diff --git a/Hadronization/HadronSpectrum.cc b/Hadronization/HadronSpectrum.cc
--- a/Hadronization/HadronSpectrum.cc
+++ b/Hadronization/HadronSpectrum.cc
@@ -1,609 +1,609 @@
 // -*- C++ -*-
 //
 // This is the implementation of the non-inlined, non-templated member
 // functions of the HadronSpectrum class.
 //
 
 #include "HadronSpectrum.h"
 #include "ClusterHadronizationHandler.h"
 #include "ThePEG/Interface/ClassDocumentation.h"
 #include "ThePEG/EventRecord/Particle.h"
 #include "ThePEG/Repository/UseRandom.h"
 #include "ThePEG/Repository/EventGenerator.h"
 #include "ThePEG/Utilities/DescribeClass.h"
 #include <ThePEG/Repository/CurrentGenerator.h>
 #include "Herwig/Utilities/Kinematics.h"
 
 #include "ThePEG/Interface/RefVector.h"
 
 #include "ThePEG/Persistency/PersistentOStream.h"
 #include "ThePEG/Persistency/PersistentIStream.h"
 
 using namespace Herwig;
 
 namespace {
   // debug helper
   void dumpTable(const HadronSpectrum::HadronTable & tbl) {
     typedef HadronSpectrum::HadronTable::const_iterator TableIter;
     for (TableIter it = tbl.begin(); it != tbl.end(); ++it) {
       cerr << it->first.first << ' ' 
   	   << it->first.second << '\n';
       for (HadronSpectrum::KupcoData::const_iterator jt = it->second.begin();
   	   jt != it->second.end(); ++jt) {
   	cerr << '\t' << *jt << '\n';
       }
     }
   }
 }
 
 
 HadronSpectrum::HadronSpectrum() 
   : Interfaced(),
     belowThreshold_(0),
     _repwt(Lmax,vector<vector<double> >(Jmax,vector<double>(Nmax))) {}
 
 HadronSpectrum::~HadronSpectrum() {}
 
 void HadronSpectrum::doinit() {
   Interfaced::doinit();
   // construct the hadron tables
   constructHadronTable();
   // lightest members (hadrons)
   for(const PDPtr & p1 : partons()) {
     for(const PDPtr & p2 : partons()) {
       tcPDPair lp = lightestHadronPair(p1,p2);
       if(lp.first && lp.second)
 	lightestHadrons_[make_pair(p1->id(),p2->id())] = lp;
     }
   }
   // for debugging
-  if(Debug::level >= 10 ) 
+  if (Debug::level >= 10) 
     dumpTable(table());
 }
 
 // If needed, insert default implementations of virtual function defined
 // in the InterfacedBase class here (using ThePEG-interfaced-impl in Emacs).
 
 
 void HadronSpectrum::persistentOutput(PersistentOStream & os) const {
   os << _table << _partons << _forbidden
      << belowThreshold_ << _repwt << _pwt << lightestHadrons_;
 }
 
 void HadronSpectrum::persistentInput(PersistentIStream & is, int) {
   is >> _table >> _partons >> _forbidden
      >> belowThreshold_ >> _repwt >> _pwt >> lightestHadrons_;
 }
 
 
 // *** Attention *** The following static variable is needed for the type
 // description system in ThePEG. Please check that the template arguments
 // are correct (the class and its base class), and that the constructor
 // arguments are correct (the class name and the name of the dynamically
 // loadable library where the class implementation can be found).
 DescribeAbstractClass<HadronSpectrum,Interfaced>
   describeHerwigHadronSpectrum("Herwig::HadronSpectrum", "Herwig.so");
 
 void HadronSpectrum::Init() {
 
   static ClassDocumentation<HadronSpectrum> documentation
     ("There is no documentation for the HadronSpectrum class");
 
   static RefVector<HadronSpectrum,ParticleData> interfacePartons
     ("Partons",
      "The partons which are to be considered as the consistuents of the hadrons.",
      &HadronSpectrum::_partons, -1, false, false, true, false, false);
 
   static RefVector<HadronSpectrum,ParticleData> interfaceForbidden
     ("Forbidden",
      "The PDG codes of the particles which cannot be produced in the hadronization.",
      &HadronSpectrum::_forbidden, -1, false, false, true, false, false);
 
 }
 
 void HadronSpectrum::insertToHadronTable(tPDPtr &particle, int flav1, int flav2) {
   // inserting a new Hadron in the hadron table.
   long pid  = particle->id();
   int pspin = particle->iSpin();
   HadronInfo a(pid, particle,specialWeight(pid),particle->mass());
   // set the weight to the number of spin states
   a.overallWeight = pspin*a.swtef;
   // mesons
   if(pspin%2==1)     insertMeson(a,flav1,flav2);
   // spin-1/2 baryons
   else if(pspin==2) insertOneHalf(a,flav1,flav2);
   // spin -3/2 baryons
   else if(pspin==4) insertThreeHalf(a,flav1,flav2);
   // all other cases
   else {
     assert(false);
   }
 }
 
 void HadronSpectrum::insertOneHalf(HadronInfo a, int flav1, int flav2) {
   assert(DiquarkMatcher::Check(flav1));
   long iq1 = flav1/1000;
   long iq2 = (flav1/100)%10;
   if(iq1!=iq2 && flav1%10==3) flav1-=2;
   if(iq1==iq2) {
     if(iq1==flav2) {
       a.overallWeight *= 1.5;
       _table[make_pair(flav1,flav2)].insert(a);
       _table[make_pair(flav2,flav1)].insert(a);
     }
     else {
       _table[make_pair(flav1,flav2)].insert(a);
       _table[make_pair(flav2,flav1)].insert(a);
       long f3 = makeDiquarkID(iq1,flav2,1);
       _table[make_pair(iq1,f3 )].insert(a);
       _table[make_pair(f3 ,iq1)].insert(a);
     }
   }
   else if(iq1==flav2) {
     // ud1 u type
     _table[make_pair(flav1,flav2)].insert(a);
     _table[make_pair(flav2,flav1)].insert(a);
     // and uu1 d type
     long f3 = makeDiquarkID(iq1,iq1,3);
     a.overallWeight *= a.wt;
     _table[make_pair(f3 ,iq2)].insert(a);
     _table[make_pair(iq2, f3)].insert(a);
   }
   else if(iq2==flav2) assert(false);
   else {
     _table[make_pair(flav1,flav2)].insert(a);
     _table[make_pair(flav2,flav1)].insert(a);
     long f3 = makeDiquarkID(iq1,flav2,1);
     _table[make_pair(iq2,f3)].insert(a);
     _table[make_pair(f3,iq2)].insert(a);
     // 3rd perm
     f3 = makeDiquarkID(iq2,flav2,1);
     _table[make_pair(iq1,f3)].insert(a);
     _table[make_pair(f3,iq1)].insert(a);
   }
 }
 
 void HadronSpectrum::insertThreeHalf(HadronInfo a, int flav1, int flav2) {
   assert(DiquarkMatcher::Check(flav1));
   long iq1 = flav1/1000;
   long iq2 = (flav1/100)%10;
   if(iq1!=iq2 && flav1%10==3) flav1-=2;
   if(iq1==iq2) {
     if(iq1==flav2) {
       a.overallWeight *= 1.5;
       _table[make_pair(flav1,flav2)].insert(a);
       _table[make_pair(flav2,flav1)].insert(a);
     }
     else {
       _table[make_pair(flav1,flav2)].insert(a);
       _table[make_pair(flav2,flav1)].insert(a);
       long f3 = makeDiquarkID(iq1,flav2,1);
       _table[make_pair(iq1,f3 )].insert(a);
       _table[make_pair(f3 ,iq1)].insert(a);
     }
   }
   else if(iq1==flav2) {
     // ud1 u type
     _table[make_pair(flav1,flav2)].insert(a);
     _table[make_pair(flav2,flav1)].insert(a);
     // and uu1 d type
     long f3 = makeDiquarkID(iq1,iq1,3);
     a.overallWeight *= a.wt;
     _table[make_pair(f3 ,iq2)].insert(a);
     _table[make_pair(iq2, f3)].insert(a);
   }
   else {
     _table[make_pair(flav1,flav2)].insert(a);
     _table[make_pair(flav2,flav1)].insert(a);
     long f3 = makeDiquarkID(iq1,flav2,1);
     _table[make_pair(iq2,f3)].insert(a);
     _table[make_pair(f3,iq2)].insert(a);
     // 3rd perm
     f3 = makeDiquarkID(iq2,flav2,1);
     _table[make_pair(iq1,f3)].insert(a);
     _table[make_pair(f3,iq1)].insert(a);
   }
 }
 
 
 tcPDPtr HadronSpectrum::chooseSingleHadron(tcPDPtr par1, tcPDPtr par2,
 							Energy mass) const {
   Energy threshold = hadronPairThreshold(par1,par2);
   // only do one hadron decay if mass less than the threshold
   if(mass>=threshold) return tcPDPtr();
 
   // select the hadron
   tcPDPtr hadron;
   // old option pick the lightest hadron
   if(belowThreshold_ == 0) {
     hadron= lightestHadron(par1,par2);
   }
   // new option select from those available
   else if(belowThreshold_ == 1) {
     vector<pair<tcPDPtr,double> > hadrons = 
       hadronsBelowThreshold(threshold,par1,par2);
     if(hadrons.size()==1) {
       hadron = hadrons[0].first;
     }
     else if(hadrons.empty()) {
       hadron= lightestHadron(par1,par2);
     }
     else {
       double totalWeight=0.;
       for(unsigned int ix=0;ix<hadrons.size();++ix) {
 	totalWeight += hadrons[ix].second;
       }
       totalWeight *= UseRandom::rnd();
       for(unsigned int ix=0;ix<hadrons.size();++ix) {
 	if(totalWeight<=hadrons[ix].second) {
 	  hadron = hadrons[ix].first;
 	  break;
 	}
 	else
 	  totalWeight -= hadrons[ix].second;
       }
       assert(hadron);
     }
   }
   else
     assert(false);
   return hadron;
 }
 
 tcPDPair HadronSpectrum::chooseHadronPair(const Energy cluMass,
 					  tcPDPtr par1, tcPDPtr par2) const {
   useMe();
   // if either of the input partons is a diquark don't allow diquarks to be
   // produced
   bool diquark0 = !(DiquarkMatcher::Check(par1->id()) || DiquarkMatcher::Check(par2->id()));
   bool diquark1 = diquark0;
   bool quark = true;
   // decide is baryon or meson production
   if(diquark0) std::tie(quark,diquark0,diquark1) = selectBaryon(cluMass,par1,par2);
   // weights for the different possibilities
   Energy weight, wgtsum(ZERO);
   // loop over all hadron pairs with the allowed flavours
   static vector<Kupco> hadrons;
   hadrons.clear();
   for(unsigned int ix=0;ix<partons().size();++ix) {
     tcPDPtr quarktopick  = partons()[ix];
     if(!quark && std::find(hadronizingQuarks().begin(), hadronizingQuarks().end(),
         abs(quarktopick->id())) != hadronizingQuarks().end()) continue;
     if(DiquarkMatcher::Check(quarktopick->id()) &&
        ((!diquark0 && quarktopick->iSpin()==1) ||
 	(!diquark1 && quarktopick->iSpin()==3))) continue;
     HadronTable::const_iterator
       tit1 = table().find(make_pair(abs(par1->id()),quarktopick->id()));
     HadronTable::const_iterator
       tit2 = table().find(make_pair(quarktopick->id(),abs(par2->id())));
     // If not in table skip
     if(tit1 == table().end()||tit2==table().end()) continue;
     // tables empty skip
     const KupcoData & T1 = tit1->second;
     const KupcoData & T2 = tit2->second;
     if(T1.empty()||T2.empty()) continue;
     // if too massive skip
     if(cluMass <= T1.begin()->mass +
                   T2.begin()->mass) continue;
     // quark weight
     double quarkWeight =  pwt(quarktopick->id());
     quarkWeight = specialQuarkWeight(quarkWeight,quarktopick->id(),
             cluMass,par1,par2);
     // loop over the hadrons
     KupcoData::const_iterator H1,H2;
     for(H1 = T1.begin();H1 != T1.end(); ++H1) {
       for(H2 = T2.begin();H2 != T2.end(); ++H2) {
  	// break if cluster too light
  	if(cluMass < H1->mass + H2->mass) break;
 	weight = quarkWeight * H1->overallWeight * H2->overallWeight *
 	  Kinematics::pstarTwoBodyDecay(cluMass, H1->mass, H2->mass);
 	int signQ = 0;
 	assert (par1 && quarktopick);
 	assert (par2);
 
 	assert(quarktopick->CC());
 
 	if(canBeHadron(par1, quarktopick->CC())
 	   && canBeHadron(quarktopick, par2))
 	   signQ = +1;
 	else if(canBeHadron(par1, quarktopick)
 		&& canBeHadron(quarktopick->CC(), par2))
 	   signQ = -1;
 	else {
 	  cerr << "Could not make sign for" << par1->id()<< " " << quarktopick->id()
 	       << " " << par2->id() << "\n";
 	  assert(false);
 	}
 
 	if (signQ  == -1)
 	  quarktopick = quarktopick->CC();
 	// construct the object with the info
 	Kupco a(quarktopick, H1->ptrData, H2->ptrData, weight);
 	hadrons.push_back(a);
 	wgtsum += weight;
       }
     }
   }
   if (hadrons.empty())
     return make_pair(tcPDPtr(),tcPDPtr());
   // select the hadron
   wgtsum *= UseRandom::rnd();
   unsigned int ix=0;
   do {
     wgtsum-= hadrons[ix].weight;
     ++ix;
   }
   while(wgtsum > ZERO && ix < hadrons.size());
   if(ix == hadrons.size() && wgtsum > ZERO)
       return make_pair(tcPDPtr(),tcPDPtr());
   --ix;
   assert(hadrons[ix].idQ);
   int signHad1 = signHadron(par1, hadrons[ix].idQ->CC(), hadrons[ix].hadron1);
   int signHad2 = signHadron(par2, hadrons[ix].idQ, hadrons[ix].hadron2);
   assert( signHad1 != 0 && signHad2 != 0 );
   return make_pair
     ( signHad1 > 0 ? hadrons[ix].hadron1 : tcPDPtr(hadrons[ix].hadron1->CC()),
       signHad2 > 0 ? hadrons[ix].hadron2 : tcPDPtr(hadrons[ix].hadron2->CC()));
 }
 
 std::tuple<bool,bool,bool> HadronSpectrum::selectBaryon(const Energy, tcPDPtr, tcPDPtr )  const {
   assert(false);
 }
 
 tcPDPair HadronSpectrum::lightestHadronPair(tcPDPtr ptr1, tcPDPtr ptr2) const {
   Energy currentSum = Constants::MaxEnergy;
   tcPDPair output;
   for(unsigned int ix=0; ix<partons().size(); ++ix) {
     HadronTable::const_iterator
       tit1=table().find(make_pair(abs(ptr1->id()),partons()[ix]->id())),
       tit2=table().find(make_pair(partons()[ix]->id(),abs(ptr2->id())));
     if( tit1==table().end() || tit2==table().end()) continue;
     if(tit1->second.empty()||tit2->second.empty()) continue;
     Energy s = tit1->second.begin()->mass + tit2->second.begin()->mass;
     if(currentSum > s) {
       currentSum = s;
       output.first  = tit1->second.begin()->ptrData;
       output.second = tit2->second.begin()->ptrData;
     }
   }
   return output;
 }
 
 tcPDPtr HadronSpectrum::lightestHadron(tcPDPtr ptr1, tcPDPtr ptr2) const {
   assert(ptr1 && ptr2);
   // find entry in the table
   pair<long,long> ids = make_pair(abs(ptr1->id()),abs(ptr2->id()));
   HadronTable::const_iterator tit=_table.find(ids);
   // throw exception if flavours wrong
   if (tit==_table.end()) 
     throw Exception() << "Could not find " 
 		      << ids.first << ' ' << ids.second 
 		      << " in _table. "
 		      << "In HadronSpectrum::lightestHadron()"
 		      << Exception::eventerror;
   if(tit->second.empty())
     throw Exception() << "HadronSpectrum::lightestHadron "
 		      << "could not find any hadrons containing " 
 		      << ptr1->id() << ' ' << ptr2->id() << '\n'
 		      << tit->first.first << ' ' 
 		      << tit->first.second << Exception::eventerror;
   // find the lightest hadron
   int sign = signHadron(ptr1,ptr2,tit->second.begin()->ptrData);
   tcPDPtr candidate = sign > 0 ? 
     tit->second.begin()->ptrData : tit->second.begin()->ptrData->CC();
   // \todo 20 GeV limit is temporary fudge to let SM particles go through.
   // \todo Use isExotic instead?
   if (candidate->mass() > 20*GeV 
       && candidate->mass() < ptr1->constituentMass() + ptr2->constituentMass()) {
     generator()->log() << "HadronSpectrum::lightestHadron: "
 		       << "chosen candidate " << candidate->PDGName() 
 		       << " is lighter than its constituents "
 		       << ptr1->PDGName() << ", " << ptr2->PDGName() << '\n'
 		       << candidate->mass()/GeV << " < " << ptr1->constituentMass()/GeV
 		       << " + " << ptr2->constituentMass()/GeV << '\n'
 		       << "Check your particle data tables.\n";
     assert(false);
   }
   return candidate;
 }
 
 vector<pair<tcPDPtr,double> > 
 HadronSpectrum::hadronsBelowThreshold(Energy threshold, tcPDPtr ptr1,
 				      tcPDPtr ptr2) const {
   assert(ptr1 && ptr2);
   // find entry in the table
   pair<long,long> ids = make_pair(abs(ptr1->id()),abs(ptr2->id()));
   HadronTable::const_iterator tit=_table.find(ids);
   // throw exception if flavours wrong
   if (tit==_table.end()) 
     throw Exception() << "Could not find " 
 		      << ids.first << ' ' << ids.second 
 		      << " in _table. "
 		      << "In HadronSpectrum::hadronsBelowThreshold()"
 		      << Exception::eventerror;
   if(tit->second.empty())
     throw Exception() << "HadronSpectrum::hadronsBelowThreshold() "
 		      << "could not find any hadrons containing " 
 		      << ptr1->id() << ' ' << ptr2->id() << '\n'
 		      << tit->first.first << ' ' 
 		      << tit->first.second << Exception::eventerror;
   vector<pair<tcPDPtr,double> > candidates;
   KupcoData::const_iterator hit = tit->second.begin();
   // find the hadrons
   while(hit!=tit->second.end()&&hit->mass<threshold) {
     // find the hadron
     int sign = signHadron(ptr1,ptr2,hit->ptrData);
     tcPDPtr candidate = sign > 0 ? hit->ptrData : hit->ptrData->CC();
     // \todo 20 GeV limit is temporary fudge to let SM particles go through.
     // \todo Use isExotic instead?
     if (candidate->mass() > 20*GeV 
 	&& candidate->mass() < ptr1->constituentMass() + ptr2->constituentMass()) {
       generator()->log() << "HadronSpectrum::hadronsBelowTheshold: "
 			 << "chosen candidate " << candidate->PDGName() 
 			 << " is lighter than its constituents "
 			 << ptr1->PDGName() << ", " << ptr2->PDGName() << '\n'
 			 << candidate->mass()/GeV << " < " << ptr1->constituentMass()/GeV
 			 << " + " << ptr2->constituentMass()/GeV << '\n'
 			 << "Check your particle data tables.\n";
       assert(false);
     } 
     candidates.push_back(make_pair(candidate,hit->overallWeight));
     ++hit;
   }
   return candidates;
 }
 
 Energy HadronSpectrum::massLightestBaryonPair(tcPDPtr ptr1, tcPDPtr ptr2) const {
   // Make sure that we don't have any diquarks as input, return arbitrarily
   // large value if we do
   Energy currentSum = Constants::MaxEnergy; 
   for(unsigned int ix=0; ix<_partons.size(); ++ix) {
     if(!DiquarkMatcher::Check(_partons[ix]->id())) continue;
     HadronTable::const_iterator 
       tit1=_table.find(make_pair(abs(ptr1->id()),_partons[ix]->id())),
       tit2=_table.find(make_pair(_partons[ix]->id(),abs(ptr2->id())));
     if( tit1==_table.end() || tit2==_table.end()) continue;
     if(tit1->second.empty()||tit2->second.empty()) continue;
     Energy s = tit1->second.begin()->mass + tit2->second.begin()->mass;
     if(currentSum > s) currentSum = s;
   }
   return currentSum;
 }
 
 double HadronSpectrum::mesonWeight(long id) const {
   // Total angular momentum
   int j  = ((id % 10) - 1) / 2;
   // related to Orbital angular momentum l
   int nl = (id/10000 )%10;
   int l  = -999;
   int n  = (id/100000)%10;  // Radial excitation
   if(j == 0) l = nl;
   else if(nl == 0) l = j - 1;
   else if(nl == 1  || nl == 2) l = j;
   else if(nl == 3) l = j + 1;
   // Angular or Radial excited meson
   if((l||j||n) && l>=0  &&  l<Lmax  &&  j<Jmax  &&  n<Nmax) {
     return sqr(_repwt[l][j][n]);
   }
   // rest is not excited or
   // has spin >= 5/2 (ispin >= 6), haven't got those
   else
     return 1.0;
 }
 
 int HadronSpectrum::signHadron(tcPDPtr idQ1, tcPDPtr idQ2, 
 			       tcPDPtr hadron) const {
   // This method receives in input three PDG ids, whose the
   // first two have proper signs (corresponding to particles, id > 0, 
   // or antiparticles, id < 0 ), whereas the third one must
   // be always positive (particle not antiparticle),
   // corresponding to:
   //  --- quark-antiquark, or antiquark-quark, or
   //      quark-diquark, or diquark-quark, or
   //      antiquark-antidiquark, or antidiquark-antiquark
   //      for the first two input (idQ1, idQ2);
   //  --- meson or baryon for the third input (idHad): 
   // The method returns:
   //  --- + 1  if the two partons (idQ1, idQ2) are exactly
   //           the constituents for the hadron idHad;
   //  --- - 1  if the two partons (idQ1, idQ2) are exactly
   //           the constituents for the anti-hadron -idHad;
   //  --- + 0  otherwise.
   // The method it is therefore useful to decide the
   // sign of the id of the produced hadron as appeared 
   // in the vector _vecHad (where only hadron idHad > 0 are present)  
   // given the two constituent partons.
   int sign = 0;
   long idHad = hadron->id();
   assert(idHad > 0);
   int chargeIn  = idQ1->iCharge() + idQ2->iCharge();
   int chargeOut = hadron->iCharge();
   // same charge
   if(     chargeIn ==  chargeOut && chargeIn  !=0 ) sign = +1;
   else if(chargeIn == -chargeOut && chargeIn  !=0 ) sign = -1;
   else if(chargeIn == 0          && chargeOut == 0 ) {  
     // In the case of same null charge, there are four cases:
     //  i) K0-like mesons, B0-like mesons, Bs-like mesons
     //     the PDG convention is to consider them "antiparticle" (idHad < 0) 
     //     if the "dominant" (heavier) flavour (respectively, s, b)
     //     is a quark (idQ > 0): for instance, B0s = (b, sbar) has id < 0
     //     Remember that there is an important exception for K0L (id=130) and
     //     K0S (id=310): they don't have antiparticles, therefore idHad > 0
     //     always. We use below the fact that K0L and K0S are the unique
     //     hadrons having 0 the first (less significant) digit of their id.
     //  2) D0-like mesons: the PDG convention is to consider them "particle"
     //     (idHad > 0) if the charm flavour is carried by a c: (c,ubar) has id>0
     //  3) the remaining mesons should not have antiparticle, therefore their
     //     sign is always positive.
     //  4) for baryons, that is when one of idQ1 and idQ2 is a (anti-) quark and 
     //     the other one is a (anti-) diquark the sign is negative when both
     //     constituents are "anti", that is both with id < 0; positive otherwise.
     // meson
     if(std::find(hadronizingQuarks().begin(), hadronizingQuarks().end(),
                  abs(idQ1->id())) != hadronizingQuarks().end() &&
        std::find(hadronizingQuarks().begin(), hadronizingQuarks().end(),
                  abs(idQ2->id())) != hadronizingQuarks().end())
     {
       int idQa = abs(idQ1->id());
       int idQb = abs(idQ2->id()); 
       int dominant = idQ2->id();
 
       if(idQa > idQb) {
 	swap(idQa,idQb);
 	dominant = idQ1->id();
       }
 
       if((idQa==ParticleID::d && idQb==ParticleID::s) ||
 	 (idQa==ParticleID::d && idQb==ParticleID::b) ||
 	 (idQa==ParticleID::s && idQb==ParticleID::b)) { 
 	// idHad%10 is zero for K0L,K0S
 	if (dominant < 0 || idHad%10 == 0) sign = +1;
 	else if(dominant > 0)              sign = -1;
       } 
       else if((idQa==ParticleID::u && idQb==ParticleID::c) ||
 	      (idQa==ParticleID::u && idQb==ParticleID::t) ||
 	      (idQa==ParticleID::c && idQb==ParticleID::t)) {
 	if     (dominant > 0) sign = +1;
 	else if(dominant < 0) sign = -1;
       } 
       else if(idQa==idQb) sign = +1;
       // sets sign for Susy particles
       else sign = (dominant > 0) ? +1 : -1;
     }
     // baryon
     else if(DiquarkMatcher::Check(idQ1->id()) || DiquarkMatcher::Check(idQ2->id())) {
       if     (idQ1->id() > 0 && idQ2->id() > 0) sign = +1;
       else if(idQ1->id() < 0 && idQ2->id() < 0) sign = -1;
     }
   }
   if (sign == 0) {
     cerr << "Could not work out sign for " 
 	 << idQ1->PDGName() << ' ' 
 	 << idQ2->PDGName() << " => " 
 	 << hadron->PDGName() << '\n';
     assert(false);
   }
   return sign;
 }
 /*
 PDPtr HadronSpectrum::makeDiquark(tcPDPtr par1, tcPDPtr par2) const {
     long id1 = par1->id();
     long id2 = par2->id();
     long pspin = id1==id2 ? 3 : 1;
     long idnew = makeDiquarkID(id1,id2, pspin);
     return getParticleData(idnew);
 }
 */
 bool HadronSpectrum::canBeMeson(tcPDPtr par1,tcPDPtr par2) const {
   assert(par1 && par2);
   long id1 = par1->id();
   long id2 = par2->id();
   // a Meson must not have any diquarks
   if(DiquarkMatcher::Check(id1) || DiquarkMatcher::Check(id2)) return false;
   return (std::find(hadronizingQuarks().begin(), hadronizingQuarks().end(),
                     abs(id1)) != hadronizingQuarks().end() &&
           std::find(hadronizingQuarks().begin(), hadronizingQuarks().end(),
                     abs(id2)) != hadronizingQuarks().end() &&
           id1*id2 < 0);
 }
   
diff --git a/Hadronization/StandardModelHadronSpectrum.cc b/Hadronization/StandardModelHadronSpectrum.cc
--- a/Hadronization/StandardModelHadronSpectrum.cc
+++ b/Hadronization/StandardModelHadronSpectrum.cc
@@ -1,696 +1,695 @@
 // -*- C++ -*-
 //
 // This is the implementation of the non-inlined, non-templated member
 // functions of the StandardModelHadronSpectrum class.
 //
 
 #include "StandardModelHadronSpectrum.h"
 #include "ThePEG/Interface/ClassDocumentation.h"
 #include "ThePEG/Interface/Parameter.h"
 #include "ThePEG/Interface/Switch.h"
 #include "ThePEG/Interface/ParVector.h"
 #include "ThePEG/Interface/RefVector.h"
 #include "ThePEG/EventRecord/Particle.h"
 #include "ThePEG/Repository/UseRandom.h"
 #include "ThePEG/Repository/EventGenerator.h"
 #include "ThePEG/Utilities/DescribeClass.h"
 
 #include <ThePEG/PDT/EnumParticles.h>
 #include <ThePEG/Repository/EventGenerator.h>
 #include <ThePEG/Repository/Repository.h>
 
 
 #include "ThePEG/Persistency/PersistentOStream.h"
 #include "ThePEG/Persistency/PersistentIStream.h"
 
 using namespace Herwig;
 
 namespace {
   bool weightIsLess (pair<long,double> a, pair<long,double> b) {
     return a.second < b.second;
   }
 
   /**
    * Return true if the particle pointer corresponds to a diquark 
    * or anti-diquark carrying b flavour; false otherwise.
    */
   inline bool isDiquarkWithB(tcPDPtr par1) {
     if (!par1) return false;
     long id1 = par1->id();
     return DiquarkMatcher::Check(id1)  &&  (abs(id1)/1000)%10 == ParticleID::b;
   }
   
   /**
    * Return true if the particle pointer corresponds to a diquark
    *  or anti-diquark carrying c flavour; false otherwise.
    */
   inline bool isDiquarkWithC(tcPDPtr par1) {
     if (!par1) return false;
     long id1 = par1->id();
     return ( DiquarkMatcher::Check(id1)  &&  
        ( (abs(id1)/1000)%10 == ParticleID::c  
          || (abs(id1)/100)%10 == ParticleID::c ) );
   }
 
 }
 
 
 StandardModelHadronSpectrum::StandardModelHadronSpectrum(unsigned int opt) 
   : HadronSpectrum(),
     _pwtDquark( 1.0 ),_pwtUquark( 1.0 ),_pwtSquark( 1.0 ),_pwtCquark( 0.0 ),
     _pwtBquark( 0.0 ),
     _sngWt( 1.0 ),_decWt( 1.0 ), 
     _weight1S0(Nmax,1.),_weight3S1(Nmax,1.),_weight1P1(Nmax,1.),_weight3P0(Nmax,1.),
     _weight3P1(Nmax,1.),_weight3P2(Nmax,1.),_weight1D2(Nmax,1.),_weight3D1(Nmax,1.),
     _weight3D2(Nmax,1.),_weight3D3(Nmax,1.),
     _topt(opt),_trial(0), 
     _limBottom(), _limCharm(), _limExotic() 
 {
   // The mixing angles
   // the ideal mixing angle
   const double idealAngleMix = atan( sqrt(0.5) ) * 180.0 / Constants::pi;
   // \eta-\eta' mixing angle
   _etamix   = -23.0;
   // phi-omega mixing angle
   _phimix   = +36.0;
   // h_1'-h_1 mixing angle
   _h1mix    = idealAngleMix;
   // f_0(1710)-f_0(1370) mixing angle
   _f0mix    = idealAngleMix;
   // f_1(1420)-f_1(1285)\f$ mixing angle
   _f1mix    = idealAngleMix;
   // f'_2-f_2\f$ mixing angle
   _f2mix    = +26.0;
   // eta_2(1870)-eta_2(1645) mixing angle
   _eta2mix  = idealAngleMix;
   // phi(???)-omega(1650) mixing angle
   _omhmix   = idealAngleMix;
   // phi_3-omega_3 mixing angle
   _ph3mix   = +28.0;
   // eta(1475)-eta(1295) mixing angle
   _eta2Smix = idealAngleMix;
   // phi(1680)-omega(1420) mixing angle
   _phi2Smix = idealAngleMix;
 }
 
 
 StandardModelHadronSpectrum::~StandardModelHadronSpectrum() {}
 
 
 void StandardModelHadronSpectrum::persistentOutput(PersistentOStream & os) const {
   os << _pwtDquark  << _pwtUquark << _pwtSquark 
      << _pwtCquark << _pwtBquark
      << _etamix << _phimix << _h1mix << _f0mix << _f1mix << _f2mix 
      << _eta2mix << _omhmix << _ph3mix << _eta2Smix << _phi2Smix 
      << _weight1S0 << _weight3S1 << _weight1P1 << _weight3P0 << _weight3P1 
      << _weight3P2 << _weight1D2 << _weight3D1 << _weight3D2 << _weight3D3
      << _sngWt << _decWt << _repwt
      << _limBottom << _limCharm << _limExotic;
 }
 
 void StandardModelHadronSpectrum::persistentInput(PersistentIStream & is, int) {
   is >> _pwtDquark  >> _pwtUquark >> _pwtSquark 
      >> _pwtCquark >> _pwtBquark 
      >> _etamix >> _phimix >> _h1mix >> _f0mix >> _f1mix >> _f2mix 
      >> _eta2mix >> _omhmix >> _ph3mix >> _eta2Smix >> _phi2Smix 
      >> _weight1S0 >> _weight3S1 >> _weight1P1 >> _weight3P0 >> _weight3P1 
      >> _weight3P2 >> _weight1D2 >> _weight3D1 >> _weight3D2 >> _weight3D3
      >> _sngWt >> _decWt >> _repwt
      >> _limBottom >> _limCharm >> _limExotic;
 }
 
 
 // *** Attention *** The following static variable is needed for the type
 // description system in ThePEG. Please check that the template arguments
 // are correct (the class and its base class), and that the constructor
 // arguments are correct (the class name and the name of the dynamically
 // loadable library where the class implementation can be found).
 DescribeAbstractClass<StandardModelHadronSpectrum,HadronSpectrum>
 describeHerwigStandardModelHadronSpectrum("Herwig::StandardModelHadronSpectrum", "Herwig.so");
 
 void StandardModelHadronSpectrum::Init() {
 
   static ClassDocumentation<StandardModelHadronSpectrum> documentation
     ("There is no documentation for the StandardModelHadronSpectrum class");
 
   static Parameter<StandardModelHadronSpectrum,double>
     interfacePwtDquark("PwtDquark","Weight for choosing a quark D",
 		       &StandardModelHadronSpectrum::_pwtDquark, 0, 1.0, 0.0, 10.0,
 		       false,false,false);
 
   static Parameter<StandardModelHadronSpectrum,double>
     interfacePwtUquark("PwtUquark","Weight for choosing a quark U",
 		       &StandardModelHadronSpectrum::_pwtUquark, 0, 1.0, 0.0, 10.0,
 		       false,false,false);
 
   static Parameter<StandardModelHadronSpectrum,double>
     interfacePwtSquark("PwtSquark","Weight for choosing a quark S",
 		       &StandardModelHadronSpectrum::_pwtSquark, 0, 1.0, 0.0, 10.0,
 		       false,false,false);
 
   static Parameter<StandardModelHadronSpectrum,double>
     interfacePwtCquark("PwtCquark","Weight for choosing a quark C",
 		       &StandardModelHadronSpectrum::_pwtCquark, 0, 0.0, 0.0, 10.0,
 		       false,false,false);
 
   static Parameter<StandardModelHadronSpectrum,double>
     interfacePwtBquark("PwtBquark","Weight for choosing a quark B",
 		       &StandardModelHadronSpectrum::_pwtBquark, 0, 0.0, 0.0, 10.0,
 		       false,false,false);
 
   static Parameter<StandardModelHadronSpectrum,double>
     interfaceSngWt("SngWt","Weight for singlet baryons",
                   &StandardModelHadronSpectrum::_sngWt, 0, 1.0, 0.0, 10.0,
 		   false,false,false);
 
   static Parameter<StandardModelHadronSpectrum,double>
     interfaceDecWt("DecWt","Weight for decuplet baryons",
                   &StandardModelHadronSpectrum::_decWt, 0, 1.0, 0.0, 10.0,
 		   false,false,false);
 
   //
   // mixing angles
   //
   // the ideal mixing angle
   const double idealAngleMix = atan( sqrt(0.5) ) * 180.0 / Constants::pi;
 
   static Parameter<StandardModelHadronSpectrum,double> interface11S0Mixing
     ("11S0Mixing",
      "The mixing angle for the I=0 mesons from the 1 1S0 multiplet,"
      " i.e. eta and etaprime.",
      &StandardModelHadronSpectrum::_etamix, -23., -180., 180.,
      false, false, Interface::limited);
 
   static Parameter<StandardModelHadronSpectrum,double> interface13S1Mixing
     ("13S1Mixing",
      "The mixing angle for the I=0 mesons from the 1 3S1 multiplet,"
      " i.e. phi and omega.",
      &StandardModelHadronSpectrum::_phimix, +36., -180., 180.,
      false, false, Interface::limited);
 
   static Parameter<StandardModelHadronSpectrum,double> interface11P1Mixing
     ("11P1Mixing",
      "The mixing angle for the I=0 mesons from the 1 1P1 multiplet,"
      " i.e. h_1' and h_1.",
      &StandardModelHadronSpectrum::_h1mix, idealAngleMix, -180., 180.,
      false, false, Interface::limited);
 
   static Parameter<StandardModelHadronSpectrum,double> interface13P0Mixing
     ("13P0Mixing",
      "The mixing angle for the I=0 mesons from the 1 3P0 multiplet,"
      " i.e. f_0(1710) and f_0(1370).",
      &StandardModelHadronSpectrum::_f0mix, idealAngleMix, -180., 180.,
      false, false, Interface::limited);
 
   static Parameter<StandardModelHadronSpectrum,double> interface13P1Mixing
     ("13P1Mixing",
      "The mixing angle for the I=0 mesons from the 1 3P1 multiplet,"
      " i.e. f_1(1420) and f_1(1285).",
      &StandardModelHadronSpectrum::_f1mix, idealAngleMix, -180., 180.,
      false, false, Interface::limited);
 
   static Parameter<StandardModelHadronSpectrum,double> interface13P2Mixing
     ("13P2Mixing",
      "The mixing angle for the I=0 mesons from the 1 3P2 multiplet,"
      " i.e. f'_2 and f_2.",
      &StandardModelHadronSpectrum::_f2mix, 26.0, -180., 180.,
      false, false, Interface::limited);
 
   static Parameter<StandardModelHadronSpectrum,double> interface11D2Mixing
     ("11D2Mixing",
      "The mixing angle for the I=0 mesons from the 1 1D2 multiplet,"
      " i.e. eta_2(1870) and eta_2(1645).",
      &StandardModelHadronSpectrum::_eta2mix, idealAngleMix, -180., 180.,
      false, false, Interface::limited);
 
   static Parameter<StandardModelHadronSpectrum,double> interface13D0Mixing
     ("13D0Mixing",
      "The mixing angle for the I=0 mesons from the 1 3D0 multiplet,"
      " i.e. eta_2(1870) phi(?) and omega(1650).",
      &StandardModelHadronSpectrum::_omhmix, idealAngleMix, -180., 180.,
      false, false, Interface::limited);
 
   static Parameter<StandardModelHadronSpectrum,double> interface13D1Mixing
     ("13D1Mixing",
      "The mixing angle for the I=0 mesons from the 1 3D1 multiplet,"
      " i.e. phi_3 and omega_3.",
      &StandardModelHadronSpectrum::_ph3mix, 28.0, -180., 180.,
      false, false, Interface::limited);
 
   static Parameter<StandardModelHadronSpectrum,double> interface21S0Mixing
     ("21S0Mixing",
      "The mixing angle for the I=0 mesons from the 2 1S0 multiplet,"
      " i.e. eta(1475) and eta(1295).",
      &StandardModelHadronSpectrum::_eta2Smix, idealAngleMix, -180., 180.,
      false, false, Interface::limited);
 
   static Parameter<StandardModelHadronSpectrum,double> interface23S1Mixing
     ("23S1Mixing",
      "The mixing angle for the I=0 mesons from the 1 3S1 multiplet,"
      " i.e. phi(1680) and omega(1420).",
      &StandardModelHadronSpectrum::_phi2Smix, idealAngleMix, -180., 180.,
      false, false, Interface::limited);
   //
   //  the meson weights
   //
   static ParVector<StandardModelHadronSpectrum,double> interface1S0Weights
     ("1S0Weights",
      "The weights for the 1S0 multiplets start with n=1.",
      &StandardModelHadronSpectrum::_weight1S0, Nmax, 1.0, 0.0, 100.0,
      false, false, Interface::limited);
 
   static ParVector<StandardModelHadronSpectrum,double> interface3S1Weights
     ("3S1Weights",
      "The weights for the 3S1 multiplets start with n=1.",
      &StandardModelHadronSpectrum::_weight3S1, Nmax, 1.0, 0.0, 100.0,
      false, false, Interface::limited);
 
   static ParVector<StandardModelHadronSpectrum,double> interface1P1Weights
     ("1P1Weights",
      "The weights for the 1P1 multiplets start with n=1.",
      &StandardModelHadronSpectrum::_weight1P1, Nmax, 1.0, 0.0, 100.0,
      false, false, Interface::limited);
 
   static ParVector<StandardModelHadronSpectrum,double> interface3P0Weights
     ("3P0Weights",
      "The weights for the 3P0 multiplets start with n=1.",
      &StandardModelHadronSpectrum::_weight3P0, Nmax, 1.0, 0.0, 100.0,
      false, false, Interface::limited);
 
   static ParVector<StandardModelHadronSpectrum,double> interface3P1Weights
     ("3P1Weights",
      "The weights for the 3P1 multiplets start with n=1.",
      &StandardModelHadronSpectrum::_weight3P1, Nmax, 1.0, 0.0, 100.0,
      false, false, Interface::limited);
 
   static ParVector<StandardModelHadronSpectrum,double> interface3P2Weights
     ("3P2Weights",
      "The weights for the 3P2 multiplets start with n=1.",
      &StandardModelHadronSpectrum::_weight3P2, Nmax, 1.0, 0.0, 100.0,
      false, false, Interface::limited);
 
   static ParVector<StandardModelHadronSpectrum,double> interface1D2Weights
     ("1D2Weights",
      "The weights for the 1D2 multiplets start with n=1.",
      &StandardModelHadronSpectrum::_weight1D2, Nmax, 1.0, 0.0, 100.0,
      false, false, Interface::limited);
 
   static ParVector<StandardModelHadronSpectrum,double> interface3D1Weights
     ("3D1Weights",
      "The weights for the 3D1 multiplets start with n=1.",
      &StandardModelHadronSpectrum::_weight3D1, Nmax, 1.0, 0.0, 100.0,
      false, false, Interface::limited);
 
   static ParVector<StandardModelHadronSpectrum,double> interface3D2Weights
     ("3D2Weights",
      "The weights for the 3D2 multiplets start with n=1.",
      &StandardModelHadronSpectrum::_weight3D2, Nmax, 1.0, 0.0, 100.0,
      false, false, Interface::limited);
 
   static ParVector<StandardModelHadronSpectrum,double> interface3D3Weights
     ("3D3Weights",
      "The weights for the 3D3 multiplets start with n=1.",
      &StandardModelHadronSpectrum::_weight3D3, Nmax, 1.0, 0.0, 100.0,
      false, false, Interface::limited);
 
   static Switch<StandardModelHadronSpectrum,unsigned int> interfaceTrial
     ("Trial",
      "A Debugging option to only produce certain types of hadrons",
      &StandardModelHadronSpectrum::_trial, 0, false, false);
   static SwitchOption interfaceTrialAll
     (interfaceTrial,
      "All",
      "Produce all the hadrons",
      0);
   static SwitchOption interfaceTrialPions
     (interfaceTrial,
      "Pions",
      "Only produce pions",
      1);
   static SwitchOption interfaceTrialSpin2
     (interfaceTrial,
      "Spin2",
      "Only mesons with spin less than or equal to two are produced",
      2);
   static SwitchOption interfaceTrialSpin3
     (interfaceTrial,
      "Spin3",
      "Only hadrons with spin less than or equal to three are produced",
      3);
 
   static Parameter<StandardModelHadronSpectrum,double>
     interfaceSingleHadronLimitBottom ("SingleHadronLimitBottom",
 				      "Threshold for one-hadron decay of b-cluster",
 				      &StandardModelHadronSpectrum::_limBottom,
 				      0, 0.0, 0.0, 100.0,false,false,false);
 
   static Parameter<StandardModelHadronSpectrum,double>
     interfaceSingleHadronLimitCharm ("SingleHadronLimitCharm",
 				     "threshold for one-hadron decay of c-cluster",
 				     &StandardModelHadronSpectrum::_limCharm,
 				     0, 0.0, 0.0, 100.0,false,false,false);
 
   static Parameter<StandardModelHadronSpectrum,double>
     interfaceSingleHadronLimitExotic ("SingleHadronLimitExotic",
 				      "threshold for one-hadron decay of exotic cluster",
 				      &StandardModelHadronSpectrum::_limExotic,
 				      0, 0.0, 0.0, 100.0,false,false,false);
 
   static Switch<StandardModelHadronSpectrum,unsigned int> interfaceBelowThreshold
     ("BelowThreshold",
      "Option fo the selection of the hadrons if the cluster is below the pair threshold",
      &StandardModelHadronSpectrum::belowThreshold_, 0, false, false);
   static SwitchOption interfaceBelowThresholdLightest
     (interfaceBelowThreshold,
      "Lightest",
      "Force cluster to decay to the lightest hadron with the appropriate flavours",
      0);
   static SwitchOption interfaceBelowThresholdAll
     (interfaceBelowThreshold,
      "All",
      "Select from all the hadrons below the two hadron threshold according to their spin weights",
      1);
 
 }
 
 
 PDPtr StandardModelHadronSpectrum::makeDiquark(tcPDPtr par1, tcPDPtr par2) const {
     long id1 = par1->id();
     long id2 = par2->id();
     long pspin = id1==id2 ? 3 : 1;
     long idnew = makeDiquarkID(id1,id2, pspin);
     return getParticleData(idnew);
 }
 
 Energy StandardModelHadronSpectrum::hadronPairThreshold(tcPDPtr par1, tcPDPtr par2) const {
   // Determine the sum of the nominal masses of the two lightest hadrons
   // with the right flavour numbers as the cluster under consideration.
   // Notice that we don't need real masses (drawn by a Breit-Wigner 
   // distribution) because the lightest pair of hadrons does not involve
   // any broad resonance.
   Energy threshold = massLightestHadronPair(par1,par2);
   // Special: it allows one-hadron decays also above threshold.
   if (isExotic(par1,par2)) 
     threshold *= (1.0 + UseRandom::rnd()*_limExotic);
   else if (hasBottom(par1,par2)) 
     threshold *= (1.0 + UseRandom::rnd()*_limBottom);
   else if (hasCharm(par1,par2)) 
     threshold *= (1.0 + UseRandom::rnd()*_limCharm);
   return threshold;
 }
   
 double StandardModelHadronSpectrum::mixingStateWeight(long id) const {
   switch(id) {
   case ParticleID::eta:      return 0.5*probabilityMixing(_etamix  ,1);
   case ParticleID::etaprime: return 0.5*probabilityMixing(_etamix  ,2);
   case ParticleID::phi:      return 0.5*probabilityMixing(_phimix  ,1);
   case ParticleID::omega:    return 0.5*probabilityMixing(_phimix  ,2);
   case ParticleID::hprime_1: return 0.5*probabilityMixing(_h1mix   ,1);
   case ParticleID::h_1:      return 0.5*probabilityMixing(_h1mix   ,2);
   case 10331:                return 0.5*probabilityMixing(_f0mix   ,1);
   case 10221:                return 0.5*probabilityMixing(_f0mix   ,2);
   case ParticleID::fprime_1: return 0.5*probabilityMixing(_f1mix   ,1);
   case ParticleID::f_1:      return 0.5*probabilityMixing(_f1mix   ,2);
   case ParticleID::fprime_2: return 0.5*probabilityMixing(_f2mix   ,1);
   case ParticleID::f_2:      return 0.5*probabilityMixing(_f2mix   ,2);
   case 10335:                return 0.5*probabilityMixing(_eta2mix ,1);
   case 10225:		     return 0.5*probabilityMixing(_eta2mix ,2);
     // missing phi member of 13D1 should be here
   case 30223:		     return 0.5*probabilityMixing(_omhmix  ,2);
   case 337:                  return 0.5*probabilityMixing(_ph3mix  ,1);
   case 227:		     return 0.5*probabilityMixing(_ph3mix  ,2);
   case 100331:               return 0.5*probabilityMixing(_eta2mix ,1);
   case 100221:		     return 0.5*probabilityMixing(_eta2mix ,2);
   case 100333:               return 0.5*probabilityMixing(_phi2Smix,1);
   case 100223:		     return 0.5*probabilityMixing(_phi2Smix,2);
   default:                   return 1./3.;
   }
 }
 
 void StandardModelHadronSpectrum::doinit() {
-  HadronSpectrum::doinit();
-
   // set the weights for the various excited mesons
   // set all to one to start with
   for (int l = 0; l < Lmax; ++l ) {
     for (int j = 0; j < Jmax; ++j) {
       for (int n = 0; n < Nmax; ++n) {
 	_repwt[l][j][n] = 1.0;
       }
     }
   }
   // set the others from the relevant vectors
   for( int ix=0;ix<max(int(_weight1S0.size()),int(Nmax));++ix)
     _repwt[0][0][ix]=_weight1S0[ix];
   for( int ix=0;ix<max(int(_weight3S1.size()),int(Nmax));++ix)
     _repwt[0][1][ix]=_weight3S1[ix];
   for( int ix=0;ix<max(int(_weight1P1.size()),int(Nmax));++ix)
     _repwt[1][1][ix]=_weight1P1[ix];
   for( int ix=0;ix<max(int(_weight3P0.size()),int(Nmax));++ix)
     _repwt[1][0][ix]=_weight3P0[ix];
   for( int ix=0;ix<max(int(_weight3P1.size()),int(Nmax));++ix)
     _repwt[1][1][ix]=_weight3P1[ix];
   for( int ix=0;ix<max(int(_weight3P2.size()),int(Nmax));++ix)
     _repwt[1][2][ix]=_weight3P2[ix];
   for( int ix=0;ix<max(int(_weight1D2.size()),int(Nmax));++ix)
     _repwt[2][2][ix]=_weight1D2[ix];
   for( int ix=0;ix<max(int(_weight3D1.size()),int(Nmax));++ix)
     _repwt[2][1][ix]=_weight3D1[ix];
   for( int ix=0;ix<max(int(_weight3D2.size()),int(Nmax));++ix)
     _repwt[2][2][ix]=_weight3D2[ix];
   for( int ix=0;ix<max(int(_weight3D3.size()),int(Nmax));++ix)
     _repwt[2][3][ix]=_weight3D3[ix];
 
   // find the maximum
   map<long,double>::iterator pit =
     max_element(_pwt.begin(),_pwt.end(),weightIsLess); 
   const double pmax = pit->second;
   for(pit=_pwt.begin(); pit!=_pwt.end(); ++pit) {
     pit->second/=pmax;
   }
+  HadronSpectrum::doinit();
 }
 
 void StandardModelHadronSpectrum::constructHadronTable() {
   // initialise the table
   _table.clear();
   for(unsigned int ix=0; ix<_partons.size(); ++ix) {
     for(unsigned int iy=0; iy<_partons.size(); ++iy) {
       if (!(DiquarkMatcher::Check(_partons[ix]->id()) 
 	    && DiquarkMatcher::Check(_partons[iy]->id())))
       _table[make_pair(_partons[ix]->id(),_partons[iy]->id())] = KupcoData();
     }
   }
   // get the particles from the event generator
   ParticleMap particles = generator()->particles();
   // loop over the particles
   //double maxdd(0.),maxss(0.),maxrest(0.);
   for(ParticleMap::iterator it=particles.begin(); 
       it!=particles.end(); ++it) {
     long pid = it->first;
     tPDPtr particle = it->second;
     int pspin = particle->iSpin();
     // Don't include hadrons which are explicitly forbidden
     if(find(_forbidden.begin(),_forbidden.end(),particle)!=_forbidden.end()) 
       continue;
     // Don't include non-hadrons or antiparticles
     if(pid < 100) continue;
     // remove diffractive particles
     if(pspin == 0) continue;
     // K_0S and K_0L not made make K0 and Kbar0
     if(pid==ParticleID::K_S0||pid==ParticleID::K_L0) continue;
     // Debugging options
     // Only include those with 2J+1 less than...5
     if(_trial==2 && pspin >= 5) continue;
     // Only include those with 2J+1 less than...7
     if(_trial==3 && pspin >= 7) continue;
     // Only include pions
     if(_trial==1 && pid!=111 && pid!=211) continue;
     // shouldn't be coloured
     if(particle->coloured()) continue;
     // Get the flavours
     const int x4 = (pid/1000)%10; 
     const int x3 = (pid/100 )%10;
     const int x2 = (pid/10  )%10;
     const int x7 = (pid/1000000)%10;
     const bool wantSusy = x7 == 1 || x7 == 2;
     // Skip non-hadrons (susy particles, etc...)
     if(x3 == 0 || x2 == 0) continue;
     // Skip particles which are neither SM nor SUSY 
-    if(x7 >= 3) continue;
+    if(x7 >= 3 && x7 != 9) continue;
     int flav1,flav2;
     // meson
     if(x4 == 0) {
       flav1 = x2;
       flav2 = x3;
     }
     // baryon
     else {
       flav2 = x4;
       // insert the spin 1 diquark, sort out the rest later
       flav1 = makeDiquarkID(x2,x3,3);
     }
     if (wantSusy) flav2 += 1000000 * x7;
     insertToHadronTable(particle,flav1,flav2);
   }
   // normalise the weights
 
 
   if(_topt == 0) {
     HadronTable::const_iterator tit;
     KupcoData::iterator it;
     for(tit=_table.begin();tit!=_table.end();++tit) {
       double weight=0;
       for(it = tit->second.begin(); it!=tit->second.end(); ++it)
 	weight=max(weight,it->overallWeight);
       weight = 1./weight;
     }
 
     //   double weight;
     //   if(tit->first.first==tit->first.second) {
     // 	if(tit->first.first==1||tit->first.first==2) weight=1./maxdd;
     // 	else if (tit->first.first==3)                weight=1./maxss;
     // 	else                                         weight=1./maxrest;
     //   }
     //   else                                           weight=1./maxrest;
     //   for(it = tit->second.begin(); it!=tit->second.end(); ++it) {
     // 	it->rescale(weight);
     //   }
     // }
   }
 }
 
 double StandardModelHadronSpectrum::strangeWeight(const Energy, tcPDPtr, tcPDPtr) const {
   assert(false);
 }
 
 void StandardModelHadronSpectrum::insertMeson(HadronInfo a, int flav1, int flav2) {
   // identical light flavours
   if(flav1 == flav2 && flav1<=3) {
     // ddbar> uubar> admixture states
     if(flav1==1) {
       a.overallWeight *= 0.5;
       _table[make_pair(1,1)].insert(a);
       _table[make_pair(2,2)].insert(a);
     }
     // load up ssbar> uubar> ddbar> admixture states
     else {
       // uubar ddbar pieces
       a.wt = mixingStateWeight(a.id);
       a.overallWeight *= a.wt;
       _table[make_pair(1,1)].insert(a);
       _table[make_pair(2,2)].insert(a);
       a.overallWeight /=a.wt;
       // ssbar piece
       a.wt = 1.- 2.*a.wt;
       if(a.wt > 0) {
         a.overallWeight *= a.wt;
         _table[make_pair(3,3)].insert(a);
       }
     }
   }
   else {
     _table[make_pair(flav1,flav2)].insert(a);
     if(flav1 != flav2) _table[make_pair(flav2,flav1)].insert(a);
   }
 }
 
 
 long StandardModelHadronSpectrum::makeDiquarkID(long id1, long id2, long pspin) const {
 
   assert( id1 * id2 > 0  
           && QuarkMatcher::Check(id1)  
 	  && QuarkMatcher::Check(id2)) ;
   long ida = abs(id1);
   long idb = abs(id2);
   if (ida < idb) swap(ida,idb);
   if (pspin != 1 && pspin != 3) assert(false);
   long idnew = ida*1000 + idb*100 + pspin;
   // Diquarks made of quarks of the same type: uu, dd, ss, cc, bb,
   // have spin 1, and therefore the less significant digit (which
   // corresponds to 2*J+1) is 3 rather than 1 as all other Diquarks.
   if (id1 == id2 && pspin == 1) {
     //cerr<<"WARNING: spin-0 diquiark of the same type cannot exist."
     //    <<" Switching to spin-1 diquark.\n";
     idnew = ida*1000 + idb*100 + 3;
   }
 
   return id1 > 0 ? idnew : -idnew;
 }
 
 bool StandardModelHadronSpectrum::hasBottom(tcPDPtr par1, tcPDPtr par2, tcPDPtr par3) const {
   long id1 = par1 ? par1->id() : 0;
   if ( !par2  &&  !par3 ) {
     return 
       abs(id1) == ThePEG::ParticleID::b    ||
       isDiquarkWithB(par1)                 ||
       ( MesonMatcher::Check(id1)  
 	&& (abs(id1)/100)%10  == ThePEG::ParticleID::b ) ||
       ( BaryonMatcher::Check(id1) 
 	&& (abs(id1)/1000)%10 == ThePEG::ParticleID::b );
   } 
   else {
     long id2 = par2 ? par2->id() : 0;
     long id3 = par3 ? par3->id() : 0;
     return 
       abs(id1) == ThePEG::ParticleID::b  ||  isDiquarkWithB(par1)  || 
       abs(id2) == ThePEG::ParticleID::b  ||  isDiquarkWithB(par2)  || 
       abs(id3) == ThePEG::ParticleID::b  ||  isDiquarkWithB(par3); 
   }
 }
 
 
 bool StandardModelHadronSpectrum::hasCharm(tcPDPtr par1, tcPDPtr par2, tcPDPtr par3) const {
   long id1 = par1 ? par1->id(): 0;
   if (!par2  &&  !par3) {
     return
       abs(id1) == ThePEG::ParticleID::c     ||
       isDiquarkWithC(par1)                  ||
       ( MesonMatcher::Check(id1) && 
         ((abs(id1)/100)%10 == ThePEG::ParticleID::c ||
 	 (abs(id1)/10)%10 == ThePEG::ParticleID::c) ) ||
       ( BaryonMatcher::Check(id1) && 
         ((abs(id1)/1000)%10 == ThePEG::ParticleID::c  ||
 	 (abs(id1)/100)%10  == ThePEG::ParticleID::c  ||
 	 (abs(id1)/10)%10   == ThePEG::ParticleID::c) );
   } 
   else {
  long id2 = par2 ? par1->id(): 0;
  long id3 = par3 ? par1->id(): 0;
     return 
       abs(id1) == ThePEG::ParticleID::c  ||  isDiquarkWithC(par1)  || 
       abs(id2) == ThePEG::ParticleID::c  ||  isDiquarkWithC(par2)  || 
       abs(id3) == ThePEG::ParticleID::c  ||  isDiquarkWithC(par3); 
   }
 }  
 
 bool StandardModelHadronSpectrum::isExotic(tcPDPtr par1, tcPDPtr par2, tcPDPtr par3) const {
   /// \todo make this more general
   long id1 = par1 ? par1->id(): 0;
   long id2 = par2 ? par2->id(): 0;
   long id3 = par3 ? par3->id(): 0;
 return 
   ( (id1/1000000)% 10 != 0 && (id1/1000000)% 10 != 9 ) ||
   ( (id2/1000000)% 10 != 0 && (id2/1000000)% 10 != 9 ) ||
   ( (id3/1000000)% 10 != 0 && (id3/1000000)% 10 != 9 ) ||
   abs(id1)==6||abs(id2)==6;
 }
 
 
 bool StandardModelHadronSpectrum::canBeBaryon(tcPDPtr par1, tcPDPtr par2 , tcPDPtr par3) const {
   assert(par1 && par2);
   long id1 = par1->id(), id2 = par2->id();
   if (!par3) {
     if( id1*id2 < 0) return false;
     if(DiquarkMatcher::Check(id1))
 return abs(int(par2->iColour())) == 3 && !DiquarkMatcher::Check(id2); 
     if(DiquarkMatcher::Check(id2))
 return abs(int(par1->iColour())) == 3;
     return false;
   } 
   else {
     // In this case, to be a baryon, all three components must be (anti-)quarks
     // and with the same sign.
     return (par1->iColour() == 3 && par2->iColour() == 3 && par3->iColour() == 3) ||
 (par1->iColour() == -3 && par2->iColour() == -3 && par3->iColour() == -3);
   }
 }
diff --git a/Hadronization/StandardModelHadronSpectrum.h b/Hadronization/StandardModelHadronSpectrum.h
--- a/Hadronization/StandardModelHadronSpectrum.h
+++ b/Hadronization/StandardModelHadronSpectrum.h
@@ -1,581 +1,581 @@
 // -*- C++ -*-
 #ifndef Herwig_StandardModelHadronSpectrum_H
 #define Herwig_StandardModelHadronSpectrum_H
 //
 // This is the declaration of the StandardModelHadronSpectrum class.
 //
 
 #include "Herwig/Hadronization/HadronSpectrum.h"
 #include <ThePEG/PDT/ParticleData.h>
 #include <ThePEG/PDT/StandardMatchers.h>
 #include <ThePEG/Repository/EventGenerator.h>
 #include <ThePEG/PDT/EnumParticles.h>
 #include "ThePEG/Repository/CurrentGenerator.h"
 
 #include <ThePEG/Persistency/PersistentOStream.h>
 #include <ThePEG/Persistency/PersistentIStream.h>
 namespace Herwig {
 
 using namespace ThePEG;
 
 /**
  * Here is the documentation of the StandardModelHadronSpectrum class.
  *
  * @see \ref StandardModelHadronSpectrumInterfaces "The interfaces"
  * defined for StandardModelHadronSpectrum.
  */
 class StandardModelHadronSpectrum: public HadronSpectrum {
 
 public:
 
   /** @name Standard constructors and destructors. */
   //@{
   /**
    * The default constructor.
    */
   StandardModelHadronSpectrum(unsigned int opt);
 
   /**
    * The destructor.
    */
   virtual ~StandardModelHadronSpectrum();
   //@}
 
 public:
 
   /** @name Partonic content */
   //@{
 
   /**
    * Return the id of the gluon
    */
   virtual long gluonId() const { return ParticleID::g; }
 
   /**
    * Return the ids of all hadronizing quarks
    */
   virtual const vector<long>& hadronizingQuarks() const {
     static vector<long> hadronizing =
       { ParticleID::d, ParticleID::u, ParticleID::s, ParticleID::c, ParticleID::b };
     return hadronizing;
   }
 
   /**
    * The light hadronizing quarks
    */
   virtual const vector<long>& lightHadronizingQuarks() const {
     static vector<long> light =
       { ParticleID::d, ParticleID::u, ParticleID::s };
     return light;
   }
 
   /**
    * The light hadronizing diquarks
    */
   virtual const vector<long>& lightHadronizingDiquarks() const {
 	  /**
 	   * Diquarks q==q_0 are not allowed as they need to have antisymmetric
 	   * spin wave-function, which forces the spin to 1
 	   * Diquarks q!=q'_1 are not allowed as they need to have antisymmetric
 	   * spin wave-function, which forces the spin to 1
 	   * */
     static vector<long> light = {
 		// TODO: strange diquarks are turned off for the moment
 		// 		 since in combination with the current ClusterFission
 		// 		 they fail (overshoot) to reproduce the Xi and Lambda 
 		// 		 pT spectra.
 		// 		 One may enable these after the ClusterFission
 		// 		 kinematics are settled
 		// ParticleID::sd_0,
 		// ParticleID::sd_1, // Not allowed by exceptions
 		// ParticleID::su_0,
 		// ParticleID::su_1, // Not allowed by exceptions
 		// ParticleID::ss_1,
 		ParticleID::uu_1,
 		ParticleID::dd_1,
 		ParticleID::ud_0
 		// TODO why ud_1 not allowed?
 		// exceptions: Could not find 2103 1 in _table
 		// but no problem for 2103 2 ???
 		// ParticleID::ud_1
 	};
     return light;
   }
 
   /**
    * The heavy hadronizing quarks
    */
   virtual const vector<long>& heavyHadronizingQuarks() const {
     static vector<long> heavy =
       { ParticleID::c, ParticleID::b };
     return heavy;
   }
 
   /**
    * Return true if any of the possible three input particles contains
    * the indicated heavy quark.  false otherwise. In the case that
    * only the first particle is specified, it can be: an (anti-)quark,
    * an (anti-)diquark an (anti-)meson, an (anti-)baryon; in the other
    * cases, each pointer is assumed to be either (anti-)quark or
    * (anti-)diquark.
    */
   virtual bool hasHeavy(long id, tcPDPtr par1, tcPDPtr par2 = PDPtr(), tcPDPtr par3 = PDPtr()) const {
     if ( abs(id) == ParticleID::c )
       return hasCharm(par1,par2,par3);
     if ( abs(id) == ParticleID::b )
       return hasBottom(par1,par2,par3);
     return false;
   }
 
   //@}
 
   /**
    * Return the threshold for a cluster to split into a pair of hadrons.
    * This is normally the mass of the lightest hadron Pair, but can be
    * higher for heavy and exotic clusters
    */
   virtual Energy hadronPairThreshold(tcPDPtr par1, tcPDPtr par2) const;
 
   /**
    * Return the weight for the given flavour
    */
   virtual double pwtQuark(const long& id) const {
     switch(id) {
     case ParticleID::d: return pwtDquark(); break;
     case ParticleID::u: return pwtUquark(); break;
     case ParticleID::s: return pwtSquark(); break;
     case ParticleID::c: return pwtCquark(); break;
     case ParticleID::b: return pwtBquark(); break;
     }
     return 0.;
   }
 
   /**
    * The down quark weight.
    */
    double pwtDquark()  const {
     return _pwtDquark;
   } 
 
   /**
    * The up quark weight.
    */
    double pwtUquark()  const { 
     return _pwtUquark;
   }
 
   /**
    * The strange quark weight.
    */
    double pwtSquark()  const { 
     return _pwtSquark;
   }
 
   /**
    * The charm quark weight.
    */
    double pwtCquark()  const { 
     return _pwtCquark;
   }
 
   /**
    * The bottom quark weight.
    */
    double pwtBquark()  const { 
     return _pwtBquark;
   } 
   
   /**
    * The diquark weight.
    */
    double pwtDIquark() const {
     return _pwtDIquark;
   }
 
 public:
 
   /** @name Functions used by the persistent I/O system. */
   //@{
   /**
    * Function used to write out object persistently.
    * @param os the persistent output stream written to.
    */
   void persistentOutput(PersistentOStream & os) const;
 
   /**
    * Function used to read in object persistently.
    * @param is the persistent input stream read from.
    * @param version the version number of the object when written.
    */
   void persistentInput(PersistentIStream & is, int version);
   //@}
 
   /**
    * The standard Init function used to initialize the interfaces.
    * Called exactly once for each class by the class description system
    * before the main function starts or
    * when this class is dynamically loaded.
    */
   static void Init();
 
   /**
    * Return the particle data of the diquark (anti-diquark) made by the two 
    * quarks (antiquarks) par1, par2.
    * @param par1 (anti-)quark data pointer
    * @param par2 (anti-)quark data pointer
    */
   PDPtr makeDiquark(tcPDPtr par1, tcPDPtr par2) const;
 
 protected:
 
   /** @name Standard Interfaced functions. */
   //@{
   /**
    * Initialize this object after the setup phase before saving an
    * EventGenerator to disk.
    *
    *  The array _repwt is initialized using the interfaces to set different
    *  weights for different meson multiplets and the constructHadronTable()
    *  method called to complete the construction of the hadron tables.
    *
    * @throws InitException if object could not be initialized properly.
    */
   virtual void doinit();
   //@}
 
   
   /**
    * Return the id of the diquark (anti-diquark) made by the two 
    * quarks (antiquarks) of id specified in input (id1, id2).
    * Caller must ensure that id1 and id2 are quarks.
    */
   long makeDiquarkID(long id1, long id2, long pspin)  const;
 
   /**
    * Return true if any of the possible three input particles has
    * b-flavour; 
    * false otherwise. In the case that only the first particle is specified,
    * it can be: an (anti-)quark, an (anti-)diquark
    * an (anti-)meson, an (anti-)baryon; in the other cases, each pointer
    * is assumed to be either (anti-)quark or (anti-)diquark.
    */
   bool hasBottom(tcPDPtr par1, tcPDPtr par2 = PDPtr(), tcPDPtr par3 = PDPtr())  const;
   /**
    * Return true if any of the possible three input particles has 
    * c-flavour; 
    * false otherwise.In the case that only the first pointer is specified,
    * it can be: a (anti-)quark, a (anti-)diquark
    * a (anti-)meson, a (anti-)baryon; in the other cases, each pointer
    * is assumed to be either (anti-)quark or (anti-)diquark.
    */
   bool hasCharm(tcPDPtr par1, tcPDPtr par2 = PDPtr(), tcPDPtr par3 = PDPtr())  const;
   /**
    * Return true, if any of the possible input particle pointer is an exotic quark, e.g. Susy quark;
    * false otherwise.   
    */
   bool isExotic(tcPDPtr par1, tcPDPtr par2 = PDPtr(), tcPDPtr par3 = PDPtr())  const;
 
   /**
    * Return true if the two or three particles in input can be the components 
    * of a baryon; false otherwise.
    */
   virtual bool canBeBaryon(tcPDPtr par1, tcPDPtr par2 , tcPDPtr par3 = PDPtr())  const;
 
 protected:
 
   /**
    *  Construct the table of hadron data
    *  This is the main method to initialize the hadron data (mainly the
    *  weights associated to each hadron, taking into account its spin, 
    *  eventual isoscalar-octect mixing, singlet-decuplet factor). This is
    *  the method that one should update when new or updated hadron data is
    *  available. 
    *
    *  This class implements the construction of the basic table but can be 
    *  overridden if needed in inheriting classes.
    *
    *  The rationale for factors used for diquarks involving different quarks can 
    *  be can be explained by taking a prototype example that in the  exact SU(2) limit,
    *  in which:
    *  \f[m_u=m_d\f] 
    *  \f[M_p=M_n=M_\Delta\f]
    *      and we will have equal numbers of u and d quarks produced.
    *      Suppose that we weight 1 the diquarks made of the same 
    *      quark and 1/2 those made of different quarks, the fractions
    *      of u and d baryons (p, n, Delta) we get are the following:
    *        - \f$\Delta^{++}\f$: 1 possibility only  u uu  with weight 1
    *        - \f$\Delta^-   \f$: 1 possibility only  d dd  with weight 1
    *        - \f$p,\Delta^+ \f$: 2 possibilities     u ud  with weight 1/2
    *                                                 d uu  with weight 1
    *        - \f$n,\Delta^0 \f$: 2 possibilities     d ud  with weight 1/2
    *                                                 u dd  with weight 1
    *      In the latter two cases, we have to take into account the 
    *      fact that  p  and  n  have spin 1/2 whereas  Delta+  and  Delta0
    *      have spin 3/2 therefore from phase space we get a double weight 
    *      for  Delta+  and  Delta0  relative to  p  and  n  respectively.
    *      Therefore the relative amount of these baryons that is
    *      produced is the following:
    *       # p = # n = ( 1/2 + 1 ) * 1/3 = 1/2
    *       # Delta++ = # Delta- = 1 = ( 1/2 + 1) * 2/3 # Delta+ = # Delta0
    *      which is correct, and therefore the weight 1/2 for the
    *      diquarks of different types of quarks is justified (at least
    *      in this limit of exact SU(2) ).
    */
   virtual void constructHadronTable();
 
   /**
    *   Insert a meson in the table
    */
   virtual void insertMeson(HadronInfo a, int flav1, int flav2);
 
   /**
    * Methods for the mixing of \f$I=0\f$ mesons
    */
   //@{
   /**
    * Return the probability of mixing for Octet-Singlet isoscalar mixing,
    * the probability of the 
    * \f$\frac1{\sqrt{2}}(|u\bar{u}\rangle + |d\bar{d}\rangle)\f$ component
    * is returned.
    * @param angleMix The mixing angle in degrees (not radians)
    * @param order is 0 for no mixing, 1 for the first resonance of a pair,
    *                 2 for the second one.
    * The mixing is defined so that for example with \f$\eta-\eta'\f$ mixing where
    * the mixing angle is \f$\theta=-23^0$ with $\eta\f$ as the first particle
    * and \f$\eta'\f$ the second one.
    * The convention used is 
    * \f[\eta  = \cos\theta|\eta_{\rm octet  }\rangle
    *           -\sin\theta|\eta_{\rm singlet}\rangle\f]
    * \f[\eta' = \sin\theta|\eta_{\rm octet  }\rangle
    *           -\cos\theta|\eta_{\rm singlet}\rangle\f]
    * with 
    * \f[|\eta_{\rm singlet}\rangle = \frac1{\sqrt{3}}
    * \left[|u\bar{u}\rangle + |d\bar{d}\rangle +  |s\bar{s}\rangle\right]\f]
    * \f[|\eta_{\rm octet  }\rangle = \frac1{\sqrt{6}}
    * \left[|u\bar{u}\rangle + |d\bar{d}\rangle - 2|s\bar{s}\rangle\right]\f]
    */
    double probabilityMixing(const double angleMix,
 				  const int order) const {
     static double convert=Constants::pi/180.0;
     if (order == 1)      
       return sqr( cos( angleMix*convert + atan( sqrt(2.0) ) ) );
     else if (order == 2) 
       return sqr( sin( angleMix*convert + atan( sqrt(2.0) ) ) );
     else                 
       return 1.;
   }
 
   /**
    * Returns the weight of given mixing state.
    * @param id The PDG code of the meson
    */
   virtual double mixingStateWeight(long id) const; 
   //@}
 
   virtual double specialQuarkWeight(double quarkWeight, long id,
             const Energy cluMass, tcPDPtr par1, tcPDPtr par2) const {
     // special for strange
-    if(id == 3)
+    if(abs(id) == 3)
       return strangeWeight(cluMass,par1,par2);
     else
       return quarkWeight;
   }
 
   /**
    *  Strange quark weight
    */
   virtual double strangeWeight(const Energy cluMass, tcPDPtr par1, tcPDPtr par2) const;
 
   /**
    *  The weights for the different quarks and diquarks
    */
   //@{
   /**
    * The probability of producting a down quark.
    */
   double _pwtDquark;
 
   /**
    * The probability of producting an up quark.
    */
   double _pwtUquark;
 
   /**
    * The probability of producting a strange quark.
    */
   double _pwtSquark;
 
   /**
    * The probability of producting a charm quark.
    */
   double _pwtCquark;
 
   /**
    * The probability of producting a bottom quark.
    */
   double _pwtBquark;
   //@}
 
   /**
    * The probability of producting a diquark.
    */
   double _pwtDIquark;
   /**
    * Singlet and Decuplet weights
    */
   //@{
   /**
    *  The singlet weight
    */
   double _sngWt; 
 
   /**
    *  The decuplet weight
    */
   double _decWt; 
   //@}
 
   /**
    *  The mixing angles for the \f$I=0\f$ mesons containing light quarks
    */
   //@{
   /**
    *  The \f$\eta-\eta'\f$ mixing angle 
    */
   double _etamix;
 
   /**
    *  The \f$\phi-\omega\f$ mixing angle
    */
   double _phimix;
 
   /**
    *  The \f$h_1'-h_1\f$ mixing angle
    */
   double _h1mix;
 
   /**
    *  The \f$f_0(1710)-f_0(1370)\f$ mixing angle
    */
   double _f0mix;
 
   /**
    *  The \f$f_1(1420)-f_1(1285)\f$ mixing angle
    */
   double _f1mix;
 
   /**
    *  The \f$f'_2-f_2\f$ mixing angle
    */
   double _f2mix;
 
   /**
    *  The \f$\eta_2(1870)-\eta_2(1645)\f$ mixing angle
    */
   double _eta2mix;
 
   /**
    *  The \f$\phi(???)-\omega(1650)\f$ mixing angle
    */
   double _omhmix;
 
   /**
    *  The \f$\phi_3-\omega_3\f$ mixing angle
    */
   double _ph3mix;
 
   /**
    *  The \f$\eta(1475)-\eta(1295)\f$ mixing angle
    */
   double _eta2Smix;
 
   /**
    *  The \f$\phi(1680)-\omega(1420)\f$ mixing angle
    */
   double _phi2Smix;
   //@}
 
   /**
    *  The weights for the various meson multiplets to be used to supress the
    * production of particular states
    */
   //@{
   /**
    *  The weights for the \f$\phantom{1}^1S_0\f$ multiplets
    */
   vector<double> _weight1S0;
 
   /**
    *  The weights for the \f$\phantom{1}^3S_1\f$ multiplets
    */
   vector<double> _weight3S1;
 
   /**
    *  The weights for the \f$\phantom{1}^1P_1\f$ multiplets
    */
   vector<double> _weight1P1;
 
   /**
    *  The weights for the \f$\phantom{1}^3P_0\f$ multiplets
    */
   vector<double> _weight3P0;
 
   /**
    *  The weights for the \f$\phantom{1}^3P_1\f$ multiplets
    */
   vector<double> _weight3P1;
 
   /**
    *  The weights for the \f$\phantom{1}^3P_2\f$ multiplets
    */
   vector<double> _weight3P2;
 
   /**
    *  The weights for the \f$\phantom{1}^1D_2\f$ multiplets
    */
   vector<double> _weight1D2;
 
   /**
    *  The weights for the \f$\phantom{1}^3D_1\f$ multiplets
    */
   vector<double> _weight3D1;
 
   /**
    *  The weights for the \f$\phantom{1}^3D_2\f$ multiplets
    */
   vector<double> _weight3D2;
 
   /**
    *  The weights for the \f$\phantom{1}^3D_3\f$ multiplets
    */
   vector<double> _weight3D3;
   //@}
 
   /**
    *  Option for the construction of the tables
    */ 
   unsigned int _topt;
 
   /**
    *  Which particles to produce for debugging purposes
    */
   unsigned int _trial;
 
   /**
    * @name A parameter used for determining when clusters are too light.
    *
    * This parameter is used for setting the lower threshold, \f$ t \f$ as
    * \f[ t' = t(1 + r B^1_{\rm lim}) \f]
    * where \f$ r \f$ is a random number [0,1].
    */
   //@{
   double _limBottom;
   double _limCharm;
   double _limExotic;
   //@}
 
 };
 
 }
 
 #endif /* Herwig_StandardModelHadronSpectrum_H */