diff --git a/Decay/VectorMeson/VectorMeson2BaryonsDecayer.cc b/Decay/VectorMeson/VectorMeson2BaryonsDecayer.cc --- a/Decay/VectorMeson/VectorMeson2BaryonsDecayer.cc +++ b/Decay/VectorMeson/VectorMeson2BaryonsDecayer.cc @@ -1,362 +1,362 @@ // -*- C++ -*- // // This is the implementation of the non-inlined, non-templated member // functions of the VectorMeson2BaryonsDecayer class. // #include "VectorMeson2BaryonsDecayer.h" #include "ThePEG/Utilities/DescribeClass.h" #include "ThePEG/Interface/ClassDocumentation.h" #include "ThePEG/Interface/ParVector.h" #include "ThePEG/Persistency/PersistentOStream.h" #include "ThePEG/Persistency/PersistentIStream.h" #include "ThePEG/PDT/DecayMode.h" #include "ThePEG/Helicity/WaveFunction/SpinorWaveFunction.h" #include "ThePEG/Helicity/WaveFunction/SpinorBarWaveFunction.h" #include "ThePEG/Helicity/WaveFunction/VectorWaveFunction.h" #include "Herwig/Decay/TwoBodyDecayMatrixElement.h" #include "ThePEG/Helicity/HelicityFunctions.h" #include "ThePEG/Helicity/WaveFunction/RSSpinorWaveFunction.h" #include "ThePEG/Helicity/WaveFunction/RSSpinorBarWaveFunction.h" using namespace Herwig; using namespace ThePEG::Helicity; void VectorMeson2BaryonsDecayer::doinitrun() { DecayIntegrator::doinitrun(); if(initialize()) { for(unsigned int ix=0;ix<incoming_.size();++ix) { if(mode(ix)) maxweight_[ix] = mode(ix)->maxWeight(); } } } void VectorMeson2BaryonsDecayer::doinit() { DecayIntegrator::doinit(); // check the parameters arew consistent unsigned int isize=gm_.size(); if(isize!=incoming_.size() || isize!=outgoingf_.size()|| isize!=outgoinga_.size() || isize!= maxweight_.size()|| isize!= phi_.size() || isize!= ge_.size()) throw InitException() << "Inconsistent parameters in VectorMeson2" << "BaryonsDecayer::doiin() " << Exception::runerror; // set up the integration channels PhaseSpaceModePtr mode; for(unsigned int ix=0;ix<incoming_.size();++ix) { tPDPtr in = getParticleData(incoming_[ix]); tPDVector out = {getParticleData(outgoingf_[ix]), getParticleData(outgoinga_[ix])}; if(in&&out[0]&&out[1]) mode = new_ptr(PhaseSpaceMode(in,out,maxweight_[ix])); else mode=PhaseSpaceModePtr(); addMode(mode); } } VectorMeson2BaryonsDecayer::VectorMeson2BaryonsDecayer() : gm_ ({0.00163222616377,0.00158881446341,0.00163819673075,0.000944247071286,0.00141162244048 ,0.00150424724997 ,0.00093350341391,0.00107528142563,0.000860759359361,0.00103222902272,0.00098818310509,0.00119542938517 ,0.000941856299908,0.00108249234586 ,0.00102912698738 ,0.000561082932891,0.000526423800011,0.000500391020504}), ge_ ({0.00135736265293,0.0015117595557 ,0.00136696938558,0.001988067505 ,0.000852659560453,0.000801719253474,0.00150640470181,0.00153402258271,0.0015323974485 ,0. ,0.00084599445285,0.000621041230885,0.000599393812308,0.000327664954147,0.000664382626732,0.000260326162249,0.000362882855521,0.00025226758188 }), phi_ ({0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. }), incoming_ ({443 ,443 ,443 ,443 ,443 ,443 ,443 ,443 ,443 ,100443 ,100443 ,100443 ,100443 ,100443 ,100443 ,100443 ,100443 ,100443 }), outgoingf_({ 2212 , 2112 , 3122 , 3212 , 3312 , 3322 , 3114 , 3224 , 3214 , 2212 , 2112 , 3122 , 3212 , 3312 , 3322 , 3114 , 3224 , 3214 }), outgoinga_({-2212 ,-2112 ,-3122 ,-3212 ,-3312 ,-3322 ,-3114 ,-3224 ,-3214 ,-2212 ,-2112 ,-3122 ,-3212 ,-3312 ,-3322 ,-3114 ,-3224 ,-3214 }), maxweight_({1.6 ,1.6 ,2.1 ,1.5 ,2. ,2.1 ,7. ,10. ,6.5 ,1.7 ,1.7 ,2.5 ,2.5 ,2. ,2. ,30. ,35. ,41. }) -{ +{} int VectorMeson2BaryonsDecayer::modeNumber(bool & cc,tcPDPtr parent, const tPDVector & children) const { if(children.size()!=2) return -1; int id(parent->id()); int idbar = parent->CC() ? parent->CC()->id() : id; int id1(children[0]->id()); int id1bar = children[0]->CC() ? children[0]->CC()->id() : id1; int id2(children[1]->id()); int id2bar = children[1]->CC() ? children[1]->CC()->id() : id2; int imode(-1); unsigned int ix(0); cc=false; do { if(incoming_[ix]==id ) { if((id1 ==outgoingf_[ix]&&id2 ==outgoinga_[ix])|| (id2 ==outgoingf_[ix]&&id1 ==outgoinga_[ix])) imode=ix; } if(incoming_[ix]==idbar) { if((id1bar==outgoingf_[ix]&&id2bar==outgoinga_[ix])|| (id2bar==outgoingf_[ix]&&id1bar==outgoinga_[ix])) { imode=ix; cc=true; } } ++ix; } while(imode<0&&ix<incoming_.size()); return imode; } IBPtr VectorMeson2BaryonsDecayer::clone() const { return new_ptr(*this); } IBPtr VectorMeson2BaryonsDecayer::fullclone() const { return new_ptr(*this); } void VectorMeson2BaryonsDecayer::persistentOutput(PersistentOStream & os) const { os << gm_ << ge_ << phi_ << incoming_ << outgoingf_ << outgoinga_ << maxweight_; } void VectorMeson2BaryonsDecayer::persistentInput(PersistentIStream & is, int) { is >> gm_ >> ge_ >> phi_ >> incoming_ >> outgoingf_ >> outgoinga_ >> maxweight_; } DescribeClass<VectorMeson2BaryonsDecayer,DecayIntegrator> describeHerwigVectorMeson2BaryonsDecayer("Herwig::VectorMeson2BaryonsDecayer", "HwVMDecay.so"); void VectorMeson2BaryonsDecayer::Init() { static ClassDocumentation<VectorMeson2BaryonsDecayer> documentation ("The VectorMeson2BaryonsDecayer class is designed for " "the decay of vector mesons to baryons."); static ParVector<VectorMeson2BaryonsDecayer,int> interfaceIncoming ("Incoming", "The PDG code for the incoming particle", &VectorMeson2BaryonsDecayer::incoming_, 0, 0, 0, -10000000, 10000000, false, false, true); static ParVector<VectorMeson2BaryonsDecayer,int> interfaceOutcoming1 ("OutgoingBaryons", "The PDG code for the outgoing fermion", &VectorMeson2BaryonsDecayer::outgoingf_, 0, 0, 0, -10000000, 10000000, false, false, true); static ParVector<VectorMeson2BaryonsDecayer,int> interfaceOutcoming2 ("OutgoingAntiBaryons", "The PDG code for the second outgoing anti-fermion", &VectorMeson2BaryonsDecayer::outgoinga_, 0, 0, 0, -10000000, 10000000, false, false, true); static ParVector<VectorMeson2BaryonsDecayer,double> interfaceGM ("GM", "The value of the GM form factor", &VectorMeson2BaryonsDecayer::gm_, -1, 0., -1000., 1000., false, false, Interface::limited); static ParVector<VectorMeson2BaryonsDecayer,double> interfaceGE ("GE", "The value of the GE form factor", &VectorMeson2BaryonsDecayer::ge_, -1, 0., -1000., 1000., false, false, Interface::limited); static ParVector<VectorMeson2BaryonsDecayer,double> interfacePhi ("Phi", "The phase of the GE form factor", &VectorMeson2BaryonsDecayer::phi_, -1, 0., -Constants::pi, Constants::pi, false, false, Interface::limited); static ParVector<VectorMeson2BaryonsDecayer,double> interfaceMaxWeight ("MaxWeight", "The maximum weight for the decay mode", &VectorMeson2BaryonsDecayer::maxweight_, 0, 0, 0, -10000000, 10000000, false, false, true); } void VectorMeson2BaryonsDecayer:: constructSpinInfo(const Particle & part, ParticleVector decay) const { unsigned int iferm(0),ianti(1); if(outgoingf_[imode()]!=decay[iferm]->id()) swap(iferm,ianti); VectorWaveFunction::constructSpinInfo(vectors_,const_ptr_cast<tPPtr>(&part), incoming,true,false); // outgoing fermion if(decay[iferm]->dataPtr()->iSpin()==PDT::Spin1Half) SpinorBarWaveFunction:: constructSpinInfo(wavebar_,decay[iferm],outgoing,true); else RSSpinorBarWaveFunction:: constructSpinInfo(wave2bar_,decay[iferm],outgoing,true); // outgoing antifermion if(decay[ianti]->dataPtr()->iSpin()==PDT::Spin1Half) SpinorWaveFunction:: constructSpinInfo(wave_ ,decay[ianti],outgoing,true); else RSSpinorWaveFunction:: constructSpinInfo(wave2_,decay[ianti],outgoing,true); } double VectorMeson2BaryonsDecayer::me2(const int,const Particle & part, const tPDVector & outgoing, const vector<Lorentz5Momentum> & momenta, MEOption meopt) const { // initialze me if(!ME()) ME(new_ptr(TwoBodyDecayMatrixElement(PDT::Spin1,outgoing[0]->iSpin(),outgoing[0]->iSpin()))); // fermion and antifermion unsigned int iferm(0),ianti(1); if(outgoingf_[imode()]!=outgoing[iferm]->id()) swap(iferm,ianti); // initialization if(meopt==Initialize) { VectorWaveFunction::calculateWaveFunctions(vectors_,rho_, const_ptr_cast<tPPtr>(&part), incoming,false); } // spin 1/2 if(outgoing[0]->iSpin()==PDT::Spin1Half) { wave_.resize(2); wavebar_.resize(2); for(unsigned int ix=0;ix<2;++ix) { wavebar_[ix] = HelicityFunctions::dimensionedSpinorBar(-momenta[iferm],ix,Helicity::outgoing); wave_ [ix] = HelicityFunctions::dimensionedSpinor (-momenta[ianti],ix,Helicity::outgoing); } // coefficients Complex GM = gm_[imode()]; Complex GE = ge_[imode()]*exp(Complex(0.,phi_[imode()])); LorentzPolarizationVector c2 = -2.*outgoing[0]->mass()/(4.*sqr(outgoing[0]->mass())-sqr(part.mass()))* (GM-GE)*(momenta[iferm]-momenta[ianti]); // now compute the currents LorentzPolarizationVector temp; //double mesum(0.); for(unsigned ix=0;ix<2;++ix) { for(unsigned iy=0;iy<2;++iy) { LorentzPolarizationVector temp = (GM*wave_[ix].vectorCurrent(wavebar_[iy])+c2*wave_[ix].scalar(wavebar_[iy]))/part.mass(); for(unsigned int iz=0;iz<3;++iz) { if(iferm>ianti) (*ME())(iz,ix,iy)=vectors_[iz].dot(temp); else (*ME())(iz,iy,ix)=vectors_[iz].dot(temp); //mesum += norm(vectors_[iz].dot(temp)); } } } double me = ME()->contract(rho_).real(); // cerr << "testing decay " << part.PDGName() << " -> " << outgoing[0]->PDGName() << " " << outgoing[1]->PDGName() << "\n"; // cerr << "testing ME " << mesum/3. << " " << me << " " << 4./3.*(norm(GM)+2.*sqr(outgoing[0]->mass()/part.mass())*norm(GE)) << "\n"; // cerr << "testing gamma " << mesum/3./8./Constants::pi*sqrt(sqr(part.mass())-4.*sqr(outgoing[0]->mass()))/MeV << "\n"; // return the answer return me; } // spin 3/2 else if(outgoing[0]->iSpin()==PDT::Spin3Half) { wave2_.resize(4); wave2bar_.resize(4); wave_.resize(4); wavebar_.resize(4); RSSpinorBarWaveFunction swave(momenta[iferm],outgoing[iferm],Helicity::outgoing); RSSpinorWaveFunction awave(momenta[ianti],outgoing[ianti],Helicity::outgoing); LorentzPolarizationVector vtemp = part.momentum()/part.mass(); for(unsigned int ix=0;ix<4;++ix) { swave.reset(ix); awave.reset(ix); wave2bar_[ix] = swave.dimensionedWf(); wavebar_ [ix] = wave2bar_[ix].dot(vtemp); wave2_ [ix] = awave.dimensionedWf(); wave_ [ix] = wave2_[ix].dot(vtemp); } // coefficients Complex GM = gm_[imode()]; Complex GE = ge_[imode()]*exp(Complex(0.,phi_[imode()])); LorentzPolarizationVector c2 = -2.*outgoing[0]->mass()/(4.*sqr(outgoing[0]->mass())-sqr(part.mass()))* (GM-GE)*(momenta[iferm]-momenta[ianti]); // now compute the currents //double mesum(0.); for(unsigned ix=0;ix<4;++ix) { for(unsigned iy=0;iy<4;++iy) { // q(al)q(be) piece LorentzPolarizationVector temp2 = (GM*wave_[ix].vectorCurrent(wavebar_[iy])+c2*wave_[ix].scalar(wavebar_[iy]))* 2.*part.mass()/(4.*sqr(outgoing[0]->mass())-sqr(part.mass())); // g(al)g(be) * GM-GE piece LorentzPolarizationVector temp3 = wave2_[ix].generalScalar(wave2bar_[iy],1.,1.)*c2/part.mass(); // g(al)g(be) * gamma^mu LorentzPolarizationVector temp1(GM/part.mass()*(wave2bar_[iy](0,3)*wave2_[ix](0,0) + wave2bar_[iy](0,2)*wave2_[ix](0,1) - wave2bar_[iy](0,1)*wave2_[ix](0,2) - wave2bar_[iy](0,0)*wave2_[ix](0,3) + wave2bar_[iy](1,3)*wave2_[ix](1,0) + wave2bar_[iy](1,2)*wave2_[ix](1,1) - wave2bar_[iy](1,1)*wave2_[ix](1,2) - wave2bar_[iy](1,0)*wave2_[ix](1,3) + wave2bar_[iy](2,3)*wave2_[ix](2,0) + wave2bar_[iy](2,2)*wave2_[ix](2,1) - wave2bar_[iy](2,1)*wave2_[ix](2,2) - wave2bar_[iy](2,0)*wave2_[ix](2,3) - wave2bar_[iy](3,3)*wave2_[ix](3,0) - wave2bar_[iy](3,2)*wave2_[ix](3,1) + wave2bar_[iy](3,1)*wave2_[ix](3,2) + wave2bar_[iy](3,0)*wave2_[ix](3,3)), Complex(0,1)*GM/part.mass()*(wave2bar_[iy](0,3)*wave2_[ix](0,0) - wave2bar_[iy](0,2)*wave2_[ix](0,1) - wave2bar_[iy](0,1)*wave2_[ix](0,2) + wave2bar_[iy](0,0)*wave2_[ix](0,3) + wave2bar_[iy](1,3)*wave2_[ix](1,0) - wave2bar_[iy](1,2)*wave2_[ix](1,1) - wave2bar_[iy](1,1)*wave2_[ix](1,2) + wave2bar_[iy](1,0)*wave2_[ix](1,3) + wave2bar_[iy](2,3)*wave2_[ix](2,0) - wave2bar_[iy](2,2)*wave2_[ix](2,1) - wave2bar_[iy](2,1)*wave2_[ix](2,2) + wave2bar_[iy](2,0)*wave2_[ix](2,3) - wave2bar_[iy](3,3)*wave2_[ix](3,0) + wave2bar_[iy](3,2)*wave2_[ix](3,1) + wave2bar_[iy](3,1)*wave2_[ix](3,2) - wave2bar_[iy](3,0)*wave2_[ix](3,3)), GM/part.mass()*(wave2bar_[iy](0,2)*wave2_[ix](0,0) - wave2bar_[iy](0,3)*wave2_[ix](0,1) - wave2bar_[iy](0,0)*wave2_[ix](0,2) + wave2bar_[iy](0,1)*wave2_[ix](0,3) + wave2bar_[iy](1,2)*wave2_[ix](1,0) - wave2bar_[iy](1,3)*wave2_[ix](1,1) - wave2bar_[iy](1,0)*wave2_[ix](1,2) + wave2bar_[iy](1,1)*wave2_[ix](1,3) + wave2bar_[iy](2,2)*wave2_[ix](2,0) - wave2bar_[iy](2,3)*wave2_[ix](2,1) - wave2bar_[iy](2,0)*wave2_[ix](2,2) + wave2bar_[iy](2,1)*wave2_[ix](2,3) - wave2bar_[iy](3,2)*wave2_[ix](3,0) + wave2bar_[iy](3,3)*wave2_[ix](3,1) + wave2bar_[iy](3,0)*wave2_[ix](3,2) - wave2bar_[iy](3,1)*wave2_[ix](3,3)), GM/part.mass()*(-wave2bar_[iy](0,2)*wave2_[ix](0,0) - wave2bar_[iy](0,3)*wave2_[ix](0,1) - wave2bar_[iy](0,0)*wave2_[ix](0,2) - wave2bar_[iy](0,1)*wave2_[ix](0,3) - wave2bar_[iy](1,2)*wave2_[ix](1,0) - wave2bar_[iy](1,3)*wave2_[ix](1,1) - wave2bar_[iy](1,0)*wave2_[ix](1,2) - wave2bar_[iy](1,1)*wave2_[ix](1,3) - wave2bar_[iy](2,2)*wave2_[ix](2,0) - wave2bar_[iy](2,3)*wave2_[ix](2,1) - wave2bar_[iy](2,0)*wave2_[ix](2,2) - wave2bar_[iy](2,1)*wave2_[ix](2,3) + wave2bar_[iy](3,2)*wave2_[ix](3,0) + wave2bar_[iy](3,3)*wave2_[ix](3,1) + wave2bar_[iy](3,0)*wave2_[ix](3,2) + wave2bar_[iy](3,1)*wave2_[ix](3,3))); LorentzPolarizationVector temp = temp1+temp2+temp3; for(unsigned int iz=0;iz<3;++iz) { if(iferm>ianti) (*ME())(iz,ix,iy)=vectors_[iz].dot(temp); else (*ME())(iz,iy,ix)=vectors_[iz].dot(temp); //mesum += norm(vectors_[iz].dot(temp)); } } } double me = ME()->contract(rho_).real(); // cerr << "testing decay " << part.PDGName() << " -> " << outgoing[0]->PDGName() << " " << outgoing[1]->PDGName() << "\n"; // cerr << "testing ME " << mesum/3. << " " << me << " " << 1./3.*(40.*norm(GM)/9.+16.*sqr(outgoing[0]->mass()/part.mass())*norm(GE)) << "\n"; // return the answer return me; } else assert(false); } // output the setup information for the particle database void VectorMeson2BaryonsDecayer::dataBaseOutput(ofstream & output, bool header) const { if(header) output << "update decayers set parameters=\""; // parameters for the DecayIntegrator base class DecayIntegrator::dataBaseOutput(output,false); // the rest of the parameters for(unsigned int ix=0;ix<incoming_.size();++ix) { if(ix<initsize_) { output << "newdef " << name() << ":Incoming " << ix << " " << incoming_[ix] << "\n"; output << "newdef " << name() << ":OutgoingFermion " << ix << " " << outgoingf_[ix] << "\n"; output << "newdef " << name() << ":OutgoingAntiFermion " << ix << " " << outgoinga_[ix] << "\n"; output << "newdef " << name() << ":GM " << ix << " " << gm_[ix] << "\n"; output << "newdef " << name() << ":GE " << ix << " " << ge_[ix] << "\n"; output << "newdef " << name() << ":Phi " << ix << " " << phi_[ix] << "\n"; output << "newdef " << name() << ":MaxWeight " << ix << " " << maxweight_[ix] << "\n"; } else { output << "insert " << name() << ":Incoming " << ix << " " << incoming_[ix] << "\n"; output << "insert " << name() << ":OutgoingFermion " << ix << " " << outgoingf_[ix] << "\n"; output << "insert " << name() << ":OutgoingAntiFermion " << ix << " " << outgoinga_[ix] << "\n"; output << "insert " << name() << ":GM " << ix << " " << gm_[ix] << "\n"; output << "insert " << name() << ":GE " << ix << " " << ge_[ix] << "\n"; output << "insert " << name() << ":Phi " << ix << " " << phi_[ix] << "\n"; output << "insert " << name() << ":MaxWeight " << ix << " " << maxweight_[ix] << "\n"; } } if(header) output << "\n\" where BINARY ThePEGName=\"" << fullName() << "\";" << endl; }