diff --git a/Hadronization/ClusterFissioner.cc b/Hadronization/ClusterFissioner.cc --- a/Hadronization/ClusterFissioner.cc +++ b/Hadronization/ClusterFissioner.cc @@ -1,1677 +1,1671 @@ // -*- C++ -*- // // ClusterFissioner.cc is a part of Herwig - A multi-purpose Monte Carlo event generator // Copyright (C) 2002-2019 The Herwig Collaboration // // Herwig is licenced under version 3 of the GPL, see COPYING for details. // Please respect the MCnet academic guidelines, see GUIDELINES for details. // // // Thisk is the implementation of the non-inlined, non-templated member // functions of the ClusterFissioner class. // #include "ClusterFissioner.h" #include <ThePEG/Interface/ClassDocumentation.h> #include <ThePEG/Interface/Reference.h> #include <ThePEG/Interface/Parameter.h> #include <ThePEG/Interface/Switch.h> #include <ThePEG/Persistency/PersistentOStream.h> #include <ThePEG/Persistency/PersistentIStream.h> #include <ThePEG/PDT/EnumParticles.h> #include "Herwig/Utilities/Kinematics.h" #include "Cluster.h" #include "ThePEG/Repository/UseRandom.h" #include "ThePEG/Repository/EventGenerator.h" #include <ThePEG/Utilities/DescribeClass.h> #include "ThePEG/Interface/ParMap.h" - #include "Herwig/Utilities/AlphaS.h" -// #include <boost/numeric/ublas/matrix.hpp> -// #include <boost/numeric/ublas/io.hpp> -// #include <boost/numeric/ublas/lu.hpp> -// #include <cassert> -// #include <vector> using namespace Herwig; DescribeClass<ClusterFissioner,Interfaced> describeClusterFissioner("Herwig::ClusterFissioner","Herwig.so"); ClusterFissioner::ClusterFissioner() : _clMaxLight(3.35*GeV), _clMaxDiquark(3.35*GeV), _clMaxExotic(3.35*GeV), _clPowLight(2.0), _clPowDiquark(2.0), _clPowExotic(2.0), _pSplitLight(1.0), _pSplitExotic(1.0), _phaseSpaceWeights(0), _dim(4), _fissionCluster(0), _kinematicThresholdChoice(0), _pwtDIquark(0.0), _diquarkClusterFission(0), _btClM(1.0*GeV), _iopRem(1), _kappa(1.0e15*GeV/meter), _enhanceSProb(0), _m0Fission(2.*GeV), _massMeasure(0), _probPowFactor(4.0), _probShift(0.0), _kinThresholdShift(1.0*sqr(GeV)), _strictDiquarkKinematics(0), _covariantBoost(false), _hadronizingStrangeDiquarks(2), _writeOut(0) { } ClusterFissioner::~ClusterFissioner(){ } IBPtr ClusterFissioner::clone() const { return new_ptr(*this); } IBPtr ClusterFissioner::fullclone() const { return new_ptr(*this); } void ClusterFissioner::persistentOutput(PersistentOStream & os) const { os << ounit(_clMaxLight,GeV) << ounit(_clMaxHeavy,GeV) << ounit(_clMaxDiquark,GeV) << ounit(_clMaxExotic,GeV) << _clPowLight << _clPowHeavy << _clPowDiquark << _clPowExotic << _pSplitLight << _pSplitHeavy << _pSplitExotic << _fissionCluster << _fissionPwt << _pwtDIquark << _diquarkClusterFission << ounit(_btClM,GeV) << _iopRem << ounit(_kappa, GeV/meter) << _enhanceSProb << ounit(_m0Fission,GeV) << _massMeasure << _dim << _phaseSpaceWeights << _hadronSpectrum << _kinematicThresholdChoice << _probPowFactor << _probShift << ounit(_kinThresholdShift,sqr(GeV)) << _strictDiquarkKinematics << _covariantBoost << _hadronizingStrangeDiquarks << _writeOut ; } void ClusterFissioner::persistentInput(PersistentIStream & is, int) { is >> iunit(_clMaxLight,GeV) >> iunit(_clMaxHeavy,GeV) >> iunit(_clMaxDiquark,GeV) >> iunit(_clMaxExotic,GeV) >> _clPowLight >> _clPowHeavy >> _clPowDiquark >> _clPowExotic >> _pSplitLight >> _pSplitHeavy >> _pSplitExotic >> _fissionCluster >> _fissionPwt >> _pwtDIquark >> _diquarkClusterFission >> iunit(_btClM,GeV) >> _iopRem >> iunit(_kappa, GeV/meter) >> _enhanceSProb >> iunit(_m0Fission,GeV) >> _massMeasure >> _dim >> _phaseSpaceWeights >> _hadronSpectrum >> _kinematicThresholdChoice >> _probPowFactor >> _probShift >> iunit(_kinThresholdShift,sqr(GeV)) >> _strictDiquarkKinematics >> _covariantBoost >> _hadronizingStrangeDiquarks >> _writeOut ; } void ClusterFissioner::doinit() { Interfaced::doinit(); if (_writeOut){ std::ofstream out("data_CluFis.dat", std::ios::out); out.close(); } for ( const long& id : spectrum()->heavyHadronizingQuarks() ) { if ( _pSplitHeavy.find(id) == _pSplitHeavy.end() || _clPowHeavy.find(id) == _clPowHeavy.end() || _clMaxHeavy.find(id) == _clMaxHeavy.end() ){ std::cout << "id = "<<id << std::endl; throw InitException() << "not all parameters have been set for heavy quark cluster fission"; } } // for default Pwts not needed to initialize if (_fissionCluster==0) return; for ( const long& id : spectrum()->lightHadronizingQuarks() ) { if ( _fissionPwt.find(id) == _fissionPwt.end() ) // check that all relevant weights are set throw InitException() << "fission weights for light quarks have not been set"; } double pwtDquark=_fissionPwt.find(ParticleID::d)->second; double pwtUquark=_fissionPwt.find(ParticleID::u)->second; double pwtSquark=_fissionPwt.find(ParticleID::s)->second; // TODO better solution for this magic number alternative _fissionPwt[1103] = _pwtDIquark * pwtDquark * pwtDquark; _fissionPwt[2101] = 0.5 * _pwtDIquark * pwtUquark * pwtDquark; _fissionPwt[2203] = _pwtDIquark * pwtUquark * pwtUquark; if (_hadronizingStrangeDiquarks>0) { _fissionPwt[3101] = 0.5 * _pwtDIquark * pwtSquark * pwtDquark; _fissionPwt[3201] = 0.5 * _pwtDIquark * pwtSquark * pwtUquark; if (_hadronizingStrangeDiquarks==2) { _fissionPwt[3303] = _pwtDIquark* pwtSquark * pwtSquark; } } } void ClusterFissioner::Init() { static ClassDocumentation<ClusterFissioner> documentation ("Class responsibles for chopping up the clusters"); static Reference<ClusterFissioner,HadronSpectrum> interfaceHadronSpectrum ("HadronSpectrum", "Set the Hadron spectrum for this cluster fissioner.", &ClusterFissioner::_hadronSpectrum, false, false, true, false); // ClMax for light, Bottom, Charm and exotic (e.g. Susy) quarks static Parameter<ClusterFissioner,Energy> interfaceClMaxLight ("ClMaxLight","cluster max mass for light quarks (unit [GeV])", &ClusterFissioner::_clMaxLight, GeV, 3.35*GeV, ZERO, 100.0*GeV, false,false,false); static Parameter<ClusterFissioner,Energy> interfaceClMaxDiquark ("ClMaxDiquark","cluster max mass for light hadronizing diquarks (unit [GeV])", &ClusterFissioner::_clMaxDiquark, GeV, 3.35*GeV, ZERO, 100.0*GeV, false,false,false); static ParMap<ClusterFissioner,Energy> interfaceClMaxHeavy ("ClMaxHeavy", "ClMax for heavy quarks", &ClusterFissioner::_clMaxHeavy, GeV, -1, 3.35*GeV, ZERO, 100.0*GeV, false, false, Interface::upperlim); static Parameter<ClusterFissioner,Energy> interfaceClMaxExotic ("ClMaxExotic","cluster max mass for exotic quarks (unit [GeV])", &ClusterFissioner::_clMaxExotic, GeV, 3.35*GeV, ZERO, 100.0*GeV, false,false,false); // ClPow for light, Bottom, Charm and exotic (e.g. Susy) quarks static Parameter<ClusterFissioner,double> interfaceClPowLight ("ClPowLight","cluster mass exponent for light quarks", &ClusterFissioner::_clPowLight, 0, 2.0, 0.0, 10.0,false,false,false); static ParMap<ClusterFissioner,double> interfaceClPowHeavy ("ClPowHeavy", "ClPow for heavy quarks", &ClusterFissioner::_clPowHeavy, -1, 1.0, 0.0, 10.0, false, false, Interface::upperlim); static Parameter<ClusterFissioner,double> interfaceClPowDiquark ("ClPowDiquark","cluster mass exponent for light hadronizing diquarks", &ClusterFissioner::_clPowDiquark, 0, 2.0, 0.0, 10.0,false,false,false); static Parameter<ClusterFissioner,double> interfaceClPowExotic ("ClPowExotic","cluster mass exponent for exotic quarks", &ClusterFissioner::_clPowExotic, 0, 2.0, 0.0, 10.0,false,false,false); // PSplit for light, Bottom, Charm and exotic (e.g. Susy) quarks static Parameter<ClusterFissioner,double> interfacePSplitLight ("PSplitLight","cluster mass splitting param for light quarks", &ClusterFissioner::_pSplitLight, 0, 1.0, 0.0, 10.0,false,false,false); static ParMap<ClusterFissioner,double> interfacePSplitHeavy ("PSplitHeavy", "PSplit for heavy quarks", &ClusterFissioner::_pSplitHeavy, -1, 1.0, 0.0, 10.0, false, false, Interface::upperlim); static Parameter<ClusterFissioner,double> interfacePSplitExotic ("PSplitExotic","cluster mass splitting param for exotic quarks", &ClusterFissioner::_pSplitExotic, 0, 1.0, 0.0, 10.0,false,false,false); static Switch<ClusterFissioner,int> interfaceFission ("Fission", "Option for different Fission options", &ClusterFissioner::_fissionCluster, 1, false, false); static SwitchOption interfaceFissionDefault (interfaceFission, "Default", "Normal cluster fission which depends on the hadron spectrum class.", 0); static SwitchOption interfaceFissionNew (interfaceFission, "New", "Alternative cluster fission which does not depend on the hadron spectrum class", 1); static SwitchOption interfaceFissionNewDiquarkSuppression (interfaceFission, "NewDiquarkSuppression", "Alternative cluster fission which does not depend on the hadron spectrum class" " and includes a suppression of AlphaS^2(Mc) for Diquark Production during " "Cluster Fission", -1); static Switch<ClusterFissioner,int> interfaceDiquarkClusterFission ("DiquarkClusterFission", "Allow clusters to fission to 1 or 2 diquark Clusters or Turn off diquark fission completely", &ClusterFissioner::_diquarkClusterFission, 0, false, false); static SwitchOption interfaceDiquarkClusterFissionAll (interfaceDiquarkClusterFission, "All", "Allow diquark clusters and baryon clusters to fission to new diquark Clusters", 2); static SwitchOption interfaceDiquarkClusterFissionOnlyBaryonClusters (interfaceDiquarkClusterFission, "OnlyBaryonClusters", "Allow only baryon clusters to fission to new diquark Clusters", 1); static SwitchOption interfaceDiquarkClusterFissionNo (interfaceDiquarkClusterFission, "No", "Don't allow clusters to fission to new diquark Clusters", 0); static SwitchOption interfaceDiquarkClusterFissionOff (interfaceDiquarkClusterFission, "Off", "Don't allow clusters fission to draw diquarks ", -1); static ParMap<ClusterFissioner,double> interfaceFissionPwt ("FissionPwt", "The weights for quarks in the fission process.", &ClusterFissioner::_fissionPwt, -1, 1.0, 0.0, 10.0, false, false, Interface::upperlim); static Switch<ClusterFissioner,int> interfaceRemnantOption ("RemnantOption", "Option for the treatment of remnant clusters", &ClusterFissioner::_iopRem, 1, false, false); static SwitchOption interfaceRemnantOptionSoft (interfaceRemnantOption, "Soft", "Both clusters produced in the fission of the beam cluster" " are treated as soft clusters.", 0); static SwitchOption interfaceRemnantOptionHard (interfaceRemnantOption, "Hard", "Only the cluster containing the remnant is treated as a soft cluster.", 1); static SwitchOption interfaceRemnantOptionVeryHard (interfaceRemnantOption, "VeryHard", "Even remnant clusters are treated as hard, i.e. all clusters the same", 2); static Parameter<ClusterFissioner,Energy> interfaceBTCLM ("SoftClusterFactor", "Parameter for the mass spectrum of remnant clusters", &ClusterFissioner::_btClM, GeV, 1.*GeV, 0.1*GeV, 10.0*GeV, false, false, Interface::limited); static Parameter<ClusterFissioner,Tension> interfaceStringTension ("StringTension", "String tension used in vertex displacement calculation", &ClusterFissioner::_kappa, GeV/meter, 1.0e15*GeV/meter, ZERO, ZERO, false, false, Interface::lowerlim); static Switch<ClusterFissioner,int> interfaceEnhanceSProb ("EnhanceSProb", "Option for enhancing strangeness", &ClusterFissioner::_enhanceSProb, 0, false, false); static SwitchOption interfaceEnhanceSProbNo (interfaceEnhanceSProb, "No", "No strangeness enhancement.", 0); static SwitchOption interfaceEnhanceSProbScaled (interfaceEnhanceSProb, "Scaled", "Scaled strangeness enhancement", 1); static SwitchOption interfaceEnhanceSProbExponential (interfaceEnhanceSProb, "Exponential", "Exponential strangeness enhancement", 2); static Switch<ClusterFissioner,int> interfaceMassMeasure ("MassMeasure", "Option to use different mass measures", &ClusterFissioner::_massMeasure,0,false,false); static SwitchOption interfaceMassMeasureMass (interfaceMassMeasure, "Mass", "Mass Measure", 0); static SwitchOption interfaceMassMeasureLambda (interfaceMassMeasure, "Lambda", "Lambda Measure", 1); static Parameter<ClusterFissioner,Energy> interfaceFissionMassScale ("FissionMassScale", "Cluster fission mass scale", &ClusterFissioner::_m0Fission, GeV, 2.0*GeV, 0.1*GeV, 50.*GeV, false, false, Interface::limited); static Parameter<ClusterFissioner,double> interfaceProbPowFactor ("ProbabilityPowerFactor", "Power factor in ClusterFissioner bell probablity function", &ClusterFissioner::_probPowFactor, 2.0, 0.001, 20.0, false, false, Interface::limited); static Parameter<ClusterFissioner,double> interfaceProbShift ("ProbabilityShift", "Shifts from the center in ClausterFissioner bell probablity function", &ClusterFissioner::_probShift, 0.0, -10.0, 10.0, false, false, Interface::limited); static Parameter<ClusterFissioner,Energy2> interfaceKineticThresholdShift ("KineticThresholdShift", "Shifts from the kinetic threshold in ClusterFissioner", &ClusterFissioner::_kinThresholdShift, sqr(GeV), 0.*sqr(GeV), -10.0*sqr(GeV), 10.0*sqr(GeV), false, false, Interface::limited); static Switch<ClusterFissioner,int> interfaceKinematicThreshold ("KinematicThreshold", "Option for using static or dynamic kinematic thresholds in cluster splittings", &ClusterFissioner::_kinematicThresholdChoice, 0, false, false); static SwitchOption interfaceKinematicThresholdStatic (interfaceKinematicThreshold, "Static", "Set static kinematic thresholds for cluster splittings.", 0); static SwitchOption interfaceKinematicThresholdDynamic (interfaceKinematicThreshold, "Dynamic", "Set dynamic kinematic thresholds for cluster splittings.", 1); static Switch<ClusterFissioner,bool> interfaceCovariantBoost ("CovariantBoost", "Use single Covariant Boost for Cluster Fission", &ClusterFissioner::_covariantBoost, false, false, false); static SwitchOption interfaceCovariantBoostYes (interfaceCovariantBoost, "Yes", "Use Covariant boost", true); static SwitchOption interfaceCovariantBoostNo (interfaceCovariantBoost, "No", "Do NOT use Covariant boost", false); static Switch<ClusterFissioner,int> interfaceStrictDiquarkKinematics ("StrictDiquarkKinematics", "Option for selecting different selection criterions of diquarks for ClusterFission", &ClusterFissioner::_strictDiquarkKinematics, 0, false, false); static SwitchOption interfaceStrictDiquarkKinematicsLoose (interfaceStrictDiquarkKinematics, "Loose", "No kinematic threshold for diquark selection except for Mass bigger than 2 baryons", 0); static SwitchOption interfaceStrictDiquarkKinematicsStrict (interfaceStrictDiquarkKinematics, "Strict", "Resulting clusters are at least as heavy as 2 lightest baryons", 1); static Parameter<ClusterFissioner,double> interfacePwtDIquark ("PwtDIquark", "specific probability for choosing a d diquark", &ClusterFissioner::_pwtDIquark, 0.0, 0.0, 10.0, false, false, Interface::limited); static Switch<ClusterFissioner,int> interfacePhaseSpaceWeights ("PhaseSpaceWeights", "Include phase space weights.", &ClusterFissioner::_phaseSpaceWeights, 0, false, false); static SwitchOption interfacePhaseSpaceWeightsNo (interfacePhaseSpaceWeights, "No", "Do not include the effect of cluster phase space", 0); static SwitchOption interfacePhaseSpaceWeightsYes (interfacePhaseSpaceWeights, "Yes", "Do include the effect of cluster fission phase space " "related to constituent masses." "Note: Need static Threshold choice", 1); static SwitchOption interfacePhaseSpaceWeightsUseHadronMasses (interfacePhaseSpaceWeights, "UseHadronMasses", "Do include the effect of cluster fission phase space " "related to hadron masses." "Note: Need static Threshold choice", 2); static SwitchOption interfacePhaseSpaceWeightsNoConstituentMasses (interfacePhaseSpaceWeights, "NoConstituentMasses", "Do not include the effect of cluster fission phase space " "related to constituent masses." "Note: Need static Threshold choice", 3); static Parameter<ClusterFissioner,double> interfaceDim ("Dimension","Dimension in which phase space weights are calculated", &ClusterFissioner::_dim, 0, 4.0, 0.0, 10.0,false,false,false); // Allowing for strange diquarks in the ClusterFission static Switch<ClusterFissioner,unsigned int> interfaceHadronizingStrangeDiquarks ("HadronizingStrangeDiquarks", "Option for adding strange diquarks to Cluster Fission (if Fission = New or Hybrid is enabled)", &ClusterFissioner::_hadronizingStrangeDiquarks, 0, false, false); static SwitchOption interfaceHadronizingStrangeDiquarksNo (interfaceHadronizingStrangeDiquarks, "No", "No strangeness containing diquarks during Cluster Fission", 0); static SwitchOption interfaceHadronizingStrangeDiquarksOnlySingleStrange (interfaceHadronizingStrangeDiquarks, "OnlySingleStrange", "Only one strangeness containing diquarks during Cluster Fission i.e. su,sd", 1); static SwitchOption interfaceHadronizingStrangeDiquarksAll (interfaceHadronizingStrangeDiquarks, "All", "All strangeness containing diquarks during Cluster Fission i.e. su,sd,ss", 2); } tPVector ClusterFissioner::fission(ClusterVector & clusters, bool softUEisOn) { // return if no clusters if (clusters.empty()) return tPVector(); /***************** * Loop over the (input) collection of cluster pointers, and store in * the vector splitClusters all the clusters that need to be split * (these are beam clusters, if soft underlying event is off, and * heavy non-beam clusters). ********************/ stack<ClusterPtr> splitClusters; for(ClusterVector::iterator it = clusters.begin() ; it != clusters.end() ; ++it) { /************** * Skip 3-component clusters that have been redefined (as 2-component * clusters) or not available clusters. The latter check is indeed * redundant now, but it is used for possible future extensions in which, * for some reasons, some of the clusters found by ClusterFinder are tagged * straight away as not available. **************/ if((*it)->isRedefined() || !(*it)->isAvailable()) continue; // if the cluster is a beam cluster add it to the vector of clusters // to be split or if it is heavy if((*it)->isBeamCluster() || isHeavy(*it)) splitClusters.push(*it); } tPVector finalhadrons; cut(splitClusters, clusters, finalhadrons, softUEisOn); return finalhadrons; } void ClusterFissioner::cut(stack<ClusterPtr> & clusterStack, ClusterVector &clusters, tPVector & finalhadrons, bool softUEisOn) { /************************************************** * This method does the splitting of the cluster pointed by cluPtr * and "recursively" by all of its cluster children, if heavy. All of these * new children clusters are added (indeed the pointers to them) to the * collection of cluster pointers collecCluPtr. The method works as follows. * Initially the vector vecCluPtr contains just the input pointer to the * cluster to be split. Then it will be filled "recursively" by all * of the cluster's children that are heavy enough to require, in their turn, * to be split. In each loop, the last element of the vector vecCluPtr is * considered (only once because it is then removed from the vector). * This approach is conceptually recursive, but avoid the overhead of * a concrete recursive function. Furthermore it requires minimal changes * in the case that the fission of an heavy cluster could produce more * than two cluster children as assumed now. * * Draw the masses: for normal, non-beam clusters a power-like mass dist * is used, whereas for beam clusters a fast-decreasing exponential mass * dist is used instead (to avoid many iterative splitting which could * produce an unphysical large transverse energy from a supposed soft beam * remnant process). ****************************************/ // Here we recursively loop over clusters in the stack and cut them while (!clusterStack.empty()) { // take the last element of the vector ClusterPtr iCluster = clusterStack.top(); clusterStack.pop(); // split it cutType ct = iCluster->numComponents() == 2 ? cutTwo(iCluster, finalhadrons, softUEisOn) : cutThree(iCluster, finalhadrons, softUEisOn); // There are cases when we don't want to split, even if it fails mass test if(!ct.first.first || !ct.second.first) { // if an unsplit beam cluster leave if for the underlying event if(iCluster->isBeamCluster() && softUEisOn) iCluster->isAvailable(false); continue; } // check if clusters ClusterPtr one = dynamic_ptr_cast<ClusterPtr>(ct.first.first); ClusterPtr two = dynamic_ptr_cast<ClusterPtr>(ct.second.first); // is a beam cluster must be split into two clusters if(iCluster->isBeamCluster() && (!one||!two) && softUEisOn) { iCluster->isAvailable(false); continue; } // There should always be a intermediate quark(s) from the splitting assert(ct.first.second && ct.second.second); /// \todo sort out motherless quark pairs here. Watch out for 'quark in final state' errors iCluster->addChild(ct.first.first); // iCluster->addChild(ct.first.second); // ct.first.second->addChild(ct.first.first); iCluster->addChild(ct.second.first); // iCluster->addChild(ct.second.second); // ct.second.second->addChild(ct.second.first); // Sometimes the clusters decay C -> H + C' or C -> H + H' rather then C -> C' + C'' if(one) { clusters.push_back(one); if(one->isBeamCluster() && softUEisOn) one->isAvailable(false); if(isHeavy(one) && one->isAvailable()) clusterStack.push(one); } if(two) { clusters.push_back(two); if(two->isBeamCluster() && softUEisOn) two->isAvailable(false); if(isHeavy(two) && two->isAvailable()) clusterStack.push(two); } } } ClusterFissioner::cutType ClusterFissioner::cutTwo(ClusterPtr & cluster, tPVector & finalhadrons, bool softUEisOn) { // need to make sure only 2-cpt clusters get here assert(cluster->numComponents() == 2); tPPtr ptrQ1 = cluster->particle(0); tPPtr ptrQ2 = cluster->particle(1); Energy Mc = cluster->mass(); assert(ptrQ1); assert(ptrQ2); // And check if those particles are from a beam remnant bool rem1 = cluster->isBeamRemnant(0); bool rem2 = cluster->isBeamRemnant(1); // workout which distribution to use bool soft1(false),soft2(false); switch (_iopRem) { case 0: soft1 = rem1 || rem2; soft2 = rem2 || rem1; break; case 1: soft1 = rem1; soft2 = rem2; break; } // Initialization for the exponential ("soft") mass distribution. static const int max_loop = 1000; int counter = 0; Energy Mc1 = ZERO, Mc2 = ZERO,m1=ZERO,m2=ZERO,m=ZERO; tcPDPtr toHadron1, toHadron2; PPtr newPtr1 = PPtr (); PPtr newPtr2 = PPtr (); bool succeeded = false; Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2; do { succeeded = false; ++counter; // get a flavour for the qqbar pair drawNewFlavour(newPtr1,newPtr2,cluster); // check for right ordering assert (ptrQ2); assert (newPtr2); assert (ptrQ2->dataPtr()); assert (newPtr2->dataPtr()); if(cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2)) { swap(newPtr1, newPtr2); // check again if(cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2)) { throw Exception() << "ClusterFissioner cannot split the cluster (" << ptrQ1->PDGName() << ' ' << ptrQ2->PDGName() << ") into hadrons.\n" << Exception::runerror; } } // Check that new clusters can produce particles and there is enough // phase space to choose the drawn flavour m1 = ptrQ1->data().constituentMass(); m2 = ptrQ2->data().constituentMass(); m = newPtr1->data().constituentMass(); // Do not split in the case there is no phase space available if(Mc < m1+m + m2+m) continue; pQ1.setMass(m1); pQone.setMass(m); pQtwo.setMass(m); pQ2.setMass(m2); double weightMasses = drawNewMasses(Mc, soft1, soft2, pClu1, pClu2, ptrQ1, pQ1, newPtr1, pQone, newPtr2, pQtwo, ptrQ2, pQ2); if (weightMasses==0.0) continue; // derive the masses of the children Mc1 = pClu1.mass(); Mc2 = pClu2.mass(); // static kinematic threshold if(_kinematicThresholdChoice == 0) { if (Mc1 < m1+m || Mc2 < m+m2 || Mc1+Mc2 > Mc) continue; if (_phaseSpaceWeights==2 && ( Mc1 < spectrum()->massLightestHadronPair(ptrQ1->dataPtr(),newPtr1->dataPtr()) || Mc2 < spectrum()->massLightestHadronPair(ptrQ2->dataPtr(),newPtr2->dataPtr()) )) continue; // dynamic kinematic threshold } else if(_kinematicThresholdChoice == 1) { bool C1 = ( sqr(Mc1) )/( sqr(m1) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false; bool C2 = ( sqr(Mc2) )/( sqr(m2) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false; bool C3 = ( sqr(Mc1) + sqr(Mc2) )/( sqr(Mc) ) > 1.0 ? true : false; if( C1 || C2 || C3 ) continue; } if ( _phaseSpaceWeights && phaseSpaceVeto(Mc,Mc1,Mc2,m,m1,m2, ptrQ1, ptrQ2, newPtr1, 0.0) ) { // reduce counter as it regards only the mass sampling counter--; continue; } /************************** * New (not present in Fortran Herwig): * check whether the fragment masses Mc1 and Mc2 are above the * threshold for the production of the lightest pair of hadrons with the * right flavours. If not, then set by hand the mass to the lightest * single hadron with the right flavours, in order to solve correctly * the kinematics, and (later in this method) create directly such hadron * and add it to the children hadrons of the cluster that undergoes the * fission (i.e. the one pointed by iCluPtr). Notice that in this special * case, the heavy cluster that undergoes the fission has one single * cluster child and one single hadron child. We prefer this approach, * rather than to create a light cluster, with the mass set equal to * the lightest hadron, and let then the class LightClusterDecayer to do * the job to decay it to that single hadron, for two reasons: * First, because the sum of the masses of the two constituents can be, * in this case, greater than the mass of that hadron, hence it would * be impossible to solve the kinematics for such two components, and * therefore we would have a cluster whose components are undefined. * Second, the algorithm is faster, because it avoids the reshuffling * procedure that would be necessary if we used LightClusterDecayer * to decay the light cluster to the lightest hadron. ****************************/ // override chosen masses if needed toHadron1 = _hadronSpectrum->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc1); if(toHadron1) { Mc1 = toHadron1->mass(); pClu1.setMass(Mc1); } toHadron2 = _hadronSpectrum->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc2); if(toHadron2) { Mc2 = toHadron2->mass(); pClu2.setMass(Mc2); } // if a beam cluster not allowed to decay to hadrons if(cluster->isBeamCluster() && (toHadron1||toHadron2) && softUEisOn) continue; // Check if the decay kinematics is still possible: if not then // force the one-hadron decay for the other cluster as well. if(Mc1 + Mc2 > Mc) { if(!toHadron1) { toHadron1 = _hadronSpectrum->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc-Mc2); if(toHadron1) { Mc1 = toHadron1->mass(); pClu1.setMass(Mc1); } } else if(!toHadron2) { toHadron2 = _hadronSpectrum->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc-Mc1); if(toHadron2) { Mc2 = toHadron2->mass(); pClu2.setMass(Mc2); } } } succeeded = (Mc >= Mc1+Mc2); } while (!succeeded && counter < max_loop); if(counter >= max_loop) { static const PPtr null = PPtr(); return cutType(PPair(null,null),PPair(null,null)); } // Determined the (5-components) momenta (all in the LAB frame) Lorentz5Momentum pClu = cluster->momentum(); // known Lorentz5Momentum p0Q1 = ptrQ1->momentum(); // known (mom Q1 before fission) calculateKinematics(pClu,p0Q1,toHadron1,toHadron2, pClu1,pClu2,pQ1,pQone,pQtwo,pQ2); /****************** * The previous methods have determined the kinematics and positions * of C -> C1 + C2. * In the case that one of the two product is light, that means either * decayOneHadronClu1 or decayOneHadronClu2 is true, then the momenta * of the components of that light product have not been determined, * and a (light) cluster will not be created: the heavy father cluster * decays, in this case, into a single (not-light) cluster and a * single hadron. In the other, "normal", cases the father cluster * decays into two clusters, each of which has well defined components. * Notice that, in the case of components which point to particles, the * momenta of the components is properly set to the new values, whereas * we do not change the momenta of the pointed particles, because we * want to keep all of the information (that is the new momentum of a * component after the splitting, which is contained in the _momentum * member of the Component class, and the (old) momentum of that component * before the splitting, which is contained in the momentum of the * pointed particle). Please not make confusion of this only apparent * inconsistency! ********************/ LorentzPoint posC,pos1,pos2; posC = cluster->vertex(); calculatePositions(pClu, posC, pClu1, pClu2, pos1, pos2); cutType rval; if(toHadron1) { rval.first = produceHadron(toHadron1, newPtr1, pClu1, pos1); finalhadrons.push_back(rval.first.first); } else { rval.first = produceCluster(ptrQ1, newPtr1, pClu1, pos1, pQ1, pQone, rem1); } if(toHadron2) { rval.second = produceHadron(toHadron2, newPtr2, pClu2, pos2); finalhadrons.push_back(rval.second.first); } else { rval.second = produceCluster(ptrQ2, newPtr2, pClu2, pos2, pQ2, pQtwo, rem2); } return rval; } ClusterFissioner::cutType ClusterFissioner::cutThree(ClusterPtr & cluster, tPVector & finalhadrons, bool softUEisOn) { // need to make sure only 3-cpt clusters get here assert(cluster->numComponents() == 3); // extract quarks tPPtr ptrQ[3] = {cluster->particle(0),cluster->particle(1),cluster->particle(2)}; assert( ptrQ[0] && ptrQ[1] && ptrQ[2] ); // find maximum mass pair Energy mmax(ZERO); Lorentz5Momentum pDiQuark; int iq1(-1),iq2(-1); Lorentz5Momentum psum; for(int q1=0;q1<3;++q1) { psum+= ptrQ[q1]->momentum(); for(int q2=q1+1;q2<3;++q2) { Lorentz5Momentum ptest = ptrQ[q1]->momentum()+ptrQ[q2]->momentum(); ptest.rescaleMass(); Energy mass = ptest.m(); if(mass>mmax) { mmax = mass; pDiQuark = ptest; iq1 = q1; iq2 = q2; } } } // and the spectators int iother(-1); for(int ix=0;ix<3;++ix) if(ix!=iq1&&ix!=iq2) iother=ix; assert(iq1>=0&&iq2>=0&&iother>=0); // And check if those particles are from a beam remnant bool rem1 = cluster->isBeamRemnant(iq1); bool rem2 = cluster->isBeamRemnant(iq2); // workout which distribution to use bool soft1(false),soft2(false); switch (_iopRem) { case 0: soft1 = rem1 || rem2; soft2 = rem2 || rem1; break; case 1: soft1 = rem1; soft2 = rem2; break; } // Initialization for the exponential ("soft") mass distribution. static const int max_loop = 1000; int counter = 0; Energy Mc1 = ZERO, Mc2 = ZERO, m1=ZERO, m2=ZERO, m=ZERO; tcPDPtr toHadron; bool toDiQuark(false); PPtr newPtr1 = PPtr(),newPtr2 = PPtr(); PDPtr diquark; bool succeeded = false; Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2; do { succeeded = false; ++counter; // get a flavour for the qqbar pair drawNewFlavour(newPtr1,newPtr2,cluster); // randomly pick which will be (anti)diquark and which a mesonic cluster if(UseRandom::rndbool()) { swap(iq1,iq2); swap(rem1,rem2); } // check first order if(cantMakeHadron(ptrQ[iq1], newPtr1) || !spectrum()->canMakeDiQuark(ptrQ[iq2], newPtr2)) { swap(newPtr1,newPtr2); } // check again if(cantMakeHadron(ptrQ[iq1], newPtr1) || !spectrum()->canMakeDiQuark(ptrQ[iq2], newPtr2)) { throw Exception() << "ClusterFissioner cannot split the cluster (" << ptrQ[iq1]->PDGName() << ' ' << ptrQ[iq2]->PDGName() << ") into a hadron and diquark.\n" << Exception::runerror; } // Check that new clusters can produce particles and there is enough // phase space to choose the drawn flavour m1 = ptrQ[iq1]->data().constituentMass(); m2 = ptrQ[iq2]->data().constituentMass(); m = newPtr1->data().constituentMass(); // Do not split in the case there is no phase space available if(mmax < m1+m + m2+m) continue; pQ1.setMass(m1); pQone.setMass(m); pQtwo.setMass(m); pQ2.setMass(m2); double weightMasses = drawNewMasses(mmax, soft1, soft2, pClu1, pClu2, ptrQ[iq1], pQ1, newPtr1, pQone, newPtr2, pQtwo, ptrQ[iq1], pQ2); if (weightMasses == 0.0) continue; Mc1 = pClu1.mass(); Mc2 = pClu2.mass(); if(Mc1 < m1+m || Mc2 < m+m2 || Mc1+Mc2 > mmax) continue; if ( _phaseSpaceWeights && phaseSpaceVeto(mmax,Mc1,Mc2,m,m1,m2) ) { // reduce counter as it regards only the mass sampling counter--; continue; } // check if need to force meson clster to hadron toHadron = _hadronSpectrum->chooseSingleHadron(ptrQ[iq1]->dataPtr(), newPtr1->dataPtr(),Mc1); if(toHadron) { Mc1 = toHadron->mass(); pClu1.setMass(Mc1); } // check if need to force diquark cluster to be on-shell toDiQuark = false; diquark = spectrum()->makeDiquark(ptrQ[iq2]->dataPtr(), newPtr2->dataPtr()); if(Mc2 < diquark->constituentMass()) { Mc2 = diquark->constituentMass(); pClu2.setMass(Mc2); toDiQuark = true; } // if a beam cluster not allowed to decay to hadrons if(cluster->isBeamCluster() && toHadron && softUEisOn) continue; // Check if the decay kinematics is still possible: if not then // force the one-hadron decay for the other cluster as well. if(Mc1 + Mc2 > mmax) { if(!toHadron) { toHadron = _hadronSpectrum->chooseSingleHadron(ptrQ[iq1]->dataPtr(), newPtr1->dataPtr(),mmax-Mc2); if(toHadron) { Mc1 = toHadron->mass(); pClu1.setMass(Mc1); } } else if(!toDiQuark) { Mc2 = _hadronSpectrum->massLightestHadron(ptrQ[iq2]->dataPtr(), newPtr2->dataPtr()); pClu2.setMass(Mc2); toDiQuark = true; } } succeeded = (mmax >= Mc1+Mc2); } while (!succeeded && counter < max_loop); // check no of tries if(counter >= max_loop) return cutType(); // Determine the (5-components) momenta (all in the LAB frame) Lorentz5Momentum p0Q1 = ptrQ[iq1]->momentum(); calculateKinematics(pDiQuark,p0Q1,toHadron,toDiQuark, pClu1,pClu2,pQ1,pQone,pQtwo,pQ2); // positions of the new clusters LorentzPoint pos1,pos2; Lorentz5Momentum pBaryon = pClu2+ptrQ[iother]->momentum(); calculatePositions(cluster->momentum(), cluster->vertex(), pClu1, pBaryon, pos1, pos2); // first the mesonic cluster/meson cutType rval; if(toHadron) { rval.first = produceHadron(toHadron, newPtr1, pClu1, pos1); finalhadrons.push_back(rval.first.first); } else { rval.first = produceCluster(ptrQ[iq1], newPtr1, pClu1, pos1, pQ1, pQone, rem1); } if(toDiQuark) { rem2 |= cluster->isBeamRemnant(iother); PPtr newDiQuark = diquark->produceParticle(pClu2); rval.second = produceCluster(newDiQuark, ptrQ[iother], pBaryon, pos2, pClu2, ptrQ[iother]->momentum(), rem2); } else { rval.second = produceCluster(ptrQ[iq2], newPtr2, pBaryon, pos2, pQ2, pQtwo, rem2, ptrQ[iother],cluster->isBeamRemnant(iother)); } cluster->isAvailable(false); return rval; } ClusterFissioner::PPair ClusterFissioner::produceHadron(tcPDPtr hadron, tPPtr newPtr, const Lorentz5Momentum &a, const LorentzPoint &b) const { PPair rval; if(hadron->coloured()) { rval.first = (_hadronSpectrum->lightestHadron(hadron,newPtr->dataPtr()))->produceParticle(); } else rval.first = hadron->produceParticle(); rval.second = newPtr; rval.first->set5Momentum(a); rval.first->setVertex(b); return rval; } ClusterFissioner::PPair ClusterFissioner::produceCluster(tPPtr ptrQ, tPPtr newPtr, const Lorentz5Momentum & a, const LorentzPoint & b, const Lorentz5Momentum & c, const Lorentz5Momentum & d, bool isRem, tPPtr spect, bool remSpect) const { PPair rval; rval.second = newPtr; ClusterPtr cluster = !spect ? new_ptr(Cluster(ptrQ,rval.second)) : new_ptr(Cluster(ptrQ,rval.second,spect)); rval.first = cluster; cluster->set5Momentum(a); cluster->setVertex(b); assert(cluster->particle(0)->id() == ptrQ->id()); cluster->particle(0)->set5Momentum(c); cluster->particle(1)->set5Momentum(d); cluster->setBeamRemnant(0,isRem); if(remSpect) cluster->setBeamRemnant(2,remSpect); return rval; } /** * Calculate the phase space weight for M1*M2*(2 body PhaseSpace) ignore constituent masses */ double ClusterFissioner::weightFlatPhaseSpaceNoConstituentMasses(const Energy Mc, const Energy Mc1, const Energy Mc2) const { double M_temp = Mc/GeV; double M1_temp = Mc1/GeV; double M2_temp = Mc2/GeV; if (sqr(M_temp)<sqr(M1_temp+M2_temp)) { // This should be checked before throw Exception() << "ERROR in ClusterFissioner::weightFlatPhaseSpaceNoConstituentMasses\n" << "ClusterFissioner has not checked Masses properly\n" << "Mc = " << M_temp << "\n" << "Mc1 = " << M1_temp << "\n" << "Mc2 = " << M2_temp << "\n" << Exception::warning; return 0.0; } double lam = Kinematics::kaellen(M_temp, M1_temp, M2_temp); double ratio; // new weight with the Jacobi factor M1*M2 of the Mass integration double PSweight = M1_temp*M2_temp*pow(sqrt(lam),_dim-3.); // overestimate only possible for dim>=3.0 assert(_dim>=3.0); // new improved overestimate with the Jacobi factor M1*M2 of the Mass integration double overEstimate = pow(6.0*sqrt(3.0), 3.0 - _dim)*pow(M_temp, 2.*(_dim-2.)); ratio = PSweight/overEstimate; if (!(ratio>=0) || !(ratio<=1)) { throw Exception() << "ERROR in ClusterFissioner::weightFlatPhaseSpaceNoConstituentMasses\n" << "ratio = " <<ratio <<" M "<<M_temp <<" M1 "<<M1_temp <<" M2 "<<M2_temp <<"\t"<<_dim<<"\t" << lam <<"\t"<< overEstimate<<"\n\n" << Exception::runerror; } return ratio; } /** * Calculate the phase space weight for M1*M2*(2 body PhaseSpace)^3 */ double ClusterFissioner::weightPhaseSpaceConstituentMasses(const Energy Mc, const Energy Mc1, const Energy Mc2, const Energy m, const Energy m1, const Energy m2, const double power) const { double M_temp = Mc/GeV; double M1_temp = Mc1/GeV; double M2_temp = Mc2/GeV; double m_temp = m/GeV; double m1_temp = m1/GeV; double m2_temp = m2/GeV; if (sqr(M_temp)<sqr(M1_temp+M2_temp) || sqr(M1_temp)<sqr(m1_temp+m_temp) || sqr(M2_temp)<sqr(m2_temp+m_temp) ) { // This should be checked before throw Exception() << "ERROR in ClusterFissioner::weightPhaseSpaceConstituentMasses\n" << "ClusterFissioner has not checked Masses properly\n" << "Mc = " << M_temp << "\n" << "Mc1 = " << M1_temp << "\n" << "Mc2 = " << M2_temp << "\n" << "m1 = " << m1_temp << "\n" << "m2 = " << m2_temp << "\n" << "m = " << m_temp << "\n" << Exception::warning; return 0.0; } double lam1 = Kinematics::kaellen(M1_temp, m1_temp, m_temp); double lam2 = Kinematics::kaellen(M2_temp, m2_temp, m_temp); double lam3 = Kinematics::kaellen(M_temp, M1_temp, M2_temp); double ratio; // new weight with the Jacobi factor M1*M2 of the Mass integration double PSweight = pow(lam1*lam2*lam3,(_dim-3.)/2.0)*pow(M1_temp*M2_temp,3.-_dim); // overestimate only possible for dim>=3.0 assert(_dim>=3.0); // new improved overestimate with the Jacobi factor M1*M2 of the Mass integration double overEstimate = pow(6.0*sqrt(3.0), 3.0 - _dim)*pow(M_temp, 4.*_dim-12.); ratio = PSweight/overEstimate; if (!(ratio>=0)) std::cout << "ratio = " <<ratio<<" M "<<M_temp<<" M1 "<<M1_temp<<" M2 "<<M2_temp<<" m1 "<<m1_temp<<" m2 "<<m2_temp<<" m "<<m_temp<<"\t"<<_dim<<"\t" << lam1<<"\t"<< lam2<<"\t" << lam3 <<"\t"<< overEstimate<<"\n\n"; if (!(ratio>=0) || !(ratio<=1)) { throw Exception() << "ERROR in ClusterFissioner::weightPhaseSpaceConstituentMasses\n" << "ratio = " <<ratio <<" M "<<M_temp <<" M1 "<<M1_temp <<" M2 "<<M2_temp <<" m1 "<<m1_temp <<" m2 "<<m2_temp <<" m "<<m_temp <<"\t"<<_dim <<"\t" << lam1<<"\t"<< lam2<<"\t" << lam3 <<"\t"<< overEstimate<<"\n\n" << Exception::runerror; } // multiply by overestimate of power of matrix element to modulate the phase space with (M1*M2)^power if (power) { double powerLawOver = power<0 ? pow(Mc1*Mc2/((m1+m)*(m2+m)),power):pow(Mc1*Mc2/((Mc-(m1+m))*(Mc-(m2+m))),power); ratio*=powerLawOver; } return ratio; } /** * Calculate the phase space weight for M1*M2*(2 body PhaseSpace)^3 * using Hadron Masses */ double ClusterFissioner::weightFlatPhaseSpaceHadronMasses(const Energy Mc, const Energy Mc1, const Energy Mc2, tcPPtr pQ, tcPPtr pQ1, tcPPtr pQ2) const { auto LHP1 = spectrum()->lightestHadronPair(pQ1->dataPtr(),pQ->dataPtr()); auto LHP2 = spectrum()->lightestHadronPair(pQ2->dataPtr(),pQ->dataPtr()); if (sqr(Mc1)<sqr(LHP1.first->mass()+LHP1.second->mass())) return true; if (sqr(Mc2)<sqr(LHP2.first->mass()+LHP2.second->mass())) return true; double lam1 = sqrt(Kinematics::kaellen(Mc1/GeV, LHP1.first->mass()/GeV, LHP1.second->mass()/GeV)); double lam2 = sqrt(Kinematics::kaellen(Mc2/GeV, LHP2.first->mass()/GeV, LHP2.second->mass()/GeV)); double lam3 = sqrt(Kinematics::kaellen(Mc/GeV, Mc1/GeV, Mc2/GeV)); double ratio; // new weight with the Jacobi factor M1*M2 of the Mass integration double PSweight = pow(lam1*lam2*lam3,_dim-3.)*pow(Mc1*Mc2/GeV2,3.-_dim); // overestimate only possible for dim>=3.0 assert(_dim>=3.0); // new improved overestimate with the Jacobi factor M1*M2 of the Mass integration double overEstimate = pow(6.0*sqrt(3.0), 3.0 - _dim)*pow(Mc/GeV, 4.*_dim-12.); ratio = PSweight/overEstimate; if (!(ratio>=0) || !(ratio<=1)) { throw Exception() << "ERROR in ClusterFissioner::weightFlatPhaseSpaceHadronMasses\n" << "ratio = " <<ratio <<" M "<<Mc/GeV <<" M1 "<<Mc1/GeV <<" M2 "<<Mc2/GeV <<"\t"<<_dim<<"\t" << lam1<<"\t" << lam2 <<"\t" << lam3 <<"\t"<< overEstimate<<"\n\n" << Exception::runerror; } return ratio; } /** * Veto for the phase space weight * returns true if proposed Masses are rejected * else returns false */ bool ClusterFissioner::phaseSpaceVeto(const Energy Mc, const Energy Mc1, const Energy Mc2, const Energy m, const Energy m1, const Energy m2, tcPPtr pQ1, tcPPtr pQ2, tcPPtr pQ, const double power) const { switch (_phaseSpaceWeights) { case 1: return phaseSpaceVetoConstituentMasses(Mc, Mc1, Mc2, m, m1, m2, power); case 2: return phaseSpaceVetoHadronPairs(Mc, Mc1, Mc2, pQ, pQ1, pQ2); case 3: return phaseSpaceVetoNoConstituentMasses(Mc, Mc1, Mc2); default: assert(false); } } /** * Veto for the phase space weight * returns true if proposed Masses are rejected * else returns false */ bool ClusterFissioner::phaseSpaceVetoConstituentMasses(const Energy Mc, const Energy Mc1, const Energy Mc2, const Energy m, const Energy m1, const Energy m2, const double power) const { return (UseRandom::rnd()>weightPhaseSpaceConstituentMasses(Mc, Mc1, Mc2, m, m1, m2, power)); } bool ClusterFissioner::phaseSpaceVetoNoConstituentMasses(const Energy Mc, const Energy Mc1, const Energy Mc2) const { return (UseRandom::rnd()>weightFlatPhaseSpaceNoConstituentMasses(Mc, Mc1, Mc2)); } bool ClusterFissioner::phaseSpaceVetoHadronPairs(const Energy Mc, const Energy Mc1, const Energy Mc2, tcPPtr pQ, tcPPtr pQ1, tcPPtr pQ2) const { return (UseRandom::rnd()>weightFlatPhaseSpaceHadronMasses(Mc, Mc1, Mc2, pQ, pQ1, pQ2)); } /** * Calculate the masses and possibly kinematics of the cluster * fission at hand; if calculateKineamtics is perfomring non-trivial * steps kinematics claulcated here will be overriden. Currentl;y resorts to the default */ double ClusterFissioner::drawNewMasses(const Energy Mc, const bool soft1, const bool soft2, Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2, tcPPtr ptrQ1, const Lorentz5Momentum& pQ1, tcPPtr, const Lorentz5Momentum& pQone, tcPPtr, const Lorentz5Momentum& pQtwo, tcPPtr ptrQ2, const Lorentz5Momentum& pQ2) const { // power for splitting double exp1 = !spectrum()->isExotic(ptrQ1->dataPtr()) ? _pSplitLight : _pSplitExotic; double exp2 = !spectrum()->isExotic(ptrQ2->dataPtr()) ? _pSplitLight : _pSplitExotic; for ( const long& id : spectrum()->heavyHadronizingQuarks() ) { assert(_pSplitHeavy.find(id) != _pSplitHeavy.end()); if ( spectrum()->hasHeavy(id,ptrQ1->dataPtr()) ) exp1 = _pSplitHeavy.find(id)->second; if ( spectrum()->hasHeavy(id,ptrQ2->dataPtr()) ) exp2 = _pSplitHeavy.find(id)->second; } Energy M1 = drawChildMass(Mc,pQ1.mass(),pQ2.mass(),pQone.mass(),exp1,soft1); Energy M2 = drawChildMass(Mc,pQ2.mass(),pQ1.mass(),pQtwo.mass(),exp2,soft2); pClu1.setMass(M1); pClu2.setMass(M2); return 1.0; // succeeds } void ClusterFissioner::drawNewFlavourDiquarks(PPtr& newPtrPos,PPtr& newPtrNeg, const ClusterPtr & clu) const { // Flavour is assumed to be only u, d, s, with weights // (which are not normalized probabilities) given // by the same weights as used in HadronsSelector for // the decay of clusters into two hadrons. unsigned hasDiquarks=0; assert(clu->numComponents()==2); tcPDPtr pD1=clu->particle(0)->dataPtr(); tcPDPtr pD2=clu->particle(1)->dataPtr(); bool isDiq1=DiquarkMatcher::Check(pD1->id()); if (isDiq1) hasDiquarks++; bool isDiq2=DiquarkMatcher::Check(pD2->id()); if (isDiq2) hasDiquarks++; assert(hasDiquarks<=2); Energy Mc=(clu->momentum().mass()); Energy minMass; double weight; Selector<long> choice; // adding quark-antiquark pairs to the selection list for ( const long& id : spectrum()->lightHadronizingQuarks() ) { minMass=spectrum()->massLightestHadronPair(pD1,pD2); if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id); else if (abs(_fissionCluster)==1) choice.insert(_fissionPwt.find(id)->second,id); else assert(false); } // adding diquark-antidiquark pairs to the selection list switch (hasDiquarks) { case 0: for ( const long& id : spectrum()->lightHadronizingDiquarks() ) { if (_strictDiquarkKinematics) { tPDPtr cand = getParticleData(id); Energy mH1=spectrum()->massLightestHadron(pD2,cand); Energy mH2=spectrum()->massLightestHadron(cand,pD1); minMass = mH1 + mH2; } else { minMass = spectrum()->massLightestBaryonPair(pD1,pD2); } if (Mc < minMass) continue; if (_fissionCluster==0) weight = _hadronSpectrum->pwtQuark(id); else if (abs(_fissionCluster)==1) weight = _fissionPwt.find(id)->second; else assert(false); if (_fissionCluster==-1) weight*=sqr(Herwig::Math::alphaS(Mc, 0.25*GeV,3, 2)); choice.insert(weight,id); } break; case 1: if (_diquarkClusterFission<1) break; for ( const long& id : spectrum()->lightHadronizingDiquarks() ) { tPDPtr diq = getParticleData(id); if (isDiq1) minMass = spectrum()->massLightestHadron(pD2,diq) + spectrum()->massLightestBaryonPair(diq,pD1); else minMass = spectrum()->massLightestHadron(pD1,diq) + spectrum()->massLightestBaryonPair(diq,pD2); if (Mc < minMass) continue; if (_fissionCluster==0) weight = _hadronSpectrum->pwtQuark(id); else if (abs(_fissionCluster)==1) weight = _fissionPwt.find(id)->second; else assert(false); if (_fissionCluster==-1) weight*=sqr(Herwig::Math::alphaS(Mc, 0.25*GeV,3, 2)); choice.insert(weight,id); } break; case 2: if (_diquarkClusterFission<2) break; for ( const long& id : spectrum()->lightHadronizingDiquarks() ) { tPDPtr diq = getParticleData(id); if (Mc < spectrum()->massLightestBaryonPair(pD1,pD2)) { throw Exception() << "Found Diquark Cluster:\n" << *clu << "\nwith MassCluster = " << ounit(Mc,GeV) <<" GeV MassLightestBaryonPair = " << ounit(spectrum()->massLightestBaryonPair(pD1,pD2) ,GeV) << " GeV cannot decay" << Exception::eventerror; } minMass = spectrum()->massLightestBaryonPair(pD1,diq) + spectrum()->massLightestBaryonPair(diq,pD2); if (Mc < minMass) continue; if (_fissionCluster==0) weight = _hadronSpectrum->pwtQuark(id); else if (abs(_fissionCluster)==1) weight = _fissionPwt.find(id)->second; else assert(false); if (_fissionCluster==-1) weight*=sqr(Herwig::Math::alphaS(Mc, 0.25*GeV,3, 2)); choice.insert(weight,id); } break; default: assert(false); } assert(choice.size()>0); long idNew = choice.select(UseRandom::rnd()); newPtrPos = getParticle(idNew); newPtrNeg = getParticle(-idNew); assert(newPtrPos); assert(newPtrNeg); assert(newPtrPos->dataPtr()); assert(newPtrNeg->dataPtr()); } void ClusterFissioner::drawNewFlavourQuarks(PPtr& newPtrPos,PPtr& newPtrNeg) const { // Flavour is assumed to be only u, d, s, with weights // (which are not normalized probabilities) given // by the same weights as used in HadronsSelector for // the decay of clusters into two hadrons. Selector<long> choice; switch(abs(_fissionCluster)){ case 0: for ( const long& id : spectrum()->lightHadronizingQuarks() ) choice.insert(_hadronSpectrum->pwtQuark(id),id); break; case 1: for ( const long& id : spectrum()->lightHadronizingQuarks() ) choice.insert(_fissionPwt.find(id)->second,id); break; default : assert(false); } long idNew = choice.select(UseRandom::rnd()); newPtrPos = getParticle(idNew); newPtrNeg = getParticle(-idNew); assert (newPtrPos); assert(newPtrNeg); assert (newPtrPos->dataPtr()); assert(newPtrNeg->dataPtr()); } void ClusterFissioner::drawNewFlavourEnhanced(PPtr& newPtrPos,PPtr& newPtrNeg, Energy2 mass2) const { if ( spectrum()->gluonId() != ParticleID::g ) throw Exception() << "strange enhancement only working with Standard Model hadronization" << Exception::runerror; // Flavour is assumed to be only u, d, s, with weights // (which are not normalized probabilities) given // by the same weights as used in HadronsSelector for // the decay of clusters into two hadrons. double prob_d = 0.; double prob_u = 0.; double prob_s = 0.; double scale = abs(double(sqr(_m0Fission)/mass2)); // Choose which splitting weights you wish to use switch(abs(_fissionCluster)){ // 0: ClusterFissioner and ClusterDecayer use the same weights case 0: prob_d = _hadronSpectrum->pwtQuark(ParticleID::d); prob_u = _hadronSpectrum->pwtQuark(ParticleID::u); /* Strangeness enhancement: Case 1: probability scaling Case 2: Exponential scaling */ if (_enhanceSProb == 1) prob_s = (_maxScale < scale) ? 0. : pow(_hadronSpectrum->pwtQuark(ParticleID::s),scale); else if (_enhanceSProb == 2) prob_s = (_maxScale < scale) ? 0. : exp(-scale); break; /* 1: ClusterFissioner uses its own unique set of weights, i.e. decoupled from ClusterDecayer */ case 1: prob_d = _fissionPwt.find(ParticleID::d)->second; prob_u = _fissionPwt.find(ParticleID::u)->second; if (_enhanceSProb == 1) prob_s = (_maxScale < scale) ? 0. : pow(_fissionPwt.find(ParticleID::s)->second,scale); else if (_enhanceSProb == 2) prob_s = (_maxScale < scale) ? 0. : exp(-scale); break; default: assert(false); } int choice = UseRandom::rnd3(prob_u, prob_d, prob_s); long idNew = 0; switch (choice) { case 0: idNew = ThePEG::ParticleID::u; break; case 1: idNew = ThePEG::ParticleID::d; break; case 2: idNew = ThePEG::ParticleID::s; break; } newPtrPos = getParticle(idNew); newPtrNeg = getParticle(-idNew); assert (newPtrPos); assert(newPtrNeg); assert (newPtrPos->dataPtr()); assert(newPtrNeg->dataPtr()); } Energy2 ClusterFissioner::clustermass(const ClusterPtr & cluster) const { Lorentz5Momentum pIn = cluster->momentum(); Energy2 endpointmass2 = sqr(cluster->particle(0)->mass() + cluster->particle(1)->mass()); Energy2 singletm2 = pIn.m2(); // Return either the cluster mass, or the lambda measure return (_massMeasure == 0) ? singletm2 : singletm2 - endpointmass2; } Energy ClusterFissioner::drawChildMass(const Energy M, const Energy m1, const Energy m2, const Energy m, const double expt, const bool soft) const { /*************************** * This method, given in input the cluster mass Mclu of an heavy cluster C, * made of consituents of masses m1 and m2, draws the masses Mclu1 and Mclu2 * of, respectively, the children cluster C1, made of constituent masses m1 * and m, and cluster C2, of mass Mclu2 and made of constituent masses m2 * and m. The mass is extracted from one of the two following mass * distributions: * --- power-like ("normal" distribution) * d(Prob) / d(M^exponent) = const * where the exponent can be different from the two children C1 (exp1) * and C2 (exponent2). * --- exponential ("soft" distribution) * d(Prob) / d(M^2) = exp(-b*M) * where b = 2.0 / average. * Such distributions are limited below by the masses of * the constituents quarks, and above from the mass of decaying cluster C. * The choice of which of the two mass distributions to use for each of the * two cluster children is dictated by iRemnant (see below). * If the number of attempts to extract a pair of mass values that are * kinematically acceptable is above some fixed number (max_loop, see below) * the method gives up and returns false; otherwise, when it succeeds, it * returns true. * * These distributions have been modified from HERWIG: * Before these were: * Mclu1 = m1 + (Mclu - m1 - m2)*pow( rnd(), 1.0/exponent1 ); * The new one coded here is a more efficient version, same density * but taking into account 'in phase space from' beforehand ***************************/ // hard cluster if(!soft) { return pow(UseRandom::rnd(pow((M-m1-m2-m)*UnitRemoval::InvE, expt), pow(m*UnitRemoval::InvE, expt)), 1./expt )*UnitRemoval::E + m1; } // Otherwise it uses a soft mass distribution else { static const InvEnergy b = 2.0 / _btClM; Energy max = M-m1-m2-2.0*m; double rmin = b*max; rmin = ( rmin < 50 ) ? exp(-rmin) : 0.; double r1; do { r1 = UseRandom::rnd(rmin, 1.0) * UseRandom::rnd(rmin, 1.0); } while (r1 < rmin); return m1 + m - log(r1)/b; } } void ClusterFissioner::calculateKinematics(const Lorentz5Momentum & pClu, const Lorentz5Momentum & p0Q1, const bool toHadron1, const bool toHadron2, Lorentz5Momentum & pClu1, Lorentz5Momentum & pClu2, Lorentz5Momentum & pQ1, Lorentz5Momentum & pQbar, Lorentz5Momentum & pQ, Lorentz5Momentum & pQ2bar) const { /****************** * This method solves the kinematics of the two body cluster decay: * C (Q1 Q2bar) ---> C1 (Q1 Qbar) + C2 (Q Q2bar) * In input we receive the momentum of C, pClu, and the momentum * of the quark Q1 (constituent of C), p0Q1, both in the LAB frame. * Furthermore, two boolean variables inform whether the two fission * products (C1, C2) decay immediately into a single hadron (in which * case the cluster itself is identify with that hadron) and we do * not have to solve the kinematics of the components (Q1,Qbar) for * C1 and (Q,Q2bar) for C2. * The output is given by the following momenta (all 5-components, * and all in the LAB frame): * pClu1 , pClu2 respectively of C1 , C2 * pQ1 , pQbar respectively of Q1 , Qbar in C1 * pQ , pQ2bar respectively of Q , Q2 in C2 * The assumption, suggested from the string model, is that, in C frame, * C1 and its constituents Q1 and Qbar are collinear, and collinear to * the direction of Q1 in C (that is before cluster decay); similarly, * (always in the C frame) C2 and its constituents Q and Q2bar are * collinear (and therefore anti-collinear with C1,Q1,Qbar). * The solution is then obtained by using Lorentz boosts, as follows. * The kinematics of C1 and C2 is solved in their parent C frame, * and then boosted back in the LAB. The kinematics of Q1 and Qbar * is solved in their parent C1 frame and then boosted back in the LAB; * similarly, the kinematics of Q and Q2bar is solved in their parent * C2 frame and then boosted back in the LAB. In each of the three * "two-body decay"-like cases, we use the fact that the direction * of the motion of the decay products is known in the rest frame of * their parent. This is obvious for the first case in which the * parent rest frame is C; but it is also true in the other two cases * where the rest frames are C1 and C2. This is because C1 and C2 * are boosted w.r.t. C in the same direction where their components, * respectively (Q1,Qbar) and (Q,Q2bar) move in C1 and C2 rest frame * respectively. * Of course, although the notation used assumed that C = (Q1 Q2bar) * where Q1 is a quark and Q2bar an antiquark, indeed everything remain * unchanged also in all following cases: * Q1 quark, Q2bar antiquark; --> Q quark; * Q1 antiquark , Q2bar quark; --> Q antiquark; * Q1 quark, Q2bar diquark; --> Q quark * Q1 antiquark, Q2bar anti-diquark; --> Q antiquark * Q1 diquark, Q2bar quark --> Q antiquark * Q1 anti-diquark, Q2bar antiquark; --> Q quark **************************/ // Calculate the unit three-vector, in the C frame, along which // all of the constituents and children clusters move. Lorentz5Momentum u(p0Q1); u.boost( -pClu.boostVector() ); // boost from LAB to C // the unit three-vector is then u.vect().unit() // Calculate the momenta of C1 and C2 in the (parent) C frame first, // where the direction of C1 is u.vect().unit(), and then boost back in the // LAB frame. if (pClu.m() < pClu1.mass() + pClu2.mass() ) { throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (A)" << Exception::eventerror; } Kinematics::twoBodyDecay(pClu, pClu1.mass(), pClu2.mass(), u.vect().unit(), pClu1, pClu2); // In the case that cluster1 does not decay immediately into a single hadron, // calculate the momenta of Q1 (as constituent of C1) and Qbar in the // (parent) C1 frame first, where the direction of Q1 is u.vect().unit(), // and then boost back in the LAB frame. if(!toHadron1) { if (pClu1.m() < pQ1.mass() + pQbar.mass() ) { throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (B)" << Exception::eventerror; } Kinematics::twoBodyDecay(pClu1, pQ1.mass(), pQbar.mass(), u.vect().unit(), pQ1, pQbar); } // In the case that cluster2 does not decay immediately into a single hadron, // Calculate the momenta of Q and Q2bar (as constituent of C2) in the // (parent) C2 frame first, where the direction of Q is u.vect().unit(), // and then boost back in the LAB frame. if(!toHadron2) { if (pClu2.m() < pQ.mass() + pQ2bar.mass() ) { throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (C)" << Exception::eventerror; } Kinematics::twoBodyDecay(pClu2, pQ.mass(), pQ2bar.mass(), u.vect().unit(), pQ, pQ2bar); } } void ClusterFissioner::calculatePositions(const Lorentz5Momentum & pClu, const LorentzPoint & positionClu, const Lorentz5Momentum & pClu1, const Lorentz5Momentum & pClu2, LorentzPoint & positionClu1, LorentzPoint & positionClu2) const { // Determine positions of cluster children. // See Marc Smith's thesis, page 127, formulas (4.122) and (4.123). Energy Mclu = pClu.m(); Energy Mclu1 = pClu1.m(); Energy Mclu2 = pClu2.m(); // Calculate the unit three-vector, in the C frame, along which // children clusters move. Lorentz5Momentum u(pClu1); u.boost( -pClu.boostVector() ); // boost from LAB to C frame // the unit three-vector is then u.vect().unit() Energy pstarChild = Kinematics::pstarTwoBodyDecay(Mclu,Mclu1,Mclu2); // First, determine the relative positions of the children clusters // in the parent cluster reference frame. Energy2 mag2 = u.vect().mag2(); InvEnergy fact = mag2>ZERO ? 1./sqrt(mag2) : 1./GeV; Length x1 = ( 0.25*Mclu + 0.5*( pstarChild + (sqr(Mclu2) - sqr(Mclu1))/(2.0*Mclu)))/_kappa; Length t1 = Mclu/_kappa - x1; LorentzDistance distanceClu1( x1 * fact * u.vect(), t1 ); Length x2 = (-0.25*Mclu + 0.5*(-pstarChild + (sqr(Mclu2) - sqr(Mclu1))/(2.0*Mclu)))/_kappa; Length t2 = Mclu/_kappa + x2; LorentzDistance distanceClu2( x2 * fact * u.vect(), t2 ); // Then, transform such relative positions from the parent cluster // reference frame to the Lab frame. distanceClu1.boost( pClu.boostVector() ); distanceClu2.boost( pClu.boostVector() ); // Finally, determine the absolute positions in the Lab frame. positionClu1 = positionClu + distanceClu1; positionClu2 = positionClu + distanceClu2; } bool ClusterFissioner::ProbabilityFunction(double scale, double threshold) { double cut = UseRandom::rnd(0.0,1.0); return 1./(1.+pow(abs((threshold-_probShift)/scale),_probPowFactor)) > cut ? true : false; } bool ClusterFissioner::ProbabilityFunctionPower(double Mass, double threshold) { double cut = UseRandom::rnd(0.0,1.0); if ((Mass-threshold)<=0) return false; return 1.0/(1.0 + _probPowFactor*pow(1.0/(Mass-threshold),_clPowLight)) > cut ? true : false; } bool ClusterFissioner::isHeavy(tcClusterPtr clu) { // particle data for constituents tcPDPtr cptr[3]={tcPDPtr(),tcPDPtr(),tcPDPtr()}; bool hasDiquark=0; for(size_t ix=0;ix<min(clu->numComponents(),3);++ix) { cptr[ix]=clu->particle(ix)->dataPtr(); // Assuming diquark masses are ordered with larger id corresponding to larger masses if (DiquarkMatcher::Check(*(cptr[ix]))) { hasDiquark=true; break; } } // different parameters for exotic, bottom and charm clusters double clpow = !spectrum()->isExotic(cptr[0],cptr[1],cptr[1]) ? _clPowLight : _clPowExotic; Energy clmax = !spectrum()->isExotic(cptr[0],cptr[1],cptr[1]) ? _clMaxLight : _clMaxExotic; // if no heavy quark is found in the cluster, but diquarks are present use // different ClMax and ClPow if ( hasDiquark) { clpow = _clPowDiquark; clmax = _clMaxDiquark; } for ( const long& id : spectrum()->heavyHadronizingQuarks() ) { if ( spectrum()->hasHeavy(id,cptr[0],cptr[1],cptr[1])) { clpow = _clPowHeavy[id]; clmax = _clMaxHeavy[id]; } } // required test for SUSY clusters, since aboveCutoff alone // cannot guarantee (Mc > m1 + m2 + 2*m) in cut() static const Energy minmass = getParticleData(ParticleID::d)->constituentMass(); bool aboveCutoff = false, canSplitMinimally = false; // static kinematic threshold if(_kinematicThresholdChoice == 0) { aboveCutoff = ( pow(clu->mass()*UnitRemoval::InvE , clpow) > pow(clmax*UnitRemoval::InvE, clpow) + pow(clu->sumConstituentMasses()*UnitRemoval::InvE, clpow) ); canSplitMinimally = clu->mass() > clu->sumConstituentMasses() + 2.0 * minmass; } // dynamic kinematic threshold else if(_kinematicThresholdChoice == 1) { //some smooth probablity function to create a dynamic thershold double scale = pow(clu->mass()/GeV , clpow); double threshold = pow(clmax/GeV, clpow) + pow(clu->sumConstituentMasses()/GeV, clpow); aboveCutoff = ProbabilityFunction(scale,threshold); scale = clu->mass()/GeV; threshold = clu->sumConstituentMasses()/GeV + 2.0 * minmass/GeV; canSplitMinimally = ProbabilityFunction(scale,threshold); } // probablistic kinematic threshold else if(_kinematicThresholdChoice == 2) { // Consistent power law for CF probability double Mass = clu->mass()/GeV; double threshold = clu->sumConstituentMasses()/GeV + 2.0 * minmass/GeV; aboveCutoff = ProbabilityFunctionPower(Mass,threshold + clmax/GeV); canSplitMinimally = Mass - threshold>ZERO; } return aboveCutoff && canSplitMinimally; }