_.clear(); } /** * Return the progenitor of the shower */ tShowerParticlePtr progenitor() const { return _progenitor; } /** * Set the progenitor of the shower */ void progenitor(const tShowerParticlePtr progenitor) { _progenitor = progenitor; } //@} /** * Members to store and provide access to variables for a specific * shower evolution scheme */ //@{ struct Parameters { Parameters() : alpha(1.), beta(), ptx(), pty(), pt() {} double alpha; double beta; Energy ptx; Energy pty; Energy pt; }; /** * Set the vector containing dimensionless variables */ Parameters & showerParameters() { return _parameters; } //@} /** * If this particle came from the hard process get a pointer to ThePEG particle * it came from */ const tcPPtr thePEGBase() const { return _thePEGBase; } public: /** * Extract the rho matrix including mapping needed in the shower */ RhoDMatrix extractRhoMatrix(bool forward); -protected: - /** * For a particle which came from the hard process get the spin density and * the mapping required to the basis used in the Shower * @param rho The \f$\rho\f$ matrix * @param mapping The mapping * @param showerkin The ShowerKinematics object */ bool getMapping(SpinPtr &, RhoDMatrix & map); protected: /** * Standard clone function. */ virtual PPtr clone() const; /** * Standard clone function. */ virtual PPtr fullclone() const; private: /** * The static object used to initialize the description of this class. * Indicates that this is a concrete class with persistent data. */ static ClassDescription<ShowerParticle> initShowerParticle; /** * The assignment operator is private and must never be called. * In fact, it should not even be implemented. */ ShowerParticle & operator=(const ShowerParticle &); private: /** * Whether the particle is in the final or initial state */ bool _isFinalState; /** * Whether the particle came from */ unsigned int _perturbative; /** * Does a particle produced in the backward shower initiate a time-like shower */ bool _initiatesTLS; /** * Dimensionless parameters */ Parameters _parameters; /** * The beam energy fraction for particle's in the initial state */ double _x; /** * The shower kinematics for the particle */ ShoKinPtr _showerKinematics; /** * The shower basis for the particle */ ShowerBasisPtr _showerBasis; /** * Storage of the evolution scales */ EvolutionScales scales_; /** * Virtual mass */ Energy _vMass; /** * Partners */ tShowerParticlePtr _partner; /** * Pointer to ThePEG Particle this ShowerParticle was created from */ const tcPPtr _thePEGBase; /** * Progenitor */ tShowerParticlePtr _progenitor; /** * Partners */ vector<EvolutionPartner> partners_; }; inline ostream & operator<<(ostream & os, const ShowerParticle::EvolutionScales & es) { os << "Scales: QED=" << es.QED / GeV << " QCD_c=" << es.QCD_c / GeV << " QCD_ac=" << es.QCD_ac / GeV << " QED_noAO=" << es.QED_noAO / GeV << " QCD_c_noAO=" << es.QCD_c_noAO / GeV << " QCD_ac_noAO=" << es.QCD_ac_noAO / GeV << '\n'; return os; } } #include "ThePEG/Utilities/ClassTraits.h" namespace ThePEG { /** @cond TRAITSPECIALIZATIONS */ /** This template specialization informs ThePEG about the * base classes of ShowerParticle. */ template <> struct BaseClassTrait<Herwig::ShowerParticle,1> { /** Typedef of the first base class of ShowerParticle. */ typedef Particle NthBase; }; /** This template specialization informs ThePEG about the name of * the ShowerParticle class and the shared object where it is defined. */ template <> struct ClassTraits<Herwig::ShowerParticle> : public ClassTraitsBase<Herwig::ShowerParticle> { /** Return a platform-independent class name */ static string className() { return "Herwig::ShowerParticle"; } /** Create a Event object. */ static TPtr create() { return TPtr::Create(Herwig::ShowerParticle(tcEventPDPtr(),true)); } }; /** @endcond */ } #endif /* HERWIG_ShowerParticle_H */ diff --git a/Shower/Core/Base/ShowerVertex.cc b/Shower/Core/Base/ShowerVertex.cc --- a/Shower/Core/Base/ShowerVertex.cc +++ b/Shower/Core/Base/ShowerVertex.cc @@ -1,76 +1,95 @@ // -*- C++ -*- // // ShowerVertex.cc is a part of Herwig - A multi-purpose Monte Carlo event generator // Copyright (C) 2002-2017 The Herwig Collaboration // // Herwig is licenced under version 3 of the GPL, see COPYING for details. // Please respect the MCnet academic guidelines, see GUIDELINES for details. // // // This is the implementation of the non-inlined, non-templated member // functions of the ShowerVertex class. // #include "ThePEG/Interface/ClassDocumentation.h" #include "ThePEG/Utilities/DescribeClass.h" #include "ThePEG/EventRecord/SpinInfo.h" #include "ShowerVertex.h" using namespace Herwig; using namespace Herwig::Helicity; using namespace ThePEG; DescribeNoPIOClass<ShowerVertex,HelicityVertex> describeShowerVertex ("Herwig::ShowerVertex",""); void ShowerVertex::Init() { static ClassDocumentation<ShowerVertex> documentation ("The ShowerVertex class is the implementation of a " "vertex for a shower for the Herwig spin correlation algorithm"); } // method to get the rho matrix for a given outgoing particle RhoDMatrix ShowerVertex::getRhoMatrix(int i, bool) const { assert(matrixElement_->nOut()==2); // calculate the incoming spin density matrix RhoDMatrix input=incoming()[0]->rhoMatrix(); if(convertIn_) input = mapIncoming(input); // get the rho matrices for the outgoing particles vector<RhoDMatrix> rhoout; for(unsigned int ix=0,N=outgoing().size();ix<N;++ix) { if(int(ix)!=i) rhoout.push_back(outgoing()[ix]->DMatrix()); } // calculate the spin density matrix return matrixElement_->calculateRhoMatrix(i,input,rhoout); } // method to get the D matrix for an incoming particle RhoDMatrix ShowerVertex::getDMatrix(int) const { assert(matrixElement_->nOut()==2); // get the decay matrices for the outgoing particles vector<RhoDMatrix> Dout; for(unsigned int ix=0,N=outgoing().size();ix<N;++ix) { Dout.push_back(outgoing()[ix]->DMatrix()); } - // calculate the spin density matrix and return the answer - return matrixElement_->calculateDMatrix(Dout); + // calculate the spin density matrix + RhoDMatrix rho = matrixElement_->calculateDMatrix(Dout); + // map if needed + if(convertIn_) { + RhoDMatrix rhop(rho.iSpin(),false); + for(int ixb=0;ixb<rho.iSpin();++ixb) { + for(int iyb=0;iyb<rho.iSpin();++iyb) { + if(inMatrix_(iyb,ixb)==0.)continue; + for(int iya=0;iya<rho.iSpin();++iya) { + if(rho(iya,iyb)==0.)continue; + for(int ixa=0;ixa<rho.iSpin();++ixa) { + rhop(ixa,ixb) += rho(iya,iyb)*std::conj(inMatrix_(iya,ixa))*inMatrix_(iyb,ixb); + } + } + } + } + rhop.normalize(); + rho = rhop; + } + // return the answer + return rho; } RhoDMatrix ShowerVertex::mapIncoming(RhoDMatrix rho) const { RhoDMatrix output(rho.iSpin()); for(int ixa=0;ixa<rho.iSpin();++ixa) { for(int ixb=0;ixb<rho.iSpin();++ixb) { for(int iya=0;iya<rho.iSpin();++iya) { for(int iyb=0;iyb<rho.iSpin();++iyb) { output(ixa,ixb) += rho(iya,iyb)*inMatrix_(iya,ixa)*conj(inMatrix_(iyb,ixb)); } } } } output.normalize(); return output; } diff --git a/Shower/QTilde/Default/FS_QTildeShowerKinematics1to2.cc b/Shower/QTilde/Default/FS_QTildeShowerKinematics1to2.cc --- a/Shower/QTilde/Default/FS_QTildeShowerKinematics1to2.cc +++ b/Shower/QTilde/Default/FS_QTildeShowerKinematics1to2.cc @@ -1,200 +1,204 @@ // -*- C++ -*- // // FS_QTildeShowerKinematics1to2.cc is a part of Herwig - A multi-purpose Monte Carlo event generator // Copyright (C) 2002-2017 The Herwig Collaboration // // Herwig is licenced under version 3 of the GPL, see COPYING for details. // Please respect the MCnet academic guidelines, see GUIDELINES for details. // // // This is the implementation of the non-inlined, non-templated member // functions of the FS_QTildeShowerKinematics1to2 class. // #include "FS_QTildeShowerKinematics1to2.h" #include "ThePEG/PDT/EnumParticles.h" #include "Herwig/Shower/Core/SplittingFunctions/SplittingFunction.h" #include "Herwig/Shower/Core/Base/ShowerParticle.h" #include "ThePEG/Utilities/Debug.h" #include "Herwig/Shower/QTilde/QTildeShowerHandler.h" #include "Herwig/Shower/QTilde/Base/PartnerFinder.h" #include "Herwig/Shower/QTilde/Base/ShowerModel.h" #include "Herwig/Shower/QTilde/Base/KinematicsReconstructor.h" #include "Herwig/Shower/Core/Base/ShowerVertex.h" using namespace Herwig; void FS_QTildeShowerKinematics1to2:: updateParameters(tShowerParticlePtr theParent, tShowerParticlePtr theChild0, tShowerParticlePtr theChild1, bool setAlpha) const { const ShowerParticle::Parameters & parent = theParent->showerParameters(); ShowerParticle::Parameters & child0 = theChild0->showerParameters(); ShowerParticle::Parameters & child1 = theChild1->showerParameters(); // determine alphas of children according to interpretation of z if ( setAlpha ) { child0.alpha = z() * parent.alpha; child1.alpha = (1.-z()) * parent.alpha; } // set the values double cphi = cos(phi()); double sphi = sin(phi()); child0.ptx = pT() * cphi + z() * parent.ptx; child0.pty = pT() * sphi + z() * parent.pty; child0.pt = sqrt( sqr(child0.ptx) + sqr(child0.pty) ); child1.ptx = -pT() * cphi + (1.-z())* parent.ptx; child1.pty = -pT() * sphi + (1.-z())* parent.pty; child1.pt = sqrt( sqr(child1.ptx) + sqr(child1.pty) ); } void FS_QTildeShowerKinematics1to2:: updateChildren(const tShowerParticlePtr parent, const ShowerParticleVector & children, ShowerPartnerType partnerType, bool massVeto) const { assert(children.size()==2); // calculate the scales splittingFn()->evaluateFinalStateScales(partnerType,scale(),z(),parent, children[0],children[1]); // set the maximum virtual masses if(massVeto) { Energy2 q2 = z()*(1.-z())*sqr(scale()); IdList ids(3); ids[0] = parent->dataPtr(); ids[1] = children[0]->dataPtr(); ids[2] = children[1]->dataPtr(); const vector<Energy> & virtualMasses = SudakovFormFactor()->virtualMasses(ids); if(ids[0]->id()!=ParticleID::g && ids[0]->id()!=ParticleID::gamma ) { q2 += sqr(virtualMasses[0]); } // limits on further evolution children[0]->scales().Max_Q2 = z() *(q2-sqr(virtualMasses[2])/(1.-z())); children[1]->scales().Max_Q2 = (1.-z())*(q2-sqr(virtualMasses[1])/ z() ); } // update the parameters updateParameters(parent, children[0], children[1], true); // set up the colour connections splittingFn()->colourConnection(parent,children[0],children[1],partnerType,false); // make the products children of the parent parent->addChild(children[0]); parent->addChild(children[1]); // set the momenta of the children for(ShowerParticleVector::const_iterator pit=children.begin(); pit!=children.end();++pit) { (**pit).showerBasis(parent->showerBasis(),true); (**pit).setShowerMomentum(true); } // sort out the helicity stuff if(! dynamic_ptr_cast<tcQTildeShowerHandlerPtr>(ShowerHandler::currentHandler())->correlations()) return; SpinPtr pspin(parent->spinInfo()); if(!pspin || !dynamic_ptr_cast<tcQTildeShowerHandlerPtr>(ShowerHandler::currentHandler())->spinCorrelations() ) return; Energy2 t = sqr(scale())*z()*(1.-z()); IdList ids; ids.push_back(parent->dataPtr()); ids.push_back(children[0]->dataPtr()); ids.push_back(children[1]->dataPtr()); // create the vertex SVertexPtr vertex(new_ptr(ShowerVertex())); // set the matrix element vertex->ME(splittingFn()->matrixElement(z(),t,ids,phi(),true)); + RhoDMatrix mapping; + SpinPtr inspin; + bool needMapping = parent->getMapping(inspin,mapping); + if(needMapping) vertex->incomingBasisTransform(mapping); // set the incoming particle for the vertex parent->spinInfo()->decayVertex(vertex); for(ShowerParticleVector::const_iterator pit=children.begin(); pit!=children.end();++pit) { // construct the spin info for the children (**pit).constructSpinInfo(true); // connect the spinInfo object to the vertex (*pit)->spinInfo()->productionVertex(vertex); } } void FS_QTildeShowerKinematics1to2:: reconstructParent(const tShowerParticlePtr parent, const ParticleVector & children ) const { assert(children.size() == 2); ShowerParticlePtr c1 = dynamic_ptr_cast<ShowerParticlePtr>(children[0]); ShowerParticlePtr c2 = dynamic_ptr_cast<ShowerParticlePtr>(children[1]); parent->showerParameters().beta= c1->showerParameters().beta + c2->showerParameters().beta; Lorentz5Momentum pnew = c1->momentum() + c2->momentum(); Energy2 m2 = sqr(pT())/z()/(1.-z()) + sqr(c1->mass())/z() + sqr(c2->mass())/(1.-z()); pnew.setMass(sqrt(m2)); parent->set5Momentum( pnew ); } void FS_QTildeShowerKinematics1to2::reconstructLast(const tShowerParticlePtr last, Energy mass) const { // set beta component and consequently all missing data from that, // using the nominal (i.e. PDT) mass. Energy theMass = mass > ZERO ? mass : last->data().constituentMass(); Lorentz5Momentum pVector = last->showerBasis()->pVector(); ShowerParticle::Parameters & lastParam = last->showerParameters(); Energy2 denom = 2. * lastParam.alpha * last->showerBasis()->p_dot_n(); if(abs(denom)/(sqr(pVector.e())+pVector.rho2())<1e-10) { throw KinematicsReconstructionVeto(); } lastParam.beta = ( sqr(theMass) + sqr(lastParam.pt) - sqr(lastParam.alpha) * pVector.m2() ) / denom; // set that new momentum Lorentz5Momentum newMomentum = last->showerBasis()-> sudakov2Momentum( lastParam.alpha, lastParam.beta, lastParam.ptx , lastParam.pty); newMomentum.setMass(theMass); newMomentum.rescaleEnergy(); if(last->data().stable()) { last->set5Momentum( newMomentum ); } else { last->boost(last->momentum().findBoostToCM()); last->boost(newMomentum.boostVector()); } } void FS_QTildeShowerKinematics1to2::updateParent(const tShowerParticlePtr parent, const ShowerParticleVector & children, ShowerPartnerType) const { IdList ids(3); ids[0] = parent->dataPtr(); ids[1] = children[0]->dataPtr(); ids[2] = children[1]->dataPtr(); const vector<Energy> & virtualMasses = SudakovFormFactor()->virtualMasses(ids); if(children[0]->children().empty()) children[0]->virtualMass(virtualMasses[1]); if(children[1]->children().empty()) children[1]->virtualMass(virtualMasses[2]); // compute the new pT of the branching Energy2 pt2=sqr(z()*(1.-z()))*sqr(scale()) - sqr(children[0]->virtualMass())*(1.-z()) - sqr(children[1]->virtualMass())* z() ; if(ids[0]->id()!=ParticleID::g) pt2 += z()*(1.-z())*sqr(virtualMasses[0]); if(pt2>ZERO) { pT(sqrt(pt2)); } else { pt2=ZERO; pT(ZERO); } Energy2 q2 = sqr(children[0]->virtualMass())/z() + sqr(children[1]->virtualMass())/(1.-z()) + pt2/z()/(1.-z()); parent->virtualMass(sqrt(q2)); } void FS_QTildeShowerKinematics1to2:: resetChildren(const tShowerParticlePtr parent, const ShowerParticleVector & children) const { updateParameters(parent, children[0], children[1], false); for(unsigned int ix=0;ix<children.size();++ix) { if(children[ix]->children().empty()) continue; ShowerParticleVector newChildren; for(unsigned int iy=0;iy<children[ix]->children().size();++iy) newChildren.push_back(dynamic_ptr_cast<ShowerParticlePtr> (children[ix]->children()[iy])); children[ix]->showerKinematics()->resetChildren(children[ix],newChildren); } }