diff --git a/Shower/QTilde/SplittingFunctions/SplittingFunction.cc b/Shower/QTilde/SplittingFunctions/SplittingFunction.cc --- a/Shower/QTilde/SplittingFunctions/SplittingFunction.cc +++ b/Shower/QTilde/SplittingFunctions/SplittingFunction.cc @@ -1,1051 +1,1051 @@ // -*- C++ -*- // // SplittingFunction.cc is a part of Herwig - A multi-purpose Monte Carlo event generator // Copyright (C) 2002-2019 The Herwig Collaboration // // Herwig is licenced under version 3 of the GPL, see COPYING for details. // Please respect the MCnet academic guidelines, see GUIDELINES for details. // // // This is the implementation of the non-inlined, non-templated member // functions of the SplittingFunction class. // #include "SplittingFunction.h" #include "ThePEG/Utilities/DescribeClass.h" #include "ThePEG/Persistency/PersistentOStream.h" #include "ThePEG/Persistency/PersistentIStream.h" #include "ThePEG/Interface/Switch.h" #include "ThePEG/Repository/UseRandom.h" #include "ThePEG/Utilities/EnumIO.h" #include "Herwig/Shower/QTilde/Base/ShowerParticle.h" #include "ThePEG/Utilities/DescribeClass.h" using namespace Herwig; DescribeAbstractClass describeSplittingFunction ("Herwig::SplittingFunction",""); void SplittingFunction::Init() { static ClassDocumentation documentation ("The SplittingFunction class is the based class for 1->2 splitting functions" " in Herwig"); static Switch interfaceColourStructure ("ColourStructure", "The colour structure for the splitting function", &SplittingFunction::_colourStructure, Undefined, false, false); static SwitchOption interfaceColourStructureTripletTripletOctet (interfaceColourStructure, "TripletTripletOctet", "3 -> 3 8", TripletTripletOctet); static SwitchOption interfaceColourStructureOctetOctetOctet (interfaceColourStructure, "OctetOctetOctet", "8 -> 8 8", OctetOctetOctet); static SwitchOption interfaceColourStructureOctetTripletTriplet (interfaceColourStructure, "OctetTripletTriplet", "8 -> 3 3bar", OctetTripletTriplet); static SwitchOption interfaceColourStructureTripletOctetTriplet (interfaceColourStructure, "TripletOctetTriplet", "3 -> 8 3", TripletOctetTriplet); static SwitchOption interfaceColourStructureSextetSextetOctet (interfaceColourStructure, "SextetSextetOctet", "6 -> 6 8", SextetSextetOctet); static SwitchOption interfaceColourStructureChargedChargedNeutral (interfaceColourStructure, "ChargedChargedNeutral", "q -> q 0", ChargedChargedNeutral); static SwitchOption interfaceColourStructureNeutralChargedCharged (interfaceColourStructure, "NeutralChargedCharged", "0 -> q qbar", NeutralChargedCharged); static SwitchOption interfaceColourStructureChargedNeutralCharged (interfaceColourStructure, "ChargedNeutralCharged", "q -> 0 q", ChargedNeutralCharged); static SwitchOption interfaceColourStructureEW (interfaceColourStructure, "EW", - "q -> q W/Z", + "q -> q W/Z, q -> q h0, V -> V' V'', V -> V H", EW); static Switch interfaceInteractionType ("InteractionType", "Type of the interaction", &SplittingFunction::_interactionType, ShowerInteraction::UNDEFINED, false, false); static SwitchOption interfaceInteractionTypeQCD (interfaceInteractionType, "QCD","QCD",ShowerInteraction::QCD); static SwitchOption interfaceInteractionTypeQED (interfaceInteractionType, "QED","QED",ShowerInteraction::QED); static SwitchOption interfaceInteractionTypeEW (interfaceInteractionType, "EW","EW",ShowerInteraction::EW); static Switch interfaceAngularOrdered ("AngularOrdered", "Whether or not this interaction is angular ordered, " "normally only g->q qbar and gamma-> f fbar are the only ones which aren't.", &SplittingFunction::angularOrdered_, true, false, false); static SwitchOption interfaceAngularOrderedYes (interfaceAngularOrdered, "Yes", "Interaction is angular ordered", true); static SwitchOption interfaceAngularOrderedNo (interfaceAngularOrdered, "No", "Interaction isn't angular ordered", false); static Switch interfaceScaleChoice ("ScaleChoice", "The scale choice to be used", &SplittingFunction::scaleChoice_, 2, false, false); static SwitchOption interfaceScaleChoicepT (interfaceScaleChoice, "pT", "pT of the branching", 0); static SwitchOption interfaceScaleChoiceQ2 (interfaceScaleChoice, "Q2", "Q2 of the branching", 1); static SwitchOption interfaceScaleChoiceFromAngularOrdering (interfaceScaleChoice, "FromAngularOrdering", "If angular order use pT, otherwise Q2", 2); static Switch interfaceStrictAO ("StrictAO", "Whether or not to apply strict angular-ordering," " i.e. for QED even in QCD emission, and vice versa", &SplittingFunction::strictAO_, true, false, false); static SwitchOption interfaceStrictAOYes (interfaceStrictAO, "Yes", "Apply strict ordering", true); static SwitchOption interfaceStrictAONo (interfaceStrictAO, "No", "Don't apply strict ordering", false); } void SplittingFunction::persistentOutput(PersistentOStream & os) const { os << oenum(_interactionType) << oenum(_colourStructure) << _colourFactor << angularOrdered_ << scaleChoice_ << strictAO_; } void SplittingFunction::persistentInput(PersistentIStream & is, int) { is >> ienum(_interactionType) >> ienum(_colourStructure) >> _colourFactor >> angularOrdered_ >> scaleChoice_ >> strictAO_; } void SplittingFunction::colourConnection(tShowerParticlePtr parent, tShowerParticlePtr first, tShowerParticlePtr second, ShowerPartnerType partnerType, const bool back) const { if(_colourStructure==TripletTripletOctet) { if(!back) { ColinePair cparent = ColinePair(parent->colourLine(), parent->antiColourLine()); // ensure input consistency assert(( cparent.first && !cparent.second && partnerType==ShowerPartnerType::QCDColourLine) || ( !cparent.first && cparent.second && partnerType==ShowerPartnerType::QCDAntiColourLine)); // q -> q g if(cparent.first) { ColinePtr newline=new_ptr(ColourLine()); cparent.first->addColoured(second); newline->addColoured ( first); newline->addAntiColoured (second); } // qbar -> qbar g else { ColinePtr newline=new_ptr(ColourLine()); cparent.second->addAntiColoured(second); newline->addColoured(second); newline->addAntiColoured(first); } // Set progenitor first->progenitor(parent->progenitor()); second->progenitor(parent->progenitor()); } else { ColinePair cfirst = ColinePair(first->colourLine(), first->antiColourLine()); // ensure input consistency assert(( cfirst.first && !cfirst.second && partnerType==ShowerPartnerType::QCDColourLine) || ( !cfirst.first && cfirst.second && partnerType==ShowerPartnerType::QCDAntiColourLine)); // q -> q g if(cfirst.first) { ColinePtr newline=new_ptr(ColourLine()); cfirst.first->addAntiColoured(second); newline->addColoured(second); newline->addColoured(parent); } // qbar -> qbar g else { ColinePtr newline=new_ptr(ColourLine()); cfirst.second->addColoured(second); newline->addAntiColoured(second); newline->addAntiColoured(parent); } // Set progenitor parent->progenitor(first->progenitor()); second->progenitor(first->progenitor()); } } else if(_colourStructure==OctetOctetOctet) { if(!back) { ColinePair cparent = ColinePair(parent->colourLine(), parent->antiColourLine()); // ensure input consistency assert(cparent.first&&cparent.second); // ensure first gluon is hardest if( first->id()==second->id() && parent->showerKinematics()->z()<0.5 ) swap(first,second); // colour line radiates if(partnerType==ShowerPartnerType::QCDColourLine) { // The colour line is radiating ColinePtr newline=new_ptr(ColourLine()); cparent.first->addColoured(second); cparent.second->addAntiColoured(first); newline->addColoured(first); newline->addAntiColoured(second); } // anti colour line radiates else if(partnerType==ShowerPartnerType::QCDAntiColourLine) { ColinePtr newline=new_ptr(ColourLine()); cparent.first->addColoured(first); cparent.second->addAntiColoured(second); newline->addColoured(second); newline->addAntiColoured(first); } else assert(false); } else { ColinePair cfirst = ColinePair(first->colourLine(), first->antiColourLine()); // ensure input consistency assert(cfirst.first&&cfirst.second); // The colour line is radiating if(partnerType==ShowerPartnerType::QCDColourLine) { ColinePtr newline=new_ptr(ColourLine()); cfirst.first->addAntiColoured(second); cfirst.second->addAntiColoured(parent); newline->addColoured(parent); newline->addColoured(second); } // anti colour line radiates else if(partnerType==ShowerPartnerType::QCDAntiColourLine) { ColinePtr newline=new_ptr(ColourLine()); cfirst.first->addColoured(parent); cfirst.second->addColoured(second); newline->addAntiColoured(second); newline->addAntiColoured(parent); } else assert(false); } } else if(_colourStructure == OctetTripletTriplet) { if(!back) { ColinePair cparent = ColinePair(parent->colourLine(), parent->antiColourLine()); // ensure input consistency assert(cparent.first&&cparent.second); cparent.first ->addColoured ( first); cparent.second->addAntiColoured(second); // Set progenitor first->progenitor(parent->progenitor()); second->progenitor(parent->progenitor()); } else { ColinePair cfirst = ColinePair(first->colourLine(), first->antiColourLine()); // ensure input consistency assert(( cfirst.first && !cfirst.second) || (!cfirst.first && cfirst.second)); // g -> q qbar if(cfirst.first) { ColinePtr newline=new_ptr(ColourLine()); cfirst.first->addColoured(parent); newline->addAntiColoured(second); newline->addAntiColoured(parent); } // g -> qbar q else { ColinePtr newline=new_ptr(ColourLine()); cfirst.second->addAntiColoured(parent); newline->addColoured(second); newline->addColoured(parent); } // Set progenitor parent->progenitor(first->progenitor()); second->progenitor(first->progenitor()); } } else if(_colourStructure == TripletOctetTriplet) { if(!back) { ColinePair cparent = ColinePair(parent->colourLine(), parent->antiColourLine()); // ensure input consistency assert(( cparent.first && !cparent.second) || (!cparent.first && cparent.second)); // q -> g q if(cparent.first) { ColinePtr newline=new_ptr(ColourLine()); cparent.first->addColoured(first); newline->addColoured (second); newline->addAntiColoured( first); } // qbar -> g qbar else { ColinePtr newline=new_ptr(ColourLine()); cparent.second->addAntiColoured(first); newline->addColoured ( first); newline->addAntiColoured(second); } // Set progenitor first->progenitor(parent->progenitor()); second->progenitor(parent->progenitor()); } else { ColinePair cfirst = ColinePair(first->colourLine(), first->antiColourLine()); // ensure input consistency assert(cfirst.first&&cfirst.second); // q -> g q if(parent->id()>0) { cfirst.first ->addColoured(parent); cfirst.second->addColoured(second); } else { cfirst.first ->addAntiColoured(second); cfirst.second->addAntiColoured(parent); } // Set progenitor parent->progenitor(first->progenitor()); second->progenitor(first->progenitor()); } } else if(_colourStructure==SextetSextetOctet) { //make sure we're not doing backward evolution assert(!back); //make sure something sensible assert(parent->colourLine() || parent->antiColourLine()); //get the colour lines or anti-colour lines bool isAntiColour=true; ColinePair cparent; if(parent->colourLine()) { cparent = ColinePair(const_ptr_cast(parent->colourInfo()->colourLines()[0]), const_ptr_cast(parent->colourInfo()->colourLines()[1])); isAntiColour=false; } else { cparent = ColinePair(const_ptr_cast(parent->colourInfo()->antiColourLines()[0]), const_ptr_cast(parent->colourInfo()->antiColourLines()[1])); } //check for sensible input // assert(cparent.first && cparent.second); // sextet has 2 colour lines if(!isAntiColour) { //pick at random which of the colour topolgies to take double topology = UseRandom::rnd(); if(topology < 0.25) { ColinePtr newline=new_ptr(ColourLine()); cparent.first->addColoured(second); cparent.second->addColoured(first); newline->addColoured(first); newline->addAntiColoured(second); } else if(topology >=0.25 && topology < 0.5) { ColinePtr newline=new_ptr(ColourLine()); cparent.first->addColoured(first); cparent.second->addColoured(second); newline->addColoured(first); newline->addAntiColoured(second); } else if(topology >= 0.5 && topology < 0.75) { ColinePtr newline=new_ptr(ColourLine()); cparent.first->addColoured(second); cparent.second->addColoured(first); newline->addColoured(first); newline->addAntiColoured(second); } else { ColinePtr newline=new_ptr(ColourLine()); cparent.first->addColoured(first); cparent.second->addColoured(second); newline->addColoured(first); newline->addAntiColoured(second); } } // sextet has 2 anti-colour lines else { double topology = UseRandom::rnd(); if(topology < 0.25){ ColinePtr newline=new_ptr(ColourLine()); cparent.first->addAntiColoured(second); cparent.second->addAntiColoured(first); newline->addAntiColoured(first); newline->addColoured(second); } else if(topology >=0.25 && topology < 0.5) { ColinePtr newline=new_ptr(ColourLine()); cparent.first->addAntiColoured(first); cparent.second->addAntiColoured(second); newline->addAntiColoured(first); newline->addColoured(second); } else if(topology >= 0.5 && topology < 0.75) { ColinePtr newline=new_ptr(ColourLine()); cparent.first->addAntiColoured(second); cparent.second->addAntiColoured(first); newline->addAntiColoured(first); newline->addColoured(second); } else { ColinePtr newline=new_ptr(ColourLine()); cparent.first->addAntiColoured(first); cparent.second->addAntiColoured(second); newline->addAntiColoured(first); newline->addColoured(second); } } } else if(_colourStructure == ChargedChargedNeutral) { if(!parent->data().coloured()) return; if(!back) { ColinePair cparent = ColinePair(parent->colourLine(), parent->antiColourLine()); // q -> q g if(cparent.first) { cparent.first->addColoured(first); } // qbar -> qbar g if(cparent.second) { cparent.second->addAntiColoured(first); } } else { ColinePair cfirst = ColinePair(first->colourLine(), first->antiColourLine()); // q -> q g if(cfirst.first) { cfirst.first->addColoured(parent); } // qbar -> qbar g if(cfirst.second) { cfirst.second->addAntiColoured(parent); } } } else if(_colourStructure == ChargedNeutralCharged) { if(!parent->data().coloured()) return; if(!back) { ColinePair cparent = ColinePair(parent->colourLine(), parent->antiColourLine()); // q -> q g if(cparent.first) { cparent.first->addColoured(second); } // qbar -> qbar g if(cparent.second) { cparent.second->addAntiColoured(second); } } else { if (second->dataPtr()->iColour()==PDT::Colour3 ) { ColinePtr newline=new_ptr(ColourLine()); newline->addColoured(second); newline->addColoured(parent); } else if (second->dataPtr()->iColour()==PDT::Colour3bar ) { ColinePtr newline=new_ptr(ColourLine()); newline->addAntiColoured(second); newline->addAntiColoured(parent); } } } else if(_colourStructure == NeutralChargedCharged ) { if(!back) { if(first->dataPtr()->coloured()) { ColinePtr newline=new_ptr(ColourLine()); if(first->dataPtr()->iColour()==PDT::Colour3) { newline->addColoured (first ); newline->addAntiColoured(second); } else if (first->dataPtr()->iColour()==PDT::Colour3bar) { newline->addColoured (second); newline->addAntiColoured(first ); } else assert(false); } } else { ColinePair cfirst = ColinePair(first->colourLine(), first->antiColourLine()); // gamma -> q qbar if(cfirst.first) { cfirst.first->addAntiColoured(second); } // gamma -> qbar q else if(cfirst.second) { cfirst.second->addColoured(second); } else assert(false); } } else if(_colourStructure == EW) { if(!parent->data().coloured()) return; if(!back) { ColinePair cparent = ColinePair(parent->colourLine(), parent->antiColourLine()); // q -> q g if(cparent.first) { cparent.first->addColoured(first); } // qbar -> qbar g if(cparent.second) { cparent.second->addAntiColoured(first); } } else { ColinePair cfirst = ColinePair(first->colourLine(), first->antiColourLine()); // q -> q g if(cfirst.first) { cfirst.first->addColoured(parent); } // qbar -> qbar g if(cfirst.second) { cfirst.second->addAntiColoured(parent); } } } else { assert(false); } } void SplittingFunction::doinit() { Interfaced::doinit(); assert(_interactionType!=ShowerInteraction::UNDEFINED); assert((_colourStructure>0&&_interactionType==ShowerInteraction::QCD) || (_colourStructure<0&&(_interactionType==ShowerInteraction::QED || _interactionType==ShowerInteraction::EW)) ); if(_colourFactor>0.) return; // compute the colour factors if need if(_colourStructure==TripletTripletOctet) { _colourFactor = 4./3.; } else if(_colourStructure==OctetOctetOctet) { _colourFactor = 3.; } else if(_colourStructure==OctetTripletTriplet) { _colourFactor = 0.5; } else if(_colourStructure==TripletOctetTriplet) { _colourFactor = 4./3.; } else if(_colourStructure==SextetSextetOctet) { _colourFactor = 10./3.; } else if(_colourStructure<0) { _colourFactor = 1.; } else { assert(false); } } bool SplittingFunction::checkColours(const IdList & ids) const { if(_colourStructure==TripletTripletOctet) { if(ids[0]!=ids[1]) return false; if((ids[0]->iColour()==PDT::Colour3||ids[0]->iColour()==PDT::Colour3bar) && ids[2]->iColour()==PDT::Colour8) return true; return false; } else if(_colourStructure==OctetOctetOctet) { for(unsigned int ix=0;ix<3;++ix) { if(ids[ix]->iColour()!=PDT::Colour8) return false; } return true; } else if(_colourStructure==OctetTripletTriplet) { if(ids[0]->iColour()!=PDT::Colour8) return false; if(ids[1]->iColour()==PDT::Colour3&&ids[2]->iColour()==PDT::Colour3bar) return true; if(ids[1]->iColour()==PDT::Colour3bar&&ids[2]->iColour()==PDT::Colour3) return true; return false; } else if(_colourStructure==TripletOctetTriplet) { if(ids[0]!=ids[2]) return false; if((ids[0]->iColour()==PDT::Colour3||ids[0]->iColour()==PDT::Colour3bar) && ids[1]->iColour()==PDT::Colour8) return true; return false; } else if(_colourStructure==SextetSextetOctet) { if(ids[0]!=ids[1]) return false; if((ids[0]->iColour()==PDT::Colour6 || ids[0]->iColour()==PDT::Colour6bar) && ids[2]->iColour()==PDT::Colour8) return true; return false; } else if(_colourStructure==ChargedChargedNeutral) { if(ids[0]!=ids[1]) return false; if(ids[2]->iCharge()!=0) return false; if(ids[0]->iCharge()==ids[1]->iCharge()) return true; return false; } else if(_colourStructure==ChargedNeutralCharged) { if(ids[0]!=ids[2]) return false; if(ids[1]->iCharge()!=0) return false; if(ids[0]->iCharge()==ids[2]->iCharge()) return true; return false; } else if(_colourStructure==NeutralChargedCharged) { if(ids[1]->id()!=-ids[2]->id()) return false; if(ids[0]->iCharge()!=0) return false; if(ids[1]->iCharge()==-ids[2]->iCharge()) return true; return false; } else { assert(false); } return false; } namespace { bool hasColour(tPPtr p) { PDT::Colour colour = p->dataPtr()->iColour(); return colour==PDT::Colour3 || colour==PDT::Colour8 || colour == PDT::Colour6; } bool hasAntiColour(tPPtr p) { PDT::Colour colour = p->dataPtr()->iColour(); return colour==PDT::Colour3bar || colour==PDT::Colour8 || colour == PDT::Colour6bar; } } void SplittingFunction::evaluateFinalStateScales(ShowerPartnerType partnerType, Energy scale, double z, tShowerParticlePtr parent, tShowerParticlePtr emitter, tShowerParticlePtr emitted) { // identify emitter and emitted double zEmitter = z, zEmitted = 1.-z; bool bosonSplitting(false); // special for g -> gg, particle highest z is emitter if(emitter->id() == emitted->id() && emitter->id() == parent->id() && zEmitted > zEmitter) { swap(zEmitted,zEmitter); swap( emitted, emitter); } // otherwise if particle ID same else if(emitted->id()==parent->id()) { swap(zEmitted,zEmitter); swap( emitted, emitter); } // no real emitter/emitted else if(emitter->id()!=parent->id()) { bosonSplitting = true; } // may need to add angularOrder flag here // now the various scales // QED if(partnerType==ShowerPartnerType::QED) { assert(colourStructure()==ChargedChargedNeutral || colourStructure()==ChargedNeutralCharged || colourStructure()==NeutralChargedCharged || colourStructure()==EW); // normal case if(!bosonSplitting) { assert(colourStructure()==ChargedChargedNeutral); // set the scales // emitter emitter->scales().QED = zEmitter*scale; emitter->scales().QED_noAO = scale; if(strictAO_) emitter->scales().QCD_c = min(zEmitter*scale,parent->scales().QCD_c ); else emitter->scales().QCD_c = min( scale,parent->scales().QCD_c ); emitter->scales().QCD_c_noAO = min(scale,parent->scales().QCD_c_noAO ); if(strictAO_) emitter->scales().QCD_ac = min(zEmitter*scale,parent->scales().QCD_ac ); else emitter->scales().QCD_ac = min( scale,parent->scales().QCD_ac ); emitter->scales().QCD_ac_noAO = min(scale,parent->scales().QCD_ac_noAO); emitter->scales().EW = min(scale,parent->scales().EW ); // emitted emitted->scales().QED = zEmitted*scale; emitted->scales().QED_noAO = scale; emitted->scales().QCD_c = ZERO; emitted->scales().QCD_c_noAO = ZERO; emitted->scales().QCD_ac = ZERO; emitted->scales().QCD_ac_noAO = ZERO; emitted->scales().EW = min(scale,parent->scales().EW ); } // gamma -> f fbar else { if (parent->id()==22 && abs(emitter->id())==24 && emitter->id() == - emitted->id()) ; else assert(colourStructure()==NeutralChargedCharged || colourStructure()==EW); // emitter emitter->scales().QED = zEmitter*scale; emitter->scales().QED_noAO = scale; if(hasColour(emitter)) { emitter->scales().QCD_c = zEmitter*scale; emitter->scales().QCD_c_noAO = scale; } if(hasAntiColour(emitter)) { emitter->scales().QCD_ac = zEmitter*scale; emitter->scales().QCD_ac_noAO = scale; } emitter->scales().EW = zEmitter*scale; // emitted emitted->scales().QED = zEmitted*scale; emitted->scales().QED_noAO = scale; if(hasColour(emitted)) { emitted->scales().QCD_c = zEmitted*scale; emitted->scales().QCD_c_noAO = scale; } if(hasAntiColour(emitted)) { emitted->scales().QCD_ac = zEmitted*scale; emitted->scales().QCD_ac_noAO = scale; } emitted->scales().EW = zEmitted*scale; } } // QCD else if (partnerType==ShowerPartnerType::QCDColourLine || partnerType==ShowerPartnerType::QCDAntiColourLine) { // normal case eg q -> q g and g -> g g if(!bosonSplitting) { if(strictAO_) emitter->scales().QED = min(zEmitter*scale,parent->scales().QED ); else emitter->scales().QED = min( scale,parent->scales().QED ); emitter->scales().QED_noAO = min(scale,parent->scales().QED_noAO); emitter->scales().EW = min(scale,parent->scales().EW ); if(partnerType==ShowerPartnerType::QCDColourLine) { emitter->scales().QCD_c = zEmitter*scale; emitter->scales().QCD_c_noAO = scale; emitter->scales().QCD_ac = min(zEmitter*scale,parent->scales().QCD_ac ); emitter->scales().QCD_ac_noAO = min( scale,parent->scales().QCD_ac_noAO); } else { emitter->scales().QCD_c = min(zEmitter*scale,parent->scales().QCD_c ); emitter->scales().QCD_c_noAO = min( scale,parent->scales().QCD_c_noAO ); emitter->scales().QCD_ac = zEmitter*scale; emitter->scales().QCD_ac_noAO = scale; } // emitted emitted->scales().QED = ZERO; emitted->scales().QED_noAO = ZERO; emitted->scales().QCD_c = zEmitted*scale; emitted->scales().QCD_c_noAO = scale; emitted->scales().QCD_ac = zEmitted*scale; emitted->scales().QCD_ac_noAO = scale; emitted->scales().EW = min(scale,parent->scales().EW ); } // g -> q qbar else { // emitter if(emitter->dataPtr()->charged()) { emitter->scales().QED = zEmitter*scale; emitter->scales().QED_noAO = scale; } emitter->scales().EW = zEmitter*scale; emitter->scales().QCD_c = zEmitter*scale; emitter->scales().QCD_c_noAO = scale; emitter->scales().QCD_ac = zEmitter*scale; emitter->scales().QCD_ac_noAO = scale; // emitted if(emitted->dataPtr()->charged()) { emitted->scales().QED = zEmitted*scale; emitted->scales().QED_noAO = scale; } emitted->scales().EW = zEmitted*scale; emitted->scales().QCD_c = zEmitted*scale; emitted->scales().QCD_c_noAO = scale; emitted->scales().QCD_ac = zEmitted*scale; emitted->scales().QCD_ac_noAO = scale; } } else if(partnerType==ShowerPartnerType::EW) { // EW emitter->scales().EW = zEmitter*scale; emitted->scales().EW = zEmitted*scale; // QED // W radiation AO if(emitted->dataPtr()->charged()) { emitter->scales().QED = zEmitter*scale; emitter->scales().QED_noAO = scale; emitted->scales().QED = zEmitted*scale; emitted->scales().QED_noAO = scale; } // Z don't else { emitter->scales().QED = min(scale,parent->scales().QED ); emitter->scales().QED_noAO = min(scale,parent->scales().QED_noAO); emitted->scales().QED = ZERO; emitted->scales().QED_noAO = ZERO; } // QCD emitter->scales().QCD_c = min(scale,parent->scales().QCD_c ); emitter->scales().QCD_c_noAO = min(scale,parent->scales().QCD_c_noAO ); emitter->scales().QCD_ac = min(scale,parent->scales().QCD_ac ); emitter->scales().QCD_ac_noAO = min(scale,parent->scales().QCD_ac_noAO); emitted->scales().QCD_c = ZERO; emitted->scales().QCD_c_noAO = ZERO; emitted->scales().QCD_ac = ZERO; emitted->scales().QCD_ac_noAO = ZERO; } else assert(false); } void SplittingFunction::evaluateInitialStateScales(ShowerPartnerType partnerType, Energy scale, double z, tShowerParticlePtr parent, tShowerParticlePtr spacelike, tShowerParticlePtr timelike) { // scale for time-like child Energy AOScale = (1.-z)*scale; // QED if(partnerType==ShowerPartnerType::QED) { if(parent->id()==spacelike->id()) { // parent parent ->scales().QED = scale; parent ->scales().QED_noAO = scale; parent ->scales().QCD_c = min(scale,spacelike->scales().QCD_c ); parent ->scales().QCD_c_noAO = min(scale,spacelike->scales().QCD_c_noAO ); parent ->scales().QCD_ac = min(scale,spacelike->scales().QCD_ac ); parent ->scales().QCD_ac_noAO = min(scale,spacelike->scales().QCD_ac_noAO); // timelike timelike->scales().QED = AOScale; timelike->scales().QED_noAO = scale; timelike->scales().QCD_c = ZERO; timelike->scales().QCD_c_noAO = ZERO; timelike->scales().QCD_ac = ZERO; timelike->scales().QCD_ac_noAO = ZERO; } else if(parent->id()==timelike->id()) { parent ->scales().QED = scale; parent ->scales().QED_noAO = scale; if(hasColour(parent)) { parent ->scales().QCD_c = scale; parent ->scales().QCD_c_noAO = scale; } if(hasAntiColour(parent)) { parent ->scales().QCD_ac = scale; parent ->scales().QCD_ac_noAO = scale; } // timelike timelike->scales().QED = AOScale; timelike->scales().QED_noAO = scale; if(hasColour(timelike)) { timelike->scales().QCD_c = AOScale; timelike->scales().QCD_c_noAO = scale; } if(hasAntiColour(timelike)) { timelike->scales().QCD_ac = AOScale; timelike->scales().QCD_ac_noAO = scale; } } else { parent ->scales().QED = scale; parent ->scales().QED_noAO = scale; parent ->scales().QCD_c = ZERO ; parent ->scales().QCD_c_noAO = ZERO ; parent ->scales().QCD_ac = ZERO ; parent ->scales().QCD_ac_noAO = ZERO ; // timelike timelike->scales().QED = AOScale; timelike->scales().QED_noAO = scale; if(hasColour(timelike)) { timelike->scales().QCD_c = min(AOScale,spacelike->scales().QCD_ac ); timelike->scales().QCD_c_noAO = min( scale,spacelike->scales().QCD_ac_noAO); } if(hasAntiColour(timelike)) { timelike->scales().QCD_ac = min(AOScale,spacelike->scales().QCD_c ); timelike->scales().QCD_ac_noAO = min( scale,spacelike->scales().QCD_c_noAO ); } } } // QCD else if (partnerType==ShowerPartnerType::QCDColourLine || partnerType==ShowerPartnerType::QCDAntiColourLine) { // timelike if(timelike->dataPtr()->charged()) { timelike->scales().QED = AOScale; timelike->scales().QED_noAO = scale; } if(hasColour(timelike)) { timelike->scales().QCD_c = AOScale; timelike->scales().QCD_c_noAO = scale; } if(hasAntiColour(timelike)) { timelike->scales().QCD_ac = AOScale; timelike->scales().QCD_ac_noAO = scale; } if(parent->id()==spacelike->id()) { parent ->scales().QED = min(scale,spacelike->scales().QED ); parent ->scales().QED_noAO = min(scale,spacelike->scales().QED_noAO ); parent ->scales().QCD_c = min(scale,spacelike->scales().QCD_c ); parent ->scales().QCD_c_noAO = min(scale,spacelike->scales().QCD_c_noAO ); parent ->scales().QCD_ac = min(scale,spacelike->scales().QCD_ac ); parent ->scales().QCD_ac_noAO = min(scale,spacelike->scales().QCD_ac_noAO); } else { if(parent->dataPtr()->charged()) { parent ->scales().QED = scale; parent ->scales().QED_noAO = scale; } if(hasColour(parent)) { parent ->scales().QCD_c = scale; parent ->scales().QCD_c_noAO = scale; } if(hasAntiColour(parent)) { parent ->scales().QCD_ac = scale; parent ->scales().QCD_ac_noAO = scale; } } } else if(partnerType==ShowerPartnerType::EW) { if(abs(spacelike->id())!=ParticleID::Wplus && spacelike->id() !=ParticleID::Z0 ) { // QCD scales parent ->scales().QCD_c = min(scale,spacelike->scales().QCD_c ); parent ->scales().QCD_c_noAO = min(scale,spacelike->scales().QCD_c_noAO ); parent ->scales().QCD_ac = min(scale,spacelike->scales().QCD_ac ); parent ->scales().QCD_ac_noAO = min(scale,spacelike->scales().QCD_ac_noAO); timelike->scales().QCD_c = ZERO; timelike->scales().QCD_c_noAO = ZERO; timelike->scales().QCD_ac = ZERO; timelike->scales().QCD_ac_noAO = ZERO; // QED scales if(timelike->id()==ParticleID::Z0) { parent ->scales().QED = min(scale,spacelike->scales().QED ); parent ->scales().QED_noAO = min(scale,spacelike->scales().QED_noAO ); timelike->scales().QED = ZERO; timelike->scales().QED_noAO = ZERO; } else { parent ->scales().QED = scale; parent ->scales().QED_noAO = scale; timelike->scales().QED = AOScale; timelike->scales().QED_noAO = scale; } // EW scales parent ->scales().EW = scale; timelike->scales().EW = AOScale; } else assert(false); } else assert(false); } void SplittingFunction::evaluateDecayScales(ShowerPartnerType partnerType, Energy scale, double z, tShowerParticlePtr parent, tShowerParticlePtr spacelike, tShowerParticlePtr timelike) { assert(parent->id()==spacelike->id()); // angular-ordered scale for 2nd child Energy AOScale = (1.-z)*scale; // QED if(partnerType==ShowerPartnerType::QED) { // timelike timelike->scales().QED = AOScale; timelike->scales().QED_noAO = scale; timelike->scales().QCD_c = ZERO; timelike->scales().QCD_c_noAO = ZERO; timelike->scales().QCD_ac = ZERO; timelike->scales().QCD_ac_noAO = ZERO; timelike->scales().EW = ZERO; // spacelike spacelike->scales().QED = scale; spacelike->scales().QED_noAO = scale; spacelike->scales().EW = max(scale,parent->scales().EW ); } // QCD else if(partnerType==ShowerPartnerType::QCDColourLine || partnerType==ShowerPartnerType::QCDAntiColourLine) { // timelike timelike->scales().QED = ZERO; timelike->scales().QED_noAO = ZERO; timelike->scales().QCD_c = AOScale; timelike->scales().QCD_c_noAO = scale; timelike->scales().QCD_ac = AOScale; timelike->scales().QCD_ac_noAO = scale; timelike->scales().EW = ZERO; // spacelike spacelike->scales().QED = max(scale,parent->scales().QED ); spacelike->scales().QED_noAO = max(scale,parent->scales().QED_noAO ); spacelike->scales().EW = max(scale,parent->scales().EW ); } else if(partnerType==ShowerPartnerType::EW) { // EW timelike->scales().EW = AOScale; spacelike->scales().EW = max(scale,parent->scales().EW ); // QCD timelike->scales().QCD_c = ZERO; timelike->scales().QCD_c_noAO = ZERO; timelike->scales().QCD_ac = ZERO; timelike->scales().QCD_ac_noAO = ZERO; timelike->scales().EW = ZERO; // QED timelike->scales().QED = ZERO; timelike->scales().QED_noAO = ZERO; spacelike->scales().QED = max(scale,parent->scales().QED ); spacelike->scales().QED_noAO = max(scale,parent->scales().QED_noAO ); } else assert(false); spacelike->scales().QCD_c = max(scale,parent->scales().QCD_c ); spacelike->scales().QCD_c_noAO = max(scale,parent->scales().QCD_c_noAO ); spacelike->scales().QCD_ac = max(scale,parent->scales().QCD_ac ); spacelike->scales().QCD_ac_noAO = max(scale,parent->scales().QCD_ac_noAO); }