diff --git a/MatrixElement/Matchbox/Matching/ShowerApproximation.cc b/MatrixElement/Matchbox/Matching/ShowerApproximation.cc --- a/MatrixElement/Matchbox/Matching/ShowerApproximation.cc +++ b/MatrixElement/Matchbox/Matching/ShowerApproximation.cc @@ -1,716 +1,718 @@ // -*- C++ -*- // // ShowerApproximation.cc is a part of Herwig - A multi-purpose Monte Carlo event generator // Copyright (C) 2002-2019 The Herwig Collaboration // // Herwig is licenced under version 3 of the GPL, see COPYING for details. // Please respect the MCnet academic guidelines, see GUIDELINES for details. // // // This is the implementation of the non-inlined, non-templated member // functions of the ShowerApproximation class. // #include "ShowerApproximation.h" #include "ThePEG/Interface/ClassDocumentation.h" #include "ThePEG/Interface/Switch.h" #include "ThePEG/Interface/Reference.h" #include "ThePEG/Interface/Parameter.h" #include "ThePEG/EventRecord/Particle.h" #include "ThePEG/Repository/UseRandom.h" #include "ThePEG/Repository/EventGenerator.h" #include "ThePEG/Utilities/DescribeClass.h" #include "ThePEG/Persistency/PersistentOStream.h" #include "ThePEG/Persistency/PersistentIStream.h" #include "Herwig/MatrixElement/Matchbox/Dipoles/SubtractionDipole.h" #include "Herwig/MatrixElement/Matchbox/Phasespace/TildeKinematics.h" #include "Herwig/MatrixElement/Matchbox/Phasespace/InvertedTildeKinematics.h" using namespace Herwig; ShowerApproximation::ShowerApproximation() : HandlerBase(), theExtrapolationX(1.0), theBelowCutoff(false), theFFPtCut(1.0*GeV), theFFScreeningScale(ZERO), theFIPtCut(1.0*GeV), theFIScreeningScale(ZERO), theIIPtCut(1.0*GeV), theIIScreeningScale(ZERO), theSafeCut(0.0*GeV), theRestrictPhasespace(true), theHardScaleFactor(1.0), theRenormalizationScaleFactor(1.0), theFactorizationScaleFactor(1.0), theRealEmissionScaleInSubtraction(showerScale), theBornScaleInSubtraction(showerScale), theEmissionScaleInSubtraction(showerScale), theRealEmissionScaleInSplitting(showerScale), theBornScaleInSplitting(showerScale), theEmissionScaleInSplitting(showerScale), theRenormalizationScaleFreeze(1.*GeV), theFactorizationScaleFreeze(1.*GeV), maxPtIsMuF(false), theOpenZ(true) {} ShowerApproximation::~ShowerApproximation() {} void ShowerApproximation::setLargeNBasis() { assert(dipole()->realEmissionME()->matchboxAmplitude()); if ( !dipole()->realEmissionME()->matchboxAmplitude()->treeAmplitudes() ) return; if ( !theLargeNBasis ) { if ( !dipole()->realEmissionME()->matchboxAmplitude()->colourBasis() ) throw Exception() << "ShowerApproximation::setLargeNBasis(): Expecting a colour basis object." << Exception::runerror; theLargeNBasis = dipole()->realEmissionME()->matchboxAmplitude()->colourBasis()->cloneMe(); theLargeNBasis->clear(); theLargeNBasis->doLargeN(); } } void ShowerApproximation::setDipole(Ptr::tptr dip) { theDipole = dip; setLargeNBasis(); } Ptr::tptr ShowerApproximation::dipole() const { return theDipole; } Ptr::tptr ShowerApproximation::showerTildeKinematics() const { return Ptr::tptr(); } Ptr::tptr ShowerApproximation::showerInvertedTildeKinematics() const { return Ptr::tptr(); } void ShowerApproximation::checkCutoff() { assert(!showerTildeKinematics()); } void ShowerApproximation::getShowerVariables() { // check for the cutoff dipole()->isAboveCutoff(isAboveCutoff()); // get the hard scale dipole()->showerHardScale(hardScale()); // set the shower scale and variables for completeness dipole()->showerScale(dipole()->lastPt()); dipole()->showerParameters().resize(1); dipole()->showerParameters()[0] = dipole()->lastZ(); // check for phase space dipole()->isInShowerPhasespace(isInShowerPhasespace()); } bool ShowerApproximation::isAboveCutoff() const { if ( dipole()->bornEmitter() > 1 && dipole()->bornSpectator() > 1 ) { return dipole()->lastPt() >= max(ffPtCut(),safeCut()); } else if ( ( dipole()->bornEmitter() > 1 && dipole()->bornSpectator() < 2 ) || ( dipole()->bornEmitter() < 2 && dipole()->bornSpectator() > 1 ) ) { return dipole()->lastPt() >= max(fiPtCut(),safeCut()); } else { assert(dipole()->bornEmitter() < 2 && dipole()->bornSpectator() < 2); return dipole()->lastPt() >= max(iiPtCut(),safeCut()); } return true; } Energy ShowerApproximation::hardScale() const { if ( !maxPtIsMuF ) { if ( !bornCXComb()->mePartonData()[0]->coloured() && !bornCXComb()->mePartonData()[1]->coloured() ) { Energy maxPt = (bornCXComb()->meMomenta()[0] + bornCXComb()->meMomenta()[1]).m(); maxPt *= hardScaleFactor(); return maxPt; } Energy maxPt = generator()->maximumCMEnergy(); vector::const_iterator p = bornCXComb()->meMomenta().begin() + 2; cPDVector::const_iterator pp = bornCXComb()->mePartonData().begin() + 2; for ( ; p != bornCXComb()->meMomenta().end(); ++p, ++pp ) if ( (**pp).coloured() ) maxPt = min(maxPt,p->mt()); if ( maxPt == generator()->maximumCMEnergy() ) maxPt = (bornCXComb()->meMomenta()[0] + bornCXComb()->meMomenta()[1]).m(); maxPt *= hardScaleFactor(); return maxPt; } else { return hardScaleFactor()*sqrt(bornCXComb()->lastShowerScale()); } } bool ShowerApproximation::isInShowerPhasespace() const { if ( !dipole()->isAboveCutoff() ) return false; if ( !restrictPhasespace() ) return true; InvertedTildeKinematics& kinematics = const_cast(*dipole()->invertedTildeKinematics()); tcStdXCombPtr tmpreal = kinematics.realXComb(); tcStdXCombPtr tmpborn = kinematics.bornXComb(); Ptr::tptr tmpdip = kinematics.dipole(); Energy hard = dipole()->showerHardScale(); Energy pt = dipole()->lastPt(); double z = dipole()->lastZ(); pair zbounds(0.,1.); kinematics.dipole(const_ptr_cast::tptr>(theDipole)); kinematics.prepare(realCXComb(),bornCXComb()); if ( pt > hard ) { kinematics.dipole(tmpdip); kinematics.prepare(tmpreal,tmpborn); return false; } try { zbounds = kinematics.zBounds(pt,openZ() ? kinematics.ptMax() : hard); } catch(...) { kinematics.dipole(tmpdip); kinematics.prepare(tmpreal,tmpborn); throw; } kinematics.dipole(tmpdip); kinematics.prepare(tmpreal,tmpborn); return z > zbounds.first && z < zbounds.second; } Energy2 ShowerApproximation::showerEmissionScale() const { Energy2 mur = sqr(dipole()->lastPt()); if ( dipole()->bornEmitter() > 1 && dipole()->bornSpectator() > 1 ) { return mur + sqr(ffScreeningScale()); } else if ( ( dipole()->bornEmitter() > 1 && dipole()->bornSpectator() < 2 ) || ( dipole()->bornEmitter() < 2 && dipole()->bornSpectator() > 1 ) ) { return mur + sqr(fiScreeningScale()); } else { assert(dipole()->bornEmitter() < 2 && dipole()->bornSpectator() < 2); return mur + sqr(iiScreeningScale()); } return mur; } Energy2 ShowerApproximation::bornRenormalizationScale() const { return sqr(dipole()->underlyingBornME()->renormalizationScaleFactor()) * dipole()->underlyingBornME()->renormalizationScale(); } Energy2 ShowerApproximation::bornFactorizationScale() const { return sqr(dipole()->underlyingBornME()->factorizationScaleFactor()) * dipole()->underlyingBornME()->factorizationScale(); } Energy2 ShowerApproximation::realRenormalizationScale() const { return sqr(dipole()->realEmissionME()->renormalizationScaleFactor()) * dipole()->realEmissionME()->renormalizationScale(); } Energy2 ShowerApproximation::realFactorizationScale() const { return sqr(dipole()->realEmissionME()->factorizationScaleFactor()) * dipole()->realEmissionME()->factorizationScale(); } double ShowerApproximation::bornPDFWeight(Energy2 muf) const { if ( !bornCXComb()->mePartonData()[0]->coloured() && !bornCXComb()->mePartonData()[1]->coloured() ) return 1.; if ( muf < sqr(theFactorizationScaleFreeze) ) muf = sqr(theFactorizationScaleFreeze); double pdfweight = 1.; if ( bornCXComb()->mePartonData()[0]->coloured() && dipole()->underlyingBornME()->havePDFWeight1() ) pdfweight *= dipole()->underlyingBornME()->pdf1(muf,theExtrapolationX); if ( bornCXComb()->mePartonData()[1]->coloured() && dipole()->underlyingBornME()->havePDFWeight2() ) pdfweight *= dipole()->underlyingBornME()->pdf2(muf,theExtrapolationX); return pdfweight; } double ShowerApproximation::realPDFWeight(Energy2 muf) const { if ( !realCXComb()->mePartonData()[0]->coloured() && !realCXComb()->mePartonData()[1]->coloured() ) return 1.; if ( muf < sqr(theFactorizationScaleFreeze) ) muf = sqr(theFactorizationScaleFreeze); double pdfweight = 1.; if ( realCXComb()->mePartonData()[0]->coloured() && dipole()->realEmissionME()->havePDFWeight1() ) pdfweight *= dipole()->realEmissionME()->pdf1(muf,theExtrapolationX); if ( realCXComb()->mePartonData()[1]->coloured() && dipole()->realEmissionME()->havePDFWeight2() ) pdfweight *= dipole()->realEmissionME()->pdf2(muf,theExtrapolationX); return pdfweight; } double ShowerApproximation::scaleWeight(int rScale, int bScale, int eScale) const { double emissionAlpha = 1.; Energy2 emissionScale = ZERO; Energy2 showerscale = ZERO; if ( eScale == showerScale || bScale == showerScale || eScale == showerScale ) { showerscale = showerRenormalizationScale(); if ( showerscale < sqr(theRenormalizationScaleFreeze) ) showerscale = sqr(theFactorizationScaleFreeze); } if ( eScale == showerScale ) { emissionAlpha = SM().alphaS(showerscale); emissionScale = showerFactorizationScale(); } else if ( eScale == realScale ) { emissionAlpha = dipole()->realEmissionME()->lastXComb().lastAlphaS(); emissionScale = dipole()->realEmissionME()->lastScale(); } else if ( eScale == bornScale ) { emissionAlpha = dipole()->underlyingBornME()->lastXComb().lastAlphaS(); emissionScale = dipole()->underlyingBornME()->lastScale(); } double emissionPDF = realPDFWeight(emissionScale); double couplingFactor = 1.; if ( bScale != rScale ) { double bornAlpha = 1.; if ( bScale == showerScale ) { bornAlpha = SM().alphaS(showerscale); } else if ( bScale == realScale ) { bornAlpha = dipole()->realEmissionME()->lastXComb().lastAlphaS(); } else if ( bScale == bornScale ) { bornAlpha = dipole()->underlyingBornME()->lastXComb().lastAlphaS(); } double realAlpha = 1.; if ( rScale == showerScale ) { realAlpha = SM().alphaS(showerscale); } else if ( rScale == realScale ) { realAlpha = dipole()->realEmissionME()->lastXComb().lastAlphaS(); } else if ( rScale == bornScale ) { realAlpha = dipole()->underlyingBornME()->lastXComb().lastAlphaS(); } couplingFactor *= pow(realAlpha/bornAlpha,(double)(dipole()->underlyingBornME()->orderInAlphaS())); } Energy2 hardScale = ZERO; if ( bScale == showerScale ) { hardScale = showerFactorizationScale(); } else if ( bScale == realScale ) { hardScale = dipole()->realEmissionME()->lastScale(); } else if ( bScale == bornScale ) { hardScale = dipole()->underlyingBornME()->lastScale(); } double bornPDF = bornPDFWeight(hardScale); - if ( bornPDF < 1e-8 ) + if ( abs(bornPDF) < 1e-8 ) bornPDF = 0.0; - if ( emissionPDF < 1e-8 ) + if ( abs(emissionPDF) < 1e-8 ) emissionPDF = 0.0; if ( emissionPDF == 0.0 || bornPDF == 0.0 ) return 0.0; + double pdfRatio = emissionPDF/bornPDF; + pdfRatio = min(abs(pdfRatio),100000.); + return - emissionAlpha * emissionPDF * - couplingFactor / bornPDF; + emissionAlpha * pdfRatio * couplingFactor; } double ShowerApproximation::channelWeight(int emitter, int emission, int spectator, int) const { double cfac = 1.; double Nc = generator()->standardModel()->Nc(); if (realCXComb()->mePartonData()[emitter]->iColour() == PDT::Colour8){ if (realCXComb()->mePartonData()[emission]->iColour() == PDT::Colour8) cfac = Nc; else if ( realCXComb()->mePartonData()[emission]->iColour() == PDT::Colour3 || realCXComb()->mePartonData()[emission]->iColour() == PDT::Colour3bar) cfac = 0.5; else assert(false); } else if ((realCXComb()->mePartonData()[emitter] ->iColour() == PDT::Colour3 || realCXComb()->mePartonData()[emitter] ->iColour() == PDT::Colour3bar)) cfac = (sqr(Nc)-1.)/(2.*Nc); else assert(false); // do the most simple thing for the time being; needs fixing later if ( realCXComb()->mePartonData()[emission]->id() == ParticleID::g ) { Energy2 pipk = realCXComb()->meMomenta()[emitter] * realCXComb()->meMomenta()[spectator]; Energy2 pipj = realCXComb()->meMomenta()[emitter] * realCXComb()->meMomenta()[emission]; Energy2 pjpk = realCXComb()->meMomenta()[emission] * realCXComb()->meMomenta()[spectator]; return cfac *GeV2 * pipk / ( pipj * ( pipj + pjpk ) ); } return cfac * GeV2 / (realCXComb()->meMomenta()[emitter] * realCXComb()->meMomenta()[emission]); } double ShowerApproximation::channelWeight() const { double currentChannel = channelWeight(dipole()->realEmitter(), dipole()->realEmission(), dipole()->realSpectator(), dipole()->bornEmitter()); if ( currentChannel == 0. ) return 0.; double sum = 0.; for ( vector::tptr>::const_iterator dip = dipole()->partnerDipoles().begin(); dip != dipole()->partnerDipoles().end(); ++dip ) sum += channelWeight((**dip).realEmitter(), (**dip).realEmission(), (**dip).realSpectator(), (**dip).bornEmitter()); assert(sum > 0.0); return currentChannel / sum; } // If needed, insert default implementations of virtual function defined // in the InterfacedBase class here (using ThePEG-interfaced-impl in Emacs). void ShowerApproximation::doinit() { if ( profileScales() ) { if ( profileScales()->unrestrictedPhasespace() && restrictPhasespace() ) { generator()->log() << "ShowerApproximation warning: The scale profile chosen requires an unrestricted phase space,\n" << "however, the phase space was set to be restricted. Will switch to unrestricted phase space.\n" << flush; restrictPhasespace(false); } } HandlerBase::doinit(); } void ShowerApproximation::persistentOutput(PersistentOStream & os) const { os << theLargeNBasis << theBornXComb << theRealXComb << theTildeXCombs << theDipole << theBelowCutoff << ounit(theFFPtCut,GeV) << ounit(theFFScreeningScale,GeV) << ounit(theFIPtCut,GeV) << ounit(theFIScreeningScale,GeV) << ounit(theIIPtCut,GeV) << ounit(theIIScreeningScale,GeV) << ounit(theSafeCut,GeV) << theRestrictPhasespace << theHardScaleFactor << theRenormalizationScaleFactor << theFactorizationScaleFactor << theExtrapolationX << theRealEmissionScaleInSubtraction << theBornScaleInSubtraction << theEmissionScaleInSubtraction << theRealEmissionScaleInSplitting << theBornScaleInSplitting << theEmissionScaleInSplitting << ounit(theRenormalizationScaleFreeze,GeV) << ounit(theFactorizationScaleFreeze,GeV) << maxPtIsMuF << theHardScaleProfile << theOpenZ; } void ShowerApproximation::persistentInput(PersistentIStream & is, int) { is >> theLargeNBasis >> theBornXComb >> theRealXComb >> theTildeXCombs >> theDipole >> theBelowCutoff >> iunit(theFFPtCut,GeV) >> iunit(theFFScreeningScale,GeV) >> iunit(theFIPtCut,GeV) >> iunit(theFIScreeningScale,GeV) >> iunit(theIIPtCut,GeV) >> iunit(theIIScreeningScale,GeV) >> iunit(theSafeCut,GeV) >> theRestrictPhasespace >> theHardScaleFactor >> theRenormalizationScaleFactor >> theFactorizationScaleFactor >> theExtrapolationX >> theRealEmissionScaleInSubtraction >> theBornScaleInSubtraction >> theEmissionScaleInSubtraction >> theRealEmissionScaleInSplitting >> theBornScaleInSplitting >> theEmissionScaleInSplitting >> iunit(theRenormalizationScaleFreeze,GeV) >> iunit(theFactorizationScaleFreeze,GeV) >> maxPtIsMuF >> theHardScaleProfile >> theOpenZ; } // *** Attention *** The following static variable is needed for the type // description system in ThePEG. Please check that the template arguments // are correct (the class and its base class), and that the constructor // arguments are correct (the class name and the name of the dynamically // loadable library where the class implementation can be found). DescribeAbstractClass describeHerwigShowerApproximation("Herwig::ShowerApproximation", "Herwig.so"); void ShowerApproximation::Init() { static ClassDocumentation documentation ("ShowerApproximation describes the shower emission to be used " "in NLO matching."); static Parameter interfaceFFPtCut ("FFPtCut", "Set the pt infrared cutoff", &ShowerApproximation::theFFPtCut, GeV, 1.0*GeV, 0.0*GeV, 0*GeV, false, false, Interface::lowerlim); static Parameter interfaceFIPtCut ("FIPtCut", "Set the pt infrared cutoff", &ShowerApproximation::theFIPtCut, GeV, 1.0*GeV, 0.0*GeV, 0*GeV, false, false, Interface::lowerlim); static Parameter interfaceIIPtCut ("IIPtCut", "Set the pt infrared cutoff", &ShowerApproximation::theIIPtCut, GeV, 1.0*GeV, 0.0*GeV, 0*GeV, false, false, Interface::lowerlim); static Parameter interfaceSafeCut ("SafeCut", "Set the enhanced infrared cutoff for the Matching.", &ShowerApproximation::theSafeCut, GeV, 0.0*GeV, 0.0*GeV, 0*GeV, false, false, Interface::lowerlim); static Parameter interfaceFFScreeningScale ("FFScreeningScale", "Set the screening scale", &ShowerApproximation::theFFScreeningScale, GeV, 0.0*GeV, 0.0*GeV, 0*GeV, false, false, Interface::lowerlim); static Parameter interfaceFIScreeningScale ("FIScreeningScale", "Set the screening scale", &ShowerApproximation::theFIScreeningScale, GeV, 0.0*GeV, 0.0*GeV, 0*GeV, false, false, Interface::lowerlim); static Parameter interfaceIIScreeningScale ("IIScreeningScale", "Set the screening scale", &ShowerApproximation::theIIScreeningScale, GeV, 0.0*GeV, 0.0*GeV, 0*GeV, false, false, Interface::lowerlim); static Switch interfaceRestrictPhasespace ("RestrictPhasespace", "Switch on or off phasespace restrictions", &ShowerApproximation::theRestrictPhasespace, true, false, false); static SwitchOption interfaceRestrictPhasespaceYes (interfaceRestrictPhasespace, "Yes", "Perform phasespace restrictions", true); static SwitchOption interfaceRestrictPhasespaceNo (interfaceRestrictPhasespace, "No", "Do not perform phasespace restrictions", false); static Parameter interfaceHardScaleFactor ("HardScaleFactor", "The hard scale factor.", &ShowerApproximation::theHardScaleFactor, 1.0, 0.0, 0, false, false, Interface::lowerlim); static Parameter interfaceRenormalizationScaleFactor ("RenormalizationScaleFactor", "The hard scale factor.", &ShowerApproximation::theRenormalizationScaleFactor, 1.0, 0.0, 0, false, false, Interface::lowerlim); static Parameter interfaceFactorizationScaleFactor ("FactorizationScaleFactor", "The hard scale factor.", &ShowerApproximation::theFactorizationScaleFactor, 1.0, 0.0, 0, false, false, Interface::lowerlim); static Parameter interfaceExtrapolationX ("ExtrapolationX", "The x from which on extrapolation should be performed.", &ShowerApproximation::theExtrapolationX, 1.0, 0.0, 1.0, false, false, Interface::limited); static Switch interfaceRealEmissionScaleInSubtraction ("RealEmissionScaleInSubtraction", "Set the scale choice for the real emission cross section in the matching subtraction.", &ShowerApproximation::theRealEmissionScaleInSubtraction, showerScale, false, false); static SwitchOption interfaceRealEmissionScaleInSubtractionRealScale (interfaceRealEmissionScaleInSubtraction, "RealScale", "Use the real emission scale.", realScale); static SwitchOption interfaceRealEmissionScaleInSubtractionBornScale (interfaceRealEmissionScaleInSubtraction, "BornScale", "Use the Born scale.", bornScale); static SwitchOption interfaceRealEmissionScaleInSubtractionShowerScale (interfaceRealEmissionScaleInSubtraction, "ShowerScale", "Use the shower scale", showerScale); interfaceRealEmissionScaleInSubtraction.rank(-1); static Switch interfaceBornScaleInSubtraction ("BornScaleInSubtraction", "Set the scale choice for the Born cross section in the matching subtraction.", &ShowerApproximation::theBornScaleInSubtraction, showerScale, false, false); static SwitchOption interfaceBornScaleInSubtractionRealScale (interfaceBornScaleInSubtraction, "RealScale", "Use the real emission scale.", realScale); static SwitchOption interfaceBornScaleInSubtractionBornScale (interfaceBornScaleInSubtraction, "BornScale", "Use the Born scale.", bornScale); static SwitchOption interfaceBornScaleInSubtractionShowerScale (interfaceBornScaleInSubtraction, "ShowerScale", "Use the shower scale", showerScale); interfaceBornScaleInSubtraction.rank(-1); static Switch interfaceEmissionScaleInSubtraction ("EmissionScaleInSubtraction", "Set the scale choice for the emission in the matching subtraction.", &ShowerApproximation::theEmissionScaleInSubtraction, showerScale, false, false); static SwitchOption interfaceEmissionScaleInSubtractionRealScale (interfaceEmissionScaleInSubtraction, "RealScale", "Use the real emission scale.", realScale); static SwitchOption interfaceEmissionScaleInSubtractionEmissionScale (interfaceEmissionScaleInSubtraction, "BornScale", "Use the Born scale.", bornScale); static SwitchOption interfaceEmissionScaleInSubtractionShowerScale (interfaceEmissionScaleInSubtraction, "ShowerScale", "Use the shower scale", showerScale); interfaceEmissionScaleInSubtraction.rank(-1); static Switch interfaceRealEmissionScaleInSplitting ("RealEmissionScaleInSplitting", "Set the scale choice for the real emission cross section in the splitting.", &ShowerApproximation::theRealEmissionScaleInSplitting, showerScale, false, false); static SwitchOption interfaceRealEmissionScaleInSplittingRealScale (interfaceRealEmissionScaleInSplitting, "RealScale", "Use the real emission scale.", realScale); static SwitchOption interfaceRealEmissionScaleInSplittingBornScale (interfaceRealEmissionScaleInSplitting, "BornScale", "Use the Born scale.", bornScale); static SwitchOption interfaceRealEmissionScaleInSplittingShowerScale (interfaceRealEmissionScaleInSplitting, "ShowerScale", "Use the shower scale", showerScale); interfaceRealEmissionScaleInSplitting.rank(-1); static Switch interfaceBornScaleInSplitting ("BornScaleInSplitting", "Set the scale choice for the Born cross section in the splitting.", &ShowerApproximation::theBornScaleInSplitting, showerScale, false, false); static SwitchOption interfaceBornScaleInSplittingRealScale (interfaceBornScaleInSplitting, "RealScale", "Use the real emission scale.", realScale); static SwitchOption interfaceBornScaleInSplittingBornScale (interfaceBornScaleInSplitting, "BornScale", "Use the Born scale.", bornScale); static SwitchOption interfaceBornScaleInSplittingShowerScale (interfaceBornScaleInSplitting, "ShowerScale", "Use the shower scale", showerScale); interfaceBornScaleInSplitting.rank(-1); static Switch interfaceEmissionScaleInSplitting ("EmissionScaleInSplitting", "Set the scale choice for the emission in the splitting.", &ShowerApproximation::theEmissionScaleInSplitting, showerScale, false, false); static SwitchOption interfaceEmissionScaleInSplittingRealScale (interfaceEmissionScaleInSplitting, "RealScale", "Use the real emission scale.", realScale); static SwitchOption interfaceEmissionScaleInSplittingEmissionScale (interfaceEmissionScaleInSplitting, "BornScale", "Use the Born scale.", bornScale); static SwitchOption interfaceEmissionScaleInSplittingShowerScale (interfaceEmissionScaleInSplitting, "ShowerScale", "Use the shower scale", showerScale); interfaceEmissionScaleInSplitting.rank(-1); static Parameter interfaceRenormalizationScaleFreeze ("RenormalizationScaleFreeze", "The freezing scale for the renormalization scale.", &ShowerApproximation::theRenormalizationScaleFreeze, GeV, 1.0*GeV, 0.0*GeV, 0*GeV, false, false, Interface::lowerlim); interfaceRenormalizationScaleFreeze.rank(-1); static Parameter interfaceFactorizationScaleFreeze ("FactorizationScaleFreeze", "The freezing scale for the factorization scale.", &ShowerApproximation::theFactorizationScaleFreeze, GeV, 1.0*GeV, 0.0*GeV, 0*GeV, false, false, Interface::lowerlim); interfaceFactorizationScaleFreeze.rank(-1); static Reference interfaceHardScaleProfile ("HardScaleProfile", "The hard scale profile to use.", &ShowerApproximation::theHardScaleProfile, false, false, true, true, false); static Reference interfaceLargeNBasis ("LargeNBasis", "Set the large-N colour basis implementation.", &ShowerApproximation::theLargeNBasis, false, false, true, true, false); interfaceLargeNBasis.rank(-1); static Switch interfaceMaxPtIsMuF ("MaxPtIsMuF", "", &ShowerApproximation::maxPtIsMuF, false, false, false); static SwitchOption interfaceMaxPtIsMuFYes (interfaceMaxPtIsMuF, "Yes", "", true); static SwitchOption interfaceMaxPtIsMuFNo (interfaceMaxPtIsMuF, "No", "", false); }