diff --git a/Decay/HeavyMeson/HQETStrongDecayer.cc b/Decay/HeavyMeson/HQETStrongDecayer.cc --- a/Decay/HeavyMeson/HQETStrongDecayer.cc +++ b/Decay/HeavyMeson/HQETStrongDecayer.cc @@ -1,364 +1,350 @@ // -*- C++ -*- // // This is the implementation of the non-inlined, non-templated member // functions of the HQETStrongDecayer class. // #include "HQETStrongDecayer.h" #include "ThePEG/Interface/ClassDocumentation.h" #include "ThePEG/Interface/ParVector.h" #include "ThePEG/EventRecord/Particle.h" #include "ThePEG/Utilities/DescribeClass.h" #include "ThePEG/Persistency/PersistentOStream.h" #include "ThePEG/Persistency/PersistentIStream.h" #include "ThePEG/Helicity/WaveFunction/TensorWaveFunction.h" #include "ThePEG/Helicity/WaveFunction/VectorWaveFunction.h" #include "ThePEG/Helicity/WaveFunction/ScalarWaveFunction.h" #include "Herwig/Decay/TwoBodyDecayMatrixElement.h" #include "Herwig/Utilities/Kinematics.h" #include "ThePEG/Helicity/epsilon.h" #include "ThePEG/Helicity/HelicityFunctions.h" using namespace Herwig; HQETStrongDecayer::HQETStrongDecayer() : fPi_(130.2*MeV), g_(0.565), h_(0.565), deltaEta_(1./43.7), Lambda_(1.*GeV), incoming_ ({413,413,423,433, //D* decay modes [0-3], VtoSS 415,415,425,425,435,435, //D*_2 decay modes [4-9], TtoSS 435,435,415,415,425,425,435,435}), //D*_2 decay modes [10-17], TtoVS outgoingH_({421,411,421,431, 411,421,411,421,411,421, 413,423,413,423,413,423,413,423}), outgoingL_({211,111,111,111, 111,211,-211,111,311,321, 311,321,111,211,-211,111,311,321}), type_ ({1, 1, 1, -1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3}), maxWeight_({1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.}) {} void HQETStrongDecayer::doinit() { DecayIntegrator::doinit(); // check consistence of the parameters unsigned int isize=incoming_.size(); if(isize!=outgoingH_.size()||isize!=outgoingL_.size()|| isize!=maxWeight_.size()||isize!=type_ .size()) throw InitException() << "Inconsistent parameters in HQETStrongDecayer" << Exception::abortnow; // set up the integration channels PhaseSpaceModePtr mode; for(unsigned int ix=0;ixmaxWeight(); } } IBPtr HQETStrongDecayer::clone() const { return new_ptr(*this); } IBPtr HQETStrongDecayer::fullclone() const { return new_ptr(*this); } void HQETStrongDecayer::persistentOutput(PersistentOStream & os) const { os << ounit(fPi_,MeV) << g_ << h_ << deltaEta_ << ounit(Lambda_,GeV) << maxWeight_; } void HQETStrongDecayer::persistentInput(PersistentIStream & is, int) { is >> iunit(fPi_,MeV) >> g_ >> h_ >> deltaEta_ >> iunit(Lambda_,GeV) >> maxWeight_; } // The following static variable is needed for the type // description system in ThePEG. DescribeClass describeHerwigHQETStrongDecayer("Herwig::HQETStrongDecayer", "HwHMDecay.so"); void HQETStrongDecayer::Init() { static ClassDocumentation documentation ("The HQETStrongDecayer class performs the strong decays of excited heavy mesons using HQET results."); static Parameter interfacefPi ("fPi", "The pion decay constant", &HQETStrongDecayer::fPi_, MeV, 130.2*MeV, 100.0*MeV, 200.0*MeV, false, false, Interface::limited); static Parameter interfaceg ("g", "The coupling for 1- to 0- decays", &HQETStrongDecayer::g_, 0.565, 0.0, 1.0, false, false, Interface::limited); static Parameter interfaceh ("h", "The coupling for D*_2 and D*_2s decays", &HQETStrongDecayer::h_, 0.565, 0.0, 1.0, false, false, Interface::limited); static ParVector interfaceMaxWeight ("MaxWeight", "The maximum weight for the decay mode", &HQETStrongDecayer::maxWeight_, 0, 0, 0, 0., 100000., false, false, true); static Parameter interfaceDeltaEta ("DeltaEta", "The mixing parameter for eta-pi0 of isospin violating decays", &HQETStrongDecayer::deltaEta_, 1./43.7, 0.0, 1., false, false, Interface::limited); static Parameter interfacefLambda ("Lambda", "D*_2 and D*_2s strong decays momentum scale", &HQETStrongDecayer::Lambda_, GeV, 1.*GeV, .1*GeV, 2.*GeV, false, false, Interface::limited); } int HQETStrongDecayer::modeNumber(bool & cc,tcPDPtr parent, const tPDVector & children) const { if(children.size()!=2) return -1; int id(parent->id()); int idbar = parent->CC() ? parent->CC()->id() : id; int id1(children[0]->id()); int id1bar = children[0]->CC() ? children[0]->CC()->id() : id1; int id2(children[1]->id()); int id2bar = children[1]->CC() ? children[1]->CC()->id() : id2; int imode(-1); unsigned int ix(0); cc=false; do { if(id ==incoming_[ix]) { if((id1 ==outgoingH_[ix]&&id2 ==outgoingL_[ix])|| (id2 ==outgoingH_[ix]&&id1 ==outgoingL_[ix])) imode=ix; } if(idbar==incoming_[ix]) { if((id1bar==outgoingH_[ix]&&id2bar==outgoingL_[ix])|| (id2bar==outgoingH_[ix]&&id1bar==outgoingL_[ix])) { imode=ix; cc=true; } } ++ix; } while(ixiSpin()) { case PDT::Spin1: Helicity::VectorWaveFunction::constructSpinInfo(vecIn_,const_ptr_cast(&part), Helicity::incoming,true,false); break; case PDT::Spin2: Helicity::TensorWaveFunction::constructSpinInfo(tensorIn_,const_ptr_cast(&part), Helicity::incoming,true,false); break; default: assert(false); } // set up the spin information for the decay products for(unsigned int ix=0;ixdataPtr()->iSpin()) { case PDT::Spin1: Helicity::VectorWaveFunction::constructSpinInfo(vecOut_,decay[ix], Helicity::outgoing,true,false); break; case PDT::Spin0: Helicity::ScalarWaveFunction::constructSpinInfo(decay[ix],Helicity::outgoing,true); break; default: assert(false); } } } // matrix elememt for the process double HQETStrongDecayer::me2(const int, const Particle & part, const tPDVector & outgoing, const vector & momenta, MEOption meopt) const { if(!ME()) { if(abs(type_[imode()])==1) { ME(new_ptr(TwoBodyDecayMatrixElement(PDT::Spin1,PDT::Spin0,PDT::Spin0))); } if(abs(type_[imode()])==2) { ME(new_ptr(TwoBodyDecayMatrixElement(PDT::Spin2,PDT::Spin0,PDT::Spin0))); } if(abs(type_[imode()])==3) { ME(new_ptr(TwoBodyDecayMatrixElement(PDT::Spin2,PDT::Spin1,PDT::Spin0))); } } // stuff for incoming particle if(meopt==Initialize) { if(abs(type_[imode()])==1) { rho_ = RhoDMatrix(PDT::Spin1); Helicity::VectorWaveFunction::calculateWaveFunctions(vecIn_,rho_,const_ptr_cast(&part), Helicity::incoming,false); } else if(abs(type_[imode()])==2 || abs(type_[imode()])==3) { rho_ = RhoDMatrix(PDT::Spin2); Helicity::TensorWaveFunction::calculateWaveFunctions(tensorIn_,rho_,const_ptr_cast(&part), Helicity::incoming,false); } else { cerr << part << "\n"; cerr << "testing " << imode() << " " << type_[imode()] << "\n"; assert(false); } } double output(0.); // calculate the matrix element InvEnergy fact; Energy pcm = Kinematics::pstarTwoBodyDecay(part.mass(),momenta[0].mass(), momenta[1].mass()); //test subject double test(0.), ratio(0.); // HeavyVectorMeson to PScalarMeson + PScalarMeson if(abs(type_[imode()])==1) { fact = -2.*g_/fPi_*sqrt(momenta[0].mass()/part.mass()); if(abs(outgoing[1]->id())==111) { fact *= type_[imode()]>0 ? 0.5 : 0.125*deltaEta_*sqrt(0.5) ; } for(unsigned int ix=0;ix<3;++ix) { (*ME())(ix,0,0) = fact*(vecIn_[ix]*momenta[1]); } // analytic test of the answer test = 4.*sqr(g_)*momenta[0].mass()*sqr(pcm)/3./sqr(fPi_)/part.mass(); if(abs(outgoing[1]->id())==111) { test *= type_[imode()]>0 ? 0.5 : 0.5*deltaEta_*sqrt(0.5) ; } } // HeavyTensorMeson to PScalarMeson + PScalarMeson else if(abs(type_[imode()])==2) { fact = -2.*h_/fPi_*sqrt(momenta[0].mass()/part.mass()); - if(abs(outgoing[1]->id())==111) { - fact *= sqrt(0.5); // ?? - } for(unsigned int ix=0;ix<5;++ix) { (*ME())(ix,0,0) = (fact/Lambda_)*((tensorIn_[ix]*momenta[1])*momenta[0]); } // analytic test of the answer - test = 8.*sqr(h_)*momenta[0].mass()*sqr(sqr(pcm))/10./sqr(fPi_)/sqr(Lambda_)/part.mass(); - if(abs(outgoing[1]->id())==111) { - test *= sqrt(0.5); - } + test = 8.*sqr(h_)*momenta[0].mass()*sqr(sqr(pcm))/15./sqr(fPi_)/sqr(Lambda_)/part.mass(); } // HeavyTensorMeson to VectorMeson + PScalarMeson else if(abs(type_[imode()])==3) { //get the polarization vectors - vecOut_.resize(3); vecOut_={ - HelicityFunctions::polarizationVector(momenta[0],0,Helicity::outgoing), - HelicityFunctions::polarizationVector(momenta[0],1,Helicity::outgoing), - HelicityFunctions::polarizationVector(momenta[0],2,Helicity::outgoing)}; + HelicityFunctions::polarizationVector(-momenta[0],0,Helicity::outgoing), + HelicityFunctions::polarizationVector(-momenta[0],1,Helicity::outgoing), + HelicityFunctions::polarizationVector(-momenta[0],2,Helicity::outgoing)}; fact = -2.*h_/fPi_*sqrt(momenta[0].mass()/part.mass()); - if(abs(outgoing[1]->id())==111) { - fact *= sqrt(0.5); // ?? - } for(unsigned int ix=0;ix<5;++ix) { for(unsigned int iy=0;iy<3;++iy) { if(iy==1) (*ME())(ix,iy,0)=0.; else{ LorentzVector > vtemp = - (fact/sqr(Lambda_))*epsilon(momenta[0],vecOut_[iy],momenta[1]); ///!!! + (fact/Lambda_/part.mass())*epsilon(momenta[0],vecOut_[iy],momenta[1]); (*ME())(ix,iy,0) = (momenta[1]*tensorIn_[ix]).dot(vtemp); } } } // analytic test of the answer - test = 4.*sqr(h_)*momenta[0].mass()*sqr(sqr(pcm))/5./sqr(fPi_)/sqr(Lambda_)/part.mass(); ///!!! - if(abs(outgoing[1]->id())==111) { - test *= sqrt(0.5); - } + test = 4.*sqr(h_)*momenta[0].mass()*sqr(sqr(pcm))/5./sqr(fPi_)/sqr(Lambda_)/part.mass(); } else { assert(false); } output = ME()->contract(rho_).real(); //testing ratio = (output-test)/(output+test); generator()->log() << "testing matrix element for " << part.PDGName() << " -> " - << outgoing[0]->PDGName() << " " << outgoing[1]->PDGName() << " " - << output << " " << test << " " << ratio << endl; - + << outgoing[0]->PDGName() << " " << outgoing[1]->PDGName() << " " + << output << " " << test << " " << ratio << endl; // return the answer return output; } bool HQETStrongDecayer::twoBodyMEcode(const DecayMode & dm,int & mecode, double & coupling) const { // int imode(-1); // int id(dm.parent()->id()); // int idbar = dm.parent()->CC() ? dm.parent()->CC()->id() : id; // ParticleMSet::const_iterator pit(dm.products().begin()); // int id1((**pit).id()); // int id1bar = (**pit).CC() ? (**pit).CC()->id() : id1; // ++pit; // int id2((**pit).id()); // int id2bar = (**pit).CC() ? (**pit).CC()->id() : id2; // unsigned int ix(0); bool order(false); // do { // if(id ==incoming_[ix]) { // if(id1==outgoingH_[ix]&&id2==outgoingL_[ix]) { // imode=ix; // order=true; // } // if(id2==outgoingH_[ix]&&id1==outgoingL_[ix]) { // imode=ix; // order=false; // } // } // if(idbar==incoming_[ix]&&imode<0) { // if(id1bar==outgoingH_[ix]&&id2bar==outgoingL_[ix]) { // imode=ix; // order=true; // } // if(id2bar==outgoingH_[ix]&&id1bar==outgoingL_[ix]) { // imode=ix; // order=false; // } // } // ++ix; // } // while(ixmass(); // mecode=7; // return order; } void HQETStrongDecayer::dataBaseOutput(ofstream & output, bool header) const { if(header) output << "update decayers set parameters=\""; // parameters for the DecayIntegrator base class DecayIntegrator::dataBaseOutput(output,false); // the rest of the parameters // couplings output << "newdef " << name() << ":fPi " << fPi_/MeV << "\n"; output << "newdef " << name() << ":g " << g_ << "\n"; if(header) output << "\n\" where BINARY ThePEGName=\"" << fullName() << "\";" << endl; for(unsigned int ix=0;ix