diff --git a/Hadronization/ClusterFinder.cc b/Hadronization/ClusterFinder.cc --- a/Hadronization/ClusterFinder.cc +++ b/Hadronization/ClusterFinder.cc @@ -1,490 +1,490 @@ // -*- C++ -*- // // ClusterFinder.cc is a part of Herwig - A multi-purpose Monte Carlo event generator // Copyright (C) 2002-2019 The Herwig Collaboration // // Herwig is licenced under version 3 of the GPL, see COPYING for details. // Please respect the MCnet academic guidelines, see GUIDELINES for details. // // // This is the implementation of the non-inlined, non-templated member // functions of the ClusterFinder class. // #include "ClusterFinder.h" #include <ThePEG/Interface/ClassDocumentation.h> #include <ThePEG/Interface/Switch.h> #include <ThePEG/Persistency/PersistentOStream.h> #include <ThePEG/Persistency/PersistentIStream.h> #include <ThePEG/PDT/StandardMatchers.h> #include <ThePEG/PDT/EnumParticles.h> #include <ThePEG/Repository/EventGenerator.h> #include <ThePEG/EventRecord/Collision.h> #include "Herwig/Utilities/EnumParticles.h" #include "Herwig/Utilities/Kinematics.h" #include "Cluster.h" #include <ThePEG/Utilities/DescribeClass.h> #include "ThePEG/Interface/Reference.h" using namespace Herwig; DescribeClass<ClusterFinder,Interfaced> describeClusterFinder("Herwig::ClusterFinder","Herwig.so"); IBPtr ClusterFinder::clone() const { return new_ptr(*this); } IBPtr ClusterFinder::fullclone() const { return new_ptr(*this); } void ClusterFinder::persistentOutput(PersistentOStream & os) const { os << heavyDiquarks_ << diQuarkSelection_ << diQuarkOnShell_ << _hadronSpectrum; } void ClusterFinder::persistentInput(PersistentIStream & is, int) { is >> heavyDiquarks_ >> diQuarkSelection_ >> diQuarkOnShell_ >> _hadronSpectrum; } void ClusterFinder::Init() { static ClassDocumentation<ClusterFinder> documentation ("This class is responsible of finding clusters."); static Reference<ClusterFinder,HadronSpectrum> interfaceHadronSpectrum ("HadronSpectrum", "Set the hadron spectrum for this parton splitter.", &ClusterFinder::_hadronSpectrum, false, false, false, false, false); static Switch<ClusterFinder,unsigned int> interfaceHeavyDiquarks ("HeavyDiquarks", "How to treat heavy quarks in baryon number violating clusters", &ClusterFinder::heavyDiquarks_, 2, false, false); static SwitchOption interfaceHeavyDiquarksDefault (interfaceHeavyDiquarks, "Allow", "No special treatment, allow both heavy and doubly heavy diquarks", 0); static SwitchOption interfaceHeavyDiquarksNoDoublyHeavy (interfaceHeavyDiquarks, "NoDoublyHeavy", "Avoid having diquarks with twoo heavy quarks", 1); static SwitchOption interfaceHeavyDiquarksNoHeavy (interfaceHeavyDiquarks, "NoHeavy", "Try and avoid diquarks contain c and b altogether", 2); static Switch<ClusterFinder,unsigned int> interfaceDiQuarkSelection ("DiQuarkSelection", "Option controlling the selection of quarks to merge into a diquark in baryon-number violating clusters", &ClusterFinder::diQuarkSelection_, 1, false, false); static SwitchOption interfaceDiQuarkSelectionRandom (interfaceDiQuarkSelection, "Random", "Randomly pick a pair to combine", 0); static SwitchOption interfaceDiQuarkSelectionLowestMass (interfaceDiQuarkSelection, "LowestMass", "Combine the lowest mass pair", 1); static Switch<ClusterFinder,bool> interfaceDiQuarkOnShell ("DiQuarkOnShell", "Force the diquark produced in baryon-number violating clusters to be on-shell", &ClusterFinder::diQuarkOnShell_, false, false, false); static SwitchOption interfaceDiQuarkOnShellYes (interfaceDiQuarkOnShell, "Yes", "Force to be on-shell", true); static SwitchOption interfaceDiQuarkOnShellNo (interfaceDiQuarkOnShell, "No", "Leave off-shell", false); } ClusterVector ClusterFinder::formClusters(const PVector & partons) { set<tPPtr> examinedSet; // colour particles already included in a cluster map<tColinePtr, pair<tPPtr,tPPtr> > quarkQuark; // quark quark map<tColinePtr, pair<tPPtr,tPPtr> > aQuarkQuark; // anti quark anti quark ParticleSet inputParticles(partons.begin(),partons.end()); ClusterVector clusters; // Loop over all current particles. for(PVector::const_iterator pit=partons.begin();pit!=partons.end();++pit){ // Skip to the next particle if it is not coloured or already examined. assert(*pit); assert((*pit)->dataPtr()); if(!(**pit).data().coloured() || examinedSet.find(*pit) != examinedSet.end()) { continue; } // We assume that a cluster is made of, at most, 3 constituents although // in most cases the number will be 2; however, for baryon violating decays // (for example in Susy model without R parity conservation) we can have 3 // constituents. In the latter case, a quark (antiquark) do not have an // anticolour (colour) partner as usual, but its colour line either stems // from a colour source, or ends in a colour sink. In the case of double // baryon violating decays, but with overall baryon conservation // ( for instance: // tilde_u_R -> dbar_1 + dbar_2 // tilde_u_R_star -> d1 + d2 // where tilde_u_R and tilde_u_R_star are colour connected ) // a special treatment is needed, because first we have to process all // partons in the current step, and then for each left pair of quarks which // stem from a colour source we have to find the corresponding pair of // anti-quarks which ends in a colour sink and is connected with the // above colour source. These special pairs are kept into the maps: // spec/CluHadConfig.hialQuarkQuarkMap and specialAntiQuarkAntiQuarkMap. tParticleVector connected(3); int iElement = 0; connected[iElement++] = *pit; bool specialCase = false; if((*pit)->hasColour()) { tPPtr partner = (*pit)->colourLine()->getColouredParticle(partons.begin(), partons.end(), true); if(partner) { connected[iElement++]= partner; } // colour source : baryon-violating process else { if((*pit)->colourLine()->sourceNeighbours() != tColinePair()) { tColinePair sourcePair = (*pit)->colourLine()->sourceNeighbours(); tColinePtr intCL = tColinePtr(); for(int i = 0; i < 2; ++i) { tColinePtr pLine = i==0 ? sourcePair.first : sourcePair.second; int saveNumElements = iElement; for(tPVector::const_iterator cit = pLine->coloured().begin(); cit != pLine->coloured().end(); ++cit ) { ParticleSet::const_iterator cjt = inputParticles.find(*cit); if(cjt!=inputParticles.end()) connected[iElement++]= (*cit); } if(iElement == saveNumElements) intCL = pLine; } if(intCL && iElement == 2) { specialCase = true; pair<tPPtr,tPPtr> qp=pair<tPPtr,tPPtr>(connected[0],connected[1]); quarkQuark.insert(pair<tColinePtr,pair<tPPtr,tPPtr> >(intCL,qp)); } else if(iElement != 3) { throw Exception() << "Colour connections fail in the hadronization for " << **pit << "in ClusterFinder::formClusters" << " for a coloured particle." << " Failed to find particles from a source" << Exception::runerror; } } else { throw Exception() << "Colour connections fail in the hadronization for " << **pit << "in ClusterFinder::formClusters for" << " a coloured particle" << Exception::runerror; } } } if((*pit)->hasAntiColour()) { tPPtr partner = (*pit)->antiColourLine()->getColouredParticle(partons.begin(), partons.end(), false); if(partner) { connected[iElement++]=partner; } // colour sink : baryon-violating process else { if((*pit)->antiColourLine()->sinkNeighbours() != tColinePair()) { tColinePair sinkPair = (*pit)->antiColourLine()->sinkNeighbours(); tColinePtr intCL = tColinePtr(); for(int i = 0; i < 2; ++i) { tColinePtr pLine = i==0 ? sinkPair.first : sinkPair.second; int saveNumElements = iElement; for(tPVector::const_iterator cit = pLine->antiColoured().begin(); cit != pLine->antiColoured().end(); ++cit ) { ParticleSet::const_iterator cjt = inputParticles.find(*cit); if(cjt!=inputParticles.end()) connected[iElement++]= (*cit); } if(iElement == saveNumElements) intCL = pLine; } if(intCL && iElement == 2) { specialCase = true; pair<tPPtr,tPPtr> aqp=pair<tPPtr,tPPtr>(connected[0],connected[1]); aQuarkQuark.insert(pair<tColinePtr,pair<tPPtr,tPPtr> >(intCL,aqp)); } else if( iElement !=3) { throw Exception() << "Colour connections fail in the hadronization for " << **pit << "in ClusterFinder::formClusters for" << " an anti-coloured particle." << " Failed to find particles from a sink" << Exception::runerror; } } else { throw Exception() << "Colour connections fail in the hadronization for " << **pit << "in ClusterFinder::formClusters for" << " an anti-coloured particle" << Exception::runerror; } } } if(!specialCase) { // Tag the components of the found cluster as already examined. for (int i=0; i<iElement; ++i) examinedSet.insert(connected[i]); // Create the cluster object with the colour connected particles ClusterPtr cluPtr = new_ptr(Cluster(connected[0],connected[1], connected[2])); // add to the step connected[0]->addChild(cluPtr); connected[1]->addChild(cluPtr); if(connected[2]) connected[2]->addChild(cluPtr); clusters.push_back(cluPtr); // Check if any of the components is a beam remnant, and if this // is the case then inform the cluster. // this will only work for baryon collisions for (int i=0; i<iElement; ++i) { bool fromRemnant = false; tPPtr parent=connected[i]; while(parent) { if(parent->id()==ParticleID::Remnant) { fromRemnant = true; break; } parent = parent->parents().empty() ? tPPtr() : parent->parents()[0]; } if(fromRemnant&&DiquarkMatcher::Check(connected[i]->id())) cluPtr->isBeamCluster(connected[i]); } } } // Treat now the special cases, if any. The idea is to find for each pair // of quarks coming from a common colour source the corresponding pair of // antiquarks coming from a common colour sink, connected to the above // colour source via the same colour line. Then, randomly couple one of // the two quarks with one of the two antiquarks, and do the same with the // quark and antiquark left. for(map<tColinePtr, pair<tPPtr,tPPtr> >::const_iterator cit = quarkQuark.begin(); cit != quarkQuark.end(); ++cit ) { tColinePtr coline = cit->first; pair<tPPtr,tPPtr> quarkPair = cit->second; if(aQuarkQuark.find( coline ) != aQuarkQuark.end()) { pair<tPPtr,tPPtr> antiQuarkPair = aQuarkQuark.find(coline)->second; ClusterPtr cluPtr1, cluPtr2; if ( UseRandom::rndbool() ) { cluPtr1 = new_ptr(Cluster(quarkPair.first , antiQuarkPair.first)); cluPtr2 = new_ptr(Cluster(quarkPair.second , antiQuarkPair.second)); quarkPair.first->addChild(cluPtr1); antiQuarkPair.first->addChild(cluPtr1); quarkPair.second->addChild(cluPtr2); antiQuarkPair.second->addChild(cluPtr2); } else { cluPtr1 = new_ptr(Cluster(quarkPair.first , antiQuarkPair.second)); cluPtr2 = new_ptr(Cluster(quarkPair.second , antiQuarkPair.first)); quarkPair.second->addChild(cluPtr2); antiQuarkPair.first->addChild(cluPtr2); quarkPair.first->addChild(cluPtr1); antiQuarkPair.second->addChild(cluPtr1); } clusters.push_back(cluPtr1); clusters.push_back(cluPtr2); } else { throw Exception() << "ClusterFinder::formClusters : " << "***Skip event: unable to match pairs in " << "Baryon-violating processes***" << Exception::eventerror; } } return clusters; } namespace { bool PartOrdering(tPPtr p1,tPPtr p2) { return abs(p1->id())<abs(p2->id()); } } void ClusterFinder::reduceToTwoComponents(ClusterVector & clusters) { // In order to preserve all of the information, we do not modify the // directly the 3-component clusters, but instead we define new clusters, // which are related to the original ones by a child-parent relationship, // by considering two randomly chosen components as a diquark (or anti-diquark). // These new clusters are first added to the vector vecNewRedefinedCluPtr, // and at the end, when all input clusters have been examined, the elements of // this vector will be copied in collecCluPtr (the reason is that it is not // allowed to modify a STL container while iterating over it). vector<tClusterPtr> redefinedClusters; for(ClusterVector::iterator cluIter = clusters.begin() ; cluIter != clusters.end() ; ++cluIter) { tParticleVector vec; if ( (*cluIter)->numComponents() != 3 || ! (*cluIter)->isAvailable() ) continue; tPPtr other; for(unsigned int i = 0; i<(*cluIter)->numComponents(); i++) { tPPtr part = (*cluIter)->particle(i); if(!DiquarkMatcher::Check(*(part->dataPtr()))) vec.push_back(part); else other = part; } if(vec.size()<2) { throw Exception() << "Could not make a diquark for a baryonic cluster decay from " << (*cluIter)->particle(0)->PDGName() << " " << (*cluIter)->particle(1)->PDGName() << " " << (*cluIter)->particle(2)->PDGName() << " " << " in ClusterFinder::reduceToTwoComponents()." << Exception::eventerror; } // order the vector so heaviest at the end std::sort(vec.begin(),vec.end(),PartOrdering); // Special treatment of heavy quarks // avoid doubly heavy diquarks if(heavyDiquarks_>=1 && vec.size()>2 && abs(vec[1]->id())>3 && abs(vec[0]->id())<=3) { if(UseRandom::rndbool()) swap(vec[1],vec[2]); other = vec[2]; vec.pop_back(); } // avoid singly heavy diquarks if(heavyDiquarks_==2 && vec.size()>2 && abs(vec[2]->id())>3 && abs(vec[1]->id())<=3) { other = vec[2]; vec.pop_back(); } // if there's a choice pick the pair to make a diquark from if(vec.size()>2) { unsigned int ichoice(0); // random choice if(diQuarkSelection_==0) { ichoice = UseRandom::rnd3(1.0, 1.0, 1.0); } // pick the lightest quark pair else if(diQuarkSelection_==1) { Energy m12 = (vec[0]->momentum()+vec[1]->momentum()).m(); Energy m13 = (vec[0]->momentum()+vec[2]->momentum()).m(); Energy m23 = (vec[1]->momentum()+vec[2]->momentum()).m(); if (m13<=m12&&m13<=m23) ichoice = 2; else if(m23<=m12&&m23<=m13) ichoice = 1; } else assert(false); // make the swaps so select pair first switch (ichoice) { case 0: break; case 1: swap(vec[2],vec[0]); break; case 2: swap(vec[2],vec[1]); break; } } // set up tcPDPtr temp1 = vec[0]->dataPtr(); tcPDPtr temp2 = vec[1]->dataPtr(); if(!other) other = vec[2]; tcPDPtr dataDiquark = _hadronSpectrum->makeDiquark(temp1,temp2); if(!dataDiquark) - throw Exception() << "Could not make a diquark from" + throw Exception() << "Could not make a diquark from " << temp1->PDGName() << " and " << temp2->PDGName() << " in ClusterFinder::reduceToTwoComponents()" << Exception::eventerror; // Create the new cluster (with two components) and assign to it the same // momentum and position of the original (with three components) one. // Furthermore, assign to the diquark component a momentum given by the // sum of the two original components from which has been formed; for the // position, we are assuming, very simply, that the diquark position is // the average positions of the two original components. // Notice that the mass (5-th component of the 5-momentum) of the diquark // is set by hand to the constituent mass of the diquark (which is equal // to the sum of the constituent masses of the two quarks which form the // diquark) because the sum of 5-component vectors do add only the "normal" // 4-components, not the 5-th one. After that, the 5-momentum of the diquark // is in an inconsistent state, because the mass (5-th component) is not // equal to the invariant mass obtained from the 4-momemtum. This is not // unique to this kind of component (all perturbative components are in // a similar situation), but it is not harmful. // construct the diquark PPtr diquark = dataDiquark->produceParticle(); vec[0]->addChild(diquark); vec[1]->addChild(diquark); diquark->set5Momentum(Lorentz5Momentum(vec[0]->momentum() + vec[1]->momentum(), dataDiquark->constituentMass())); // use the same method as for cluster to determine the diquark position diquark->setVertex(Cluster::calculateX(vec[0],vec[1])); // put on-shell if required if(diQuarkOnShell_) { Lorentz5Momentum psum = diquark->momentum()+other->momentum(); psum.rescaleMass(); Boost boost = psum.boostVector(); Lorentz5Momentum pother = other->momentum(); Lorentz5Momentum pdiquark = diquark->momentum(); pother.boost(-boost); pdiquark.boost(-boost); Energy pcm = Kinematics::pstarTwoBodyDecay(psum.mass(), other->dataPtr()->constituentMass(), diquark->dataPtr()->constituentMass()); if(pcm>ZERO) { double fact = pcm/pother.vect().mag(); pother *= fact; pdiquark *= fact; pother .setMass(other->dataPtr()->constituentMass()); pdiquark.setMass(dataDiquark ->constituentMass()); pother .rescaleEnergy(); pdiquark.rescaleEnergy(); pother .boost(boost); pdiquark.boost(boost); other->set5Momentum(pother); diquark->set5Momentum(pdiquark); } } // make the new cluster ClusterPtr nclus = new_ptr(Cluster(other,diquark)); //vec[0]->addChild(nclus); //diquark->addChild(nclus); // Set the parent/children relationship between the original cluster // (the one with three components) with the new one (the one with two components) // and add the latter to the vector of new redefined clusters. (*cluIter)->addChild(nclus); redefinedClusters.push_back(nclus); } // Add to collecCluPtr all of the redefined new clusters (indeed the // pointers to them are added) contained in vecNewRedefinedCluPtr. /// \todo why do we keep the original of the redefined clusters? for (tClusterVector::const_iterator it = redefinedClusters.begin(); it != redefinedClusters.end(); ++it) { clusters.push_back(*it); } } diff --git a/Hadronization/ClusterFissioner.cc b/Hadronization/ClusterFissioner.cc --- a/Hadronization/ClusterFissioner.cc +++ b/Hadronization/ClusterFissioner.cc @@ -1,1436 +1,1436 @@ // -*- C++ -*- // // ClusterFissioner.cc is a part of Herwig - A multi-purpose Monte Carlo event generator // Copyright (C) 2002-2019 The Herwig Collaboration // // Herwig is licenced under version 3 of the GPL, see COPYING for details. // Please respect the MCnet academic guidelines, see GUIDELINES for details. // // // Thisk is the implementation of the non-inlined, non-templated member // functions of the ClusterFissioner class. // #include "ClusterFissioner.h" #include <ThePEG/Interface/ClassDocumentation.h> #include <ThePEG/Interface/Reference.h> #include <ThePEG/Interface/Parameter.h> #include <ThePEG/Interface/Switch.h> #include <ThePEG/Persistency/PersistentOStream.h> #include <ThePEG/Persistency/PersistentIStream.h> #include <ThePEG/PDT/EnumParticles.h> #include "Herwig/Utilities/Kinematics.h" #include "Cluster.h" #include "ThePEG/Repository/UseRandom.h" #include "ThePEG/Repository/EventGenerator.h" #include <ThePEG/Utilities/DescribeClass.h> #include "ThePEG/Interface/ParMap.h" using namespace Herwig; DescribeClass<ClusterFissioner,Interfaced> describeClusterFissioner("Herwig::ClusterFissioner","Herwig.so"); ClusterFissioner::ClusterFissioner() : _clMaxLight(3.35*GeV), _clMaxExotic(3.35*GeV), _clPowLight(2.0), _clPowExotic(2.0), _pSplitLight(1.0), _pSplitExotic(1.0), _fissionCluster(0), _kinematicThresholdChoice(0), _pwtDIquark(0.0), _diquarkClusterFission(0), _btClM(1.0*GeV), _iopRem(1), _kappa(1.0e15*GeV/meter), _kinematics(0), _fluxTubeWidth(1.0*GeV), _enhanceSProb(0), _m0Fission(2.*GeV), _massMeasure(0), _probPowFactor(4.0), _probShift(0.0), _kinThresholdShift(1.0*sqr(GeV)) {} IBPtr ClusterFissioner::clone() const { return new_ptr(*this); } IBPtr ClusterFissioner::fullclone() const { return new_ptr(*this); } void ClusterFissioner::persistentOutput(PersistentOStream & os) const { os << ounit(_clMaxLight,GeV) << ounit(_clMaxHeavy,GeV) << ounit(_clMaxExotic,GeV) << _clPowLight << _clPowHeavy << _clPowExotic << _pSplitLight << _pSplitHeavy << _pSplitExotic << _fissionCluster << _fissionPwt << _pwtDIquark << _diquarkClusterFission << _kinematics << ounit(_fluxTubeWidth,GeV) << ounit(_btClM,GeV) << _iopRem << ounit(_kappa, GeV/meter) << _enhanceSProb << ounit(_m0Fission,GeV) << _massMeasure << _hadronSpectrum << _probPowFactor << _probShift << ounit(_kinThresholdShift,sqr(GeV)); } void ClusterFissioner::persistentInput(PersistentIStream & is, int) { is >> iunit(_clMaxLight,GeV) >> iunit(_clMaxHeavy,GeV) >> iunit(_clMaxExotic,GeV) >> _clPowLight >> _clPowHeavy >> _clPowExotic >> _pSplitLight >> _pSplitHeavy >> _pSplitExotic >> _fissionCluster >> _fissionPwt >> _pwtDIquark >> _diquarkClusterFission >> _kinematics >> iunit(_fluxTubeWidth,GeV) - >> iunit(_btClM,GeV) >> _iopRem - >> iunit(_kappa, GeV/meter) + >> iunit(_btClM,GeV) + >> _iopRem >> iunit(_kappa, GeV/meter) >> _enhanceSProb >> iunit(_m0Fission,GeV) >> _massMeasure >> _hadronSpectrum >> _probPowFactor >> _probShift >> iunit(_kinThresholdShift,sqr(GeV)); } void ClusterFissioner::doinit() { Interfaced::doinit(); for ( const long& id : spectrum()->heavyHadronizingQuarks() ) { if ( _pSplitHeavy.find(id) == _pSplitHeavy.end() || _clPowHeavy.find(id) == _clPowHeavy.end() || _clMaxHeavy.find(id) == _clMaxHeavy.end() ) throw InitException() << "not all parameters have been set for heavy quark cluster fission"; } // for default Pwts not needed to initialize if (_fissionCluster==0) return; for ( const long& id : spectrum()->lightHadronizingQuarks() ) { if ( _fissionPwt.find(id) == _fissionPwt.end() ) // check that all relevant weights are set throw InitException() << "fission weights for light quarks have not been set"; } /* // Not needed since we set Diquark weights from quark weights for ( const long& id : spectrum()->lightHadronizingDiquarks() ) { if ( _fissionPwt.find(id) == _fissionPwt.end() ) throw InitException() << "fission weights for light diquarks have not been set"; }*/ double pwtDquark=_fissionPwt.find(ParticleID::d)->second; double pwtUquark=_fissionPwt.find(ParticleID::u)->second; double pwtSquark=_fissionPwt.find(ParticleID::s)->second; // ERROR: TODO makeDiquarkID is protected function ? // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::d,ParticleID::d,3)] = _pwtDIquark * pwtDquark * pwtDquark; // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::u,ParticleID::d,1)] = 0.5 * _pwtDIquark * pwtUquark * pwtDquark; // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::u,ParticleID::u,3)] = _pwtDIquark * pwtUquark * pwtUquark; // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::s,ParticleID::d,1)] = 0.5 * _pwtDIquark * pwtSquark * pwtDquark; // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::s,ParticleID::u,1)] = 0.5 * _pwtDIquark * pwtSquark * pwtUquark; // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::s,ParticleID::s,3)] = _pwtDIquark * pwtSquark * pwtSquark; // TODO magic number alternative _fissionPwt[1103] = _pwtDIquark * pwtDquark * pwtDquark; _fissionPwt[2101] = 0.5 * _pwtDIquark * pwtUquark * pwtDquark; _fissionPwt[2203] = _pwtDIquark * pwtUquark * pwtUquark; _fissionPwt[3101] = 0.5 * _pwtDIquark * pwtSquark * pwtDquark; _fissionPwt[3201] = 0.5 * _pwtDIquark * pwtSquark * pwtUquark; _fissionPwt[3303] = _pwtDIquark * pwtSquark * pwtSquark; } void ClusterFissioner::Init() { static ClassDocumentation<ClusterFissioner> documentation ("Class responsibles for chopping up the clusters"); static Reference<ClusterFissioner,HadronSpectrum> interfaceHadronSpectrum ("HadronSpectrum", "Set the Hadron spectrum for this cluster fissioner.", &ClusterFissioner::_hadronSpectrum, false, false, true, false); // ClMax for light, Bottom, Charm and exotic (e.g. Susy) quarks static Parameter<ClusterFissioner,Energy> interfaceClMaxLight ("ClMaxLight","cluster max mass for light quarks (unit [GeV])", &ClusterFissioner::_clMaxLight, GeV, 3.35*GeV, ZERO, 10.0*GeV, false,false,false); static ParMap<ClusterFissioner,Energy> interfaceClMaxHeavy ("ClMaxHeavy", "ClMax for heavy quarkls", &ClusterFissioner::_clMaxHeavy, GeV, -1, 3.35*GeV, ZERO, 10.0*GeV, false, false, Interface::upperlim); static Parameter<ClusterFissioner,Energy> interfaceClMaxExotic ("ClMaxExotic","cluster max mass for exotic quarks (unit [GeV])", &ClusterFissioner::_clMaxExotic, GeV, 3.35*GeV, ZERO, 10.0*GeV, false,false,false); // ClPow for light, Bottom, Charm and exotic (e.g. Susy) quarks static Parameter<ClusterFissioner,double> interfaceClPowLight ("ClPowLight","cluster mass exponent for light quarks", &ClusterFissioner::_clPowLight, 0, 2.0, 0.0, 10.0,false,false,false); static ParMap<ClusterFissioner,double> interfaceClPowHeavy ("ClPowHeavy", "ClPow for heavy quarks", &ClusterFissioner::_clPowHeavy, -1, 1.0, 0.0, 10.0, false, false, Interface::upperlim); static Parameter<ClusterFissioner,double> interfaceClPowExotic ("ClPowExotic","cluster mass exponent for exotic quarks", &ClusterFissioner::_clPowExotic, 0, 2.0, 0.0, 10.0,false,false,false); // PSplit for light, Bottom, Charm and exotic (e.g. Susy) quarks static Parameter<ClusterFissioner,double> interfacePSplitLight ("PSplitLight","cluster mass splitting param for light quarks", &ClusterFissioner::_pSplitLight, 0, 1.0, 0.0, 10.0,false,false,false); static ParMap<ClusterFissioner,double> interfacePSplitHeavy ("PSplitHeavy", "PSplit for heavy quarks", &ClusterFissioner::_pSplitHeavy, -1, 1.0, 0.0, 10.0, false, false, Interface::upperlim); static Parameter<ClusterFissioner,double> interfacePSplitExotic ("PSplitExotic","cluster mass splitting param for exotic quarks", &ClusterFissioner::_pSplitExotic, 0, 1.0, 0.0, 10.0,false,false,false); static Switch<ClusterFissioner,int> interfaceFission ("Fission", "Option for different Fission options", &ClusterFissioner::_fissionCluster, 1, false, false); static SwitchOption interfaceFissionDefault (interfaceFission, "default", "Normal cluster fission which depends on the hadron selector class.", 0); static SwitchOption interfaceFissionNew (interfaceFission, "new", "Alternative cluster fission which does not depend on the hadron selector class", 1); static Switch<ClusterFissioner,int> interfaceDiquarkClusterFission ("DiquarkClusterFission", "Allow clusters to fission to 1 or 2 diquark Clusters", &ClusterFissioner::_diquarkClusterFission, 0, false, false); static SwitchOption interfaceDiquarkClusterFissionAll (interfaceDiquarkClusterFission, "All", "Allow diquark clusters and baryon clusters to fission to new diquark Clusters", 2); static SwitchOption interfaceDiquarkClusterFissionOnlyBaryonClusters (interfaceDiquarkClusterFission, "OnlyBaryonClusters", "Allow only baryon clusters to fission to new diquark Clusters", 1); static SwitchOption interfaceDiquarkClusterFissionNo (interfaceDiquarkClusterFission, "No", "Don't allow clusters to fission to new diquark Clusters", 0); static ParMap<ClusterFissioner,double> interfaceFissionPwt ("FissionPwt", "The weights for quarks in the fission process.", &ClusterFissioner::_fissionPwt, -1, 1.0, 0.0, 10.0, false, false, Interface::upperlim); static Switch<ClusterFissioner,int> interfaceRemnantOption ("RemnantOption", "Option for the treatment of remnant clusters", &ClusterFissioner::_iopRem, 1, false, false); static SwitchOption interfaceRemnantOptionSoft (interfaceRemnantOption, "Soft", "Both clusters produced in the fission of the beam cluster" " are treated as soft clusters.", 0); static SwitchOption interfaceRemnantOptionHard (interfaceRemnantOption, "Hard", "Only the cluster containing the remnant is treated as a soft cluster.", 1); static SwitchOption interfaceRemnantOptionVeryHard (interfaceRemnantOption, "VeryHard", "Even remnant clusters are treated as hard, i.e. all clusters the same", 2); static Parameter<ClusterFissioner,Energy> interfaceBTCLM ("SoftClusterFactor", "Parameter for the mass spectrum of remnant clusters", &ClusterFissioner::_btClM, GeV, 1.*GeV, 0.1*GeV, 10.0*GeV, false, false, Interface::limited); static Parameter<ClusterFissioner,Tension> interfaceStringTension ("StringTension", "String tension used in vertex displacement calculation", &ClusterFissioner::_kappa, GeV/meter, 1.0e15*GeV/meter, ZERO, ZERO, false, false, Interface::lowerlim); static Switch<ClusterFissioner,int> interfaceEnhanceSProb ("EnhanceSProb", "Option for enhancing strangeness", &ClusterFissioner::_enhanceSProb, 0, false, false); static SwitchOption interfaceEnhanceSProbNo (interfaceEnhanceSProb, "No", "No strangeness enhancement.", 0); static SwitchOption interfaceEnhanceSProbScaled (interfaceEnhanceSProb, "Scaled", "Scaled strangeness enhancement", 1); static SwitchOption interfaceEnhanceSProbExponential (interfaceEnhanceSProb, "Exponential", "Exponential strangeness enhancement", 2); static Switch<ClusterFissioner,int> interfaceKinematics ("Kinematics", "Option for selecting different Kinematics for ClusterFission", &ClusterFissioner::_kinematics, 0, false, false); static SwitchOption interfaceKinematicsDefault (interfaceKinematics, "Default", "Fully aligned Cluster Fission along the Original cluster direction", 0); static SwitchOption interfaceKinematicsIsotropic (interfaceKinematics, "Isotropic", "Fully isotropic two body decay. Not recommended!", 1); static SwitchOption interfaceKinematicsFluxTube (interfaceKinematics, "FluxTube", "Aligned decay with gaussian pT kick with sigma=ClusterFissioner::FluxTube", 2); static Switch<ClusterFissioner,int> interfaceMassMeasure ("MassMeasure", "Option to use different mass measures", &ClusterFissioner::_massMeasure,0,false,false); static SwitchOption interfaceMassMeasureMass (interfaceMassMeasure, "Mass", "Mass Measure", 0); static SwitchOption interfaceMassMeasureLambda (interfaceMassMeasure, "Lambda", "Lambda Measure", 1); static Parameter<ClusterFissioner,Energy> interfaceFissionMassScale ("FissionMassScale", "Cluster fission mass scale", &ClusterFissioner::_m0Fission, GeV, 2.0*GeV, 0.1*GeV, 50.*GeV, false, false, Interface::limited); static Parameter<ClusterFissioner,double> interfaceProbPowFactor ("ProbablityPowerFactor", "Power factor in ClausterFissioner bell probablity function", &ClusterFissioner::_probPowFactor, 2.0, 1.0, 20.0, false, false, Interface::limited); static Parameter<ClusterFissioner,Energy> interfaceFluxTubeWidth ("FluxTubeWidth", "sigma of gaussian sampling of pT for FluxTube kinematics", &ClusterFissioner::_fluxTubeWidth, GeV, 2.0*GeV, 1.0e-30*GeV, 5.0*GeV, false, false, Interface::limited); static Parameter<ClusterFissioner,double> interfaceProbShift ("ProbablityShift", "Shifts from the center in ClausterFissioner bell probablity function", &ClusterFissioner::_probShift, 0.0, -10.0, 10.0, false, false, Interface::limited); static Parameter<ClusterFissioner,Energy2> interfaceKineticThresholdShift ("KineticThresholdShift", "Shifts from the kinetic threshold in ClausterFissioner", &ClusterFissioner::_kinThresholdShift, sqr(GeV), 0.*sqr(GeV), -10.0*sqr(GeV), 10.0*sqr(GeV), false, false, Interface::limited); static Switch<ClusterFissioner,int> interfaceKinematicThreshold ("KinematicThreshold", "Option for using static or dynamic kinematic thresholds in cluster splittings", &ClusterFissioner::_kinematicThresholdChoice, 0, false, false); static SwitchOption interfaceKinematicThresholdStatic (interfaceKinematicThreshold, "Static", "Set static kinematic thresholds for cluster splittings.", 0); static SwitchOption interfaceKinematicThresholdDynamic (interfaceKinematicThreshold, "Dynamic", "Set dynamic kinematic thresholds for cluster splittings.", 1); } tPVector ClusterFissioner::fission(ClusterVector & clusters, bool softUEisOn) { // return if no clusters if (clusters.empty()) return tPVector(); /***************** * Loop over the (input) collection of cluster pointers, and store in * the vector splitClusters all the clusters that need to be split * (these are beam clusters, if soft underlying event is off, and * heavy non-beam clusters). ********************/ stack<ClusterPtr> splitClusters; for(ClusterVector::iterator it = clusters.begin() ; it != clusters.end() ; ++it) { /************** * Skip 3-component clusters that have been redefined (as 2-component * clusters) or not available clusters. The latter check is indeed * redundant now, but it is used for possible future extensions in which, * for some reasons, some of the clusters found by ClusterFinder are tagged * straight away as not available. **************/ if((*it)->isRedefined() || !(*it)->isAvailable()) continue; // if the cluster is a beam cluster add it to the vector of clusters // to be split or if it is heavy if((*it)->isBeamCluster() || isHeavy(*it)) splitClusters.push(*it); } tPVector finalhadrons; cut(splitClusters, clusters, finalhadrons, softUEisOn); return finalhadrons; } void ClusterFissioner::cut(stack<ClusterPtr> & clusterStack, ClusterVector &clusters, tPVector & finalhadrons, bool softUEisOn) { /************************************************** * This method does the splitting of the cluster pointed by cluPtr * and "recursively" by all of its cluster children, if heavy. All of these * new children clusters are added (indeed the pointers to them) to the * collection of cluster pointers collecCluPtr. The method works as follows. * Initially the vector vecCluPtr contains just the input pointer to the * cluster to be split. Then it will be filled "recursively" by all * of the cluster's children that are heavy enough to require, in their turn, * to be split. In each loop, the last element of the vector vecCluPtr is * considered (only once because it is then removed from the vector). * This approach is conceptually recursive, but avoid the overhead of * a concrete recursive function. Furthermore it requires minimal changes * in the case that the fission of an heavy cluster could produce more * than two cluster children as assumed now. * * Draw the masses: for normal, non-beam clusters a power-like mass dist * is used, whereas for beam clusters a fast-decreasing exponential mass * dist is used instead (to avoid many iterative splitting which could * produce an unphysical large transverse energy from a supposed soft beam * remnant process). ****************************************/ // Here we recursively loop over clusters in the stack and cut them while (!clusterStack.empty()) { // take the last element of the vector ClusterPtr iCluster = clusterStack.top(); clusterStack.pop(); // split it cutType ct = iCluster->numComponents() == 2 ? cutTwo(iCluster, finalhadrons, softUEisOn) : cutThree(iCluster, finalhadrons, softUEisOn); // There are cases when we don't want to split, even if it fails mass test if(!ct.first.first || !ct.second.first) { // if an unsplit beam cluster leave if for the underlying event if(iCluster->isBeamCluster() && softUEisOn) iCluster->isAvailable(false); continue; } // check if clusters ClusterPtr one = dynamic_ptr_cast<ClusterPtr>(ct.first.first); ClusterPtr two = dynamic_ptr_cast<ClusterPtr>(ct.second.first); // is a beam cluster must be split into two clusters if(iCluster->isBeamCluster() && (!one||!two) && softUEisOn) { iCluster->isAvailable(false); continue; } // There should always be a intermediate quark(s) from the splitting assert(ct.first.second && ct.second.second); /// \todo sort out motherless quark pairs here. Watch out for 'quark in final state' errors iCluster->addChild(ct.first.first); // iCluster->addChild(ct.first.second); // ct.first.second->addChild(ct.first.first); iCluster->addChild(ct.second.first); // iCluster->addChild(ct.second.second); // ct.second.second->addChild(ct.second.first); // Sometimes the clusters decay C -> H + C' or C -> H + H' rather then C -> C' + C'' if(one) { clusters.push_back(one); if(one->isBeamCluster() && softUEisOn) one->isAvailable(false); if(isHeavy(one) && one->isAvailable()) clusterStack.push(one); } if(two) { clusters.push_back(two); if(two->isBeamCluster() && softUEisOn) two->isAvailable(false); if(isHeavy(two) && two->isAvailable()) clusterStack.push(two); } } } ClusterFissioner::cutType ClusterFissioner::cutTwo(ClusterPtr & cluster, tPVector & finalhadrons, bool softUEisOn) { // need to make sure only 2-cpt clusters get here assert(cluster->numComponents() == 2); tPPtr ptrQ1 = cluster->particle(0); tPPtr ptrQ2 = cluster->particle(1); Energy Mc = cluster->mass(); assert(ptrQ1); assert(ptrQ2); // And check if those particles are from a beam remnant bool rem1 = cluster->isBeamRemnant(0); bool rem2 = cluster->isBeamRemnant(1); // workout which distribution to use bool soft1(false),soft2(false); switch (_iopRem) { case 0: soft1 = rem1 || rem2; soft2 = rem2 || rem1; break; case 1: soft1 = rem1; soft2 = rem2; break; } // Initialization for the exponential ("soft") mass distribution. static const int max_loop = 1000; int counter = 0; Energy Mc1 = ZERO, Mc2 = ZERO,m1=ZERO,m2=ZERO,m=ZERO; tcPDPtr toHadron1, toHadron2; PPtr newPtr1 = PPtr (); PPtr newPtr2 = PPtr (); bool succeeded = false; Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2; do { succeeded = false; ++counter; // get a flavour for the qqbar pair drawNewFlavour(newPtr1,newPtr2,cluster); // check for right ordering assert (ptrQ2); assert (newPtr2); assert (ptrQ2->dataPtr()); assert (newPtr2->dataPtr()); // TODO careful if DiquarkClusters can exist bool Q1diq = DiquarkMatcher::Check(ptrQ1->id()); bool Q2diq = DiquarkMatcher::Check(ptrQ2->id()); bool newQ1diq = DiquarkMatcher::Check(newPtr1->id()); bool newQ2diq = DiquarkMatcher::Check(newPtr2->id()); bool diqClu1 = Q1diq && newQ1diq; bool diqClu2 = Q2diq && newQ2diq; // std::cout << "Make Clusters: ( " << ptrQ1->PDGName() << " " << newPtr1->PDGName() << " ), ( " // << ptrQ2->PDGName() << " " << newPtr2->PDGName() << " )\n"; if (!( Q1diq || Q2diq ) && (cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2))) { swap(newPtr1, newPtr2); // check again if(cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2)) { throw Exception() << "ClusterFissioner cannot split the cluster (" << ptrQ1->PDGName() << ' ' << ptrQ2->PDGName() << ") into hadrons.\n" << "drawn Flavour: "<< newPtr1->PDGName()<<"\n"<< Exception::runerror; } } else { bool swapped=false; if ( !diqClu1 && cantMakeHadron(ptrQ1,newPtr1) ) { swap(newPtr1, newPtr2); swapped=true; } if ( !diqClu2 && cantMakeHadron(ptrQ2,newPtr2) ) { assert(!swapped); swap(newPtr1, newPtr2); } if ( diqClu2 && diqClu1 && ptrQ1->id()*newPtr1->id()>0 ) { assert(!swapped); swap(newPtr1, newPtr2); } // std::cout << "Make Clusters: ( " << ptrQ1->PDGName() << " " << newPtr1->PDGName() << " ), ( " // << ptrQ2->PDGName() << " " << newPtr2->PDGName() << " )\n"; if (!diqClu1) assert(!cantMakeHadron(ptrQ1,newPtr1)); if (!diqClu2) assert(!cantMakeHadron(ptrQ2,newPtr2)); } // Check that new clusters can produce particles and there is enough // phase space to choose the drawn flavour m1 = ptrQ1->data().constituentMass(); m2 = ptrQ2->data().constituentMass(); m = newPtr1->data().constituentMass(); // Do not split in the case there is no phase space available if(Mc < m1+m + m2+m) continue; pQ1.setMass(m1); pQone.setMass(m); pQtwo.setMass(m); pQ2.setMass(m2); pair<Energy,Energy> res = drawNewMasses(Mc, soft1, soft2, pClu1, pClu2, ptrQ1, pQ1, newPtr1, pQone, newPtr2, pQtwo, ptrQ2, pQ2); // derive the masses of the children Mc1 = res.first; Mc2 = res.second; // static kinematic threshold if(_kinematicThresholdChoice == 0) { if(Mc1 < m1+m || Mc2 < m+m2 || Mc1+Mc2 > Mc) continue; // dynamic kinematic threshold } else if(_kinematicThresholdChoice == 1) { bool C1 = ( sqr(Mc1) )/( sqr(m1) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false; bool C2 = ( sqr(Mc2) )/( sqr(m2) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false; bool C3 = ( sqr(Mc1) + sqr(Mc2) )/( sqr(Mc) ) > 1.0 ? true : false; if( C1 || C2 || C3 ) continue; } if (diqClu1) { if (Mc1 < spectrum()->massLightestBaryonPair(ptrQ1->dataPtr(),newPtr1->dataPtr())) { continue; } } if (diqClu2) { if (Mc2 < spectrum()->massLightestBaryonPair(ptrQ2->dataPtr(),newPtr2->dataPtr())) { continue; } } /************************** * New (not present in Fortran Herwig): * check whether the fragment masses Mc1 and Mc2 are above the * threshold for the production of the lightest pair of hadrons with the * right flavours. If not, then set by hand the mass to the lightest * single hadron with the right flavours, in order to solve correctly * the kinematics, and (later in this method) create directly such hadron * and add it to the children hadrons of the cluster that undergoes the * fission (i.e. the one pointed by iCluPtr). Notice that in this special * case, the heavy cluster that undergoes the fission has one single * cluster child and one single hadron child. We prefer this approach, * rather than to create a light cluster, with the mass set equal to * the lightest hadron, and let then the class LightClusterDecayer to do * the job to decay it to that single hadron, for two reasons: * First, because the sum of the masses of the two constituents can be, * in this case, greater than the mass of that hadron, hence it would * be impossible to solve the kinematics for such two components, and * therefore we would have a cluster whose components are undefined. * Second, the algorithm is faster, because it avoids the reshuffling * procedure that would be necessary if we used LightClusterDecayer * to decay the light cluster to the lightest hadron. ****************************/ // override chosen masses if needed toHadron1 = _hadronSpectrum->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc1); if(toHadron1) { Mc1 = toHadron1->mass(); pClu1.setMass(Mc1); } toHadron2 = _hadronSpectrum->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc2); if(toHadron2) { Mc2 = toHadron2->mass(); pClu2.setMass(Mc2); } // if a beam cluster not allowed to decay to hadrons if(cluster->isBeamCluster() && (toHadron1||toHadron2) && softUEisOn) continue; // Check if the decay kinematics is still possible: if not then // force the one-hadron decay for the other cluster as well. if(Mc1 + Mc2 > Mc) { if(!toHadron1) { toHadron1 = _hadronSpectrum->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc-Mc2); if(toHadron1) { Mc1 = toHadron1->mass(); pClu1.setMass(Mc1); } } else if(!toHadron2) { toHadron2 = _hadronSpectrum->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc-Mc1); if(toHadron2) { Mc2 = toHadron2->mass(); pClu2.setMass(Mc2); } } } succeeded = (Mc >= Mc1+Mc2); } while (!succeeded && counter < max_loop); if(counter >= max_loop) { static const PPtr null = PPtr(); return cutType(PPair(null,null),PPair(null,null)); } // Determined the (5-components) momenta (all in the LAB frame) Lorentz5Momentum pClu = cluster->momentum(); // known Lorentz5Momentum p0Q1 = ptrQ1->momentum(); // known (mom Q1 before fission) calculateKinematics(pClu,p0Q1,toHadron1,toHadron2, pClu1,pClu2,pQ1,pQone,pQtwo,pQ2); /****************** * The previous methods have determined the kinematics and positions * of C -> C1 + C2. * In the case that one of the two product is light, that means either * decayOneHadronClu1 or decayOneHadronClu2 is true, then the momenta * of the components of that light product have not been determined, * and a (light) cluster will not be created: the heavy father cluster * decays, in this case, into a single (not-light) cluster and a * single hadron. In the other, "normal", cases the father cluster * decays into two clusters, each of which has well defined components. * Notice that, in the case of components which point to particles, the * momenta of the components is properly set to the new values, whereas * we do not change the momenta of the pointed particles, because we * want to keep all of the information (that is the new momentum of a * component after the splitting, which is contained in the _momentum * member of the Component class, and the (old) momentum of that component * before the splitting, which is contained in the momentum of the * pointed particle). Please not make confusion of this only apparent * inconsistency! ********************/ LorentzPoint posC,pos1,pos2; posC = cluster->vertex(); calculatePositions(pClu, posC, pClu1, pClu2, pos1, pos2); cutType rval; if(toHadron1) { rval.first = produceHadron(toHadron1, newPtr1, pClu1, pos1); finalhadrons.push_back(rval.first.first); } else { rval.first = produceCluster(ptrQ1, newPtr1, pClu1, pos1, pQ1, pQone, rem1); } if(toHadron2) { rval.second = produceHadron(toHadron2, newPtr2, pClu2, pos2); finalhadrons.push_back(rval.second.first); } else { rval.second = produceCluster(ptrQ2, newPtr2, pClu2, pos2, pQ2, pQtwo, rem2); } return rval; } ClusterFissioner::cutType ClusterFissioner::cutThree(ClusterPtr & cluster, tPVector & finalhadrons, bool softUEisOn) { // need to make sure only 3-cpt clusters get here assert(cluster->numComponents() == 3); // extract quarks tPPtr ptrQ[3] = {cluster->particle(0),cluster->particle(1),cluster->particle(2)}; assert( ptrQ[0] && ptrQ[1] && ptrQ[2] ); // find maximum mass pair Energy mmax(ZERO); Lorentz5Momentum pDiQuark; int iq1(-1),iq2(-1); Lorentz5Momentum psum; for(int q1=0;q1<3;++q1) { psum+= ptrQ[q1]->momentum(); for(int q2=q1+1;q2<3;++q2) { Lorentz5Momentum ptest = ptrQ[q1]->momentum()+ptrQ[q2]->momentum(); ptest.rescaleMass(); Energy mass = ptest.m(); if(mass>mmax) { mmax = mass; pDiQuark = ptest; iq1 = q1; iq2 = q2; } } } // and the spectators int iother(-1); for(int ix=0;ix<3;++ix) if(ix!=iq1&&ix!=iq2) iother=ix; assert(iq1>=0&&iq2>=0&&iother>=0); // And check if those particles are from a beam remnant bool rem1 = cluster->isBeamRemnant(iq1); bool rem2 = cluster->isBeamRemnant(iq2); // workout which distribution to use bool soft1(false),soft2(false); switch (_iopRem) { case 0: soft1 = rem1 || rem2; soft2 = rem2 || rem1; break; case 1: soft1 = rem1; soft2 = rem2; break; } // Initialization for the exponential ("soft") mass distribution. static const int max_loop = 1000; int counter = 0; Energy Mc1 = ZERO, Mc2 = ZERO, m1=ZERO, m2=ZERO, m=ZERO; tcPDPtr toHadron; bool toDiQuark(false); PPtr newPtr1 = PPtr(),newPtr2 = PPtr(); PDPtr diquark; bool succeeded = false; Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2; do { succeeded = false; ++counter; // get a flavour for the qqbar pair drawNewFlavour(newPtr1,newPtr2,cluster); // randomly pick which will be (anti)diquark and which a mesonic cluster if(UseRandom::rndbool()) { swap(iq1,iq2); swap(rem1,rem2); } // check first order if(cantMakeHadron(ptrQ[iq1], newPtr1) || !spectrum()->canMakeDiQuark(ptrQ[iq2], newPtr2)) { swap(newPtr1,newPtr2); } // check again if(cantMakeHadron(ptrQ[iq1], newPtr1) || !spectrum()->canMakeDiQuark(ptrQ[iq2], newPtr2)) { throw Exception() << "ClusterFissioner cannot split the cluster (" << ptrQ[iq1]->PDGName() << ' ' << ptrQ[iq2]->PDGName() << ") into a hadron and diquark.\n" << Exception::runerror; } // Check that new clusters can produce particles and there is enough // phase space to choose the drawn flavour m1 = ptrQ[iq1]->data().constituentMass(); m2 = ptrQ[iq2]->data().constituentMass(); m = newPtr1->data().constituentMass(); // Do not split in the case there is no phase space available if(mmax < m1+m + m2+m) continue; pQ1.setMass(m1); pQone.setMass(m); pQtwo.setMass(m); pQ2.setMass(m2); pair<Energy,Energy> res = drawNewMasses(mmax, soft1, soft2, pClu1, pClu2, ptrQ[iq1], pQ1, newPtr1, pQone, newPtr2, pQtwo, ptrQ[iq1], pQ2); Mc1 = res.first; Mc2 = res.second; if(Mc1 < m1+m || Mc2 < m+m2 || Mc1+Mc2 > mmax) continue; // check if need to force meson clster to hadron toHadron = _hadronSpectrum->chooseSingleHadron(ptrQ[iq1]->dataPtr(), newPtr1->dataPtr(),Mc1); if(toHadron) { Mc1 = toHadron->mass(); pClu1.setMass(Mc1); } // check if need to force diquark cluster to be on-shell toDiQuark = false; diquark = spectrum()->makeDiquark(ptrQ[iq2]->dataPtr(), newPtr2->dataPtr()); if(Mc2 < diquark->constituentMass()) { Mc2 = diquark->constituentMass(); pClu2.setMass(Mc2); toDiQuark = true; } // if a beam cluster not allowed to decay to hadrons if(cluster->isBeamCluster() && toHadron && softUEisOn) continue; // Check if the decay kinematics is still possible: if not then // force the one-hadron decay for the other cluster as well. if(Mc1 + Mc2 > mmax) { if(!toHadron) { toHadron = _hadronSpectrum->chooseSingleHadron(ptrQ[iq1]->dataPtr(), newPtr1->dataPtr(),mmax-Mc2); if(toHadron) { Mc1 = toHadron->mass(); pClu1.setMass(Mc1); } } else if(!toDiQuark) { Mc2 = _hadronSpectrum->massLightestHadron(ptrQ[iq2]->dataPtr(), newPtr2->dataPtr()); pClu2.setMass(Mc2); toDiQuark = true; } } succeeded = (mmax >= Mc1+Mc2); } while (!succeeded && counter < max_loop); // check no of tries if(counter >= max_loop) return cutType(); // Determine the (5-components) momenta (all in the LAB frame) Lorentz5Momentum p0Q1 = ptrQ[iq1]->momentum(); calculateKinematics(pDiQuark,p0Q1,toHadron,toDiQuark, pClu1,pClu2,pQ1,pQone,pQtwo,pQ2); // positions of the new clusters LorentzPoint pos1,pos2; Lorentz5Momentum pBaryon = pClu2+ptrQ[iother]->momentum(); calculatePositions(cluster->momentum(), cluster->vertex(), pClu1, pBaryon, pos1, pos2); // first the mesonic cluster/meson cutType rval; if(toHadron) { rval.first = produceHadron(toHadron, newPtr1, pClu1, pos1); finalhadrons.push_back(rval.first.first); } else { rval.first = produceCluster(ptrQ[iq1], newPtr1, pClu1, pos1, pQ1, pQone, rem1); } if(toDiQuark) { rem2 |= cluster->isBeamRemnant(iother); PPtr newDiQuark = diquark->produceParticle(pClu2); rval.second = produceCluster(newDiQuark, ptrQ[iother], pBaryon, pos2, pClu2, ptrQ[iother]->momentum(), rem2); } else { rval.second = produceCluster(ptrQ[iq2], newPtr2, pBaryon, pos2, pQ2, pQtwo, rem2, ptrQ[iother],cluster->isBeamRemnant(iother)); } cluster->isAvailable(false); return rval; } ClusterFissioner::PPair ClusterFissioner::produceHadron(tcPDPtr hadron, tPPtr newPtr, const Lorentz5Momentum &a, const LorentzPoint &b) const { PPair rval; if(hadron->coloured()) { rval.first = (_hadronSpectrum->lightestHadron(hadron,newPtr->dataPtr()))->produceParticle(); } else rval.first = hadron->produceParticle(); rval.second = newPtr; rval.first->set5Momentum(a); rval.first->setVertex(b); return rval; } ClusterFissioner::PPair ClusterFissioner::produceCluster(tPPtr ptrQ, tPPtr newPtr, const Lorentz5Momentum & a, const LorentzPoint & b, const Lorentz5Momentum & c, const Lorentz5Momentum & d, bool isRem, tPPtr spect, bool remSpect) const { PPair rval; rval.second = newPtr; ClusterPtr cluster = !spect ? new_ptr(Cluster(ptrQ,rval.second)) : new_ptr(Cluster(ptrQ,rval.second,spect)); rval.first = cluster; cluster->set5Momentum(a); cluster->setVertex(b); assert(cluster->particle(0)->id() == ptrQ->id()); cluster->particle(0)->set5Momentum(c); cluster->particle(1)->set5Momentum(d); cluster->setBeamRemnant(0,isRem); if(remSpect) cluster->setBeamRemnant(2,remSpect); return rval; } void ClusterFissioner::drawNewFlavourDiquarks(PPtr& newPtrPos,PPtr& newPtrNeg, const ClusterPtr & clu) const { // Flavour is assumed to be only u, d, s, with weights // (which are not normalized probabilities) given // by the same weights as used in HadronsSelector for // the decay of clusters into two hadrons. unsigned hasDiquarks=0; assert(clu->numComponents()==2); tcPDPtr pD1=clu->particle(0)->dataPtr(); tcPDPtr pD2=clu->particle(1)->dataPtr(); bool isDiq1=DiquarkMatcher::Check(pD1->id()); if (isDiq1) hasDiquarks++; bool isDiq2=DiquarkMatcher::Check(pD2->id()); if (isDiq2) hasDiquarks++; assert(hasDiquarks<=2); Energy Mc=(clu->momentum().mass()); // if (fabs(clu->momentum().massError() )>1e-14) std::cout << "Mass inconsistency CF : " << std::scientific << clu->momentum().massError() <<"\n"; // Not allow yet Diquark Clusters // if ( hasDiquarks>=1 || Mc < spectrum()->massLightestBaryonPair(pD1,pD2) ) // return drawNewFlavour(newPtrPos,newPtrNeg); tPDPtr diq; Energy minMass; Selector<long> choice; // int countQ=0; // int countDiQ=0; // adding quark-antiquark pairs to the selection list for ( const long& id : spectrum()->lightHadronizingQuarks() ) { // TODO uncommenting below gives sometimes 0 selection possibility, // maybe need to be checked in the LightClusterDecayer and ColourReconnector // if (Mc < spectrum()->massLightestHadronPair(pD1,pD2)) continue; // countQ++; if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id); else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id); else assert(false); } // adding diquark-antidiquark pairs to the selection list switch (hasDiquarks) { case 0: for ( const long& id : spectrum()->lightHadronizingDiquarks() ) { if (Mc < spectrum()->massLightestBaryonPair(pD1,pD2)) continue; // countDiQ++; if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id); else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id); else assert(false); } break; case 1: if (_diquarkClusterFission<1) break; for ( const long& id : spectrum()->lightHadronizingDiquarks() ) { diq = getParticleData(id); if (isDiq1) minMass = spectrum()->massLightestHadron(pD2,diq) + spectrum()->massLightestBaryonPair(diq,pD1); else minMass = spectrum()->massLightestHadron(pD1,diq) + spectrum()->massLightestBaryonPair(diq,pD2); if (Mc < minMass) continue; // countDiQ++; if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id); else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id); else assert(false); } break; case 2: if (_diquarkClusterFission<2) break; for ( const long& id : spectrum()->lightHadronizingDiquarks() ) { diq = getParticleData(id); if (Mc < spectrum()->massLightestBaryonPair(pD1,pD2)) { throw Exception() << "Found Diquark Cluster:\n" << *clu << "\nwith MassCluster = " << ounit(Mc,GeV) <<" GeV MassLightestBaryonPair = " << ounit(spectrum()->massLightestBaryonPair(pD1,pD2) ,GeV) << " GeV cannot decay" << Exception::eventerror; } minMass = spectrum()->massLightestBaryonPair(pD1,diq) + spectrum()->massLightestBaryonPair(diq,pD2); if (Mc < minMass) continue; // countDiQ++; if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id); else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id); else assert(false); } break; default: assert(false); } assert(choice.size()>0); long idNew = choice.select(UseRandom::rnd()); newPtrPos = getParticle(idNew); newPtrNeg = getParticle(-idNew); assert (newPtrPos); assert(newPtrNeg); assert (newPtrPos->dataPtr()); assert(newPtrNeg->dataPtr()); } void ClusterFissioner::drawNewFlavour(PPtr& newPtrPos,PPtr& newPtrNeg) const { // Flavour is assumed to be only u, d, s, with weights // (which are not normalized probabilities) given // by the same weights as used in HadronsSelector for // the decay of clusters into two hadrons. Selector<long> choice; switch(_fissionCluster){ case 0: for ( const long& id : spectrum()->lightHadronizingQuarks() ) choice.insert(_hadronSpectrum->pwtQuark(id),id); break; case 1: for ( const long& id : spectrum()->lightHadronizingQuarks() ) choice.insert(_fissionPwt.find(id)->second,id); break; default : assert(false); } long idNew = choice.select(UseRandom::rnd()); newPtrPos = getParticle(idNew); newPtrNeg = getParticle(-idNew); assert (newPtrPos); assert(newPtrNeg); assert (newPtrPos->dataPtr()); assert(newPtrNeg->dataPtr()); } void ClusterFissioner::drawNewFlavourEnhanced(PPtr& newPtrPos,PPtr& newPtrNeg, Energy2 mass2) const { if ( spectrum()->gluonId() != ParticleID::g ) throw Exception() << "strange enhancement only working with Standard Model hadronization" << Exception::runerror; // Flavour is assumed to be only u, d, s, with weights // (which are not normalized probabilities) given // by the same weights as used in HadronsSelector for // the decay of clusters into two hadrons. double prob_d = 0.; double prob_u = 0.; double prob_s = 0.; double scale = abs(double(sqr(_m0Fission)/mass2)); // Choose which splitting weights you wish to use switch(_fissionCluster){ // 0: ClusterFissioner and ClusterDecayer use the same weights case 0: prob_d = _hadronSpectrum->pwtQuark(ParticleID::d); prob_u = _hadronSpectrum->pwtQuark(ParticleID::u); /* Strangeness enhancement: Case 1: probability scaling Case 2: Exponential scaling */ if (_enhanceSProb == 1) prob_s = (_maxScale < scale) ? 0. : pow(_hadronSpectrum->pwtQuark(ParticleID::s),scale); else if (_enhanceSProb == 2) prob_s = (_maxScale < scale) ? 0. : exp(-scale); break; /* 1: ClusterFissioner uses its own unique set of weights, i.e. decoupled from ClusterDecayer */ case 1: prob_d = _fissionPwt.find(ParticleID::d)->second; prob_u = _fissionPwt.find(ParticleID::u)->second; if (_enhanceSProb == 1) prob_s = (_maxScale < scale) ? 0. : pow(_fissionPwt.find(ParticleID::s)->second,scale); else if (_enhanceSProb == 2) prob_s = (_maxScale < scale) ? 0. : exp(-scale); break; default: assert(false); } int choice = UseRandom::rnd3(prob_u, prob_d, prob_s); long idNew = 0; switch (choice) { case 0: idNew = ThePEG::ParticleID::u; break; case 1: idNew = ThePEG::ParticleID::d; break; case 2: idNew = ThePEG::ParticleID::s; break; } newPtrPos = getParticle(idNew); newPtrNeg = getParticle(-idNew); assert (newPtrPos); assert(newPtrNeg); assert (newPtrPos->dataPtr()); assert(newPtrNeg->dataPtr()); } Energy2 ClusterFissioner::clustermass(const ClusterPtr & cluster) const { Lorentz5Momentum pIn = cluster->momentum(); Energy2 endpointmass2 = sqr(cluster->particle(0)->mass() + cluster->particle(1)->mass()); Energy2 singletm2 = pIn.m2(); // Return either the cluster mass, or the lambda measure return (_massMeasure == 0) ? singletm2 : singletm2 - endpointmass2; } Energy ClusterFissioner::drawChildMass(const Energy M, const Energy m1, const Energy m2, const Energy m, const double expt, const bool soft) const { /*************************** * This method, given in input the cluster mass Mclu of an heavy cluster C, * made of consituents of masses m1 and m2, draws the masses Mclu1 and Mclu2 * of, respectively, the children cluster C1, made of constituent masses m1 * and m, and cluster C2, of mass Mclu2 and made of constituent masses m2 * and m. The mass is extracted from one of the two following mass * distributions: * --- power-like ("normal" distribution) * d(Prob) / d(M^exponent) = const * where the exponent can be different from the two children C1 (exp1) * and C2 (exponent2). * --- exponential ("soft" distribution) * d(Prob) / d(M^2) = exp(-b*M) * where b = 2.0 / average. * Such distributions are limited below by the masses of * the constituents quarks, and above from the mass of decaying cluster C. * The choice of which of the two mass distributions to use for each of the * two cluster children is dictated by iRemnant (see below). * If the number of attempts to extract a pair of mass values that are * kinematically acceptable is above some fixed number (max_loop, see below) * the method gives up and returns false; otherwise, when it succeeds, it * returns true. * * These distributions have been modified from HERWIG: * Before these were: * Mclu1 = m1 + (Mclu - m1 - m2)*pow( rnd(), 1.0/exponent1 ); * The new one coded here is a more efficient version, same density * but taking into account 'in phase space from' beforehand ***************************/ // hard cluster if(!soft) { return pow(UseRandom::rnd(pow((M-m1-m2-m)*UnitRemoval::InvE, expt), pow(m*UnitRemoval::InvE, expt)), 1./expt )*UnitRemoval::E + m1; } // Otherwise it uses a soft mass distribution else { static const InvEnergy b = 2.0 / _btClM; Energy max = M-m1-m2-2.0*m; double rmin = b*max; rmin = ( rmin < 50 ) ? exp(-rmin) : 0.; double r1; do { r1 = UseRandom::rnd(rmin, 1.0) * UseRandom::rnd(rmin, 1.0); } while (r1 < rmin); return m1 + m - log(r1)/b; } } Axis ClusterFissioner::sampleDirectionAligned(const Lorentz5Momentum & pRelCOM) const { return pRelCOM.vect().unit(); } Axis ClusterFissioner::sampleDirectionUniform() const { double cosTheta = -1 + 2.0 * UseRandom::rnd(); double sinTheta = sqrt(1.0-cosTheta*cosTheta); double Phi = 2.0 * Constants::pi * UseRandom::rnd(); Axis uClusterUniform(cos(Phi)*cosTheta, sin(Phi)*cosTheta, sinTheta); return uClusterUniform.unit(); } Axis ClusterFissioner::sampleDirectionGaussianPT(const Lorentz5Momentum & pRelCOM, const Energy Mass, const Energy mass1, const Energy mass2) const { Energy pstarCOM = Kinematics::pstarTwoBodyDecay(Mass,mass1,mass2); Energy pTx; Energy pTy; Energy2 pT2; int maxcount=100; int count=0; Energy sigmaPT=_fluxTubeWidth; do { if (count>=maxcount) { if (pstarCOM>0.5*sigmaPT) throw Exception() << "Could not sample direction in ClusterFissioner::sampleDirectionGaussianPT() " << Exception::eventerror; // Fallback uniform sampling double phi=UseRandom::rnd()*Constants::pi; Energy magnitude=UseRandom::rnd()*pstarCOM; pTx = magnitude*cos(phi); pTy = magnitude*sin(phi); pT2 = sqr(pTx)+sqr(pTy); break; } pTx = UseRandom::rndGauss(sigmaPT); pTy = UseRandom::rndGauss(sigmaPT); pT2 = sqr(pTx)+sqr(pTy); count++; } while (pT2>sqr(pstarCOM)); Axis pRelativeDir=pRelCOM.vect().unit(); Axis TrvX = pRelativeDir.orthogonal().unit(); Axis TrvY = TrvX.cross(pRelativeDir).unit(); Axis pTkick = pTx/pstarCOM*TrvX + pTy/pstarCOM*TrvY; Axis uClusterFluxTube = (pRelativeDir*sqrt(1.0-pT2/sqr(pstarCOM)) + pTkick); return uClusterFluxTube.unit(); } void ClusterFissioner::calculateKinematics(const Lorentz5Momentum & pClu, const Lorentz5Momentum & p0Q1, const bool toHadron1, const bool toHadron2, Lorentz5Momentum & pClu1, Lorentz5Momentum & pClu2, Lorentz5Momentum & pQ1, Lorentz5Momentum & pQbar, Lorentz5Momentum & pQ, Lorentz5Momentum & pQ2bar) const { /****************** * This method solves the kinematics of the two body cluster decay: * C (Q1 Q2bar) ---> C1 (Q1 Qbar) + C2 (Q Q2bar) * In input we receive the momentum of C, pClu, and the momentum * of the quark Q1 (constituent of C), p0Q1, both in the LAB frame. * Furthermore, two boolean variables inform whether the two fission * products (C1, C2) decay immediately into a single hadron (in which * case the cluster itself is identify with that hadron) and we do * not have to solve the kinematics of the components (Q1,Qbar) for * C1 and (Q,Q2bar) for C2. * The output is given by the following momenta (all 5-components, * and all in the LAB frame): * pClu1 , pClu2 respectively of C1 , C2 * pQ1 , pQbar respectively of Q1 , Qbar in C1 * pQ , pQ2bar respectively of Q , Q2 in C2 * The assumption, suggested from the string model, is that, in C frame, * C1 and its constituents Q1 and Qbar are collinear, and collinear to * the direction of Q1 in C (that is before cluster decay); similarly, * (always in the C frame) C2 and its constituents Q and Q2bar are * collinear (and therefore anti-collinear with C1,Q1,Qbar). * The solution is then obtained by using Lorentz boosts, as follows. * The kinematics of C1 and C2 is solved in their parent C frame, * and then boosted back in the LAB. The kinematics of Q1 and Qbar * is solved in their parent C1 frame and then boosted back in the LAB; * similarly, the kinematics of Q and Q2bar is solved in their parent * C2 frame and then boosted back in the LAB. In each of the three * "two-body decay"-like cases, we use the fact that the direction * of the motion of the decay products is known in the rest frame of * their parent. This is obvious for the first case in which the * parent rest frame is C; but it is also true in the other two cases * where the rest frames are C1 and C2. This is because C1 and C2 * are boosted w.r.t. C in the same direction where their components, * respectively (Q1,Qbar) and (Q,Q2bar) move in C1 and C2 rest frame * respectively. * Of course, although the notation used assumed that C = (Q1 Q2bar) * where Q1 is a quark and Q2bar an antiquark, indeed everything remain * unchanged also in all following cases: * Q1 quark, Q2bar antiquark; --> Q quark; * Q1 antiquark , Q2bar quark; --> Q antiquark; * Q1 quark, Q2bar diquark; --> Q quark * Q1 antiquark, Q2bar anti-diquark; --> Q antiquark * Q1 diquark, Q2bar quark --> Q antiquark * Q1 anti-diquark, Q2bar antiquark; --> Q quark **************************/ if (pClu.m() < pClu1.mass() + pClu2.mass() || pClu1.mass()<ZERO || pClu2.mass()<ZERO ) { throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics[FluxTube]() (A)" << Exception::eventerror; } // Calculate the unit three-vector, in the Cluster frame, // using the sampling funtion sampleDirection in the respective // clusters rest frame // Calculate the momenta of C1 and C2 in the (parent) C frame first, // where the direction of C1 is samples according to sampleDirection, // and then boost back in the LAB frame. // // relative momentum in centre of mass of cluster Lorentz5Momentum uRelCluster(p0Q1); uRelCluster.boost( -pClu.boostVector() ); // boost from LAB to C // sample direction (options = Default(aligned), Isotropic // or FluxTube(gaussian pT kick)) Axis DirClu = sampleDirection(uRelCluster, pClu.mass(), pClu1.mass(), pClu2.mass()); Kinematics::twoBodyDecay(pClu, pClu1.mass(), pClu2.mass(), DirClu, pClu1, pClu2); // In the case that cluster1 does not decay immediately into a single hadron, // calculate the momenta of Q1 (as constituent of C1) and Qbar in the // (parent) C1 frame first, where the direction of Q1 is u.vect().unit(), // and then boost back in the LAB frame. if(!toHadron1) { if (pClu1.m() < pQ1.mass() + pQbar.mass() ) { throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics[FluxTube]() (B)" << Exception::eventerror; } // relative momentum in centre of mass of cluster 1 Lorentz5Momentum uRelCluster1COM(p0Q1); uRelCluster1COM.boost( -pClu1.boostVector() ); // boost from LAB to C1 // sample direction (options = Default(aligned), Isotropic // or FluxTube(gaussian pT kick)) Axis DirClu1 = sampleDirection(uRelCluster1COM, pClu1.mass(), pQ1.mass(), pQbar.mass()); Kinematics::twoBodyDecay(pClu1, pQ1.mass(), pQbar.mass(), DirClu1, pQ1, pQbar); } // In the case that cluster2 does not decay immediately into a single hadron, // Calculate the momenta of Q and Q2bar (as constituent of C2) in the // (parent) C2 frame first, where the direction of Q is u.vect().unit(), // and then boost back in the LAB frame. if(!toHadron2) { if (pClu2.m() < pQ.mass() + pQ2bar.mass() ) { throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics[FluxTube]() (C)" << Exception::eventerror; } // relative momentum in centre of mass of cluster 2 Lorentz5Momentum uRelCluster2COM(p0Q1); uRelCluster2COM.boost( -pClu2.boostVector() ); // boost from LAB to C2 // sample direction (options = Default(aligned), Isotropic // or FluxTube(gaussian pT kick)) Axis DirClu2 = sampleDirection(uRelCluster2COM, pClu2.mass(), pQ2bar.mass(), pQ.mass()); Kinematics::twoBodyDecay(pClu2, pQ.mass(), pQ2bar.mass(), DirClu2, pQ, pQ2bar); } } void ClusterFissioner::calculatePositions(const Lorentz5Momentum & pClu, const LorentzPoint & positionClu, const Lorentz5Momentum & pClu1, const Lorentz5Momentum & pClu2, LorentzPoint & positionClu1, LorentzPoint & positionClu2) const { // Determine positions of cluster children. // See Marc Smith's thesis, page 127, formulas (4.122) and (4.123). Energy Mclu = pClu.m(); Energy Mclu1 = pClu1.m(); Energy Mclu2 = pClu2.m(); // Calculate the unit three-vector, in the C frame, along which // children clusters move. Lorentz5Momentum u(pClu1); u.boost( -pClu.boostVector() ); // boost from LAB to C frame // the unit three-vector is then u.vect().unit() Energy pstarChild = Kinematics::pstarTwoBodyDecay(Mclu,Mclu1,Mclu2); // First, determine the relative positions of the children clusters // in the parent cluster reference frame. Energy2 mag2 = u.vect().mag2(); InvEnergy fact = mag2>ZERO ? 1./sqrt(mag2) : 1./GeV; Length x1 = ( 0.25*Mclu + 0.5*( pstarChild + (sqr(Mclu2) - sqr(Mclu1))/(2.0*Mclu)))/_kappa; Length t1 = Mclu/_kappa - x1; LorentzDistance distanceClu1( x1 * fact * u.vect(), t1 ); Length x2 = (-0.25*Mclu + 0.5*(-pstarChild + (sqr(Mclu2) - sqr(Mclu1))/(2.0*Mclu)))/_kappa; Length t2 = Mclu/_kappa + x2; LorentzDistance distanceClu2( x2 * fact * u.vect(), t2 ); // Then, transform such relative positions from the parent cluster // reference frame to the Lab frame. distanceClu1.boost( pClu.boostVector() ); distanceClu2.boost( pClu.boostVector() ); // Finally, determine the absolute positions in the Lab frame. positionClu1 = positionClu + distanceClu1; positionClu2 = positionClu + distanceClu2; } bool ClusterFissioner::ProbablityFunction(double scale, double threshold) { double cut = UseRandom::rnd(0.0,1.0); return 1./(1.+pow(abs((threshold-_probShift)/scale),_probPowFactor)) > cut ? true : false; } bool ClusterFissioner::isHeavy(tcClusterPtr clu) { // particle data for constituents tcPDPtr cptr[3]={tcPDPtr(),tcPDPtr(),tcPDPtr()}; for(size_t ix=0;ix<min(clu->numComponents(),3);++ix) { cptr[ix]=clu->particle(ix)->dataPtr(); } // different parameters for exotic, bottom and charm clusters double clpow = !spectrum()->isExotic(cptr[0],cptr[1],cptr[1]) ? _clPowLight : _clPowExotic; Energy clmax = !spectrum()->isExotic(cptr[0],cptr[1],cptr[1]) ? _clMaxLight : _clMaxExotic; for ( const long& id : spectrum()->heavyHadronizingQuarks() ) { if ( spectrum()->hasHeavy(id,cptr[0],cptr[1],cptr[1]) ) { clpow = _clPowHeavy[id]; clmax = _clMaxHeavy[id]; } } // required test for SUSY clusters, since aboveCutoff alone // cannot guarantee (Mc > m1 + m2 + 2*m) in cut() static const Energy minmass = getParticleData(ParticleID::d)->constituentMass(); bool aboveCutoff = false, canSplitMinimally = false; // static kinematic threshold if(_kinematicThresholdChoice == 0) { aboveCutoff = ( pow(clu->mass()*UnitRemoval::InvE , clpow) > pow(clmax*UnitRemoval::InvE, clpow) + pow(clu->sumConstituentMasses()*UnitRemoval::InvE, clpow) ); canSplitMinimally = clu->mass() > clu->sumConstituentMasses() + 2.0 * minmass; } // dynamic kinematic threshold else if(_kinematicThresholdChoice == 1) { //some smooth probablity function to create a dynamic thershold double scale = pow(clu->mass()/GeV , clpow); double threshold = pow(clmax/GeV, clpow) + pow(clu->sumConstituentMasses()/GeV, clpow); aboveCutoff = ProbablityFunction(scale,threshold); scale = clu->mass()/GeV; threshold = clu->sumConstituentMasses()/GeV + 2.0 * minmass/GeV; canSplitMinimally = ProbablityFunction(scale,threshold); } return aboveCutoff && canSplitMinimally; }