diff --git a/Hadronization/ClusterFissioner.cc b/Hadronization/ClusterFissioner.cc
--- a/Hadronization/ClusterFissioner.cc
+++ b/Hadronization/ClusterFissioner.cc
@@ -1,2973 +1,2978 @@
 // -*- C++ -*-
 //
 // ClusterFissioner.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
 // Copyright (C) 2002-2019 The Herwig Collaboration
 //
 // Herwig is licenced under version 3 of the GPL, see COPYING for details.
 // Please respect the MCnet academic guidelines, see GUIDELINES for details.
 //
 //
 // Thisk is the implementation of the non-inlined, non-templated member
 // functions of the ClusterFissioner class.
 //
 
 #include "ClusterFissioner.h"
 #include <ThePEG/Interface/ClassDocumentation.h>
 #include <ThePEG/Interface/Reference.h>
 #include <ThePEG/Interface/Parameter.h>
 #include <ThePEG/Interface/Switch.h>
 #include <ThePEG/Persistency/PersistentOStream.h>
 #include <ThePEG/Persistency/PersistentIStream.h>
 #include <ThePEG/PDT/EnumParticles.h>
 #include "Herwig/Utilities/Kinematics.h"
 #include "Cluster.h"
 #include "ThePEG/Repository/UseRandom.h"
 #include "ThePEG/Repository/EventGenerator.h"
 #include <ThePEG/Utilities/DescribeClass.h>
 #include "ThePEG/Interface/ParMap.h"
 
 #include <boost/numeric/ublas/matrix.hpp>
 #include <boost/numeric/ublas/io.hpp>
 #include <boost/numeric/ublas/lu.hpp>
 using namespace Herwig;
 
 DescribeClass<ClusterFissioner,Interfaced>
 describeClusterFissioner("Herwig::ClusterFissioner","Herwig.so");
 
 ClusterFissioner::ClusterFissioner() :
   _clMaxLight(3.35*GeV),
   _clMaxExotic(3.35*GeV),
   _clPowLight(2.0),
   _clPowExotic(2.0),
   _pSplitLight(1.0),
   _pSplitExotic(1.0),
   _phaseSpaceWeights(false),
   _dim(4),
   _fissionCluster(0),
   _kinematicThresholdChoice(0),
   _pwtDIquark(0.0),
   _diquarkClusterFission(0),
   _btClM(1.0*GeV),
   _iopRem(1),
   _kappa(1.0e15*GeV/meter),
   _enhanceSProb(0),
   _m0Fission(2.*GeV),
   _massMeasure(0),
   _probPowFactor(4.0),
   _probShift(0.0),
   _kinThresholdShift(1.0*sqr(GeV)),
   _strictDiquarkKinematics(0),
   _covariantBoost(false),
   _allowHadronFinalStates(2),
   // _massPreSampler(0),
   _massSampler(0),
   _phaseSpaceSampler(0),
   _matrixElement(0),
 	_fissionApproach(0),
 	_powerLawPower(-2.0),
 	_maxLoopFissionMatrixElement(5000000),
 	_safetyFactorMatrixElement(10.0),
 	_writeOut(0)
 {
 }
 IBPtr ClusterFissioner::clone() const {
   return new_ptr(*this);
 }
 
 IBPtr ClusterFissioner::fullclone() const {
   return new_ptr(*this);
 }
 
 void ClusterFissioner::persistentOutput(PersistentOStream & os) const {
   os << ounit(_clMaxLight,GeV)
      << ounit(_clMaxHeavy,GeV) << ounit(_clMaxExotic,GeV) << _clPowLight << _clPowHeavy
      << _clPowExotic << _pSplitLight
      << _pSplitHeavy << _pSplitExotic
      << _fissionCluster << _fissionPwt
 	 << _pwtDIquark
 	 << _diquarkClusterFission
 	 << ounit(_btClM,GeV)
      << _iopRem  << ounit(_kappa, GeV/meter)
      << _enhanceSProb << ounit(_m0Fission,GeV) << _massMeasure
 		 << _dim << _phaseSpaceWeights
      << _hadronSpectrum << _kinematicThresholdChoice
      << _probPowFactor << _probShift << ounit(_kinThresholdShift,sqr(GeV))
 	 << _strictDiquarkKinematics
 	 << _covariantBoost
 	 << _allowHadronFinalStates
 	 // << _massPreSampler
 	 << _massSampler
 	 << _phaseSpaceSampler
 	 << _matrixElement
 	 << _fissionApproach
 	 << _powerLawPower
 	 << _maxLoopFissionMatrixElement
 	 << _safetyFactorMatrixElement
 	 << _writeOut
 	 ;
 }
 
 void ClusterFissioner::persistentInput(PersistentIStream & is, int) {
   is >> iunit(_clMaxLight,GeV)
      >> iunit(_clMaxHeavy,GeV) >> iunit(_clMaxExotic,GeV) >> _clPowLight >> _clPowHeavy
      >> _clPowExotic >> _pSplitLight
      >> _pSplitHeavy >> _pSplitExotic
      >> _fissionCluster >> _fissionPwt
 	 >> _pwtDIquark
 	 >> _diquarkClusterFission
    >> iunit(_btClM,GeV)
 	 	 >> _iopRem >> iunit(_kappa, GeV/meter)
      >> _enhanceSProb >> iunit(_m0Fission,GeV) >> _massMeasure
 		 >> _dim >> _phaseSpaceWeights
      >> _hadronSpectrum >> _kinematicThresholdChoice
      >> _probPowFactor >> _probShift >> iunit(_kinThresholdShift,sqr(GeV))
 	 >> _strictDiquarkKinematics
 	 >> _covariantBoost
 	 >> _allowHadronFinalStates
 	 // >> _massPreSampler
 	 >> _massSampler
 	 >> _phaseSpaceSampler
 	 >> _matrixElement
 	 >> _fissionApproach
 	 >> _powerLawPower
 	 >> _maxLoopFissionMatrixElement
 	 >> _safetyFactorMatrixElement
 	 >> _writeOut
 	 ;
 }
 
 void ClusterFissioner::doinit() {
   Interfaced::doinit();
 	// TODO: Some User warnings/errors but not complete list
 	if (_covariantBoost && _phaseSpaceSampler==0) throw Exception() << "Cannot use ClusterFissioner:CovariantBoost = Yes and ClusterFissioner:PhaseSpaceSampler = FullyAligned\nNot implemented yet\n" << Exception::runerror;
 	if (_matrixElement!=0 && _fissionApproach==0) generator()->logWarning( Exception(
 				"For non-trivial MatrixElement you need to enable FissionApproach=New or Hybrid\n",
 				Exception::warning));
 	if (_matrixElement==1 && !(_phaseSpaceSampler==2 && _massSampler==1 ) ) generator()->logWarning( Exception(
 				"The chosen ClusterFissioner:MatrixElement is only taken into account properly by using:\nMassSampler = Uniform & PhaseSpaceSampler = FullyIsotropic\n",
 				Exception::warning));
   for ( const long& id : spectrum()->heavyHadronizingQuarks() ) {
     if ( _pSplitHeavy.find(id) == _pSplitHeavy.end() ||
 	 _clPowHeavy.find(id) == _clPowHeavy.end() ||
 	 _clMaxHeavy.find(id) == _clMaxHeavy.end() )
       throw InitException() << "not all parameters have been set for heavy quark cluster fission";
   }
   // for default Pwts not needed to initialize
   if (_fissionCluster==0) return;  
   for ( const long& id : spectrum()->lightHadronizingQuarks() ) {
 	  if ( _fissionPwt.find(id) == _fissionPwt.end() )
 		  // check that all relevant weights are set
 		  throw InitException() << "fission weights for light quarks have not been set";
   }
   /*
   // Not needed since we set Diquark weights from quark weights
   for ( const long& id : spectrum()->lightHadronizingDiquarks() ) {
 	  if ( _fissionPwt.find(id) == _fissionPwt.end() )
 		  throw InitException() << "fission weights for light diquarks have not been set";
   }*/
   double pwtDquark=_fissionPwt.find(ParticleID::d)->second;
   double pwtUquark=_fissionPwt.find(ParticleID::u)->second;
   double pwtSquark=_fissionPwt.find(ParticleID::s)->second;
   // ERROR: TODO makeDiquarkID is protected function ?
   // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::d,ParticleID::d,3)] =       _pwtDIquark * pwtDquark * pwtDquark;
   // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::u,ParticleID::d,1)] = 0.5 * _pwtDIquark * pwtUquark * pwtDquark;
   // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::u,ParticleID::u,3)] =       _pwtDIquark * pwtUquark * pwtUquark;
   // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::s,ParticleID::d,1)] = 0.5 * _pwtDIquark * pwtSquark * pwtDquark;
   // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::s,ParticleID::u,1)] = 0.5 * _pwtDIquark * pwtSquark * pwtUquark;
   // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::s,ParticleID::s,3)] =       _pwtDIquark * pwtSquark * pwtSquark;
   // TODO better solution for this magic  number alternative
   _fissionPwt[1103] =       _pwtDIquark * pwtDquark * pwtDquark;
   _fissionPwt[2101] = 0.5 * _pwtDIquark * pwtUquark * pwtDquark;
   _fissionPwt[2203] =       _pwtDIquark * pwtUquark * pwtUquark;
   _fissionPwt[3101] = 0.5 * _pwtDIquark * pwtSquark * pwtDquark;
   _fissionPwt[3201] = 0.5 * _pwtDIquark * pwtSquark * pwtUquark;
   _fissionPwt[3303] =       _pwtDIquark * pwtSquark * pwtSquark;
 }
 
 void ClusterFissioner::Init() {
 
   static ClassDocumentation<ClusterFissioner> documentation
     ("Class responsibles for chopping up the clusters");
 
   static Reference<ClusterFissioner,HadronSpectrum> interfaceHadronSpectrum
     ("HadronSpectrum",
      "Set the Hadron spectrum for this cluster fissioner.",
      &ClusterFissioner::_hadronSpectrum, false, false, true, false);
 
   // ClMax for light, Bottom, Charm and exotic (e.g. Susy) quarks
   static Parameter<ClusterFissioner,Energy>
     interfaceClMaxLight ("ClMaxLight","cluster max mass for light quarks (unit [GeV])",
                     &ClusterFissioner::_clMaxLight, GeV, 3.35*GeV, ZERO, 10.0*GeV,
 		    false,false,false);  
   static ParMap<ClusterFissioner,Energy> interfaceClMaxHeavy
     ("ClMaxHeavy",
      "ClMax for heavy quarks",
      &ClusterFissioner::_clMaxHeavy, GeV, -1, 3.35*GeV, ZERO, 10.0*GeV,
      false, false, Interface::upperlim);
   static Parameter<ClusterFissioner,Energy>
     interfaceClMaxExotic ("ClMaxExotic","cluster max mass  for exotic quarks (unit [GeV])",
                     &ClusterFissioner::_clMaxExotic, GeV, 3.35*GeV, ZERO, 10.0*GeV,
 		    false,false,false);
 
  // ClPow for light, Bottom, Charm and exotic (e.g. Susy) quarks
  static Parameter<ClusterFissioner,double>
     interfaceClPowLight ("ClPowLight","cluster mass exponent for light quarks",
                     &ClusterFissioner::_clPowLight, 0, 2.0, 0.0, 10.0,false,false,false); 
   static ParMap<ClusterFissioner,double> interfaceClPowHeavy
     ("ClPowHeavy",
      "ClPow for heavy quarks",
      &ClusterFissioner::_clPowHeavy, -1, 1.0, 0.0, 10.0,
      false, false, Interface::upperlim); 
  static Parameter<ClusterFissioner,double>
     interfaceClPowExotic ("ClPowExotic","cluster mass exponent for exotic quarks",
                     &ClusterFissioner::_clPowExotic, 0, 2.0, 0.0, 10.0,false,false,false);
 
  // PSplit for light, Bottom, Charm and exotic (e.g. Susy) quarks
   static Parameter<ClusterFissioner,double>
     interfacePSplitLight ("PSplitLight","cluster mass splitting param for light quarks",
                     &ClusterFissioner::_pSplitLight, 0, 1.0, 0.0, 10.0,false,false,false);
   static ParMap<ClusterFissioner,double> interfacePSplitHeavy
     ("PSplitHeavy",
      "PSplit for heavy quarks",
      &ClusterFissioner::_pSplitHeavy, -1, 1.0, 0.0, 10.0,
      false, false, Interface::upperlim);
  static Parameter<ClusterFissioner,double>
     interfacePSplitExotic ("PSplitExotic","cluster mass splitting param for exotic quarks",
                     &ClusterFissioner::_pSplitExotic, 0, 1.0, 0.0, 10.0,false,false,false);
 
 
   static Switch<ClusterFissioner,int> interfaceFission
     ("Fission",
      "Option for different Fission options",
      &ClusterFissioner::_fissionCluster, 1, false, false);
   static SwitchOption interfaceFissionDefault
     (interfaceFission,
      "Default",
      "Normal cluster fission which depends on the hadron spectrum class.",
      0);
   static SwitchOption interfaceFissionNew
     (interfaceFission,
      "New",
      "Alternative cluster fission which does not depend on the hadron spectrum class",
      1);
 
   static Switch<ClusterFissioner,int> interfaceFissionApproach
     ("FissionApproach",
      "Option for different Cluster Fission approaches",
      &ClusterFissioner::_fissionApproach, 0, false, false);
   static SwitchOption interfaceFissionApproachDefault
     (interfaceFissionApproach,
      "Default",
      "Default Herwig-7.3.0 cluster fission without restructuring",
      0);
   static SwitchOption interfaceFissionApproachNew
     (interfaceFissionApproach,
      "New",
      "New cluster fission which allows to choose MassSampler"
 		 ", PhaseSpaceSampler and MatrixElement",
      1);
   static SwitchOption interfaceFissionApproachHybrid
     (interfaceFissionApproach,
      "Hybrid",
      "New cluster fission which allows to choose MassSampler"
 		 ", PhaseSpaceSampler and MatrixElement, but uses Default"
 		 " Approach for BeamClusters",
      2);
 
   // Switch C->H1,C2 C->H1,H2 on or off
   static Switch<ClusterFissioner,int> interfaceAllowHadronFinalStates
     ("AllowHadronFinalStates",
      "Option for allowing hadron final states of cluster fission",
      &ClusterFissioner::_allowHadronFinalStates, 0, false, false);
   static SwitchOption interfaceAllowHadronFinalStatesNone
     (interfaceAllowHadronFinalStates,
      "None",
      "Option for disabling hadron final states of cluster fission",
      0);
   static SwitchOption interfaceAllowHadronFinalStatesSemiHadronicOnly
     (interfaceAllowHadronFinalStates,
      "SemiHadronicOnly",
      "Option for allowing hadron final states of cluster fission of type C->H1,C2 "
 		 "(NOT YET USABLE WITH MatrixElement only use option None)",
      1);
   static SwitchOption interfaceAllowHadronFinalStatesAll
     (interfaceAllowHadronFinalStates,
      "All",
      "Option for allowing hadron final states of cluster fission "
 		 "of type C->H1,C2 or C->H1,H2 "
 		 "(NOT YET USABLE WITH MatrixElement only use option None)",
      2);
 
   // // Mass PreSampler Switch
   // static Switch<ClusterFissioner,int> interfaceMassPreSampler
     // ("MassPreSampler",
      // "Option for different Mass sampling options",
      // &ClusterFissioner::_massPreSampler, 0, false, false);
   // static SwitchOption interfaceMassPreSamplerDefault
     // (interfaceMassPreSampler,
      // "Default",
      // "Choose H7.2.3 default mass sampling using PSplitX",
      // 0);
   // static SwitchOption interfaceMassPreSamplerUniform
     // (interfaceMassPreSampler,
      // "Uniform",
      // "Choose Uniform Mass sampling in M1,M2 space",
      // 1);
   // static SwitchOption interfaceMassSamplerPowerLaw
     // (interfaceMassPreSampler,
      // "PowerLaw",
      // "Pre-Sample Masses using fixed power (M1*M2)^PowerLawPower",
      // 3);
 	// For MassPreSampler = PowerLaw 
   // static Parameter<ClusterFissioner,double> interfaceMassSamplerPowerLawPower
      // ("PowerLawPower",
       // "Power for MassPreSampler = PowerLaw",
       // &ClusterFissioner::_powerLawPower, -2.0, -100.0, 100.0,
       // false, false, Interface::limited);
 
   // Mass Sampler Switch
   static Switch<ClusterFissioner,int> interfaceMassSampler
     ("MassSampler",
      "Option for different Mass sampling options",
      &ClusterFissioner::_massSampler, 0, false, false);
   static SwitchOption interfaceMassSamplerDefault
     (interfaceMassSampler,
      "Default",
      "Choose H7.2.3 default mass sampling using PSplitX",
      0);
   static SwitchOption interfaceMassSamplerUniform
     (interfaceMassSampler,
      "Uniform",
      "Choose Uniform Mass sampling in M1,M2 space",
      1);
   static SwitchOption interfaceMassSamplerFlatPhaseSpace
     (interfaceMassSampler,
      "FlatPhaseSpace",
      "Choose Flat Phase Space sampling of Mass in M1,M2 space (Recommended)",
      2);
   static SwitchOption interfaceMassSamplerSoftMEPheno
     (interfaceMassSampler,
      "SoftMEPheno",
      "Experimental! Choose skewed Phase Space sampling of Masses in M1,M2 space "
 	 "for greater efficiency in soft matrix element sampling",
      3);
 
   // Phase Space Sampler Switch
   static Switch<ClusterFissioner,int> interfacePhaseSpaceSampler
     ("PhaseSpaceSampler",
      "Option for different phase space sampling options",
      &ClusterFissioner::_phaseSpaceSampler, 0, false, false);
   static SwitchOption interfacePhaseSpaceSamplerDefault
     (interfacePhaseSpaceSampler,
      "FullyAligned",
      "Herwig H7.2.3 default Cluster fission of all partons "
 		 "aligned to the relative momentum of the mother cluster",
      0);
   static SwitchOption interfacePhaseSpaceSamplerAlignedIsotropic
     (interfacePhaseSpaceSampler,
      "AlignedIsotropic",
      "Aligned Clusters but isotropic partons in their respective rest frame",
      1);
   static SwitchOption interfacePhaseSpaceSamplerFullyIsotropic
     (interfacePhaseSpaceSampler,
      "FullyIsotropic",
      "Isotropic Clusters and isotropic partons in their respective rest frame "
 		 "NOTE: Testing only!!",
      2);
 
   // Matrix Element Choice Switch
   static Switch<ClusterFissioner,int> interfaceMatrixElement
     ("MatrixElement",
      "Option for different Matrix Element options",
      &ClusterFissioner::_matrixElement, 0, false, false);
   static SwitchOption interfaceMatrixElementDefault
     (interfaceMatrixElement,
      "Default",
      "Choose trivial matrix element i.e. whatever comes from the mass and "
 		 "phase space sampling",
      0);
   static SwitchOption interfaceMatrixElementSoftQQbarFinalFinal
     (interfaceMatrixElement,
      "SoftQQbarFinalFinal",
 		 "Choose Soft p1,p2->q1,q2,g*->q1,q2,q,qbar matrix element"
 		 "NOTE: Here the matrix element depends on qi.q(bar)",
      1);
   static SwitchOption interfaceMatrixElementSoftQQbarInitialFinal
     (interfaceMatrixElement,
      "SoftQQbarInitialFinal",
 		 "Choose Soft p1,p2->q1,q2,g*->q1,q2,q,qbar matrix element "
 		 "NOTE: Here the matrix element depends on pi.q(bar)",
      2);
 	// Technical Max loop parameter for New ClusterFission approach and Matrix Element 
 	// Rejection sampling
   static Parameter<ClusterFissioner,int> interfaceMaxLoopMatrixElement
     ("MaxLoopMatrixElement",
      "Technical Parameter for how many tries are allowed to sample the "
 		 "Cluster Fission matrix element before reverting to fissioning "
 		 "using the default Fission Aproach",
      &ClusterFissioner::_maxLoopFissionMatrixElement, 5000000, 100, 1e8,
 		 false, false, Interface::limited);
 
   static Switch<ClusterFissioner,int> interfaceDiquarkClusterFission
     ("DiquarkClusterFission",
      "Allow clusters to fission to 1 or 2 diquark Clusters or Turn off diquark fission completely",
      &ClusterFissioner::_diquarkClusterFission, 0, false, false);
   static SwitchOption interfaceDiquarkClusterFissionAll
 	(interfaceDiquarkClusterFission,
      "All",
      "Allow diquark clusters and baryon clusters to fission to new diquark Clusters",
      2);
   static SwitchOption interfaceDiquarkClusterFissionOnlyBaryonClusters
 	(interfaceDiquarkClusterFission,
      "OnlyBaryonClusters",
      "Allow only baryon clusters to fission to new diquark Clusters",
      1);
   static SwitchOption interfaceDiquarkClusterFissionNo
     (interfaceDiquarkClusterFission,
      "No",
      "Don't allow clusters to fission to new diquark Clusters",
      0);
   static SwitchOption interfaceDiquarkClusterFissionOff
     (interfaceDiquarkClusterFission,
      "Off",
      "Don't allow clusters fission to draw diquarks ",
      -1);
 
   static ParMap<ClusterFissioner,double> interfaceFissionPwt
     ("FissionPwt",
      "The weights for quarks in the fission process.",
      &ClusterFissioner::_fissionPwt, -1, 1.0, 0.0, 10.0,
      false, false, Interface::upperlim);
 
   static Switch<ClusterFissioner,int> interfaceRemnantOption
     ("RemnantOption",
      "Option for the treatment of remnant clusters",
      &ClusterFissioner::_iopRem, 1, false, false);
   static SwitchOption interfaceRemnantOptionSoft
     (interfaceRemnantOption,
      "Soft",
      "Both clusters produced in the fission of the beam cluster"
      " are treated as soft clusters.",
      0);
   static SwitchOption interfaceRemnantOptionHard
     (interfaceRemnantOption,
      "Hard",
      "Only the cluster containing the remnant is treated as a soft cluster.",
      1);
   static SwitchOption interfaceRemnantOptionVeryHard
     (interfaceRemnantOption,
      "VeryHard",
      "Even remnant clusters are treated as hard, i.e. all clusters the same",
      2);
 
   static Parameter<ClusterFissioner,Energy> interfaceBTCLM
     ("SoftClusterFactor",
      "Parameter for the mass spectrum of remnant clusters",
      &ClusterFissioner::_btClM, GeV, 1.*GeV, 0.1*GeV, 10.0*GeV,
      false, false, Interface::limited);
 
 
   static Parameter<ClusterFissioner,Tension> interfaceStringTension
     ("StringTension",
      "String tension used in vertex displacement calculation",
      &ClusterFissioner::_kappa, GeV/meter,
      1.0e15*GeV/meter, ZERO, ZERO,
      false, false, Interface::lowerlim);
 
   static Switch<ClusterFissioner,int> interfaceEnhanceSProb
     ("EnhanceSProb",
      "Option for enhancing strangeness",
      &ClusterFissioner::_enhanceSProb, 0, false, false);
   static SwitchOption interfaceEnhanceSProbNo
     (interfaceEnhanceSProb,
      "No",
      "No strangeness enhancement.",
      0);
   static SwitchOption interfaceEnhanceSProbScaled
     (interfaceEnhanceSProb,
      "Scaled",
      "Scaled strangeness enhancement",
      1);
   static SwitchOption interfaceEnhanceSProbExponential
     (interfaceEnhanceSProb,
      "Exponential",
      "Exponential strangeness enhancement",
      2);
 
    static Switch<ClusterFissioner,int> interfaceMassMeasure
      ("MassMeasure",
       "Option to use different mass measures",
       &ClusterFissioner::_massMeasure,0,false,false);
    static SwitchOption interfaceMassMeasureMass
      (interfaceMassMeasure,
       "Mass",
       "Mass Measure",
       0);
    static SwitchOption interfaceMassMeasureLambda
      (interfaceMassMeasure,
       "Lambda",
       "Lambda Measure",
       1);
 
   static Parameter<ClusterFissioner,Energy> interfaceFissionMassScale
     ("FissionMassScale",
      "Cluster fission mass scale",
      &ClusterFissioner::_m0Fission, GeV, 2.0*GeV, 0.1*GeV, 50.*GeV,
      false, false, Interface::limited);
 
   static Parameter<ClusterFissioner,double> interfaceProbPowFactor
      ("ProbablityPowerFactor",
       "Power factor in ClausterFissioner bell probablity function",
       &ClusterFissioner::_probPowFactor, 2.0, 1.0, 20.0,
       false, false, Interface::limited);
 
   static Parameter<ClusterFissioner,double> interfaceProbShift
      ("ProbablityShift",
       "Shifts from the center in ClausterFissioner bell probablity function",
       &ClusterFissioner::_probShift, 0.0, -10.0, 10.0,
       false, false, Interface::limited);
 
   static Parameter<ClusterFissioner,Energy2> interfaceKineticThresholdShift
      ("KineticThresholdShift",
       "Shifts from the kinetic threshold in ClausterFissioner",
       &ClusterFissioner::_kinThresholdShift, sqr(GeV), 0.*sqr(GeV), -10.0*sqr(GeV), 10.0*sqr(GeV),
       false, false, Interface::limited);
 
   static Switch<ClusterFissioner,int> interfaceKinematicThreshold
     ("KinematicThreshold",
      "Option for using static or dynamic kinematic thresholds in cluster splittings",
      &ClusterFissioner::_kinematicThresholdChoice, 0, false, false);
   static SwitchOption interfaceKinematicThresholdStatic
     (interfaceKinematicThreshold,
      "Static",
      "Set static kinematic thresholds for cluster splittings.",
      0);
   static SwitchOption interfaceKinematicThresholdDynamic
     (interfaceKinematicThreshold,
      "Dynamic",
      "Set dynamic kinematic thresholds for cluster splittings.",
      1);
 
 
   static Switch<ClusterFissioner,bool> interfaceCovariantBoost
     ("CovariantBoost",
      "Use single Covariant Boost for Cluster Fission",
      &ClusterFissioner::_covariantBoost, false, false, false);
   static SwitchOption interfaceCovariantBoostYes
     (interfaceCovariantBoost,
      "Yes",
      "Use Covariant boost",
      true);
   static SwitchOption interfaceCovariantBoostNo
     (interfaceCovariantBoost,
      "No",
      "Do NOT use Covariant boost",
      false);
   
 
   static Switch<ClusterFissioner,int> interfaceStrictDiquarkKinematics
     ("StrictDiquarkKinematics",
      "Option for selecting different selection criterions of diquarks for ClusterFission",
      &ClusterFissioner::_strictDiquarkKinematics, 0, false, false);
   static SwitchOption interfaceStrictDiquarkKinematicsLoose
     (interfaceStrictDiquarkKinematics,
      "Loose",
      "No kinematic threshold for diquark selection except for Mass bigger than 2 baryons",
      0);
   static SwitchOption interfaceStrictDiquarkKinematicsStrict
     (interfaceStrictDiquarkKinematics,
      "Strict",
      "Resulting clusters are at least as heavy as 2 lightest baryons",
      1);
 
   static Parameter<ClusterFissioner,double> interfacePwtDIquark
      ("PwtDIquark",
       "specific probability for choosing a d diquark",
       &ClusterFissioner::_pwtDIquark, 0.0, 0.0, 10.0,
       false, false, Interface::limited);
 
   static Switch<ClusterFissioner,bool> interfacePhaseSpaceWeights
     ("PhaseSpaceWeights",
      "Include phase space weights.",
      &ClusterFissioner::_phaseSpaceWeights, false, false, false);
   static SwitchOption interfacePhaseSpaceWeightsYes
     (interfacePhaseSpaceWeights,
      "Yes",
      "Do include the effect of cluster fission phase space",
      true);
   static SwitchOption interfacePhaseSpaceWeightsNo
     (interfacePhaseSpaceWeights,
      "No",
      "Do not include the effect of cluster phase space",
      false);
 
   static Parameter<ClusterFissioner,double>
     interfaceDim ("Dimension","Dimension in which phase space weights are calculated",
 		  &ClusterFissioner::_dim, 0, 4.0, 0.0, 10.0,false,false,false);
 
   // Matrix Element Choice Switch
   static Parameter<ClusterFissioner,double>
     interfaceSafetyFactorOverEst("SafetyFactorOverEst","Safety factor with which the numerical overestimate is calculated",
 		  &ClusterFissioner::_safetyFactorMatrixElement, 0, 10.0, 1.0, 1000.0,false,false,false);
 	
   // Matrix Element Choice Switch
   static Switch<ClusterFissioner,int> interfaceWriteOut
     ("WriteOut",
      "Option for different Matrix Element options",
      &ClusterFissioner::_writeOut, 0, false, false);
   static SwitchOption interfaceWriteOutNo
     (interfaceWriteOut,
      "No",
      "Choose trivial matrix element i.e. whatever comes from the mass and "
 	 "phase space sampling",
      0);
   static SwitchOption interfaceWriteOutYes
     (interfaceWriteOut,
      "Yes",
 	 "Choose Soft q1,q2->q1,q2,g*->q1,q2,q,qbar matrix element",
      1);
 }
 
 tPVector ClusterFissioner::fission(ClusterVector & clusters, bool softUEisOn) {
   // return if no clusters
   if (clusters.empty()) return tPVector();
 
   /*****************
    * Loop over the (input) collection of cluster pointers, and store in
    * the vector  splitClusters  all the clusters that need to be split
    * (these are beam clusters, if soft underlying event is off, and
    *  heavy non-beam clusters).
    ********************/
 
   stack<ClusterPtr> splitClusters;
   for(ClusterVector::iterator it = clusters.begin() ;
       it != clusters.end() ; ++it) {
     /**************
      * Skip 3-component clusters that have been redefined (as 2-component
      * clusters) or not available clusters. The latter check is indeed
      * redundant now, but it is used for possible future extensions in which,
      * for some reasons, some of the clusters found by ClusterFinder are tagged
      * straight away as not available.
      **************/
     if((*it)->isRedefined() || !(*it)->isAvailable()) continue;
     // if the cluster is a beam cluster add it to the vector of clusters
     // to be split or if it is heavy
     if((*it)->isBeamCluster() || isHeavy(*it)) splitClusters.push(*it);
   }
   tPVector finalhadrons;
   cut(splitClusters, clusters, finalhadrons, softUEisOn);
   return finalhadrons;
 }
 
 void ClusterFissioner::cut(stack<ClusterPtr> & clusterStack,
    			   ClusterVector &clusters, tPVector & finalhadrons,
 			   bool softUEisOn) {
   /**************************************************
    * This method does the splitting of the cluster pointed by  cluPtr
    * and "recursively" by all of its cluster children, if heavy. All of these
    * new children clusters are added (indeed the pointers to them) to the
    * collection of cluster pointers  collecCluPtr. The method works as follows.
    * Initially the vector vecCluPtr contains just the input pointer to the
    * cluster to be split. Then it will be filled "recursively" by all
    * of the cluster's children that are heavy enough to require, in their turn,
    * to be split. In each loop, the last element of the vector vecCluPtr is
    * considered (only once because it is then removed from the vector).
    * This approach is conceptually recursive, but avoid the overhead of
    * a concrete recursive function. Furthermore it requires minimal changes
    * in the case that the fission of an heavy cluster could produce more
    * than two cluster children as assumed now.
    *
    * Draw the masses: for normal, non-beam clusters a power-like mass dist
    * is used, whereas for beam clusters a fast-decreasing exponential mass
    * dist is used instead (to avoid many iterative splitting which could
    * produce an unphysical large transverse energy from a supposed soft beam
    * remnant process).
    ****************************************/
   // Here we recursively loop over clusters in the stack and cut them
   while (!clusterStack.empty()) {
     // take the last element of the vector
     ClusterPtr iCluster = clusterStack.top(); clusterStack.pop();
     // split it
     cutType ct = iCluster->numComponents() == 2 ?
       cutTwo(iCluster, finalhadrons, softUEisOn) :
       cutThree(iCluster, finalhadrons, softUEisOn);
 
     // There are cases when we don't want to split, even if it fails mass test
     if(!ct.first.first || !ct.second.first) {
       // if an unsplit beam cluster leave if for the underlying event
       if(iCluster->isBeamCluster() && softUEisOn)
 	iCluster->isAvailable(false);
       continue;
     }
     // check if clusters
     ClusterPtr one = dynamic_ptr_cast<ClusterPtr>(ct.first.first);
     ClusterPtr two = dynamic_ptr_cast<ClusterPtr>(ct.second.first);
     // is a beam cluster must be split into two clusters
     if(iCluster->isBeamCluster() && (!one||!two) && softUEisOn) {
       iCluster->isAvailable(false);
       continue;
     }
 
     // There should always be a intermediate quark(s) from the splitting
     assert(ct.first.second && ct.second.second);
     /// \todo sort out motherless quark pairs here. Watch out for 'quark in final state' errors
     iCluster->addChild(ct.first.first);
     //    iCluster->addChild(ct.first.second);
     //    ct.first.second->addChild(ct.first.first);
 
     iCluster->addChild(ct.second.first);
     //    iCluster->addChild(ct.second.second);
     //    ct.second.second->addChild(ct.second.first);
 
     // Sometimes the clusters decay C -> H + C' or C -> H + H' rather then C -> C' + C''
     if(one) {
       clusters.push_back(one);
       if(one->isBeamCluster() && softUEisOn)
 	one->isAvailable(false);
       if(isHeavy(one) && one->isAvailable())
 	clusterStack.push(one);
     }
     if(two) {
       clusters.push_back(two);
       if(two->isBeamCluster() && softUEisOn)
 	two->isAvailable(false);
       if(isHeavy(two) && two->isAvailable())
 	clusterStack.push(two);
     }
   }
 }
 ClusterFissioner::cutType
 ClusterFissioner::cutTwo(ClusterPtr & cluster, tPVector & finalhadrons,
 			 bool softUEisOn) {
 	switch (_fissionApproach)
 	{
 		case 0:
 			return cutTwoDefault(cluster, finalhadrons, softUEisOn);
 			break;
 		case 1:
 			return cutTwoNew(cluster, finalhadrons, softUEisOn);
 			break;
 		case 2:
 			if (cluster->isBeamCluster()) {
 				return cutTwoDefault(cluster, finalhadrons, softUEisOn);
 			}
 			else {
 				return cutTwoNew(cluster, finalhadrons, softUEisOn);
 			}
 			break;
 		default:
 			assert(false);
 	}
 }
 
 ClusterFissioner::cutType
 ClusterFissioner::cutTwoDefault(ClusterPtr & cluster, tPVector & finalhadrons,
 			 bool softUEisOn) {
   // need to make sure only 2-cpt clusters get here
   assert(cluster->numComponents() == 2);
   tPPtr ptrQ1 = cluster->particle(0);
   tPPtr ptrQ2 = cluster->particle(1);
   Energy Mc = cluster->mass();
   assert(ptrQ1);
   assert(ptrQ2);
 
   // And check if those particles are from a beam remnant
   bool rem1 = cluster->isBeamRemnant(0);
   bool rem2 = cluster->isBeamRemnant(1);
   // workout which distribution to use
   bool soft1(false),soft2(false);
   switch (_iopRem) {
   case 0:
     soft1 = rem1 || rem2;
     soft2 = rem2 || rem1;
     break;
   case 1:
     soft1 = rem1;
     soft2 = rem2;
     break;
   }
   // Initialization for the exponential ("soft") mass distribution.
   static const int max_loop = 1000;
   int counter = 0;
   Energy Mc1 = ZERO, Mc2 = ZERO,m1=ZERO,m2=ZERO,m=ZERO;
   tcPDPtr toHadron1, toHadron2;
   PPtr newPtr1 = PPtr ();
   PPtr newPtr2 = PPtr ();
   bool succeeded = false;
   Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2;
   do
     {
       succeeded = false;
       ++counter;
       // get a flavour for the qqbar pair
       drawNewFlavour(newPtr1,newPtr2,cluster);
       // check for right ordering
       assert (ptrQ2);
       assert (newPtr2);
       assert (ptrQ2->dataPtr());
       assert (newPtr2->dataPtr());
       if(cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2)) {
 	swap(newPtr1, newPtr2);
 	// check again
 	if(cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2)) {
 	  throw Exception()
 	    << "ClusterFissioner cannot split the cluster ("
 	    << ptrQ1->PDGName() << ' ' << ptrQ2->PDGName()
 	    << ") into hadrons.\n" << Exception::runerror;
 	}
       }
       // Check that new clusters can produce particles and there is enough
       // phase space to choose the drawn flavour
       m1 = ptrQ1->data().constituentMass();
       m2 = ptrQ2->data().constituentMass();
       m  = newPtr1->data().constituentMass();
       // Do not split in the case there is no phase space available
       if(Mc <  m1+m + m2+m) continue;
 
       pQ1.setMass(m1);
       pQone.setMass(m);
       pQtwo.setMass(m);
       pQ2.setMass(m2);
 
       //  pair<Energy,Energy> res = drawNewMasses(Mc, soft1, soft2, pClu1, pClu2,
 	  //				      ptrQ1, pQ1, newPtr1, pQone,
 	  //				      newPtr2, pQtwo, ptrQ2, pQ2);
       bool failure = drawNewMassesDefault(Mc, soft1, soft2, pClu1, pClu2,
 					ptrQ1, pQ1, newPtr1, pQone,
 					newPtr2, pQtwo, ptrQ2, pQ2);
 			if (failure)
 				continue;
 
       // derive the masses of the children
       Mc1 = pClu1.mass();
       Mc2 = pClu2.mass();
       // static kinematic threshold
       if(_kinematicThresholdChoice == 0) {
         if(Mc1 < m1+m || Mc2 < m+m2 || Mc1+Mc2 > Mc) continue;
       // dynamic kinematic threshold
       }
       else if(_kinematicThresholdChoice == 1) {
         bool C1 = ( sqr(Mc1) )/( sqr(m1) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false;
         bool C2 = ( sqr(Mc2) )/( sqr(m2) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false;
         bool C3 = ( sqr(Mc1) + sqr(Mc2) )/( sqr(Mc) ) > 1.0 ? true : false;
 
         if( C1 || C2 || C3 ) continue;
       }
       if ( _phaseSpaceWeights ) {
 				if ( phaseSpaceVeto(Mc,Mc1,Mc2,m,m1,m2) )
 					continue;
       }
 
       /**************************
        * New (not present in Fortran Herwig):
        * check whether the fragment masses  Mc1  and  Mc2  are above the
        * threshold for the production of the lightest pair of hadrons with the
        * right flavours. If not, then set by hand the mass to the lightest
        * single hadron with the right flavours, in order to solve correctly
        * the kinematics, and (later in this method) create directly such hadron
        * and add it to the children hadrons of the cluster that undergoes the
        * fission (i.e. the one pointed by iCluPtr). Notice that in this special
        * case, the heavy cluster that undergoes the fission has one single
        * cluster child and one single hadron child. We prefer this approach,
        * rather than to create a light cluster, with the mass set equal to
        * the lightest hadron, and let then the class LightClusterDecayer to do
        * the job to decay it to that single hadron, for two reasons:
        * First, because the sum of the masses of the two constituents can be,
        * in this case, greater than the mass of that hadron, hence it would
        * be impossible to solve the kinematics for such two components, and
        * therefore we would have a cluster whose components are undefined.
        * Second, the algorithm is faster, because it avoids the reshuffling
        * procedure that would be necessary if we used LightClusterDecayer
        * to decay the light cluster to the lightest hadron.
        ****************************/
       // override chosen masses if needed
       toHadron1 = _hadronSpectrum->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc1);
       if(toHadron1) { Mc1 = toHadron1->mass(); pClu1.setMass(Mc1); }
       toHadron2 = _hadronSpectrum->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc2);
       if(toHadron2) { Mc2 = toHadron2->mass(); pClu2.setMass(Mc2); }
       // if a beam cluster not allowed to decay to hadrons
       if(cluster->isBeamCluster() && (toHadron1||toHadron2) && softUEisOn)
 				continue;
       // Check if the decay kinematics is still possible: if not then
       // force the one-hadron decay for the other cluster as well.
       if(Mc1 + Mc2  >  Mc) {
 				if(!toHadron1) {
 					toHadron1 = _hadronSpectrum->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc-Mc2);
 					if(toHadron1) { Mc1 = toHadron1->mass(); pClu1.setMass(Mc1); }
 				}
 				else if(!toHadron2) {
 					toHadron2 = _hadronSpectrum->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc-Mc1);
 					if(toHadron2) { Mc2 = toHadron2->mass(); pClu2.setMass(Mc2); }
 				}
       }
       succeeded = (Mc >= Mc1+Mc2);
     }
   while (!succeeded && counter < max_loop);
 
   if(counter >= max_loop) {
     static const PPtr null = PPtr();
     return cutType(PPair(null,null),PPair(null,null));
   }
 
   // Determined the (5-components) momenta (all in the LAB frame)
   Lorentz5Momentum pClu = cluster->momentum(); // known
   Lorentz5Momentum p0Q1 = ptrQ1->momentum(); // known (mom Q1 before fission)
   calculateKinematics(pClu,p0Q1,toHadron1,toHadron2,
 		      pClu1,pClu2,pQ1,pQone,pQtwo,pQ2);
 
   /******************
    * The previous methods have determined the kinematics and positions
    * of C -> C1 + C2.
    * In the case that one of the two product is light, that means either
    * decayOneHadronClu1 or decayOneHadronClu2 is true, then the momenta
    * of the components of that light product have not been determined,
    * and a (light) cluster will not be created: the heavy father cluster
    * decays, in this case, into a single (not-light) cluster and a
    * single hadron. In the other, "normal", cases the father cluster
    * decays into two clusters, each of which has well defined components.
    * Notice that, in the case of components which point to particles, the
    * momenta of the components is properly set to the new values, whereas
    * we do not change the momenta of the pointed particles, because we
    * want to keep all of the information (that is the new momentum of a
    * component after the splitting, which is contained in the _momentum
    * member of the Component class, and the (old) momentum of that component
    * before the splitting, which is contained in the momentum of the
    * pointed particle). Please not make confusion of this only apparent
    * inconsistency!
    ********************/
   LorentzPoint posC,pos1,pos2;
   posC = cluster->vertex();
   calculatePositions(pClu, posC, pClu1, pClu2, pos1, pos2);
   cutType rval;
   if(toHadron1) {
     rval.first = produceHadron(toHadron1, newPtr1, pClu1, pos1);
     finalhadrons.push_back(rval.first.first);
   }
   else {
     rval.first = produceCluster(ptrQ1, newPtr1, pClu1, pos1, pQ1, pQone, rem1);
   }
   if(toHadron2) {
     rval.second = produceHadron(toHadron2, newPtr2, pClu2, pos2);
     finalhadrons.push_back(rval.second.first);
   }
   else {
     rval.second = produceCluster(ptrQ2, newPtr2, pClu2, pos2, pQ2, pQtwo, rem2);
   }
   return rval;
 }
 
 ClusterFissioner::cutType
 ClusterFissioner::cutTwoNew(ClusterPtr & cluster, tPVector & finalhadrons,
 			 bool softUEisOn) {
   // need to make sure only 2-cpt clusters get here
   assert(cluster->numComponents() == 2);
   tPPtr ptrQ1 = cluster->particle(0);
   tPPtr ptrQ2 = cluster->particle(1);
 	Energy Mc = cluster->mass();
 	// TODO BEGIN Changed comp to default
 	if ( Mc < spectrum()->massLightestHadronPair(ptrQ1->dataPtr(),ptrQ2->dataPtr())) {
 		static const PPtr null = PPtr();
 		return cutType(PPair(null,null),PPair(null,null));
 	}
 	// TODO END Changed comp to default
   assert(ptrQ1);
   assert(ptrQ2);
 
   // And check if those particles are from a beam remnant
   bool rem1 = cluster->isBeamRemnant(0);
   bool rem2 = cluster->isBeamRemnant(1);
   // workout which distribution to use
   bool soft1(false),soft2(false);
   switch (_iopRem) {
   case 0:
     soft1 = rem1 || rem2;
     soft2 = rem2 || rem1;
     break;
   case 1:
     soft1 = rem1;
     soft2 = rem2;
     break;
   }
   // Initialization for the exponential ("soft") mass distribution.
   int counter_MEtry = 0;
   Energy Mc1 = ZERO;
 	Energy Mc2 = ZERO;
 	Energy m  = ZERO;
 	Energy m1 = ptrQ1->data().constituentMass();
 	Energy m2 = ptrQ2->data().constituentMass();
 	Energy mMin = getParticleData(ParticleID::d)->constituentMass();
 	// TODO get rid of magic number
 	// double eps = 0.0;
 	// Minimal threshold for non-zero Mass PhaseSpace
 	// if ( Mc < (1.0+eps)*(m1 + m2 + 2*mMin )) {
 		// static const PPtr null = PPtr();
 		// return cutType(PPair(null,null),PPair(null,null));
 	// }
 	// Minimal threshold for non-zero Mass PhaseSpace
 	if ( Mc < (m1 + m2 + 2*mMin )) {
 		static const PPtr null = PPtr();
 		return cutType(PPair(null,null),PPair(null,null));
 	}
   tcPDPtr toHadron1, toHadron2;
   PPtr newPtr1 = PPtr ();
   PPtr newPtr2 = PPtr ();
   Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2;
 	Lorentz5Momentum pClu = cluster->momentum(); // known
 	Lorentz5Momentum p0Q1 = ptrQ1->momentum(); // known (mom Q1 before fission)
 	Lorentz5Momentum p0Q2 = ptrQ2->momentum(); // known (mom Q2 before fission)
 	// where to return to in case of rejected sample
 	enum returnTo {
 		FlavourSampling,
 		MassSampling,
 		PhaseSpaceSampling,
 		MatrixElementSampling,
 		Done
 	};
 	// start with FlavourSampling
 	returnTo retTo=FlavourSampling;
 	int letFissionToXHadrons = _allowHadronFinalStates;
 	// if a beam cluster not allowed to decay to hadrons
 	if (cluster->isBeamCluster() && softUEisOn) letFissionToXHadrons = 0;
 	// ### Flavour, Mass, PhaseSpace and MatrixElement Sampling loop until accepted: ###
 	bool escape = false;
 
   do
   {
 	  switch (retTo)
 	  {
 			case FlavourSampling:
 			{
 				// ## Flavour sampling and kinematic constraints ##
 				drawNewFlavour(newPtr1,newPtr2,cluster);
 				// get a flavour for the qqbar pair
 				// check for right ordering
 				assert (ptrQ2);
 				assert (newPtr2);
 				assert (ptrQ2->dataPtr());
 				assert (newPtr2->dataPtr());
 				// careful if DiquarkClusters can exist
 				bool Q1diq = DiquarkMatcher::Check(ptrQ1->id());
 				bool Q2diq = DiquarkMatcher::Check(ptrQ2->id());
 				bool newQ1diq = DiquarkMatcher::Check(newPtr1->id());
 				bool newQ2diq = DiquarkMatcher::Check(newPtr2->id());
 				bool diqClu1 = Q1diq && newQ1diq;
 				bool diqClu2 = Q2diq && newQ2diq;
 				// DEBUG only:
 				// std::cout << "Make Clusters: ( " << ptrQ1->PDGName() << " " << newPtr1->PDGName() << " ), ( "
 				// << ptrQ2->PDGName() << " " << newPtr2->PDGName() << " )\n";
 				// check if Hadron formation is possible
 				if (!( diqClu1 || diqClu2 )
 						&& (cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2))) {
 					swap(newPtr1, newPtr2);
 					// check again
 					if(cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2)) {
 						throw Exception()
 							<< "ClusterFissioner cannot split the cluster ("
 							<< ptrQ1->PDGName() << ' ' << ptrQ2->PDGName()
 							<< ") into hadrons.\n"
 							<< "drawn Flavour: "<< newPtr1->PDGName()<<"\n"<< Exception::runerror;
 					}
 				}
 				else if ( diqClu1 || diqClu2 ){
 					bool swapped=false;
 					if ( !diqClu1 && cantMakeHadron(ptrQ1,newPtr1) ) {
 						swap(newPtr1, newPtr2);
 						swapped=true;
 					}
 					if ( !diqClu2 && cantMakeHadron(ptrQ2,newPtr2) ) {
 						assert(!swapped);
 						swap(newPtr1, newPtr2);
 					}
 					if ( diqClu2 && diqClu1 && ptrQ1->id()*newPtr1->id()>0 ) {
 						assert(!swapped);
 						swap(newPtr1, newPtr2);
 					}
 					if (!diqClu1) assert(!cantMakeHadron(ptrQ1,newPtr1));
 					if (!diqClu2) assert(!cantMakeHadron(ptrQ2,newPtr2));
 				}
 				// Check that new clusters can produce particles and there is enough
 				// phase space to choose the drawn flavour
 				m  = newPtr1->data().constituentMass();
 				// Do not split in the case there is no phase space available + permille security
 				if(Mc <  (m1 + m + m2 + m))  {
 					retTo = FlavourSampling;
 					// escape if no flavour phase space possibile without fission
 					if (fabs((m - mMin)/GeV) < 1e-3) {
 						escape = true;
 						retTo = Done;
 					}
 					continue;
 				}
 				pQ1.setMass(m1);
 				pQone.setMass(m);
 				pQtwo.setMass(m);
 				pQ2.setMass(m2);
 				// Determined the (5-components) momenta (all in the LAB frame)
 				p0Q1.setMass(ptrQ1->mass()); // known (mom Q1 before fission)
 				p0Q1.rescaleEnergy(); // TODO check if needed
 				p0Q2.setMass(ptrQ2->mass()); // known (mom Q2 before fission)
 				p0Q2.rescaleEnergy();// TODO check if needed
 				pClu.rescaleMass();
 
 				Energy MLHP1 = spectrum()->hadronPairThreshold(ptrQ1->dataPtr(),newPtr1->dataPtr());
 				Energy MLHP2 = spectrum()->hadronPairThreshold(ptrQ2->dataPtr(),newPtr2->dataPtr());
 
 				Energy MLH1 = _hadronSpectrum->lightestHadron(ptrQ1->dataPtr(),newPtr1->dataPtr())->mass();
 				Energy MLH2 = _hadronSpectrum->lightestHadron(ptrQ2->dataPtr(),newPtr2->dataPtr())->mass();
 
 				bool canBeSingleHadron1 = (m1 + m) < MLHP1;
 				bool canBeSingleHadron2 = (m2 + m) < MLHP2;
 
 				Energy mThresh1 = (m1 + m);
 				Energy mThresh2 = (m2 + m);
 
 				if (canBeSingleHadron1) mThresh1 = MLHP1;
 				if (canBeSingleHadron2) mThresh2 = MLHP2;
 
 				switch (letFissionToXHadrons)
 				{
 					case 0:
 						{
 							// Option None: only C->C1,C2 allowed
 							// check if mass phase space is non-zero 
 							// resample or escape if only allowed mass phase space is for C->H1,H2 or C->H1,C2
 							if ( Mc < (mThresh1 + mThresh2)) {
 								// escape if not even the lightest flavour phase space is possibile
 								// TODO make this independent of explicit u/d quark
 								if (
 										fabs((m - getParticleData(ThePEG::ParticleID::u)->constituentMass())/GeV) < 1e-3
 											||
 										fabs((m - getParticleData(ThePEG::ParticleID::d)->constituentMass())/GeV) < 1e-3
 										) {
 									escape = true;
 									retTo = Done;
 									continue;
 								}
 								else {
 									retTo = FlavourSampling;
 									continue;
 								}
 							}
 							break;
 						}
 					case 1:
 						{
 							// Option SemiHadronicOnly: C->H,C allowed
 							// NOTE: TODO implement matrix element for this
 							// resample or escape if only allowed mass phase space is for C->H1,H2
 							// First case is for ensuring the enough mass to  be available and second one rejects disjoint mass regions
 							if ( ( (canBeSingleHadron1 && canBeSingleHadron2)
 									    &&  Mc < (mThresh1 + mThresh2) )
 									|| 
 									 ( (canBeSingleHadron1 || canBeSingleHadron2)
 								      && (canBeSingleHadron1 ? Mc-(m2+m) < MLH1:false ||  canBeSingleHadron2 ? Mc-(m1+m) < MLH2:false) )
 								 ){
 								// escape if not even the lightest flavour phase space is possibile
 								// TODO make this independent of explicit u/d quark
 								if (
 										fabs((m - getParticleData(ThePEG::ParticleID::u)->constituentMass())/GeV) < 1e-3
 											||
 										fabs((m - getParticleData(ThePEG::ParticleID::d)->constituentMass())/GeV) < 1e-3
 										) {
 									escape = true;
 									retTo = Done;
 									continue;
 								}
 								else {
 									retTo = FlavourSampling;
 									continue;
 								}
 							}
 							break;
 						}
 					case 2:
 						{
 							// Option All: C->H,C and C->H,H allowed
 							// NOTE: TODO implement matrix element for this
 							// Mass Phase space for all option can always be found if cluster massive enough to go
 							// to the lightest 2 hadrons
 							break;
 						}
 					default:
 						assert(false);
 				}
 				// Note: want to fallthrough (in C++17 one could uncomment
 				// 			 the line below to show that this is intentional)
 				[[fallthrough]];
 			}
 			/*
 			 * MassSampling choices:
 			 * 	- Default (default)
 			 * 	- Uniform
 			 * 	- FlatPhaseSpace
 			 * 	- SoftMEPheno
 			 * 	*/
 			case MassSampling:
 			{
 				bool failure = drawNewMasses(Mc, soft1, soft2, pClu1, pClu2,
 						ptrQ1, pQ1, newPtr1, pQone,
 						newPtr2, pQtwo, ptrQ2, pQ2);
 
 				// TODO IF C->C1,C2 (and not C->C,H or H1,H2) masses sampled and is in PhaseSpace must push through
 				// because otherwise no matrix element
 				if(failure) {
 					// TODO check which option is better
 					// retTo = FlavourSampling;
 					retTo = MassSampling;
 					continue;
 				}
 
 				// derive the masses of the children
 				Mc1 = pClu1.mass();
 				Mc2 = pClu2.mass();
 				// static kinematic threshold
 				if(_kinematicThresholdChoice == 0) {
 					if(Mc1 < m1+m || Mc2 < m+m2 || Mc1+Mc2 > Mc){
 						// TODO check which option is better
 						// retTo = FlavourSampling;
 						retTo = MassSampling;
 						continue;
 					}
 					// dynamic kinematic threshold
 				} else if(_kinematicThresholdChoice == 1) {
 					bool C1 = ( sqr(Mc1) )/( sqr(m1) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false;
 					bool C2 = ( sqr(Mc2) )/( sqr(m2) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false;
 					bool C3 = ( sqr(Mc1) + sqr(Mc2) )/( sqr(Mc) ) > 1.0 ? true : false;
 
 					if( C1 || C2 || C3 ) {
 						// TODO check which option is better
 						// retTo = FlavourSampling;
 						retTo = MassSampling;
 						continue;
 					}
 				}
 				/**************************
 				 * New (not present in Fortran Herwig):
 				 * check whether the fragment masses  Mc1  and  Mc2  are above the
 				 * threshold for the production of the lightest pair of hadrons with the
 				 * right flavours. If not, then set by hand the mass to the lightest
 				 * single hadron with the right flavours, in order to solve correctly
 				 * the kinematics, and (later in this method) create directly such hadron
 				 * and add it to the children hadrons of the cluster that undergoes the
 				 * fission (i.e. the one pointed by iCluPtr). Notice that in this special
 				 * case, the heavy cluster that undergoes the fission has one single
 				 * cluster child and one single hadron child. We prefer this approach,
 				 * rather than to create a light cluster, with the mass set equal to
 				 * the lightest hadron, and let then the class LightClusterDecayer to do
 				 * the job to decay it to that single hadron, for two reasons:
 				 * First, because the sum of the masses of the two constituents can be,
 				 * in this case, greater than the mass of that hadron, hence it would
 				 * be impossible to solve the kinematics for such two components, and
 				 * therefore we would have a cluster whose components are undefined.
 				 * Second, the algorithm is faster, because it avoids the reshuffling
 				 * procedure that would be necessary if we used LightClusterDecayer
 				 * to decay the light cluster to the lightest hadron.
 				 ****************************/
 				// override chosen masses if needed 
 				toHadron1 = _hadronSpectrum->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc1);
 				if ( letFissionToXHadrons == 0 && toHadron1 ) {
 					// reject mass samples which would force C->C,H or C->H1,H2 fission if desired 
 					// TODO check which option is better
 					// retTo = FlavourSampling;
 					retTo = MassSampling;
 					continue;
 				}
 				if(toHadron1) {
 					Mc1 = toHadron1->mass();
 					pClu1.setMass(Mc1);
 				}
 				toHadron2 = _hadronSpectrum->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc2);
 				if ( letFissionToXHadrons == 0 && toHadron2 ) {
 					// reject mass samples which would force C->C,H or C->H1,H2 fission if desired 
 					// TODO check which option is better
 					// retTo = FlavourSampling;
 					retTo = MassSampling;
 					continue;
 				}
 				if(toHadron2) {
 					Mc2 = toHadron2->mass();
 					pClu2.setMass(Mc2);
 				}
 				if (letFissionToXHadrons == 1 && (toHadron1 && toHadron2) ) {
 					// reject mass samples which would force C->H1,H2 fission if desired 
 					// TODO check which option is better
 					// retTo = FlavourSampling;
 					retTo = MassSampling;
 					continue;
 				}
 				// Check if the decay kinematics is still possible: if not then
 				// force the one-hadron decay for the other cluster as well.
 				if(Mc1 + Mc2  >  Mc) {
 					// reject if we would need to create a C->H,H process if letFissionToXHadrons<2
 					if (letFissionToXHadrons < 2) {
 						// TODO check which option is better
 						// retTo = FlavourSampling;
 						retTo = MassSampling;
 						continue;
 					}
 
 					// TODO forbid other cluster!!!! to be also at hadron
 					if(!toHadron1) {
 						toHadron1 = _hadronSpectrum->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc-Mc2);
 						// toHadron1 = _hadronSpectrum->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),ZERO);
 						if(toHadron1) {
 							Mc1 = toHadron1->mass();
 							pClu1.setMass(Mc1);
 						}
 					}
 					else if(!toHadron2) {
 						toHadron2 = _hadronSpectrum->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc-Mc1);
 						// toHadron2 = _hadronSpectrum->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),ZERO);
 						if(toHadron2) {
 							Mc2 = toHadron2->mass();
 							pClu2.setMass(Mc2);
 						}
 					}
 				}
 				if (Mc <= Mc1+Mc2){
 					// escape if already lightest quark drawn
 					if (
 							fabs((m - getParticleData(ThePEG::ParticleID::u)->constituentMass())/GeV) < 1e-3
 							||
 							fabs((m - getParticleData(ThePEG::ParticleID::d)->constituentMass())/GeV) < 1e-3
 						 ) {
 						escape = true;
 						retTo = Done;
 					}
 					else {
 						// Try again with lighter quark
 						retTo = FlavourSampling;
 					}
 					continue;
 				}
 				// Note: want to fallthrough (in C++17 one could uncomment
 				// 			 the line below to show that this is intentional)
 				[[fallthrough]];
 			}
 			/*
 			 * PhaseSpaceSampling choices:
 			 * 	- FullyAligned (default)
 			 * 	- AlignedIsotropic
 			 * 	- FullyIsotropic
 			 * 	*/
 			case PhaseSpaceSampling:
 			{
 				// ### Sample the Phase Space with respect to Matrix Element: ###
 				// TODO insert here PhaseSpace sampler
 				bool failure = drawKinematics(pClu,p0Q1,p0Q2,toHadron1,toHadron2,
 						pClu1,pClu2,pQ1,pQone,pQtwo,pQ2);
 
 				if(failure) {
 					// TODO check which option is better
 					retTo = MassSampling;
 					continue;
 				}
 				// Should be precise i.e. no rejection expected
 				// Note: want to fallthrough (in C++17 one could uncomment
 				// 			 the line below to show that this is intentional)
 				[[fallthrough]];
 			}
 			/*
 			 * MatrixElementSampling choices:
 			 * 	- Default (default)
 			 * 	- SoftQQbar
 			 * 	*/
 			case MatrixElementSampling:
 			{
 				counter_MEtry++;
 				// TODO maybe bridge this to work more neatly
 				// Ignore matrix element for C->C,H or C->H1,H2 fission
 				if (toHadron1 || toHadron2) {
 					retTo = Done;
 					break;
 				}
 				// Actual MatrixElement evaluated at sampled PhaseSpace point
 				double SQME = calculateSQME(p0Q1,p0Q2,pQ1,pQone,pQ2,pQtwo);
 				// Total overestimate of MatrixElement independent 
 				// of the PhaseSpace point and independent of M1,M2
 				double SQMEoverEstimate = calculateSQME_OverEstimate(Mc,m1,m2,m); 
 				// weight for MatrixElement*PhaseSpace must be in [0:1]
 				double weightSQME = SQME/SQMEoverEstimate;
+				// TODO DIRTY HACK make this better 
+				// double dirtyHack=(Mc1*Mc2)/sqr((Mc-(m1+m2+2*m)));
+				double dirtyHack=(Mc1*Mc2)/sqr(Mc/2.0);
+				assert(dirtyHack<=1.0);
+				weightSQME*=dirtyHack;
 				assert(weightSQME>0.0);
 				// weight(M1,M2) for 3*Two body PhaseSpace should be in [0,1]
 				double weightFlatPS = weightFlatPhaseSpace(Mc, Mc1, Mc2, m, m1, m2);
 				// current phase space point is distributed according to weightSamp
 				double Pacc = weightFlatPS * weightSQME;
 				assert(Pacc > 0.0);
 				if (Pacc > 1.0 || std::isnan(Pacc) || std::isinf(Pacc)){
 					throw Exception() << "Pacc = "<< Pacc << " > 1 in ClusterFissioner::cutTwo"
 						<< "Mc  = " << Mc/GeV
 						<< "Mc1 = " << Mc1/GeV
 						<< "Mc2 = " << Mc2/GeV
 						<< "m1  = " << m1/GeV
 						<< "m2  = " << m2/GeV
 						<< "m   = " << m/GeV
 						<< Exception::runerror;
 				}
 				static int first=_writeOut;
 				if (UseRandom::rnd()<Pacc) {
 					if (_writeOut && _matrixElement!=0) {
 						// std::cout << "\nAccept Pacc = "<<Pacc<<"\n";
 						// std::ofstream out("data_CluFis.dat", std::ios::app | std::ios::out);
 						// out << Pacc << "\t"
 							// << Mc/GeV  << "\t"
 							// << pClu1.mass()/GeV << "\t"
 							// << pClu2.mass()/GeV << "\t"
 							// << pQone*pQtwo/GeV2 << "\t"
 							// << pQ1*pQ2/GeV2 << "\t"
 							// << pQ1*pQtwo/GeV2 << "\t"
 							// << pQ2*pQone/GeV2 << "\t"
 							// << m/GeV
 							// << "\n";
 						// out.close();
 						Energy MbinStart=2.0*GeV;
 						Energy MbinEnd=91.0*GeV;
 						Energy dMbin=1.0*GeV;
 						Energy MbinLow;
 						Energy MbinHig;
 						if (   fabs((m-0.325*GeV)/GeV)<1e-5
 							&& fabs((m1-0.325*GeV)/GeV)<1e-5
 							&& fabs((m2-0.325*GeV)/GeV)<1e-5) {
 							int cnt = 0;
 							for (Energy MbinIt=MbinStart; MbinIt < MbinEnd; MbinIt+=dMbin)
 							{
 								if (first){
 									first=0;
 									std::cout << "\nFirst\n" << std::endl;
 									int ctr=0;
 									for (Energy MbinIt=MbinStart; MbinIt < MbinEnd; MbinIt+=dMbin)
 									{
 										std::string name = "WriteOut/data_CluFis_BinM_"+std::to_string(ctr)+".dat";
 										std::ofstream out2(name,std::ios::out);
 										out2 << "# Binned from "<<MbinIt/GeV << "\tto\t" << (MbinIt+dMbin)/GeV<<"\n";
 										out2 << "# m=m1=m2=0.325\n";
 										out2 << "# (1) Pacc\t"
 											<< "(2) Mc/GeV\t"
 											<< "(3) M1/GeV\t"
 											<< "(4) M2/GeV\t"
 											<< "(5) q.qbar/GeV2\t"
 											<< "(6) q1.q2/GeV2\t"
 											<< "(7) q1.qbar/GeV2\t"
 											<< "(8) q2.q/GeV2\t"
 											<< "(9) m/GeV\n";
 										out2.close();
 										ctr++;
 									}
 									// first=0;
 								}
 								MbinLow  = MbinIt;
 								MbinHig  = MbinLow+dMbin;
 								if (Mc>MbinLow && Mc<MbinHig) {
 									std::string name = "WriteOut/data_CluFis_BinM_"+std::to_string(cnt)+".dat";
 									std::ofstream out2(name, std::ios::app );
 									out2 << Pacc << "\t"
 										<< Mc/GeV  << "\t"
 										<< pClu1.mass()/GeV << "\t"
 										<< pClu2.mass()/GeV << "\t"
 										<< pQone*pQtwo/GeV2 << "\t"
 										<< pQ1*pQ2/GeV2 << "\t"
 										<< pQ1*pQtwo/GeV2 << "\t"
 										<< pQ2*pQone/GeV2 << "\t"
 										<< m/GeV
 										<< "\n";
 									out2.close();
 									break;
 								}
 								// if (Mc<MbinIt) break;
 								cnt++;
 							}
 						}
 					}
 					retTo=Done;
 					break;
 				}
 				retTo = MassSampling;
 				continue;
 			}
 			default:
 			{
 				assert(false);
 			}
 	  }
   }
   while (retTo!=Done && !escape && counter_MEtry < _maxLoopFissionMatrixElement);
 
   if(escape) {
 		// happens if we get at too light cluster to begin with
 		static const PPtr null = PPtr();
 		return cutType(PPair(null,null),PPair(null,null));
   }
 
   if(counter_MEtry >= _maxLoopFissionMatrixElement) {
 		// happens if we get too massive clusters where the matrix element
 		// is very inefficiently sampled
 		std::stringstream warning;
 		warning
 			<< "Matrix Element rejection sampling tried more than "
 			<< counter_MEtry
 			<< " times.\nMcluster = " << Mc/GeV
 			<< "GeV\nm1 = " << m1/GeV
 			<< "GeV\nm2 = " << m2/GeV
 			<< "GeV\nm  = " << m/GeV
 			<< "GeV\n"
 			<< "isBeamCluster = " << cluster->isBeamCluster()
 			<<"Using default as ClusterFissioner::cutTwoDefault as a fallback.\n"
 			<< "***This Exception should not happen too often!*** ";
 		generator()->logWarning( Exception(warning.str(),Exception::warning));
 		// throw Exception() << warning.str()
 					// << Exception::eventerror;
 		return cutTwoDefault(cluster,finalhadrons,softUEisOn);
   }
   // ==> full sample generated
   /******************
    * The previous methods have determined the kinematics and positions
    * of C -> C1 + C2.
    * In the case that one of the two product is light, that means either
    * decayOneHadronClu1 or decayOneHadronClu2 is true, then the momenta
    * of the components of that light product have not been determined,
    * and a (light) cluster will not be created: the heavy father cluster
    * decays, in this case, into a single (not-light) cluster and a
    * single hadron. In the other, "normal", cases the father cluster
    * decays into two clusters, each of which has well defined components.
    * Notice that, in the case of components which point to particles, the
    * momenta of the components is properly set to the new values, whereas
    * we do not change the momenta of the pointed particles, because we
    * want to keep all of the information (that is the new momentum of a
    * component after the splitting, which is contained in the _momentum
    * member of the Component class, and the (old) momentum of that component
    * before the splitting, which is contained in the momentum of the
    * pointed particle). Please not make confusion of this only apparent
    * inconsistency!
    ********************/
   LorentzPoint posC,pos1,pos2;
   posC = cluster->vertex();
   calculatePositions(pClu, posC, pClu1, pClu2, pos1, pos2);
   cutType rval;
   if(toHadron1) {
     rval.first = produceHadron(toHadron1, newPtr1, pClu1, pos1);
     finalhadrons.push_back(rval.first.first);
   }
   else {
     rval.first = produceCluster(ptrQ1, newPtr1, pClu1, pos1, pQ1, pQone, rem1);
   }
   if(toHadron2) {
     rval.second = produceHadron(toHadron2, newPtr2, pClu2, pos2);
     finalhadrons.push_back(rval.second.first);
   }
   else {
     rval.second = produceCluster(ptrQ2, newPtr2, pClu2, pos2, pQ2, pQtwo, rem2);
   }
   return rval;
 }
 
 
 ClusterFissioner::cutType
 ClusterFissioner::cutThree(ClusterPtr & cluster, tPVector & finalhadrons,
 			   bool softUEisOn) {
   // need to make sure only 3-cpt clusters get here
   assert(cluster->numComponents() == 3);
   // extract quarks
   tPPtr ptrQ[3] = {cluster->particle(0),cluster->particle(1),cluster->particle(2)};
   assert( ptrQ[0] && ptrQ[1] && ptrQ[2] );
   // find maximum mass pair
   Energy mmax(ZERO);
   Lorentz5Momentum pDiQuark;
   int iq1(-1),iq2(-1);
   Lorentz5Momentum psum;
   for(int q1=0;q1<3;++q1) {
     psum+= ptrQ[q1]->momentum();
     for(int q2=q1+1;q2<3;++q2) {
       Lorentz5Momentum ptest = ptrQ[q1]->momentum()+ptrQ[q2]->momentum();
       ptest.rescaleMass();
       Energy mass = ptest.m();
       if(mass>mmax) {
 	mmax = mass;
 	pDiQuark = ptest;
 	iq1  = q1;
 	iq2  = q2;
       }
     }
   }
   // and the spectators
   int iother(-1);
   for(int ix=0;ix<3;++ix) if(ix!=iq1&&ix!=iq2) iother=ix;
   assert(iq1>=0&&iq2>=0&&iother>=0);
 
   // And check if those particles are from a beam remnant
   bool rem1 = cluster->isBeamRemnant(iq1);
   bool rem2 = cluster->isBeamRemnant(iq2);
   // workout which distribution to use
   bool soft1(false),soft2(false);
   switch (_iopRem) {
   case 0:
     soft1 = rem1 || rem2;
     soft2 = rem2 || rem1;
     break;
   case 1:
     soft1 = rem1;
     soft2 = rem2;
     break;
   }
   // Initialization for the exponential ("soft") mass distribution.
   static const int max_loop = 1000;
   int counter = 0;
   Energy Mc1 = ZERO, Mc2 = ZERO, m1=ZERO, m2=ZERO, m=ZERO;
   tcPDPtr toHadron;
   bool toDiQuark(false);
   PPtr newPtr1 = PPtr(),newPtr2 = PPtr();
   PDPtr diquark;
   bool succeeded = false;
   Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2;
   do {
     succeeded = false;
     ++counter;
 
     // get a flavour for the qqbar pair
     drawNewFlavour(newPtr1,newPtr2,cluster);
     
     // randomly pick which will be (anti)diquark and which a mesonic cluster
     if(UseRandom::rndbool()) {
       swap(iq1,iq2);
       swap(rem1,rem2);
     }
     // check first order
     if(cantMakeHadron(ptrQ[iq1], newPtr1) || !spectrum()->canMakeDiQuark(ptrQ[iq2], newPtr2)) {
       swap(newPtr1,newPtr2);
     }
     // check again
     if(cantMakeHadron(ptrQ[iq1], newPtr1) || !spectrum()->canMakeDiQuark(ptrQ[iq2], newPtr2)) {
       throw Exception()
 	<< "ClusterFissioner cannot split the cluster ("
 	<< ptrQ[iq1]->PDGName() << ' ' << ptrQ[iq2]->PDGName()
 	<< ") into a hadron and diquark.\n" << Exception::runerror;
     }
     // Check that new clusters can produce particles and there is enough
     // phase space to choose the drawn flavour
     m1 = ptrQ[iq1]->data().constituentMass();
     m2 = ptrQ[iq2]->data().constituentMass();
     m  = newPtr1->data().constituentMass();
     // Do not split in the case there is no phase space available
     if(mmax <  m1+m + m2+m) continue;
 
     pQ1.setMass(m1);
     pQone.setMass(m);
     pQtwo.setMass(m);
     pQ2.setMass(m2);
 
     bool failure = drawNewMassesDefault(mmax, soft1, soft2, pClu1, pClu2,
 					    ptrQ[iq1], pQ1, newPtr1, pQone,
 					    newPtr2, pQtwo, ptrQ[iq1], pQ2);
 
 		if (failure) continue;
 
     Mc1 = pClu1.mass();
 	Mc2 = pClu2.mass();
 
     if(Mc1 < m1+m || Mc2 < m+m2 || Mc1+Mc2 > mmax) continue;
 
     if ( _phaseSpaceWeights ) {
       if ( phaseSpaceVeto(mmax,Mc1,Mc2,m,m1,m2) )
 	continue;
     }
     
     // check if need to force meson clster to hadron
     toHadron = _hadronSpectrum->chooseSingleHadron(ptrQ[iq1]->dataPtr(), newPtr1->dataPtr(),Mc1);
     if(toHadron) { Mc1 = toHadron->mass(); pClu1.setMass(Mc1); }
     // check if need to force diquark cluster to be on-shell
     toDiQuark = false;
     diquark = spectrum()->makeDiquark(ptrQ[iq2]->dataPtr(), newPtr2->dataPtr());
     if(Mc2 < diquark->constituentMass()) {
       Mc2 = diquark->constituentMass(); pClu2.setMass(Mc2);
       toDiQuark = true;
     }
     // if a beam cluster not allowed to decay to hadrons
     if(cluster->isBeamCluster() && toHadron && softUEisOn)
       continue;
     // Check if the decay kinematics is still possible: if not then
     // force the one-hadron decay for the other cluster as well.
     if(Mc1 + Mc2  >  mmax) {
       if(!toHadron) {
 	toHadron = _hadronSpectrum->chooseSingleHadron(ptrQ[iq1]->dataPtr(), newPtr1->dataPtr(),mmax-Mc2);
 	if(toHadron) { Mc1 = toHadron->mass(); pClu1.setMass(Mc1); }
       }
       else if(!toDiQuark) {
 	Mc2 = _hadronSpectrum->massLightestHadron(ptrQ[iq2]->dataPtr(), newPtr2->dataPtr()); pClu2.setMass(Mc2);
 	toDiQuark = true;
       }
     }
     succeeded = (mmax >= Mc1+Mc2);
   }
   while (!succeeded && counter < max_loop);
   // check no of tries
   if(counter >= max_loop) return cutType();
 
   // Determine the (5-components) momenta (all in the LAB frame)
   Lorentz5Momentum p0Q1 = ptrQ[iq1]->momentum();
   calculateKinematics(pDiQuark,p0Q1,toHadron,toDiQuark,
 		      pClu1,pClu2,pQ1,pQone,pQtwo,pQ2);
   // positions of the new clusters
   LorentzPoint pos1,pos2;
   Lorentz5Momentum pBaryon = pClu2+ptrQ[iother]->momentum();
   calculatePositions(cluster->momentum(), cluster->vertex(), pClu1, pBaryon, pos1, pos2);
   // first the mesonic cluster/meson
   cutType rval;
    if(toHadron) {
      rval.first = produceHadron(toHadron, newPtr1, pClu1, pos1);
      finalhadrons.push_back(rval.first.first);
    }
    else {
      rval.first = produceCluster(ptrQ[iq1], newPtr1, pClu1, pos1, pQ1, pQone, rem1);
    }
    if(toDiQuark) {
      rem2 |= cluster->isBeamRemnant(iother);
      PPtr newDiQuark = diquark->produceParticle(pClu2);
      rval.second = produceCluster(newDiQuark, ptrQ[iother], pBaryon, pos2, pClu2,
       				  ptrQ[iother]->momentum(), rem2);
    }
    else {
      rval.second = produceCluster(ptrQ[iq2], newPtr2, pBaryon, pos2, pQ2, pQtwo, rem2,
 				  ptrQ[iother],cluster->isBeamRemnant(iother));
    }
    cluster->isAvailable(false);
    return rval;
 }
 
 ClusterFissioner::PPair
 ClusterFissioner::produceHadron(tcPDPtr hadron, tPPtr newPtr, const Lorentz5Momentum &a,
 				const LorentzPoint &b) const {
   PPair rval;
   if(hadron->coloured()) {
     rval.first = (_hadronSpectrum->lightestHadron(hadron,newPtr->dataPtr()))->produceParticle();
   }
   else
     rval.first = hadron->produceParticle();
   rval.second = newPtr;
   rval.first->set5Momentum(a);
   rval.first->setVertex(b);
   return rval;
 }
 
 ClusterFissioner::PPair ClusterFissioner::produceCluster(tPPtr ptrQ, tPPtr newPtr,
 							 const Lorentz5Momentum & a,
 				                         const LorentzPoint & b,
 							 const Lorentz5Momentum & c,
 				                         const Lorentz5Momentum & d,
 							 bool isRem,
 							 tPPtr spect, bool remSpect) const {
   PPair rval;
   rval.second = newPtr;
   ClusterPtr cluster = !spect ? new_ptr(Cluster(ptrQ,rval.second)) : new_ptr(Cluster(ptrQ,rval.second,spect));
   rval.first = cluster;
   cluster->set5Momentum(a);
   cluster->setVertex(b);
   assert(cluster->particle(0)->id() == ptrQ->id());
   cluster->particle(0)->set5Momentum(c);
   cluster->particle(1)->set5Momentum(d);
   cluster->setBeamRemnant(0,isRem);
   if(remSpect) cluster->setBeamRemnant(2,remSpect);
   return rval;
 }
 /**
  * Calculate the phase space weight for  (2 body PhaseSpace)^3
  */
 double ClusterFissioner::weightFlatPhaseSpace(const Energy Mc, const Energy Mc1, const Energy Mc2,
 		const Energy m, const Energy m1, const Energy m2) const {
 	double M_temp = Mc/GeV;
 	double M1_temp = Mc1/GeV;
 	double M2_temp = Mc2/GeV;
 	double m_temp = m/GeV;
 	double m1_temp = m1/GeV;
 	double m2_temp = m2/GeV;
 	double lam1 = sqrt(Kinematics::kaellen(M1_temp, m1_temp, m_temp));
 	double lam2 = sqrt(Kinematics::kaellen(M2_temp, m2_temp, m_temp));
 	double lam3 = sqrt(Kinematics::kaellen(M_temp,  M1_temp, M2_temp));
 	double ratio;
 	double PSweight = pow(lam1*lam2*lam3,_dim-3.)*pow(M1_temp*M2_temp,2.-_dim);
 	// overestimate only possible for dim>=3.0
 	assert(_dim>=3.0);
 	double overEstimate = _dim>=4.0 ? pow(M_temp,4.*_dim-14.):pow(M_temp,2*(_dim-3.0))/pow((m1_temp+m_temp)*(m2_temp+m_temp),4.0-_dim);
 	ratio = PSweight/overEstimate;
 	// if (!(ratio>=0)) std::cout << "M "<<M_temp<<" M1 "<<M1_temp<<" M2 "<<M2_temp<<" m1 "<<m1_temp<<" m2 "<<m2_temp<<" m "<<m_temp<<"\n\n";
 	assert (ratio >= 0);
 	assert (ratio <= 1);
 	return ratio;
 }
 
 /**
  * Veto for the phase space weight
  */
 bool ClusterFissioner::phaseSpaceVeto(const Energy Mc, const Energy Mc1, const Energy Mc2,
 		const Energy m, const Energy m1, const Energy m2) const {
 	return (UseRandom::rnd()>weightFlatPhaseSpace(Mc, Mc1, Mc2, m, m1, m2));
 }
 
 
 /**
  * Calculate the masses and possibly kinematics of the cluster
  * fission at hand; if claculateKineamtics is perfomring non-trivial
  * steps kinematics calulcated here will be overriden. Currently resorts to the default
  */
 bool ClusterFissioner::drawNewMasses(const Energy Mc, const bool soft1, const bool soft2,
 		Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2,
 		tcPPtr ptrQ1,    const Lorentz5Momentum& pQ1, 
 		tcPPtr, const Lorentz5Momentum& pQone,
 		tcPPtr, const Lorentz5Momentum& pQtwo,
 		tcPPtr ptrQ2,    const Lorentz5Momentum& pQ2) const {
 	// TODO	add precise weightMS that could be used used for improving the rejection Sampling
 	switch (_massSampler)
 	{
 		case 0:
 			return drawNewMassesDefault(Mc, soft1, soft2, pClu1, pClu2, ptrQ1, pQ1, tcPPtr(), pQone, tcPPtr(),pQtwo, ptrQ2, pQ2);
 			break;
 		case 1: 
 			return drawNewMassesUniform(Mc, pClu1, pClu2, pQ1, pQone, pQ2);
 			break;
 		case 2:
 			return drawNewMassesPhaseSpace(Mc, pClu1, pClu2, pQ1, pQone, pQ2);
 			break;
 		case 3:
 			return drawNewMassesPhaseSpaceExtended(Mc, pClu1, pClu2, pQ1, pQone, pQ2);
 			break;
 		default:
 			assert(false);
 	}
 	return true;// failure
 }
 
 
 
 /**
  * Calculate the masses and possibly kinematics of the cluster
  * fission at hand; if claculateKineamtics is perfomring non-trivial
  * steps kinematics claulcated here will be overriden. Currentl;y resorts to the default
  */
 bool ClusterFissioner::drawNewMassesDefault(const Energy Mc, const bool soft1, const bool soft2,
 		Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2,
 		tcPPtr ptrQ1, const Lorentz5Momentum& pQ1,
 		tcPPtr, const Lorentz5Momentum& pQone,
 		tcPPtr, const Lorentz5Momentum& pQtwo,
 		tcPPtr ptrQ2,  const Lorentz5Momentum& pQ2) const {
 
 
 	// power for splitting
 	double exp1 = !spectrum()->isExotic(ptrQ1->dataPtr()) ? _pSplitLight : _pSplitExotic;
 	double exp2 = !spectrum()->isExotic(ptrQ2->dataPtr()) ? _pSplitLight : _pSplitExotic;
 	for ( const long& id : spectrum()->heavyHadronizingQuarks() ) {
 		assert(_pSplitHeavy.find(id) != _pSplitHeavy.end());
 		if ( spectrum()->hasHeavy(id,ptrQ1->dataPtr()) ) exp1 = _pSplitHeavy.find(id)->second;
 		if ( spectrum()->hasHeavy(id,ptrQ2->dataPtr()) ) exp2 = _pSplitHeavy.find(id)->second;
 	}
 
 	Energy M1 = drawChildMass(Mc,pQ1.mass(),pQ2.mass(),pQone.mass(),exp1,soft1);
 	Energy M2 = drawChildMass(Mc,pQ2.mass(),pQ1.mass(),pQtwo.mass(),exp2,soft2);
 
 	pClu1.setMass(M1);
 	pClu2.setMass(M2);
 
 	return false; // succeeds
 }
 
 
 /**
  * Sample the masses for flat phase space
  * */
 bool ClusterFissioner::drawNewMassesUniform(const Energy Mc, Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2,
 		const Lorentz5Momentum& pQ1, 
 		const Lorentz5Momentum& pQ,
 		const Lorentz5Momentum& pQ2) const {
 
 	Energy M1,M2;
 	const Energy m1 = pQ1.mass();
 	const Energy m2 = pQ2.mass();
 	const Energy m  = pQ.mass();
 	const Energy M1min = m1 + m;
 	const Energy M2min = m2 + m;
 	const Energy M1max = Mc - M2min;
 	const Energy M2max = Mc - M1min;
 
 	assert(M1max-M1min>ZERO);
 	assert(M2max-M2min>ZERO);
 
 	double r1;
 	double r2;
 
 	int counter = 0;
 	const int max_counter = 100;
 
 	while (counter < max_counter) {
 		r1 = UseRandom::rnd();
 		r2 = UseRandom::rnd();
 
 		M1 = (M1max-M1min)*r1 + M1min;
 		M2 = (M2max-M2min)*r2 + M2min;
 
 		counter++;
 		if ( Mc > M1 + M2) break;
 	}
 
 	if (counter==max_counter
 			|| Mc < M1 + M2
 			|| M1 <= M1min
 			|| M2 <= M2min ) return true; // failure
 
 	pClu1.setMass(M1);
 	pClu2.setMass(M2);
 
 	return false; // succeeds
 }
 
 
 
 /**
  * Sample the masses for flat phase space
  * */
 bool ClusterFissioner::drawNewMassesPhaseSpace(const Energy Mc,
 		Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2,
 		const Lorentz5Momentum& pQ1, 
 		const Lorentz5Momentum& pQ,
 		const Lorentz5Momentum& pQ2) const {
 	Energy M1,M2,MuS;
 	const Energy m1 = pQ1.mass();
 	const Energy m2 = pQ2.mass();
 	const Energy m  = pQ.mass();
 	const Energy M1min = m1 + m;
 	const Energy M2min = m2 + m;
 	// const Energy M1max = Mc - M2min;
 	// const Energy M2max = Mc - M1min;
 
 	// assert(M1max-M1min>ZERO);
 	// assert(M2max-M2min>ZERO);
 
 	double r1;
 	double r2;
 
 	int counter = 0;
 	const int max_counter = 200;
 	// const Energy MuMminS = M1min + M2min;
 	// const Energy MuMminD = M1min - M2min;
 	const Energy MuMax = Mc - (M1min+M2min);
 
 	while (counter < max_counter) {
 		r1 = UseRandom::rnd();
 		r2 = UseRandom::rnd();
 
 		// TODO make this more efficient
 		// M1 = (M1max-M1min)*r1 + M1min;
 		// M2 = (M2max-M2min)*r2 + M2min;
 
 		MuS = MuMax * sqrt(r1);
 		// MD = 2*MS*r2 - MS + MuMminD;
 
 		M1 = M1min + MuS * r2;
 		M2 = M2min + MuS * (1.0 - r2);
 
 		counter++;
 
 		// Automatically satisfied
 		// if ( Mc <= M1 + M2) std::cout << "Mc "<< Mc/GeV << " M1 "<< M1/GeV <<" M2 " <<M2/GeV << std::endl;;
 		// if ( M1 <= M1min  ) std::cout << "M1 "<< M1/GeV <<" M1min " <<M1min/GeV << std::endl;;
 		// if ( M2 <= M2min  ) std::cout << "M2 "<< M2/GeV <<" M2min " <<M2min/GeV << std::endl;;
 		// assert( Mc > M1 + M2) ;
 		// assert( M1 > M1min  ) ;
 		// assert( M2 > M2min  ) ;
 		// if ( Mc <= M1 + M2) continue;
 		// if ( M1 <= M1min  ) continue;
 		// if ( M2 <= M2min  ) continue;
 		if (!phaseSpaceVeto(Mc,M1,M2,m,m1,m2) ) break; // For FlatPhaseSpace sampling vetoing
 	}
 	if (counter==max_counter) return true; // failure
 
 	pClu1.setMass(M1);
 	pClu2.setMass(M2);
 
 
 	return false; // succeeds
 }
 
 
 /**
  * Sample the masses for flat phase space with modulation e.g. here
  * FlatPhaseSpace*(M1*M2)**alpha
  * */
 bool ClusterFissioner::drawNewMassesPhaseSpaceExtended(const Energy Mc, 
 		Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2,
 		const Lorentz5Momentum& pQ1, 
 		const Lorentz5Momentum& pQ,
 		const Lorentz5Momentum& pQ2) const {
 
 	Energy M1,M2;
 	const Energy m1 = pQ1.mass();
 	const Energy m2 = pQ2.mass();
 	const Energy m  = pQ.mass();
 	const Energy M1min = m1 + m;
 	const Energy M2min = m2 + m;
 	const Energy M1max = Mc - M2min;
 	const Energy M2max = Mc - M1min;
 
 	assert(M1max-M1min>ZERO);
 	assert(M2max-M2min>ZERO);
 
 	double r1;
 	double r2;
 
 	int counter = 0;
 	const int max_counter = 200;
 
 	const int alpha = 2;
 
 	while (counter < max_counter) {
 		r1 = UseRandom::rnd();
 		r2 = UseRandom::rnd();
 
 		// TODO make this more efficient
 		// Uniform sampling
 		// M1 = (M1max-M1min)*r1 + M1min;
 		// M2 = (M2max-M2min)*r2 + M2min;
 		// Power sampling giving (M1*M2)**alpha
 		M1 = M1min * pow( 1.0 - r1 + r1 * pow(M1max/M1min,alpha+1.0) , 1.0/(alpha+1.0));
 		M2 = M2min * pow( 1.0 - r2 + r2 * pow(M2max/M2min,alpha+1.0) , 1.0/(alpha+1.0));
 
 		counter++;
 		if ( Mc <= M1 + M2) continue;
 		if ( M1 <= M1min  ) continue;
 		if ( M2 <= M2min  ) continue;
 		if (!phaseSpaceVeto(Mc,M1,M2,m,m1,m2) ) break; // For FlatPhaseSpace sampling vetoing
 	}
 	if (counter==max_counter
 			|| Mc < M1 + M2
 			|| M1 <= M1min
 			|| M2 <= M2min ) return true; // failure
 
 	pClu1.setMass(M1);
 	pClu2.setMass(M2);
 
 
 	return false; // succeeds
 }
 
 
 void ClusterFissioner::drawNewFlavourDiquarks(PPtr& newPtrPos,PPtr& newPtrNeg,
 		const ClusterPtr & clu) const {
 
 	// Flavour is assumed to be only  u, d, s,  with weights
 	// (which are not normalized probabilities) given
 	// by the same weights as used in HadronsSelector for
 	// the decay of clusters into two hadrons.
 
 	unsigned hasDiquarks=0;
 	assert(clu->numComponents()==2);
 	tcPDPtr pD1=clu->particle(0)->dataPtr();
 	tcPDPtr pD2=clu->particle(1)->dataPtr();
 	bool isDiq1=DiquarkMatcher::Check(pD1->id());
 	if (isDiq1) hasDiquarks++;
 	bool isDiq2=DiquarkMatcher::Check(pD2->id());
 	if (isDiq2) hasDiquarks++;
 	assert(hasDiquarks<=2);
 	Energy Mc=(clu->momentum().mass());
 	// if (fabs(clu->momentum().massError() )>1e-14) std::cout << "Mass inconsistency CF : " << std::scientific  << clu->momentum().massError() <<"\n";
 	// Not allow yet Diquark Clusters 
 	// if ( hasDiquarks>=1 || Mc < spectrum()->massLightestBaryonPair(pD1,pD2) )
 	// return drawNewFlavour(newPtrPos,newPtrNeg);
 
   Energy minMass;
   Selector<long> choice;
   // int countQ=0;
   // int countDiQ=0;
   // adding quark-antiquark pairs to the selection list
   for ( const long& id : spectrum()->lightHadronizingQuarks() ) {
 	  // TODO uncommenting below gives sometimes 0 selection possibility,
 	  // maybe need to be checked in the LightClusterDecayer and ColourReconnector
 	  // if (Mc < spectrum()->massLightestHadronPair(pD1,pD2)) continue;
 	  // countQ++;
 	  if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id);
 	  else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id);
 	  else assert(false);
   }
   // adding diquark-antidiquark pairs to the selection list
   switch (hasDiquarks)
   {
   	case 0:
 		for ( const long& id : spectrum()->lightHadronizingDiquarks() ) {
 			if (_strictDiquarkKinematics) {
 				tPDPtr cand = getParticleData(id);
 				minMass = spectrum()->massLightestHadron(pD2,cand)
 						+ spectrum()->massLightestHadron(cand,pD1);
 			}
 			else minMass = spectrum()->massLightestBaryonPair(pD1,pD2);
 			if (Mc < minMass) continue;
 			// countDiQ++;
 			if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id);
 			else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id);
 			else assert(false);
 		}
   		break;
   	case 1:
 		if (_diquarkClusterFission<1) break;
 		for ( const long& id : spectrum()->lightHadronizingDiquarks() ) {
 			tPDPtr diq = getParticleData(id);
 			if (isDiq1)
 				minMass = spectrum()->massLightestHadron(pD2,diq)
 						+ spectrum()->massLightestBaryonPair(diq,pD1);
 			else
 				minMass = spectrum()->massLightestHadron(pD1,diq)
 						+ spectrum()->massLightestBaryonPair(diq,pD2);
 			if (Mc < minMass) continue;
 			// countDiQ++;
 			if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id);
 			else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id);
 			else assert(false);
 		}
 		break;
   	case 2:
 		if (_diquarkClusterFission<2) break;
 		for ( const long& id : spectrum()->lightHadronizingDiquarks() ) {
 			tPDPtr diq = getParticleData(id);
 			if (Mc < spectrum()->massLightestBaryonPair(pD1,pD2)) {
 				throw Exception() << "Found Diquark Cluster:\n" << *clu << "\nwith  MassCluster = "
 					<< ounit(Mc,GeV) <<" GeV MassLightestBaryonPair = "
 					<< ounit(spectrum()->massLightestBaryonPair(pD1,pD2) ,GeV)
 					<< " GeV cannot decay" << Exception::eventerror;
 			}
 			minMass = spectrum()->massLightestBaryonPair(pD1,diq)
 					+ spectrum()->massLightestBaryonPair(diq,pD2);
 			if (Mc < minMass) continue;
 			// countDiQ++;
 			if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id);
 			else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id);
 			else assert(false);
 		}
   		break;
   	default:
   		assert(false);
   }
   assert(choice.size()>0);
   long idNew = choice.select(UseRandom::rnd());
   newPtrPos = getParticle(idNew);
   newPtrNeg = getParticle(-idNew);
   assert(newPtrPos);
   assert(newPtrNeg);
   assert(newPtrPos->dataPtr());
   assert(newPtrNeg->dataPtr());
 
 }
 
 void ClusterFissioner::drawNewFlavourQuarks(PPtr& newPtrPos,PPtr& newPtrNeg) const {
 
   // Flavour is assumed to be only  u, d, s,  with weights
   // (which are not normalized probabilities) given
   // by the same weights as used in HadronsSelector for
   // the decay of clusters into two hadrons.
 
 
   Selector<long> choice;
   switch(_fissionCluster){
   case 0:
     for ( const long& id : spectrum()->lightHadronizingQuarks() )
       choice.insert(_hadronSpectrum->pwtQuark(id),id);
     break;
   case 1:
     for ( const long& id : spectrum()->lightHadronizingQuarks() )
       choice.insert(_fissionPwt.find(id)->second,id);
     break;
   default :
     assert(false);
   }
   long idNew = choice.select(UseRandom::rnd());
   newPtrPos = getParticle(idNew);
   newPtrNeg = getParticle(-idNew);
   assert (newPtrPos);
   assert(newPtrNeg);
   assert (newPtrPos->dataPtr());
   assert(newPtrNeg->dataPtr());
 
 }
 
 void ClusterFissioner::drawNewFlavourEnhanced(PPtr& newPtrPos,PPtr& newPtrNeg,
                                               Energy2 mass2) const {
 
   if ( spectrum()->gluonId() != ParticleID::g )
     throw Exception() << "strange enhancement only working with Standard Model hadronization"
 		      << Exception::runerror;
   
   // Flavour is assumed to be only  u, d, s,  with weights
   // (which are not normalized probabilities) given
   // by the same weights as used in HadronsSelector for
   // the decay of clusters into two hadrons.
 
     double prob_d = 0.;
     double prob_u = 0.;
     double prob_s = 0.;
     double scale = abs(double(sqr(_m0Fission)/mass2));
     // Choose which splitting weights you wish to use
 switch(_fissionCluster){
   // 0: ClusterFissioner and ClusterDecayer use the same weights
   case 0:
     prob_d = _hadronSpectrum->pwtQuark(ParticleID::d);
      prob_u = _hadronSpectrum->pwtQuark(ParticleID::u);
      /* Strangeness enhancement:
         Case 1: probability scaling
         Case 2: Exponential scaling
      */
      if (_enhanceSProb == 1)
         prob_s = (_maxScale < scale) ? 0. : pow(_hadronSpectrum->pwtQuark(ParticleID::s),scale);
      else if (_enhanceSProb == 2)
         prob_s = (_maxScale < scale) ? 0. : exp(-scale);
     break;
     /* 1: ClusterFissioner uses its own unique set of weights,
        i.e. decoupled from ClusterDecayer */
   case 1:
     prob_d = _fissionPwt.find(ParticleID::d)->second;
     prob_u = _fissionPwt.find(ParticleID::u)->second;
      if (_enhanceSProb == 1)
        prob_s = (_maxScale < scale) ? 0. : pow(_fissionPwt.find(ParticleID::s)->second,scale);
      else if (_enhanceSProb == 2)
         prob_s = (_maxScale < scale) ? 0. : exp(-scale);
     break;
   default:
     assert(false);
   }
 
   int choice = UseRandom::rnd3(prob_u, prob_d, prob_s);
   long idNew = 0;
   switch (choice) {
   case 0: idNew = ThePEG::ParticleID::u; break;
   case 1: idNew = ThePEG::ParticleID::d; break;
   case 2: idNew = ThePEG::ParticleID::s; break;
   }
   newPtrPos = getParticle(idNew);
   newPtrNeg = getParticle(-idNew);
   assert (newPtrPos);
   assert(newPtrNeg);
   assert (newPtrPos->dataPtr());
   assert(newPtrNeg->dataPtr());
 
 }
 
 
 Energy2 ClusterFissioner::clustermass(const ClusterPtr & cluster) const {
   Lorentz5Momentum pIn = cluster->momentum();
   Energy2 endpointmass2 = sqr(cluster->particle(0)->mass() +
   cluster->particle(1)->mass());
   Energy2 singletm2 = pIn.m2();
   // Return either the cluster mass, or the lambda measure
   return (_massMeasure == 0) ? singletm2 : singletm2 - endpointmass2;
 }
 
 
 Energy ClusterFissioner::drawChildMass(const Energy M, const Energy m1,
 				       const Energy m2, const Energy m,
 				       const double expt, const bool soft) const {
 
   /***************************
    * This method, given in input the cluster mass Mclu of an heavy cluster C,
    * made of consituents of masses m1 and m2, draws the masses Mclu1 and Mclu2
    * of, respectively, the children cluster C1, made of constituent masses m1
    * and m, and cluster C2, of mass Mclu2 and made of constituent masses m2
    * and m. The mass is extracted from one of the two following mass
    * distributions:
    *   --- power-like ("normal" distribution)
    *                        d(Prob) / d(M^exponent) = const
    *       where the exponent can be different from the two children C1 (exp1)
    *       and C2 (exponent2).
    *   --- exponential ("soft" distribution)
    *                        d(Prob) / d(M^2) = exp(-b*M)
    *       where b = 2.0 / average.
    * Such distributions are limited below by the masses of
    * the constituents quarks, and above from the mass of decaying cluster C.
    * The choice of which of the two mass distributions to use for each of the
    * two cluster children is dictated by  iRemnant  (see below).
    * If the number of attempts to extract a pair of mass values that are
    * kinematically acceptable is above some fixed number (max_loop, see below)
    * the method gives up and returns false; otherwise, when it succeeds, it
    * returns true.
    *
    * These distributions have been modified from HERWIG:
    * Before these were:
    *      Mclu1 = m1 + (Mclu - m1 - m2)*pow( rnd(), 1.0/exponent1 );
    * The new one coded here is a more efficient version, same density
    * but taking into account 'in phase space from' beforehand
    ***************************/
   // hard cluster
   if(!soft) {
     return pow(UseRandom::rnd(pow((M-m1-m2-m)*UnitRemoval::InvE, expt),
 			      pow(m*UnitRemoval::InvE, expt)), 1./expt
 	       )*UnitRemoval::E + m1;
   }
   // Otherwise it uses a soft mass distribution
   else {
     static const InvEnergy b = 2.0 / _btClM;
     Energy max = M-m1-m2-2.0*m;
     double rmin = b*max;
     rmin = ( rmin < 50 ) ? exp(-rmin) : 0.;
     double r1;
     do {
       r1 = UseRandom::rnd(rmin, 1.0) * UseRandom::rnd(rmin, 1.0);
     }
     while (r1 < rmin);
     return m1 + m - log(r1)/b;
   }
 }
 
 Axis ClusterFissioner::sampleDirectionAligned(const Lorentz5Momentum & pQ, const Lorentz5Momentum & pClu) const {
 	Lorentz5Momentum pQinCOM(pQ);
 	pQinCOM.setMass(pQ.m());
 	pQinCOM.boost( -pClu.boostVector() );        // boost from LAB to C
 	return pQinCOM.vect().unit();
 }
 
 Axis ClusterFissioner::sampleDirectionIsotropic() const {
   double cosTheta = -1 + 2.0 * UseRandom::rnd();
   double sinTheta = sqrt(1.0-cosTheta*cosTheta);
   double Phi = 2.0 * Constants::pi * UseRandom::rnd();
   Axis uClusterUniform(cos(Phi)*cosTheta, sin(Phi)*cosTheta, sinTheta);
   return uClusterUniform.unit();
 }
 Axis ClusterFissioner::sampleDirectionSemiUniform(const Lorentz5Momentum & pQ, const Lorentz5Momentum & pClu) const {
   Axis dir = sampleDirectionAligned(pQ,pClu);
   Axis res;
   do {
 	  res=sampleDirectionIsotropic();
   }
   while (dir*res<0);
   return res;
 }
 /* SQME for p1,p2->C1(q1,q),C2(q2,qbar) 
  * Note that:
  *      p0Q1  -> p1
  *      p0Q2  -> p2
  *      pQ1   -> q1
  *      pQone -> q
  *      pQ2   -> q2
  *      pQone -> qbar
  * */
 double ClusterFissioner::calculateSQME(
 		const Lorentz5Momentum & p1,
 		const Lorentz5Momentum & p2,
 		const Lorentz5Momentum & q1,
 		const Lorentz5Momentum & q,
 		const Lorentz5Momentum & q2,
 		const Lorentz5Momentum & qbar) const {
 	double SQME;
 	switch (_matrixElement)
 	{
 		case 0:
 				SQME = 1.0;
 				break;
 		case 1:
 			{
 				// Energy2 p1p2 = p1*p2;
 				Energy2 q1q2    = q1 * q2;
 				Energy2 q1q     = q1 * q ;
 				Energy2 q2qbar  = q2 * qbar;
 				Energy2 q2q     = q2 * q ;
 				Energy2 q1qbar  = q1 * qbar;
 				Energy2 qqbar   = q  * qbar;
 				Energy2 mq2 = q.mass2();
 				double Numerator = q1q2 * (qqbar + mq2)/sqr(GeV2);
 				Numerator += 0.5 * (q1q - q1qbar)*(q2q - q2qbar)/sqr(GeV2);
 				double Denominator = sqr(qqbar + mq2)*(q1q + q1qbar)*(q2q + q2qbar)/sqr(sqr(GeV2));
 				SQME = Numerator/Denominator;
 				break;
 			}
 		case 2:
 			{
 				Energy2 p1p2    = p1 * p2;
 				Energy2 p1q     = p1 * q ;
 				Energy2 p2qbar  = p2 * qbar;
 				Energy2 p2q     = p2 * q ;
 				Energy2 p1qbar  = p1 * qbar;
 				Energy2 qqbar   = q  * qbar;
 				Energy2 mp2 = q.mass2();
 				double Numerator = p1p2 * (qqbar + mp2)/sqr(GeV2);
 				Numerator += 0.5 * (p1q - p1qbar)*(p2q - p2qbar)/sqr(GeV2);
 				double Denominator = sqr(qqbar + mp2)*(p1q + p1qbar)*(p2q + p2qbar)/sqr(sqr(GeV2));
 				SQME = Numerator/Denominator;
 				break;
 			}
 		default:
 			assert(false);
 	}
 	if (SQME < 0) throw	Exception()
 		<< "Squared Matrix Element = "<< SQME <<" < 0 in ClusterFissioner::calculateSQME() "
 		<< Exception::runerror;
 	return SQME;
 }
 /*
 static Energy2 _MaxEstimateCrossMomenta(Energy m1,Energy m2,Energy P1,Energy P2,double sinhEta) {
 	double coshEta = sqrt(1.0 + sinhEta*sinhEta);
 	Energy E1 = sqrt(sqr(m1) + sqr(P1));
 	Energy E2 = sqrt(sqr(m2) + sqr(P2));
 	Energy2 AA = E1*E2*coshEta;
 	Energy2 BB = E1*P2*sinhEta;
 	Energy2 CC = P1*E2*sinhEta;
 	Energy2 EE = P1*P2*coshEta;
 	Energy2 res = AA + CC + BB + EE;
 	assert(!std::isnan(res/GeV2));
 	assert(!std::isinf(res/GeV2));
 	double cosTheta1 =   (E1*coshEta - m1*E2/m2)/(sinhEta*P1);
 	double cosTheta2 = - (E2*coshEta - m2*E1/m1)/(sinhEta*P2);
 	assert(!std::isnan(cosTheta1));
 	assert(!std::isinf(cosTheta1));
 	assert(!std::isnan(cosTheta2));
 	assert(!std::isinf(cosTheta2));
 	if (fabs(cosTheta1)<1.0 && fabs(cosTheta2)<1.0) {
 		double sinTheta1 = sqrt(1.0 - cosTheta1*cosTheta1);
 		double sinTheta2 = sqrt(1.0 - cosTheta2*cosTheta2);
 		Energy2 DD = P1*P2;
 		Energy2 resNew = AA + BB*cosTheta2 + CC*sinTheta1*sinTheta2 - DD*cosTheta1*cosTheta2 - EE*cosTheta1;
 		assert(!std::isnan(resNew/GeV2));
 		assert(!std::isinf(resNew/GeV2));
 		if (resNew > res) res = resNew;
 	}
 	return res;
 }
 static Energy2 _MinEstimateCrossMomenta(Energy m1,Energy m2,Energy P1,Energy P2,double sinhEta) {
 	double coshEta = sqrt(1.0 + sinhEta*sinhEta);
 	Energy E1 = sqrt(sqr(m1) + sqr(P1));
 	Energy E2 = sqrt(sqr(m2) + sqr(P2));
 	Energy2 AA = E1*E2*coshEta;
 	Energy2 BB = E1*P2*sinhEta;
 	Energy2 CC = P1*E2*sinhEta;
 	Energy2 EE = P1*P2*coshEta;
 	Energy2 res = AA - CC - fabs((BB-EE)/GeV2)*GeV2;
 	if (res < m1*m2) {
 		std::cout << "stage 1" << std::endl;
 		std::cout << "res= " << res/GeV2 << std::endl;
 		std::cout << "AA = "  << AA/GeV2 << std::endl;
 		std::cout << "BB = "  << BB/GeV2 << std::endl;
 		std::cout << "CC = "  << CC/GeV2 << std::endl;
 		std::cout << "EE = "  << EE/GeV2 << std::endl;
 	}
 	assert(!std::isnan(res/GeV2));
 	assert(!std::isinf(res/GeV2));
 	if (res > AA - BB - fabs((CC-EE)/GeV2)*GeV2) res = AA - BB - fabs((CC-EE)/GeV2)*GeV2;
 	if (res < m1*m2) {
 		std::cout << "stage 2" << std::endl;
 		std::cout << "res= " << res/GeV2 << std::endl;
 		std::cout << "AA = "  << AA/GeV2 << std::endl;
 		std::cout << "BB = "  << BB/GeV2 << std::endl;
 		std::cout << "CC = "  << CC/GeV2 << std::endl;
 		std::cout << "EE = "  << EE/GeV2 << std::endl;
 	}
 	assert(!std::isnan(res/GeV2));
 	assert(!std::isinf(res/GeV2));
 	double cosTheta1 =   (E1*coshEta - m1*E2/m2)/(sinhEta*P1);
 	double cosTheta2 = - (E2*coshEta - m2*E1/m1)/(sinhEta*P2);
 	assert(!std::isnan(cosTheta1));
 	assert(!std::isinf(cosTheta1));
 	assert(!std::isnan(cosTheta2));
 	assert(!std::isinf(cosTheta2));
 	if (fabs(cosTheta1)<1.0 && fabs(cosTheta2)<1.0) {
 		double sinTheta1 = sqrt(1.0 - cosTheta1*cosTheta1);
 		double sinTheta2 = sqrt(1.0 - cosTheta2*cosTheta2);
 		Energy2 DD = P1*P2;
 		Energy2 resNew = AA + BB*cosTheta2 - DD*sinTheta1*sinTheta2 - EE*cosTheta1*cosTheta2 - CC*cosTheta1;
 		assert(!std::isnan(resNew/GeV2));
 		assert(!std::isinf(resNew/GeV2));
 		if (resNew < res) res = resNew;
 		if (res < m1*m2) {
 			// TODO problem here
 			// std::cout << "stage 3" << std::endl;
 			// std::cout << "res= " << res/GeV2 << std::endl;
 			// std::cout << "AA = "  << AA/GeV2 << std::endl;
 			// std::cout << "BB = "  << BB/GeV2 << std::endl;
 			// std::cout << "CC = "  << CC/GeV2 << std::endl;
 			// std::cout << "DD = "  << DD/GeV2 << std::endl;
 			// std::cout << "EE = "  << EE/GeV2 << std::endl;
 			// std::cout << "m1m2= "  << (m1*m2)/GeV2 << std::endl;
 			// std::cout << "cosTheta1 = "  << cosTheta1 << std::endl;
 			// std::cout << "cosTheta2 = "  << cosTheta2 << std::endl;
 			res = m1*m2;
 		}
 	}
 	return res;
 }
 */
 /* Overestimate for SQME for p1,p2->C1(q1,q),C2(q2,qbar) 
  * Note that:
  *      p0Q1  -> p1   where Mass -> m1
  *      p0Q2  -> p2   where Mass -> m2
  *      pQ1   -> q1   where Mass -> m1
  *      pQone -> q    where Mass -> mq
  *      pQ2   -> q2   where Mass -> m2
  *      pQone -> qbar where Mass -> mq
  * */
 double ClusterFissioner::calculateSQME_OverEstimateM1M2(
 		const Energy& Mc,
 		const Energy& M1,
 		const Energy& M2,
 		const Energy& m1,
 		const Energy& m2,
 		const Energy& mq
 		) const {
 	double SQME_OverEstimate;
 	switch (_matrixElement)
 	{
 		case 0:
 				SQME_OverEstimate = 1.0;
 				break;
 		case 1:
 			{
 				// Cluster Masses
 				Energy2 Mc2 = sqr(Mc);
 				Energy2 M12 = sqr(M1);
 				Energy2 M22 = sqr(M2);
 				// Constituent masses
 				Energy2 mq2 = sqr(mq);
 				Energy2 m12 = sqr(m1);
 				Energy2 m22 = sqr(m2);
 				// Mass shell for daughter clusters
 				Energy2 q1q     = (M12 - m12 - mq2)/2.0; // fixed by masses
 				Energy2 q2qbar  = (M22 - m22 - mq2)/2.0; // fixed by masses
 
 				// Actual min/maxima of the dot products for the overestimate
 				Energy2 qqbarMin  = mq2; // most conservative minima
 				Energy2 q2qMin    = sqrt(m22*mq2); // most conservative minima
 				Energy2 q1qbarMin = sqrt(m12*mq2); // most conservative minima
 
 				Energy2 q1q2Max   = (Mc2  - M12 - M22)/2.0; // most conservative maxima
 				Energy2 q2qMax    = (Mc2  - M12 - M22)/2.0; // most conservative maxima
 				Energy2 q1qbarMax = (Mc2  - M12 - M22)/2.0; // most conservative maxima
 				double Numerator = q1q2Max * (mq2+qqbarMin)/sqr(GeV2);
 				Numerator += 0.5 * (q1q*q2qMax + q1qbarMax*q2qbar)/sqr(GeV2);
 				Numerator -= 0.5 * (q1q*q2qbar + q1qbarMin*q2qMin)/sqr(GeV2);
 				double Denominator = sqr(mq2+qqbarMin)*(q1q + q1qbarMin)*(q2qMin + q2qbar)/sqr(sqr(GeV2));
 				SQME_OverEstimate = Numerator/Denominator;
 				if (SQME_OverEstimate < 0) throw	Exception()
 					<< "Squared Matrix Element_Overestimate = "<< SQME_OverEstimate <<" < 0 in ClusterFissioner::calculateSQME_OverEstimate()\n"
 						<< "\tM  = " << sqrt(Mc2)/GeV 
 						<< "\tM1 = " << sqrt(M12)/GeV 
 						<< "\tM2 = " << sqrt(M22)/GeV 
 						<< "\n\tm1 = " << sqrt(m12)/GeV 
 						<< "\tm2 = " << sqrt(m22)/GeV 
 						<< "\tm  = " << sqrt(mq2)/GeV 
 						<< Exception::runerror;
 				break;
 			}
 		default:
 			assert(false);
 	}
 	return SQME_OverEstimate;
 }
 /* Overestimate for SQME for p1,p2->C1(q1,q),C2(q2,qbar) 
  * Note that:
  *      p0Q1  -> p1   where Mass -> m1
  *      p0Q2  -> p2   where Mass -> m2
  *      pQ1   -> q1   where Mass -> m1
  *      pQone -> q    where Mass -> mq
  *      pQ2   -> q2   where Mass -> m2
  *      pQone -> qbar where Mass -> mq
  * */
 double ClusterFissioner::calculateSQME_OverEstimate(
 		const Energy& Mc,
 		const Energy& m1,
 		const Energy& m2,
 		const Energy& mq
 		) const {
 	double SQME_OverEstimate;
 	switch (_matrixElement)
 	{
 		case 0:
 				SQME_OverEstimate = 1.0;
 				break;
 		case 1:
 			{
 				// Cluster Masses
 				Energy2 Mc2 = sqr(Mc);
 				// Constituent masses
 				Energy2 mq2 = sqr(mq);
 				Energy2 m12 = sqr(m1);
 				Energy2 m22 = sqr(m2);
 
 				Energy M1min  = m1 + mq;
 				Energy M2min  = m2 + mq;
 				Energy M1max  = Mc - M2min;
 				Energy M2max  = Mc - M1min;
 				// Solution for Maximum M1,M2 of Numerator
 				Energy M1star = sqrt((Mc2+2*m12-m22-7.0*mq2)/3.0);
 				Energy M2star = sqrt((Mc2+2*m22-m12-7.0*mq2)/3.0);
 				if (M1star > M1max)
 					M1star = M1max;
 				else if (M1star < M1min)
 					M1star = M1min;
 
 				if (M2star > M2max)
 					M2star = M2max;
 				else if (M2star < M2min)
 					M2star = M2min;
 
 				Energy2 M12 = sqr(M1star);
 				Energy2 M22 = sqr(M2star);
 				// Mass shell for daughter clusters
 				Energy2 q1q     = (M12 - m12 - mq2)/2.0; // fixed by masses
 				Energy2 q2qbar  = (M22 - m22 - mq2)/2.0; // fixed by masses
 
 				// Actual min/maxima of the dot products for the overestimate
 				Energy2 qqbarMin  = mq2; // most conservative minima
 				Energy2 q2qMin    = sqrt(m22*mq2); // most conservative minima
 				Energy2 q1qbarMin = sqrt(m12*mq2); // most conservative minima
 
 				Energy2 q1q2Max   = (Mc2  - M12 - M22)/2.0; // most conservative maxima
 				Energy2 q2qMax    = (Mc2  - M12 - M22)/2.0; // most conservative maxima
 				Energy2 q1qbarMax = (Mc2  - M12 - M22)/2.0; // most conservative maxima
 				double Numerator = q1q2Max * (mq2+qqbarMin)/sqr(GeV2);
 				Numerator += 0.5 * (q1q*q2qMax + q1qbarMax*q2qbar)/sqr(GeV2);
 				Numerator -= 0.5 * (q1q*q2qbar + q1qbarMin*q2qMin)/sqr(GeV2);
 				double Denominator = sqr(2.0*mq2)*2.0*sqrt(m12*mq2)*2.0*sqrt(m22*mq2)/sqr(sqr(GeV2));
 				SQME_OverEstimate = Numerator/Denominator;
 				
 				// numerical determined better overestimate
 				double estimate = pow(3.0,4)*m1*m2*mq2/((Mc2-sqr(m1+mq))*(Mc2-sqr(m2+mq)));
 				double modification = _safetyFactorMatrixElement * estimate;
 				// only apply if efficiency gets better
 				if ( modification < 1.0)
 					SQME_OverEstimate*=modification;
 
 				if (SQME_OverEstimate < 0) throw	Exception()
 					<< "Squared Matrix Element_Overestimate = "<< SQME_OverEstimate <<" < 0 in ClusterFissioner::calculateSQME_OverEstimate()\n"
 						<< "\tM  = " << sqrt(Mc2)/GeV 
 						<< "\tM1 = " << sqrt(M12)/GeV 
 						<< "\tM2 = " << sqrt(M22)/GeV 
 						<< "\n\tm1 = " << sqrt(m12)/GeV 
 						<< "\tm2 = " << sqrt(m22)/GeV 
 						<< "\tm  = " << sqrt(mq2)/GeV 
 						<< Exception::runerror;
 				break;
 			}
 		case 2:
 			{
 				// TODO make this better
 				SQME_OverEstimate = 20;
 				break;
 			}
 		default:
 			assert(false);
 	}
 	return SQME_OverEstimate;
 }
 bool ClusterFissioner::drawKinematics(
              const Lorentz5Momentum & pClu,
 					   const Lorentz5Momentum & p0Q1,
 					   const Lorentz5Momentum & p0Q2,
 					   const bool toHadron1,
 					   const bool toHadron2,
 					   Lorentz5Momentum & pClu1,
 					   Lorentz5Momentum & pClu2,
 					   Lorentz5Momentum & pQ1,
 					   Lorentz5Momentum & pQbar,
 					   Lorentz5Momentum & pQ,
 					   Lorentz5Momentum & pQ2bar) const {
 	// calculateKinematics(pClu,p0Q1,toHadron1,toHadron2,
 					// pClu1,pClu2,pQ1,pQbar,pQ,pQ2bar);
 	// return false;
   if (pClu.m() < pClu1.mass() + pClu2.mass()
 		  || pClu1.mass()<ZERO
 		  || pClu2.mass()<ZERO  ) {
     throw Exception() << "Impossible Kinematics in ClusterFissioner::drawKinematics() (A)\n"
 					<< "Mc  = "<< pClu.mass()/GeV <<" GeV\n"
 					<< "Mc1 = "<< pClu1.mass()/GeV <<" GeV\n"
 					<< "Mc2 = "<< pClu2.mass()/GeV <<" GeV\n"
 		      << Exception::eventerror;
   }
 
 	// Sample direction of the daughter clusters
 	Axis DirToClu = sampleDirectionCluster(p0Q1, pClu);
 	if (_covariantBoost) {
 		const Energy M  = pClu.mass();
 		const Energy M1 = pClu1.mass();
 		const Energy M2 = pClu2.mass();
 		const Energy PcomClu=Kinematics::pstarTwoBodyDecay(M,M1,M2);
 		Momentum3 pClu1sampVect( PcomClu*DirToClu);
 		Momentum3 pClu2sampVect(-PcomClu*DirToClu);
 		pClu1.setMass(M1);
 		pClu1.setVect(pClu1sampVect);
 		pClu1.rescaleEnergy();
 		pClu2.setMass(M2);
 		pClu2.setVect(pClu2sampVect);
 		pClu2.rescaleEnergy();
 	}
 	else {
 		Kinematics::twoBodyDecay(pClu, pClu1.mass(), pClu2.mass(),DirToClu, pClu1, pClu2);
 	}
 	// In the case that cluster1 does not decay immediately into a single hadron,
 	// calculate the momenta of Q1 (as constituent of C1) and Qbar in the
 	// (parent) C1 frame first, where the direction of Q1 is u.vect().unit(),
 	// and then boost back in the LAB frame.
 	if(!toHadron1) {
 		if (pClu1.m() < pQ1.mass() + pQbar.mass() ) {
 			throw Exception() << "Impossible Kinematics in ClusterFissioner::drawKinematics() (B)"
 				<< Exception::eventerror;
 		}
 		Axis DirClu1;
 		switch (_phaseSpaceSampler)
 		{
 			case 0:
 				// Default aligned
 				DirClu1 = _covariantBoost ? pClu1.vect().unit():DirToClu;
 				break;
 			case 1:
 				// Isotropic
 				DirClu1 = sampleDirectionIsotropic();
 				break;
 			case 2:
 				// Isotropic
 				DirClu1 = sampleDirectionIsotropic();
 				break;
 			default:
 				assert(false);  
 		}
 
 
 		// Need to boost constituents first into the pClu rest frame
 		//  boost from Cluster1 rest frame to Cluster COM Frame
 		Kinematics::twoBodyDecay(pClu1, pQ1.mass(), pQbar.mass(), DirClu1, pQ1, pQbar);
 	}
 
 	// In the case that cluster2 does not decay immediately into a single hadron,
 	// Calculate the momenta of Q and Q2bar (as constituent of C2) in the
 	// (parent) C2 frame first, where the direction of Q is u.vect().unit(),
 	// and then boost back in the LAB frame.
 	if(!toHadron2) {
 		if (pClu2.m() < pQ.mass() + pQ2bar.mass() ) {
 			throw Exception() << "Impossible Kinematics in ClusterFissioner::drawKinematics() (C)"
 				<< Exception::eventerror;
 		}
 		Axis DirClu2;
 		switch (_phaseSpaceSampler)
 		{
 			case 0:
 				// Default aligned
 					DirClu2 = _covariantBoost ? pClu2.vect().unit():DirToClu;
 				break;
 			case 1:
 				// Isotropic
 				DirClu2 = sampleDirectionIsotropic();
 				break;
 			case 2:
 				// Isotropic
 				DirClu2 = sampleDirectionIsotropic();
 				break;
 			default:
 				assert(false);  
 		}
 
 		//  boost from Cluster2 rest frame to Cluster COM Frame 
 		Kinematics::twoBodyDecay(pClu2, pQ.mass(), pQ2bar.mass(), DirClu2, pQ, pQ2bar);
 	}
 	// Boost all momenta from the Cluster COM frame to the Lab frame
 	if (_covariantBoost) {
 			std::vector<Lorentz5Momentum *> momenta;
 			momenta.push_back(&pClu1);
 			momenta.push_back(&pClu2);
 			if (!toHadron1) {
 				momenta.push_back(&pQ1);
 				momenta.push_back(&pQbar);
 			}
 			if (!toHadron2) {
 				momenta.push_back(&pQ);
 				momenta.push_back(&pQ2bar);
 			}
 			Kinematics::BoostIntoTwoParticleFrame(pClu.mass(),p0Q1, p0Q2, momenta);
 
 	}
 	return false; // success
 }
 void ClusterFissioner::calculateKinematics(const Lorentz5Momentum & pClu,
 					   const Lorentz5Momentum & p0Q1,
 					   const bool toHadron1,
 					   const bool toHadron2,
 					   Lorentz5Momentum & pClu1,
 					   Lorentz5Momentum & pClu2,
 					   Lorentz5Momentum & pQ1,
 					   Lorentz5Momentum & pQbar,
 					   Lorentz5Momentum & pQ,
 					   Lorentz5Momentum & pQ2bar) const {
 
   /******************
    * This method solves the kinematics of the two body cluster decay:
    *    C (Q1 Q2bar)  --->  C1 (Q1 Qbar)  +  C2 (Q Q2bar)
    * In input we receive the momentum of C, pClu, and the momentum
    * of the quark Q1 (constituent of C), p0Q1, both in the LAB frame.
    * Furthermore, two boolean variables inform whether the two fission
    * products (C1, C2) decay immediately into a single hadron (in which
    * case the cluster itself is identify with that hadron) and we do
    * not have to solve the kinematics of the components (Q1,Qbar) for
    * C1 and (Q,Q2bar) for C2.
    * The output is given by the following momenta (all 5-components,
    * and all in the LAB frame):
    *   pClu1 , pClu2   respectively of   C1 , C2
    *   pQ1 , pQbar     respectively of   Q1 , Qbar  in  C1
    *   pQ  , pQ2bar    respectively of   Q  , Q2    in  C2
    * The assumption, suggested from the string model, is that, in C frame,
    * C1 and its constituents Q1 and Qbar are collinear, and collinear to
    * the direction of Q1 in C (that is before cluster decay); similarly,
    * (always in the C frame) C2 and its constituents Q and Q2bar are
    * collinear (and therefore anti-collinear with C1,Q1,Qbar).
    * The solution is then obtained by using Lorentz boosts, as follows.
    * The kinematics of C1 and C2 is solved in their parent C frame,
    * and then boosted back in the LAB. The kinematics of Q1 and Qbar
    * is solved in their parent C1 frame and then boosted back in the LAB;
    * similarly, the kinematics of Q and Q2bar is solved in their parent
    * C2 frame and then boosted back in the LAB. In each of the three
    * "two-body decay"-like cases, we use the fact that the direction
    * of the motion of the decay products is known in the rest frame of
    * their parent. This is obvious for the first case in which the
    * parent rest frame is C; but it is also true in the other two cases
    * where the rest frames are C1 and C2. This is because C1 and C2
    * are boosted w.r.t. C in the same direction where their components,
    * respectively (Q1,Qbar) and (Q,Q2bar) move in C1 and C2 rest frame
    * respectively.
    * Of course, although the notation used assumed that C = (Q1 Q2bar)
    * where Q1 is a quark and Q2bar an antiquark, indeed everything remain
    * unchanged also in all following cases:
    *  Q1 quark, Q2bar antiquark;           --> Q quark;
    *  Q1 antiquark , Q2bar quark;          --> Q antiquark;
    *  Q1 quark, Q2bar diquark;             --> Q quark
    *  Q1 antiquark, Q2bar anti-diquark;    --> Q antiquark
    *  Q1 diquark, Q2bar quark              --> Q antiquark
    *  Q1 anti-diquark, Q2bar antiquark;    --> Q quark
    **************************/
 
   // Calculate the unit three-vector, in the C frame, along which
   // all of the constituents and children clusters move.
   Lorentz5Momentum u(p0Q1);
   u.boost( -pClu.boostVector() );        // boost from LAB to C
   // the unit three-vector is then  u.vect().unit()
 
   // Calculate the momenta of C1 and C2 in the (parent) C frame first,
   // where the direction of C1 is u.vect().unit(), and then boost back in the
   // LAB frame.
 
   if (pClu.m() < pClu1.mass() + pClu2.mass() ) {
     throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (A)"
 		      << Exception::eventerror;
   }
   Kinematics::twoBodyDecay(pClu, pClu1.mass(), pClu2.mass(),
 			   u.vect().unit(), pClu1, pClu2);
 
   // In the case that cluster1 does not decay immediately into a single hadron,
   // calculate the momenta of Q1 (as constituent of C1) and Qbar in the
   // (parent) C1 frame first, where the direction of Q1 is u.vect().unit(),
   // and then boost back in the LAB frame.
   if(!toHadron1) {
     if (pClu1.m() < pQ1.mass() + pQbar.mass() ) {
       throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (B)"
 			<< Exception::eventerror;
     }
     Kinematics::twoBodyDecay(pClu1, pQ1.mass(), pQbar.mass(),
 			     u.vect().unit(), pQ1, pQbar);
   }
 
   // In the case that cluster2 does not decay immediately into a single hadron,
   // Calculate the momenta of Q and Q2bar (as constituent of C2) in the
   // (parent) C2 frame first, where the direction of Q is u.vect().unit(),
   // and then boost back in the LAB frame.
   if(!toHadron2) {
     if (pClu2.m() < pQ.mass() + pQ2bar.mass() ) {
       throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (C)"
 			<< Exception::eventerror;
     }
     Kinematics::twoBodyDecay(pClu2, pQ.mass(), pQ2bar.mass(),
 			     u.vect().unit(), pQ, pQ2bar);
   }
 }
 
 
 void ClusterFissioner::calculatePositions(const Lorentz5Momentum & pClu,
 					  const LorentzPoint & positionClu,
 					  const Lorentz5Momentum & pClu1,
 					  const Lorentz5Momentum & pClu2,
 					  LorentzPoint & positionClu1,
 					  LorentzPoint & positionClu2) const {
   // Determine positions of cluster children.
   // See Marc Smith's thesis, page 127, formulas (4.122) and (4.123).
   Energy Mclu  = pClu.m();
   Energy Mclu1 = pClu1.m();
   Energy Mclu2 = pClu2.m();
 
   // Calculate the unit three-vector, in the C frame, along which
   // children clusters move.
   Lorentz5Momentum u(pClu1);
   u.boost( -pClu.boostVector() );        // boost from LAB to C frame
 
   // the unit three-vector is then  u.vect().unit()
 
   Energy pstarChild = Kinematics::pstarTwoBodyDecay(Mclu,Mclu1,Mclu2);
 
   // First, determine the relative positions of the children clusters
   // in the parent cluster reference frame.
 
   Energy2 mag2 = u.vect().mag2();
   InvEnergy fact = mag2>ZERO ? 1./sqrt(mag2) : 1./GeV;
 
   Length x1 = ( 0.25*Mclu + 0.5*( pstarChild + (sqr(Mclu2) - sqr(Mclu1))/(2.0*Mclu)))/_kappa;
   Length t1 = Mclu/_kappa - x1;
   LorentzDistance distanceClu1( x1 * fact * u.vect(), t1 );
 
   Length x2 = (-0.25*Mclu + 0.5*(-pstarChild + (sqr(Mclu2) - sqr(Mclu1))/(2.0*Mclu)))/_kappa;
   Length t2 = Mclu/_kappa + x2;
   LorentzDistance distanceClu2( x2 * fact * u.vect(), t2 );
 
   // Then, transform such relative positions from the parent cluster
   // reference frame to the Lab frame.
   distanceClu1.boost( pClu.boostVector() );
   distanceClu2.boost( pClu.boostVector() );
 
   // Finally, determine the absolute positions in the Lab frame.
   positionClu1 = positionClu + distanceClu1;
   positionClu2 = positionClu + distanceClu2;
 
 }
 
 bool ClusterFissioner::ProbablityFunction(double scale, double threshold) {
   double cut = UseRandom::rnd(0.0,1.0);
   return 1./(1.+pow(abs((threshold-_probShift)/scale),_probPowFactor)) > cut ? true : false;
 }
 
 bool ClusterFissioner::isHeavy(tcClusterPtr clu) {
   // particle data for constituents
   tcPDPtr cptr[3]={tcPDPtr(),tcPDPtr(),tcPDPtr()};
   for(size_t ix=0;ix<min(clu->numComponents(),3);++ix) {
     cptr[ix]=clu->particle(ix)->dataPtr();
   }
   // different parameters for exotic, bottom and charm clusters
   double clpow = !spectrum()->isExotic(cptr[0],cptr[1],cptr[1]) ? _clPowLight : _clPowExotic;
   Energy clmax = !spectrum()->isExotic(cptr[0],cptr[1],cptr[1]) ? _clMaxLight : _clMaxExotic;
   for ( const long& id : spectrum()->heavyHadronizingQuarks() ) {
     if ( spectrum()->hasHeavy(id,cptr[0],cptr[1],cptr[1]) ) {
       clpow = _clPowHeavy[id];
       clmax = _clMaxHeavy[id];
     }
   }
    // required test for SUSY clusters, since aboveCutoff alone
   // cannot guarantee (Mc > m1 + m2 + 2*m) in cut()
   static const Energy minmass
     = getParticleData(ParticleID::d)->constituentMass();
   bool aboveCutoff = false, canSplitMinimally = false;
   // static kinematic threshold
   if(_kinematicThresholdChoice == 0) {
     aboveCutoff = (
     	      pow(clu->mass()*UnitRemoval::InvE , clpow)
     	      >
     	      pow(clmax*UnitRemoval::InvE, clpow)
     	      + pow(clu->sumConstituentMasses()*UnitRemoval::InvE, clpow)
     	      );
 
     canSplitMinimally = clu->mass() > clu->sumConstituentMasses() + 2.0 * minmass;
   }
   // dynamic kinematic threshold
   else if(_kinematicThresholdChoice == 1) {
     //some smooth probablity function to create a dynamic thershold
     double scale     = pow(clu->mass()/GeV , clpow);
     double threshold = pow(clmax/GeV, clpow)
                      + pow(clu->sumConstituentMasses()/GeV, clpow);
     aboveCutoff = ProbablityFunction(scale,threshold);
 
     scale     = clu->mass()/GeV;
     threshold = clu->sumConstituentMasses()/GeV + 2.0 * minmass/GeV;
 
     canSplitMinimally = ProbablityFunction(scale,threshold);
   }
 
   return aboveCutoff && canSplitMinimally;
 }