diff --git a/Hadronization/ClusterFissioner.cc b/Hadronization/ClusterFissioner.cc --- a/Hadronization/ClusterFissioner.cc +++ b/Hadronization/ClusterFissioner.cc @@ -1,1506 +1,1768 @@ // -*- C++ -*- // // ClusterFissioner.cc is a part of Herwig - A multi-purpose Monte Carlo event generator // Copyright (C) 2002-2019 The Herwig Collaboration // // Herwig is licenced under version 3 of the GPL, see COPYING for details. // Please respect the MCnet academic guidelines, see GUIDELINES for details. // // // Thisk is the implementation of the non-inlined, non-templated member // functions of the ClusterFissioner class. // #include "ClusterFissioner.h" #include <ThePEG/Interface/ClassDocumentation.h> #include <ThePEG/Interface/Reference.h> #include <ThePEG/Interface/Parameter.h> #include <ThePEG/Interface/Switch.h> #include <ThePEG/Persistency/PersistentOStream.h> #include <ThePEG/Persistency/PersistentIStream.h> #include <ThePEG/PDT/EnumParticles.h> #include "Herwig/Utilities/Kinematics.h" #include "Cluster.h" #include "ThePEG/Repository/UseRandom.h" #include "ThePEG/Repository/EventGenerator.h" #include <ThePEG/Utilities/DescribeClass.h> #include "ThePEG/Interface/ParMap.h" +#include <boost/numeric/ublas/matrix.hpp> +#include <boost/numeric/ublas/io.hpp> using namespace Herwig; DescribeClass<ClusterFissioner,Interfaced> describeClusterFissioner("Herwig::ClusterFissioner","Herwig.so"); ClusterFissioner::ClusterFissioner() : _clMaxLight(3.35*GeV), _clMaxExotic(3.35*GeV), _clPowLight(2.0), _clPowExotic(2.0), _pSplitLight(1.0), _pSplitExotic(1.0), _phaseSpaceWeights(false), _dim(4), _fissionCluster(0), _kinematicThresholdChoice(0), _pwtDIquark(0.0), _diquarkClusterFission(0), _btClM(1.0*GeV), _iopRem(1), _kappa(1.0e15*GeV/meter), _kinematics(0), _fluxTubeWidth(1.0*GeV), _enhanceSProb(0), _m0Fission(2.*GeV), _massMeasure(0), _probPowFactor(4.0), _probShift(0.0), _kinThresholdShift(1.0*sqr(GeV)), _strictDiquarkKinematics(0) {} IBPtr ClusterFissioner::clone() const { return new_ptr(*this); } IBPtr ClusterFissioner::fullclone() const { return new_ptr(*this); } void ClusterFissioner::persistentOutput(PersistentOStream & os) const { os << ounit(_clMaxLight,GeV) << ounit(_clMaxHeavy,GeV) << ounit(_clMaxExotic,GeV) << _clPowLight << _clPowHeavy << _clPowExotic << _pSplitLight << _pSplitHeavy << _pSplitExotic << _fissionCluster << _fissionPwt << _pwtDIquark << _diquarkClusterFission << _kinematics << ounit(_fluxTubeWidth,GeV) << ounit(_btClM,GeV) << _iopRem << ounit(_kappa, GeV/meter) << _enhanceSProb << ounit(_m0Fission,GeV) << _massMeasure << _dim << _phaseSpaceWeights << _hadronSpectrum << _probPowFactor << _probShift << ounit(_kinThresholdShift,sqr(GeV)) << _strictDiquarkKinematics; } void ClusterFissioner::persistentInput(PersistentIStream & is, int) { is >> iunit(_clMaxLight,GeV) >> iunit(_clMaxHeavy,GeV) >> iunit(_clMaxExotic,GeV) >> _clPowLight >> _clPowHeavy >> _clPowExotic >> _pSplitLight >> _pSplitHeavy >> _pSplitExotic >> _fissionCluster >> _fissionPwt >> _pwtDIquark >> _diquarkClusterFission >> _kinematics >> iunit(_fluxTubeWidth,GeV) >> iunit(_btClM,GeV) >> _iopRem >> iunit(_kappa, GeV/meter) >> _enhanceSProb >> iunit(_m0Fission,GeV) >> _massMeasure >> _dim >> _phaseSpaceWeights >> _hadronSpectrum >> _probPowFactor >> _probShift >> iunit(_kinThresholdShift,sqr(GeV)) >> _strictDiquarkKinematics; } void ClusterFissioner::doinit() { Interfaced::doinit(); for ( const long& id : spectrum()->heavyHadronizingQuarks() ) { if ( _pSplitHeavy.find(id) == _pSplitHeavy.end() || _clPowHeavy.find(id) == _clPowHeavy.end() || _clMaxHeavy.find(id) == _clMaxHeavy.end() ) throw InitException() << "not all parameters have been set for heavy quark cluster fission"; } // for default Pwts not needed to initialize if (_fissionCluster==0) return; for ( const long& id : spectrum()->lightHadronizingQuarks() ) { if ( _fissionPwt.find(id) == _fissionPwt.end() ) // check that all relevant weights are set throw InitException() << "fission weights for light quarks have not been set"; } /* // Not needed since we set Diquark weights from quark weights for ( const long& id : spectrum()->lightHadronizingDiquarks() ) { if ( _fissionPwt.find(id) == _fissionPwt.end() ) throw InitException() << "fission weights for light diquarks have not been set"; }*/ double pwtDquark=_fissionPwt.find(ParticleID::d)->second; double pwtUquark=_fissionPwt.find(ParticleID::u)->second; double pwtSquark=_fissionPwt.find(ParticleID::s)->second; // ERROR: TODO makeDiquarkID is protected function ? // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::d,ParticleID::d,3)] = _pwtDIquark * pwtDquark * pwtDquark; // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::u,ParticleID::d,1)] = 0.5 * _pwtDIquark * pwtUquark * pwtDquark; // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::u,ParticleID::u,3)] = _pwtDIquark * pwtUquark * pwtUquark; // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::s,ParticleID::d,1)] = 0.5 * _pwtDIquark * pwtSquark * pwtDquark; // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::s,ParticleID::u,1)] = 0.5 * _pwtDIquark * pwtSquark * pwtUquark; // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::s,ParticleID::s,3)] = _pwtDIquark * pwtSquark * pwtSquark; // TODO magic number alternative _fissionPwt[1103] = _pwtDIquark * pwtDquark * pwtDquark; _fissionPwt[2101] = 0.5 * _pwtDIquark * pwtUquark * pwtDquark; _fissionPwt[2203] = _pwtDIquark * pwtUquark * pwtUquark; _fissionPwt[3101] = 0.5 * _pwtDIquark * pwtSquark * pwtDquark; _fissionPwt[3201] = 0.5 * _pwtDIquark * pwtSquark * pwtUquark; _fissionPwt[3303] = _pwtDIquark * pwtSquark * pwtSquark; } void ClusterFissioner::Init() { static ClassDocumentation<ClusterFissioner> documentation ("Class responsibles for chopping up the clusters"); static Reference<ClusterFissioner,HadronSpectrum> interfaceHadronSpectrum ("HadronSpectrum", "Set the Hadron spectrum for this cluster fissioner.", &ClusterFissioner::_hadronSpectrum, false, false, true, false); // ClMax for light, Bottom, Charm and exotic (e.g. Susy) quarks static Parameter<ClusterFissioner,Energy> interfaceClMaxLight ("ClMaxLight","cluster max mass for light quarks (unit [GeV])", &ClusterFissioner::_clMaxLight, GeV, 3.35*GeV, ZERO, 10.0*GeV, false,false,false); static ParMap<ClusterFissioner,Energy> interfaceClMaxHeavy ("ClMaxHeavy", "ClMax for heavy quarkls", &ClusterFissioner::_clMaxHeavy, GeV, -1, 3.35*GeV, ZERO, 10.0*GeV, false, false, Interface::upperlim); static Parameter<ClusterFissioner,Energy> interfaceClMaxExotic ("ClMaxExotic","cluster max mass for exotic quarks (unit [GeV])", &ClusterFissioner::_clMaxExotic, GeV, 3.35*GeV, ZERO, 10.0*GeV, false,false,false); // ClPow for light, Bottom, Charm and exotic (e.g. Susy) quarks static Parameter<ClusterFissioner,double> interfaceClPowLight ("ClPowLight","cluster mass exponent for light quarks", &ClusterFissioner::_clPowLight, 0, 2.0, 0.0, 10.0,false,false,false); static ParMap<ClusterFissioner,double> interfaceClPowHeavy ("ClPowHeavy", "ClPow for heavy quarks", &ClusterFissioner::_clPowHeavy, -1, 1.0, 0.0, 10.0, false, false, Interface::upperlim); static Parameter<ClusterFissioner,double> interfaceClPowExotic ("ClPowExotic","cluster mass exponent for exotic quarks", &ClusterFissioner::_clPowExotic, 0, 2.0, 0.0, 10.0,false,false,false); // PSplit for light, Bottom, Charm and exotic (e.g. Susy) quarks static Parameter<ClusterFissioner,double> interfacePSplitLight ("PSplitLight","cluster mass splitting param for light quarks", &ClusterFissioner::_pSplitLight, 0, 1.0, 0.0, 10.0,false,false,false); static ParMap<ClusterFissioner,double> interfacePSplitHeavy ("PSplitHeavy", "PSplit for heavy quarks", &ClusterFissioner::_pSplitHeavy, -1, 1.0, 0.0, 10.0, false, false, Interface::upperlim); static Parameter<ClusterFissioner,double> interfacePSplitExotic ("PSplitExotic","cluster mass splitting param for exotic quarks", &ClusterFissioner::_pSplitExotic, 0, 1.0, 0.0, 10.0,false,false,false); static Switch<ClusterFissioner,int> interfaceFission ("Fission", "Option for different Fission options", &ClusterFissioner::_fissionCluster, 1, false, false); static SwitchOption interfaceFissionDefault (interfaceFission, "default", "Normal cluster fission which depends on the hadron selector class.", 0); static SwitchOption interfaceFissionNew (interfaceFission, "new", "Alternative cluster fission which does not depend on the hadron selector class", 1); static Switch<ClusterFissioner,int> interfaceDiquarkClusterFission ("DiquarkClusterFission", "Allow clusters to fission to 1 or 2 diquark Clusters", &ClusterFissioner::_diquarkClusterFission, 0, false, false); static SwitchOption interfaceDiquarkClusterFissionAll (interfaceDiquarkClusterFission, "All", "Allow diquark clusters and baryon clusters to fission to new diquark Clusters", 2); static SwitchOption interfaceDiquarkClusterFissionOnlyBaryonClusters (interfaceDiquarkClusterFission, "OnlyBaryonClusters", "Allow only baryon clusters to fission to new diquark Clusters", 1); static SwitchOption interfaceDiquarkClusterFissionNo (interfaceDiquarkClusterFission, "No", "Don't allow clusters to fission to new diquark Clusters", 0); static ParMap<ClusterFissioner,double> interfaceFissionPwt ("FissionPwt", "The weights for quarks in the fission process.", &ClusterFissioner::_fissionPwt, -1, 1.0, 0.0, 10.0, false, false, Interface::upperlim); static Switch<ClusterFissioner,int> interfaceRemnantOption ("RemnantOption", "Option for the treatment of remnant clusters", &ClusterFissioner::_iopRem, 1, false, false); static SwitchOption interfaceRemnantOptionSoft (interfaceRemnantOption, "Soft", "Both clusters produced in the fission of the beam cluster" " are treated as soft clusters.", 0); static SwitchOption interfaceRemnantOptionHard (interfaceRemnantOption, "Hard", "Only the cluster containing the remnant is treated as a soft cluster.", 1); static SwitchOption interfaceRemnantOptionVeryHard (interfaceRemnantOption, "VeryHard", "Even remnant clusters are treated as hard, i.e. all clusters the same", 2); static Parameter<ClusterFissioner,Energy> interfaceBTCLM ("SoftClusterFactor", "Parameter for the mass spectrum of remnant clusters", &ClusterFissioner::_btClM, GeV, 1.*GeV, 0.1*GeV, 10.0*GeV, false, false, Interface::limited); static Parameter<ClusterFissioner,Tension> interfaceStringTension ("StringTension", "String tension used in vertex displacement calculation", &ClusterFissioner::_kappa, GeV/meter, 1.0e15*GeV/meter, ZERO, ZERO, false, false, Interface::lowerlim); static Switch<ClusterFissioner,int> interfaceEnhanceSProb ("EnhanceSProb", "Option for enhancing strangeness", &ClusterFissioner::_enhanceSProb, 0, false, false); static SwitchOption interfaceEnhanceSProbNo (interfaceEnhanceSProb, "No", "No strangeness enhancement.", 0); static SwitchOption interfaceEnhanceSProbScaled (interfaceEnhanceSProb, "Scaled", "Scaled strangeness enhancement", 1); static SwitchOption interfaceEnhanceSProbExponential (interfaceEnhanceSProb, "Exponential", "Exponential strangeness enhancement", 2); static Switch<ClusterFissioner,int> interfaceKinematics ("Kinematics", "Option for selecting different Kinematics for ClusterFission", &ClusterFissioner::_kinematics, 0, false, false); static SwitchOption interfaceKinematicsDefault (interfaceKinematics, "Default", "Fully aligned Cluster Fission along the Original cluster direction", 0); static SwitchOption interfaceKinematicsIsotropic (interfaceKinematics, "Isotropic", "Fully isotropic two body decay. Not recommended!", 1); static SwitchOption interfaceKinematicsFluxTube (interfaceKinematics, "FluxTube", "Aligned decay with gaussian pT kick with sigma=ClusterFissioner::FluxTube", 2); static Switch<ClusterFissioner,int> interfaceMassMeasure ("MassMeasure", "Option to use different mass measures", &ClusterFissioner::_massMeasure,0,false,false); static SwitchOption interfaceMassMeasureMass (interfaceMassMeasure, "Mass", "Mass Measure", 0); static SwitchOption interfaceMassMeasureLambda (interfaceMassMeasure, "Lambda", "Lambda Measure", 1); static Parameter<ClusterFissioner,Energy> interfaceFissionMassScale ("FissionMassScale", "Cluster fission mass scale", &ClusterFissioner::_m0Fission, GeV, 2.0*GeV, 0.1*GeV, 50.*GeV, false, false, Interface::limited); static Parameter<ClusterFissioner,double> interfaceProbPowFactor ("ProbablityPowerFactor", "Power factor in ClausterFissioner bell probablity function", &ClusterFissioner::_probPowFactor, 2.0, 1.0, 20.0, false, false, Interface::limited); static Parameter<ClusterFissioner,Energy> interfaceFluxTubeWidth ("FluxTubeWidth", "sigma of gaussian sampling of pT for FluxTube kinematics", &ClusterFissioner::_fluxTubeWidth, GeV, 2.0*GeV, 1.0e-30*GeV, 5.0*GeV, false, false, Interface::limited); static Parameter<ClusterFissioner,double> interfaceProbShift ("ProbablityShift", "Shifts from the center in ClausterFissioner bell probablity function", &ClusterFissioner::_probShift, 0.0, -10.0, 10.0, false, false, Interface::limited); static Parameter<ClusterFissioner,Energy2> interfaceKineticThresholdShift ("KineticThresholdShift", "Shifts from the kinetic threshold in ClausterFissioner", &ClusterFissioner::_kinThresholdShift, sqr(GeV), 0.*sqr(GeV), -10.0*sqr(GeV), 10.0*sqr(GeV), false, false, Interface::limited); static Switch<ClusterFissioner,int> interfaceKinematicThreshold ("KinematicThreshold", "Option for using static or dynamic kinematic thresholds in cluster splittings", &ClusterFissioner::_kinematicThresholdChoice, 0, false, false); static SwitchOption interfaceKinematicThresholdStatic (interfaceKinematicThreshold, "Static", "Set static kinematic thresholds for cluster splittings.", 0); static SwitchOption interfaceKinematicThresholdDynamic (interfaceKinematicThreshold, "Dynamic", "Set dynamic kinematic thresholds for cluster splittings.", 1); static Switch<ClusterFissioner,bool> interfacePhaseSpaceWeights ("PhaseSpaceWeights", "Include phase space weights.", &ClusterFissioner::_phaseSpaceWeights, false, false, false); static SwitchOption interfacePhaseSpaceWeightsYes (interfacePhaseSpaceWeights, "Yes", "Do include the effect of cluster fission phase space", true); static SwitchOption interfacePhaseSpaceWeightsNo (interfacePhaseSpaceWeights, "No", "Do not include the effect of cluster phase space", false); static Parameter<ClusterFissioner,double> interfaceDim ("Dimension","Dimension in which phase space weights are calculated", &ClusterFissioner::_dim, 0, 4.0, 3.0, 10.0,false,false, Interface::limited); static Switch<ClusterFissioner,int> interfaceStrictDiquarkKinematics ("StrictDiquarkKinematics", "Option for selecting different selection criterions of diquarks for ClusterFission", &ClusterFissioner::_strictDiquarkKinematics, 0, false, false); static SwitchOption interfaceStrictDiquarkKinematicsLoose (interfaceStrictDiquarkKinematics, "Loose", "No kinematic threshold for diquark selection except for Mass bigger than 2 baryons", 0); static SwitchOption interfaceStrictDiquarkKinematicsStrict (interfaceStrictDiquarkKinematics, "Strict", "Resulting clusters are at least as heavy as 2 lightest baryons", 1); static Parameter<ClusterFissioner,double> interfacePwtDIquark ("PwtDIquark", "specific probability for choosing a d diquark", &ClusterFissioner::_pwtDIquark, 0.0, 0.0, 10.0, false, false, Interface::limited); } tPVector ClusterFissioner::fission(ClusterVector & clusters, bool softUEisOn) { // return if no clusters if (clusters.empty()) return tPVector(); /***************** * Loop over the (input) collection of cluster pointers, and store in * the vector splitClusters all the clusters that need to be split * (these are beam clusters, if soft underlying event is off, and * heavy non-beam clusters). ********************/ stack<ClusterPtr> splitClusters; for(ClusterVector::iterator it = clusters.begin() ; it != clusters.end() ; ++it) { /************** * Skip 3-component clusters that have been redefined (as 2-component * clusters) or not available clusters. The latter check is indeed * redundant now, but it is used for possible future extensions in which, * for some reasons, some of the clusters found by ClusterFinder are tagged * straight away as not available. **************/ if((*it)->isRedefined() || !(*it)->isAvailable()) continue; // if the cluster is a beam cluster add it to the vector of clusters // to be split or if it is heavy if((*it)->isBeamCluster() || isHeavy(*it)) splitClusters.push(*it); } tPVector finalhadrons; cut(splitClusters, clusters, finalhadrons, softUEisOn); return finalhadrons; } void ClusterFissioner::cut(stack<ClusterPtr> & clusterStack, ClusterVector &clusters, tPVector & finalhadrons, bool softUEisOn) { /************************************************** * This method does the splitting of the cluster pointed by cluPtr * and "recursively" by all of its cluster children, if heavy. All of these * new children clusters are added (indeed the pointers to them) to the * collection of cluster pointers collecCluPtr. The method works as follows. * Initially the vector vecCluPtr contains just the input pointer to the * cluster to be split. Then it will be filled "recursively" by all * of the cluster's children that are heavy enough to require, in their turn, * to be split. In each loop, the last element of the vector vecCluPtr is * considered (only once because it is then removed from the vector). * This approach is conceptually recursive, but avoid the overhead of * a concrete recursive function. Furthermore it requires minimal changes * in the case that the fission of an heavy cluster could produce more * than two cluster children as assumed now. * * Draw the masses: for normal, non-beam clusters a power-like mass dist * is used, whereas for beam clusters a fast-decreasing exponential mass * dist is used instead (to avoid many iterative splitting which could * produce an unphysical large transverse energy from a supposed soft beam * remnant process). ****************************************/ // Here we recursively loop over clusters in the stack and cut them while (!clusterStack.empty()) { // take the last element of the vector ClusterPtr iCluster = clusterStack.top(); clusterStack.pop(); // split it cutType ct = iCluster->numComponents() == 2 ? cutTwo(iCluster, finalhadrons, softUEisOn) : cutThree(iCluster, finalhadrons, softUEisOn); // There are cases when we don't want to split, even if it fails mass test if(!ct.first.first || !ct.second.first) { // if an unsplit beam cluster leave if for the underlying event if(iCluster->isBeamCluster() && softUEisOn) iCluster->isAvailable(false); continue; } // check if clusters ClusterPtr one = dynamic_ptr_cast<ClusterPtr>(ct.first.first); ClusterPtr two = dynamic_ptr_cast<ClusterPtr>(ct.second.first); // is a beam cluster must be split into two clusters if(iCluster->isBeamCluster() && (!one||!two) && softUEisOn) { iCluster->isAvailable(false); continue; } // There should always be a intermediate quark(s) from the splitting assert(ct.first.second && ct.second.second); /// \todo sort out motherless quark pairs here. Watch out for 'quark in final state' errors iCluster->addChild(ct.first.first); // iCluster->addChild(ct.first.second); // ct.first.second->addChild(ct.first.first); iCluster->addChild(ct.second.first); // iCluster->addChild(ct.second.second); // ct.second.second->addChild(ct.second.first); // Sometimes the clusters decay C -> H + C' or C -> H + H' rather then C -> C' + C'' if(one) { clusters.push_back(one); if(one->isBeamCluster() && softUEisOn) one->isAvailable(false); if(isHeavy(one) && one->isAvailable()) clusterStack.push(one); } if(two) { clusters.push_back(two); if(two->isBeamCluster() && softUEisOn) two->isAvailable(false); if(isHeavy(two) && two->isAvailable()) clusterStack.push(two); } } } ClusterFissioner::cutType ClusterFissioner::cutTwo(ClusterPtr & cluster, tPVector & finalhadrons, bool softUEisOn) { // need to make sure only 2-cpt clusters get here assert(cluster->numComponents() == 2); tPPtr ptrQ1 = cluster->particle(0); tPPtr ptrQ2 = cluster->particle(1); Energy Mc = cluster->mass(); assert(ptrQ1); assert(ptrQ2); // And check if those particles are from a beam remnant bool rem1 = cluster->isBeamRemnant(0); bool rem2 = cluster->isBeamRemnant(1); // workout which distribution to use bool soft1(false),soft2(false); switch (_iopRem) { case 0: soft1 = rem1 || rem2; soft2 = rem2 || rem1; break; case 1: soft1 = rem1; soft2 = rem2; break; } // Initialization for the exponential ("soft") mass distribution. static const int max_loop = 1000; int counter = 0; Energy Mc1 = ZERO, Mc2 = ZERO,m1=ZERO,m2=ZERO,m=ZERO; tcPDPtr toHadron1, toHadron2; PPtr newPtr1 = PPtr (); PPtr newPtr2 = PPtr (); bool succeeded = false; Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2; do { succeeded = false; ++counter; // get a flavour for the qqbar pair drawNewFlavour(newPtr1,newPtr2,cluster); // check for right ordering assert (ptrQ2); assert (newPtr2); assert (ptrQ2->dataPtr()); assert (newPtr2->dataPtr()); // TODO careful if DiquarkClusters can exist bool Q1diq = DiquarkMatcher::Check(ptrQ1->id()); bool Q2diq = DiquarkMatcher::Check(ptrQ2->id()); bool newQ1diq = DiquarkMatcher::Check(newPtr1->id()); bool newQ2diq = DiquarkMatcher::Check(newPtr2->id()); bool diqClu1 = Q1diq && newQ1diq; bool diqClu2 = Q2diq && newQ2diq; // std::cout << "Make Clusters: ( " << ptrQ1->PDGName() << " " << newPtr1->PDGName() << " ), ( " // << ptrQ2->PDGName() << " " << newPtr2->PDGName() << " )\n"; if (!( diqClu1 || diqClu2 ) && (cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2))) { swap(newPtr1, newPtr2); // check again if(cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2)) { throw Exception() << "ClusterFissioner cannot split the cluster (" << ptrQ1->PDGName() << ' ' << ptrQ2->PDGName() << ") into hadrons.\n" << "drawn Flavour: "<< newPtr1->PDGName()<<"\n"<< Exception::runerror; } } else if ( diqClu1 || diqClu2 ){ bool swapped=false; if ( !diqClu1 && cantMakeHadron(ptrQ1,newPtr1) ) { swap(newPtr1, newPtr2); swapped=true; } if ( !diqClu2 && cantMakeHadron(ptrQ2,newPtr2) ) { assert(!swapped); swap(newPtr1, newPtr2); } if ( diqClu2 && diqClu1 && ptrQ1->id()*newPtr1->id()>0 ) { assert(!swapped); swap(newPtr1, newPtr2); } // std::cout << "Make Clusters: ( " << ptrQ1->PDGName() << " " << newPtr1->PDGName() << " ), ( " // << ptrQ2->PDGName() << " " << newPtr2->PDGName() << " )\n"; if (!diqClu1) assert(!cantMakeHadron(ptrQ1,newPtr1)); if (!diqClu2) assert(!cantMakeHadron(ptrQ2,newPtr2)); } // Check that new clusters can produce particles and there is enough // phase space to choose the drawn flavour m1 = ptrQ1->data().constituentMass(); m2 = ptrQ2->data().constituentMass(); m = newPtr1->data().constituentMass(); // Do not split in the case there is no phase space available if(Mc < m1+m + m2+m) continue; pQ1.setMass(m1); pQone.setMass(m); pQtwo.setMass(m); pQ2.setMass(m2); pair<Energy,Energy> res = drawNewMasses(Mc, soft1, soft2, pClu1, pClu2, ptrQ1, pQ1, newPtr1, pQone, newPtr2, pQtwo, ptrQ2, pQ2); // derive the masses of the children Mc1 = res.first; Mc2 = res.second; // static kinematic threshold if(_kinematicThresholdChoice == 0) { if(Mc1 < m1+m || Mc2 < m+m2 || Mc1+Mc2 > Mc) continue; // dynamic kinematic threshold } else if(_kinematicThresholdChoice == 1) { bool C1 = ( sqr(Mc1) )/( sqr(m1) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false; bool C2 = ( sqr(Mc2) )/( sqr(m2) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false; bool C3 = ( sqr(Mc1) + sqr(Mc2) )/( sqr(Mc) ) > 1.0 ? true : false; if( C1 || C2 || C3 ) continue; } if ( _phaseSpaceWeights ) { if ( phaseSpaceVeto(Mc,Mc1,Mc2,m,m1,m2) ) continue; } if ( Mc1 < spectrum()->massLightestHadronPair(ptrQ1->dataPtr(),newPtr1->dataPtr())) { // std::cout << "Cluster decays to hadron MC"<< Mc1/GeV << "\t MLHP "<< spectrum()->massLightestHadronPair(ptrQ1->dataPtr(),newPtr1->dataPtr())/GeV<<"\n"; // std::cout << "Flavour " << ptrQ1->PDGName() <<", " << newPtr1->PDGName()<< "\n"; continue; } if ( Mc2 < spectrum()->massLightestHadronPair(ptrQ2->dataPtr(),newPtr2->dataPtr())) { // std::cout << "Cluster decays to hadron MC"<< Mc2/GeV << "\t MLHP "<< spectrum()->massLightestHadronPair(ptrQ2->dataPtr(),newPtr2->dataPtr())/GeV<<"\n"; // std::cout << "Flavour " << ptrQ2->PDGName() <<", " << newPtr2->PDGName()<< "\n"; continue; } // if (diqClu1) { // if (Mc1 < spectrum()->massLightestBaryonPair(ptrQ1->dataPtr(),newPtr1->dataPtr())) { // continue; // } // } // if (diqClu2) { // if (Mc2 < spectrum()->massLightestBaryonPair(ptrQ2->dataPtr(),newPtr2->dataPtr())) { // continue; // } // } /************************** * New (not present in Fortran Herwig): * check whether the fragment masses Mc1 and Mc2 are above the * threshold for the production of the lightest pair of hadrons with the * right flavours. If not, then set by hand the mass to the lightest * single hadron with the right flavours, in order to solve correctly * the kinematics, and (later in this method) create directly such hadron * and add it to the children hadrons of the cluster that undergoes the * fission (i.e. the one pointed by iCluPtr). Notice that in this special * case, the heavy cluster that undergoes the fission has one single * cluster child and one single hadron child. We prefer this approach, * rather than to create a light cluster, with the mass set equal to * the lightest hadron, and let then the class LightClusterDecayer to do * the job to decay it to that single hadron, for two reasons: * First, because the sum of the masses of the two constituents can be, * in this case, greater than the mass of that hadron, hence it would * be impossible to solve the kinematics for such two components, and * therefore we would have a cluster whose components are undefined. * Second, the algorithm is faster, because it avoids the reshuffling * procedure that would be necessary if we used LightClusterDecayer * to decay the light cluster to the lightest hadron. ****************************/ // override chosen masses if needed toHadron1 = _hadronSpectrum->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc1); if(toHadron1) { Mc1 = toHadron1->mass(); pClu1.setMass(Mc1); } toHadron2 = _hadronSpectrum->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc2); if(toHadron2) { Mc2 = toHadron2->mass(); pClu2.setMass(Mc2); } if (toHadron1 || toHadron2) throw Exception() << "Cluster wants to go to H,C or H,H'" << Exception::runerror; // if a beam cluster not allowed to decay to hadrons if(cluster->isBeamCluster() && (toHadron1||toHadron2) && softUEisOn) continue; // Check if the decay kinematics is still possible: if not then // force the one-hadron decay for the other cluster as well. if(Mc1 + Mc2 > Mc) { if(!toHadron1) { toHadron1 = _hadronSpectrum->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc-Mc2); if(toHadron1) { Mc1 = toHadron1->mass(); pClu1.setMass(Mc1); } } else if(!toHadron2) { toHadron2 = _hadronSpectrum->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc-Mc1); if(toHadron2) { Mc2 = toHadron2->mass(); pClu2.setMass(Mc2); } } } succeeded = (Mc >= Mc1+Mc2); } while (!succeeded && counter < max_loop); if(counter >= max_loop) { static const PPtr null = PPtr(); return cutType(PPair(null,null),PPair(null,null)); } // Determined the (5-components) momenta (all in the LAB frame) Lorentz5Momentum pClu = cluster->momentum(); // known Lorentz5Momentum p0Q1 = ptrQ1->momentum(); // known (mom Q1 before fission) calculateKinematics(pClu,p0Q1,toHadron1,toHadron2, pClu1,pClu2,pQ1,pQone,pQtwo,pQ2); /****************** * The previous methods have determined the kinematics and positions * of C -> C1 + C2. * In the case that one of the two product is light, that means either * decayOneHadronClu1 or decayOneHadronClu2 is true, then the momenta * of the components of that light product have not been determined, * and a (light) cluster will not be created: the heavy father cluster * decays, in this case, into a single (not-light) cluster and a * single hadron. In the other, "normal", cases the father cluster * decays into two clusters, each of which has well defined components. * Notice that, in the case of components which point to particles, the * momenta of the components is properly set to the new values, whereas * we do not change the momenta of the pointed particles, because we * want to keep all of the information (that is the new momentum of a * component after the splitting, which is contained in the _momentum * member of the Component class, and the (old) momentum of that component * before the splitting, which is contained in the momentum of the * pointed particle). Please not make confusion of this only apparent * inconsistency! ********************/ LorentzPoint posC,pos1,pos2; posC = cluster->vertex(); calculatePositions(pClu, posC, pClu1, pClu2, pos1, pos2); cutType rval; if(toHadron1) { rval.first = produceHadron(toHadron1, newPtr1, pClu1, pos1); finalhadrons.push_back(rval.first.first); } else { rval.first = produceCluster(ptrQ1, newPtr1, pClu1, pos1, pQ1, pQone, rem1); } if(toHadron2) { rval.second = produceHadron(toHadron2, newPtr2, pClu2, pos2); finalhadrons.push_back(rval.second.first); } else { rval.second = produceCluster(ptrQ2, newPtr2, pClu2, pos2, pQ2, pQtwo, rem2); } return rval; } ClusterFissioner::cutType ClusterFissioner::cutThree(ClusterPtr & cluster, tPVector & finalhadrons, bool softUEisOn) { // need to make sure only 3-cpt clusters get here assert(cluster->numComponents() == 3); // extract quarks tPPtr ptrQ[3] = {cluster->particle(0),cluster->particle(1),cluster->particle(2)}; assert( ptrQ[0] && ptrQ[1] && ptrQ[2] ); // find maximum mass pair Energy mmax(ZERO); Lorentz5Momentum pDiQuark; int iq1(-1),iq2(-1); Lorentz5Momentum psum; for(int q1=0;q1<3;++q1) { psum+= ptrQ[q1]->momentum(); for(int q2=q1+1;q2<3;++q2) { Lorentz5Momentum ptest = ptrQ[q1]->momentum()+ptrQ[q2]->momentum(); ptest.rescaleMass(); Energy mass = ptest.m(); if(mass>mmax) { mmax = mass; pDiQuark = ptest; iq1 = q1; iq2 = q2; } } } // and the spectators int iother(-1); for(int ix=0;ix<3;++ix) if(ix!=iq1&&ix!=iq2) iother=ix; assert(iq1>=0&&iq2>=0&&iother>=0); // And check if those particles are from a beam remnant bool rem1 = cluster->isBeamRemnant(iq1); bool rem2 = cluster->isBeamRemnant(iq2); // workout which distribution to use bool soft1(false),soft2(false); switch (_iopRem) { case 0: soft1 = rem1 || rem2; soft2 = rem2 || rem1; break; case 1: soft1 = rem1; soft2 = rem2; break; } // Initialization for the exponential ("soft") mass distribution. static const int max_loop = 1000; int counter = 0; Energy Mc1 = ZERO, Mc2 = ZERO, m1=ZERO, m2=ZERO, m=ZERO; tcPDPtr toHadron; bool toDiQuark(false); PPtr newPtr1 = PPtr(),newPtr2 = PPtr(); PDPtr diquark; bool succeeded = false; Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2; do { succeeded = false; ++counter; // get a flavour for the qqbar pair drawNewFlavour(newPtr1,newPtr2,cluster); // randomly pick which will be (anti)diquark and which a mesonic cluster if(UseRandom::rndbool()) { swap(iq1,iq2); swap(rem1,rem2); } // check first order if(cantMakeHadron(ptrQ[iq1], newPtr1) || !spectrum()->canMakeDiQuark(ptrQ[iq2], newPtr2)) { swap(newPtr1,newPtr2); } // check again if(cantMakeHadron(ptrQ[iq1], newPtr1) || !spectrum()->canMakeDiQuark(ptrQ[iq2], newPtr2)) { throw Exception() << "ClusterFissioner cannot split the cluster (" << ptrQ[iq1]->PDGName() << ' ' << ptrQ[iq2]->PDGName() << ") into a hadron and diquark.\n" << Exception::runerror; } // Check that new clusters can produce particles and there is enough // phase space to choose the drawn flavour m1 = ptrQ[iq1]->data().constituentMass(); m2 = ptrQ[iq2]->data().constituentMass(); m = newPtr1->data().constituentMass(); // Do not split in the case there is no phase space available if(mmax < m1+m + m2+m) continue; pQ1.setMass(m1); pQone.setMass(m); pQtwo.setMass(m); pQ2.setMass(m2); pair<Energy,Energy> res = drawNewMasses(mmax, soft1, soft2, pClu1, pClu2, ptrQ[iq1], pQ1, newPtr1, pQone, newPtr2, pQtwo, ptrQ[iq1], pQ2); Mc1 = res.first; Mc2 = res.second; if(Mc1 < m1+m || Mc2 < m+m2 || Mc1+Mc2 > mmax) continue; if ( _phaseSpaceWeights ) { if ( phaseSpaceVeto(mmax,Mc1,Mc2,m,m1,m2) ) continue; } // check if need to force meson clster to hadron toHadron = _hadronSpectrum->chooseSingleHadron(ptrQ[iq1]->dataPtr(), newPtr1->dataPtr(),Mc1); if(toHadron) { Mc1 = toHadron->mass(); pClu1.setMass(Mc1); } // check if need to force diquark cluster to be on-shell toDiQuark = false; diquark = spectrum()->makeDiquark(ptrQ[iq2]->dataPtr(), newPtr2->dataPtr()); if(Mc2 < diquark->constituentMass()) { Mc2 = diquark->constituentMass(); pClu2.setMass(Mc2); toDiQuark = true; } // if a beam cluster not allowed to decay to hadrons if(cluster->isBeamCluster() && toHadron && softUEisOn) continue; // Check if the decay kinematics is still possible: if not then // force the one-hadron decay for the other cluster as well. if(Mc1 + Mc2 > mmax) { if(!toHadron) { toHadron = _hadronSpectrum->chooseSingleHadron(ptrQ[iq1]->dataPtr(), newPtr1->dataPtr(),mmax-Mc2); if(toHadron) { Mc1 = toHadron->mass(); pClu1.setMass(Mc1); } } else if(!toDiQuark) { Mc2 = _hadronSpectrum->massLightestHadron(ptrQ[iq2]->dataPtr(), newPtr2->dataPtr()); pClu2.setMass(Mc2); toDiQuark = true; } } succeeded = (mmax >= Mc1+Mc2); } while (!succeeded && counter < max_loop); // check no of tries if(counter >= max_loop) return cutType(); // Determine the (5-components) momenta (all in the LAB frame) Lorentz5Momentum p0Q1 = ptrQ[iq1]->momentum(); calculateKinematics(pDiQuark,p0Q1,toHadron,toDiQuark, pClu1,pClu2,pQ1,pQone,pQtwo,pQ2); // positions of the new clusters LorentzPoint pos1,pos2; Lorentz5Momentum pBaryon = pClu2+ptrQ[iother]->momentum(); calculatePositions(cluster->momentum(), cluster->vertex(), pClu1, pBaryon, pos1, pos2); // first the mesonic cluster/meson cutType rval; if(toHadron) { rval.first = produceHadron(toHadron, newPtr1, pClu1, pos1); finalhadrons.push_back(rval.first.first); } else { rval.first = produceCluster(ptrQ[iq1], newPtr1, pClu1, pos1, pQ1, pQone, rem1); } if(toDiQuark) { rem2 |= cluster->isBeamRemnant(iother); PPtr newDiQuark = diquark->produceParticle(pClu2); rval.second = produceCluster(newDiQuark, ptrQ[iother], pBaryon, pos2, pClu2, ptrQ[iother]->momentum(), rem2); } else { rval.second = produceCluster(ptrQ[iq2], newPtr2, pBaryon, pos2, pQ2, pQtwo, rem2, ptrQ[iother],cluster->isBeamRemnant(iother)); } cluster->isAvailable(false); return rval; } ClusterFissioner::PPair ClusterFissioner::produceHadron(tcPDPtr hadron, tPPtr newPtr, const Lorentz5Momentum &a, const LorentzPoint &b) const { PPair rval; if(hadron->coloured()) { rval.first = (_hadronSpectrum->lightestHadron(hadron,newPtr->dataPtr()))->produceParticle(); } else rval.first = hadron->produceParticle(); rval.second = newPtr; rval.first->set5Momentum(a); rval.first->setVertex(b); return rval; } ClusterFissioner::PPair ClusterFissioner::produceCluster(tPPtr ptrQ, tPPtr newPtr, const Lorentz5Momentum & a, const LorentzPoint & b, const Lorentz5Momentum & c, const Lorentz5Momentum & d, bool isRem, tPPtr spect, bool remSpect) const { PPair rval; rval.second = newPtr; ClusterPtr cluster = !spect ? new_ptr(Cluster(ptrQ,rval.second)) : new_ptr(Cluster(ptrQ,rval.second,spect)); rval.first = cluster; cluster->set5Momentum(a); cluster->setVertex(b); assert(cluster->particle(0)->id() == ptrQ->id()); cluster->particle(0)->set5Momentum(c); cluster->particle(1)->set5Momentum(d); cluster->setBeamRemnant(0,isRem); if(remSpect) cluster->setBeamRemnant(2,remSpect); return rval; } void ClusterFissioner::drawNewFlavourDiquarks(PPtr& newPtrPos,PPtr& newPtrNeg, const ClusterPtr & clu) const { // Flavour is assumed to be only u, d, s, with weights // (which are not normalized probabilities) given // by the same weights as used in HadronsSelector for // the decay of clusters into two hadrons. unsigned hasDiquarks=0; assert(clu->numComponents()==2); tcPDPtr pD1=clu->particle(0)->dataPtr(); tcPDPtr pD2=clu->particle(1)->dataPtr(); bool isDiq1=DiquarkMatcher::Check(pD1->id()); if (isDiq1) hasDiquarks++; bool isDiq2=DiquarkMatcher::Check(pD2->id()); if (isDiq2) hasDiquarks++; assert(hasDiquarks<=2); Energy Mc=(clu->momentum().mass()); // if (fabs(clu->momentum().massError() )>1e-14) std::cout << "Mass inconsistency CF : " << std::scientific << clu->momentum().massError() <<"\n"; // Not allow yet Diquark Clusters // if ( hasDiquarks>=1 || Mc < spectrum()->massLightestBaryonPair(pD1,pD2) ) // return drawNewFlavour(newPtrPos,newPtrNeg); Energy minMass; Selector<long> choice; // int countQ=0; // int countDiQ=0; // adding quark-antiquark pairs to the selection list for ( const long& id : spectrum()->lightHadronizingQuarks() ) { // TODO uncommenting below gives sometimes 0 selection possibility, // maybe need to be checked in the LightClusterDecayer and ColourReconnector // if (Mc < spectrum()->massLightestHadronPair(pD1,pD2)) continue; // countQ++; if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id); else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id); else assert(false); } // adding diquark-antidiquark pairs to the selection list switch (hasDiquarks) { case 0: for ( const long& id : spectrum()->lightHadronizingDiquarks() ) { if (_strictDiquarkKinematics) { tPDPtr cand = getParticleData(id); minMass = spectrum()->massLightestHadron(pD2,cand) + spectrum()->massLightestHadron(cand,pD1); } else minMass = spectrum()->massLightestBaryonPair(pD1,pD2); if (Mc < minMass) continue; // countDiQ++; if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id); else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id); else assert(false); } break; case 1: if (_diquarkClusterFission<1) break; for ( const long& id : spectrum()->lightHadronizingDiquarks() ) { tPDPtr diq = getParticleData(id); if (isDiq1) minMass = spectrum()->massLightestHadron(pD2,diq) + spectrum()->massLightestBaryonPair(diq,pD1); else minMass = spectrum()->massLightestHadron(pD1,diq) + spectrum()->massLightestBaryonPair(diq,pD2); if (Mc < minMass) continue; // countDiQ++; if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id); else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id); else assert(false); } break; case 2: if (_diquarkClusterFission<2) break; for ( const long& id : spectrum()->lightHadronizingDiquarks() ) { tPDPtr diq = getParticleData(id); if (Mc < spectrum()->massLightestBaryonPair(pD1,pD2)) { throw Exception() << "Found Diquark Cluster:\n" << *clu << "\nwith MassCluster = " << ounit(Mc,GeV) <<" GeV MassLightestBaryonPair = " << ounit(spectrum()->massLightestBaryonPair(pD1,pD2) ,GeV) << " GeV cannot decay" << Exception::eventerror; } minMass = spectrum()->massLightestBaryonPair(pD1,diq) + spectrum()->massLightestBaryonPair(diq,pD2); if (Mc < minMass) continue; // countDiQ++; if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id); else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id); else assert(false); } break; default: assert(false); } assert(choice.size()>0); long idNew = choice.select(UseRandom::rnd()); newPtrPos = getParticle(idNew); newPtrNeg = getParticle(-idNew); assert (newPtrPos); assert(newPtrNeg); assert (newPtrPos->dataPtr()); assert(newPtrNeg->dataPtr()); } void ClusterFissioner::drawNewFlavour(PPtr& newPtrPos,PPtr& newPtrNeg) const { // Flavour is assumed to be only u, d, s, with weights // (which are not normalized probabilities) given // by the same weights as used in HadronsSelector for // the decay of clusters into two hadrons. Selector<long> choice; switch(_fissionCluster){ case 0: for ( const long& id : spectrum()->lightHadronizingQuarks() ) choice.insert(_hadronSpectrum->pwtQuark(id),id); break; case 1: for ( const long& id : spectrum()->lightHadronizingQuarks() ) choice.insert(_fissionPwt.find(id)->second,id); break; default : assert(false); } long idNew = choice.select(UseRandom::rnd()); newPtrPos = getParticle(idNew); newPtrNeg = getParticle(-idNew); assert (newPtrPos); assert(newPtrNeg); assert (newPtrPos->dataPtr()); assert(newPtrNeg->dataPtr()); } void ClusterFissioner::drawNewFlavourEnhanced(PPtr& newPtrPos,PPtr& newPtrNeg, Energy2 mass2) const { if ( spectrum()->gluonId() != ParticleID::g ) throw Exception() << "strange enhancement only working with Standard Model hadronization" << Exception::runerror; // Flavour is assumed to be only u, d, s, with weights // (which are not normalized probabilities) given // by the same weights as used in HadronsSelector for // the decay of clusters into two hadrons. double prob_d = 0.; double prob_u = 0.; double prob_s = 0.; double scale = abs(double(sqr(_m0Fission)/mass2)); // Choose which splitting weights you wish to use switch(_fissionCluster){ // 0: ClusterFissioner and ClusterDecayer use the same weights case 0: prob_d = _hadronSpectrum->pwtQuark(ParticleID::d); prob_u = _hadronSpectrum->pwtQuark(ParticleID::u); /* Strangeness enhancement: Case 1: probability scaling Case 2: Exponential scaling */ if (_enhanceSProb == 1) prob_s = (_maxScale < scale) ? 0. : pow(_hadronSpectrum->pwtQuark(ParticleID::s),scale); else if (_enhanceSProb == 2) prob_s = (_maxScale < scale) ? 0. : exp(-scale); break; /* 1: ClusterFissioner uses its own unique set of weights, i.e. decoupled from ClusterDecayer */ case 1: prob_d = _fissionPwt.find(ParticleID::d)->second; prob_u = _fissionPwt.find(ParticleID::u)->second; if (_enhanceSProb == 1) prob_s = (_maxScale < scale) ? 0. : pow(_fissionPwt.find(ParticleID::s)->second,scale); else if (_enhanceSProb == 2) prob_s = (_maxScale < scale) ? 0. : exp(-scale); break; default: assert(false); } int choice = UseRandom::rnd3(prob_u, prob_d, prob_s); long idNew = 0; switch (choice) { case 0: idNew = ThePEG::ParticleID::u; break; case 1: idNew = ThePEG::ParticleID::d; break; case 2: idNew = ThePEG::ParticleID::s; break; } newPtrPos = getParticle(idNew); newPtrNeg = getParticle(-idNew); assert (newPtrPos); assert(newPtrNeg); assert (newPtrPos->dataPtr()); assert(newPtrNeg->dataPtr()); } Energy2 ClusterFissioner::clustermass(const ClusterPtr & cluster) const { Lorentz5Momentum pIn = cluster->momentum(); Energy2 endpointmass2 = sqr(cluster->particle(0)->mass() + cluster->particle(1)->mass()); Energy2 singletm2 = pIn.m2(); // Return either the cluster mass, or the lambda measure return (_massMeasure == 0) ? singletm2 : singletm2 - endpointmass2; } Energy ClusterFissioner::drawChildMass(const Energy M, const Energy m1, const Energy m2, const Energy m, const double expt, const bool soft) const { /*************************** * This method, given in input the cluster mass Mclu of an heavy cluster C, * made of consituents of masses m1 and m2, draws the masses Mclu1 and Mclu2 * of, respectively, the children cluster C1, made of constituent masses m1 * and m, and cluster C2, of mass Mclu2 and made of constituent masses m2 * and m. The mass is extracted from one of the two following mass * distributions: * --- power-like ("normal" distribution) * d(Prob) / d(M^exponent) = const * where the exponent can be different from the two children C1 (exp1) * and C2 (exponent2). * --- exponential ("soft" distribution) * d(Prob) / d(M^2) = exp(-b*M) * where b = 2.0 / average. * Such distributions are limited below by the masses of * the constituents quarks, and above from the mass of decaying cluster C. * The choice of which of the two mass distributions to use for each of the * two cluster children is dictated by iRemnant (see below). * If the number of attempts to extract a pair of mass values that are * kinematically acceptable is above some fixed number (max_loop, see below) * the method gives up and returns false; otherwise, when it succeeds, it * returns true. * * These distributions have been modified from HERWIG: * Before these were: * Mclu1 = m1 + (Mclu - m1 - m2)*pow( rnd(), 1.0/exponent1 ); * The new one coded here is a more efficient version, same density * but taking into account 'in phase space from' beforehand ***************************/ // hard cluster if(!soft) { return pow(UseRandom::rnd(pow((M-m1-m2-m)*UnitRemoval::InvE, expt), pow(m*UnitRemoval::InvE, expt)), 1./expt )*UnitRemoval::E + m1; } // Otherwise it uses a soft mass distribution else { static const InvEnergy b = 2.0 / _btClM; Energy max = M-m1-m2-2.0*m; double rmin = b*max; rmin = ( rmin < 50 ) ? exp(-rmin) : 0.; double r1; do { r1 = UseRandom::rnd(rmin, 1.0) * UseRandom::rnd(rmin, 1.0); } while (r1 < rmin); return m1 + m - log(r1)/b; } } Axis ClusterFissioner::sampleDirectionAligned(const Lorentz5Momentum & pRelCOM) const { return pRelCOM.vect().unit(); } Axis ClusterFissioner::sampleDirectionUniform() const { double cosTheta = -1 + 2.0 * UseRandom::rnd(); double sinTheta = sqrt(1.0-cosTheta*cosTheta); double Phi = 2.0 * Constants::pi * UseRandom::rnd(); Axis uClusterUniform(cos(Phi)*cosTheta, sin(Phi)*cosTheta, sinTheta); return uClusterUniform.unit(); } Axis ClusterFissioner::sampleDirectionGaussianPT(const Lorentz5Momentum & pRelCOM, const Energy Mass, const Energy mass1, const Energy mass2) const { Energy pstarCOM = Kinematics::pstarTwoBodyDecay(Mass,mass1,mass2); Energy pTx; Energy pTy; Energy2 pT2; const int maxcount=100; int count=0; Energy sigmaPT=_fluxTubeWidth; do { if (count>=maxcount) { if (pstarCOM>0.5*sigmaPT) throw Exception() << "Could not sample direction in ClusterFissioner::sampleDirectionGaussianPT() " << Exception::eventerror; // Fallback uniform sampling double phi=UseRandom::rnd()*Constants::pi; Energy magnitude=UseRandom::rnd()*pstarCOM; pTx = magnitude*cos(phi); pTy = magnitude*sin(phi); pT2 = sqr(pTx)+sqr(pTy); break; } pTx = UseRandom::rndGauss(sigmaPT); pTy = UseRandom::rndGauss(sigmaPT); pT2 = sqr(pTx)+sqr(pTy); count++; } while (pT2>sqr(pstarCOM)); Axis pRelativeDir=pRelCOM.vect().unit(); Axis TrvX = pRelativeDir.orthogonal().unit(); Axis TrvY = TrvX.cross(pRelativeDir).unit(); Axis pTkick = pTx/pstarCOM*TrvX + pTy/pstarCOM*TrvY; Axis uClusterFluxTube = (pRelativeDir*sqrt(1.0-pT2/sqr(pstarCOM)) + pTkick); return uClusterFluxTube.unit(); } +static void printVec(const Lorentz5Momentum & p); +static void printVec(const Lorentz5Momentum & p){ + std::cout << "( " + << p.t()/GeV << ",\t" + << p.vect().x()/GeV << ",\t" + << p.vect().y()/GeV << ",\t" + << p.vect().z()/GeV + << " )\t|p| = " + << sqrt(sqr(p.vect())/GeV2) <<"\tm = " + << p.m()/GeV <<"\tmass = " + << p.mass()/GeV <<"\n"; +} +// static void printVecBoost(const boost::numeric::ublas::vector<Energy> & p); +// static void printVecBoost(const boost::numeric::ublas::vector<Energy> & p){ + // std::cout << "( " + // << p[0]/GeV << ",\t" + // << p[1]/GeV << ",\t" + // << p[2]/GeV << ",\t" + // << p[3]/GeV + // << " )\t|p| = " + // << sqrt(sqr(p[1]*p[1]+p[2]*p[2]+p[3]*p[3])/GeV2) <<"\tmass = " + // << sqrt(sqr(p[0]*p[0]-(p[1]*p[1]+p[2]*p[2]+p[3]*p[3]))/GeV2) <<"\n"; +// } + +static void printVecBoostDBL(const boost::numeric::ublas::vector<double> & p); +static void printVecBoostDBL(const boost::numeric::ublas::vector<double> & p){ + std::cout << "( " + << p[0] << ",\t" + << p[1] << ",\t" + << p[2] << ",\t" + << p[3] + << " )\t|p| = " + << sqrt(p[1]*p[1]+p[2]*p[2]+p[3]*p[3]) <<"\tmass = " + << sqrt(p[0]*p[0]-(p[1]*p[1]+p[2]*p[2]+p[3]*p[3])) <<"\n"; +} void ClusterFissioner::calculateKinematics(const Lorentz5Momentum & pClu, const Lorentz5Momentum & p0Q1, const bool toHadron1, const bool toHadron2, Lorentz5Momentum & pClu1, Lorentz5Momentum & pClu2, Lorentz5Momentum & pQ1, Lorentz5Momentum & pQbar, Lorentz5Momentum & pQ, Lorentz5Momentum & pQ2bar) const { /****************** * This method solves the kinematics of the two body cluster decay: * C (Q1 Q2bar) ---> C1 (Q1 Qbar) + C2 (Q Q2bar) * In input we receive the momentum of C, pClu, and the momentum * of the quark Q1 (constituent of C), p0Q1, both in the LAB frame. * Furthermore, two boolean variables inform whether the two fission * products (C1, C2) decay immediately into a single hadron (in which * case the cluster itself is identify with that hadron) and we do * not have to solve the kinematics of the components (Q1,Qbar) for * C1 and (Q,Q2bar) for C2. * The output is given by the following momenta (all 5-components, * and all in the LAB frame): * pClu1 , pClu2 respectively of C1 , C2 * pQ1 , pQbar respectively of Q1 , Qbar in C1 * pQ , pQ2bar respectively of Q , Q2 in C2 * The assumption, suggested from the string model, is that, in C frame, * C1 and its constituents Q1 and Qbar are collinear, and collinear to * the direction of Q1 in C (that is before cluster decay); similarly, * (always in the C frame) C2 and its constituents Q and Q2bar are * collinear (and therefore anti-collinear with C1,Q1,Qbar). * The solution is then obtained by using Lorentz boosts, as follows. * The kinematics of C1 and C2 is solved in their parent C frame, * and then boosted back in the LAB. The kinematics of Q1 and Qbar * is solved in their parent C1 frame and then boosted back in the LAB; * similarly, the kinematics of Q and Q2bar is solved in their parent * C2 frame and then boosted back in the LAB. In each of the three * "two-body decay"-like cases, we use the fact that the direction * of the motion of the decay products is known in the rest frame of * their parent. This is obvious for the first case in which the * parent rest frame is C; but it is also true in the other two cases * where the rest frames are C1 and C2. This is because C1 and C2 * are boosted w.r.t. C in the same direction where their components, * respectively (Q1,Qbar) and (Q,Q2bar) move in C1 and C2 rest frame * respectively. * Of course, although the notation used assumed that C = (Q1 Q2bar) * where Q1 is a quark and Q2bar an antiquark, indeed everything remain * unchanged also in all following cases: * Q1 quark, Q2bar antiquark; --> Q quark; * Q1 antiquark , Q2bar quark; --> Q antiquark; * Q1 quark, Q2bar diquark; --> Q quark * Q1 antiquark, Q2bar anti-diquark; --> Q antiquark * Q1 diquark, Q2bar quark --> Q antiquark * Q1 anti-diquark, Q2bar antiquark; --> Q quark **************************/ if (pClu.m() < pClu1.mass() + pClu2.mass() || pClu1.mass()<ZERO || pClu2.mass()<ZERO ) { throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics[FluxTube]() (A)" << Exception::eventerror; } + // INTERLUDE TODO: + Axis zAxis(0,0,1); + Axis xAxis(1,0,0); + + // Energy Pcom=Kinematics::pstarTwoBodyDecay(pClu.m(),pClu1.mass(),pClu2.mass()); + std::cout << "deltaMsqr = " << (pClu.m()-sqrt(sqr(pClu)))/GeV << std::endl; + std::cout << "deltaMass = " << (pClu.mass()-sqrt(sqr(pClu)))/GeV << std::endl; + Lorentz5Momentum pivector(p0Q1); + Lorentz5Momentum pjvector(pClu-p0Q1); + Energy Ei=sqrt(pQ1.mass()*pQ1.mass()+sqr(pivector.vect())); + Energy Ej=sqrt(pQ2bar.mass()*pQ2bar.mass()+sqr(pjvector.vect())); + double phi=acos(pivector.vect().unit()*pjvector.vect().unit()); + Energy2 Ei2=Ei*Ei; + Energy2 Ej2=Ej*Ej; + Energy mi=pQ1.mass(); + Energy mj=pQ2bar.mass(); + std::cout << "mi = " << (mi)/GeV << std::endl; + std::cout << "mj = " << (mj)/GeV << std::endl; + Energy2 mi2=mi*mi; + Energy2 mj2=mj*mj; + Energy Pi=sqrt(Ei2-mi2); + Energy Pj=sqrt(Ej2-mj2); + Lorentz5Momentum pi(Pi*zAxis,Ei); + Lorentz5Momentum pj(Pj*(xAxis*sin(phi)+zAxis*cos(phi)),Ej); + pi.setMass(mi); + pj.setMass(mj); + Lorentz5Momentum pitmp(pi); + Lorentz5Momentum pjtmp(pj); + Energy2 pipj=pitmp*pjtmp; + std::cout << "pQ1.m() = "<<pQ1.m()/GeV << "pQ1.mass() = "<<pQ1.mass()/GeV << std::endl; + std::cout << "pQ2bar.m() = "<<pQ2bar.m()/GeV << "pQ2bar.mass() = "<<pQ2bar.mass()/GeV << std::endl; + + + std::cout << "PI : " << std::endl; + printVec(pi); + std::cout << "PJ : " << std::endl; + printVec(pj); + std::cout << "##################" << std::endl; + + + + boost::numeric::ublas::matrix<double> Lambda(4,4); + + Energy sqrtS=sqrt(mi2+mj2+2*pipj); + Energy4 A4=(pipj*pipj-mi2*mj2); + Energy4 B4=-(Ej2*mi2+Ei2*mj2-mi2*mj2-2*Ei*Ej*pipj+pipj*pipj); + std::cout << "A4 = "<<A4/(GeV2*GeV2) << std::endl; + std::cout << "B4 = "<<B4/(GeV2*GeV2) << std::endl; + std::cout << "sqrtS = "<<(sqrtS)/(GeV) << std::endl; + std::cout << "pClu.mass() = "<<(pClu.mass())/(GeV) << std::endl; + std::cout << "pClu.mass() = "<<sqrt(sqr(pClu)/(GeV2)) << std::endl; + std::cout << "pipj = "<<(pipj)/(GeV2) << std::endl; + std::cout << "pipj dotted = "<<(pi.dot(pj))/(GeV2) << std::endl; + std::cout << "pipj should be = "<<(sqrtS*sqrtS-mi2-mj2)/(2*GeV2) << std::endl; + Energy2 A2=sqrt(A4); + Energy2 B2=sqrt(B4); + + Lambda(0,0) = (Ei+Ej)/sqrtS; + Lambda(0,1) = B2/A2; + Lambda(0,2) = 0; + Lambda(0,3) = (Ei*(mj2+pipj)-Ej*(mi2+pipj))/(sqrtS*A2); + + Lambda(1,0) = B2/(Pi*sqrtS); + Lambda(1,1) = (Ei*pipj-Ej*mi2)/(Pi*A2); + Lambda(1,2) = 0; + Lambda(1,3) = -(mi2+pipj)*B2/(Pi*sqrtS*A2); + + Lambda(2,0) = 0; + Lambda(2,1) = 0; + Lambda(2,2) = 1; + Lambda(2,3) = 0; + + Lambda(3,0) = (Ei2+Ei*Ej-mi2-pipj)/(Pi*sqrtS); + Lambda(3,1) = -Ei*B2/(Pi*A2); + Lambda(3,2) = 0; + Lambda(3,3) = (pipj*pipj-mi2*mj2-Ei*Ej*(mi2+pipj)+Ei2*(mj2+pipj))/(Pi*sqrtS*A2); + + double det=0; + det += Lambda(0,0)*Lambda(1,1)*Lambda(3,3); + det += Lambda(1,0)*Lambda(3,1)*Lambda(0,3); + det += Lambda(3,0)*Lambda(0,1)*Lambda(1,3); + + det -= Lambda(0,3)*Lambda(1,1)*Lambda(3,0); + det -= Lambda(1,0)*Lambda(0,1)*Lambda(3,3); + det -= Lambda(1,3)*Lambda(3,1)*Lambda(0,0); + std::cout << "DET = "<< det << std::endl; + + boost::numeric::ublas::vector<double> PvecHati(4); + boost::numeric::ublas::vector<double> PvecHatj(4); + + + + Energy Pcom=Kinematics::pstarTwoBodyDecay(pClu.mass(),pQ1.mass(),pQ2bar.mass()); + PvecHati[0]=sqrt(mi2+Pcom*Pcom)/GeV; + PvecHati[1]=0; + PvecHati[2]=0; + PvecHati[3]=Pcom/GeV; + + PvecHatj[0]=sqrt(mj2+Pcom*Pcom)/GeV; + PvecHatj[1]=0; + PvecHatj[2]=0; + PvecHatj[3]=-Pcom/GeV; + + + std::cout << "piHat before : \n"; + printVecBoostDBL(PvecHati); + std::cout << "pjHat before : \n"; + printVecBoostDBL(PvecHatj); + + + + std::cout << "Lambda:" << std::endl; + for (int i = 0; i < 4; i++) + { + for (int j = 0; j < 4; j++) + { + std::cout << Lambda(i,j) << "\t"; + } + std::cout << "\n"; + } + + // boost::numeric::ublas::vector<Energy> Pveci(4); + // boost::numeric::ublas::vector<Energy> Pvecj(4); + auto Pveci=boost::numeric::ublas::prod(Lambda,PvecHati); + auto Pvecj=boost::numeric::ublas::prod(Lambda,PvecHatj); + std::cout << "pi after : \n"; + printVecBoostDBL(Pveci); + std::cout << "pj after : \n"; + printVecBoostDBL(Pvecj); + + std::cout << "pi should be : \n"; + printVec(pi); + std::cout << "pj should be : \n"; + printVec(pj); + + // Lorentz5Momentum pi(pQ2bar.mass(),(pClu-p0Q1).vect()); + // Lorentz5Momentum pj(pQ1.mass(),p0Q1.vect()); + + + + // std::cout << "pi before : \n"; + // printVec(pi); + // std::cout << "pj before : \n"; + // printVec(pj); + + // pi.boost(-pClu.boostVector()); + // pj.boost(-pClu.boostVector()); + + // pi.boost(pClu.boostVector()); + // pj.boost(pClu.boostVector()); + + // std::cout << "pi after : \n"; + // printVec(pi); + // std::cout << "pj after : \n"; + // printVec(pj); + // Axis zax(0,0,1); + // Energy Pcom=Kinematics::pstarTwoBodyDecay(pClu.m(),pClu1.mass(),pClu2.mass()); + // Energy Pcom=Kinematics::pstarTwoBodyDecay(pClu.m(),pQ1.mass(),pQ2bar.mass()); + // Kinematics::twoBodyBoost(pi,pj,Pcom,zax); + // Lorentz5Momentum p0Q2_2(pClu-p0Q1); + // Lorentz5Momentum p0Q1_cp(p0Q1); + // Lorentz5Momentum prel1(pClu-2.0*p0Q1); + // Lorentz5Momentum prel2(pClu-2.0*p0Q1); + // Lorentz5Momentum ptot1(pClu); + // Lorentz5Momentum ptot2(pClu); + + // ptot1.boost(-p0Q2_1.boostVector()); + // prel1.boost(-p0Q2_1.boostVector()); + // prel1.boost(-ptot1.boostVector()); + + // ptot2.boost(-p0Q1_cp.boostVector()); + // prel2.boost(-p0Q1_cp.boostVector()); + + // ptot.boost(-prel.boostVector()); + // prel.boost(-prel.boostVector()); + // std::cout << "\nPrel in pRel frame: ( " + // << prel.t()/GeV << ",\t" + // << prel.vect().x()/GeV << ",\t" + // << prel.vect().y()/GeV << ",\t" + // << prel.vect().z()/GeV + // << " )\n"; + // std::cout << "Ptot in pRel frame: ( " + // << ptot.t()/GeV << ",\t" + // << ptot.vect().x()/GeV << ",\t" + // << ptot.vect().y()/GeV << ",\t" + // << ptot.vect().z()/GeV + // << " )\n"; + // prel.boost(-ptot.boostVector()); + // ptot.boost(-ptot.boostVector()); + // std::cout << "\nPrel in pTot frame: ( " + // << prel.t()/GeV << ",\t" + // << prel.vect().x()/GeV << ",\t" + // << prel.vect().y()/GeV << ",\t" + // << prel.vect().z()/GeV + // << " )\n"; + // std::cout << "Ptot in pTot frame: ( " + // << ptot.t()/GeV << ",\t" + // << ptot.vect().x()/GeV << ",\t" + // << ptot.vect().y()/GeV << ",\t" + // << ptot.vect().z()/GeV + // << " )\n"; + // ptot2.boost(-pClu.boostVector()); + // prel2.boost(-pClu.boostVector()); + // std::cout << "Ptot Naive in pTot frame: ( " + // << ptot2.t()/GeV << ",\t" + // << ptot2.vect().x()/GeV << ",\t" + // << ptot2.vect().y()/GeV << ",\t" + // << ptot2.vect().z()/GeV + // << " )\n"; + // std::cout << "Prel Naive in pTot frame: ( " + // << prel2.t()/GeV << ",\t" + // << prel2.vect().x()/GeV << ",\t" + // << prel2.vect().y()/GeV << ",\t" + // << prel2.vect().z()/GeV + // << " )\n"; + + + // END // Calculate the unit three-vector, in the Cluster frame, // using the sampling funtion sampleDirection in the respective // clusters rest frame // Calculate the momenta of C1 and C2 in the (parent) C frame first, // where the direction of C1 is samples according to sampleDirection, // and then boost back in the LAB frame. // // relative momentum in centre of mass of cluster + // OLD Lorentz5Momentum uRelCluster(p0Q1); uRelCluster.boost( -pClu.boostVector() ); // boost from LAB to C + // NEW ? : + // Lorentz5Momentum uRelCluster(p0Q1); + // Lorentz5Momentum pCluTmp(pClu); + // uRelCluster.boost(-p0Q1.boostVector()); + // pCluTmp.boost(-p0Q1.boostVector()); + // uRelCluster.boost(-pCluTmp.boostVector()); // sample direction (options = Default(aligned), Isotropic // or FluxTube(gaussian pT kick)) const Axis DirClu = sampleDirection(uRelCluster, pClu.mass(), pClu1.mass(), pClu2.mass()); Kinematics::twoBodyDecay(pClu, pClu1.mass(), pClu2.mass(), DirClu, pClu1, pClu2); // In the case that cluster1 does not decay immediately into a single hadron, // calculate the momenta of Q1 (as constituent of C1) and Qbar in the // (parent) C1 frame first, where the direction of Q1 is u.vect().unit(), // and then boost back in the LAB frame. if(!toHadron1) { if (pClu1.m() < pQ1.mass() + pQbar.mass() ) { throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics[FluxTube]() (B)" << Exception::eventerror; } // sample direction (options = Default(aligned), Isotropic // or FluxTube(gaussian pT kick)) // Axis DirClu1 = sampleDirection(uRelCluster, // pClu1.mass(), pQ1.mass(), pQbar.mass()); Kinematics::twoBodyDecay(pClu1, pQ1.mass(), pQbar.mass(), DirClu, pQ1, pQbar); } // In the case that cluster2 does not decay immediately into a single hadron, // Calculate the momenta of Q and Q2bar (as constituent of C2) in the // (parent) C2 frame first, where the direction of Q is u.vect().unit(), // and then boost back in the LAB frame. if(!toHadron2) { if (pClu2.m() < pQ.mass() + pQ2bar.mass() ) { throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics[FluxTube]() (C)" << Exception::eventerror; } // sample direction (options = Default(aligned), Isotropic // or FluxTube(gaussian pT kick)) // Axis DirClu2 = sampleDirection(uRelCluster, // pClu2.mass(), pQ2bar.mass(), pQ.mass()); Kinematics::twoBodyDecay(pClu2, pQ.mass(), pQ2bar.mass(), DirClu, pQ, pQ2bar); } } void ClusterFissioner::calculatePositions(const Lorentz5Momentum & pClu, const LorentzPoint & positionClu, const Lorentz5Momentum & pClu1, const Lorentz5Momentum & pClu2, LorentzPoint & positionClu1, LorentzPoint & positionClu2) const { // Determine positions of cluster children. // See Marc Smith's thesis, page 127, formulas (4.122) and (4.123). Energy Mclu = pClu.m(); Energy Mclu1 = pClu1.m(); Energy Mclu2 = pClu2.m(); // Calculate the unit three-vector, in the C frame, along which // children clusters move. Lorentz5Momentum u(pClu1); u.boost( -pClu.boostVector() ); // boost from LAB to C frame // the unit three-vector is then u.vect().unit() Energy pstarChild = Kinematics::pstarTwoBodyDecay(Mclu,Mclu1,Mclu2); // First, determine the relative positions of the children clusters // in the parent cluster reference frame. Energy2 mag2 = u.vect().mag2(); InvEnergy fact = mag2>ZERO ? 1./sqrt(mag2) : 1./GeV; Length x1 = ( 0.25*Mclu + 0.5*( pstarChild + (sqr(Mclu2) - sqr(Mclu1))/(2.0*Mclu)))/_kappa; Length t1 = Mclu/_kappa - x1; LorentzDistance distanceClu1( x1 * fact * u.vect(), t1 ); Length x2 = (-0.25*Mclu + 0.5*(-pstarChild + (sqr(Mclu2) - sqr(Mclu1))/(2.0*Mclu)))/_kappa; Length t2 = Mclu/_kappa + x2; LorentzDistance distanceClu2( x2 * fact * u.vect(), t2 ); // Then, transform such relative positions from the parent cluster // reference frame to the Lab frame. distanceClu1.boost( pClu.boostVector() ); distanceClu2.boost( pClu.boostVector() ); // Finally, determine the absolute positions in the Lab frame. positionClu1 = positionClu + distanceClu1; positionClu2 = positionClu + distanceClu2; } bool ClusterFissioner::ProbablityFunction(double scale, double threshold) { double cut = UseRandom::rnd(0.0,1.0); return 1./(1.+pow(abs((threshold-_probShift)/scale),_probPowFactor)) > cut ? true : false; } bool ClusterFissioner::isHeavy(tcClusterPtr clu) { // particle data for constituents tcPDPtr cptr[3]={tcPDPtr(),tcPDPtr(),tcPDPtr()}; for(size_t ix=0;ix<min(clu->numComponents(),3);++ix) { cptr[ix]=clu->particle(ix)->dataPtr(); } // different parameters for exotic, bottom and charm clusters double clpow = !spectrum()->isExotic(cptr[0],cptr[1],cptr[1]) ? _clPowLight : _clPowExotic; Energy clmax = !spectrum()->isExotic(cptr[0],cptr[1],cptr[1]) ? _clMaxLight : _clMaxExotic; for ( const long& id : spectrum()->heavyHadronizingQuarks() ) { if ( spectrum()->hasHeavy(id,cptr[0],cptr[1],cptr[1]) ) { clpow = _clPowHeavy[id]; clmax = _clMaxHeavy[id]; } } // required test for SUSY clusters, since aboveCutoff alone // cannot guarantee (Mc > m1 + m2 + 2*m) in cut() static const Energy minmass = getParticleData(ParticleID::d)->constituentMass(); bool aboveCutoff = false, canSplitMinimally = false; // static kinematic threshold if(_kinematicThresholdChoice == 0) { aboveCutoff = ( pow(clu->mass()*UnitRemoval::InvE , clpow) > pow(clmax*UnitRemoval::InvE, clpow) + pow(clu->sumConstituentMasses()*UnitRemoval::InvE, clpow) ); canSplitMinimally = clu->mass() > clu->sumConstituentMasses() + 2.0 * minmass; } // dynamic kinematic threshold else if(_kinematicThresholdChoice == 1) { //some smooth probablity function to create a dynamic thershold double scale = pow(clu->mass()/GeV , clpow); double threshold = pow(clmax/GeV, clpow) + pow(clu->sumConstituentMasses()/GeV, clpow); aboveCutoff = ProbablityFunction(scale,threshold); scale = clu->mass()/GeV; threshold = clu->sumConstituentMasses()/GeV + 2.0 * minmass/GeV; canSplitMinimally = ProbablityFunction(scale,threshold); } return aboveCutoff && canSplitMinimally; } diff --git a/Utilities/Kinematics.cc b/Utilities/Kinematics.cc --- a/Utilities/Kinematics.cc +++ b/Utilities/Kinematics.cc @@ -1,119 +1,215 @@ // -*- C++ -*- // // Kinematics.cc is a part of Herwig - A multi-purpose Monte Carlo event generator // Copyright (C) 2002-2019 The Herwig Collaboration // // Herwig is licenced under version 3 of the GPL, see COPYING for details. // Please respect the MCnet academic guidelines, see GUIDELINES for details. // // // This is the implementation of the non-inlined, non-templated member // functions of the Kinematics class. // #include "Kinematics.h" #include <ThePEG/Vectors/Lorentz5Vector.h> #include <ThePEG/Vectors/LorentzVector.h> #include <ThePEG/Vectors/LorentzRotation.h> #include <ThePEG/Repository/EventGenerator.h> #include <ThePEG/Repository/CurrentGenerator.h> #include <ThePEG/EventRecord/Event.h> using namespace Herwig; using namespace ThePEG; + +static void printVec(const Lorentz5Momentum & p); +static void printVec(const Lorentz5Momentum & p){ + std::cout << "( " + << p.t()/GeV << ",\t" + << p.vect().x()/GeV << ",\t" + << p.vect().y()/GeV << ",\t" + << p.vect().z()/GeV + << " )\t|p| = " + << sqrt(sqr(p.vect())/GeV2) <<"\tmass = " + << sqrt(sqr(p)/GeV2) <<"\n"; +} + +bool Kinematics::twoBodyBoost(Lorentz5Momentum & p1, + Lorentz5Momentum & p2, + // Lorentz5Momentum & q1, + // Lorentz5Momentum & q2, + const Energy & Pcom, + const Axis & Dir) { + Lorentz5Momentum pTot(p1+p2); + Energy2 Msq=sqr(p1+p2); + Energy2 m1sq=sqr(p1); + Energy2 m2sq=sqr(p2); + Lorentz5Momentum q1(sqrt(m1sq),Pcom*Dir); + Lorentz5Momentum q2(sqrt(m2sq),-Pcom*Dir); + Energy2 p1p2=p1.dot(p2); + Energy2 p1q2=p1.dot(q2); + Energy2 p1q1=p1.dot(q1); + Energy2 p2q1=q1.dot(p2); + Energy2 p2q2=q2.dot(p2); + Lorentz5Momentum k; + Energy4 denom = (m1sq+m2sq+2*p1p2)*(m1sq+m2sq+2*p1p2+p1q1+p1q2+p2q1+p2q2); + if (denom==ZERO) std::cout << "ERROR denom==ZERO" << std::endl; + Energy4 A=m1sq*m1sq+m1sq*m2sq+2*p1p2*p1p2+(m1sq-m2sq)*p1q1+2*m1sq*p1q2+m1sq*p2q1-m2sq*p2q1+2*m1sq*p2q2; + double Lam=(A+p1p2*(3*m1sq+m2sq+2*p1q2+2*p2q2))/denom; + std::cout << "Lam = "<<Lam<<"\n"; + k = (Lam - 1.0)*p1; + k += (Lam )*p2; + std::cout << "before k addition\n"; + printVec(p1); + printVec(p2); + std::cout << "the k Vector\n"; + printVec(k); + p1.boost(-pTot.boostVector()); + p2.boost(-pTot.boostVector()); + p1+=k; + p2-=k; + // p1=q1; + // p2=q2; + std::cout << "after k addition\n"; + printVec(p1); + printVec(p2); + return true; +} + +/* + +bool Kinematics::twoBodyBoost(Lorentz5Momentum & p1, + Lorentz5Momentum & p2, + // Lorentz5Momentum & q1, + // Lorentz5Momentum & q2, + const Energy & Pcom, + const Axis & Dir) { + Lorentz5Momentum pTot(p1+p2); + Energy2 Msq=sqr(p1+p2); + Energy2 m1sq=sqr(p1); + Energy2 m2sq=sqr(p2); + Lorentz5Momentum q1(sqrt(m1sq),Pcom*Dir); + Lorentz5Momentum q2(sqrt(m2sq),-Pcom*Dir); + // Energy2 p1p2=p1.dot(p2); + Energy2 p1q2=p1.dot(q2); + Energy2 p1q1=p1.dot(q1); + Energy2 p2q1=q1.dot(p2); + Energy2 p2q2=q2.dot(p2); + Lorentz5Momentum k; + Energy2 denom = 2*(p1q1+p1q2+p2q1+p2q2-Msq); + if (denom==ZERO) std::cout << "ERROR denom==ZERO" << std::endl; + k = p1*(m1sq-m2sq-Msq+2*(p1q2+p2q2))/denom; + k += p2*(m1sq-m2sq+Msq-2*(p1q1+p2q1))/denom; + k += q1*(m2sq-m1sq+Msq-2*(p1q2+p2q2))/denom; + k += q2*(m2sq-m1sq-Msq+2*(p1q1+p2q1))/denom; + std::cout << "before k addition\n"; + printVec(q1); + printVec(q2); + std::cout << "the k Vector\n"; + printVec(k); + p1-=k; + p2+=k; + // p1=q1; + // p2=q2; + std::cout << "after k addition\n"; + printVec(p1); + printVec(p2); + return true; +}*/ + bool Kinematics::twoBodyDecay(const Lorentz5Momentum & p, const Energy m1, const Energy m2, const Axis & unitDir1, Lorentz5Momentum & p1, Lorentz5Momentum & p2) { Energy min=p.mass(); if ( min >= m1 + m2 && m1 >= ZERO && m2 >= ZERO ) { Momentum3 pstarVector = unitDir1 * pstarTwoBodyDecay(min,m1,m2); p1 = Lorentz5Momentum(m1, pstarVector); p2 = Lorentz5Momentum(m2,-pstarVector); // boost from CM to LAB Boost bv = p.boostVector(); double gammarest = p.e()/p.mass(); p1.boost( bv, gammarest ); p2.boost( bv, gammarest ); return true; } return false; } /***** * This function, as the name implies, performs a three body decay. The decay * products are distributed uniformly in all three directions. ****/ bool Kinematics::threeBodyDecay(Lorentz5Momentum p0, Lorentz5Momentum &p1, Lorentz5Momentum &p2, Lorentz5Momentum &p3, double (*fcn)(Energy2,Energy2,Energy2,InvEnergy4)) { // Variables needed in calculation...named same as fortran version Energy a = p0.mass() + p1.mass(); Energy b = p0.mass() - p1.mass(); Energy c = p2.mass() + p3.mass(); if(b < c) { CurrentGenerator::log() << "Kinematics::threeBodyDecay() phase space problem\n" << p0.mass()/GeV << " -> " << p1.mass()/GeV << ' ' << p2.mass()/GeV << ' ' << p3.mass()/GeV << '\n'; return false; } Energy d = abs(p2.mass()-p3.mass()); Energy2 aa = sqr(a); Energy2 bb = sqr(b); Energy2 cc = sqr(c); Energy2 dd = sqr(d); Energy2 ee = (b-c)*(a-d); Energy2 a1 = 0.5 * (aa+bb); Energy2 b1 = 0.5 * (cc+dd); InvEnergy4 c1 = 4./(sqr(a1-b1)); Energy2 ff; double ww; Energy4 pp,qq,rr; // Choose mass of subsystem 23 with prescribed distribution const unsigned int MAXTRY = 100; unsigned int ntry=0; do { // ff is the mass squared of the 23 subsystem ff = UseRandom::rnd()*(cc-bb)+bb; // pp is ((m0+m1)^2 - m23^2)((m0-m1)^2-m23) pp = (aa-ff)*(bb-ff); // qq is ((m2+m3)^2 - m23^2)(|m2-m3|^2-m23^2) qq = (cc-ff)*(dd-ff); // weight ww = (fcn != NULL) ? (*fcn)(ff,a1,b1,c1) : 1.0; ww = sqr(ww); rr = ee*ff*UseRandom::rnd(); ++ntry; } while(pp*qq*ww < rr*rr && ntry < MAXTRY ); if(ntry >= MAXTRY) { CurrentGenerator::log() << "Kinematics::threeBodyDecay can't generate momenta" << " after " << MAXTRY << " attempts\n"; return false; } // ff is the mass squared of subsystem 23 // do 2 body decays 0->1+23, 23->2+3 double CosAngle, AzmAngle; Lorentz5Momentum p23; p23.setMass(sqrt(ff)); generateAngles(CosAngle,AzmAngle); bool status = twoBodyDecay(p0,p1.mass(),p23.mass(),CosAngle,AzmAngle,p1,p23); generateAngles(CosAngle,AzmAngle); status &= twoBodyDecay(p23,p2.mass(),p3.mass(),CosAngle,AzmAngle,p2,p3); return status; } diff --git a/Utilities/Kinematics.h b/Utilities/Kinematics.h --- a/Utilities/Kinematics.h +++ b/Utilities/Kinematics.h @@ -1,112 +1,120 @@ // -*- C++ -*- // // Kinematics.h is a part of Herwig - A multi-purpose Monte Carlo event generator // Copyright (C) 2002-2019 The Herwig Collaboration // // Herwig is licenced under version 3 of the GPL, see COPYING for details. // Please respect the MCnet academic guidelines, see GUIDELINES for details. // // #ifndef HERWIG_Kinematics_H #define HERWIG_Kinematics_H // This is the declaration of the Kinematics class. #include <ThePEG/Config/ThePEG.h> #include "ThePEG/Vectors/ThreeVector.h" #include "ThePEG/Vectors/LorentzRotation.h" #include "ThePEG/Repository/UseRandom.h" #include <ThePEG/Vectors/Lorentz5Vector.h> namespace Herwig { using namespace ThePEG; /** \ingroup Utilities * This is a namespace which provides some useful methods * for kinematics computation, as the two body decays. * * NB) For other useful kinematical methods (and probably even those * implemented in Kinematics class!): * @see UtilityBase */ namespace Kinematics { /** + * Covariant boost for 2 not neccessarily collinear Vectors + * */ + bool twoBodyBoost(Lorentz5Momentum & p1, + Lorentz5Momentum & p2, + const Energy & Pcom, + const Axis & Dir); + + /** * Calculate the momenta for a two body decay * The return value indicates success or failure. * @param p The momentum of the decaying particle * @param m1 The mass of the first decay product * @param m2 The mass of the second decay product * @param unitDir1 Direction for the products in the rest frame of * the decaying particle * @param p1 The momentum of the first decay product * @param p2 The momentum of the second decay product */ bool twoBodyDecay(const Lorentz5Momentum & p, const Energy m1, const Energy m2, const Axis & unitDir1, Lorentz5Momentum & p1, Lorentz5Momentum & p2); /** * It returns the unit 3-vector with the given cosTheta and phi. */ inline Axis unitDirection(const double cosTheta, const double phi) { return ( fabs( cosTheta ) <= 1.0 ? Axis( cos(phi)*sqrt(1.0-cosTheta*cosTheta) , sin(phi)*sqrt(1.0-cosTheta*cosTheta) , cosTheta) : Axis() ); } /** * Calculate the momenta for a two body decay * The return value indicates success or failure. * @param p The momentum of the decaying particle * @param m1 The mass of the first decay product * @param m2 The mass of the second decay product * @param cosThetaStar1 Polar angle in rest frame * @param phiStar1 Azimuthal angle in rest frame * @param p1 The momentum of the first decay product * @param p2 The momentum of the second decay product */ inline bool twoBodyDecay(const Lorentz5Momentum & p, const Energy m1, const Energy m2, const double cosThetaStar1, const double phiStar1, Lorentz5Momentum & p1, Lorentz5Momentum & p2) { return twoBodyDecay(p,m1,m2,unitDirection(cosThetaStar1,phiStar1),p1,p2); } /** * As the name implies, this takes the momentum p0 and does a flat three * body decay into p1..p3. The argument fcn is used to add additional * weights. If it is not used, the default is just flat in phasespace. * The return value indicates success or failure. */ bool threeBodyDecay(Lorentz5Momentum p0, Lorentz5Momentum &p1, Lorentz5Momentum &p2, Lorentz5Momentum &p3, double (*fcn)(Energy2,Energy2,Energy2,InvEnergy4) = NULL); /** * For the two body decay M -> m1 + m2 it gives the module of the * 3-momentum of the decay product in the rest frame of M. */ inline Energy pstarTwoBodyDecay(const Energy M, const Energy m1, const Energy m2) { return ( M > ZERO && m1 >=ZERO && m2 >= ZERO && M > m1+m2 ? Energy(sqrt(( sqr(M) - sqr(m1+m2) )*( sqr(M) - sqr(m1-m2) )) / (2.0*M) ) : ZERO); } /** * This just generates angles. First flat -1..1, second flat 0..2Pi */ inline void generateAngles(double & ct, double & az) { ct = UseRandom::rnd()*2.0 - 1.0; // Flat from -1..1 az = UseRandom::rnd()*Constants::twopi; } } } #endif /* HERWIG_Kinematics_H */