diff --git a/Hadronization/ClusterFissioner.cc b/Hadronization/ClusterFissioner.cc
--- a/Hadronization/ClusterFissioner.cc
+++ b/Hadronization/ClusterFissioner.cc
@@ -1,1188 +1,1188 @@
 // -*- C++ -*-
 //
 // ClusterFissioner.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
 // Copyright (C) 2002-2019 The Herwig Collaboration
 //
 // Herwig is licenced under version 3 of the GPL, see COPYING for details.
 // Please respect the MCnet academic guidelines, see GUIDELINES for details.
 //
 //
 // Thisk is the implementation of the non-inlined, non-templated member
 // functions of the ClusterFissioner class.
 //
 
 #include "ClusterFissioner.h"
 #include <ThePEG/Interface/ClassDocumentation.h>
 #include <ThePEG/Interface/Reference.h>
 #include <ThePEG/Interface/Parameter.h>
 #include <ThePEG/Interface/Switch.h>
 #include <ThePEG/Persistency/PersistentOStream.h>
 #include <ThePEG/Persistency/PersistentIStream.h>
 #include <ThePEG/PDT/EnumParticles.h>
 #include "Herwig/Utilities/Kinematics.h"
 #include "Cluster.h"
 #include "ThePEG/Repository/UseRandom.h"
 #include "ThePEG/Repository/EventGenerator.h"
 #include <ThePEG/Utilities/DescribeClass.h>
 
 using namespace Herwig;
 
 DescribeClass<ClusterFissioner,Interfaced>
 describeClusterFissioner("Herwig::ClusterFissioner","Herwig.so");
 
 ClusterFissioner::ClusterFissioner() :
   _clMaxLight(3.35*GeV),
   _clMaxBottom(3.35*GeV),
   _clMaxCharm(3.35*GeV),
   _clMaxExotic(3.35*GeV),
   _clPowLight(2.0),
   _clPowBottom(2.0),
   _clPowCharm(2.0),
   _clPowExotic(2.0),
   _pSplitLight(1.0),
   _pSplitBottom(1.0),
   _pSplitCharm(1.0),
   _pSplitExotic(1.0),
   _fissionPwtUquark(1),
   _fissionPwtDquark(1),
   _fissionPwtSquark(0.5),
   _fissionCluster(0),
+  _kinematicThresholdChoice(0),
   _btClM(1.0*GeV),
   _iopRem(1),
   _kappa(1.0e15*GeV/meter),
   _enhanceSProb(0),
   _m0Fission(2.*GeV),
   _massMeasure(0),
   _probPowFactor(4.0),
   _probShift(0.0),
-  _kinThresholdShift(1.0*sqr(GeV)),
-  _kinematicThresholdChoice(0)
+  _kinThresholdShift(1.0*sqr(GeV))
 {}
 
 IBPtr ClusterFissioner::clone() const {
   return new_ptr(*this);
 }
 
 IBPtr ClusterFissioner::fullclone() const {
   return new_ptr(*this);
 }
 
 void ClusterFissioner::persistentOutput(PersistentOStream & os) const {
   os << _hadronSelector << ounit(_clMaxLight,GeV)
      << ounit(_clMaxBottom,GeV) << ounit(_clMaxCharm,GeV)
      << ounit(_clMaxExotic,GeV) << _clPowLight << _clPowBottom
      << _clPowCharm << _clPowExotic << _pSplitLight
      << _pSplitBottom << _pSplitCharm << _pSplitExotic
      << _fissionCluster << _fissionPwtUquark << _fissionPwtDquark << _fissionPwtSquark
      << ounit(_btClM,GeV) << _kinematicThresholdChoice
      << _iopRem  << ounit(_kappa, GeV/meter)
      << _enhanceSProb << ounit(_m0Fission,GeV) << _massMeasure
      << _probPowFactor << _probShift << ounit(_kinThresholdShift,sqr(GeV));
 }
 
 void ClusterFissioner::persistentInput(PersistentIStream & is, int) {
   is >> _hadronSelector >> iunit(_clMaxLight,GeV)
      >> iunit(_clMaxBottom,GeV) >> iunit(_clMaxCharm,GeV)
      >> iunit(_clMaxExotic,GeV) >> _clPowLight >> _clPowBottom
      >> _clPowCharm >> _clPowExotic >> _pSplitLight
      >> _pSplitBottom >> _pSplitCharm >> _pSplitExotic
      >> _fissionCluster >> _fissionPwtUquark >> _fissionPwtDquark >> _fissionPwtSquark
      >> iunit(_btClM,GeV) >> _iopRem >> _kinematicThresholdChoice
      >> iunit(_kappa, GeV/meter)
      >> _enhanceSProb >> iunit(_m0Fission,GeV) >> _massMeasure
      >> _probPowFactor >> _probShift >> iunit(_kinThresholdShift,sqr(GeV));
 }
 
 void ClusterFissioner::Init() {
 
   static ClassDocumentation<ClusterFissioner> documentation
     ("Class responsibles for chopping up the clusters");
 
   static Reference<ClusterFissioner,HadronSelector>
     interfaceHadronSelector("HadronSelector",
                              "A reference to the HadronSelector object",
                              &Herwig::ClusterFissioner::_hadronSelector,
 			     false, false, true, false);
 
   // ClMax for light, Bottom, Charm and exotic (e.g. Susy) quarks
   static Parameter<ClusterFissioner,Energy>
     interfaceClMaxLight ("ClMaxLight","cluster max mass for light quarks (unit [GeV])",
                     &ClusterFissioner::_clMaxLight, GeV, 3.35*GeV, ZERO, 10.0*GeV,
 		    false,false,false);
   static Parameter<ClusterFissioner,Energy>
     interfaceClMaxBottom ("ClMaxBottom","cluster max mass  for b quarks (unit [GeV])",
                     &ClusterFissioner::_clMaxBottom, GeV, 3.35*GeV, ZERO, 10.0*GeV,
 		    false,false,false);
   static Parameter<ClusterFissioner,Energy>
     interfaceClMaxCharm ("ClMaxCharm","cluster max mass for c quarks  (unit [GeV])",
                     &ClusterFissioner::_clMaxCharm, GeV, 3.35*GeV, ZERO, 10.0*GeV,
 		    false,false,false);
   static Parameter<ClusterFissioner,Energy>
     interfaceClMaxExotic ("ClMaxExotic","cluster max mass  for exotic quarks (unit [GeV])",
                     &ClusterFissioner::_clMaxExotic, GeV, 3.35*GeV, ZERO, 10.0*GeV,
 		    false,false,false);
 
  // ClPow for light, Bottom, Charm and exotic (e.g. Susy) quarks
  static Parameter<ClusterFissioner,double>
     interfaceClPowLight ("ClPowLight","cluster mass exponent for light quarks",
                     &ClusterFissioner::_clPowLight, 0, 2.0, 0.0, 10.0,false,false,false);
  static Parameter<ClusterFissioner,double>
     interfaceClPowBottom ("ClPowBottom","cluster mass exponent for b quarks",
                     &ClusterFissioner::_clPowBottom, 0, 2.0, 0.0, 10.0,false,false,false);
  static Parameter<ClusterFissioner,double>
     interfaceClPowCharm ("ClPowCharm","cluster mass exponent for c quarks",
                     &ClusterFissioner::_clPowCharm, 0, 2.0, 0.0, 10.0,false,false,false);
  static Parameter<ClusterFissioner,double>
     interfaceClPowExotic ("ClPowExotic","cluster mass exponent for exotic quarks",
                     &ClusterFissioner::_clPowExotic, 0, 2.0, 0.0, 10.0,false,false,false);
 
  // PSplit for light, Bottom, Charm and exotic (e.g. Susy) quarks
   static Parameter<ClusterFissioner,double>
     interfacePSplitLight ("PSplitLight","cluster mass splitting param for light quarks",
                     &ClusterFissioner::_pSplitLight, 0, 1.0, 0.0, 10.0,false,false,false);
   static Parameter<ClusterFissioner,double>
     interfacePSplitBottom ("PSplitBottom","cluster mass splitting param for b quarks",
                     &ClusterFissioner::_pSplitBottom, 0, 1.0, 0.0, 10.0,false,false,false);
  static Parameter<ClusterFissioner,double>
     interfacePSplitCharm ("PSplitCharm","cluster mass splitting param for c quarks",
                     &ClusterFissioner::_pSplitCharm, 0, 1.0, 0.0, 10.0,false,false,false);
  static Parameter<ClusterFissioner,double>
     interfacePSplitExotic ("PSplitExotic","cluster mass splitting param for exotic quarks",
                     &ClusterFissioner::_pSplitExotic, 0, 1.0, 0.0, 10.0,false,false,false);
 
 
   static Switch<ClusterFissioner,int> interfaceFission
     ("Fission",
      "Option for different Fission options",
      &ClusterFissioner::_fissionCluster, 1, false, false);
   static SwitchOption interfaceFissionDefault
     (interfaceFission,
      "default",
      "Normal cluster fission which depends on the hadron selector class.",
      0);
   static SwitchOption interfaceFissionNew
     (interfaceFission,
      "new",
      "Alternative cluster fission which does not depend on the hadron selector class",
      1);
 
 
   static Parameter<ClusterFissioner,double> interfaceFissionPwtUquark
     ("FissionPwtUquark",
      "Weight for fission in U quarks",
      &ClusterFissioner::_fissionPwtUquark, 1, 0.0, 1.0,
      false, false, Interface::limited);
   static Parameter<ClusterFissioner,double> interfaceFissionPwtDquark
     ("FissionPwtDquark",
      "Weight for fission in D quarks",
      &ClusterFissioner::_fissionPwtDquark, 1, 0.0, 1.0,
      false, false, Interface::limited);
   static Parameter<ClusterFissioner,double> interfaceFissionPwtSquark
     ("FissionPwtSquark",
      "Weight for fission in S quarks",
      &ClusterFissioner::_fissionPwtSquark, 0.5, 0.0, 1.0,
      false, false, Interface::limited);
 
 
   static Switch<ClusterFissioner,int> interfaceRemnantOption
     ("RemnantOption",
      "Option for the treatment of remnant clusters",
      &ClusterFissioner::_iopRem, 1, false, false);
   static SwitchOption interfaceRemnantOptionSoft
     (interfaceRemnantOption,
      "Soft",
      "Both clusters produced in the fission of the beam cluster"
      " are treated as soft clusters.",
      0);
   static SwitchOption interfaceRemnantOptionHard
     (interfaceRemnantOption,
      "Hard",
      "Only the cluster containing the remnant is treated as a soft cluster.",
      1);
   static SwitchOption interfaceRemnantOptionVeryHard
     (interfaceRemnantOption,
      "VeryHard",
      "Even remnant clusters are treated as hard, i.e. all clusters the same",
      2);
 
   static Parameter<ClusterFissioner,Energy> interfaceBTCLM
     ("SoftClusterFactor",
      "Parameter for the mass spectrum of remnant clusters",
      &ClusterFissioner::_btClM, GeV, 1.*GeV, 0.1*GeV, 10.0*GeV,
      false, false, Interface::limited);
 
 
   static Parameter<ClusterFissioner,Tension> interfaceStringTension
     ("StringTension",
      "String tension used in vertex displacement calculation",
      &ClusterFissioner::_kappa, GeV/meter,
      1.0e15*GeV/meter, ZERO, ZERO,
      false, false, Interface::lowerlim);
 
   static Switch<ClusterFissioner,int> interfaceEnhanceSProb
     ("EnhanceSProb",
      "Option for enhancing strangeness",
      &ClusterFissioner::_enhanceSProb, 0, false, false);
   static SwitchOption interfaceEnhanceSProbNo
     (interfaceEnhanceSProb,
      "No",
      "No strangeness enhancement.",
      0);
   static SwitchOption interfaceEnhanceSProbScaled
     (interfaceEnhanceSProb,
      "Scaled",
      "Scaled strangeness enhancement",
      1);
   static SwitchOption interfaceEnhanceSProbExponential
     (interfaceEnhanceSProb,
      "Exponential",
      "Exponential strangeness enhancement",
      2);
 
    static Switch<ClusterFissioner,int> interfaceMassMeasure
      ("MassMeasure",
       "Option to use different mass measures",
       &ClusterFissioner::_massMeasure,0,false,false);
    static SwitchOption interfaceMassMeasureMass
      (interfaceMassMeasure,
       "Mass",
       "Mass Measure",
       0);
    static SwitchOption interfaceMassMeasureLambda
      (interfaceMassMeasure,
       "Lambda",
       "Lambda Measure",
       1);
 
   static Parameter<ClusterFissioner,Energy> interfaceFissionMassScale
     ("FissionMassScale",
      "Cluster fission mass scale",
      &ClusterFissioner::_m0Fission, GeV, 2.0*GeV, 0.1*GeV, 50.*GeV,
      false, false, Interface::limited);
 
   static Parameter<ClusterFissioner,double> interfaceProbPowFactor
      ("ProbablityPowerFactor",
       "Power factor in ClausterFissioner bell probablity function",
       &ClusterFissioner::_probPowFactor, 2.0, 1.0, 20.0,
       false, false, Interface::limited);
 
   static Parameter<ClusterFissioner,double> interfaceProbShift
      ("ProbablityShift",
       "Shifts from the center in ClausterFissioner bell probablity function",
       &ClusterFissioner::_probShift, 0.0, -10.0, 10.0,
       false, false, Interface::limited);
 
   static Parameter<ClusterFissioner,Energy2> interfaceKineticThresholdShift
      ("KineticThresholdShift",
       "Shifts from the kinetic threshold in ClausterFissioner",
       &ClusterFissioner::_kinThresholdShift, sqr(GeV), 0.*sqr(GeV), -10.0*sqr(GeV), 10.0*sqr(GeV),
       false, false, Interface::limited);
 
   static Switch<ClusterFissioner,int> interfaceKinematicThreshold
     ("KinematicThreshold",
      "Option for using static or dynamic kinematic thresholds in cluster splittings",
      &ClusterFissioner::_kinematicThresholdChoice, 0, false, false);
   static SwitchOption interfaceKinematicThresholdStatic
     (interfaceKinematicThreshold,
      "Static",
      "Set static kinematic thresholds for cluster splittings.",
      0);
   static SwitchOption interfaceKinematicThresholdDynamic
     (interfaceKinematicThreshold,
      "Dynamic",
      "Set dynamic kinematic thresholds for cluster splittings.",
      1);
 
 }
 
 tPVector ClusterFissioner::fission(ClusterVector & clusters, bool softUEisOn) {
   // return if no clusters
   if (clusters.empty()) return tPVector();
 
   /*****************
    * Loop over the (input) collection of cluster pointers, and store in
    * the vector  splitClusters  all the clusters that need to be split
    * (these are beam clusters, if soft underlying event is off, and
    *  heavy non-beam clusters).
    ********************/
 
   stack<ClusterPtr> splitClusters;
   for(ClusterVector::iterator it = clusters.begin() ;
       it != clusters.end() ; ++it) {
     /**************
      * Skip 3-component clusters that have been redefined (as 2-component
      * clusters) or not available clusters. The latter check is indeed
      * redundant now, but it is used for possible future extensions in which,
      * for some reasons, some of the clusters found by ClusterFinder are tagged
      * straight away as not available.
      **************/
     if((*it)->isRedefined() || !(*it)->isAvailable()) continue;
     // if the cluster is a beam cluster add it to the vector of clusters
     // to be split or if it is heavy
     if((*it)->isBeamCluster() || isHeavy(*it)) splitClusters.push(*it);
   }
   tPVector finalhadrons;
   cut(splitClusters, clusters, finalhadrons, softUEisOn);
   return finalhadrons;
 }
 
 void ClusterFissioner::cut(stack<ClusterPtr> & clusterStack,
    			   ClusterVector &clusters, tPVector & finalhadrons,
 			   bool softUEisOn) {
   /**************************************************
    * This method does the splitting of the cluster pointed by  cluPtr
    * and "recursively" by all of its cluster children, if heavy. All of these
    * new children clusters are added (indeed the pointers to them) to the
    * collection of cluster pointers  collecCluPtr. The method works as follows.
    * Initially the vector vecCluPtr contains just the input pointer to the
    * cluster to be split. Then it will be filled "recursively" by all
    * of the cluster's children that are heavy enough to require, in their turn,
    * to be split. In each loop, the last element of the vector vecCluPtr is
    * considered (only once because it is then removed from the vector).
    * This approach is conceptually recursive, but avoid the overhead of
    * a concrete recursive function. Furthermore it requires minimal changes
    * in the case that the fission of an heavy cluster could produce more
    * than two cluster children as assumed now.
    *
    * Draw the masses: for normal, non-beam clusters a power-like mass dist
    * is used, whereas for beam clusters a fast-decreasing exponential mass
    * dist is used instead (to avoid many iterative splitting which could
    * produce an unphysical large transverse energy from a supposed soft beam
    * remnant process).
    ****************************************/
   // Here we recursively loop over clusters in the stack and cut them
   while (!clusterStack.empty()) {
     // take the last element of the vector
     ClusterPtr iCluster = clusterStack.top(); clusterStack.pop();
     // split it
     cutType ct = iCluster->numComponents() == 2 ?
       cutTwo(iCluster, finalhadrons, softUEisOn) :
       cutThree(iCluster, finalhadrons, softUEisOn);
 
     // There are cases when we don't want to split, even if it fails mass test
     if(!ct.first.first || !ct.second.first) {
       // if an unsplit beam cluster leave if for the underlying event
       if(iCluster->isBeamCluster() && softUEisOn)
 	iCluster->isAvailable(false);
       continue;
     }
     // check if clusters
     ClusterPtr one = dynamic_ptr_cast<ClusterPtr>(ct.first.first);
     ClusterPtr two = dynamic_ptr_cast<ClusterPtr>(ct.second.first);
     // is a beam cluster must be split into two clusters
     if(iCluster->isBeamCluster() && (!one||!two) && softUEisOn) {
       iCluster->isAvailable(false);
       continue;
     }
 
     // There should always be a intermediate quark(s) from the splitting
     assert(ct.first.second && ct.second.second);
     /// \todo sort out motherless quark pairs here. Watch out for 'quark in final state' errors
     iCluster->addChild(ct.first.first);
     //    iCluster->addChild(ct.first.second);
     //    ct.first.second->addChild(ct.first.first);
 
     iCluster->addChild(ct.second.first);
     //    iCluster->addChild(ct.second.second);
     //    ct.second.second->addChild(ct.second.first);
 
     // Sometimes the clusters decay C -> H + C' rather then C -> C' + C''
     if(one) {
       clusters.push_back(one);
       if(one->isBeamCluster() && softUEisOn)
 	one->isAvailable(false);
       if(isHeavy(one) && one->isAvailable())
 	clusterStack.push(one);
     }
     if(two) {
       clusters.push_back(two);
       if(two->isBeamCluster() && softUEisOn)
 	two->isAvailable(false);
       if(isHeavy(two) && two->isAvailable())
 	clusterStack.push(two);
     }
   }
 }
 
 namespace {
 
   /**
    *  Check if can't make a hadron from the partons
    */
   bool cantMakeHadron(tcPPtr p1, tcPPtr p2) {
     return ! CheckId::canBeHadron(p1->dataPtr(), p2->dataPtr());
   }
 
   /**
    *  Check if can't make a diquark from the partons
    */
   bool cantMakeDiQuark(tcPPtr p1, tcPPtr p2) {
     long id1 = p1->id(), id2 = p2->id();
     return ! (QuarkMatcher::Check(id1) && QuarkMatcher::Check(id2) && id1*id2>0);
   }
 }
 
 ClusterFissioner::cutType
 ClusterFissioner::cutTwo(ClusterPtr & cluster, tPVector & finalhadrons,
 			 bool softUEisOn) {
   // need to make sure only 2-cpt clusters get here
   assert(cluster->numComponents() == 2);
   tPPtr ptrQ1 = cluster->particle(0);
   tPPtr ptrQ2 = cluster->particle(1);
   Energy Mc = cluster->mass();
   assert(ptrQ1);
   assert(ptrQ2);
 
   // And check if those particles are from a beam remnant
   bool rem1 = cluster->isBeamRemnant(0);
   bool rem2 = cluster->isBeamRemnant(1);
   // workout which distribution to use
   bool soft1(false),soft2(false);
   switch (_iopRem) {
   case 0:
     soft1 = rem1 || rem2;
     soft2 = rem2 || rem1;
     break;
   case 1:
     soft1 = rem1;
     soft2 = rem2;
     break;
   }
   // Initialization for the exponential ("soft") mass distribution.
   static const int max_loop = 1000;
   int counter = 0;
   Energy Mc1 = ZERO, Mc2 = ZERO,m1=ZERO,m2=ZERO,m=ZERO;
   tcPDPtr toHadron1, toHadron2;
   PPtr newPtr1 = PPtr ();
   PPtr newPtr2 = PPtr ();
   bool succeeded = false;
   Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2;
   // pClu1(Mc1), pClu2(Mc2), pQ1(m1), pQone(m), pQtwo(m), pQ2(m2);
   do
     {
       succeeded = false;
       ++counter;
 
       // get a flavour for the qqbar pair
       drawNewFlavour(newPtr1,newPtr2,cluster);
 
       // check for right ordering
       assert (ptrQ2);
       assert (newPtr2);
       assert (ptrQ2->dataPtr());
       assert (newPtr2->dataPtr());
       if(cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2)) {
 	swap(newPtr1, newPtr2);
 	// check again
 	if(cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2)) {
 	  throw Exception()
 	    << "ClusterFissioner cannot split the cluster ("
 	    << ptrQ1->PDGName() << ' ' << ptrQ2->PDGName()
 	    << ") into hadrons.\n" << Exception::runerror;
 	}
       }
       // Check that new clusters can produce particles and there is enough
       // phase space to choose the drawn flavour
       m1 = ptrQ1->data().constituentMass();
       m2 = ptrQ2->data().constituentMass();
       m  = newPtr1->data().constituentMass();
       // Do not split in the case there is no phase space available
       if(Mc <  m1+m + m2+m) continue;
 
       pQ1.setMass(m1);
       pQone.setMass(m);
       pQtwo.setMass(m);
       pQ2.setMass(m2);
 
       pair<Energy,Energy> res = drawNewMasses(Mc, soft1, soft2, pClu1, pClu2,
 					      ptrQ1, pQ1, newPtr1, pQone,
 					      newPtr2, pQtwo, ptrQ2, pQ2);
 
       // derive the masses of the children
       Mc1 = res.first;
       Mc2 = res.second;
       // static kinematic threshold
-      if(_kinematicThresholdChoice == 0)
+      if(_kinematicThresholdChoice == 0) {
         if(Mc1 < m1+m || Mc2 < m+m2 || Mc1+Mc2 > Mc) continue;
       // dynamic kinematic threshold
-      else if(_kinematicThresholdChoice == 1) {
+      } else if(_kinematicThresholdChoice == 1) {
         bool C1 = ( sqr(Mc1) )/( sqr(m1) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false;
         bool C2 = ( sqr(Mc2) )/( sqr(m2) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false;
         bool C3 = ( sqr(Mc1) + sqr(Mc2) )/( sqr(Mc) ) > 1.0 ? true : false;
 
         if( C1 || C2 || C3 ) continue;
       }
 
       /**************************
        * New (not present in Fortran Herwig):
        * check whether the fragment masses  Mc1  and  Mc2  are above the
        * threshold for the production of the lightest pair of hadrons with the
        * right flavours. If not, then set by hand the mass to the lightest
        * single hadron with the right flavours, in order to solve correctly
        * the kinematics, and (later in this method) create directly such hadron
        * and add it to the children hadrons of the cluster that undergoes the
        * fission (i.e. the one pointed by iCluPtr). Notice that in this special
        * case, the heavy cluster that undergoes the fission has one single
        * cluster child and one single hadron child. We prefer this approach,
        * rather than to create a light cluster, with the mass set equal to
        * the lightest hadron, and let then the class LightClusterDecayer to do
        * the job to decay it to that single hadron, for two reasons:
        * First, because the sum of the masses of the two constituents can be,
        * in this case, greater than the mass of that hadron, hence it would
        * be impossible to solve the kinematics for such two components, and
        * therefore we would have a cluster whose components are undefined.
        * Second, the algorithm is faster, because it avoids the reshuffling
        * procedure that would be necessary if we used LightClusterDecayer
        * to decay the light cluster to the lightest hadron.
        ****************************/
 
       // override chosen masses if needed
       toHadron1 = _hadronSelector->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc1);
       if(toHadron1) { Mc1 = toHadron1->mass(); pClu1.setMass(Mc1); }
       toHadron2 = _hadronSelector->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc2);
       if(toHadron2) { Mc2 = toHadron2->mass(); pClu2.setMass(Mc2); }
       // if a beam cluster not allowed to decay to hadrons
       if(cluster->isBeamCluster() && (toHadron1||toHadron2) && softUEisOn)
 	continue;
       // Check if the decay kinematics is still possible: if not then
       // force the one-hadron decay for the other cluster as well.
       if(Mc1 + Mc2  >  Mc) {
 	if(!toHadron1) {
 	  toHadron1 = _hadronSelector->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc-Mc2);
 	  if(toHadron1) { Mc1 = toHadron1->mass(); pClu1.setMass(Mc1); }
 	}
 	else if(!toHadron2) {
 	  toHadron2 = _hadronSelector->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc-Mc1);
 	  if(toHadron2) { Mc2 = toHadron2->mass(); pClu2.setMass(Mc2); }
 	}
       }
       succeeded = (Mc >= Mc1+Mc2);
     }
   while (!succeeded && counter < max_loop);
 
   if(counter >= max_loop) {
     static const PPtr null = PPtr();
     return cutType(PPair(null,null),PPair(null,null));
   }
 
   // Determined the (5-components) momenta (all in the LAB frame)
   Lorentz5Momentum pClu = cluster->momentum(); // known
   Lorentz5Momentum p0Q1 = ptrQ1->momentum(); // known (mom Q1 before fission)
   calculateKinematics(pClu,p0Q1,toHadron1,toHadron2,
 		      pClu1,pClu2,pQ1,pQone,pQtwo,pQ2);
 
   /******************
    * The previous methods have determined the kinematics and positions
    * of C -> C1 + C2.
    * In the case that one of the two product is light, that means either
    * decayOneHadronClu1 or decayOneHadronClu2 is true, then the momenta
    * of the components of that light product have not been determined,
    * and a (light) cluster will not be created: the heavy father cluster
    * decays, in this case, into a single (not-light) cluster and a
    * single hadron. In the other, "normal", cases the father cluster
    * decays into two clusters, each of which has well defined components.
    * Notice that, in the case of components which point to particles, the
    * momenta of the components is properly set to the new values, whereas
    * we do not change the momenta of the pointed particles, because we
    * want to keep all of the information (that is the new momentum of a
    * component after the splitting, which is contained in the _momentum
    * member of the Component class, and the (old) momentum of that component
    * before the splitting, which is contained in the momentum of the
    * pointed particle). Please not make confusion of this only apparent
    * inconsistency!
    ********************/
   LorentzPoint posC,pos1,pos2;
   posC = cluster->vertex();
   calculatePositions(pClu, posC, pClu1, pClu2, pos1, pos2);
   cutType rval;
   if(toHadron1) {
     rval.first = produceHadron(toHadron1, newPtr1, pClu1, pos1);
     finalhadrons.push_back(rval.first.first);
   }
   else {
     rval.first = produceCluster(ptrQ1, newPtr1, pClu1, pos1, pQ1, pQone, rem1);
   }
   if(toHadron2) {
     rval.second = produceHadron(toHadron2, newPtr2, pClu2, pos2);
     finalhadrons.push_back(rval.second.first);
   }
   else {
     rval.second = produceCluster(ptrQ2, newPtr2, pClu2, pos2, pQ2, pQtwo, rem2);
   }
   return rval;
 }
 
 
 ClusterFissioner::cutType
 ClusterFissioner::cutThree(ClusterPtr & cluster, tPVector & finalhadrons,
 			   bool softUEisOn) {
   // need to make sure only 3-cpt clusters get here
   assert(cluster->numComponents() == 3);
   // extract quarks
   tPPtr ptrQ[3] = {cluster->particle(0),cluster->particle(1),cluster->particle(2)};
   assert( ptrQ[0] && ptrQ[1] && ptrQ[2] );
   // find maximum mass pair
   Energy mmax(ZERO);
   Lorentz5Momentum pDiQuark;
   int iq1(-1),iq2(-1);
   Lorentz5Momentum psum;
   for(int q1=0;q1<3;++q1) {
     psum+= ptrQ[q1]->momentum();
     for(int q2=q1+1;q2<3;++q2) {
       Lorentz5Momentum ptest = ptrQ[q1]->momentum()+ptrQ[q2]->momentum();
       ptest.rescaleMass();
       Energy mass = ptest.m();
       if(mass>mmax) {
 	mmax = mass;
 	pDiQuark = ptest;
 	iq1  = q1;
 	iq2  = q2;
       }
     }
   }
   // and the spectators
   int iother(-1);
   for(int ix=0;ix<3;++ix) if(ix!=iq1&&ix!=iq2) iother=ix;
   assert(iq1>=0&&iq2>=0&&iother>=0);
 
   // And check if those particles are from a beam remnant
   bool rem1 = cluster->isBeamRemnant(iq1);
   bool rem2 = cluster->isBeamRemnant(iq2);
   // workout which distribution to use
   bool soft1(false),soft2(false);
   switch (_iopRem) {
   case 0:
     soft1 = rem1 || rem2;
     soft2 = rem2 || rem1;
     break;
   case 1:
     soft1 = rem1;
     soft2 = rem2;
     break;
   }
   // Initialization for the exponential ("soft") mass distribution.
   static const int max_loop = 1000;
   int counter = 0;
   Energy Mc1 = ZERO, Mc2 = ZERO, m1=ZERO, m2=ZERO, m=ZERO;
   tcPDPtr toHadron;
   bool toDiQuark(false);
   PPtr newPtr1 = PPtr(),newPtr2 = PPtr();
   PDPtr diquark;
   bool succeeded = false;
   Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2;
   do {
     succeeded = false;
     ++counter;
 
     // get a flavour for the qqbar pair
     drawNewFlavour(newPtr1,newPtr2,cluster);
 
     // randomly pick which will be (anti)diquark and which a mesonic cluster
     if(UseRandom::rndbool()) {
       swap(iq1,iq2);
       swap(rem1,rem2);
     }
     // check first order
     if(cantMakeHadron(ptrQ[iq1], newPtr1) || cantMakeDiQuark(ptrQ[iq2], newPtr2)) {
       swap(newPtr1,newPtr2);
     }
     // check again
     if(cantMakeHadron(ptrQ[iq1], newPtr1) || cantMakeDiQuark(ptrQ[iq2], newPtr2)) {
       throw Exception()
 	<< "ClusterFissioner cannot split the cluster ("
 	<< ptrQ[iq1]->PDGName() << ' ' << ptrQ[iq2]->PDGName()
 	<< ") into a hadron and diquark.\n" << Exception::runerror;
     }
     // Check that new clusters can produce particles and there is enough
     // phase space to choose the drawn flavour
     m1 = ptrQ[iq1]->data().constituentMass();
     m2 = ptrQ[iq2]->data().constituentMass();
     m  = newPtr1->data().constituentMass();
     // Do not split in the case there is no phase space available
     if(mmax <  m1+m + m2+m) continue;
 
     pQ1.setMass(m1);
     pQone.setMass(m);
     pQtwo.setMass(m);
     pQ2.setMass(m2);
 
     pair<Energy,Energy> res = drawNewMasses(mmax, soft1, soft2, pClu1, pClu2,
 					    ptrQ[iq1], pQ1, newPtr1, pQone,
 					    newPtr2, pQtwo, ptrQ[iq1], pQ2);
 
     Mc1 = res.first; Mc2 = res.second;
 
     if(Mc1 < m1+m || Mc2 < m+m2 || Mc1+Mc2 > mmax) continue;
 
     // check if need to force meson clster to hadron
     toHadron = _hadronSelector->chooseSingleHadron(ptrQ[iq1]->dataPtr(), newPtr1->dataPtr(),Mc1);
     if(toHadron) { Mc1 = toHadron->mass(); pClu1.setMass(Mc1); }
     // check if need to force diquark cluster to be on-shell
     toDiQuark = false;
     diquark = _hadronSelector->makeDiquark(ptrQ[iq2]->dataPtr(),newPtr2->dataPtr());
     if(Mc2 < diquark->constituentMass()) {
       Mc2 = diquark->constituentMass(); pClu2.setMass(Mc2);
       toDiQuark = true;
     }
     // if a beam cluster not allowed to decay to hadrons
     if(cluster->isBeamCluster() && toHadron && softUEisOn)
       continue;
     // Check if the decay kinematics is still possible: if not then
     // force the one-hadron decay for the other cluster as well.
     if(Mc1 + Mc2  >  mmax) {
       if(!toHadron) {
 	toHadron = _hadronSelector->chooseSingleHadron(ptrQ[iq1]->dataPtr(), newPtr1->dataPtr(),mmax-Mc2);
 	if(toHadron) { Mc1 = toHadron->mass(); pClu1.setMass(Mc1); }
       }
       else if(!toDiQuark) {
 	Mc2 = _hadronSelector->massLightestHadron(ptrQ[iq2]->dataPtr(), newPtr2->dataPtr()); pClu2.setMass(Mc2);
 	toDiQuark = true;
       }
     }
     succeeded = (mmax >= Mc1+Mc2);
   }
   while (!succeeded && counter < max_loop);
   // check no of tries
   if(counter >= max_loop) return cutType();
 
   // Determine the (5-components) momenta (all in the LAB frame)
   Lorentz5Momentum p0Q1 = ptrQ[iq1]->momentum();
   calculateKinematics(pDiQuark,p0Q1,toHadron,toDiQuark,
 		      pClu1,pClu2,pQ1,pQone,pQtwo,pQ2);
   // positions of the new clusters
   LorentzPoint pos1,pos2;
   Lorentz5Momentum pBaryon = pClu2+ptrQ[iother]->momentum();
   calculatePositions(cluster->momentum(), cluster->vertex(), pClu1, pBaryon, pos1, pos2);
   // first the mesonic cluster/meson
   cutType rval;
    if(toHadron) {
      rval.first = produceHadron(toHadron, newPtr1, pClu1, pos1);
      finalhadrons.push_back(rval.first.first);
    }
    else {
      rval.first = produceCluster(ptrQ[iq1], newPtr1, pClu1, pos1, pQ1, pQone, rem1);
    }
    if(toDiQuark) {
      rem2 |= cluster->isBeamRemnant(iother);
      PPtr newDiQuark = diquark->produceParticle(pClu2);
      rval.second = produceCluster(newDiQuark, ptrQ[iother], pBaryon, pos2, pClu2,
       				  ptrQ[iother]->momentum(), rem2);
    }
    else {
      rval.second = produceCluster(ptrQ[iq2], newPtr2, pBaryon, pos2, pQ2, pQtwo, rem2,
 				  ptrQ[iother],cluster->isBeamRemnant(iother));
    }
    cluster->isAvailable(false);
    return rval;
 }
 
 ClusterFissioner::PPair
 ClusterFissioner::produceHadron(tcPDPtr hadron, tPPtr newPtr, const Lorentz5Momentum &a,
 				const LorentzPoint &b) const {
   PPair rval;
   if(hadron->coloured()) {
     rval.first = (_hadronSelector->lightestHadron(hadron,newPtr->dataPtr()))->produceParticle();
   }
   else
     rval.first = hadron->produceParticle();
   rval.second = newPtr;
   rval.first->set5Momentum(a);
   rval.first->setVertex(b);
   return rval;
 }
 
 ClusterFissioner::PPair ClusterFissioner::produceCluster(tPPtr ptrQ, tPPtr newPtr,
 							 const Lorentz5Momentum & a,
 				                         const LorentzPoint & b,
 							 const Lorentz5Momentum & c,
 				                         const Lorentz5Momentum & d,
 							 bool isRem,
 							 tPPtr spect, bool remSpect) const {
   PPair rval;
   rval.second = newPtr;
   ClusterPtr cluster = !spect ? new_ptr(Cluster(ptrQ,rval.second)) : new_ptr(Cluster(ptrQ,rval.second,spect));
   rval.first = cluster;
   cluster->set5Momentum(a);
   cluster->setVertex(b);
   assert(cluster->particle(0)->id() == ptrQ->id());
   cluster->particle(0)->set5Momentum(c);
   cluster->particle(1)->set5Momentum(d);
   cluster->setBeamRemnant(0,isRem);
   if(remSpect) cluster->setBeamRemnant(2,remSpect);
   return rval;
 }
 
 void ClusterFissioner::drawNewFlavour(PPtr& newPtrPos,PPtr& newPtrNeg) const {
 
   // Flavour is assumed to be only  u, d, s,  with weights
   // (which are not normalized probabilities) given
   // by the same weights as used in HadronsSelector for
   // the decay of clusters into two hadrons.
 
 
   double prob_d;
   double prob_u;
   double prob_s;
   switch(_fissionCluster){
   case 0:
     prob_d = _hadronSelector->pwt(1);
     prob_u = _hadronSelector->pwt(2);
     prob_s = _hadronSelector->pwt(3);
     break;
   case 1:
     prob_d = _fissionPwtDquark;
     prob_u = _fissionPwtUquark;
     prob_s = _fissionPwtSquark;
     break;
   default :
     assert(false);
   }
   int choice = UseRandom::rnd3(prob_u, prob_d, prob_s);
   long idNew = 0;
   switch (choice) {
   case 0: idNew = ThePEG::ParticleID::u; break;
   case 1: idNew = ThePEG::ParticleID::d; break;
   case 2: idNew = ThePEG::ParticleID::s; break;
   }
   newPtrPos = getParticle(idNew);
   newPtrNeg = getParticle(-idNew);
   assert (newPtrPos);
   assert(newPtrNeg);
   assert (newPtrPos->dataPtr());
   assert(newPtrNeg->dataPtr());
 
 }
 
 void ClusterFissioner::drawNewFlavourEnhanced(PPtr& newPtrPos,PPtr& newPtrNeg,
                                               Energy2 mass2) const {
 
   // Flavour is assumed to be only  u, d, s,  with weights
   // (which are not normalized probabilities) given
   // by the same weights as used in HadronsSelector for
   // the decay of clusters into two hadrons.
 
   double prob_d;
   double prob_u;
   double prob_s = 0.;
   double scale = abs(double(sqr(_m0Fission)/mass2));
   // Choose which splitting weights you wish to use
   switch(_fissionCluster){
     // 0: ClusterFissioner and ClusterDecayer use the same weights
   case 0:
     prob_d = _hadronSelector->pwt(1);
     prob_u = _hadronSelector->pwt(2);
     /* Strangeness enhancement:
        Case 1: probability scaling
        Case 2: Exponential scaling
     */
     if (_enhanceSProb == 1)
       prob_s = (_maxScale < scale) ? 0. : pow(_hadronSelector->pwt(3),scale);
     else if (_enhanceSProb == 2)
       prob_s = (_maxScale < scale) ? 0. : exp(-scale);
     break;
     /* 1: ClusterFissioner uses its own unique set of weights,
        i.e. decoupled from ClusterDecayer */
   case 1:
     prob_d = _fissionPwtDquark;
     prob_u = _fissionPwtUquark;
     if (_enhanceSProb == 1)
       prob_s = (_maxScale < scale) ? 0. : pow(_fissionPwtSquark,scale);
     else if (_enhanceSProb == 2)
       prob_s = (_maxScale < scale) ? 0. : exp(-scale);
     break;
   default:
     assert(false);
   }
 
   int choice = UseRandom::rnd3(prob_u, prob_d, prob_s);
   long idNew = 0;
   switch (choice) {
   case 0: idNew = ThePEG::ParticleID::u; break;
   case 1: idNew = ThePEG::ParticleID::d; break;
   case 2: idNew = ThePEG::ParticleID::s; break;
   }
   newPtrPos = getParticle(idNew);
   newPtrNeg = getParticle(-idNew);
   assert (newPtrPos);
   assert(newPtrNeg);
   assert (newPtrPos->dataPtr());
   assert(newPtrNeg->dataPtr());
 
 }
 
 
 Energy2 ClusterFissioner::clustermass(const ClusterPtr & cluster) const{
   Lorentz5Momentum pIn = cluster->momentum();
   Energy2 endpointmass2 = sqr(cluster->particle(0)->mass() +
   cluster->particle(1)->mass());
   Energy2 singletm2 = pIn.m2();
   // Return either the cluster mass, or the lambda measure
   return (_massMeasure == 0) ? singletm2 : singletm2 - endpointmass2;
 }
 
 
 Energy ClusterFissioner::drawChildMass(const Energy M, const Energy m1,
 				       const Energy m2, const Energy m,
 				       const double expt, const bool soft) const {
 
   /***************************
    * This method, given in input the cluster mass Mclu of an heavy cluster C,
    * made of consituents of masses m1 and m2, draws the masses Mclu1 and Mclu2
    * of, respectively, the children cluster C1, made of constituent masses m1
    * and m, and cluster C2, of mass Mclu2 and made of constituent masses m2
    * and m. The mass is extracted from one of the two following mass
    * distributions:
    *   --- power-like ("normal" distribution)
    *                        d(Prob) / d(M^exponent) = const
    *       where the exponent can be different from the two children C1 (exp1)
    *       and C2 (exponent2).
    *   --- exponential ("soft" distribution)
    *                        d(Prob) / d(M^2) = exp(-b*M)
    *       where b = 2.0 / average.
    * Such distributions are limited below by the masses of
    * the constituents quarks, and above from the mass of decaying cluster C.
    * The choice of which of the two mass distributions to use for each of the
    * two cluster children is dictated by  iRemnant  (see below).
    * If the number of attempts to extract a pair of mass values that are
    * kinematically acceptable is above some fixed number (max_loop, see below)
    * the method gives up and returns false; otherwise, when it succeeds, it
    * returns true.
    *
    * These distributions have been modified from HERWIG:
    * Before these were:
    *      Mclu1 = m1 + (Mclu - m1 - m2)*pow( rnd(), 1.0/exponent1 );
    * The new one coded here is a more efficient version, same density
    * but taking into account 'in phase space from' beforehand
    ***************************/
   // hard cluster
   if(!soft) {
     return pow(UseRandom::rnd(pow((M-m1-m2-m)*UnitRemoval::InvE, expt),
 			      pow(m*UnitRemoval::InvE, expt)), 1./expt
 	       )*UnitRemoval::E + m1;
   }
   // Otherwise it uses a soft mass distribution
   else {
     static const InvEnergy b = 2.0 / _btClM;
     Energy max = M-m1-m2-2.0*m;
     double rmin = b*max;
     rmin = ( rmin < 50 ) ? exp(-rmin) : 0.;
     double r1;
     do {
       r1 = UseRandom::rnd(rmin, 1.0) * UseRandom::rnd(rmin, 1.0);
     }
     while (r1 < rmin);
     return m1 + m - log(r1)/b;
   }
 }
 
 
 void ClusterFissioner::calculateKinematics(const Lorentz5Momentum & pClu,
 					   const Lorentz5Momentum & p0Q1,
 					   const bool toHadron1,
 					   const bool toHadron2,
 					   Lorentz5Momentum & pClu1,
 					   Lorentz5Momentum & pClu2,
 					   Lorentz5Momentum & pQ1,
 					   Lorentz5Momentum & pQbar,
 					   Lorentz5Momentum & pQ,
 					   Lorentz5Momentum & pQ2bar) const {
 
   /******************
    * This method solves the kinematics of the two body cluster decay:
    *    C (Q1 Q2bar)  --->  C1 (Q1 Qbar)  +  C2 (Q Q2bar)
    * In input we receive the momentum of C, pClu, and the momentum
    * of the quark Q1 (constituent of C), p0Q1, both in the LAB frame.
    * Furthermore, two boolean variables inform whether the two fission
    * products (C1, C2) decay immediately into a single hadron (in which
    * case the cluster itself is identify with that hadron) and we do
    * not have to solve the kinematics of the components (Q1,Qbar) for
    * C1 and (Q,Q2bar) for C2.
    * The output is given by the following momenta (all 5-components,
    * and all in the LAB frame):
    *   pClu1 , pClu2   respectively of   C1 , C2
    *   pQ1 , pQbar     respectively of   Q1 , Qbar  in  C1
    *   pQ  , pQ2bar    respectively of   Q  , Q2    in  C2
    * The assumption, suggested from the string model, is that, in C frame,
    * C1 and its constituents Q1 and Qbar are collinear, and collinear to
    * the direction of Q1 in C (that is before cluster decay); similarly,
    * (always in the C frame) C2 and its constituents Q and Q2bar are
    * collinear (and therefore anti-collinear with C1,Q1,Qbar).
    * The solution is then obtained by using Lorentz boosts, as follows.
    * The kinematics of C1 and C2 is solved in their parent C frame,
    * and then boosted back in the LAB. The kinematics of Q1 and Qbar
    * is solved in their parent C1 frame and then boosted back in the LAB;
    * similarly, the kinematics of Q and Q2bar is solved in their parent
    * C2 frame and then boosted back in the LAB. In each of the three
    * "two-body decay"-like cases, we use the fact that the direction
    * of the motion of the decay products is known in the rest frame of
    * their parent. This is obvious for the first case in which the
    * parent rest frame is C; but it is also true in the other two cases
    * where the rest frames are C1 and C2. This is because C1 and C2
    * are boosted w.r.t. C in the same direction where their components,
    * respectively (Q1,Qbar) and (Q,Q2bar) move in C1 and C2 rest frame
    * respectively.
    * Of course, although the notation used assumed that C = (Q1 Q2bar)
    * where Q1 is a quark and Q2bar an antiquark, indeed everything remain
    * unchanged also in all following cases:
    *  Q1 quark, Q2bar antiquark;           --> Q quark;
    *  Q1 antiquark , Q2bar quark;          --> Q antiquark;
    *  Q1 quark, Q2bar diquark;             --> Q quark
    *  Q1 antiquark, Q2bar anti-diquark;    --> Q antiquark
    *  Q1 diquark, Q2bar quark              --> Q antiquark
    *  Q1 anti-diquark, Q2bar antiquark;    --> Q quark
    **************************/
 
   // Calculate the unit three-vector, in the C frame, along which
   // all of the constituents and children clusters move.
   Lorentz5Momentum u(p0Q1);
   u.boost( -pClu.boostVector() );        // boost from LAB to C
   // the unit three-vector is then  u.vect().unit()
 
   // Calculate the momenta of C1 and C2 in the (parent) C frame first,
   // where the direction of C1 is u.vect().unit(), and then boost back in the
   // LAB frame.
 
   if (pClu.m() < pClu1.mass() + pClu2.mass() ) {
     throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (A)"
 		      << Exception::eventerror;
   }
   Kinematics::twoBodyDecay(pClu, pClu1.mass(), pClu2.mass(),
 			   u.vect().unit(), pClu1, pClu2);
 
   // In the case that cluster1 does not decay immediately into a single hadron,
   // calculate the momenta of Q1 (as constituent of C1) and Qbar in the
   // (parent) C1 frame first, where the direction of Q1 is u.vect().unit(),
   // and then boost back in the LAB frame.
   if(!toHadron1) {
     if (pClu1.m() < pQ1.mass() + pQbar.mass() ) {
       throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (B)"
 			<< Exception::eventerror;
     }
     Kinematics::twoBodyDecay(pClu1, pQ1.mass(), pQbar.mass(),
 			     u.vect().unit(), pQ1, pQbar);
   }
 
   // In the case that cluster2 does not decay immediately into a single hadron,
   // Calculate the momenta of Q and Q2bar (as constituent of C2) in the
   // (parent) C2 frame first, where the direction of Q is u.vect().unit(),
   // and then boost back in the LAB frame.
   if(!toHadron2) {
     if (pClu2.m() < pQ.mass() + pQ2bar.mass() ) {
       throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (C)"
 			<< Exception::eventerror;
     }
     Kinematics::twoBodyDecay(pClu2, pQ.mass(), pQ2bar.mass(),
 			     u.vect().unit(), pQ, pQ2bar);
   }
 }
 
 
 void ClusterFissioner::calculatePositions(const Lorentz5Momentum & pClu,
 					  const LorentzPoint & positionClu,
 					  const Lorentz5Momentum & pClu1,
 					  const Lorentz5Momentum & pClu2,
 					  LorentzPoint & positionClu1,
 					  LorentzPoint & positionClu2) const {
   // Determine positions of cluster children.
   // See Marc Smith's thesis, page 127, formulas (4.122) and (4.123).
   Energy Mclu  = pClu.m();
   Energy Mclu1 = pClu1.m();
   Energy Mclu2 = pClu2.m();
 
   // Calculate the unit three-vector, in the C frame, along which
   // children clusters move.
   Lorentz5Momentum u(pClu1);
   u.boost( -pClu.boostVector() );        // boost from LAB to C frame
 
   // the unit three-vector is then  u.vect().unit()
 
   Energy pstarChild = Kinematics::pstarTwoBodyDecay(Mclu,Mclu1,Mclu2);
 
   // First, determine the relative positions of the children clusters
   // in the parent cluster reference frame.
 
   Energy2 mag2 = u.vect().mag2();
   InvEnergy fact = mag2>ZERO ? 1./sqrt(mag2) : 1./GeV;
 
   Length x1 = ( 0.25*Mclu + 0.5*( pstarChild + (sqr(Mclu2) - sqr(Mclu1))/(2.0*Mclu)))/_kappa;
   Length t1 = Mclu/_kappa - x1;
   LorentzDistance distanceClu1( x1 * fact * u.vect(), t1 );
 
   Length x2 = (-0.25*Mclu + 0.5*(-pstarChild + (sqr(Mclu2) - sqr(Mclu1))/(2.0*Mclu)))/_kappa;
   Length t2 = Mclu/_kappa + x2;
   LorentzDistance distanceClu2( x2 * fact * u.vect(), t2 );
 
   // Then, transform such relative positions from the parent cluster
   // reference frame to the Lab frame.
   distanceClu1.boost( pClu.boostVector() );
   distanceClu2.boost( pClu.boostVector() );
 
   // Finally, determine the absolute positions in the Lab frame.
   positionClu1 = positionClu + distanceClu1;
   positionClu2 = positionClu + distanceClu2;
 
 }
 
 bool ClusterFissioner::ProbablityFunction(double scale, double threshold) {
   double cut = UseRandom::rnd(0.0,1.0);
   return 1./(1.+pow(abs((threshold-_probShift)/scale),_probPowFactor)) > cut ? true : false;
 }
 
 bool ClusterFissioner::isHeavy(tcClusterPtr clu) {
 
   // default
   double clpow = _clPowLight;
   Energy clmax = _clMaxLight;
   // particle data for constituents
   tcPDPtr cptr[3]={tcPDPtr(),tcPDPtr(),tcPDPtr()};
   for(unsigned int ix=0;ix<min(clu->numComponents(),3);++ix) {
     cptr[ix]=clu->particle(ix)->dataPtr();
   }
   // different parameters for exotic, bottom and charm clusters
   if(CheckId::isExotic(cptr[0],cptr[1],cptr[1])) {
     clpow = _clPowExotic;
     clmax = _clMaxExotic;
   }
   else if(CheckId::hasBottom(cptr[0],cptr[1],cptr[1])) {
     clpow = _clPowBottom;
     clmax = _clMaxBottom;
   }
   else if(CheckId::hasCharm(cptr[0],cptr[1],cptr[1])) {
     clpow = _clPowCharm;
     clmax = _clMaxCharm;
   }
 
   //regular checks
 
   // required test for SUSY clusters, since aboveCutoff alone
   // cannot guarantee (Mc > m1 + m2 + 2*m) in cut()
   static const Energy minmass
     = getParticleData(ParticleID::d)->constituentMass();
-  bool aboveCutoff, canSplitMinimally;
+  bool aboveCutoff = false, canSplitMinimally = false;
   // static kinematic threshold
   if(_kinematicThresholdChoice == 0) {
     aboveCutoff = (
     	      pow(clu->mass()*UnitRemoval::InvE , clpow)
     	      >
     	      pow(clmax*UnitRemoval::InvE, clpow)
     	      + pow(clu->sumConstituentMasses()*UnitRemoval::InvE, clpow)
     	      );
 
     canSplitMinimally = clu->mass() > clu->sumConstituentMasses() + 2.0 * minmass;
   }
   // dynamic kinematic threshold
   else if(_kinematicThresholdChoice == 1) {
     //some smooth probablity function to create a dynamic thershold
     double scale     = pow(clu->mass()/GeV , clpow);
     double threshold = pow(clmax/GeV, clpow)
                      + pow(clu->sumConstituentMasses()/GeV, clpow);
-    bool aboveCutoff = ProbablityFunction(scale,threshold);
+    aboveCutoff = ProbablityFunction(scale,threshold);
 
     scale     = clu->mass()/GeV;
     threshold = clu->sumConstituentMasses()/GeV + 2.0 * minmass/GeV;
 
     canSplitMinimally = ProbablityFunction(scale,threshold);
   }
 
   return aboveCutoff && canSplitMinimally;
 }