diff --git a/Shower/Core/Base/ShowerParticle.cc b/Shower/Core/Base/ShowerParticle.cc --- a/Shower/Core/Base/ShowerParticle.cc +++ b/Shower/Core/Base/ShowerParticle.cc @@ -1,595 +1,596 @@ // -*- C++ -*- // // ShowerParticle.cc is a part of Herwig - A multi-purpose Monte Carlo event generator // Copyright (C) 2002-2017 The Herwig Collaboration // // Herwig is licenced under version 3 of the GPL, see COPYING for details. // Please respect the MCnet academic guidelines, see GUIDELINES for details. // // // This is the implementation of the non-inlined, non-templated member // functions of the ShowerParticle class. // #include "ShowerParticle.h" #include "ThePEG/Interface/ClassDocumentation.h" #include "ThePEG/Persistency/PersistentOStream.h" #include "ThePEG/Persistency/PersistentIStream.h" #include "ThePEG/Helicity/WaveFunction/SpinorWaveFunction.h" #include "ThePEG/Helicity/WaveFunction/SpinorBarWaveFunction.h" #include "ThePEG/Helicity/WaveFunction/VectorWaveFunction.h" #include "ThePEG/Helicity/WaveFunction/ScalarWaveFunction.h" #include <ostream> using namespace Herwig; PPtr ShowerParticle::clone() const { return new_ptr(*this); } PPtr ShowerParticle::fullclone() const { return new_ptr(*this); } ClassDescription<ShowerParticle> ShowerParticle::initShowerParticle; // Definition of the static class description member. void ShowerParticle::vetoEmission(ShowerPartnerType, Energy scale) { scales_.QED = min(scale,scales_.QED ); scales_.QED_noAO = min(scale,scales_.QED_noAO ); scales_.QCD_c = min(scale,scales_.QCD_c ); scales_.QCD_c_noAO = min(scale,scales_.QCD_c_noAO ); scales_.QCD_ac = min(scale,scales_.QCD_ac ); scales_.QCD_ac_noAO = min(scale,scales_.QCD_ac_noAO); + if(spinInfo()) spinInfo()->undecay(); } void ShowerParticle::addPartner(EvolutionPartner in ) { partners_.push_back(in); } namespace { LorentzRotation boostToShower(Lorentz5Momentum & porig, tShowerBasisPtr basis) { LorentzRotation output; assert(basis); if(basis->frame()==ShowerBasis::BackToBack) { // we are doing the evolution in the back-to-back frame // work out the boostvector Boost boostv(-(basis->pVector()+basis->nVector()).boostVector()); // momentum of the parton Lorentz5Momentum ptest(basis->pVector()); // construct the Lorentz boost output = LorentzRotation(boostv); ptest *= output; Axis axis(ptest.vect().unit()); // now rotate so along the z axis as needed for the splitting functions if(axis.perp2()>1e-10) { double sinth(sqrt(1.-sqr(axis.z()))); output.rotate(-acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.)); } else if(axis.z()<0.) { output.rotate(Constants::pi,Axis(1.,0.,0.)); } porig = output*basis->pVector(); porig.setX(ZERO); porig.setY(ZERO); } else { output = LorentzRotation(-basis->pVector().boostVector()); porig = output*basis->pVector(); porig.setX(ZERO); porig.setY(ZERO); porig.setZ(ZERO); } return output; } RhoDMatrix bosonMapping(ShowerParticle & particle, const Lorentz5Momentum & porig, VectorSpinPtr vspin, const LorentzRotation & rot) { // rotate the original basis vector<LorentzPolarizationVector> sbasis; for(unsigned int ix=0;ix<3;++ix) { sbasis.push_back(vspin->getProductionBasisState(ix)); sbasis.back().transform(rot); } // splitting basis vector<LorentzPolarizationVector> fbasis; bool massless(particle.id()==ParticleID::g||particle.id()==ParticleID::gamma); VectorWaveFunction wave(porig,particle.dataPtr(),outgoing); for(unsigned int ix=0;ix<3;++ix) { if(massless&&ix==1) { fbasis.push_back(LorentzPolarizationVector()); } else { wave.reset(ix); fbasis.push_back(wave.wave()); } } // work out the mapping RhoDMatrix mapping=RhoDMatrix(PDT::Spin1,false); for(unsigned int ix=0;ix<3;++ix) { for(unsigned int iy=0;iy<3;++iy) { mapping(ix,iy)= sbasis[iy].dot(fbasis[ix].conjugate()); if(particle.id()<0) mapping(ix,iy)=conj(mapping(ix,iy)); } } // \todo need to fix this mapping = RhoDMatrix(PDT::Spin1,false); if(massless) { mapping(0,0) = 1.; mapping(2,2) = 1.; } else { mapping(0,0) = 1.; mapping(1,1) = 1.; mapping(2,2) = 1.; } return mapping; } RhoDMatrix fermionMapping(ShowerParticle & particle, const Lorentz5Momentum & porig, FermionSpinPtr fspin, const LorentzRotation & rot) { // extract the original basis states vector<LorentzSpinor<SqrtEnergy> > sbasis; for(unsigned int ix=0;ix<2;++ix) { sbasis.push_back(fspin->getProductionBasisState(ix)); sbasis.back().transform(rot); } // calculate the states in the splitting basis vector<LorentzSpinor<SqrtEnergy> > fbasis; SpinorWaveFunction wave(porig,particle.dataPtr(), particle.id()>0 ? incoming : outgoing); for(unsigned int ix=0;ix<2;++ix) { wave.reset(ix); fbasis.push_back(wave.dimensionedWave()); } RhoDMatrix mapping=RhoDMatrix(PDT::Spin1Half,false); for(unsigned int ix=0;ix<2;++ix) { if(fbasis[0].s2()==complex<SqrtEnergy>()) { mapping(ix,0) = sbasis[ix].s3()/fbasis[0].s3(); mapping(ix,1) = sbasis[ix].s2()/fbasis[1].s2(); } else { mapping(ix,0) = sbasis[ix].s2()/fbasis[0].s2(); mapping(ix,1) = sbasis[ix].s3()/fbasis[1].s3(); } } return mapping; } FermionSpinPtr createFermionSpinInfo(ShowerParticle & particle, const Lorentz5Momentum & porig, const LorentzRotation & rot, Helicity::Direction dir) { // calculate the splitting basis for the branching // and rotate back to construct the basis states LorentzRotation rinv = rot.inverse(); SpinorWaveFunction wave; if(particle.id()>0) wave=SpinorWaveFunction(porig,particle.dataPtr(),incoming); else wave=SpinorWaveFunction(porig,particle.dataPtr(),outgoing); FermionSpinPtr fspin = new_ptr(FermionSpinInfo(particle.momentum(),dir==outgoing)); for(unsigned int ix=0;ix<2;++ix) { wave.reset(ix); LorentzSpinor<SqrtEnergy> basis = wave.dimensionedWave(); basis.transform(rinv); fspin->setBasisState(ix,basis); fspin->setDecayState(ix,basis); } particle.spinInfo(fspin); return fspin; } VectorSpinPtr createVectorSpinInfo(ShowerParticle & particle, const Lorentz5Momentum & porig, const LorentzRotation & rot, Helicity::Direction dir) { // calculate the splitting basis for the branching // and rotate back to construct the basis states LorentzRotation rinv = rot.inverse(); bool massless(particle.id()==ParticleID::g||particle.id()==ParticleID::gamma); VectorWaveFunction wave(porig,particle.dataPtr(),dir); VectorSpinPtr vspin = new_ptr(VectorSpinInfo(particle.momentum(),dir==outgoing)); for(unsigned int ix=0;ix<3;++ix) { LorentzPolarizationVector basis; if(massless&&ix==1) { basis = LorentzPolarizationVector(); } else { wave.reset(ix); basis = wave.wave(); } basis *= rinv; vspin->setBasisState(ix,basis); vspin->setDecayState(ix,basis); } particle.spinInfo(vspin); vspin-> DMatrix() = RhoDMatrix(PDT::Spin1); vspin->rhoMatrix() = RhoDMatrix(PDT::Spin1); if(massless) { vspin-> DMatrix()(0,0) = 0.5; vspin->rhoMatrix()(0,0) = 0.5; vspin-> DMatrix()(2,2) = 0.5; vspin->rhoMatrix()(2,2) = 0.5; } return vspin; } } RhoDMatrix ShowerParticle::extractRhoMatrix(bool forward) { // get the spin density matrix and the mapping RhoDMatrix mapping; SpinPtr inspin; bool needMapping = getMapping(inspin,mapping); // set the decayed flag inspin->decay(); // get the spin density matrix RhoDMatrix rho = forward ? inspin->rhoMatrix() : inspin->DMatrix(); // map to the shower basis if needed if(needMapping) { RhoDMatrix rhop(rho.iSpin(),false); for(int ixb=0;ixb<rho.iSpin();++ixb) { for(int iyb=0;iyb<rho.iSpin();++iyb) { if(mapping(iyb,ixb)==0.)continue; for(int iya=0;iya<rho.iSpin();++iya) { if(rho(iya,iyb)==0.)continue; for(int ixa=0;ixa<rho.iSpin();++ixa) { rhop(ixa,ixb) += rho(iya,iyb)*mapping(iya,ixa)*conj(mapping(iyb,ixb)); } } } } rhop.normalize(); rho = rhop; } return rho; } bool ShowerParticle::getMapping(SpinPtr & output, RhoDMatrix & mapping) { // if the particle is not from the hard process if(!this->perturbative()) { // mapping is the identity output=this->spinInfo(); mapping=RhoDMatrix(this->dataPtr()->iSpin()); if(output) { return false; } else { Lorentz5Momentum porig; LorentzRotation rot = boostToShower(porig,showerBasis()); Helicity::Direction dir = this->isFinalState() ? outgoing : incoming; if(this->dataPtr()->iSpin()==PDT::Spin0) { assert(false); } else if(this->dataPtr()->iSpin()==PDT::Spin1Half) { output = createFermionSpinInfo(*this,porig,rot,dir); } else if(this->dataPtr()->iSpin()==PDT::Spin1) { output = createVectorSpinInfo(*this,porig,rot,dir); } else { assert(false); } return false; } } // if particle is final-state and is from the hard process else if(this->isFinalState()) { assert(this->perturbative()==1 || this->perturbative()==2); // get transform to shower frame Lorentz5Momentum porig; LorentzRotation rot = boostToShower(porig,showerBasis()); // the rest depends on the spin of the particle PDT::Spin spin(this->dataPtr()->iSpin()); mapping=RhoDMatrix(spin,false); // do the spin dependent bit if(spin==PDT::Spin0) { ScalarSpinPtr sspin=dynamic_ptr_cast<ScalarSpinPtr>(this->spinInfo()); if(!sspin) { ScalarWaveFunction::constructSpinInfo(this,outgoing,true); } output=this->spinInfo(); return false; } else if(spin==PDT::Spin1Half) { FermionSpinPtr fspin=dynamic_ptr_cast<FermionSpinPtr>(this->spinInfo()); // spin info exists get information from it if(fspin) { output=fspin; mapping = fermionMapping(*this,porig,fspin,rot); return true; } // spin info does not exist create it else { output = createFermionSpinInfo(*this,porig,rot,outgoing); return false; } } else if(spin==PDT::Spin1) { VectorSpinPtr vspin=dynamic_ptr_cast<VectorSpinPtr>(this->spinInfo()); // spin info exists get information from it if(vspin) { output=vspin; mapping = bosonMapping(*this,porig,vspin,rot); return true; } else { output = createVectorSpinInfo(*this,porig,rot,outgoing); return false; } } // not scalar/fermion/vector else assert(false); } // incoming to hard process else if(this->perturbative()==1 && !this->isFinalState()) { // get the basis vectors // get transform to shower frame Lorentz5Momentum porig; LorentzRotation rot = boostToShower(porig,showerBasis()); porig *= this->x(); // the rest depends on the spin of the particle PDT::Spin spin(this->dataPtr()->iSpin()); mapping=RhoDMatrix(spin); // do the spin dependent bit if(spin==PDT::Spin0) { cerr << "testing spin 0 not yet implemented " << endl; assert(false); } // spin-1/2 else if(spin==PDT::Spin1Half) { FermionSpinPtr fspin=dynamic_ptr_cast<FermionSpinPtr>(this->spinInfo()); // spin info exists get information from it if(fspin) { output=fspin; mapping = fermionMapping(*this,porig,fspin,rot); return true; } // spin info does not exist create it else { output = createFermionSpinInfo(*this,porig,rot,incoming); return false; } } // spin-1 else if(spin==PDT::Spin1) { VectorSpinPtr vspin=dynamic_ptr_cast<VectorSpinPtr>(this->spinInfo()); // spinInfo exists map it if(vspin) { output=vspin; mapping = bosonMapping(*this,porig,vspin,rot); return true; } // create the spininfo else { output = createVectorSpinInfo(*this,porig,rot,incoming); return false; } } assert(false); } // incoming to decay else if(this->perturbative() == 2 && !this->isFinalState()) { // get the basis vectors Lorentz5Momentum porig; LorentzRotation rot=boostToShower(porig,showerBasis()); // the rest depends on the spin of the particle PDT::Spin spin(this->dataPtr()->iSpin()); mapping=RhoDMatrix(spin); // do the spin dependent bit if(spin==PDT::Spin0) { cerr << "testing spin 0 not yet implemented " << endl; assert(false); } // spin-1/2 else if(spin==PDT::Spin1Half) { // FermionSpinPtr fspin=dynamic_ptr_cast<FermionSpinPtr>(this->spinInfo()); // // spin info exists get information from it // if(fspin) { // output=fspin; // mapping = fermionMapping(*this,porig,fspin,rot); // return true; // // spin info does not exist create it // else { // output = createFermionSpinInfo(*this,porig,rot,incoming); // return false; // } // } assert(false); } // // spin-1 // else if(spin==PDT::Spin1) { // VectorSpinPtr vspin=dynamic_ptr_cast<VectorSpinPtr>(this->spinInfo()); // // spinInfo exists map it // if(vspin) { // output=vspin; // mapping = bosonMapping(*this,porig,vspin,rot); // return true; // } // // create the spininfo // else { // output = createVectorSpinInfo(*this,porig,rot,incoming); // return false; // } // } // assert(false); assert(false); } else assert(false); return true; } void ShowerParticle::constructSpinInfo(bool timeLike) { // now construct the required spininfo and calculate the basis states PDT::Spin spin(dataPtr()->iSpin()); if(spin==PDT::Spin0) { ScalarWaveFunction::constructSpinInfo(this,outgoing,timeLike); } // calculate the basis states and construct the SpinInfo for a spin-1/2 particle else if(spin==PDT::Spin1Half) { // outgoing particle if(id()>0) { vector<LorentzSpinorBar<SqrtEnergy> > stemp; SpinorBarWaveFunction::calculateWaveFunctions(stemp,this,outgoing); SpinorBarWaveFunction::constructSpinInfo(stemp,this,outgoing,timeLike); } // outgoing antiparticle else { vector<LorentzSpinor<SqrtEnergy> > stemp; SpinorWaveFunction::calculateWaveFunctions(stemp,this,outgoing); SpinorWaveFunction::constructSpinInfo(stemp,this,outgoing,timeLike); } } // calculate the basis states and construct the SpinInfo for a spin-1 particle else if(spin==PDT::Spin1) { bool massless(id()==ParticleID::g||id()==ParticleID::gamma); vector<Helicity::LorentzPolarizationVector> vtemp; VectorWaveFunction::calculateWaveFunctions(vtemp,this,outgoing,massless); VectorWaveFunction::constructSpinInfo(vtemp,this,outgoing,timeLike,massless); } else { throw Exception() << "Spins higher than 1 are not yet implemented in " << "FS_QtildaShowerKinematics1to2::constructVertex() " << Exception::runerror; } } void ShowerParticle::initializeDecay() { Lorentz5Momentum p, n, ppartner, pcm; assert(perturbative()!=1); // this is for the initial decaying particle if(perturbative()==2) { ShowerBasisPtr newBasis; p = momentum(); Lorentz5Momentum ppartner(partner()->momentum()); // removed to make inverse recon work properly //if(partner->thePEGBase()) ppartner=partner->thePEGBase()->momentum(); pcm=ppartner; Boost boost(p.findBoostToCM()); pcm.boost(boost); n = Lorentz5Momentum( ZERO,0.5*p.mass()*pcm.vect().unit()); n.boost( -boost); newBasis = new_ptr(ShowerBasis()); newBasis->setBasis(p,n,ShowerBasis::Rest); showerBasis(newBasis,false); } else { showerBasis(dynamic_ptr_cast<ShowerParticlePtr>(parents()[0])->showerBasis(),true); } } void ShowerParticle::initializeInitialState(PPtr parent) { // For the time being we are considering only 1->2 branching Lorentz5Momentum p, n, pthis, pcm; assert(perturbative()!=2); if(perturbative()==1) { ShowerBasisPtr newBasis; // find the partner and its momentum if(!partner()) return; if(partner()->isFinalState()) { Lorentz5Momentum pa = -momentum()+partner()->momentum(); Lorentz5Momentum pb = momentum(); Energy scale=parent->momentum().t(); Lorentz5Momentum pbasis(ZERO,parent->momentum().vect().unit()*scale); Axis axis(pa.vect().unit()); LorentzRotation rot; double sinth(sqrt(sqr(axis.x())+sqr(axis.y()))); if(axis.perp2()>1e-20) { rot.setRotate(-acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.)); rot.rotateX(Constants::pi); } if(abs(1.-pa.e()/pa.vect().mag())>1e-6) rot.boostZ( pa.e()/pa.vect().mag()); pb *= rot; if(pb.perp2()/GeV2>1e-20) { Boost trans = -1./pb.e()*pb.vect(); trans.setZ(0.); rot.boost(trans); } pbasis *=rot; rot.invert(); n = rot*Lorentz5Momentum(ZERO,-pbasis.vect()); p = rot*Lorentz5Momentum(ZERO, pbasis.vect()); } else { pcm = parent->momentum(); p = Lorentz5Momentum(ZERO, pcm.vect()); n = Lorentz5Momentum(ZERO, -pcm.vect()); } newBasis = new_ptr(ShowerBasis()); newBasis->setBasis(p,n,ShowerBasis::BackToBack); showerBasis(newBasis,false); } else { showerBasis(dynamic_ptr_cast<ShowerParticlePtr>(children()[0])->showerBasis(),true); } } void ShowerParticle::initializeFinalState() { // set the basis vectors Lorentz5Momentum p,n; if(perturbative()!=0) { ShowerBasisPtr newBasis; // find the partner() and its momentum if(!partner()) return; Lorentz5Momentum ppartner(partner()->momentum()); // momentum of the emitting particle p = momentum(); Lorentz5Momentum pcm; // if the partner is a final-state particle then the reference // vector is along the partner in the rest frame of the pair if(partner()->isFinalState()) { Boost boost=(p + ppartner).findBoostToCM(); pcm = ppartner; pcm.boost(boost); n = Lorentz5Momentum(ZERO,pcm.vect()); n.boost( -boost); } else if(!partner()->isFinalState()) { // if the partner is an initial-state particle then the reference // vector is along the partner which should be massless if(perturbative()==1) { n = Lorentz5Momentum(ZERO,ppartner.vect()); } // if the partner is an initial-state decaying particle then the reference // vector is along the backwards direction in rest frame of decaying particle else { Boost boost=ppartner.findBoostToCM(); pcm = p; pcm.boost(boost); n = Lorentz5Momentum( ZERO, -pcm.vect()); n.boost( -boost); } } newBasis = new_ptr(ShowerBasis()); newBasis->setBasis(p,n,ShowerBasis::BackToBack); showerBasis(newBasis,false); } else if(initiatesTLS()) { showerBasis(dynamic_ptr_cast<ShowerParticlePtr>(parents()[0]->children()[0])->showerBasis(),true); } else { showerBasis(dynamic_ptr_cast<ShowerParticlePtr>(parents()[0])->showerBasis(),true); } } void ShowerParticle::setShowerMomentum(bool timeLike) { Energy m = this->mass() > ZERO ? this->mass() : this->data().mass(); // calculate the momentum of the assuming on-shell Energy2 pt2 = sqr(this->showerParameters().pt); double alpha = timeLike ? this->showerParameters().alpha : this->x(); double beta = 0.5*(sqr(m) + pt2 - sqr(alpha)*showerBasis()->pVector().m2())/(alpha*showerBasis()->p_dot_n()); Lorentz5Momentum porig=showerBasis()->sudakov2Momentum(alpha,beta, this->showerParameters().ptx, this->showerParameters().pty); porig.setMass(m); this->set5Momentum(porig); } diff --git a/Shower/Core/SplittingFunctions/SplittingGenerator.cc b/Shower/Core/SplittingFunctions/SplittingGenerator.cc --- a/Shower/Core/SplittingFunctions/SplittingGenerator.cc +++ b/Shower/Core/SplittingFunctions/SplittingGenerator.cc @@ -1,616 +1,622 @@ // -*- C++ -*- // // SplittingGenerator.cc is a part of Herwig - A multi-purpose Monte Carlo event generator // Copyright (C) 2002-2017 The Herwig Collaboration // // Herwig is licenced under version 3 of the GPL, see COPYING for details. // Please respect the MCnet academic guidelines, see GUIDELINES for details. // // // This is the implementation of the non-inlined, non-templated member // functions of the SplittingGenerator class. // #include "SplittingGenerator.h" #include "ThePEG/Interface/ClassDocumentation.h" #include "ThePEG/Persistency/PersistentOStream.h" #include "ThePEG/Persistency/PersistentIStream.h" #include "ThePEG/Interface/Switch.h" #include "ThePEG/Interface/Command.h" #include "ThePEG/Interface/Parameter.h" #include "ThePEG/Utilities/StringUtils.h" #include "ThePEG/Repository/Repository.h" #include "Herwig/Shower/Core/Base/ShowerParticle.h" #include "Herwig/Shower/ShowerHandler.h" #include "ThePEG/Utilities/Rebinder.h" #include <cassert> #include "ThePEG/Utilities/DescribeClass.h" using namespace Herwig; namespace { bool checkInteraction(ShowerInteraction allowed, ShowerInteraction splitting) { if(allowed==ShowerInteraction::Both) return true; else if(allowed == splitting) return true; else return false; } } DescribeClass<SplittingGenerator,Interfaced> describeSplittingGenerator ("Herwig::SplittingGenerator",""); IBPtr SplittingGenerator::clone() const { return new_ptr(*this); } IBPtr SplittingGenerator::fullclone() const { return new_ptr(*this); } void SplittingGenerator::persistentOutput(PersistentOStream & os) const { os << _bbranchings << _fbranchings << _deTuning; } void SplittingGenerator::persistentInput(PersistentIStream & is, int) { is >> _bbranchings >> _fbranchings >> _deTuning; } void SplittingGenerator::Init() { static ClassDocumentation<SplittingGenerator> documentation ("There class is responsible for initializing the Sudakov form factors ", "and generating splittings."); static Command<SplittingGenerator> interfaceAddSplitting ("AddFinalSplitting", "Adds another splitting to the list of splittings considered " "in the shower. Command is a->b,c; Sudakov", &SplittingGenerator::addFinalSplitting); static Command<SplittingGenerator> interfaceAddInitialSplitting ("AddInitialSplitting", "Adds another splitting to the list of initial splittings to consider " "in the shower. Command is a->b,c; Sudakov. Here the particle a is the " "particle that is PRODUCED by the splitting. b is the initial state " "particle that is splitting in the shower.", &SplittingGenerator::addInitialSplitting); static Command<SplittingGenerator> interfaceDeleteSplitting ("DeleteFinalSplitting", "Deletes a splitting from the list of splittings considered " "in the shower. Command is a->b,c; Sudakov", &SplittingGenerator::deleteFinalSplitting); static Command<SplittingGenerator> interfaceDeleteInitialSplitting ("DeleteInitialSplitting", "Deletes a splitting from the list of initial splittings to consider " "in the shower. Command is a->b,c; Sudakov. Here the particle a is the " "particle that is PRODUCED by the splitting. b is the initial state " "particle that is splitting in the shower.", &SplittingGenerator::deleteInitialSplitting); static Parameter<SplittingGenerator,double> interfaceDetuning ("Detuning", "The Detuning parameter to make the veto algorithm less efficient to improve the weight variations", &SplittingGenerator::_deTuning, 1.0, 1.0, 10.0, false, false, Interface::limited); } string SplittingGenerator::addSplitting(string arg, bool final) { string partons = StringUtils::car(arg); string sudakov = StringUtils::cdr(arg); vector<tPDPtr> products; string::size_type next = partons.find("->"); if(next == string::npos) return "Error: Invalid string for splitting " + arg; if(partons.find(';') == string::npos) return "Error: Invalid string for splitting " + arg; tPDPtr parent = Repository::findParticle(partons.substr(0,next)); partons = partons.substr(next+2); do { next = min(partons.find(','), partons.find(';')); tPDPtr pdp = Repository::findParticle(partons.substr(0,next)); partons = partons.substr(next+1); if(pdp) products.push_back(pdp); else return "Error: Could not create splitting from " + arg; } while(partons[0] != ';' && partons.size()); SudakovPtr s; s = dynamic_ptr_cast<SudakovPtr>(Repository::TraceObject(sudakov)); if(!s) return "Error: Could not load Sudakov " + sudakov + '\n'; IdList ids; ids.push_back(parent); for(vector<tPDPtr>::iterator it = products.begin(); it!=products.end(); ++it) ids.push_back(*it); // check splitting can handle this if(!s->splittingFn()->accept(ids)) return "Error: Sudakov " + sudakov + " SplittingFunction can't handle particles\n"; // add to map addToMap(ids,s,final); return ""; } string SplittingGenerator::deleteSplitting(string arg, bool final) { string partons = StringUtils::car(arg); string sudakov = StringUtils::cdr(arg); vector<tPDPtr> products; string::size_type next = partons.find("->"); if(next == string::npos) return "Error: Invalid string for splitting " + arg; if(partons.find(';') == string::npos) return "Error: Invalid string for splitting " + arg; tPDPtr parent = Repository::findParticle(partons.substr(0,next)); partons = partons.substr(next+2); do { next = min(partons.find(','), partons.find(';')); tPDPtr pdp = Repository::findParticle(partons.substr(0,next)); partons = partons.substr(next+1); if(pdp) products.push_back(pdp); else return "Error: Could not create splitting from " + arg; } while(partons[0] != ';' && partons.size()); SudakovPtr s; s = dynamic_ptr_cast<SudakovPtr>(Repository::TraceObject(sudakov)); if(!s) return "Error: Could not load Sudakov " + sudakov + '\n'; IdList ids; ids.push_back(parent); for(vector<tPDPtr>::iterator it = products.begin(); it!=products.end(); ++it) ids.push_back(*it); // check splitting can handle this if(!s->splittingFn()->accept(ids)) return "Error: Sudakov " + sudakov + " Splitting Function can't handle particles\n"; // delete from map deleteFromMap(ids,s,final); return ""; } void SplittingGenerator::addToMap(const IdList &ids, const SudakovPtr &s, bool final) { if(!final) { // search if the branching was already included. auto binsert =BranchingInsert(abs(ids[1]->id()),BranchingElement(s,ids)); // get the range of already inserted splittings. auto eqrange=_bbranchings.equal_range(binsert.first); for(auto it = eqrange.first; it != eqrange.second; ++it){ if((*it).second == binsert.second) throw Exception()<<"SplittingGenerator: Trying to insert existing splitting.\n" << Exception::setuperror; } _bbranchings.insert(binsert); s->addSplitting(ids); } else { // search if the branching was already included. auto binsert =BranchingInsert(abs(ids[0]->id()),BranchingElement(s,ids)); // get the range of already inserted splittings. auto eqrange=_fbranchings.equal_range(binsert.first); for(auto it = eqrange.first; it != eqrange.second; ++it){ if((*it).second ==binsert.second) throw Exception()<<"SplittingGenerator: Trying to insert existing splitting.\n" << Exception::setuperror; } _fbranchings.insert(binsert); s->addSplitting(ids); } } void SplittingGenerator::deleteFromMap(const IdList &ids, const SudakovPtr &s, bool final) { bool didRemove=false; if(!final) { pair<BranchingList::iterator,BranchingList::iterator> range = _bbranchings.equal_range(abs(ids[1]->id())); for(BranchingList::iterator it=range.first; it!=range.second&&it!=_bbranchings.end();++it) { if(it->second.sudakov==s&&it->second.particles==ids) { BranchingList::iterator it2=it; --it; _bbranchings.erase(it2); didRemove=true; } } s->removeSplitting(ids); } else { pair<BranchingList::iterator,BranchingList::iterator> range = _fbranchings.equal_range(abs(ids[0]->id())); for(BranchingList::iterator it=range.first; it!=range.second&&it!=_fbranchings.end();++it) { if(it->second.sudakov==s&&it->second.particles==ids) { BranchingList::iterator it2 = it; --it; _fbranchings.erase(it2); didRemove=true; } } s->removeSplitting(ids); } if (!didRemove) throw Exception()<<"SplittingGenerator: Try to remove non existing splitting.\n" << Exception::setuperror; } Branching SplittingGenerator::chooseForwardBranching(ShowerParticle &particle, double enhance, ShowerInteraction type) const { RhoDMatrix rho; bool rhoCalc(false); Energy newQ = ZERO; ShoKinPtr kinematics = ShoKinPtr(); ShowerPartnerType partnerType(ShowerPartnerType::Undefined); SudakovPtr sudakov = SudakovPtr(); IdList ids; // First, find the eventual branching, corresponding to the highest scale. long index = abs(particle.data().id()); // if no branchings return empty branching struct if( _fbranchings.find(index) == _fbranchings.end() ) return Branching(ShoKinPtr(), IdList(),SudakovPtr(),ShowerPartnerType::Undefined); // otherwise select branching for(BranchingList::const_iterator cit = _fbranchings.lower_bound(index); cit != _fbranchings.upper_bound(index); ++cit) { // check either right interaction or doing both if(!checkInteraction(type,cit->second.sudakov->interactionType())) continue; if(!rhoCalc) { rho = particle.extractRhoMatrix(true); rhoCalc = true; } // whether or not this interaction should be angular ordered bool angularOrdered = cit->second.sudakov->splittingFn()->angularOrdered(); ShoKinPtr newKin; ShowerPartnerType type; IdList particles = particle.id()!=cit->first ? cit->second.conjugateParticles : cit->second.particles; // work out which starting scale we need if(cit->second.sudakov->interactionType()==ShowerInteraction::QED) { type = ShowerPartnerType::QED; Energy startingScale = angularOrdered ? particle.scales().QED : particle.scales().QED_noAO; newKin = cit->second.sudakov-> generateNextTimeBranching(startingScale,particles,rho,enhance, _deTuning, particle.scales().Max_Q2); } else if(cit->second.sudakov->interactionType()==ShowerInteraction::QCD) { // special for octets if(particle.dataPtr()->iColour()==PDT::Colour8) { // octet -> octet octet if(cit->second.sudakov->splittingFn()->colourStructure()==OctetOctetOctet) { type = ShowerPartnerType::QCDColourLine; Energy startingScale = angularOrdered ? particle.scales().QCD_c : particle.scales().QCD_c_noAO; newKin= cit->second.sudakov-> generateNextTimeBranching(startingScale,particles,rho,0.5*enhance, _deTuning, particle.scales().Max_Q2); startingScale = angularOrdered ? particle.scales().QCD_ac : particle.scales().QCD_ac_noAO; ShoKinPtr newKin2 = cit->second.sudakov-> generateNextTimeBranching(startingScale,particles,rho,0.5*enhance, _deTuning, particle.scales().Max_Q2); // pick the one with the highest scale if( ( newKin && newKin2 && newKin2->scale() > newKin->scale()) || (!newKin && newKin2) ) { newKin = newKin2; type = ShowerPartnerType::QCDAntiColourLine; } } // other g -> q qbar else { Energy startingScale = angularOrdered ? max(particle.scales().QCD_c , particle.scales().QCD_ac ) : max(particle.scales().QCD_c_noAO, particle.scales().QCD_ac_noAO); newKin= cit->second.sudakov-> generateNextTimeBranching(startingScale,particles,rho,enhance, _deTuning, particle.scales().Max_Q2); type = UseRandom::rndbool() ? ShowerPartnerType::QCDColourLine : ShowerPartnerType::QCDAntiColourLine; } } // everything else q-> qg etc else { Energy startingScale; if(particle.hasColour()) { type = ShowerPartnerType::QCDColourLine; startingScale = angularOrdered ? particle.scales().QCD_c : particle.scales().QCD_c_noAO; } else { type = ShowerPartnerType::QCDAntiColourLine; startingScale = angularOrdered ? particle.scales().QCD_ac : particle.scales().QCD_ac_noAO; } newKin= cit->second.sudakov-> generateNextTimeBranching(startingScale,particles,rho,enhance, _deTuning, particle.scales().Max_Q2); } } // shouldn't be anything else else assert(false); // if no kinematics contine if(!newKin) continue; // select highest scale if( newKin->scale() > newQ ) { kinematics = newKin; newQ = newKin->scale(); ids = particles; sudakov = cit->second.sudakov; partnerType = type; } } // return empty branching if nothing happened - if(!kinematics) return Branching(ShoKinPtr(), IdList(),SudakovPtr(), - ShowerPartnerType::Undefined); + if(!kinematics) { + particle.spinInfo()->undecay(); + return Branching(ShoKinPtr(), IdList(),SudakovPtr(), + ShowerPartnerType::Undefined); + } // if not hard generate phi kinematics->phi(sudakov->generatePhiForward(particle,ids,kinematics,rho)); // and return it return Branching(kinematics, ids,sudakov,partnerType); } Branching SplittingGenerator:: chooseDecayBranching(ShowerParticle &particle, const ShowerParticle::EvolutionScales & stoppingScales, Energy minmass, double enhance, ShowerInteraction interaction) const { RhoDMatrix rho(particle.dataPtr()->iSpin()); Energy newQ = Constants::MaxEnergy; ShoKinPtr kinematics; SudakovPtr sudakov; ShowerPartnerType partnerType(ShowerPartnerType::Undefined); IdList ids; // First, find the eventual branching, corresponding to the lowest scale. long index = abs(particle.data().id()); // if no branchings return empty branching struct if(_fbranchings.find(index) == _fbranchings.end()) return Branching(ShoKinPtr(), IdList(),SudakovPtr(),ShowerPartnerType::Undefined); // otherwise select branching for(BranchingList::const_iterator cit = _fbranchings.lower_bound(index); cit != _fbranchings.upper_bound(index); ++cit) { // check interaction doesn't change flavour if(cit->second.particles[1]->id()!=index&&cit->second.particles[2]->id()!=index) continue; // check either right interaction or doing both if(!checkInteraction(interaction,cit->second.sudakov->interactionType())) continue; // whether or not this interaction should be angular ordered bool angularOrdered = cit->second.sudakov->splittingFn()->angularOrdered(); ShoKinPtr newKin; IdList particles = particle.id()!=cit->first ? cit->second.conjugateParticles : cit->second.particles; ShowerPartnerType type; // work out which starting scale we need if(cit->second.sudakov->interactionType()==ShowerInteraction::QED) { type = ShowerPartnerType::QED; Energy stoppingScale = angularOrdered ? stoppingScales.QED : stoppingScales.QED_noAO; Energy startingScale = angularOrdered ? particle.scales().QED : particle.scales().QED_noAO; if(startingScale < stoppingScale ) { newKin = cit->second.sudakov-> generateNextDecayBranching(startingScale,stoppingScale,minmass,particles,rho,enhance,_deTuning); } } else if(cit->second.sudakov->interactionType()==ShowerInteraction::QCD) { // special for octets if(particle.dataPtr()->iColour()==PDT::Colour8) { // octet -> octet octet if(cit->second.sudakov->splittingFn()->colourStructure()==OctetOctetOctet) { Energy stoppingColour = angularOrdered ? stoppingScales.QCD_c : stoppingScales.QCD_c_noAO; Energy stoppingAnti = angularOrdered ? stoppingScales.QCD_ac : stoppingScales.QCD_ac_noAO; Energy startingColour = angularOrdered ? particle.scales().QCD_c : particle.scales().QCD_c_noAO; Energy startingAnti = angularOrdered ? particle.scales().QCD_ac : particle.scales().QCD_ac_noAO; type = ShowerPartnerType::QCDColourLine; if(startingColour<stoppingColour) { newKin= cit->second.sudakov-> generateNextDecayBranching(startingColour,stoppingColour,minmass, particles,rho,0.5*enhance,_deTuning); } ShoKinPtr newKin2; if(startingAnti<stoppingAnti) { newKin2 = cit->second.sudakov-> generateNextDecayBranching(startingAnti,stoppingAnti,minmass,particles,rho,0.5*enhance,_deTuning); } // pick the one with the lowest scale if( (newKin&&newKin2&&newKin2->scale()<newKin->scale()) || (!newKin&&newKin2) ) { newKin = newKin2; type = ShowerPartnerType::QCDAntiColourLine; } } // other else { assert(false); } } // everything else else { Energy startingScale,stoppingScale; if(particle.hasColour()) { type = ShowerPartnerType::QCDColourLine; stoppingScale = angularOrdered ? stoppingScales.QCD_c : stoppingScales.QCD_c_noAO; startingScale = angularOrdered ? particle.scales().QCD_c : particle.scales().QCD_c_noAO; } else { type = ShowerPartnerType::QCDAntiColourLine; stoppingScale = angularOrdered ? stoppingScales.QCD_ac : stoppingScales.QCD_ac_noAO; startingScale = angularOrdered ? particle.scales().QCD_ac : particle.scales().QCD_ac_noAO; } if(startingScale < stoppingScale ) { newKin = cit->second.sudakov-> generateNextDecayBranching(startingScale,stoppingScale,minmass,particles,rho,enhance,_deTuning); } } } // shouldn't be anything else else assert(false); if(!newKin) continue; // select highest scale if(newKin->scale() < newQ ) { newQ = newKin->scale(); ids = particles; kinematics=newKin; sudakov=cit->second.sudakov; partnerType = type; } } // return empty branching if nothing happened if(!kinematics) return Branching(ShoKinPtr(), IdList(),SudakovPtr(), ShowerPartnerType::Undefined); // and generate phi kinematics->phi(sudakov->generatePhiDecay(particle,ids,kinematics,rho)); // and return it return Branching(kinematics, ids,sudakov,partnerType); } Branching SplittingGenerator:: chooseBackwardBranching(ShowerParticle &particle,PPtr , double enhance, Ptr<BeamParticleData>::transient_const_pointer beam, ShowerInteraction type, tcPDFPtr pdf, Energy freeze) const { RhoDMatrix rho; bool rhoCalc(false); Energy newQ=ZERO; ShoKinPtr kinematics=ShoKinPtr(); ShowerPartnerType partnerType(ShowerPartnerType::Undefined); SudakovPtr sudakov; IdList ids; // First, find the eventual branching, corresponding to the highest scale. long index = abs(particle.id()); // if no possible branching return if(_bbranchings.find(index) == _bbranchings.end()) return Branching(ShoKinPtr(), IdList(),SudakovPtr(),ShowerPartnerType::Undefined); // otherwise select branching for(BranchingList::const_iterator cit = _bbranchings.lower_bound(index); cit != _bbranchings.upper_bound(index); ++cit ) { // check either right interaction or doing both if(!checkInteraction(type,cit->second.sudakov->interactionType())) continue; // setup the PDF cit->second.sudakov->setPDF(pdf,freeze); //calc rho as needed if(!rhoCalc) { rho = particle.extractRhoMatrix(false); rhoCalc = true; } // whether or not this interaction should be angular ordered bool angularOrdered = cit->second.sudakov->splittingFn()->angularOrdered(); ShoKinPtr newKin; IdList particles = particle.id()!=cit->first ? cit->second.conjugateParticles : cit->second.particles; ShowerPartnerType type; if(cit->second.sudakov->interactionType()==ShowerInteraction::QED) { type = ShowerPartnerType::QED; Energy startingScale = angularOrdered ? particle.scales().QED : particle.scales().QED_noAO; newKin=cit->second.sudakov-> generateNextSpaceBranching(startingScale,particles,particle.x(),rho,enhance,beam,_deTuning); } else if(cit->second.sudakov->interactionType()==ShowerInteraction::QCD) { // special for octets if(particle.dataPtr()->iColour()==PDT::Colour8) { // octet -> octet octet if(cit->second.sudakov->splittingFn()->colourStructure()==OctetOctetOctet) { type = ShowerPartnerType::QCDColourLine; Energy startingScale = angularOrdered ? particle.scales().QCD_c : particle.scales().QCD_c_noAO; newKin = cit->second.sudakov-> generateNextSpaceBranching(startingScale,particles, particle.x(),rho,0.5*enhance,beam,_deTuning); startingScale = angularOrdered ? particle.scales().QCD_ac : particle.scales().QCD_ac_noAO; ShoKinPtr newKin2 = cit->second.sudakov-> generateNextSpaceBranching(startingScale,particles, particle.x(),rho,0.5*enhance,beam,_deTuning); // pick the one with the highest scale if( (newKin&&newKin2&&newKin2->scale()>newKin->scale()) || (!newKin&&newKin2) ) { newKin = newKin2; type = ShowerPartnerType::QCDAntiColourLine; } } else { Energy startingScale = angularOrdered ? max(particle.scales().QCD_c , particle.scales().QCD_ac ) : max(particle.scales().QCD_c_noAO, particle.scales().QCD_ac_noAO); type = UseRandom::rndbool() ? ShowerPartnerType::QCDColourLine : ShowerPartnerType::QCDAntiColourLine; newKin=cit->second.sudakov-> generateNextSpaceBranching(startingScale,particles, particle.x(),rho,enhance,beam,_deTuning); } } // everything else else { Energy startingScale; if(particle.hasColour()) { type = ShowerPartnerType::QCDColourLine; startingScale = angularOrdered ? particle.scales().QCD_c : particle.scales().QCD_c_noAO; } else { type = ShowerPartnerType::QCDAntiColourLine; startingScale = angularOrdered ? particle.scales().QCD_ac : particle.scales().QCD_ac_noAO; } newKin=cit->second.sudakov-> generateNextSpaceBranching(startingScale,particles, particle.x(),rho,enhance,beam,_deTuning); } } // shouldn't be anything else else assert(false); // if no kinematics contine if(!newKin) continue; // select highest scale if(newKin->scale() > newQ) { newQ = newKin->scale(); kinematics=newKin; ids = particles; sudakov=cit->second.sudakov; partnerType = type; } } // return empty branching if nothing happened - if(!kinematics) return Branching(ShoKinPtr(), IdList(),SudakovPtr(), - ShowerPartnerType::Undefined); + if(!kinematics) { + particle.spinInfo()->undecay(); + return Branching(ShoKinPtr(), IdList(),SudakovPtr(), + ShowerPartnerType::Undefined); + } // initialize the ShowerKinematics // and generate phi kinematics->phi(sudakov->generatePhiBackward(particle,ids,kinematics,rho)); // return the answer return Branching(kinematics, ids,sudakov,partnerType); } void SplittingGenerator::rebind(const TranslationMap & trans) { BranchingList::iterator cit; for(cit=_fbranchings.begin();cit!=_fbranchings.end();++cit) { (cit->second).sudakov=trans.translate((cit->second).sudakov); for(unsigned int ix=0;ix<(cit->second).particles.size();++ix) { (cit->second).particles[ix]=trans.translate((cit->second).particles[ix]); } for(unsigned int ix=0;ix<(cit->second).conjugateParticles.size();++ix) { (cit->second).conjugateParticles[ix]=trans.translate((cit->second).conjugateParticles[ix]); } } for(cit=_bbranchings.begin();cit!=_bbranchings.end();++cit) { (cit->second).sudakov=trans.translate((cit->second).sudakov); for(unsigned int ix=0;ix<(cit->second).particles.size();++ix) { (cit->second).particles[ix]=trans.translate((cit->second).particles[ix]); } for(unsigned int ix=0;ix<(cit->second).conjugateParticles.size();++ix) { (cit->second).conjugateParticles[ix]=trans.translate((cit->second).conjugateParticles[ix]); } } Interfaced::rebind(trans); } IVector SplittingGenerator::getReferences() { IVector ret = Interfaced::getReferences(); BranchingList::iterator cit; for(cit=_fbranchings.begin();cit!=_fbranchings.end();++cit) { ret.push_back((cit->second).sudakov); for(unsigned int ix=0;ix<(cit->second).particles.size();++ix) ret.push_back(const_ptr_cast<tPDPtr>((cit->second).particles[ix])); for(unsigned int ix=0;ix<(cit->second).conjugateParticles.size();++ix) ret.push_back(const_ptr_cast<tPDPtr>((cit->second).conjugateParticles[ix])); } for(cit=_bbranchings.begin();cit!=_bbranchings.end();++cit) { ret.push_back((cit->second).sudakov); for(unsigned int ix=0;ix<(cit->second).particles.size();++ix) ret.push_back(const_ptr_cast<tPDPtr>((cit->second).particles[ix])); for(unsigned int ix=0;ix<(cit->second).conjugateParticles.size();++ix) ret.push_back(const_ptr_cast<tPDPtr>((cit->second).conjugateParticles[ix])); } return ret; }