diff --git a/Hadronization/ClusterFinder.cc b/Hadronization/ClusterFinder.cc
--- a/Hadronization/ClusterFinder.cc
+++ b/Hadronization/ClusterFinder.cc
@@ -1,490 +1,490 @@
 // -*- C++ -*-
 //
 // ClusterFinder.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
 // Copyright (C) 2002-2019 The Herwig Collaboration
 //
 // Herwig is licenced under version 3 of the GPL, see COPYING for details.
 // Please respect the MCnet academic guidelines, see GUIDELINES for details.
 //
 //
 // This is the implementation of the non-inlined, non-templated member
 // functions of the ClusterFinder class.
 //
 
 #include "ClusterFinder.h"
 #include <ThePEG/Interface/ClassDocumentation.h>
 #include <ThePEG/Interface/Switch.h>
 #include <ThePEG/Persistency/PersistentOStream.h>
 #include <ThePEG/Persistency/PersistentIStream.h>
 #include <ThePEG/PDT/StandardMatchers.h>
 #include <ThePEG/PDT/EnumParticles.h>
 #include <ThePEG/Repository/EventGenerator.h>
 #include <ThePEG/EventRecord/Collision.h>
 #include "Herwig/Utilities/EnumParticles.h"
 #include "Herwig/Utilities/Kinematics.h"
 #include "Cluster.h"
 #include <ThePEG/Utilities/DescribeClass.h>
 #include "ThePEG/Interface/Reference.h"
 
 using namespace Herwig;
 
 DescribeClass<ClusterFinder,Interfaced>
 describeClusterFinder("Herwig::ClusterFinder","Herwig.so");
 
 IBPtr ClusterFinder::clone() const {
   return new_ptr(*this);
 }
 
 IBPtr ClusterFinder::fullclone() const {
   return new_ptr(*this);
 }
 void ClusterFinder::persistentOutput(PersistentOStream & os) const {
   os << heavyDiquarks_ << diQuarkSelection_ << diQuarkOnShell_ << _hadronSpectrum;
 }
 
 void ClusterFinder::persistentInput(PersistentIStream & is, int) {
   is >> heavyDiquarks_ >> diQuarkSelection_ >> diQuarkOnShell_ >> _hadronSpectrum;
 }
 
 void ClusterFinder::Init() {
 
   static ClassDocumentation<ClusterFinder> documentation
     ("This class is responsible of finding clusters.");
 
   static Reference<ClusterFinder,HadronSpectrum> interfaceHadronSpectrum
     ("HadronSpectrum",
      "Set the hadron spectrum for this parton splitter.",
      &ClusterFinder::_hadronSpectrum, false, false, false, false, false);
 
   static Switch<ClusterFinder,unsigned int> interfaceHeavyDiquarks
     ("HeavyDiquarks",
      "How to treat heavy quarks in baryon number violating clusters",
      &ClusterFinder::heavyDiquarks_, 2, false, false);
   static SwitchOption interfaceHeavyDiquarksDefault
     (interfaceHeavyDiquarks,
      "Allow",
      "No special treatment, allow both heavy and doubly heavy diquarks",
      0);
   static SwitchOption interfaceHeavyDiquarksNoDoublyHeavy
     (interfaceHeavyDiquarks,
      "NoDoublyHeavy",
      "Avoid having diquarks with twoo heavy quarks",
      1);
   static SwitchOption interfaceHeavyDiquarksNoHeavy
     (interfaceHeavyDiquarks,
      "NoHeavy",
      "Try and avoid diquarks contain c and b altogether",
      2);
 
   static Switch<ClusterFinder,unsigned int> interfaceDiQuarkSelection
     ("DiQuarkSelection",
      "Option controlling the selection of quarks to merge into a diquark in baryon-number violating clusters",
      &ClusterFinder::diQuarkSelection_, 1, false, false);
   static SwitchOption interfaceDiQuarkSelectionRandom
     (interfaceDiQuarkSelection,
      "Random",
      "Randomly pick a pair to combine",
      0);
   static SwitchOption interfaceDiQuarkSelectionLowestMass
     (interfaceDiQuarkSelection,
      "LowestMass",
      "Combine the lowest mass pair",
      1);
 
   static Switch<ClusterFinder,bool> interfaceDiQuarkOnShell
     ("DiQuarkOnShell",
      "Force the diquark produced in baryon-number violating clusters to be on-shell",
      &ClusterFinder::diQuarkOnShell_, false, false, false);
   static SwitchOption interfaceDiQuarkOnShellYes
     (interfaceDiQuarkOnShell,
      "Yes",
      "Force to be on-shell",
      true);
   static SwitchOption interfaceDiQuarkOnShellNo
     (interfaceDiQuarkOnShell,
      "No",
      "Leave off-shell",
      false);
 
 }
 
 ClusterVector ClusterFinder::formClusters(const PVector & partons) {
 
   set<tPPtr> examinedSet;  // colour particles already included in a cluster
   map<tColinePtr, pair<tPPtr,tPPtr> > quarkQuark; // quark quark
   map<tColinePtr, pair<tPPtr,tPPtr> > aQuarkQuark; // anti quark anti quark
   ParticleSet inputParticles(partons.begin(),partons.end());
 
   ClusterVector clusters;
 
   // Loop over all current particles.
   for(PVector::const_iterator pit=partons.begin();pit!=partons.end();++pit){
     // Skip to the next particle if it is not coloured or already examined.
     assert(*pit);
     assert((*pit)->dataPtr());
     if(!(**pit).data().coloured()
        || examinedSet.find(*pit) != examinedSet.end()) {
       continue;
     }
     // We assume that a cluster is  made of, at most, 3 constituents although
     // in most cases the number will be 2; however, for baryon violating decays
     // (for example in Susy model without R parity conservation) we can have 3
     // constituents. In the latter case, a quark (antiquark) do not have an
     // anticolour (colour) partner as usual, but its colour line either stems
     // from a colour source, or ends in a colour sink. In the case of double
     // baryon violating decays, but with overall baryon conservation
     //  ( for instance:
     //       tilde_u_R -> dbar_1 + dbar_2
     //       tilde_u_R_star -> d1 + d2
     //    where tilde_u_R and tilde_u_R_star are colour connected )
     // a special treatment is needed, because first we have to process all
     // partons in the current step, and then for each left pair of quarks which
     // stem from a colour source we have to find the corresponding pair of
     // anti-quarks which ends in a colour sink and is connected with the
     // above colour source. These special pairs are kept into the maps:
     //    spec/CluHadConfig.hialQuarkQuarkMap   and   specialAntiQuarkAntiQuarkMap.
 
     tParticleVector connected(3);
     int iElement = 0;
     connected[iElement++] = *pit;
     bool specialCase = false;
 
     if((*pit)->hasColour()) {
       tPPtr partner =
 	(*pit)->colourLine()->getColouredParticle(partons.begin(),
 						  partons.end(),
 						  true);
 
       if(partner) {
 	connected[iElement++]= partner;
       }
       // colour source : baryon-violating process
       else {
 	if((*pit)->colourLine()->sourceNeighbours() != tColinePair()) {
 	  tColinePair sourcePair = (*pit)->colourLine()->sourceNeighbours();
 	  tColinePtr intCL = tColinePtr();
 	  for(int i = 0; i < 2; ++i) {
 	    tColinePtr pLine = i==0 ? sourcePair.first : sourcePair.second;
             int saveNumElements = iElement;
 	    for(tPVector::const_iterator cit = pLine->coloured().begin();
 		cit != pLine->coloured().end(); ++cit ) {
 	      ParticleSet::const_iterator cjt = inputParticles.find(*cit);
 	      if(cjt!=inputParticles.end()) connected[iElement++]= (*cit);
 	    }
 	    if(iElement == saveNumElements) intCL = pLine;
 	  }
 	  if(intCL && iElement == 2) {
 	    specialCase = true;
 	    pair<tPPtr,tPPtr> qp=pair<tPPtr,tPPtr>(connected[0],connected[1]);
 	    quarkQuark.insert(pair<tColinePtr,pair<tPPtr,tPPtr> >(intCL,qp));
 	  }
 	  else if(iElement != 3) {
 	    throw Exception() << "Colour connections fail in the hadronization for "
 			      << **pit << "in ClusterFinder::formClusters"
 			      << " for a coloured particle."
 			      << " Failed to find particles from a source"
 			      << Exception::runerror;
 	  }
 	}
 	else {
 	  throw Exception() << "Colour connections fail in the hadronization for "
 			    << **pit << "in ClusterFinder::formClusters for"
 			    << " a coloured particle"
 			    << Exception::runerror;
 	}
       }
     }
 
     if((*pit)->hasAntiColour()) {
       tPPtr partner =
 	(*pit)->antiColourLine()->getColouredParticle(partons.begin(),
 						      partons.end(),
 						      false);
       if(partner) {
 	connected[iElement++]=partner;
       }
       // colour sink : baryon-violating process
       else {
         if((*pit)->antiColourLine()->sinkNeighbours() != tColinePair()) {
 	  tColinePair sinkPair = (*pit)->antiColourLine()->sinkNeighbours();
 	  tColinePtr intCL = tColinePtr();
 	  for(int i = 0; i < 2; ++i) {
 	    tColinePtr pLine = i==0 ? sinkPair.first : sinkPair.second;
             int saveNumElements = iElement;
 	    for(tPVector::const_iterator cit = pLine->antiColoured().begin();
 		cit != pLine->antiColoured().end(); ++cit ) {
 	      ParticleSet::const_iterator cjt = inputParticles.find(*cit);
 	      if(cjt!=inputParticles.end()) connected[iElement++]= (*cit);
 	    }
 	    if(iElement == saveNumElements) intCL = pLine;
 	  }
 	  if(intCL && iElement == 2) {
 	    specialCase = true;
 	    pair<tPPtr,tPPtr> aqp=pair<tPPtr,tPPtr>(connected[0],connected[1]);
 	    aQuarkQuark.insert(pair<tColinePtr,pair<tPPtr,tPPtr> >(intCL,aqp));
 	  }
 	  else if( iElement !=3) {
 	    throw Exception() << "Colour connections fail in the hadronization for "
 			      << **pit << "in ClusterFinder::formClusters for"
 			      << " an anti-coloured particle."
 			      << " Failed to find particles from a sink"
 			      << Exception::runerror;
 	  }
 	}
 	else {
 	  throw Exception() << "Colour connections fail in the hadronization for "
 			    << **pit << "in ClusterFinder::formClusters for"
 			    << " an anti-coloured particle"
 			    << Exception::runerror;
 	}
       }
     }
 
     if(!specialCase) {
       // Tag the components of the found cluster as already examined.
       for (int i=0; i<iElement; ++i) examinedSet.insert(connected[i]);
       // Create the cluster object with the colour connected particles
       ClusterPtr cluPtr = new_ptr(Cluster(connected[0],connected[1],
 					  connected[2]));
       // add to the step
       connected[0]->addChild(cluPtr);
       connected[1]->addChild(cluPtr);
       if(connected[2]) connected[2]->addChild(cluPtr);
       clusters.push_back(cluPtr);
       // Check if any of the components is a beam remnant, and if this
       // is the case then inform the cluster.
       // this will only work for baryon collisions
       for (int i=0; i<iElement; ++i) {
 	bool fromRemnant = false;
 	tPPtr parent=connected[i];
 	while(parent) {
 	  if(parent->id()==ParticleID::Remnant) {
 	    fromRemnant = true;
 	    break;
 	  }
 	  parent = parent->parents().empty() ? tPPtr() : parent->parents()[0];
 	}
 	if(fromRemnant&&DiquarkMatcher::Check(connected[i]->id()))
 	  cluPtr->isBeamCluster(connected[i]);
       }
     }
 
   }
 
   // Treat now the special cases, if any. The idea is to find for each pair
   // of quarks coming from a common colour source the corresponding pair of
   // antiquarks coming from a common colour sink, connected to the above
   // colour source via the same colour line. Then, randomly couple one of
   // the two quarks with one of the two antiquarks, and do the same with the
   // quark and antiquark left.
   for(map<tColinePtr, pair<tPPtr,tPPtr> >::const_iterator
 	cit = quarkQuark.begin(); cit != quarkQuark.end(); ++cit ) {
     tColinePtr coline = cit->first;
     pair<tPPtr,tPPtr> quarkPair = cit->second;
     if(aQuarkQuark.find( coline ) != aQuarkQuark.end()) {
       pair<tPPtr,tPPtr> antiQuarkPair = aQuarkQuark.find(coline)->second;
       ClusterPtr cluPtr1, cluPtr2;
       if ( UseRandom::rndbool() ) {
 	cluPtr1 = new_ptr(Cluster(quarkPair.first , antiQuarkPair.first));
 	cluPtr2 = new_ptr(Cluster(quarkPair.second , antiQuarkPair.second));
 	quarkPair.first->addChild(cluPtr1);
 	antiQuarkPair.first->addChild(cluPtr1);
 	quarkPair.second->addChild(cluPtr2);
 	antiQuarkPair.second->addChild(cluPtr2);
       } else {
 	cluPtr1 = new_ptr(Cluster(quarkPair.first , antiQuarkPair.second));
 	cluPtr2 = new_ptr(Cluster(quarkPair.second , antiQuarkPair.first));
 	quarkPair.second->addChild(cluPtr2);
 	antiQuarkPair.first->addChild(cluPtr2);
 	quarkPair.first->addChild(cluPtr1);
 	antiQuarkPair.second->addChild(cluPtr1);
       }
       clusters.push_back(cluPtr1);
       clusters.push_back(cluPtr2);
     }
     else {
       throw Exception() << "ClusterFinder::formClusters : "
 			<< "***Skip event: unable to match pairs in "
 			<< "Baryon-violating processes***"
 			<< Exception::eventerror;
     }
   }
   return clusters;
 }
 
 namespace {
   bool PartOrdering(tPPtr p1,tPPtr p2) {
     return abs(p1->id())<abs(p2->id());
   }
 }
 
 void ClusterFinder::reduceToTwoComponents(ClusterVector & clusters) {
 
   // In order to preserve all of the information, we do not modify the
   // directly the 3-component clusters, but instead we define new clusters,
   // which are related to the original ones by a child-parent relationship,
   // by considering two randomly chosen components as a diquark (or anti-diquark).
   // These new clusters are first added to the vector  vecNewRedefinedCluPtr,
   // and at the end, when all input clusters have been examined, the elements of
   // this vector will be copied in  collecCluPtr  (the reason is that it is not
   // allowed to modify a STL container while iterating over it).
   vector<tClusterPtr> redefinedClusters;
   for(ClusterVector::iterator cluIter = clusters.begin() ;
       cluIter != clusters.end() ; ++cluIter) {
     tParticleVector vec;
 
     if ( (*cluIter)->numComponents() != 3 ||
 	 ! (*cluIter)->isAvailable() ) continue;
 
     tPPtr other;
     for(unsigned int i = 0; i<(*cluIter)->numComponents(); i++) {
       tPPtr part = (*cluIter)->particle(i);
       if(!DiquarkMatcher::Check(*(part->dataPtr())))
 	vec.push_back(part);
       else
 	other = part;
     }
 
     if(vec.size()<2) {
       throw Exception() << "Could not make a diquark for a baryonic cluster decay from "
 			<< (*cluIter)->particle(0)->PDGName() << " "
 			<< (*cluIter)->particle(1)->PDGName() << " "
 			<< (*cluIter)->particle(2)->PDGName() << " "
 			<< " in ClusterFinder::reduceToTwoComponents()."
 			<< Exception::eventerror;
     }
 
     // order the vector so heaviest at the end
     std::sort(vec.begin(),vec.end(),PartOrdering);
 
     // Special treatment of heavy quarks
     // avoid doubly heavy diquarks
     if(heavyDiquarks_>=1   && vec.size()>2 &&
        abs(vec[1]->id())>3 && abs(vec[0]->id())<=3) {
       if(UseRandom::rndbool()) swap(vec[1],vec[2]);
       other = vec[2];
       vec.pop_back();
     }
     // avoid singly heavy diquarks
     if(heavyDiquarks_==2   && vec.size()>2 &&
        abs(vec[2]->id())>3 && abs(vec[1]->id())<=3) {
       other = vec[2];
       vec.pop_back();
     }
 
     // if there's a choice pick the pair to make a diquark from
     if(vec.size()>2) {
       unsigned int ichoice(0);
       // random choice
       if(diQuarkSelection_==0) {
 	ichoice = UseRandom::rnd3(1.0, 1.0, 1.0);
       }
       // pick the lightest quark pair
       else if(diQuarkSelection_==1) {
 	Energy m12 = (vec[0]->momentum()+vec[1]->momentum()).m();
 	Energy m13 = (vec[0]->momentum()+vec[2]->momentum()).m();
 	Energy m23 = (vec[1]->momentum()+vec[2]->momentum()).m();
 	if     (m13<=m12&&m13<=m23)  ichoice = 2;
 	else if(m23<=m12&&m23<=m13)  ichoice = 1;
       }
       else
 	assert(false);
       // make the swaps so select pair first
       switch (ichoice) {
       case 0:
 	break;
       case 1:
 	swap(vec[2],vec[0]);
 	break;
       case 2:
 	swap(vec[2],vec[1]);
 	break;
       }
     }
     // set up
     tcPDPtr temp1  = vec[0]->dataPtr();
     tcPDPtr temp2  = vec[1]->dataPtr();
     if(!other) other = vec[2];
 
     tcPDPtr dataDiquark  = _hadronSpectrum->makeDiquark(temp1,temp2);
     
     if(!dataDiquark) 
-      throw Exception() << "Could not make a diquark from"
+      throw Exception() << "Could not make a diquark from "
 			<< temp1->PDGName() << " and "
 			<< temp2->PDGName()
 			<< " in ClusterFinder::reduceToTwoComponents()"
 			<< Exception::eventerror;
 
 
     // Create the new cluster (with two components) and assign to it the same
     // momentum and position of the original (with three components) one.
     // Furthermore, assign to the diquark component a momentum given by the
     // sum of the two original components from which has been formed; for the
     // position, we are assuming, very simply, that the diquark position is
     // the average positions of the two original components.
     // Notice that the mass (5-th component of the 5-momentum) of the diquark
     // is set by hand to the constituent mass of the diquark (which is equal
     // to the sum of the constituent masses of the two quarks which form the
     // diquark) because the sum of 5-component vectors do add only the "normal"
     // 4-components, not the 5-th one. After that, the 5-momentum of the diquark
     // is in an inconsistent state, because the mass (5-th component) is not
     // equal to the invariant mass obtained from the 4-momemtum. This is not
     // unique to this kind of component (all perturbative components are in
     // a similar situation), but it is not harmful.
 
     // construct the diquark
     PPtr diquark = dataDiquark->produceParticle();
     vec[0]->addChild(diquark);
     vec[1]->addChild(diquark);
     diquark->set5Momentum(Lorentz5Momentum(vec[0]->momentum() + vec[1]->momentum(),
 					   dataDiquark->constituentMass()));
     // use the same method as for cluster to determine the diquark position
     diquark->setVertex(Cluster::calculateX(vec[0],vec[1]));
     // put on-shell if required
     if(diQuarkOnShell_) {
       Lorentz5Momentum psum = diquark->momentum()+other->momentum();
       psum.rescaleMass();
       Boost boost = psum.boostVector();
       Lorentz5Momentum pother   =   other->momentum();
       Lorentz5Momentum pdiquark = diquark->momentum();
       pother.boost(-boost);
       pdiquark.boost(-boost);
       Energy pcm = Kinematics::pstarTwoBodyDecay(psum.mass(),
 						 other->dataPtr()->constituentMass(),
 						 diquark->dataPtr()->constituentMass());
       if(pcm>ZERO) {
 	double fact = pcm/pother.vect().mag();
 	pother   *= fact;
 	pdiquark *= fact;
 	pother  .setMass(other->dataPtr()->constituentMass());
 	pdiquark.setMass(dataDiquark     ->constituentMass());
 	pother  .rescaleEnergy();
 	pdiquark.rescaleEnergy();
 	pother  .boost(boost);
 	pdiquark.boost(boost);
 	other->set5Momentum(pother);
 	diquark->set5Momentum(pdiquark);
       }
     }
     // make the new cluster
     ClusterPtr nclus = new_ptr(Cluster(other,diquark));
     //vec[0]->addChild(nclus);
     //diquark->addChild(nclus);
 
     // Set the parent/children relationship between the original cluster
     // (the one with three components) with the new one (the one with two components)
     // and add the latter to the vector of new redefined clusters.
     (*cluIter)->addChild(nclus);
 
     redefinedClusters.push_back(nclus);
   }
 
   // Add to  collecCluPtr  all of the redefined new clusters (indeed the
   // pointers to them are added) contained in  vecNewRedefinedCluPtr.
   /// \todo why do we keep the original of the redefined clusters?
   for (tClusterVector::const_iterator it = redefinedClusters.begin();
         it != redefinedClusters.end(); ++it) {
     clusters.push_back(*it);
   }
 
 }
diff --git a/Hadronization/ClusterFissioner.cc b/Hadronization/ClusterFissioner.cc
--- a/Hadronization/ClusterFissioner.cc
+++ b/Hadronization/ClusterFissioner.cc
@@ -1,1436 +1,1436 @@
 // -*- C++ -*-
 //
 // ClusterFissioner.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
 // Copyright (C) 2002-2019 The Herwig Collaboration
 //
 // Herwig is licenced under version 3 of the GPL, see COPYING for details.
 // Please respect the MCnet academic guidelines, see GUIDELINES for details.
 //
 //
 // Thisk is the implementation of the non-inlined, non-templated member
 // functions of the ClusterFissioner class.
 //
 
 #include "ClusterFissioner.h"
 #include <ThePEG/Interface/ClassDocumentation.h>
 #include <ThePEG/Interface/Reference.h>
 #include <ThePEG/Interface/Parameter.h>
 #include <ThePEG/Interface/Switch.h>
 #include <ThePEG/Persistency/PersistentOStream.h>
 #include <ThePEG/Persistency/PersistentIStream.h>
 #include <ThePEG/PDT/EnumParticles.h>
 #include "Herwig/Utilities/Kinematics.h"
 #include "Cluster.h"
 #include "ThePEG/Repository/UseRandom.h"
 #include "ThePEG/Repository/EventGenerator.h"
 #include <ThePEG/Utilities/DescribeClass.h>
 #include "ThePEG/Interface/ParMap.h"
 
 using namespace Herwig;
 
 DescribeClass<ClusterFissioner,Interfaced>
 describeClusterFissioner("Herwig::ClusterFissioner","Herwig.so");
 
 ClusterFissioner::ClusterFissioner() :
   _clMaxLight(3.35*GeV),
   _clMaxExotic(3.35*GeV),
   _clPowLight(2.0),
   _clPowExotic(2.0),
   _pSplitLight(1.0),
   _pSplitExotic(1.0),
   _fissionCluster(0),
   _kinematicThresholdChoice(0),
   _pwtDIquark(0.0),
   _diquarkClusterFission(0),
   _btClM(1.0*GeV),
   _iopRem(1),
   _kappa(1.0e15*GeV/meter),
   _kinematics(0),
   _fluxTubeWidth(1.0*GeV),
   _enhanceSProb(0),
   _m0Fission(2.*GeV),
   _massMeasure(0),
   _probPowFactor(4.0),
   _probShift(0.0),
   _kinThresholdShift(1.0*sqr(GeV))
 {}
 
 IBPtr ClusterFissioner::clone() const {
   return new_ptr(*this);
 }
 
 IBPtr ClusterFissioner::fullclone() const {
   return new_ptr(*this);
 }
 
 void ClusterFissioner::persistentOutput(PersistentOStream & os) const {
   os << ounit(_clMaxLight,GeV)
      << ounit(_clMaxHeavy,GeV) << ounit(_clMaxExotic,GeV) << _clPowLight << _clPowHeavy
      << _clPowExotic << _pSplitLight
      << _pSplitHeavy << _pSplitExotic
      << _fissionCluster << _fissionPwt
 	 << _pwtDIquark
 	 << _diquarkClusterFission
 	 << _kinematics
 	 << ounit(_fluxTubeWidth,GeV)
 	 << ounit(_btClM,GeV)
      << _iopRem  << ounit(_kappa, GeV/meter)
      << _enhanceSProb << ounit(_m0Fission,GeV) << _massMeasure
      << _hadronSpectrum
      << _probPowFactor << _probShift << ounit(_kinThresholdShift,sqr(GeV));
 }
 
 void ClusterFissioner::persistentInput(PersistentIStream & is, int) {
   is >> iunit(_clMaxLight,GeV)
      >> iunit(_clMaxHeavy,GeV) >> iunit(_clMaxExotic,GeV) >> _clPowLight >> _clPowHeavy
      >> _clPowExotic >> _pSplitLight
      >> _pSplitHeavy >> _pSplitExotic
      >> _fissionCluster >> _fissionPwt
 	 >> _pwtDIquark
 	 >> _diquarkClusterFission
 	 >> _kinematics
 	 >> iunit(_fluxTubeWidth,GeV)
-     >> iunit(_btClM,GeV) >> _iopRem
-     >> iunit(_kappa, GeV/meter)
+     >> iunit(_btClM,GeV)
+	 >> _iopRem >> iunit(_kappa, GeV/meter)
      >> _enhanceSProb >> iunit(_m0Fission,GeV) >> _massMeasure
      >> _hadronSpectrum
      >> _probPowFactor >> _probShift >> iunit(_kinThresholdShift,sqr(GeV));
 }
 
 void ClusterFissioner::doinit() {
   Interfaced::doinit();
   for ( const long& id : spectrum()->heavyHadronizingQuarks() ) {
     if ( _pSplitHeavy.find(id) == _pSplitHeavy.end() ||
 	 _clPowHeavy.find(id) == _clPowHeavy.end() ||
 	 _clMaxHeavy.find(id) == _clMaxHeavy.end() )
       throw InitException() << "not all parameters have been set for heavy quark cluster fission";
   }
   // for default Pwts not needed to initialize
   if (_fissionCluster==0) return;  
   for ( const long& id : spectrum()->lightHadronizingQuarks() ) {
 	  if ( _fissionPwt.find(id) == _fissionPwt.end() )
 		  // check that all relevant weights are set
 		  throw InitException() << "fission weights for light quarks have not been set";
   }
   /*
   // Not needed since we set Diquark weights from quark weights
   for ( const long& id : spectrum()->lightHadronizingDiquarks() ) {
 	  if ( _fissionPwt.find(id) == _fissionPwt.end() )
 		  throw InitException() << "fission weights for light diquarks have not been set";
   }*/
   double pwtDquark=_fissionPwt.find(ParticleID::d)->second;
   double pwtUquark=_fissionPwt.find(ParticleID::u)->second;
   double pwtSquark=_fissionPwt.find(ParticleID::s)->second;
   // ERROR: TODO makeDiquarkID is protected function ?
   // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::d,ParticleID::d,3)] =       _pwtDIquark * pwtDquark * pwtDquark;
   // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::u,ParticleID::d,1)] = 0.5 * _pwtDIquark * pwtUquark * pwtDquark;
   // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::u,ParticleID::u,3)] =       _pwtDIquark * pwtUquark * pwtUquark;
   // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::s,ParticleID::d,1)] = 0.5 * _pwtDIquark * pwtSquark * pwtDquark;
   // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::s,ParticleID::u,1)] = 0.5 * _pwtDIquark * pwtSquark * pwtUquark;
   // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::s,ParticleID::s,3)] =       _pwtDIquark * pwtSquark * pwtSquark;
   // TODO magic  number alternative
   _fissionPwt[1103] =       _pwtDIquark * pwtDquark * pwtDquark;
   _fissionPwt[2101] = 0.5 * _pwtDIquark * pwtUquark * pwtDquark;
   _fissionPwt[2203] =       _pwtDIquark * pwtUquark * pwtUquark;
   _fissionPwt[3101] = 0.5 * _pwtDIquark * pwtSquark * pwtDquark;
   _fissionPwt[3201] = 0.5 * _pwtDIquark * pwtSquark * pwtUquark;
   _fissionPwt[3303] =       _pwtDIquark * pwtSquark * pwtSquark;
 }
 
 void ClusterFissioner::Init() {
 
   static ClassDocumentation<ClusterFissioner> documentation
     ("Class responsibles for chopping up the clusters");
 
   static Reference<ClusterFissioner,HadronSpectrum> interfaceHadronSpectrum
     ("HadronSpectrum",
      "Set the Hadron spectrum for this cluster fissioner.",
      &ClusterFissioner::_hadronSpectrum, false, false, true, false);
 
   // ClMax for light, Bottom, Charm and exotic (e.g. Susy) quarks
   static Parameter<ClusterFissioner,Energy>
     interfaceClMaxLight ("ClMaxLight","cluster max mass for light quarks (unit [GeV])",
                     &ClusterFissioner::_clMaxLight, GeV, 3.35*GeV, ZERO, 10.0*GeV,
 		    false,false,false);  
   static ParMap<ClusterFissioner,Energy> interfaceClMaxHeavy
     ("ClMaxHeavy",
      "ClMax for heavy quarkls",
      &ClusterFissioner::_clMaxHeavy, GeV, -1, 3.35*GeV, ZERO, 10.0*GeV,
      false, false, Interface::upperlim);
   static Parameter<ClusterFissioner,Energy>
     interfaceClMaxExotic ("ClMaxExotic","cluster max mass  for exotic quarks (unit [GeV])",
                     &ClusterFissioner::_clMaxExotic, GeV, 3.35*GeV, ZERO, 10.0*GeV,
 		    false,false,false);
 
  // ClPow for light, Bottom, Charm and exotic (e.g. Susy) quarks
  static Parameter<ClusterFissioner,double>
     interfaceClPowLight ("ClPowLight","cluster mass exponent for light quarks",
                     &ClusterFissioner::_clPowLight, 0, 2.0, 0.0, 10.0,false,false,false); 
   static ParMap<ClusterFissioner,double> interfaceClPowHeavy
     ("ClPowHeavy",
      "ClPow for heavy quarks",
      &ClusterFissioner::_clPowHeavy, -1, 1.0, 0.0, 10.0,
      false, false, Interface::upperlim); 
  static Parameter<ClusterFissioner,double>
     interfaceClPowExotic ("ClPowExotic","cluster mass exponent for exotic quarks",
                     &ClusterFissioner::_clPowExotic, 0, 2.0, 0.0, 10.0,false,false,false);
 
  // PSplit for light, Bottom, Charm and exotic (e.g. Susy) quarks
   static Parameter<ClusterFissioner,double>
     interfacePSplitLight ("PSplitLight","cluster mass splitting param for light quarks",
                     &ClusterFissioner::_pSplitLight, 0, 1.0, 0.0, 10.0,false,false,false);
   static ParMap<ClusterFissioner,double> interfacePSplitHeavy
     ("PSplitHeavy",
      "PSplit for heavy quarks",
      &ClusterFissioner::_pSplitHeavy, -1, 1.0, 0.0, 10.0,
      false, false, Interface::upperlim);
  static Parameter<ClusterFissioner,double>
     interfacePSplitExotic ("PSplitExotic","cluster mass splitting param for exotic quarks",
                     &ClusterFissioner::_pSplitExotic, 0, 1.0, 0.0, 10.0,false,false,false);
 
 
   static Switch<ClusterFissioner,int> interfaceFission
     ("Fission",
      "Option for different Fission options",
      &ClusterFissioner::_fissionCluster, 1, false, false);
   static SwitchOption interfaceFissionDefault
     (interfaceFission,
      "default",
      "Normal cluster fission which depends on the hadron selector class.",
      0);
   static SwitchOption interfaceFissionNew
     (interfaceFission,
      "new",
      "Alternative cluster fission which does not depend on the hadron selector class",
      1);
 
   
 
   static Switch<ClusterFissioner,int> interfaceDiquarkClusterFission
     ("DiquarkClusterFission",
      "Allow clusters to fission to 1 or 2 diquark Clusters",
      &ClusterFissioner::_diquarkClusterFission, 0, false, false);
   static SwitchOption interfaceDiquarkClusterFissionAll
 	(interfaceDiquarkClusterFission,
      "All",
      "Allow diquark clusters and baryon clusters to fission to new diquark Clusters",
      2);
   static SwitchOption interfaceDiquarkClusterFissionOnlyBaryonClusters
 	(interfaceDiquarkClusterFission,
      "OnlyBaryonClusters",
      "Allow only baryon clusters to fission to new diquark Clusters",
      1);
   static SwitchOption interfaceDiquarkClusterFissionNo
     (interfaceDiquarkClusterFission,
      "No",
      "Don't allow clusters to fission to new diquark Clusters",
      0);
 
   static ParMap<ClusterFissioner,double> interfaceFissionPwt
     ("FissionPwt",
      "The weights for quarks in the fission process.",
      &ClusterFissioner::_fissionPwt, -1, 1.0, 0.0, 10.0,
      false, false, Interface::upperlim);
 
   static Switch<ClusterFissioner,int> interfaceRemnantOption
     ("RemnantOption",
      "Option for the treatment of remnant clusters",
      &ClusterFissioner::_iopRem, 1, false, false);
   static SwitchOption interfaceRemnantOptionSoft
     (interfaceRemnantOption,
      "Soft",
      "Both clusters produced in the fission of the beam cluster"
      " are treated as soft clusters.",
      0);
   static SwitchOption interfaceRemnantOptionHard
     (interfaceRemnantOption,
      "Hard",
      "Only the cluster containing the remnant is treated as a soft cluster.",
      1);
   static SwitchOption interfaceRemnantOptionVeryHard
     (interfaceRemnantOption,
      "VeryHard",
      "Even remnant clusters are treated as hard, i.e. all clusters the same",
      2);
 
   static Parameter<ClusterFissioner,Energy> interfaceBTCLM
     ("SoftClusterFactor",
      "Parameter for the mass spectrum of remnant clusters",
      &ClusterFissioner::_btClM, GeV, 1.*GeV, 0.1*GeV, 10.0*GeV,
      false, false, Interface::limited);
 
 
   static Parameter<ClusterFissioner,Tension> interfaceStringTension
     ("StringTension",
      "String tension used in vertex displacement calculation",
      &ClusterFissioner::_kappa, GeV/meter,
      1.0e15*GeV/meter, ZERO, ZERO,
      false, false, Interface::lowerlim);
 
   static Switch<ClusterFissioner,int> interfaceEnhanceSProb
     ("EnhanceSProb",
      "Option for enhancing strangeness",
      &ClusterFissioner::_enhanceSProb, 0, false, false);
   static SwitchOption interfaceEnhanceSProbNo
     (interfaceEnhanceSProb,
      "No",
      "No strangeness enhancement.",
      0);
   static SwitchOption interfaceEnhanceSProbScaled
     (interfaceEnhanceSProb,
      "Scaled",
      "Scaled strangeness enhancement",
      1);
   static SwitchOption interfaceEnhanceSProbExponential
     (interfaceEnhanceSProb,
      "Exponential",
      "Exponential strangeness enhancement",
      2);
   static Switch<ClusterFissioner,int> interfaceKinematics
     ("Kinematics",
      "Option for selecting different Kinematics for ClusterFission",
      &ClusterFissioner::_kinematics, 0, false, false);
   static SwitchOption interfaceKinematicsDefault
     (interfaceKinematics,
      "Default",
      "Fully aligned Cluster Fission along the Original cluster direction",
      0);
   static SwitchOption interfaceKinematicsIsotropic
     (interfaceKinematics,
      "Isotropic",
      "Fully isotropic two body decay. Not recommended!",
      1);
   static SwitchOption interfaceKinematicsFluxTube
     (interfaceKinematics,
      "FluxTube",
      "Aligned decay with gaussian pT kick with sigma=ClusterFissioner::FluxTube",
      2);
 
    static Switch<ClusterFissioner,int> interfaceMassMeasure
      ("MassMeasure",
       "Option to use different mass measures",
       &ClusterFissioner::_massMeasure,0,false,false);
    static SwitchOption interfaceMassMeasureMass
      (interfaceMassMeasure,
       "Mass",
       "Mass Measure",
       0);
    static SwitchOption interfaceMassMeasureLambda
      (interfaceMassMeasure,
       "Lambda",
       "Lambda Measure",
       1);
 
   static Parameter<ClusterFissioner,Energy> interfaceFissionMassScale
     ("FissionMassScale",
      "Cluster fission mass scale",
      &ClusterFissioner::_m0Fission, GeV, 2.0*GeV, 0.1*GeV, 50.*GeV,
      false, false, Interface::limited);
 
   static Parameter<ClusterFissioner,double> interfaceProbPowFactor
      ("ProbablityPowerFactor",
       "Power factor in ClausterFissioner bell probablity function",
       &ClusterFissioner::_probPowFactor, 2.0, 1.0, 20.0,
       false, false, Interface::limited);
 
   static Parameter<ClusterFissioner,Energy> interfaceFluxTubeWidth
     ("FluxTubeWidth",
      "sigma of gaussian sampling of pT for FluxTube kinematics",
      &ClusterFissioner::_fluxTubeWidth, GeV, 2.0*GeV, 1.0e-30*GeV, 5.0*GeV,
      false, false, Interface::limited);
 
   static Parameter<ClusterFissioner,double> interfaceProbShift
      ("ProbablityShift",
       "Shifts from the center in ClausterFissioner bell probablity function",
       &ClusterFissioner::_probShift, 0.0, -10.0, 10.0,
       false, false, Interface::limited);
 
   static Parameter<ClusterFissioner,Energy2> interfaceKineticThresholdShift
      ("KineticThresholdShift",
       "Shifts from the kinetic threshold in ClausterFissioner",
       &ClusterFissioner::_kinThresholdShift, sqr(GeV), 0.*sqr(GeV), -10.0*sqr(GeV), 10.0*sqr(GeV),
       false, false, Interface::limited);
 
   static Switch<ClusterFissioner,int> interfaceKinematicThreshold
     ("KinematicThreshold",
      "Option for using static or dynamic kinematic thresholds in cluster splittings",
      &ClusterFissioner::_kinematicThresholdChoice, 0, false, false);
   static SwitchOption interfaceKinematicThresholdStatic
     (interfaceKinematicThreshold,
      "Static",
      "Set static kinematic thresholds for cluster splittings.",
      0);
   static SwitchOption interfaceKinematicThresholdDynamic
     (interfaceKinematicThreshold,
      "Dynamic",
      "Set dynamic kinematic thresholds for cluster splittings.",
      1);
 
 }
 
 tPVector ClusterFissioner::fission(ClusterVector & clusters, bool softUEisOn) {
   // return if no clusters
   if (clusters.empty()) return tPVector();
 
   /*****************
    * Loop over the (input) collection of cluster pointers, and store in
    * the vector  splitClusters  all the clusters that need to be split
    * (these are beam clusters, if soft underlying event is off, and
    *  heavy non-beam clusters).
    ********************/
 
   stack<ClusterPtr> splitClusters;
   for(ClusterVector::iterator it = clusters.begin() ;
       it != clusters.end() ; ++it) {
     /**************
      * Skip 3-component clusters that have been redefined (as 2-component
      * clusters) or not available clusters. The latter check is indeed
      * redundant now, but it is used for possible future extensions in which,
      * for some reasons, some of the clusters found by ClusterFinder are tagged
      * straight away as not available.
      **************/
     if((*it)->isRedefined() || !(*it)->isAvailable()) continue;
     // if the cluster is a beam cluster add it to the vector of clusters
     // to be split or if it is heavy
     if((*it)->isBeamCluster() || isHeavy(*it)) splitClusters.push(*it);
   }
   tPVector finalhadrons;
   cut(splitClusters, clusters, finalhadrons, softUEisOn);
   return finalhadrons;
 }
 
 void ClusterFissioner::cut(stack<ClusterPtr> & clusterStack,
    			   ClusterVector &clusters, tPVector & finalhadrons,
 			   bool softUEisOn) {
   /**************************************************
    * This method does the splitting of the cluster pointed by  cluPtr
    * and "recursively" by all of its cluster children, if heavy. All of these
    * new children clusters are added (indeed the pointers to them) to the
    * collection of cluster pointers  collecCluPtr. The method works as follows.
    * Initially the vector vecCluPtr contains just the input pointer to the
    * cluster to be split. Then it will be filled "recursively" by all
    * of the cluster's children that are heavy enough to require, in their turn,
    * to be split. In each loop, the last element of the vector vecCluPtr is
    * considered (only once because it is then removed from the vector).
    * This approach is conceptually recursive, but avoid the overhead of
    * a concrete recursive function. Furthermore it requires minimal changes
    * in the case that the fission of an heavy cluster could produce more
    * than two cluster children as assumed now.
    *
    * Draw the masses: for normal, non-beam clusters a power-like mass dist
    * is used, whereas for beam clusters a fast-decreasing exponential mass
    * dist is used instead (to avoid many iterative splitting which could
    * produce an unphysical large transverse energy from a supposed soft beam
    * remnant process).
    ****************************************/
   // Here we recursively loop over clusters in the stack and cut them
   while (!clusterStack.empty()) {
     // take the last element of the vector
     ClusterPtr iCluster = clusterStack.top(); clusterStack.pop();
     // split it
     cutType ct = iCluster->numComponents() == 2 ?
       cutTwo(iCluster, finalhadrons, softUEisOn) :
       cutThree(iCluster, finalhadrons, softUEisOn);
 
     // There are cases when we don't want to split, even if it fails mass test
     if(!ct.first.first || !ct.second.first) {
       // if an unsplit beam cluster leave if for the underlying event
       if(iCluster->isBeamCluster() && softUEisOn)
 	iCluster->isAvailable(false);
       continue;
     }
     // check if clusters
     ClusterPtr one = dynamic_ptr_cast<ClusterPtr>(ct.first.first);
     ClusterPtr two = dynamic_ptr_cast<ClusterPtr>(ct.second.first);
     // is a beam cluster must be split into two clusters
     if(iCluster->isBeamCluster() && (!one||!two) && softUEisOn) {
       iCluster->isAvailable(false);
       continue;
     }
 
     // There should always be a intermediate quark(s) from the splitting
     assert(ct.first.second && ct.second.second);
     /// \todo sort out motherless quark pairs here. Watch out for 'quark in final state' errors
     iCluster->addChild(ct.first.first);
     //    iCluster->addChild(ct.first.second);
     //    ct.first.second->addChild(ct.first.first);
 
     iCluster->addChild(ct.second.first);
     //    iCluster->addChild(ct.second.second);
     //    ct.second.second->addChild(ct.second.first);
 
     // Sometimes the clusters decay C -> H + C' or C -> H + H' rather then C -> C' + C''
     if(one) {
       clusters.push_back(one);
       if(one->isBeamCluster() && softUEisOn)
 	one->isAvailable(false);
       if(isHeavy(one) && one->isAvailable())
 	clusterStack.push(one);
     }
     if(two) {
       clusters.push_back(two);
       if(two->isBeamCluster() && softUEisOn)
 	two->isAvailable(false);
       if(isHeavy(two) && two->isAvailable())
 	clusterStack.push(two);
     }
   }
 }
 
 ClusterFissioner::cutType
 ClusterFissioner::cutTwo(ClusterPtr & cluster, tPVector & finalhadrons,
 			 bool softUEisOn) {
   // need to make sure only 2-cpt clusters get here
   assert(cluster->numComponents() == 2);
   tPPtr ptrQ1 = cluster->particle(0);
   tPPtr ptrQ2 = cluster->particle(1);
   Energy Mc = cluster->mass();
   assert(ptrQ1);
   assert(ptrQ2);
 
   // And check if those particles are from a beam remnant
   bool rem1 = cluster->isBeamRemnant(0);
   bool rem2 = cluster->isBeamRemnant(1);
   // workout which distribution to use
   bool soft1(false),soft2(false);
   switch (_iopRem) {
   case 0:
     soft1 = rem1 || rem2;
     soft2 = rem2 || rem1;
     break;
   case 1:
     soft1 = rem1;
     soft2 = rem2;
     break;
   }
   // Initialization for the exponential ("soft") mass distribution.
   static const int max_loop = 1000;
   int counter = 0;
   Energy Mc1 = ZERO, Mc2 = ZERO,m1=ZERO,m2=ZERO,m=ZERO;
   tcPDPtr toHadron1, toHadron2;
   PPtr newPtr1 = PPtr ();
   PPtr newPtr2 = PPtr ();
   bool succeeded = false;
   Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2;
   do
     {
       succeeded = false;
       ++counter;
       // get a flavour for the qqbar pair
       drawNewFlavour(newPtr1,newPtr2,cluster);
       // check for right ordering
       assert (ptrQ2);
       assert (newPtr2);
       assert (ptrQ2->dataPtr());
       assert (newPtr2->dataPtr());
 	  // TODO careful if DiquarkClusters can exist
 	  bool Q1diq = DiquarkMatcher::Check(ptrQ1->id());
 	  bool Q2diq = DiquarkMatcher::Check(ptrQ2->id());
 	  bool newQ1diq = DiquarkMatcher::Check(newPtr1->id());
 	  bool newQ2diq = DiquarkMatcher::Check(newPtr2->id());
 	  bool diqClu1 = Q1diq && newQ1diq;
 	  bool diqClu2 = Q2diq && newQ2diq;
 	  // std::cout << "Make Clusters: ( " << ptrQ1->PDGName() << " " << newPtr1->PDGName() << " ), ( "
 					// << ptrQ2->PDGName() << " " << newPtr2->PDGName() << " )\n";
 	  if (!( Q1diq || Q2diq )
 		  && (cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2))) {
 		  swap(newPtr1, newPtr2);
 		  // check again
 		  if(cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2)) {
 			  throw Exception()
 				  << "ClusterFissioner cannot split the cluster ("
 				  << ptrQ1->PDGName() << ' ' << ptrQ2->PDGName()
 				  << ") into hadrons.\n"
 				  << "drawn Flavour: "<< newPtr1->PDGName()<<"\n"<< Exception::runerror;
 		  }
       }
 	  else {
 		  bool swapped=false;
 		  if ( !diqClu1 && cantMakeHadron(ptrQ1,newPtr1) ) {
 			  swap(newPtr1, newPtr2);
 			  swapped=true;
 		  }
 		  if ( !diqClu2 && cantMakeHadron(ptrQ2,newPtr2) ) {
 			  assert(!swapped);
 			  swap(newPtr1, newPtr2);
 		  }
 		  if ( diqClu2 && diqClu1 && ptrQ1->id()*newPtr1->id()>0 ) {
 			  assert(!swapped);
 			  swap(newPtr1, newPtr2);
 		  }
 		  // std::cout << "Make Clusters: ( " << ptrQ1->PDGName() << " " << newPtr1->PDGName() << " ), ( "
 					// << ptrQ2->PDGName() << " " << newPtr2->PDGName() << " )\n";
 		  if (!diqClu1) assert(!cantMakeHadron(ptrQ1,newPtr1));
 		  if (!diqClu2) assert(!cantMakeHadron(ptrQ2,newPtr2));
 	  }
       // Check that new clusters can produce particles and there is enough
       // phase space to choose the drawn flavour
       m1 = ptrQ1->data().constituentMass();
       m2 = ptrQ2->data().constituentMass();
       m  = newPtr1->data().constituentMass();
       // Do not split in the case there is no phase space available
       if(Mc <  m1+m + m2+m) continue;
 
       pQ1.setMass(m1);
       pQone.setMass(m);
       pQtwo.setMass(m);
       pQ2.setMass(m2);
 
       pair<Energy,Energy> res = drawNewMasses(Mc, soft1, soft2, pClu1, pClu2,
 					      ptrQ1, pQ1, newPtr1, pQone,
 					      newPtr2, pQtwo, ptrQ2, pQ2);
 
       // derive the masses of the children
       Mc1 = res.first;
       Mc2 = res.second;
       // static kinematic threshold
       if(_kinematicThresholdChoice == 0) {
         if(Mc1 < m1+m || Mc2 < m+m2 || Mc1+Mc2 > Mc) continue;
       // dynamic kinematic threshold
       } else if(_kinematicThresholdChoice == 1) {
         bool C1 = ( sqr(Mc1) )/( sqr(m1) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false;
         bool C2 = ( sqr(Mc2) )/( sqr(m2) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false;
         bool C3 = ( sqr(Mc1) + sqr(Mc2) )/( sqr(Mc) ) > 1.0 ? true : false;
 
         if( C1 || C2 || C3 ) continue;
       }
 
 
 
 	  if (diqClu1) {
 		  if (Mc1 < spectrum()->massLightestBaryonPair(ptrQ1->dataPtr(),newPtr1->dataPtr())) {
 			  continue;
 		  }
 	  }
 	  if (diqClu2) {
 		  if (Mc2 < spectrum()->massLightestBaryonPair(ptrQ2->dataPtr(),newPtr2->dataPtr())) {
 			  continue;
 		  }
 	  }
       /**************************
        * New (not present in Fortran Herwig):
        * check whether the fragment masses  Mc1  and  Mc2  are above the
        * threshold for the production of the lightest pair of hadrons with the
        * right flavours. If not, then set by hand the mass to the lightest
        * single hadron with the right flavours, in order to solve correctly
        * the kinematics, and (later in this method) create directly such hadron
        * and add it to the children hadrons of the cluster that undergoes the
        * fission (i.e. the one pointed by iCluPtr). Notice that in this special
        * case, the heavy cluster that undergoes the fission has one single
        * cluster child and one single hadron child. We prefer this approach,
        * rather than to create a light cluster, with the mass set equal to
        * the lightest hadron, and let then the class LightClusterDecayer to do
        * the job to decay it to that single hadron, for two reasons:
        * First, because the sum of the masses of the two constituents can be,
        * in this case, greater than the mass of that hadron, hence it would
        * be impossible to solve the kinematics for such two components, and
        * therefore we would have a cluster whose components are undefined.
        * Second, the algorithm is faster, because it avoids the reshuffling
        * procedure that would be necessary if we used LightClusterDecayer
        * to decay the light cluster to the lightest hadron.
        ****************************/
       // override chosen masses if needed
       toHadron1 = _hadronSpectrum->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc1);
       if(toHadron1) { Mc1 = toHadron1->mass(); pClu1.setMass(Mc1); }
       toHadron2 = _hadronSpectrum->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc2);
       if(toHadron2) { Mc2 = toHadron2->mass(); pClu2.setMass(Mc2); }
       // if a beam cluster not allowed to decay to hadrons
       if(cluster->isBeamCluster() && (toHadron1||toHadron2) && softUEisOn)
 	continue;
       // Check if the decay kinematics is still possible: if not then
       // force the one-hadron decay for the other cluster as well.
       if(Mc1 + Mc2  >  Mc) {
 	if(!toHadron1) {
 	  toHadron1 = _hadronSpectrum->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc-Mc2);
 	  if(toHadron1) { Mc1 = toHadron1->mass(); pClu1.setMass(Mc1); }
 	}
 	else if(!toHadron2) {
 	  toHadron2 = _hadronSpectrum->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc-Mc1);
 	  if(toHadron2) { Mc2 = toHadron2->mass(); pClu2.setMass(Mc2); }
 	}
       }
       succeeded = (Mc >= Mc1+Mc2);
     }
   while (!succeeded && counter < max_loop);
 
   if(counter >= max_loop) {
     static const PPtr null = PPtr();
     return cutType(PPair(null,null),PPair(null,null));
   }
 
   // Determined the (5-components) momenta (all in the LAB frame)
   Lorentz5Momentum pClu = cluster->momentum(); // known
   Lorentz5Momentum p0Q1 = ptrQ1->momentum(); // known (mom Q1 before fission)
   calculateKinematics(pClu,p0Q1,toHadron1,toHadron2,
 		      pClu1,pClu2,pQ1,pQone,pQtwo,pQ2);
 
   /******************
    * The previous methods have determined the kinematics and positions
    * of C -> C1 + C2.
    * In the case that one of the two product is light, that means either
    * decayOneHadronClu1 or decayOneHadronClu2 is true, then the momenta
    * of the components of that light product have not been determined,
    * and a (light) cluster will not be created: the heavy father cluster
    * decays, in this case, into a single (not-light) cluster and a
    * single hadron. In the other, "normal", cases the father cluster
    * decays into two clusters, each of which has well defined components.
    * Notice that, in the case of components which point to particles, the
    * momenta of the components is properly set to the new values, whereas
    * we do not change the momenta of the pointed particles, because we
    * want to keep all of the information (that is the new momentum of a
    * component after the splitting, which is contained in the _momentum
    * member of the Component class, and the (old) momentum of that component
    * before the splitting, which is contained in the momentum of the
    * pointed particle). Please not make confusion of this only apparent
    * inconsistency!
    ********************/
   LorentzPoint posC,pos1,pos2;
   posC = cluster->vertex();
   calculatePositions(pClu, posC, pClu1, pClu2, pos1, pos2);
   cutType rval;
   if(toHadron1) {
     rval.first = produceHadron(toHadron1, newPtr1, pClu1, pos1);
     finalhadrons.push_back(rval.first.first);
   }
   else {
     rval.first = produceCluster(ptrQ1, newPtr1, pClu1, pos1, pQ1, pQone, rem1);
   }
   if(toHadron2) {
     rval.second = produceHadron(toHadron2, newPtr2, pClu2, pos2);
     finalhadrons.push_back(rval.second.first);
   }
   else {
     rval.second = produceCluster(ptrQ2, newPtr2, pClu2, pos2, pQ2, pQtwo, rem2);
   }
   return rval;
 }
 
 
 ClusterFissioner::cutType
 ClusterFissioner::cutThree(ClusterPtr & cluster, tPVector & finalhadrons,
 			   bool softUEisOn) {
   // need to make sure only 3-cpt clusters get here
   assert(cluster->numComponents() == 3);
   // extract quarks
   tPPtr ptrQ[3] = {cluster->particle(0),cluster->particle(1),cluster->particle(2)};
   assert( ptrQ[0] && ptrQ[1] && ptrQ[2] );
   // find maximum mass pair
   Energy mmax(ZERO);
   Lorentz5Momentum pDiQuark;
   int iq1(-1),iq2(-1);
   Lorentz5Momentum psum;
   for(int q1=0;q1<3;++q1) {
     psum+= ptrQ[q1]->momentum();
     for(int q2=q1+1;q2<3;++q2) {
       Lorentz5Momentum ptest = ptrQ[q1]->momentum()+ptrQ[q2]->momentum();
       ptest.rescaleMass();
       Energy mass = ptest.m();
       if(mass>mmax) {
 	mmax = mass;
 	pDiQuark = ptest;
 	iq1  = q1;
 	iq2  = q2;
       }
     }
   }
   // and the spectators
   int iother(-1);
   for(int ix=0;ix<3;++ix) if(ix!=iq1&&ix!=iq2) iother=ix;
   assert(iq1>=0&&iq2>=0&&iother>=0);
 
   // And check if those particles are from a beam remnant
   bool rem1 = cluster->isBeamRemnant(iq1);
   bool rem2 = cluster->isBeamRemnant(iq2);
   // workout which distribution to use
   bool soft1(false),soft2(false);
   switch (_iopRem) {
   case 0:
     soft1 = rem1 || rem2;
     soft2 = rem2 || rem1;
     break;
   case 1:
     soft1 = rem1;
     soft2 = rem2;
     break;
   }
   // Initialization for the exponential ("soft") mass distribution.
   static const int max_loop = 1000;
   int counter = 0;
   Energy Mc1 = ZERO, Mc2 = ZERO, m1=ZERO, m2=ZERO, m=ZERO;
   tcPDPtr toHadron;
   bool toDiQuark(false);
   PPtr newPtr1 = PPtr(),newPtr2 = PPtr();
   PDPtr diquark;
   bool succeeded = false;
   Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2;
   do {
     succeeded = false;
     ++counter;
 
     // get a flavour for the qqbar pair
     drawNewFlavour(newPtr1,newPtr2,cluster);
     
     // randomly pick which will be (anti)diquark and which a mesonic cluster
     if(UseRandom::rndbool()) {
       swap(iq1,iq2);
       swap(rem1,rem2);
     }
     // check first order
     if(cantMakeHadron(ptrQ[iq1], newPtr1) || !spectrum()->canMakeDiQuark(ptrQ[iq2], newPtr2)) {
       swap(newPtr1,newPtr2);
     }
     // check again
     if(cantMakeHadron(ptrQ[iq1], newPtr1) || !spectrum()->canMakeDiQuark(ptrQ[iq2], newPtr2)) {
       throw Exception()
 	<< "ClusterFissioner cannot split the cluster ("
 	<< ptrQ[iq1]->PDGName() << ' ' << ptrQ[iq2]->PDGName()
 	<< ") into a hadron and diquark.\n" << Exception::runerror;
     }
     // Check that new clusters can produce particles and there is enough
     // phase space to choose the drawn flavour
     m1 = ptrQ[iq1]->data().constituentMass();
     m2 = ptrQ[iq2]->data().constituentMass();
     m  = newPtr1->data().constituentMass();
     // Do not split in the case there is no phase space available
     if(mmax <  m1+m + m2+m) continue;
 
     pQ1.setMass(m1);
     pQone.setMass(m);
     pQtwo.setMass(m);
     pQ2.setMass(m2);
 
     pair<Energy,Energy> res = drawNewMasses(mmax, soft1, soft2, pClu1, pClu2,
 					    ptrQ[iq1], pQ1, newPtr1, pQone,
 					    newPtr2, pQtwo, ptrQ[iq1], pQ2);
 
     Mc1 = res.first; Mc2 = res.second;
 
     if(Mc1 < m1+m || Mc2 < m+m2 || Mc1+Mc2 > mmax) continue;
     // check if need to force meson clster to hadron
     toHadron = _hadronSpectrum->chooseSingleHadron(ptrQ[iq1]->dataPtr(), newPtr1->dataPtr(),Mc1);
     if(toHadron) { Mc1 = toHadron->mass(); pClu1.setMass(Mc1); }
     // check if need to force diquark cluster to be on-shell
     toDiQuark = false;
     diquark = spectrum()->makeDiquark(ptrQ[iq2]->dataPtr(), newPtr2->dataPtr());
     if(Mc2 < diquark->constituentMass()) {
       Mc2 = diquark->constituentMass(); pClu2.setMass(Mc2);
       toDiQuark = true;
     }
     // if a beam cluster not allowed to decay to hadrons
     if(cluster->isBeamCluster() && toHadron && softUEisOn)
       continue;
     // Check if the decay kinematics is still possible: if not then
     // force the one-hadron decay for the other cluster as well.
     if(Mc1 + Mc2  >  mmax) {
       if(!toHadron) {
 	toHadron = _hadronSpectrum->chooseSingleHadron(ptrQ[iq1]->dataPtr(), newPtr1->dataPtr(),mmax-Mc2);
 	if(toHadron) { Mc1 = toHadron->mass(); pClu1.setMass(Mc1); }
       }
       else if(!toDiQuark) {
 	Mc2 = _hadronSpectrum->massLightestHadron(ptrQ[iq2]->dataPtr(), newPtr2->dataPtr()); pClu2.setMass(Mc2);
 	toDiQuark = true;
       }
     }
     succeeded = (mmax >= Mc1+Mc2);
   }
   while (!succeeded && counter < max_loop);
   // check no of tries
   if(counter >= max_loop) return cutType();
 
   // Determine the (5-components) momenta (all in the LAB frame)
   Lorentz5Momentum p0Q1 = ptrQ[iq1]->momentum();
   calculateKinematics(pDiQuark,p0Q1,toHadron,toDiQuark,
 		      pClu1,pClu2,pQ1,pQone,pQtwo,pQ2);
   // positions of the new clusters
   LorentzPoint pos1,pos2;
   Lorentz5Momentum pBaryon = pClu2+ptrQ[iother]->momentum();
   calculatePositions(cluster->momentum(), cluster->vertex(), pClu1, pBaryon, pos1, pos2);
   // first the mesonic cluster/meson
   cutType rval;
    if(toHadron) {
      rval.first = produceHadron(toHadron, newPtr1, pClu1, pos1);
      finalhadrons.push_back(rval.first.first);
    }
    else {
      rval.first = produceCluster(ptrQ[iq1], newPtr1, pClu1, pos1, pQ1, pQone, rem1);
    }
    if(toDiQuark) {
      rem2 |= cluster->isBeamRemnant(iother);
      PPtr newDiQuark = diquark->produceParticle(pClu2);
      rval.second = produceCluster(newDiQuark, ptrQ[iother], pBaryon, pos2, pClu2,
       				  ptrQ[iother]->momentum(), rem2);
    }
    else {
      rval.second = produceCluster(ptrQ[iq2], newPtr2, pBaryon, pos2, pQ2, pQtwo, rem2,
 				  ptrQ[iother],cluster->isBeamRemnant(iother));
    }
    cluster->isAvailable(false);
    return rval;
 }
 
 ClusterFissioner::PPair
 ClusterFissioner::produceHadron(tcPDPtr hadron, tPPtr newPtr, const Lorentz5Momentum &a,
 				const LorentzPoint &b) const {
   PPair rval;
   if(hadron->coloured()) {
     rval.first = (_hadronSpectrum->lightestHadron(hadron,newPtr->dataPtr()))->produceParticle();
   }
   else
     rval.first = hadron->produceParticle();
   rval.second = newPtr;
   rval.first->set5Momentum(a);
   rval.first->setVertex(b);
   return rval;
 }
 
 ClusterFissioner::PPair ClusterFissioner::produceCluster(tPPtr ptrQ, tPPtr newPtr,
 							 const Lorentz5Momentum & a,
 				                         const LorentzPoint & b,
 							 const Lorentz5Momentum & c,
 				                         const Lorentz5Momentum & d,
 							 bool isRem,
 							 tPPtr spect, bool remSpect) const {
   PPair rval;
   rval.second = newPtr;
   ClusterPtr cluster = !spect ? new_ptr(Cluster(ptrQ,rval.second)) : new_ptr(Cluster(ptrQ,rval.second,spect));
   rval.first = cluster;
   cluster->set5Momentum(a);
   cluster->setVertex(b);
   assert(cluster->particle(0)->id() == ptrQ->id());
   cluster->particle(0)->set5Momentum(c);
   cluster->particle(1)->set5Momentum(d);
   cluster->setBeamRemnant(0,isRem);
   if(remSpect) cluster->setBeamRemnant(2,remSpect);
   return rval;
 }
 void ClusterFissioner::drawNewFlavourDiquarks(PPtr& newPtrPos,PPtr& newPtrNeg,
 		const ClusterPtr & clu) const {
 
   // Flavour is assumed to be only  u, d, s,  with weights
   // (which are not normalized probabilities) given
   // by the same weights as used in HadronsSelector for
   // the decay of clusters into two hadrons.
 
   unsigned hasDiquarks=0;
   assert(clu->numComponents()==2);
   tcPDPtr pD1=clu->particle(0)->dataPtr();
   tcPDPtr pD2=clu->particle(1)->dataPtr();
   bool isDiq1=DiquarkMatcher::Check(pD1->id());
   if (isDiq1) hasDiquarks++;
   bool isDiq2=DiquarkMatcher::Check(pD2->id());
   if (isDiq2) hasDiquarks++;
   assert(hasDiquarks<=2);
   Energy Mc=(clu->momentum().mass());
   // if (fabs(clu->momentum().massError() )>1e-14) std::cout << "Mass inconsistency CF : " << std::scientific  << clu->momentum().massError() <<"\n";
   // Not allow yet Diquark Clusters 
   // if ( hasDiquarks>=1 || Mc < spectrum()->massLightestBaryonPair(pD1,pD2) )
 	  // return drawNewFlavour(newPtrPos,newPtrNeg);
 
   tPDPtr diq;
   Energy minMass;
   Selector<long> choice;
   // int countQ=0;
   // int countDiQ=0;
   // adding quark-antiquark pairs to the selection list
   for ( const long& id : spectrum()->lightHadronizingQuarks() ) {
 	  // TODO uncommenting below gives sometimes 0 selection possibility,
 	  // maybe need to be checked in the LightClusterDecayer and ColourReconnector
 	  // if (Mc < spectrum()->massLightestHadronPair(pD1,pD2)) continue;
 	  // countQ++;
 	  if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id);
 	  else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id);
 	  else assert(false);
   }
   // adding diquark-antidiquark pairs to the selection list
   switch (hasDiquarks)
   {
   	case 0:
 		for ( const long& id : spectrum()->lightHadronizingDiquarks() ) {
 			if (Mc < spectrum()->massLightestBaryonPair(pD1,pD2)) continue;
 			// countDiQ++;
 			if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id);
 			else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id);
 			else assert(false);
 		}
   		break;
   	case 1:
 		if (_diquarkClusterFission<1) break;
 		for ( const long& id : spectrum()->lightHadronizingDiquarks() ) {
 			diq = getParticleData(id);
 			if (isDiq1)
 				minMass = spectrum()->massLightestHadron(pD2,diq)
 						+ spectrum()->massLightestBaryonPair(diq,pD1);
 			else
 				minMass = spectrum()->massLightestHadron(pD1,diq)
 						+ spectrum()->massLightestBaryonPair(diq,pD2);
 			if (Mc < minMass) continue;
 			// countDiQ++;
 			if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id);
 			else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id);
 			else assert(false);
 		}
 		break;
   	case 2:
 		if (_diquarkClusterFission<2) break;
 		for ( const long& id : spectrum()->lightHadronizingDiquarks() ) {
 			diq = getParticleData(id);
 			if (Mc < spectrum()->massLightestBaryonPair(pD1,pD2)) {
 				throw Exception() << "Found Diquark Cluster:\n" << *clu << "\nwith  MassCluster = "
 					<< ounit(Mc,GeV) <<" GeV MassLightestBaryonPair = "
 					<< ounit(spectrum()->massLightestBaryonPair(pD1,pD2) ,GeV)
 					<< " GeV cannot decay" << Exception::eventerror;
 			}
 			minMass = spectrum()->massLightestBaryonPair(pD1,diq)
 					+ spectrum()->massLightestBaryonPair(diq,pD2);
 			if (Mc < minMass) continue;
 			// countDiQ++;
 			if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id);
 			else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id);
 			else assert(false);
 		}
   		break;
   	default:
   		assert(false);
   }
   assert(choice.size()>0);
   long idNew = choice.select(UseRandom::rnd());
   newPtrPos = getParticle(idNew);
   newPtrNeg = getParticle(-idNew);
   assert (newPtrPos);
   assert(newPtrNeg);
   assert (newPtrPos->dataPtr());
   assert(newPtrNeg->dataPtr());
 
 }
 
 void ClusterFissioner::drawNewFlavour(PPtr& newPtrPos,PPtr& newPtrNeg) const {
 
   // Flavour is assumed to be only  u, d, s,  with weights
   // (which are not normalized probabilities) given
   // by the same weights as used in HadronsSelector for
   // the decay of clusters into two hadrons.
 
 
   Selector<long> choice;
   switch(_fissionCluster){
   case 0:
     for ( const long& id : spectrum()->lightHadronizingQuarks() )
       choice.insert(_hadronSpectrum->pwtQuark(id),id);
     break;
   case 1:
     for ( const long& id : spectrum()->lightHadronizingQuarks() )
       choice.insert(_fissionPwt.find(id)->second,id);
     break;
   default :
     assert(false);
   }
   long idNew = choice.select(UseRandom::rnd());
   newPtrPos = getParticle(idNew);
   newPtrNeg = getParticle(-idNew);
   assert (newPtrPos);
   assert(newPtrNeg);
   assert (newPtrPos->dataPtr());
   assert(newPtrNeg->dataPtr());
 
 }
 
 void ClusterFissioner::drawNewFlavourEnhanced(PPtr& newPtrPos,PPtr& newPtrNeg,
                                               Energy2 mass2) const {
 
   if ( spectrum()->gluonId() != ParticleID::g )
     throw Exception() << "strange enhancement only working with Standard Model hadronization"
 		      << Exception::runerror;
   
   // Flavour is assumed to be only  u, d, s,  with weights
   // (which are not normalized probabilities) given
   // by the same weights as used in HadronsSelector for
   // the decay of clusters into two hadrons.
 
     double prob_d = 0.;
     double prob_u = 0.;
     double prob_s = 0.;
     double scale = abs(double(sqr(_m0Fission)/mass2));
     // Choose which splitting weights you wish to use
 switch(_fissionCluster){
   // 0: ClusterFissioner and ClusterDecayer use the same weights
   case 0:
     prob_d = _hadronSpectrum->pwtQuark(ParticleID::d);
      prob_u = _hadronSpectrum->pwtQuark(ParticleID::u);
      /* Strangeness enhancement:
         Case 1: probability scaling
         Case 2: Exponential scaling
      */
      if (_enhanceSProb == 1)
         prob_s = (_maxScale < scale) ? 0. : pow(_hadronSpectrum->pwtQuark(ParticleID::s),scale);
      else if (_enhanceSProb == 2)
         prob_s = (_maxScale < scale) ? 0. : exp(-scale);
     break;
     /* 1: ClusterFissioner uses its own unique set of weights,
        i.e. decoupled from ClusterDecayer */
   case 1:
     prob_d = _fissionPwt.find(ParticleID::d)->second;
     prob_u = _fissionPwt.find(ParticleID::u)->second;
      if (_enhanceSProb == 1)
        prob_s = (_maxScale < scale) ? 0. : pow(_fissionPwt.find(ParticleID::s)->second,scale);
      else if (_enhanceSProb == 2)
         prob_s = (_maxScale < scale) ? 0. : exp(-scale);
     break;
   default:
     assert(false);
   }
 
   int choice = UseRandom::rnd3(prob_u, prob_d, prob_s);
   long idNew = 0;
   switch (choice) {
   case 0: idNew = ThePEG::ParticleID::u; break;
   case 1: idNew = ThePEG::ParticleID::d; break;
   case 2: idNew = ThePEG::ParticleID::s; break;
   }
   newPtrPos = getParticle(idNew);
   newPtrNeg = getParticle(-idNew);
   assert (newPtrPos);
   assert(newPtrNeg);
   assert (newPtrPos->dataPtr());
   assert(newPtrNeg->dataPtr());
 
 }
 
 
 Energy2 ClusterFissioner::clustermass(const ClusterPtr & cluster) const {
   Lorentz5Momentum pIn = cluster->momentum();
   Energy2 endpointmass2 = sqr(cluster->particle(0)->mass() +
   cluster->particle(1)->mass());
   Energy2 singletm2 = pIn.m2();
   // Return either the cluster mass, or the lambda measure
   return (_massMeasure == 0) ? singletm2 : singletm2 - endpointmass2;
 }
 
 
 Energy ClusterFissioner::drawChildMass(const Energy M, const Energy m1,
 				       const Energy m2, const Energy m,
 				       const double expt, const bool soft) const {
 
   /***************************
    * This method, given in input the cluster mass Mclu of an heavy cluster C,
    * made of consituents of masses m1 and m2, draws the masses Mclu1 and Mclu2
    * of, respectively, the children cluster C1, made of constituent masses m1
    * and m, and cluster C2, of mass Mclu2 and made of constituent masses m2
    * and m. The mass is extracted from one of the two following mass
    * distributions:
    *   --- power-like ("normal" distribution)
    *                        d(Prob) / d(M^exponent) = const
    *       where the exponent can be different from the two children C1 (exp1)
    *       and C2 (exponent2).
    *   --- exponential ("soft" distribution)
    *                        d(Prob) / d(M^2) = exp(-b*M)
    *       where b = 2.0 / average.
    * Such distributions are limited below by the masses of
    * the constituents quarks, and above from the mass of decaying cluster C.
    * The choice of which of the two mass distributions to use for each of the
    * two cluster children is dictated by  iRemnant  (see below).
    * If the number of attempts to extract a pair of mass values that are
    * kinematically acceptable is above some fixed number (max_loop, see below)
    * the method gives up and returns false; otherwise, when it succeeds, it
    * returns true.
    *
    * These distributions have been modified from HERWIG:
    * Before these were:
    *      Mclu1 = m1 + (Mclu - m1 - m2)*pow( rnd(), 1.0/exponent1 );
    * The new one coded here is a more efficient version, same density
    * but taking into account 'in phase space from' beforehand
    ***************************/
   // hard cluster
   if(!soft) {
     return pow(UseRandom::rnd(pow((M-m1-m2-m)*UnitRemoval::InvE, expt),
 			      pow(m*UnitRemoval::InvE, expt)), 1./expt
 	       )*UnitRemoval::E + m1;
   }
   // Otherwise it uses a soft mass distribution
   else {
     static const InvEnergy b = 2.0 / _btClM;
     Energy max = M-m1-m2-2.0*m;
     double rmin = b*max;
     rmin = ( rmin < 50 ) ? exp(-rmin) : 0.;
     double r1;
     do {
       r1 = UseRandom::rnd(rmin, 1.0) * UseRandom::rnd(rmin, 1.0);
     }
     while (r1 < rmin);
     return m1 + m - log(r1)/b;
   }
 }
 
 Axis ClusterFissioner::sampleDirectionAligned(const Lorentz5Momentum & pRelCOM) const {
 	return pRelCOM.vect().unit();
 }
 
 Axis ClusterFissioner::sampleDirectionUniform() const {
   double cosTheta = -1 + 2.0 * UseRandom::rnd();
   double sinTheta = sqrt(1.0-cosTheta*cosTheta);
   double Phi = 2.0 * Constants::pi * UseRandom::rnd();
   Axis uClusterUniform(cos(Phi)*cosTheta, sin(Phi)*cosTheta, sinTheta);
   return uClusterUniform.unit();
 }
 
 Axis ClusterFissioner::sampleDirectionGaussianPT(const Lorentz5Momentum & pRelCOM,
 		const Energy Mass, const Energy mass1, const Energy mass2) const {
 	Energy pstarCOM = Kinematics::pstarTwoBodyDecay(Mass,mass1,mass2);
 	Energy pTx;
 	Energy pTy;
 	Energy2 pT2;
 	int maxcount=100;
 	int count=0;
 	Energy sigmaPT=_fluxTubeWidth;
 	do {
 		if (count>=maxcount) {
 			if (pstarCOM>0.5*sigmaPT) throw Exception() << "Could not sample direction in ClusterFissioner::sampleDirectionGaussianPT() "
 				<< Exception::eventerror;
 			// Fallback uniform sampling
 			double phi=UseRandom::rnd()*Constants::pi;
 			Energy magnitude=UseRandom::rnd()*pstarCOM;
 			pTx = magnitude*cos(phi);
 			pTy = magnitude*sin(phi);
 			pT2 = sqr(pTx)+sqr(pTy);
 			break;
 		}
 		pTx = UseRandom::rndGauss(sigmaPT);
 		pTy = UseRandom::rndGauss(sigmaPT);
 		pT2 = sqr(pTx)+sqr(pTy);
 		count++;
 	}
 	while (pT2>sqr(pstarCOM));
 	Axis pRelativeDir=pRelCOM.vect().unit();
 
 	Axis TrvX = pRelativeDir.orthogonal().unit();
 	Axis TrvY = TrvX.cross(pRelativeDir).unit();
 	Axis pTkick = pTx/pstarCOM*TrvX + pTy/pstarCOM*TrvY;
 	Axis uClusterFluxTube = (pRelativeDir*sqrt(1.0-pT2/sqr(pstarCOM)) + pTkick);
 	return uClusterFluxTube.unit();
 }
 
 void ClusterFissioner::calculateKinematics(const Lorentz5Momentum & pClu,
 					   const Lorentz5Momentum & p0Q1,
 					   const bool toHadron1,
 					   const bool toHadron2,
 					   Lorentz5Momentum & pClu1,
 					   Lorentz5Momentum & pClu2,
 					   Lorentz5Momentum & pQ1,
 					   Lorentz5Momentum & pQbar,
 					   Lorentz5Momentum & pQ,
 					   Lorentz5Momentum & pQ2bar) const {
 
   /******************
    * This method solves the kinematics of the two body cluster decay:
    *    C (Q1 Q2bar)  --->  C1 (Q1 Qbar)  +  C2 (Q Q2bar)
    * In input we receive the momentum of C, pClu, and the momentum
    * of the quark Q1 (constituent of C), p0Q1, both in the LAB frame.
    * Furthermore, two boolean variables inform whether the two fission
    * products (C1, C2) decay immediately into a single hadron (in which
    * case the cluster itself is identify with that hadron) and we do
    * not have to solve the kinematics of the components (Q1,Qbar) for
    * C1 and (Q,Q2bar) for C2.
    * The output is given by the following momenta (all 5-components,
    * and all in the LAB frame):
    *   pClu1 , pClu2   respectively of   C1 , C2
    *   pQ1 , pQbar     respectively of   Q1 , Qbar  in  C1
    *   pQ  , pQ2bar    respectively of   Q  , Q2    in  C2
    * The assumption, suggested from the string model, is that, in C frame,
    * C1 and its constituents Q1 and Qbar are collinear, and collinear to
    * the direction of Q1 in C (that is before cluster decay); similarly,
    * (always in the C frame) C2 and its constituents Q and Q2bar are
    * collinear (and therefore anti-collinear with C1,Q1,Qbar).
    * The solution is then obtained by using Lorentz boosts, as follows.
    * The kinematics of C1 and C2 is solved in their parent C frame,
    * and then boosted back in the LAB. The kinematics of Q1 and Qbar
    * is solved in their parent C1 frame and then boosted back in the LAB;
    * similarly, the kinematics of Q and Q2bar is solved in their parent
    * C2 frame and then boosted back in the LAB. In each of the three
    * "two-body decay"-like cases, we use the fact that the direction
    * of the motion of the decay products is known in the rest frame of
    * their parent. This is obvious for the first case in which the
    * parent rest frame is C; but it is also true in the other two cases
    * where the rest frames are C1 and C2. This is because C1 and C2
    * are boosted w.r.t. C in the same direction where their components,
    * respectively (Q1,Qbar) and (Q,Q2bar) move in C1 and C2 rest frame
    * respectively.
    * Of course, although the notation used assumed that C = (Q1 Q2bar)
    * where Q1 is a quark and Q2bar an antiquark, indeed everything remain
    * unchanged also in all following cases:
    *  Q1 quark, Q2bar antiquark;           --> Q quark;
    *  Q1 antiquark , Q2bar quark;          --> Q antiquark;
    *  Q1 quark, Q2bar diquark;             --> Q quark
    *  Q1 antiquark, Q2bar anti-diquark;    --> Q antiquark
    *  Q1 diquark, Q2bar quark              --> Q antiquark
    *  Q1 anti-diquark, Q2bar antiquark;    --> Q quark
    **************************/
 
 
   if (pClu.m() < pClu1.mass() + pClu2.mass()
 		  || pClu1.mass()<ZERO
 		  || pClu2.mass()<ZERO  ) {
     throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics[FluxTube]() (A)"
 		      << Exception::eventerror;
   }
 
   // Calculate the unit three-vector, in the Cluster frame,
   // using the sampling funtion sampleDirection in the respective
   // clusters rest frame
 
   // Calculate the momenta of C1 and C2 in the (parent) C frame first,
   // where the direction of C1 is samples according to sampleDirection,
   // and then boost back in the LAB frame.
   //
   // relative momentum in centre of mass of cluster
   Lorentz5Momentum uRelCluster(p0Q1);
   uRelCluster.boost( -pClu.boostVector() );        // boost from LAB to C
 
   // sample direction (options = Default(aligned), Isotropic
   // or FluxTube(gaussian pT kick))
   Axis DirClu = sampleDirection(uRelCluster,
 		  pClu.mass(), pClu1.mass(), pClu2.mass());
 
   Kinematics::twoBodyDecay(pClu, pClu1.mass(), pClu2.mass(),
 		  DirClu, pClu1, pClu2);
 
   // In the case that cluster1 does not decay immediately into a single hadron,
   // calculate the momenta of Q1 (as constituent of C1) and Qbar in the
   // (parent) C1 frame first, where the direction of Q1 is u.vect().unit(),
   // and then boost back in the LAB frame.
   if(!toHadron1) {
 	  if (pClu1.m() < pQ1.mass() + pQbar.mass() ) {
 		  throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics[FluxTube]() (B)"
 			  << Exception::eventerror;
 	  }
 	  // relative momentum in centre of mass of cluster 1
 	  Lorentz5Momentum uRelCluster1COM(p0Q1);
 	  uRelCluster1COM.boost( -pClu1.boostVector() ); // boost from LAB to C1
 	  // sample direction (options = Default(aligned), Isotropic
 	  // or FluxTube(gaussian pT kick))
 	  Axis DirClu1 = sampleDirection(uRelCluster1COM,
 			  pClu1.mass(), pQ1.mass(), pQbar.mass());
 
 	  Kinematics::twoBodyDecay(pClu1, pQ1.mass(), pQbar.mass(),
 			  DirClu1, pQ1, pQbar);
   }
 
   // In the case that cluster2 does not decay immediately into a single hadron,
   // Calculate the momenta of Q and Q2bar (as constituent of C2) in the
   // (parent) C2 frame first, where the direction of Q is u.vect().unit(),
   // and then boost back in the LAB frame.
   if(!toHadron2) {
 	  if (pClu2.m() < pQ.mass() + pQ2bar.mass() ) {
 		  throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics[FluxTube]() (C)"
 			  << Exception::eventerror;
 	  }
 	  // relative momentum in centre of mass of cluster 2
 	  Lorentz5Momentum uRelCluster2COM(p0Q1);
 	  uRelCluster2COM.boost( -pClu2.boostVector() ); // boost from LAB to C2
 	  // sample direction (options = Default(aligned), Isotropic
 	  // or FluxTube(gaussian pT kick))
 	  Axis DirClu2 = sampleDirection(uRelCluster2COM,
 			  pClu2.mass(), pQ2bar.mass(), pQ.mass());
 
 	  Kinematics::twoBodyDecay(pClu2, pQ.mass(), pQ2bar.mass(),
 			  DirClu2, pQ, pQ2bar);
   }
 }
 
 
 void ClusterFissioner::calculatePositions(const Lorentz5Momentum & pClu,
 					  const LorentzPoint & positionClu,
 					  const Lorentz5Momentum & pClu1,
 					  const Lorentz5Momentum & pClu2,
 					  LorentzPoint & positionClu1,
 					  LorentzPoint & positionClu2) const {
   // Determine positions of cluster children.
   // See Marc Smith's thesis, page 127, formulas (4.122) and (4.123).
   Energy Mclu  = pClu.m();
   Energy Mclu1 = pClu1.m();
   Energy Mclu2 = pClu2.m();
 
   // Calculate the unit three-vector, in the C frame, along which
   // children clusters move.
   Lorentz5Momentum u(pClu1);
   u.boost( -pClu.boostVector() );        // boost from LAB to C frame
 
   // the unit three-vector is then  u.vect().unit()
 
   Energy pstarChild = Kinematics::pstarTwoBodyDecay(Mclu,Mclu1,Mclu2);
 
   // First, determine the relative positions of the children clusters
   // in the parent cluster reference frame.
 
   Energy2 mag2 = u.vect().mag2();
   InvEnergy fact = mag2>ZERO ? 1./sqrt(mag2) : 1./GeV;
 
   Length x1 = ( 0.25*Mclu + 0.5*( pstarChild + (sqr(Mclu2) - sqr(Mclu1))/(2.0*Mclu)))/_kappa;
   Length t1 = Mclu/_kappa - x1;
   LorentzDistance distanceClu1( x1 * fact * u.vect(), t1 );
 
   Length x2 = (-0.25*Mclu + 0.5*(-pstarChild + (sqr(Mclu2) - sqr(Mclu1))/(2.0*Mclu)))/_kappa;
   Length t2 = Mclu/_kappa + x2;
   LorentzDistance distanceClu2( x2 * fact * u.vect(), t2 );
 
   // Then, transform such relative positions from the parent cluster
   // reference frame to the Lab frame.
   distanceClu1.boost( pClu.boostVector() );
   distanceClu2.boost( pClu.boostVector() );
 
   // Finally, determine the absolute positions in the Lab frame.
   positionClu1 = positionClu + distanceClu1;
   positionClu2 = positionClu + distanceClu2;
 
 }
 
 bool ClusterFissioner::ProbablityFunction(double scale, double threshold) {
   double cut = UseRandom::rnd(0.0,1.0);
   return 1./(1.+pow(abs((threshold-_probShift)/scale),_probPowFactor)) > cut ? true : false;
 }
 
 bool ClusterFissioner::isHeavy(tcClusterPtr clu) {
   // particle data for constituents
   tcPDPtr cptr[3]={tcPDPtr(),tcPDPtr(),tcPDPtr()};
   for(size_t ix=0;ix<min(clu->numComponents(),3);++ix) {
     cptr[ix]=clu->particle(ix)->dataPtr();
   }
   // different parameters for exotic, bottom and charm clusters
   double clpow = !spectrum()->isExotic(cptr[0],cptr[1],cptr[1]) ? _clPowLight : _clPowExotic;
   Energy clmax = !spectrum()->isExotic(cptr[0],cptr[1],cptr[1]) ? _clMaxLight : _clMaxExotic;
   for ( const long& id : spectrum()->heavyHadronizingQuarks() ) {
     if ( spectrum()->hasHeavy(id,cptr[0],cptr[1],cptr[1]) ) {
       clpow = _clPowHeavy[id];
       clmax = _clMaxHeavy[id];
     }
   }
    // required test for SUSY clusters, since aboveCutoff alone
   // cannot guarantee (Mc > m1 + m2 + 2*m) in cut()
   static const Energy minmass
     = getParticleData(ParticleID::d)->constituentMass();
   bool aboveCutoff = false, canSplitMinimally = false;
   // static kinematic threshold
   if(_kinematicThresholdChoice == 0) {
     aboveCutoff = (
     	      pow(clu->mass()*UnitRemoval::InvE , clpow)
     	      >
     	      pow(clmax*UnitRemoval::InvE, clpow)
     	      + pow(clu->sumConstituentMasses()*UnitRemoval::InvE, clpow)
     	      );
 
     canSplitMinimally = clu->mass() > clu->sumConstituentMasses() + 2.0 * minmass;
   }
   // dynamic kinematic threshold
   else if(_kinematicThresholdChoice == 1) {
     //some smooth probablity function to create a dynamic thershold
     double scale     = pow(clu->mass()/GeV , clpow);
     double threshold = pow(clmax/GeV, clpow)
                      + pow(clu->sumConstituentMasses()/GeV, clpow);
     aboveCutoff = ProbablityFunction(scale,threshold);
 
     scale     = clu->mass()/GeV;
     threshold = clu->sumConstituentMasses()/GeV + 2.0 * minmass/GeV;
 
     canSplitMinimally = ProbablityFunction(scale,threshold);
   }
 
   return aboveCutoff && canSplitMinimally;
 }