diff --git a/Hadronization/ClusterFissioner.cc b/Hadronization/ClusterFissioner.cc
--- a/Hadronization/ClusterFissioner.cc
+++ b/Hadronization/ClusterFissioner.cc
@@ -1,1677 +1,1671 @@
 // -*- C++ -*-
 //
 // ClusterFissioner.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
 // Copyright (C) 2002-2019 The Herwig Collaboration
 //
 // Herwig is licenced under version 3 of the GPL, see COPYING for details.
 // Please respect the MCnet academic guidelines, see GUIDELINES for details.
 //
 //
 // Thisk is the implementation of the non-inlined, non-templated member
 // functions of the ClusterFissioner class.
 //
 
 #include "ClusterFissioner.h"
 #include <ThePEG/Interface/ClassDocumentation.h>
 #include <ThePEG/Interface/Reference.h>
 #include <ThePEG/Interface/Parameter.h>
 #include <ThePEG/Interface/Switch.h>
 #include <ThePEG/Persistency/PersistentOStream.h>
 #include <ThePEG/Persistency/PersistentIStream.h>
 #include <ThePEG/PDT/EnumParticles.h>
 #include "Herwig/Utilities/Kinematics.h"
 #include "Cluster.h"
 #include "ThePEG/Repository/UseRandom.h"
 #include "ThePEG/Repository/EventGenerator.h"
 #include <ThePEG/Utilities/DescribeClass.h>
 #include "ThePEG/Interface/ParMap.h"
-
 #include "Herwig/Utilities/AlphaS.h"
 
-// #include <boost/numeric/ublas/matrix.hpp>
-// #include <boost/numeric/ublas/io.hpp>
-// #include <boost/numeric/ublas/lu.hpp>
-// #include <cassert>
-// #include <vector>
 using namespace Herwig;
 
 DescribeClass<ClusterFissioner,Interfaced>
 describeClusterFissioner("Herwig::ClusterFissioner","Herwig.so");
 
 ClusterFissioner::ClusterFissioner() :
   _clMaxLight(3.35*GeV),
   _clMaxDiquark(3.35*GeV),
   _clMaxExotic(3.35*GeV),
   _clPowLight(2.0),
   _clPowDiquark(2.0),
   _clPowExotic(2.0),
   _pSplitLight(1.0),
   _pSplitExotic(1.0),
   _phaseSpaceWeights(0),
   _dim(4),
   _fissionCluster(0),
   _kinematicThresholdChoice(0),
   _pwtDIquark(0.0),
   _diquarkClusterFission(0),
   _btClM(1.0*GeV),
   _iopRem(1),
   _kappa(1.0e15*GeV/meter),
   _enhanceSProb(0),
   _m0Fission(2.*GeV),
   _massMeasure(0),
   _probPowFactor(4.0),
   _probShift(0.0),
   _kinThresholdShift(1.0*sqr(GeV)),
   _strictDiquarkKinematics(0),
   _covariantBoost(false),
 	_hadronizingStrangeDiquarks(2),
 	_writeOut(0)
 {
 }
 ClusterFissioner::~ClusterFissioner(){
 }
 IBPtr ClusterFissioner::clone() const {
   return new_ptr(*this);
 }
 
 IBPtr ClusterFissioner::fullclone() const {
   return new_ptr(*this);
 }
 
 void ClusterFissioner::persistentOutput(PersistentOStream & os) const {
   os << ounit(_clMaxLight,GeV) << ounit(_clMaxHeavy,GeV) << ounit(_clMaxDiquark,GeV) << ounit(_clMaxExotic,GeV)
 		 << _clPowLight << _clPowHeavy << _clPowDiquark << _clPowExotic
 		 << _pSplitLight << _pSplitHeavy << _pSplitExotic
      << _fissionCluster << _fissionPwt
 	 << _pwtDIquark
 	 << _diquarkClusterFission
 	 << ounit(_btClM,GeV)
      << _iopRem  << ounit(_kappa, GeV/meter)
      << _enhanceSProb << ounit(_m0Fission,GeV) << _massMeasure
 		 << _dim << _phaseSpaceWeights
      << _hadronSpectrum << _kinematicThresholdChoice
      << _probPowFactor << _probShift << ounit(_kinThresholdShift,sqr(GeV))
 	 << _strictDiquarkKinematics
 	 << _covariantBoost
 	 << _hadronizingStrangeDiquarks
 	 << _writeOut
 	 ;
 }
 
 void ClusterFissioner::persistentInput(PersistentIStream & is, int) {
   is >> iunit(_clMaxLight,GeV) >> iunit(_clMaxHeavy,GeV) >> iunit(_clMaxDiquark,GeV) >> iunit(_clMaxExotic,GeV)
 		 >> _clPowLight >> _clPowHeavy >> _clPowDiquark >> _clPowExotic
 		 >> _pSplitLight >> _pSplitHeavy >> _pSplitExotic
      >> _fissionCluster >> _fissionPwt
 	 >> _pwtDIquark
 	 >> _diquarkClusterFission
    >> iunit(_btClM,GeV)
 	 	 >> _iopRem >> iunit(_kappa, GeV/meter)
      >> _enhanceSProb >> iunit(_m0Fission,GeV) >> _massMeasure
 		 >> _dim >> _phaseSpaceWeights
      >> _hadronSpectrum >> _kinematicThresholdChoice
      >> _probPowFactor >> _probShift >> iunit(_kinThresholdShift,sqr(GeV))
 	 >> _strictDiquarkKinematics
 	 >> _covariantBoost
 	 >> _hadronizingStrangeDiquarks
 	 >> _writeOut
 	 ;
 }
 void ClusterFissioner::doinit() {
 	Interfaced::doinit();
 	if (_writeOut){
 		std::ofstream out("data_CluFis.dat", std::ios::out);
 		out.close();
 	}
   for ( const long& id : spectrum()->heavyHadronizingQuarks() ) {
     if ( _pSplitHeavy.find(id) == _pSplitHeavy.end() ||
 	 _clPowHeavy.find(id) == _clPowHeavy.end() ||
 	 _clMaxHeavy.find(id) == _clMaxHeavy.end() ){
 			std::cout << "id = "<<id << std::endl;
       throw InitException() << "not all parameters have been set for heavy quark cluster fission";
 		}
   }
   // for default Pwts not needed to initialize
   if (_fissionCluster==0) return;  
   for ( const long& id : spectrum()->lightHadronizingQuarks() ) {
 	  if ( _fissionPwt.find(id) == _fissionPwt.end() )
 		  // check that all relevant weights are set
 		  throw InitException() << "fission weights for light quarks have not been set";
   }
   double pwtDquark=_fissionPwt.find(ParticleID::d)->second;
   double pwtUquark=_fissionPwt.find(ParticleID::u)->second;
   double pwtSquark=_fissionPwt.find(ParticleID::s)->second;
   // TODO better solution for this magic  number alternative
   _fissionPwt[1103] =       _pwtDIquark * pwtDquark * pwtDquark;
   _fissionPwt[2101] = 0.5 * _pwtDIquark * pwtUquark * pwtDquark;
   _fissionPwt[2203] =       _pwtDIquark * pwtUquark * pwtUquark;
 	if (_hadronizingStrangeDiquarks>0) {
 		_fissionPwt[3101] = 0.5 * _pwtDIquark * pwtSquark * pwtDquark;
 		_fissionPwt[3201] = 0.5 * _pwtDIquark * pwtSquark * pwtUquark;
 		if (_hadronizingStrangeDiquarks==2) {
 			_fissionPwt[3303] =       _pwtDIquark* pwtSquark * pwtSquark;
 		}
 	}
 }
 
 void ClusterFissioner::Init() {
 
   static ClassDocumentation<ClusterFissioner> documentation
     ("Class responsibles for chopping up the clusters");
 
   static Reference<ClusterFissioner,HadronSpectrum> interfaceHadronSpectrum
     ("HadronSpectrum",
      "Set the Hadron spectrum for this cluster fissioner.",
      &ClusterFissioner::_hadronSpectrum, false, false, true, false);
 
   // ClMax for light, Bottom, Charm and exotic (e.g. Susy) quarks
   static Parameter<ClusterFissioner,Energy>
     interfaceClMaxLight ("ClMaxLight","cluster max mass for light quarks (unit [GeV])",
                     &ClusterFissioner::_clMaxLight, GeV, 3.35*GeV, ZERO, 100.0*GeV,
 		    false,false,false);  
   static Parameter<ClusterFissioner,Energy>
     interfaceClMaxDiquark ("ClMaxDiquark","cluster max mass for light hadronizing diquarks (unit [GeV])",
                     &ClusterFissioner::_clMaxDiquark, GeV, 3.35*GeV, ZERO, 100.0*GeV,
 		    false,false,false);
   static ParMap<ClusterFissioner,Energy> interfaceClMaxHeavy
     ("ClMaxHeavy",
      "ClMax for heavy quarks",
      &ClusterFissioner::_clMaxHeavy, GeV, -1, 3.35*GeV, ZERO, 100.0*GeV,
      false, false, Interface::upperlim);
   static Parameter<ClusterFissioner,Energy>
     interfaceClMaxExotic ("ClMaxExotic","cluster max mass  for exotic quarks (unit [GeV])",
                     &ClusterFissioner::_clMaxExotic, GeV, 3.35*GeV, ZERO, 100.0*GeV,
 		    false,false,false);
 
  // ClPow for light, Bottom, Charm and exotic (e.g. Susy) quarks
  static Parameter<ClusterFissioner,double>
     interfaceClPowLight ("ClPowLight","cluster mass exponent for light quarks",
                     &ClusterFissioner::_clPowLight, 0, 2.0, 0.0, 10.0,false,false,false); 
   static ParMap<ClusterFissioner,double> interfaceClPowHeavy
     ("ClPowHeavy",
      "ClPow for heavy quarks",
      &ClusterFissioner::_clPowHeavy, -1, 1.0, 0.0, 10.0,
      false, false, Interface::upperlim); 
  static Parameter<ClusterFissioner,double>
     interfaceClPowDiquark ("ClPowDiquark","cluster mass exponent for light hadronizing diquarks",
                     &ClusterFissioner::_clPowDiquark, 0, 2.0, 0.0, 10.0,false,false,false); 
  static Parameter<ClusterFissioner,double>
     interfaceClPowExotic ("ClPowExotic","cluster mass exponent for exotic quarks",
                     &ClusterFissioner::_clPowExotic, 0, 2.0, 0.0, 10.0,false,false,false);
 
  // PSplit for light, Bottom, Charm and exotic (e.g. Susy) quarks
   static Parameter<ClusterFissioner,double>
     interfacePSplitLight ("PSplitLight","cluster mass splitting param for light quarks",
                     &ClusterFissioner::_pSplitLight, 0, 1.0, 0.0, 10.0,false,false,false);
   static ParMap<ClusterFissioner,double> interfacePSplitHeavy
     ("PSplitHeavy",
      "PSplit for heavy quarks",
      &ClusterFissioner::_pSplitHeavy, -1, 1.0, 0.0, 10.0,
      false, false, Interface::upperlim);
  static Parameter<ClusterFissioner,double>
     interfacePSplitExotic ("PSplitExotic","cluster mass splitting param for exotic quarks",
                     &ClusterFissioner::_pSplitExotic, 0, 1.0, 0.0, 10.0,false,false,false);
 
 
   static Switch<ClusterFissioner,int> interfaceFission
     ("Fission",
      "Option for different Fission options",
      &ClusterFissioner::_fissionCluster, 1, false, false);
   static SwitchOption interfaceFissionDefault
     (interfaceFission,
      "Default",
      "Normal cluster fission which depends on the hadron spectrum class.",
      0);
   static SwitchOption interfaceFissionNew
     (interfaceFission,
      "New",
      "Alternative cluster fission which does not depend on the hadron spectrum class",
      1);
   static SwitchOption interfaceFissionNewDiquarkSuppression
     (interfaceFission,
      "NewDiquarkSuppression",
      "Alternative cluster fission which does not depend on the hadron spectrum class"
 		 " and includes a suppression of AlphaS^2(Mc) for Diquark Production during "
 		 "Cluster Fission",
      -1);
 
 
   static Switch<ClusterFissioner,int> interfaceDiquarkClusterFission
     ("DiquarkClusterFission",
      "Allow clusters to fission to 1 or 2 diquark Clusters or Turn off diquark fission completely",
      &ClusterFissioner::_diquarkClusterFission, 0, false, false);
   static SwitchOption interfaceDiquarkClusterFissionAll
 	(interfaceDiquarkClusterFission,
      "All",
      "Allow diquark clusters and baryon clusters to fission to new diquark Clusters",
      2);
   static SwitchOption interfaceDiquarkClusterFissionOnlyBaryonClusters
 	(interfaceDiquarkClusterFission,
      "OnlyBaryonClusters",
      "Allow only baryon clusters to fission to new diquark Clusters",
      1);
   static SwitchOption interfaceDiquarkClusterFissionNo
     (interfaceDiquarkClusterFission,
      "No",
      "Don't allow clusters to fission to new diquark Clusters",
      0);
   static SwitchOption interfaceDiquarkClusterFissionOff
     (interfaceDiquarkClusterFission,
      "Off",
      "Don't allow clusters fission to draw diquarks ",
      -1);
 
   static ParMap<ClusterFissioner,double> interfaceFissionPwt
     ("FissionPwt",
      "The weights for quarks in the fission process.",
      &ClusterFissioner::_fissionPwt, -1, 1.0, 0.0, 10.0,
      false, false, Interface::upperlim);
 
   static Switch<ClusterFissioner,int> interfaceRemnantOption
     ("RemnantOption",
      "Option for the treatment of remnant clusters",
      &ClusterFissioner::_iopRem, 1, false, false);
   static SwitchOption interfaceRemnantOptionSoft
     (interfaceRemnantOption,
      "Soft",
      "Both clusters produced in the fission of the beam cluster"
      " are treated as soft clusters.",
      0);
   static SwitchOption interfaceRemnantOptionHard
     (interfaceRemnantOption,
      "Hard",
      "Only the cluster containing the remnant is treated as a soft cluster.",
      1);
   static SwitchOption interfaceRemnantOptionVeryHard
     (interfaceRemnantOption,
      "VeryHard",
      "Even remnant clusters are treated as hard, i.e. all clusters the same",
      2);
 
   static Parameter<ClusterFissioner,Energy> interfaceBTCLM
     ("SoftClusterFactor",
      "Parameter for the mass spectrum of remnant clusters",
      &ClusterFissioner::_btClM, GeV, 1.*GeV, 0.1*GeV, 10.0*GeV,
      false, false, Interface::limited);
 
 
   static Parameter<ClusterFissioner,Tension> interfaceStringTension
     ("StringTension",
      "String tension used in vertex displacement calculation",
      &ClusterFissioner::_kappa, GeV/meter,
      1.0e15*GeV/meter, ZERO, ZERO,
      false, false, Interface::lowerlim);
 
   static Switch<ClusterFissioner,int> interfaceEnhanceSProb
     ("EnhanceSProb",
      "Option for enhancing strangeness",
      &ClusterFissioner::_enhanceSProb, 0, false, false);
   static SwitchOption interfaceEnhanceSProbNo
     (interfaceEnhanceSProb,
      "No",
      "No strangeness enhancement.",
      0);
   static SwitchOption interfaceEnhanceSProbScaled
     (interfaceEnhanceSProb,
      "Scaled",
      "Scaled strangeness enhancement",
      1);
   static SwitchOption interfaceEnhanceSProbExponential
     (interfaceEnhanceSProb,
      "Exponential",
      "Exponential strangeness enhancement",
      2);
 
    static Switch<ClusterFissioner,int> interfaceMassMeasure
      ("MassMeasure",
       "Option to use different mass measures",
       &ClusterFissioner::_massMeasure,0,false,false);
    static SwitchOption interfaceMassMeasureMass
      (interfaceMassMeasure,
       "Mass",
       "Mass Measure",
       0);
    static SwitchOption interfaceMassMeasureLambda
      (interfaceMassMeasure,
       "Lambda",
       "Lambda Measure",
       1);
 
   static Parameter<ClusterFissioner,Energy> interfaceFissionMassScale
     ("FissionMassScale",
      "Cluster fission mass scale",
      &ClusterFissioner::_m0Fission, GeV, 2.0*GeV, 0.1*GeV, 50.*GeV,
      false, false, Interface::limited);
 
   static Parameter<ClusterFissioner,double> interfaceProbPowFactor
      ("ProbabilityPowerFactor",
       "Power factor in ClusterFissioner bell probablity function",
       &ClusterFissioner::_probPowFactor, 2.0, 0.001, 20.0,
       false, false, Interface::limited);
 
   static Parameter<ClusterFissioner,double> interfaceProbShift
      ("ProbabilityShift",
       "Shifts from the center in ClausterFissioner bell probablity function",
       &ClusterFissioner::_probShift, 0.0, -10.0, 10.0,
       false, false, Interface::limited);
 
   static Parameter<ClusterFissioner,Energy2> interfaceKineticThresholdShift
      ("KineticThresholdShift",
       "Shifts from the kinetic threshold in ClusterFissioner",
       &ClusterFissioner::_kinThresholdShift, sqr(GeV), 0.*sqr(GeV), -10.0*sqr(GeV), 10.0*sqr(GeV),
       false, false, Interface::limited);
 
   static Switch<ClusterFissioner,int> interfaceKinematicThreshold
     ("KinematicThreshold",
      "Option for using static or dynamic kinematic thresholds in cluster splittings",
      &ClusterFissioner::_kinematicThresholdChoice, 0, false, false);
   static SwitchOption interfaceKinematicThresholdStatic
     (interfaceKinematicThreshold,
      "Static",
      "Set static kinematic thresholds for cluster splittings.",
      0);
   static SwitchOption interfaceKinematicThresholdDynamic
     (interfaceKinematicThreshold,
      "Dynamic",
      "Set dynamic kinematic thresholds for cluster splittings.",
      1);
 
   static Switch<ClusterFissioner,bool> interfaceCovariantBoost
     ("CovariantBoost",
      "Use single Covariant Boost for Cluster Fission",
      &ClusterFissioner::_covariantBoost, false, false, false);
   static SwitchOption interfaceCovariantBoostYes
     (interfaceCovariantBoost,
      "Yes",
      "Use Covariant boost",
      true);
   static SwitchOption interfaceCovariantBoostNo
     (interfaceCovariantBoost,
      "No",
      "Do NOT use Covariant boost",
      false);
   
 
   static Switch<ClusterFissioner,int> interfaceStrictDiquarkKinematics
     ("StrictDiquarkKinematics",
      "Option for selecting different selection criterions of diquarks for ClusterFission",
      &ClusterFissioner::_strictDiquarkKinematics, 0, false, false);
   static SwitchOption interfaceStrictDiquarkKinematicsLoose
     (interfaceStrictDiquarkKinematics,
      "Loose",
      "No kinematic threshold for diquark selection except for Mass bigger than 2 baryons",
      0);
   static SwitchOption interfaceStrictDiquarkKinematicsStrict
     (interfaceStrictDiquarkKinematics,
      "Strict",
      "Resulting clusters are at least as heavy as 2 lightest baryons",
      1);
 
   static Parameter<ClusterFissioner,double> interfacePwtDIquark
      ("PwtDIquark",
       "specific probability for choosing a d diquark",
       &ClusterFissioner::_pwtDIquark, 0.0, 0.0, 10.0,
       false, false, Interface::limited);
 
   static Switch<ClusterFissioner,int> interfacePhaseSpaceWeights
     ("PhaseSpaceWeights",
      "Include phase space weights.",
      &ClusterFissioner::_phaseSpaceWeights, 0, false, false);
   static SwitchOption interfacePhaseSpaceWeightsNo
     (interfacePhaseSpaceWeights,
      "No",
      "Do not include the effect of cluster phase space",
      0);
   static SwitchOption interfacePhaseSpaceWeightsYes
     (interfacePhaseSpaceWeights,
      "Yes",
      "Do include the effect of cluster fission phase space "
 		 "related to constituent masses."
 		 "Note: Need static Threshold choice",
      1);
   static SwitchOption interfacePhaseSpaceWeightsUseHadronMasses
     (interfacePhaseSpaceWeights,
      "UseHadronMasses",
      "Do include the effect of cluster fission phase space "
 		 "related to hadron masses."
 		 "Note: Need static Threshold choice",
      2);
   static SwitchOption interfacePhaseSpaceWeightsNoConstituentMasses
     (interfacePhaseSpaceWeights,
      "NoConstituentMasses",
      "Do not include the effect of cluster fission phase space "
 		 "related to constituent masses."
 		 "Note: Need static Threshold choice",
      3);
 
   static Parameter<ClusterFissioner,double>
     interfaceDim ("Dimension","Dimension in which phase space weights are calculated",
 		  &ClusterFissioner::_dim, 0, 4.0, 0.0, 10.0,false,false,false);
 
 	// Allowing for strange diquarks in the ClusterFission
   static Switch<ClusterFissioner,unsigned int> interfaceHadronizingStrangeDiquarks
     ("HadronizingStrangeDiquarks",
      "Option for adding strange diquarks to Cluster Fission (if Fission = New or Hybrid is enabled)",
      &ClusterFissioner::_hadronizingStrangeDiquarks, 0, false, false);
   static SwitchOption interfaceHadronizingStrangeDiquarksNo
     (interfaceHadronizingStrangeDiquarks,
      "No",
      "No strangeness containing diquarks during Cluster Fission",
      0);
   static SwitchOption interfaceHadronizingStrangeDiquarksOnlySingleStrange
     (interfaceHadronizingStrangeDiquarks,
      "OnlySingleStrange",
      "Only one strangeness containing diquarks during Cluster Fission i.e. su,sd",
      1);
   static SwitchOption interfaceHadronizingStrangeDiquarksAll
     (interfaceHadronizingStrangeDiquarks,
      "All",
      "All strangeness containing diquarks during Cluster Fission  i.e. su,sd,ss",
      2);
 
 }
 
 tPVector ClusterFissioner::fission(ClusterVector & clusters, bool softUEisOn) {
   // return if no clusters
   if (clusters.empty()) return tPVector();
 
   /*****************
    * Loop over the (input) collection of cluster pointers, and store in
    * the vector  splitClusters  all the clusters that need to be split
    * (these are beam clusters, if soft underlying event is off, and
    *  heavy non-beam clusters).
    ********************/
 
   stack<ClusterPtr> splitClusters;
   for(ClusterVector::iterator it = clusters.begin() ;
       it != clusters.end() ; ++it) {
     /**************
      * Skip 3-component clusters that have been redefined (as 2-component
      * clusters) or not available clusters. The latter check is indeed
      * redundant now, but it is used for possible future extensions in which,
      * for some reasons, some of the clusters found by ClusterFinder are tagged
      * straight away as not available.
      **************/
     if((*it)->isRedefined() || !(*it)->isAvailable()) continue;
     // if the cluster is a beam cluster add it to the vector of clusters
     // to be split or if it is heavy
     if((*it)->isBeamCluster() || isHeavy(*it)) splitClusters.push(*it);
   }
   tPVector finalhadrons;
   cut(splitClusters, clusters, finalhadrons, softUEisOn);
   return finalhadrons;
 }
 
 void ClusterFissioner::cut(stack<ClusterPtr> & clusterStack,
    			   ClusterVector &clusters, tPVector & finalhadrons,
 			   bool softUEisOn) {
   /**************************************************
    * This method does the splitting of the cluster pointed by  cluPtr
    * and "recursively" by all of its cluster children, if heavy. All of these
    * new children clusters are added (indeed the pointers to them) to the
    * collection of cluster pointers  collecCluPtr. The method works as follows.
    * Initially the vector vecCluPtr contains just the input pointer to the
    * cluster to be split. Then it will be filled "recursively" by all
    * of the cluster's children that are heavy enough to require, in their turn,
    * to be split. In each loop, the last element of the vector vecCluPtr is
    * considered (only once because it is then removed from the vector).
    * This approach is conceptually recursive, but avoid the overhead of
    * a concrete recursive function. Furthermore it requires minimal changes
    * in the case that the fission of an heavy cluster could produce more
    * than two cluster children as assumed now.
    *
    * Draw the masses: for normal, non-beam clusters a power-like mass dist
    * is used, whereas for beam clusters a fast-decreasing exponential mass
    * dist is used instead (to avoid many iterative splitting which could
    * produce an unphysical large transverse energy from a supposed soft beam
    * remnant process).
    ****************************************/
   // Here we recursively loop over clusters in the stack and cut them
   while (!clusterStack.empty()) {
     // take the last element of the vector
     ClusterPtr iCluster = clusterStack.top(); clusterStack.pop();
     // split it
     cutType ct = iCluster->numComponents() == 2 ?
       cutTwo(iCluster, finalhadrons, softUEisOn) :
       cutThree(iCluster, finalhadrons, softUEisOn);
 
     // There are cases when we don't want to split, even if it fails mass test
     if(!ct.first.first || !ct.second.first) {
       // if an unsplit beam cluster leave if for the underlying event
       if(iCluster->isBeamCluster() && softUEisOn)
 	iCluster->isAvailable(false);
       continue;
     }
     // check if clusters
     ClusterPtr one = dynamic_ptr_cast<ClusterPtr>(ct.first.first);
     ClusterPtr two = dynamic_ptr_cast<ClusterPtr>(ct.second.first);
     // is a beam cluster must be split into two clusters
     if(iCluster->isBeamCluster() && (!one||!two) && softUEisOn) {
       iCluster->isAvailable(false);
       continue;
     }
 
     // There should always be a intermediate quark(s) from the splitting
     assert(ct.first.second && ct.second.second);
     /// \todo sort out motherless quark pairs here. Watch out for 'quark in final state' errors
     iCluster->addChild(ct.first.first);
     //    iCluster->addChild(ct.first.second);
     //    ct.first.second->addChild(ct.first.first);
 
     iCluster->addChild(ct.second.first);
     //    iCluster->addChild(ct.second.second);
     //    ct.second.second->addChild(ct.second.first);
 
     // Sometimes the clusters decay C -> H + C' or C -> H + H' rather then C -> C' + C''
     if(one) {
       clusters.push_back(one);
       if(one->isBeamCluster() && softUEisOn)
 	one->isAvailable(false);
       if(isHeavy(one) && one->isAvailable())
 	clusterStack.push(one);
     }
     if(two) {
       clusters.push_back(two);
       if(two->isBeamCluster() && softUEisOn)
 	two->isAvailable(false);
       if(isHeavy(two) && two->isAvailable())
 	clusterStack.push(two);
     }
   }
 }
 
 ClusterFissioner::cutType
 ClusterFissioner::cutTwo(ClusterPtr & cluster, tPVector & finalhadrons,
 			 bool softUEisOn) {
   // need to make sure only 2-cpt clusters get here
   assert(cluster->numComponents() == 2);
   tPPtr ptrQ1 = cluster->particle(0);
   tPPtr ptrQ2 = cluster->particle(1);
   Energy Mc = cluster->mass();
   assert(ptrQ1);
   assert(ptrQ2);
 
   // And check if those particles are from a beam remnant
   bool rem1 = cluster->isBeamRemnant(0);
   bool rem2 = cluster->isBeamRemnant(1);
   // workout which distribution to use
   bool soft1(false),soft2(false);
   switch (_iopRem) {
   case 0:
     soft1 = rem1 || rem2;
     soft2 = rem2 || rem1;
     break;
   case 1:
     soft1 = rem1;
     soft2 = rem2;
     break;
   }
   // Initialization for the exponential ("soft") mass distribution.
   static const int max_loop = 1000;
   int counter = 0;
   Energy Mc1 = ZERO, Mc2 = ZERO,m1=ZERO,m2=ZERO,m=ZERO;
   tcPDPtr toHadron1, toHadron2;
   PPtr newPtr1 = PPtr ();
   PPtr newPtr2 = PPtr ();
   bool succeeded = false;
   Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2;
   do
     {
       succeeded = false;
       ++counter;
       // get a flavour for the qqbar pair
       drawNewFlavour(newPtr1,newPtr2,cluster);
       // check for right ordering
       assert (ptrQ2);
       assert (newPtr2);
       assert (ptrQ2->dataPtr());
       assert (newPtr2->dataPtr());
       if(cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2)) {
 				swap(newPtr1, newPtr2);
 				// check again
 				if(cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2)) {
 					throw Exception()
 						<< "ClusterFissioner cannot split the cluster ("
 						<< ptrQ1->PDGName() << ' ' << ptrQ2->PDGName()
 						<< ") into hadrons.\n" << Exception::runerror;
 				}
       }
       // Check that new clusters can produce particles and there is enough
       // phase space to choose the drawn flavour
       m1 = ptrQ1->data().constituentMass();
       m2 = ptrQ2->data().constituentMass();
       m  = newPtr1->data().constituentMass();
       // Do not split in the case there is no phase space available
       if(Mc <  m1+m + m2+m) continue;
 
       pQ1.setMass(m1);
       pQone.setMass(m);
       pQtwo.setMass(m);
       pQ2.setMass(m2);
 
       double weightMasses = drawNewMasses(Mc, soft1, soft2, pClu1, pClu2,
 					ptrQ1, pQ1, newPtr1, pQone,
 					newPtr2, pQtwo, ptrQ2, pQ2);
 			if (weightMasses==0.0)
 				continue;
 
       // derive the masses of the children
       Mc1 = pClu1.mass();
       Mc2 = pClu2.mass();
       // static kinematic threshold
       if(_kinematicThresholdChoice == 0) {
         if (Mc1 < m1+m || Mc2 < m+m2 || Mc1+Mc2 > Mc) continue;
 				if (_phaseSpaceWeights==2 && 
 						(   Mc1 < spectrum()->massLightestHadronPair(ptrQ1->dataPtr(),newPtr1->dataPtr())
 						 || Mc2 < spectrum()->massLightestHadronPair(ptrQ2->dataPtr(),newPtr2->dataPtr()) ))
 						continue;
       // dynamic kinematic threshold
       }
       else if(_kinematicThresholdChoice == 1) {
         bool C1 = ( sqr(Mc1) )/( sqr(m1) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false;
         bool C2 = ( sqr(Mc2) )/( sqr(m2) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false;
         bool C3 = ( sqr(Mc1) + sqr(Mc2) )/( sqr(Mc) ) > 1.0 ? true : false;
 
         if( C1 || C2 || C3 ) continue;
       }
       if ( _phaseSpaceWeights && phaseSpaceVeto(Mc,Mc1,Mc2,m,m1,m2, ptrQ1, ptrQ2, newPtr1, 0.0) ) {
 				// reduce counter as it regards only the mass sampling
 				counter--;
 				continue;
       }
 
       /**************************
        * New (not present in Fortran Herwig):
        * check whether the fragment masses  Mc1  and  Mc2  are above the
        * threshold for the production of the lightest pair of hadrons with the
        * right flavours. If not, then set by hand the mass to the lightest
        * single hadron with the right flavours, in order to solve correctly
        * the kinematics, and (later in this method) create directly such hadron
        * and add it to the children hadrons of the cluster that undergoes the
        * fission (i.e. the one pointed by iCluPtr). Notice that in this special
        * case, the heavy cluster that undergoes the fission has one single
        * cluster child and one single hadron child. We prefer this approach,
        * rather than to create a light cluster, with the mass set equal to
        * the lightest hadron, and let then the class LightClusterDecayer to do
        * the job to decay it to that single hadron, for two reasons:
        * First, because the sum of the masses of the two constituents can be,
        * in this case, greater than the mass of that hadron, hence it would
        * be impossible to solve the kinematics for such two components, and
        * therefore we would have a cluster whose components are undefined.
        * Second, the algorithm is faster, because it avoids the reshuffling
        * procedure that would be necessary if we used LightClusterDecayer
        * to decay the light cluster to the lightest hadron.
        ****************************/
       // override chosen masses if needed
       toHadron1 = _hadronSpectrum->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc1);
       if(toHadron1) { Mc1 = toHadron1->mass(); pClu1.setMass(Mc1); }
       toHadron2 = _hadronSpectrum->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc2);
       if(toHadron2) { Mc2 = toHadron2->mass(); pClu2.setMass(Mc2); }
       // if a beam cluster not allowed to decay to hadrons
       if(cluster->isBeamCluster() && (toHadron1||toHadron2) && softUEisOn)
 				continue;
       // Check if the decay kinematics is still possible: if not then
       // force the one-hadron decay for the other cluster as well.
       if(Mc1 + Mc2  >  Mc) {
 				if(!toHadron1) {
 					toHadron1 = _hadronSpectrum->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc-Mc2);
 					if(toHadron1) { Mc1 = toHadron1->mass(); pClu1.setMass(Mc1); }
 				}
 				else if(!toHadron2) {
 					toHadron2 = _hadronSpectrum->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc-Mc1);
 					if(toHadron2) { Mc2 = toHadron2->mass(); pClu2.setMass(Mc2); }
 				}
       }
       succeeded = (Mc >= Mc1+Mc2);
     }
   while (!succeeded && counter < max_loop);
 
   if(counter >= max_loop) {
     static const PPtr null = PPtr();
     return cutType(PPair(null,null),PPair(null,null));
   }
 
   // Determined the (5-components) momenta (all in the LAB frame)
   Lorentz5Momentum pClu = cluster->momentum(); // known
   Lorentz5Momentum p0Q1 = ptrQ1->momentum(); // known (mom Q1 before fission)
   calculateKinematics(pClu,p0Q1,toHadron1,toHadron2,
 		      pClu1,pClu2,pQ1,pQone,pQtwo,pQ2);
 
   /******************
    * The previous methods have determined the kinematics and positions
    * of C -> C1 + C2.
    * In the case that one of the two product is light, that means either
    * decayOneHadronClu1 or decayOneHadronClu2 is true, then the momenta
    * of the components of that light product have not been determined,
    * and a (light) cluster will not be created: the heavy father cluster
    * decays, in this case, into a single (not-light) cluster and a
    * single hadron. In the other, "normal", cases the father cluster
    * decays into two clusters, each of which has well defined components.
    * Notice that, in the case of components which point to particles, the
    * momenta of the components is properly set to the new values, whereas
    * we do not change the momenta of the pointed particles, because we
    * want to keep all of the information (that is the new momentum of a
    * component after the splitting, which is contained in the _momentum
    * member of the Component class, and the (old) momentum of that component
    * before the splitting, which is contained in the momentum of the
    * pointed particle). Please not make confusion of this only apparent
    * inconsistency!
    ********************/
   LorentzPoint posC,pos1,pos2;
   posC = cluster->vertex();
   calculatePositions(pClu, posC, pClu1, pClu2, pos1, pos2);
   cutType rval;
   if(toHadron1) {
     rval.first = produceHadron(toHadron1, newPtr1, pClu1, pos1);
     finalhadrons.push_back(rval.first.first);
   }
   else {
     rval.first = produceCluster(ptrQ1, newPtr1, pClu1, pos1, pQ1, pQone, rem1);
   }
   if(toHadron2) {
     rval.second = produceHadron(toHadron2, newPtr2, pClu2, pos2);
     finalhadrons.push_back(rval.second.first);
   }
   else {
     rval.second = produceCluster(ptrQ2, newPtr2, pClu2, pos2, pQ2, pQtwo, rem2);
   }
   return rval;
 }
 
 ClusterFissioner::cutType
 ClusterFissioner::cutThree(ClusterPtr & cluster, tPVector & finalhadrons,
 			   bool softUEisOn) {
   // need to make sure only 3-cpt clusters get here
   assert(cluster->numComponents() == 3);
   // extract quarks
   tPPtr ptrQ[3] = {cluster->particle(0),cluster->particle(1),cluster->particle(2)};
   assert( ptrQ[0] && ptrQ[1] && ptrQ[2] );
   // find maximum mass pair
   Energy mmax(ZERO);
   Lorentz5Momentum pDiQuark;
   int iq1(-1),iq2(-1);
   Lorentz5Momentum psum;
   for(int q1=0;q1<3;++q1) {
     psum+= ptrQ[q1]->momentum();
     for(int q2=q1+1;q2<3;++q2) {
       Lorentz5Momentum ptest = ptrQ[q1]->momentum()+ptrQ[q2]->momentum();
       ptest.rescaleMass();
       Energy mass = ptest.m();
       if(mass>mmax) {
 	mmax = mass;
 	pDiQuark = ptest;
 	iq1  = q1;
 	iq2  = q2;
       }
     }
   }
   // and the spectators
   int iother(-1);
   for(int ix=0;ix<3;++ix) if(ix!=iq1&&ix!=iq2) iother=ix;
   assert(iq1>=0&&iq2>=0&&iother>=0);
 
   // And check if those particles are from a beam remnant
   bool rem1 = cluster->isBeamRemnant(iq1);
   bool rem2 = cluster->isBeamRemnant(iq2);
   // workout which distribution to use
   bool soft1(false),soft2(false);
   switch (_iopRem) {
   case 0:
     soft1 = rem1 || rem2;
     soft2 = rem2 || rem1;
     break;
   case 1:
     soft1 = rem1;
     soft2 = rem2;
     break;
   }
   // Initialization for the exponential ("soft") mass distribution.
   static const int max_loop = 1000;
   int counter = 0;
   Energy Mc1 = ZERO, Mc2 = ZERO, m1=ZERO, m2=ZERO, m=ZERO;
   tcPDPtr toHadron;
   bool toDiQuark(false);
   PPtr newPtr1 = PPtr(),newPtr2 = PPtr();
   PDPtr diquark;
   bool succeeded = false;
   Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2;
   do {
     succeeded = false;
     ++counter;
 
     // get a flavour for the qqbar pair
     drawNewFlavour(newPtr1,newPtr2,cluster);
     
     // randomly pick which will be (anti)diquark and which a mesonic cluster
     if(UseRandom::rndbool()) {
       swap(iq1,iq2);
       swap(rem1,rem2);
     }
     // check first order
     if(cantMakeHadron(ptrQ[iq1], newPtr1) || !spectrum()->canMakeDiQuark(ptrQ[iq2], newPtr2)) {
       swap(newPtr1,newPtr2);
     }
     // check again
     if(cantMakeHadron(ptrQ[iq1], newPtr1) || !spectrum()->canMakeDiQuark(ptrQ[iq2], newPtr2)) {
       throw Exception()
 	<< "ClusterFissioner cannot split the cluster ("
 	<< ptrQ[iq1]->PDGName() << ' ' << ptrQ[iq2]->PDGName()
 	<< ") into a hadron and diquark.\n" << Exception::runerror;
     }
     // Check that new clusters can produce particles and there is enough
     // phase space to choose the drawn flavour
     m1 = ptrQ[iq1]->data().constituentMass();
     m2 = ptrQ[iq2]->data().constituentMass();
     m  = newPtr1->data().constituentMass();
     // Do not split in the case there is no phase space available
     if(mmax <  m1+m + m2+m) continue;
 
     pQ1.setMass(m1);
     pQone.setMass(m);
     pQtwo.setMass(m);
     pQ2.setMass(m2);
 
     double weightMasses = drawNewMasses(mmax, soft1, soft2, pClu1, pClu2,
 					    ptrQ[iq1], pQ1, newPtr1, pQone,
 					    newPtr2, pQtwo, ptrQ[iq1], pQ2);
 
 		if (weightMasses == 0.0) continue;
 
     Mc1 = pClu1.mass();
 		Mc2 = pClu2.mass();
 
     if(Mc1 < m1+m || Mc2 < m+m2 || Mc1+Mc2 > mmax) continue;
 
     if ( _phaseSpaceWeights && phaseSpaceVeto(mmax,Mc1,Mc2,m,m1,m2) ) {
 				// reduce counter as it regards only the mass sampling
 				counter--;
 				continue;
     }
     
     // check if need to force meson clster to hadron
     toHadron = _hadronSpectrum->chooseSingleHadron(ptrQ[iq1]->dataPtr(), newPtr1->dataPtr(),Mc1);
     if(toHadron) { Mc1 = toHadron->mass(); pClu1.setMass(Mc1); }
     // check if need to force diquark cluster to be on-shell
     toDiQuark = false;
     diquark = spectrum()->makeDiquark(ptrQ[iq2]->dataPtr(), newPtr2->dataPtr());
     if(Mc2 < diquark->constituentMass()) {
       Mc2 = diquark->constituentMass(); pClu2.setMass(Mc2);
       toDiQuark = true;
     }
     // if a beam cluster not allowed to decay to hadrons
     if(cluster->isBeamCluster() && toHadron && softUEisOn)
       continue;
     // Check if the decay kinematics is still possible: if not then
     // force the one-hadron decay for the other cluster as well.
     if(Mc1 + Mc2  >  mmax) {
       if(!toHadron) {
 	toHadron = _hadronSpectrum->chooseSingleHadron(ptrQ[iq1]->dataPtr(), newPtr1->dataPtr(),mmax-Mc2);
 	if(toHadron) { Mc1 = toHadron->mass(); pClu1.setMass(Mc1); }
       }
       else if(!toDiQuark) {
 	Mc2 = _hadronSpectrum->massLightestHadron(ptrQ[iq2]->dataPtr(), newPtr2->dataPtr()); pClu2.setMass(Mc2);
 	toDiQuark = true;
       }
     }
     succeeded = (mmax >= Mc1+Mc2);
   }
   while (!succeeded && counter < max_loop);
   // check no of tries
   if(counter >= max_loop) return cutType();
 
   // Determine the (5-components) momenta (all in the LAB frame)
   Lorentz5Momentum p0Q1 = ptrQ[iq1]->momentum();
   calculateKinematics(pDiQuark,p0Q1,toHadron,toDiQuark,
 		      pClu1,pClu2,pQ1,pQone,pQtwo,pQ2);
   // positions of the new clusters
   LorentzPoint pos1,pos2;
   Lorentz5Momentum pBaryon = pClu2+ptrQ[iother]->momentum();
   calculatePositions(cluster->momentum(), cluster->vertex(), pClu1, pBaryon, pos1, pos2);
   // first the mesonic cluster/meson
   cutType rval;
    if(toHadron) {
      rval.first = produceHadron(toHadron, newPtr1, pClu1, pos1);
      finalhadrons.push_back(rval.first.first);
    }
    else {
      rval.first = produceCluster(ptrQ[iq1], newPtr1, pClu1, pos1, pQ1, pQone, rem1);
    }
    if(toDiQuark) {
      rem2 |= cluster->isBeamRemnant(iother);
      PPtr newDiQuark = diquark->produceParticle(pClu2);
      rval.second = produceCluster(newDiQuark, ptrQ[iother], pBaryon, pos2, pClu2,
       				  ptrQ[iother]->momentum(), rem2);
    }
    else {
      rval.second = produceCluster(ptrQ[iq2], newPtr2, pBaryon, pos2, pQ2, pQtwo, rem2,
 				  ptrQ[iother],cluster->isBeamRemnant(iother));
    }
    cluster->isAvailable(false);
    return rval;
 }
 
 ClusterFissioner::PPair
 ClusterFissioner::produceHadron(tcPDPtr hadron, tPPtr newPtr, const Lorentz5Momentum &a,
 				const LorentzPoint &b) const {
   PPair rval;
   if(hadron->coloured()) {
     rval.first = (_hadronSpectrum->lightestHadron(hadron,newPtr->dataPtr()))->produceParticle();
   }
   else
     rval.first = hadron->produceParticle();
   rval.second = newPtr;
   rval.first->set5Momentum(a);
   rval.first->setVertex(b);
   return rval;
 }
 
 ClusterFissioner::PPair ClusterFissioner::produceCluster(tPPtr ptrQ, tPPtr newPtr,
 							 const Lorentz5Momentum & a,
 				                         const LorentzPoint & b,
 							 const Lorentz5Momentum & c,
 				                         const Lorentz5Momentum & d,
 							 bool isRem,
 							 tPPtr spect, bool remSpect) const {
   PPair rval;
   rval.second = newPtr;
   ClusterPtr cluster = !spect ? new_ptr(Cluster(ptrQ,rval.second)) : new_ptr(Cluster(ptrQ,rval.second,spect));
   rval.first = cluster;
   cluster->set5Momentum(a);
   cluster->setVertex(b);
   assert(cluster->particle(0)->id() == ptrQ->id());
   cluster->particle(0)->set5Momentum(c);
   cluster->particle(1)->set5Momentum(d);
   cluster->setBeamRemnant(0,isRem);
   if(remSpect) cluster->setBeamRemnant(2,remSpect);
   return rval;
 }
 
 /**
  * Calculate the phase space weight for  M1*M2*(2 body PhaseSpace) ignore constituent masses
  */
 double ClusterFissioner::weightFlatPhaseSpaceNoConstituentMasses(const Energy Mc, const Energy Mc1, const Energy Mc2) const {
 	double M_temp = Mc/GeV;
 	double M1_temp = Mc1/GeV;
 	double M2_temp = Mc2/GeV;
 	if (sqr(M_temp)<sqr(M1_temp+M2_temp)) {
 		// This should be checked before
 		throw Exception()
 			<< "ERROR in ClusterFissioner::weightFlatPhaseSpaceNoConstituentMasses\n"
 			<< "ClusterFissioner has not checked Masses properly\n"
 			<< "Mc  = " << M_temp << "\n"
 			<< "Mc1 = " << M1_temp << "\n"
 			<< "Mc2 = " << M2_temp << "\n"
 			<< Exception::warning;
 		return 0.0;
 	}
 	double lam = Kinematics::kaellen(M_temp,  M1_temp, M2_temp);
 	double ratio;
 	//  new weight with the Jacobi factor M1*M2 of the Mass integration
 	double PSweight = M1_temp*M2_temp*pow(sqrt(lam),_dim-3.);
 	// overestimate only possible for dim>=3.0
 	assert(_dim>=3.0);
 	//  new improved overestimate with the Jacobi factor M1*M2 of the Mass integration
 	double overEstimate = pow(6.0*sqrt(3.0), 3.0 - _dim)*pow(M_temp, 2.*(_dim-2.));
 	ratio = PSweight/overEstimate;
 	if (!(ratio>=0) || !(ratio<=1)) {
 		throw Exception()
 			<< "ERROR in ClusterFissioner::weightFlatPhaseSpaceNoConstituentMasses\n"
 			<< "ratio = " <<ratio
 			<<" M "<<M_temp
 			<<" M1 "<<M1_temp
 			<<" M2 "<<M2_temp <<"\t"<<_dim<<"\t" << lam 
 			<<"\t"<< overEstimate<<"\n\n"
 			<< Exception::runerror;
 	}
 	return ratio;
 }
 /**
  * Calculate the phase space weight for  M1*M2*(2 body PhaseSpace)^3
  */
 double ClusterFissioner::weightPhaseSpaceConstituentMasses(const Energy Mc, const Energy Mc1, const Energy Mc2,
 		const Energy m, const Energy m1, const Energy m2, const double power) const {
 	double M_temp = Mc/GeV;
 	double M1_temp = Mc1/GeV;
 	double M2_temp = Mc2/GeV;
 	double m_temp = m/GeV;
 	double m1_temp = m1/GeV;
 	double m2_temp = m2/GeV;
 	if (sqr(M_temp)<sqr(M1_temp+M2_temp)
 			|| sqr(M1_temp)<sqr(m1_temp+m_temp)
 			|| sqr(M2_temp)<sqr(m2_temp+m_temp)
 			) {
 		// This should be checked before
 		throw Exception()
 			<< "ERROR in ClusterFissioner::weightPhaseSpaceConstituentMasses\n"
 			<< "ClusterFissioner has not checked Masses properly\n"
 			<< "Mc  = " << M_temp << "\n"
 			<< "Mc1 = " << M1_temp << "\n"
 			<< "Mc2 = " << M2_temp << "\n"
 			<< "m1  = " << m1_temp << "\n"
 			<< "m2  = " << m2_temp << "\n"
 			<< "m   = " << m_temp << "\n"
 			<< Exception::warning;
 		return 0.0;
 	}
 	double lam1 = Kinematics::kaellen(M1_temp, m1_temp, m_temp);
 	double lam2 = Kinematics::kaellen(M2_temp, m2_temp, m_temp);
 	double lam3 = Kinematics::kaellen(M_temp,  M1_temp, M2_temp);
 	double ratio;
 	//  new weight with the Jacobi factor M1*M2 of the Mass integration
 	double PSweight = pow(lam1*lam2*lam3,(_dim-3.)/2.0)*pow(M1_temp*M2_temp,3.-_dim);
 	// overestimate only possible for dim>=3.0
 	assert(_dim>=3.0);
 	//  new improved overestimate with the Jacobi factor M1*M2 of the Mass integration
 	double overEstimate = pow(6.0*sqrt(3.0), 3.0 - _dim)*pow(M_temp, 4.*_dim-12.);
 	ratio = PSweight/overEstimate;
 	if (!(ratio>=0)) std::cout << "ratio = " <<ratio<<" M "<<M_temp<<" M1 "<<M1_temp<<" M2 "<<M2_temp<<" m1 "<<m1_temp<<" m2 "<<m2_temp<<" m "<<m_temp<<"\t"<<_dim<<"\t" << lam1<<"\t"<< lam2<<"\t" << lam3 <<"\t"<< overEstimate<<"\n\n";
 	if (!(ratio>=0) || !(ratio<=1)) {
 		throw Exception()
 			<< "ERROR in ClusterFissioner::weightPhaseSpaceConstituentMasses\n"
 			<< "ratio = " <<ratio
 			<<" M "<<M_temp
 			<<" M1 "<<M1_temp
 			<<" M2 "<<M2_temp
 			<<" m1 "<<m1_temp
 			<<" m2 "<<m2_temp
 			<<" m "<<m_temp <<"\t"<<_dim
 			<<"\t" << lam1<<"\t"<< lam2<<"\t" << lam3
 			<<"\t"<< overEstimate<<"\n\n"
 			<< Exception::runerror;
 	}
 	// multiply by overestimate of power of matrix element to modulate the phase space with (M1*M2)^power
 	if (power) {
 		double powerLawOver = power<0 ? pow(Mc1*Mc2/((m1+m)*(m2+m)),power):pow(Mc1*Mc2/((Mc-(m1+m))*(Mc-(m2+m))),power);
 		ratio*=powerLawOver;
 	}
 	return ratio;
 }
 /**
  * Calculate the phase space weight for  M1*M2*(2 body PhaseSpace)^3
  * using Hadron Masses
  */
 double ClusterFissioner::weightFlatPhaseSpaceHadronMasses(const Energy Mc, const Energy Mc1, const Energy Mc2, tcPPtr pQ, tcPPtr pQ1, tcPPtr pQ2) const {
 	auto LHP1 = spectrum()->lightestHadronPair(pQ1->dataPtr(),pQ->dataPtr());
 	auto LHP2 = spectrum()->lightestHadronPair(pQ2->dataPtr(),pQ->dataPtr());
 	if (sqr(Mc1)<sqr(LHP1.first->mass()+LHP1.second->mass()))
 		return true;
 	if (sqr(Mc2)<sqr(LHP2.first->mass()+LHP2.second->mass()))
 		return true;
 	double lam1 = sqrt(Kinematics::kaellen(Mc1/GeV, LHP1.first->mass()/GeV, LHP1.second->mass()/GeV));
 	double lam2 = sqrt(Kinematics::kaellen(Mc2/GeV, LHP2.first->mass()/GeV, LHP2.second->mass()/GeV));
 	double lam3 = sqrt(Kinematics::kaellen(Mc/GeV,  Mc1/GeV, Mc2/GeV));
 	double ratio;
 	//  new weight with the Jacobi factor M1*M2 of the Mass integration
 	double PSweight = pow(lam1*lam2*lam3,_dim-3.)*pow(Mc1*Mc2/GeV2,3.-_dim);
 	// overestimate only possible for dim>=3.0
 	assert(_dim>=3.0);
 	//  new improved overestimate with the Jacobi factor M1*M2 of the Mass integration
 	double overEstimate = pow(6.0*sqrt(3.0), 3.0 - _dim)*pow(Mc/GeV, 4.*_dim-12.);
 	ratio = PSweight/overEstimate;
 	if (!(ratio>=0) || !(ratio<=1)) {
 		throw Exception()
 			<< "ERROR in ClusterFissioner::weightFlatPhaseSpaceHadronMasses\n"
 			<< "ratio = " <<ratio
 			<<" M "<<Mc/GeV
 			<<" M1 "<<Mc1/GeV
 			<<" M2 "<<Mc2/GeV <<"\t"<<_dim<<"\t" << lam1<<"\t" << lam2  <<"\t" << lam3 
 			<<"\t"<< overEstimate<<"\n\n"
 			<< Exception::runerror;
 	}
 	return ratio;
 }
 
 /**
  * Veto for the phase space weight
  * returns true if proposed Masses are rejected
  * 					else returns false
  */
 bool ClusterFissioner::phaseSpaceVeto(const Energy Mc, const Energy Mc1, const Energy Mc2,
 		const Energy m, const Energy m1, const Energy m2, tcPPtr pQ1, tcPPtr pQ2, tcPPtr pQ, const double power) const {
 	switch (_phaseSpaceWeights)
 	{
 		case 1:
 			return phaseSpaceVetoConstituentMasses(Mc, Mc1, Mc2, m, m1, m2, power);
 		case 2:
 			return phaseSpaceVetoHadronPairs(Mc, Mc1, Mc2, pQ, pQ1, pQ2);
 		case 3:
 			return phaseSpaceVetoNoConstituentMasses(Mc, Mc1, Mc2);
 		default:
 			assert(false);
 	}
 }
 
 /**
  * Veto for the phase space weight
  * returns true if proposed Masses are rejected
  * 					else returns false
  */
 bool ClusterFissioner::phaseSpaceVetoConstituentMasses(const Energy Mc, const Energy Mc1, const Energy Mc2,
 		const Energy m, const Energy m1, const Energy m2, const double power) const {
 	return (UseRandom::rnd()>weightPhaseSpaceConstituentMasses(Mc, Mc1, Mc2, m, m1, m2, power));
 }
 bool ClusterFissioner::phaseSpaceVetoNoConstituentMasses(const Energy Mc, const Energy Mc1, const Energy Mc2) const {
 	return (UseRandom::rnd()>weightFlatPhaseSpaceNoConstituentMasses(Mc, Mc1, Mc2));
 }
 
 bool ClusterFissioner::phaseSpaceVetoHadronPairs(const Energy Mc, const Energy Mc1, const Energy Mc2, tcPPtr pQ, tcPPtr pQ1, tcPPtr pQ2) const {
 	return (UseRandom::rnd()>weightFlatPhaseSpaceHadronMasses(Mc, Mc1, Mc2, pQ, pQ1, pQ2));
 }
 
 /**
  * Calculate the masses and possibly kinematics of the cluster
  * fission at hand; if calculateKineamtics is perfomring non-trivial
  * steps kinematics claulcated here will be overriden. Currentl;y resorts to the default
  */
 double ClusterFissioner::drawNewMasses(const Energy Mc, const bool soft1, const bool soft2,
 		Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2,
 		tcPPtr ptrQ1, const Lorentz5Momentum& pQ1,
 		tcPPtr, const Lorentz5Momentum& pQone,
 		tcPPtr, const Lorentz5Momentum& pQtwo,
 		tcPPtr ptrQ2,  const Lorentz5Momentum& pQ2) const {
 	// power for splitting
 	double exp1 = !spectrum()->isExotic(ptrQ1->dataPtr()) ? _pSplitLight : _pSplitExotic;
 	double exp2 = !spectrum()->isExotic(ptrQ2->dataPtr()) ? _pSplitLight : _pSplitExotic;
 	for ( const long& id : spectrum()->heavyHadronizingQuarks() ) {
 		assert(_pSplitHeavy.find(id) != _pSplitHeavy.end());
 		if ( spectrum()->hasHeavy(id,ptrQ1->dataPtr()) ) exp1 = _pSplitHeavy.find(id)->second;
 		if ( spectrum()->hasHeavy(id,ptrQ2->dataPtr()) ) exp2 = _pSplitHeavy.find(id)->second;
 	}
 
 	Energy M1 = drawChildMass(Mc,pQ1.mass(),pQ2.mass(),pQone.mass(),exp1,soft1);
 	Energy M2 = drawChildMass(Mc,pQ2.mass(),pQ1.mass(),pQtwo.mass(),exp2,soft2);
 
 	pClu1.setMass(M1);
 	pClu2.setMass(M2);
 
 	return 1.0; // succeeds
 }
 
 
 void ClusterFissioner::drawNewFlavourDiquarks(PPtr& newPtrPos,PPtr& newPtrNeg,
 		const ClusterPtr & clu) const {
 
 	// Flavour is assumed to be only  u, d, s,  with weights
 	// (which are not normalized probabilities) given
 	// by the same weights as used in HadronsSelector for
 	// the decay of clusters into two hadrons.
 
 	unsigned hasDiquarks=0;
 	assert(clu->numComponents()==2);
 	tcPDPtr pD1=clu->particle(0)->dataPtr();
 	tcPDPtr pD2=clu->particle(1)->dataPtr();
 	bool isDiq1=DiquarkMatcher::Check(pD1->id());
 	if (isDiq1) hasDiquarks++;
 	bool isDiq2=DiquarkMatcher::Check(pD2->id());
 	if (isDiq2) hasDiquarks++;
 	assert(hasDiquarks<=2);
 	Energy Mc=(clu->momentum().mass());
   Energy minMass;
   double weight;
   Selector<long> choice;
   // adding quark-antiquark pairs to the selection list
   for ( const long& id : spectrum()->lightHadronizingQuarks() ) {
 		minMass=spectrum()->massLightestHadronPair(pD1,pD2);
 	  if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id);
 		else if (abs(_fissionCluster)==1) choice.insert(_fissionPwt.find(id)->second,id);
 	  else assert(false);
   }
   // adding diquark-antidiquark pairs to the selection list
   switch (hasDiquarks)
   {
   	case 0:
 		for ( const long& id : spectrum()->lightHadronizingDiquarks() ) {
 			if (_strictDiquarkKinematics) {
 				tPDPtr cand = getParticleData(id);
 				Energy mH1=spectrum()->massLightestHadron(pD2,cand);
 				Energy mH2=spectrum()->massLightestHadron(cand,pD1);
 				minMass = mH1 + mH2;
 			}
 			else {
 				minMass = spectrum()->massLightestBaryonPair(pD1,pD2);
 			}
 			if (Mc < minMass) continue;
 			if (_fissionCluster==0) weight = _hadronSpectrum->pwtQuark(id);
 			else if (abs(_fissionCluster)==1) weight = _fissionPwt.find(id)->second;
 			else assert(false); 
 			if (_fissionCluster==-1)
 				weight*=sqr(Herwig::Math::alphaS(Mc, 0.25*GeV,3, 2));
 			choice.insert(weight,id);
 		}
   		break;
   	case 1:
 		if (_diquarkClusterFission<1) break;
 		for ( const long& id : spectrum()->lightHadronizingDiquarks() ) {
 			tPDPtr diq = getParticleData(id);
 			if (isDiq1)
 				minMass = spectrum()->massLightestHadron(pD2,diq)
 						+ spectrum()->massLightestBaryonPair(diq,pD1);
 			else
 				minMass = spectrum()->massLightestHadron(pD1,diq)
 						+ spectrum()->massLightestBaryonPair(diq,pD2);
 			if (Mc < minMass) continue;
 			if (_fissionCluster==0) weight = _hadronSpectrum->pwtQuark(id);
 			else if (abs(_fissionCluster)==1) weight = _fissionPwt.find(id)->second;
 			else assert(false); 
 			if (_fissionCluster==-1)
 				weight*=sqr(Herwig::Math::alphaS(Mc, 0.25*GeV,3, 2));
 			choice.insert(weight,id);
 		}
 		break;
   	case 2:
 		if (_diquarkClusterFission<2) break;
 		for ( const long& id : spectrum()->lightHadronizingDiquarks() ) {
 			tPDPtr diq = getParticleData(id);
 			if (Mc < spectrum()->massLightestBaryonPair(pD1,pD2)) {
 				throw Exception() << "Found Diquark Cluster:\n" << *clu << "\nwith  MassCluster = "
 					<< ounit(Mc,GeV) <<" GeV MassLightestBaryonPair = "
 					<< ounit(spectrum()->massLightestBaryonPair(pD1,pD2) ,GeV)
 					<< " GeV cannot decay" << Exception::eventerror;
 			}
 			minMass = spectrum()->massLightestBaryonPair(pD1,diq)
 					+ spectrum()->massLightestBaryonPair(diq,pD2);
 			if (Mc < minMass) continue;
 			if (_fissionCluster==0) weight = _hadronSpectrum->pwtQuark(id);
 			else if (abs(_fissionCluster)==1) weight = _fissionPwt.find(id)->second;
 			else assert(false); 
 			if (_fissionCluster==-1)
 				weight*=sqr(Herwig::Math::alphaS(Mc, 0.25*GeV,3, 2));
 			choice.insert(weight,id);
 		}
   		break;
   	default:
   		assert(false);
   }
   assert(choice.size()>0);
   long idNew = choice.select(UseRandom::rnd());
   newPtrPos = getParticle(idNew);
   newPtrNeg = getParticle(-idNew);
   assert(newPtrPos);
   assert(newPtrNeg);
   assert(newPtrPos->dataPtr());
   assert(newPtrNeg->dataPtr());
 
 }
 
 void ClusterFissioner::drawNewFlavourQuarks(PPtr& newPtrPos,PPtr& newPtrNeg) const {
 
   // Flavour is assumed to be only  u, d, s,  with weights
   // (which are not normalized probabilities) given
   // by the same weights as used in HadronsSelector for
   // the decay of clusters into two hadrons.
 
 
   Selector<long> choice;
   switch(abs(_fissionCluster)){
   case 0:
     for ( const long& id : spectrum()->lightHadronizingQuarks() )
       choice.insert(_hadronSpectrum->pwtQuark(id),id);
     break;
   case 1:
     for ( const long& id : spectrum()->lightHadronizingQuarks() )
       choice.insert(_fissionPwt.find(id)->second,id);
     break;
   default :
     assert(false);
   }
   long idNew = choice.select(UseRandom::rnd());
   newPtrPos = getParticle(idNew);
   newPtrNeg = getParticle(-idNew);
   assert (newPtrPos);
   assert(newPtrNeg);
   assert (newPtrPos->dataPtr());
   assert(newPtrNeg->dataPtr());
 
 }
 
 void ClusterFissioner::drawNewFlavourEnhanced(PPtr& newPtrPos,PPtr& newPtrNeg,
                                               Energy2 mass2) const {
 
   if ( spectrum()->gluonId() != ParticleID::g )
     throw Exception() << "strange enhancement only working with Standard Model hadronization"
 		      << Exception::runerror;
   
   // Flavour is assumed to be only  u, d, s,  with weights
   // (which are not normalized probabilities) given
   // by the same weights as used in HadronsSelector for
   // the decay of clusters into two hadrons.
 
     double prob_d = 0.;
     double prob_u = 0.;
     double prob_s = 0.;
     double scale = abs(double(sqr(_m0Fission)/mass2));
     // Choose which splitting weights you wish to use
 switch(abs(_fissionCluster)){
   // 0: ClusterFissioner and ClusterDecayer use the same weights
   case 0:
     prob_d = _hadronSpectrum->pwtQuark(ParticleID::d);
      prob_u = _hadronSpectrum->pwtQuark(ParticleID::u);
      /* Strangeness enhancement:
         Case 1: probability scaling
         Case 2: Exponential scaling
      */
      if (_enhanceSProb == 1)
         prob_s = (_maxScale < scale) ? 0. : pow(_hadronSpectrum->pwtQuark(ParticleID::s),scale);
      else if (_enhanceSProb == 2)
         prob_s = (_maxScale < scale) ? 0. : exp(-scale);
     break;
     /* 1: ClusterFissioner uses its own unique set of weights,
        i.e. decoupled from ClusterDecayer */
   case 1:
     prob_d = _fissionPwt.find(ParticleID::d)->second;
     prob_u = _fissionPwt.find(ParticleID::u)->second;
      if (_enhanceSProb == 1)
        prob_s = (_maxScale < scale) ? 0. : pow(_fissionPwt.find(ParticleID::s)->second,scale);
      else if (_enhanceSProb == 2)
         prob_s = (_maxScale < scale) ? 0. : exp(-scale);
     break;
   default:
     assert(false);
   }
 
   int choice = UseRandom::rnd3(prob_u, prob_d, prob_s);
   long idNew = 0;
   switch (choice) {
   case 0: idNew = ThePEG::ParticleID::u; break;
   case 1: idNew = ThePEG::ParticleID::d; break;
   case 2: idNew = ThePEG::ParticleID::s; break;
   }
   newPtrPos = getParticle(idNew);
   newPtrNeg = getParticle(-idNew);
   assert (newPtrPos);
   assert(newPtrNeg);
   assert (newPtrPos->dataPtr());
   assert(newPtrNeg->dataPtr());
 
 }
 
 Energy2 ClusterFissioner::clustermass(const ClusterPtr & cluster) const {
   Lorentz5Momentum pIn = cluster->momentum();
   Energy2 endpointmass2 = sqr(cluster->particle(0)->mass() +
   cluster->particle(1)->mass());
   Energy2 singletm2 = pIn.m2();
   // Return either the cluster mass, or the lambda measure
   return (_massMeasure == 0) ? singletm2 : singletm2 - endpointmass2;
 }
 
 Energy ClusterFissioner::drawChildMass(const Energy M, const Energy m1,
 				       const Energy m2, const Energy m,
 				       const double expt, const bool soft) const {
 
   /***************************
    * This method, given in input the cluster mass Mclu of an heavy cluster C,
    * made of consituents of masses m1 and m2, draws the masses Mclu1 and Mclu2
    * of, respectively, the children cluster C1, made of constituent masses m1
    * and m, and cluster C2, of mass Mclu2 and made of constituent masses m2
    * and m. The mass is extracted from one of the two following mass
    * distributions:
    *   --- power-like ("normal" distribution)
    *                        d(Prob) / d(M^exponent) = const
    *       where the exponent can be different from the two children C1 (exp1)
    *       and C2 (exponent2).
    *   --- exponential ("soft" distribution)
    *                        d(Prob) / d(M^2) = exp(-b*M)
    *       where b = 2.0 / average.
    * Such distributions are limited below by the masses of
    * the constituents quarks, and above from the mass of decaying cluster C.
    * The choice of which of the two mass distributions to use for each of the
    * two cluster children is dictated by  iRemnant  (see below).
    * If the number of attempts to extract a pair of mass values that are
    * kinematically acceptable is above some fixed number (max_loop, see below)
    * the method gives up and returns false; otherwise, when it succeeds, it
    * returns true.
    *
    * These distributions have been modified from HERWIG:
    * Before these were:
    *      Mclu1 = m1 + (Mclu - m1 - m2)*pow( rnd(), 1.0/exponent1 );
    * The new one coded here is a more efficient version, same density
    * but taking into account 'in phase space from' beforehand
    ***************************/
   // hard cluster
   if(!soft) {
     return pow(UseRandom::rnd(pow((M-m1-m2-m)*UnitRemoval::InvE, expt),
 			      pow(m*UnitRemoval::InvE, expt)), 1./expt
 	       )*UnitRemoval::E + m1;
   }
   // Otherwise it uses a soft mass distribution
   else {
     static const InvEnergy b = 2.0 / _btClM;
     Energy max = M-m1-m2-2.0*m;
     double rmin = b*max;
     rmin = ( rmin < 50 ) ? exp(-rmin) : 0.;
     double r1;
     do {
       r1 = UseRandom::rnd(rmin, 1.0) * UseRandom::rnd(rmin, 1.0);
     }
     while (r1 < rmin);
     return m1 + m - log(r1)/b;
   }
 }
 
 void ClusterFissioner::calculateKinematics(const Lorentz5Momentum & pClu,
 					   const Lorentz5Momentum & p0Q1,
 					   const bool toHadron1,
 					   const bool toHadron2,
 					   Lorentz5Momentum & pClu1,
 					   Lorentz5Momentum & pClu2,
 					   Lorentz5Momentum & pQ1,
 					   Lorentz5Momentum & pQbar,
 					   Lorentz5Momentum & pQ,
 					   Lorentz5Momentum & pQ2bar) const {
 
   /******************
    * This method solves the kinematics of the two body cluster decay:
    *    C (Q1 Q2bar)  --->  C1 (Q1 Qbar)  +  C2 (Q Q2bar)
    * In input we receive the momentum of C, pClu, and the momentum
    * of the quark Q1 (constituent of C), p0Q1, both in the LAB frame.
    * Furthermore, two boolean variables inform whether the two fission
    * products (C1, C2) decay immediately into a single hadron (in which
    * case the cluster itself is identify with that hadron) and we do
    * not have to solve the kinematics of the components (Q1,Qbar) for
    * C1 and (Q,Q2bar) for C2.
    * The output is given by the following momenta (all 5-components,
    * and all in the LAB frame):
    *   pClu1 , pClu2   respectively of   C1 , C2
    *   pQ1 , pQbar     respectively of   Q1 , Qbar  in  C1
    *   pQ  , pQ2bar    respectively of   Q  , Q2    in  C2
    * The assumption, suggested from the string model, is that, in C frame,
    * C1 and its constituents Q1 and Qbar are collinear, and collinear to
    * the direction of Q1 in C (that is before cluster decay); similarly,
    * (always in the C frame) C2 and its constituents Q and Q2bar are
    * collinear (and therefore anti-collinear with C1,Q1,Qbar).
    * The solution is then obtained by using Lorentz boosts, as follows.
    * The kinematics of C1 and C2 is solved in their parent C frame,
    * and then boosted back in the LAB. The kinematics of Q1 and Qbar
    * is solved in their parent C1 frame and then boosted back in the LAB;
    * similarly, the kinematics of Q and Q2bar is solved in their parent
    * C2 frame and then boosted back in the LAB. In each of the three
    * "two-body decay"-like cases, we use the fact that the direction
    * of the motion of the decay products is known in the rest frame of
    * their parent. This is obvious for the first case in which the
    * parent rest frame is C; but it is also true in the other two cases
    * where the rest frames are C1 and C2. This is because C1 and C2
    * are boosted w.r.t. C in the same direction where their components,
    * respectively (Q1,Qbar) and (Q,Q2bar) move in C1 and C2 rest frame
    * respectively.
    * Of course, although the notation used assumed that C = (Q1 Q2bar)
    * where Q1 is a quark and Q2bar an antiquark, indeed everything remain
    * unchanged also in all following cases:
    *  Q1 quark, Q2bar antiquark;           --> Q quark;
    *  Q1 antiquark , Q2bar quark;          --> Q antiquark;
    *  Q1 quark, Q2bar diquark;             --> Q quark
    *  Q1 antiquark, Q2bar anti-diquark;    --> Q antiquark
    *  Q1 diquark, Q2bar quark              --> Q antiquark
    *  Q1 anti-diquark, Q2bar antiquark;    --> Q quark
    **************************/
 
   // Calculate the unit three-vector, in the C frame, along which
   // all of the constituents and children clusters move.
 	Lorentz5Momentum u(p0Q1);
 	u.boost( -pClu.boostVector() );        // boost from LAB to C
   // the unit three-vector is then  u.vect().unit()
 
   // Calculate the momenta of C1 and C2 in the (parent) C frame first,
   // where the direction of C1 is u.vect().unit(), and then boost back in the
   // LAB frame.
 
   if (pClu.m() < pClu1.mass() + pClu2.mass() ) {
     throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (A)"
 		      << Exception::eventerror;
   }
   Kinematics::twoBodyDecay(pClu, pClu1.mass(), pClu2.mass(),
 				 u.vect().unit(), pClu1, pClu2);
 
   // In the case that cluster1 does not decay immediately into a single hadron,
   // calculate the momenta of Q1 (as constituent of C1) and Qbar in the
   // (parent) C1 frame first, where the direction of Q1 is u.vect().unit(),
   // and then boost back in the LAB frame.
   if(!toHadron1) {
     if (pClu1.m() < pQ1.mass() + pQbar.mass() ) {
       throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (B)"
 			<< Exception::eventerror;
     }
     Kinematics::twoBodyDecay(pClu1, pQ1.mass(), pQbar.mass(),
 					 u.vect().unit(), pQ1, pQbar);
   }
 
   // In the case that cluster2 does not decay immediately into a single hadron,
   // Calculate the momenta of Q and Q2bar (as constituent of C2) in the
   // (parent) C2 frame first, where the direction of Q is u.vect().unit(),
   // and then boost back in the LAB frame.
   if(!toHadron2) {
     if (pClu2.m() < pQ.mass() + pQ2bar.mass() ) {
       throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (C)"
 			<< Exception::eventerror;
     }
     Kinematics::twoBodyDecay(pClu2, pQ.mass(), pQ2bar.mass(),
 					 u.vect().unit(), pQ, pQ2bar);
   }
 }
 
 void ClusterFissioner::calculatePositions(const Lorentz5Momentum & pClu,
 					  const LorentzPoint & positionClu,
 					  const Lorentz5Momentum & pClu1,
 					  const Lorentz5Momentum & pClu2,
 					  LorentzPoint & positionClu1,
 					  LorentzPoint & positionClu2) const {
   // Determine positions of cluster children.
   // See Marc Smith's thesis, page 127, formulas (4.122) and (4.123).
   Energy Mclu  = pClu.m();
   Energy Mclu1 = pClu1.m();
   Energy Mclu2 = pClu2.m();
 
   // Calculate the unit three-vector, in the C frame, along which
   // children clusters move.
   Lorentz5Momentum u(pClu1);
   u.boost( -pClu.boostVector() );        // boost from LAB to C frame
 
   // the unit three-vector is then  u.vect().unit()
 
   Energy pstarChild = Kinematics::pstarTwoBodyDecay(Mclu,Mclu1,Mclu2);
 
   // First, determine the relative positions of the children clusters
   // in the parent cluster reference frame.
 
   Energy2 mag2 = u.vect().mag2();
   InvEnergy fact = mag2>ZERO ? 1./sqrt(mag2) : 1./GeV;
 
   Length x1 = ( 0.25*Mclu + 0.5*( pstarChild + (sqr(Mclu2) - sqr(Mclu1))/(2.0*Mclu)))/_kappa;
   Length t1 = Mclu/_kappa - x1;
   LorentzDistance distanceClu1( x1 * fact * u.vect(), t1 );
 
   Length x2 = (-0.25*Mclu + 0.5*(-pstarChild + (sqr(Mclu2) - sqr(Mclu1))/(2.0*Mclu)))/_kappa;
   Length t2 = Mclu/_kappa + x2;
   LorentzDistance distanceClu2( x2 * fact * u.vect(), t2 );
 
   // Then, transform such relative positions from the parent cluster
   // reference frame to the Lab frame.
   distanceClu1.boost( pClu.boostVector() );
   distanceClu2.boost( pClu.boostVector() );
 
   // Finally, determine the absolute positions in the Lab frame.
   positionClu1 = positionClu + distanceClu1;
   positionClu2 = positionClu + distanceClu2;
 
 }
 
 bool ClusterFissioner::ProbabilityFunction(double scale, double threshold) {
   double cut = UseRandom::rnd(0.0,1.0);
   return 1./(1.+pow(abs((threshold-_probShift)/scale),_probPowFactor)) > cut ? true : false;
 }
 bool ClusterFissioner::ProbabilityFunctionPower(double Mass, double threshold) {
   double cut = UseRandom::rnd(0.0,1.0);
 	if ((Mass-threshold)<=0)
 		return false;
 	return 1.0/(1.0 + _probPowFactor*pow(1.0/(Mass-threshold),_clPowLight)) > cut ? true : false;
 }
 
 
 bool ClusterFissioner::isHeavy(tcClusterPtr clu) {
 	// particle data for constituents
 	tcPDPtr cptr[3]={tcPDPtr(),tcPDPtr(),tcPDPtr()};
 	bool hasDiquark=0;
 	for(size_t ix=0;ix<min(clu->numComponents(),3);++ix) {
 		cptr[ix]=clu->particle(ix)->dataPtr();
 		// Assuming diquark masses are ordered with larger id corresponding to larger masses
 		if (DiquarkMatcher::Check(*(cptr[ix]))) {
 			hasDiquark=true;
 			break;
 		}
 	}
 	// different parameters for exotic, bottom and charm clusters
 	double clpow = !spectrum()->isExotic(cptr[0],cptr[1],cptr[1]) ? _clPowLight : _clPowExotic;
 	Energy clmax = !spectrum()->isExotic(cptr[0],cptr[1],cptr[1]) ? _clMaxLight : _clMaxExotic;
 	// if no heavy quark is found in the cluster, but diquarks are present use 
 	// different ClMax and ClPow
 	if ( hasDiquark) {
 		clpow = _clPowDiquark;
 		clmax = _clMaxDiquark;
 	}
 
 	for ( const long& id : spectrum()->heavyHadronizingQuarks() ) {
 		if ( spectrum()->hasHeavy(id,cptr[0],cptr[1],cptr[1])) {
 			clpow = _clPowHeavy[id];
 			clmax = _clMaxHeavy[id];
 		}
 	}
 	// required test for SUSY clusters, since aboveCutoff alone
 	// cannot guarantee (Mc > m1 + m2 + 2*m) in cut()
 	static const Energy minmass
 		= getParticleData(ParticleID::d)->constituentMass();
 	bool aboveCutoff = false, canSplitMinimally = false;
 	// static kinematic threshold
 	if(_kinematicThresholdChoice == 0) {
 		aboveCutoff = (
 				pow(clu->mass()*UnitRemoval::InvE , clpow)
 				>
 				pow(clmax*UnitRemoval::InvE, clpow)
 				+ pow(clu->sumConstituentMasses()*UnitRemoval::InvE, clpow)
 				);
 
 		canSplitMinimally = clu->mass() > clu->sumConstituentMasses() + 2.0 * minmass;
 	}
 	// dynamic kinematic threshold
 	else if(_kinematicThresholdChoice == 1) {
 		//some smooth probablity function to create a dynamic thershold
 		double scale     = pow(clu->mass()/GeV , clpow);
 		double threshold = pow(clmax/GeV, clpow)
 			+ pow(clu->sumConstituentMasses()/GeV, clpow);
 		aboveCutoff = ProbabilityFunction(scale,threshold);
 
 		scale     = clu->mass()/GeV;
 		threshold = clu->sumConstituentMasses()/GeV + 2.0 * minmass/GeV;
 
 		canSplitMinimally = ProbabilityFunction(scale,threshold);
 	}
 	// probablistic kinematic threshold
 	else if(_kinematicThresholdChoice == 2) {
 		// Consistent power law for CF probability
 		double Mass     = clu->mass()/GeV;
 		double threshold = clu->sumConstituentMasses()/GeV + 2.0 * minmass/GeV;
 		aboveCutoff = ProbabilityFunctionPower(Mass,threshold + clmax/GeV);
 
 		canSplitMinimally = Mass - threshold>ZERO;
 	}
 
 	return aboveCutoff && canSplitMinimally;
 }