diff --git a/Hadronization/ClusterFissioner.cc b/Hadronization/ClusterFissioner.cc --- a/Hadronization/ClusterFissioner.cc +++ b/Hadronization/ClusterFissioner.cc @@ -1,2163 +1,2177 @@ // -*- C++ -*- // // ClusterFissioner.cc is a part of Herwig - A multi-purpose Monte Carlo event generator // Copyright (C) 2002-2019 The Herwig Collaboration // // Herwig is licenced under version 3 of the GPL, see COPYING for details. // Please respect the MCnet academic guidelines, see GUIDELINES for details. // // // Thisk is the implementation of the non-inlined, non-templated member // functions of the ClusterFissioner class. // #include "ClusterFissioner.h" #include <ThePEG/Interface/ClassDocumentation.h> #include <ThePEG/Interface/Reference.h> #include <ThePEG/Interface/Parameter.h> #include <ThePEG/Interface/Switch.h> #include <ThePEG/Persistency/PersistentOStream.h> #include <ThePEG/Persistency/PersistentIStream.h> #include <ThePEG/PDT/EnumParticles.h> #include "Herwig/Utilities/Kinematics.h" #include "Cluster.h" #include "ThePEG/Repository/UseRandom.h" #include "ThePEG/Repository/EventGenerator.h" #include <ThePEG/Utilities/DescribeClass.h> #include "ThePEG/Interface/ParMap.h" #include <boost/numeric/ublas/matrix.hpp> #include <boost/numeric/ublas/io.hpp> #include <boost/numeric/ublas/lu.hpp> using namespace Herwig; DescribeClass<ClusterFissioner,Interfaced> describeClusterFissioner("Herwig::ClusterFissioner","Herwig.so"); ClusterFissioner::ClusterFissioner() : _clMaxLight(3.35*GeV), _clMaxExotic(3.35*GeV), _clPowLight(2.0), _clPowExotic(2.0), _pSplitLight(1.0), _pSplitExotic(1.0), _phaseSpaceWeights(false), _dim(4), _fissionCluster(0), _kinematicThresholdChoice(0), _pwtDIquark(0.0), _diquarkClusterFission(-1), _btClM(1.0*GeV), _iopRem(1), _kappa(1.0e15*GeV/meter), _kinematics(0), _fluxTubeWidth(0.0), _enhanceSProb(0), _m0Fission(2.*GeV), _massMeasure(0), _probPowFactor(4.0), _probShift(0.0), _kinThresholdShift(1.0*sqr(GeV)), _strictDiquarkKinematics(0), _covariantBoost(false), _allowHadronFinalStates(0), _massSampler(0), _phaseSpaceSampler(0), _matrixElement(0) {} IBPtr ClusterFissioner::clone() const { return new_ptr(*this); } IBPtr ClusterFissioner::fullclone() const { return new_ptr(*this); } void ClusterFissioner::persistentOutput(PersistentOStream & os) const { os << ounit(_clMaxLight,GeV) << ounit(_clMaxHeavy,GeV) << ounit(_clMaxExotic,GeV) << _clPowLight << _clPowHeavy << _clPowExotic << _pSplitLight << _pSplitHeavy << _pSplitExotic << _fissionCluster << _fissionPwt << _pwtDIquark << _diquarkClusterFission << _kinematics << _fluxTubeWidth << ounit(_btClM,GeV) << _iopRem << ounit(_kappa, GeV/meter) << _enhanceSProb << ounit(_m0Fission,GeV) << _massMeasure << _dim << _phaseSpaceWeights << _hadronSpectrum << _probPowFactor << _probShift << ounit(_kinThresholdShift,sqr(GeV)) << _strictDiquarkKinematics << _covariantBoost << _allowHadronFinalStates << _massSampler << _phaseSpaceSampler << _matrixElement; } void ClusterFissioner::persistentInput(PersistentIStream & is, int) { is >> iunit(_clMaxLight,GeV) >> iunit(_clMaxHeavy,GeV) >> iunit(_clMaxExotic,GeV) >> _clPowLight >> _clPowHeavy >> _clPowExotic >> _pSplitLight >> _pSplitHeavy >> _pSplitExotic >> _fissionCluster >> _fissionPwt >> _pwtDIquark >> _diquarkClusterFission >> _kinematics >> _fluxTubeWidth >> iunit(_btClM,GeV) >> _iopRem >> iunit(_kappa, GeV/meter) >> _enhanceSProb >> iunit(_m0Fission,GeV) >> _massMeasure >> _dim >> _phaseSpaceWeights >> _hadronSpectrum >> _probPowFactor >> _probShift >> iunit(_kinThresholdShift,sqr(GeV)) >> _strictDiquarkKinematics >> _covariantBoost >> _allowHadronFinalStates >> _massSampler >> _phaseSpaceSampler >> _matrixElement; } void ClusterFissioner::doinit() { Interfaced::doinit(); for ( const long& id : spectrum()->heavyHadronizingQuarks() ) { if ( _pSplitHeavy.find(id) == _pSplitHeavy.end() || _clPowHeavy.find(id) == _clPowHeavy.end() || _clMaxHeavy.find(id) == _clMaxHeavy.end() ) throw InitException() << "not all parameters have been set for heavy quark cluster fission"; } // for default Pwts not needed to initialize if (_fissionCluster==0) return; for ( const long& id : spectrum()->lightHadronizingQuarks() ) { if ( _fissionPwt.find(id) == _fissionPwt.end() ) // check that all relevant weights are set throw InitException() << "fission weights for light quarks have not been set"; } /* // Not needed since we set Diquark weights from quark weights for ( const long& id : spectrum()->lightHadronizingDiquarks() ) { if ( _fissionPwt.find(id) == _fissionPwt.end() ) throw InitException() << "fission weights for light diquarks have not been set"; }*/ double pwtDquark=_fissionPwt.find(ParticleID::d)->second; double pwtUquark=_fissionPwt.find(ParticleID::u)->second; double pwtSquark=_fissionPwt.find(ParticleID::s)->second; // ERROR: TODO makeDiquarkID is protected function ? // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::d,ParticleID::d,3)] = _pwtDIquark * pwtDquark * pwtDquark; // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::u,ParticleID::d,1)] = 0.5 * _pwtDIquark * pwtUquark * pwtDquark; // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::u,ParticleID::u,3)] = _pwtDIquark * pwtUquark * pwtUquark; // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::s,ParticleID::d,1)] = 0.5 * _pwtDIquark * pwtSquark * pwtDquark; // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::s,ParticleID::u,1)] = 0.5 * _pwtDIquark * pwtSquark * pwtUquark; // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::s,ParticleID::s,3)] = _pwtDIquark * pwtSquark * pwtSquark; // TODO better solution for this magic number alternative _fissionPwt[1103] = _pwtDIquark * pwtDquark * pwtDquark; _fissionPwt[2101] = 0.5 * _pwtDIquark * pwtUquark * pwtDquark; _fissionPwt[2203] = _pwtDIquark * pwtUquark * pwtUquark; _fissionPwt[3101] = 0.5 * _pwtDIquark * pwtSquark * pwtDquark; _fissionPwt[3201] = 0.5 * _pwtDIquark * pwtSquark * pwtUquark; _fissionPwt[3303] = _pwtDIquark * pwtSquark * pwtSquark; } void ClusterFissioner::Init() { static ClassDocumentation<ClusterFissioner> documentation ("Class responsibles for chopping up the clusters"); static Reference<ClusterFissioner,HadronSpectrum> interfaceHadronSpectrum ("HadronSpectrum", "Set the Hadron spectrum for this cluster fissioner.", &ClusterFissioner::_hadronSpectrum, false, false, true, false); // ClMax for light, Bottom, Charm and exotic (e.g. Susy) quarks static Parameter<ClusterFissioner,Energy> interfaceClMaxLight ("ClMaxLight","cluster max mass for light quarks (unit [GeV])", &ClusterFissioner::_clMaxLight, GeV, 3.35*GeV, ZERO, 10.0*GeV, false,false,false); static ParMap<ClusterFissioner,Energy> interfaceClMaxHeavy ("ClMaxHeavy", "ClMax for heavy quarkls", &ClusterFissioner::_clMaxHeavy, GeV, -1, 3.35*GeV, ZERO, 10.0*GeV, false, false, Interface::upperlim); static Parameter<ClusterFissioner,Energy> interfaceClMaxExotic ("ClMaxExotic","cluster max mass for exotic quarks (unit [GeV])", &ClusterFissioner::_clMaxExotic, GeV, 3.35*GeV, ZERO, 10.0*GeV, false,false,false); // ClPow for light, Bottom, Charm and exotic (e.g. Susy) quarks static Parameter<ClusterFissioner,double> interfaceClPowLight ("ClPowLight","cluster mass exponent for light quarks", &ClusterFissioner::_clPowLight, 0, 2.0, 0.0, 10.0,false,false,false); static ParMap<ClusterFissioner,double> interfaceClPowHeavy ("ClPowHeavy", "ClPow for heavy quarks", &ClusterFissioner::_clPowHeavy, -1, 1.0, 0.0, 10.0, false, false, Interface::upperlim); static Parameter<ClusterFissioner,double> interfaceClPowExotic ("ClPowExotic","cluster mass exponent for exotic quarks", &ClusterFissioner::_clPowExotic, 0, 2.0, 0.0, 10.0,false,false,false); // PSplit for light, Bottom, Charm and exotic (e.g. Susy) quarks static Parameter<ClusterFissioner,double> interfacePSplitLight ("PSplitLight","cluster mass splitting param for light quarks", &ClusterFissioner::_pSplitLight, 0, 1.0, 0.0, 10.0,false,false,false); static ParMap<ClusterFissioner,double> interfacePSplitHeavy ("PSplitHeavy", "PSplit for heavy quarks", &ClusterFissioner::_pSplitHeavy, -1, 1.0, 0.0, 10.0, false, false, Interface::upperlim); static Parameter<ClusterFissioner,double> interfacePSplitExotic ("PSplitExotic","cluster mass splitting param for exotic quarks", &ClusterFissioner::_pSplitExotic, 0, 1.0, 0.0, 10.0,false,false,false); static Switch<ClusterFissioner,int> interfaceFission ("Fission", "Option for different Fission options", &ClusterFissioner::_fissionCluster, 0, false, false); static SwitchOption interfaceFissionDefault (interfaceFission, "Default", "Normal cluster fission which depends on the hadron selector class.", 0); static SwitchOption interfaceFissionNew (interfaceFission, "New", "Alternative cluster fission which does not depend on the hadron selector class", 1); // Switch C->H1,C2 C->H1,H2 on or off static Switch<ClusterFissioner,int> interfaceAllowHadronFinalStates ("AllowHadronFinalStates", "Option for allowing hadron final states of cluster fission", &ClusterFissioner::_allowHadronFinalStates, 0, false, false); static SwitchOption interfaceAllowHadronFinalStatesAll (interfaceAllowHadronFinalStates, "All", "Option for allowing hadron final states of cluster fission " "of type C->H1,C2 or C->H1,H2", 0); static SwitchOption interfaceAllowHadronFinalStatesSemiHadronicOnly (interfaceAllowHadronFinalStates, "SemiHadronicOnly", "Option for allowing hadron final states of cluster fission " "of type C->H1,C2", 1); static SwitchOption interfaceAllowHadronFinalStatesNone (interfaceAllowHadronFinalStates, "None", "Option for disabling hadron final states of cluster fission", 2); // Mass Sampler Switch static Switch<ClusterFissioner,int> interfaceMassSampler ("MassSampler", "Option for different Mass sampling options", &ClusterFissioner::_massSampler, 0, false, false); static SwitchOption interfaceMassSamplerDefault (interfaceMassSampler, "Default", "Choose H7.2.3 default mass sampling using PSplitX", 0); static SwitchOption interfaceMassSamplerUniform (interfaceMassSampler, "Uniform", "Choose Uniform Mass sampling in M1,M2 space", 1); static SwitchOption interfaceMassSamplerFlatPhaseSpace (interfaceMassSampler, "FlatPhaseSpace", "Choose Flat Phase Space sampling of Mass in M1,M2 space", 2); static SwitchOption interfaceMassSampleSoftMEPheno (interfaceMassSampler, "SoftMEPheno", "Choose skewed Phase Space sampling of Masses in M1,M2 space " "for greater efficiency in soft matrix element sampling", 3); // Phase Space Sampler Switch static Switch<ClusterFissioner,int> interfacePhaseSpaceSampler ("PhaseSpaceSampler", "Option for different phase space sampling options", &ClusterFissioner::_phaseSpaceSampler, 0, false, false); static SwitchOption interfacePhaseSpaceSamplerDefault (interfacePhaseSpaceSampler, "FullyAligned", "Herwig H7.2.3 default Cluster fission of all partons " "aligned to the relative momentum of the mother cluster", 0); static SwitchOption interfacePhaseSpaceSamplerAlignedIsotropic (interfacePhaseSpaceSampler, "AlignedIsotropic", "Aligned Clusters but isotropic partons in their respective rest frame", 1); static SwitchOption interfacePhaseSpaceSamplerFullyIsotropic (interfacePhaseSpaceSampler, "FullyIsotropic", "Isotropic Clusters and isotropic partons in their respective rest frame " "NOTE: Testing only!!", 2); // Matrix Element Choice Switch static Switch<ClusterFissioner,int> interfaceMatrixElement ("MatrixElement", "Option for different Matrix Element options", &ClusterFissioner::_matrixElement, 0, false, false); static SwitchOption interfaceMatrixElementDefault (interfaceMatrixElement, "Default", "Choose trivial matrix element i.e. whatever comes from the mass and " "phase space sampling", 0); static SwitchOption interfaceMatrixElementSoftQQbar (interfaceMatrixElement, "SoftQQbar", "Choose Soft q1,q2->q1,q2,g*->q1,q2,q,qbar matrix element", 1); static Switch<ClusterFissioner,int> interfaceDiquarkClusterFission ("DiquarkClusterFission", "Allow clusters to fission to 1 or 2 diquark Clusters", &ClusterFissioner::_diquarkClusterFission, -1, false, false); static SwitchOption interfaceDiquarkClusterFissionAll (interfaceDiquarkClusterFission, "All", "Allow diquark clusters and baryon clusters to fission to new diquark Clusters", 2); static SwitchOption interfaceDiquarkClusterFissionOnlyBaryonClusters (interfaceDiquarkClusterFission, "OnlyBaryonClusters", "Allow only baryon clusters to fission to new diquark Clusters", 1); static SwitchOption interfaceDiquarkClusterFissionNo (interfaceDiquarkClusterFission, "No", "Don't allow clusters to fission to new diquark Clusters", 0); static SwitchOption interfaceDiquarkClusterFissionNoDiquarks (interfaceDiquarkClusterFission, "NoDiquarks", "Don't allow diquark-antidiquark pairs to pop out of the vacuum", -1); static ParMap<ClusterFissioner,double> interfaceFissionPwt ("FissionPwt", "The weights for quarks in the fission process.", &ClusterFissioner::_fissionPwt, -1, 1.0, 0.0, 10.0, false, false, Interface::upperlim); static Switch<ClusterFissioner,int> interfaceRemnantOption ("RemnantOption", "Option for the treatment of remnant clusters", &ClusterFissioner::_iopRem, 1, false, false); static SwitchOption interfaceRemnantOptionSoft (interfaceRemnantOption, "Soft", "Both clusters produced in the fission of the beam cluster" " are treated as soft clusters.", 0); static SwitchOption interfaceRemnantOptionHard (interfaceRemnantOption, "Hard", "Only the cluster containing the remnant is treated as a soft cluster.", 1); static SwitchOption interfaceRemnantOptionVeryHard (interfaceRemnantOption, "VeryHard", "Even remnant clusters are treated as hard, i.e. all clusters the same", 2); static Parameter<ClusterFissioner,Energy> interfaceBTCLM ("SoftClusterFactor", "Parameter for the mass spectrum of remnant clusters", &ClusterFissioner::_btClM, GeV, 1.*GeV, 0.1*GeV, 10.0*GeV, false, false, Interface::limited); static Parameter<ClusterFissioner,Tension> interfaceStringTension ("StringTension", "String tension used in vertex displacement calculation", &ClusterFissioner::_kappa, GeV/meter, 1.0e15*GeV/meter, ZERO, ZERO, false, false, Interface::lowerlim); static Switch<ClusterFissioner,int> interfaceEnhanceSProb ("EnhanceSProb", "Option for enhancing strangeness", &ClusterFissioner::_enhanceSProb, 0, false, false); static SwitchOption interfaceEnhanceSProbNo (interfaceEnhanceSProb, "No", "No strangeness enhancement.", 0); static SwitchOption interfaceEnhanceSProbScaled (interfaceEnhanceSProb, "Scaled", "Scaled strangeness enhancement", 1); static SwitchOption interfaceEnhanceSProbExponential (interfaceEnhanceSProb, "Exponential", "Exponential strangeness enhancement", 2); static Switch<ClusterFissioner,int> interfaceKinematics ("Kinematics", "Option for selecting different Kinematics for ClusterFission", &ClusterFissioner::_kinematics, 0, false, false); static SwitchOption interfaceKinematicsDefault (interfaceKinematics, "Default", "Fully aligned Cluster Fission along the Original cluster direction", 0); static SwitchOption interfaceKinematicsIsotropic (interfaceKinematics, "Isotropic", "Fully isotropic two body decay. Not recommended!", 1); static SwitchOption interfaceKinematicsFluxTube (interfaceKinematics, "FluxTube", "Aligned decay with gaussian pT kick with sigma=ClusterFissioner::FluxTube", 2); static Switch<ClusterFissioner,int> interfaceMassMeasure ("MassMeasure", "Option to use different mass measures", &ClusterFissioner::_massMeasure,0,false,false); static SwitchOption interfaceMassMeasureMass (interfaceMassMeasure, "Mass", "Mass Measure", 0); static SwitchOption interfaceMassMeasureLambda (interfaceMassMeasure, "Lambda", "Lambda Measure", 1); static Parameter<ClusterFissioner,Energy> interfaceFissionMassScale ("FissionMassScale", "Cluster fission mass scale", &ClusterFissioner::_m0Fission, GeV, 2.0*GeV, 0.1*GeV, 50.*GeV, false, false, Interface::limited); static Parameter<ClusterFissioner,double> interfaceProbPowFactor ("ProbablityPowerFactor", "Power factor in ClausterFissioner bell probablity function", &ClusterFissioner::_probPowFactor, 2.0, 1.0, 20.0, false, false, Interface::limited); static Parameter<ClusterFissioner,double> interfaceFluxTubeWidth ("FluxTubeWidth", "sigma of gaussian sampling of pT for FluxTube kinematics", &ClusterFissioner::_fluxTubeWidth, 0.0, 0.0, 1.0, false, false, Interface::limited); static Parameter<ClusterFissioner,double> interfaceProbShift ("ProbablityShift", "Shifts from the center in ClausterFissioner bell probablity function", &ClusterFissioner::_probShift, 0.0, -10.0, 10.0, false, false, Interface::limited); static Parameter<ClusterFissioner,Energy2> interfaceKineticThresholdShift ("KineticThresholdShift", "Shifts from the kinetic threshold in ClausterFissioner", &ClusterFissioner::_kinThresholdShift, sqr(GeV), 0.*sqr(GeV), -10.0*sqr(GeV), 10.0*sqr(GeV), false, false, Interface::limited); static Switch<ClusterFissioner,int> interfaceKinematicThreshold ("KinematicThreshold", "Option for using static or dynamic kinematic thresholds in cluster splittings", &ClusterFissioner::_kinematicThresholdChoice, 0, false, false); static SwitchOption interfaceKinematicThresholdStatic (interfaceKinematicThreshold, "Static", "Set static kinematic thresholds for cluster splittings.", 0); static SwitchOption interfaceKinematicThresholdDynamic (interfaceKinematicThreshold, "Dynamic", "Set dynamic kinematic thresholds for cluster splittings.", 1); static Switch<ClusterFissioner,bool> interfacePhaseSpaceWeights ("PhaseSpaceWeights", "Include phase space weights.", &ClusterFissioner::_phaseSpaceWeights, false, false, false); static SwitchOption interfacePhaseSpaceWeightsYes (interfacePhaseSpaceWeights, "Yes", "Do include the effect of cluster fission phase space", true); static SwitchOption interfacePhaseSpaceWeightsNo (interfacePhaseSpaceWeights, "No", "Do not include the effect of cluster phase space", false); static Switch<ClusterFissioner,bool> interfaceCovariantBoost ("CovariantBoost", "Use single Covariant Boost for Cluster Fission", &ClusterFissioner::_covariantBoost, false, false, false); static SwitchOption interfaceCovariantBoostYes (interfaceCovariantBoost, "Yes", "Use Covariant boost", true); static SwitchOption interfaceCovariantBoostNo (interfaceCovariantBoost, "No", "Do NOT use Covariant boost", false); static Parameter<ClusterFissioner,double> interfaceDim ("Dimension","Dimension in which phase space weights are calculated", &ClusterFissioner::_dim, 0, 4.0, 3.0, 10.0,false,false, Interface::limited); static Switch<ClusterFissioner,int> interfaceStrictDiquarkKinematics ("StrictDiquarkKinematics", "Option for selecting different selection criterions of diquarks for ClusterFission", &ClusterFissioner::_strictDiquarkKinematics, 0, false, false); static SwitchOption interfaceStrictDiquarkKinematicsLoose (interfaceStrictDiquarkKinematics, "Loose", "No kinematic threshold for diquark selection except for Mass bigger than 2 baryons", 0); static SwitchOption interfaceStrictDiquarkKinematicsStrict (interfaceStrictDiquarkKinematics, "Strict", "Resulting clusters are at least as heavy as 2 lightest baryons", 1); static Parameter<ClusterFissioner,double> interfacePwtDIquark ("PwtDIquark", "specific probability for choosing a d diquark", &ClusterFissioner::_pwtDIquark, 0.0, 0.0, 10.0, false, false, Interface::limited); } tPVector ClusterFissioner::fission(ClusterVector & clusters, bool softUEisOn) { // return if no clusters if (clusters.empty()) return tPVector(); /***************** * Loop over the (input) collection of cluster pointers, and store in * the vector splitClusters all the clusters that need to be split * (these are beam clusters, if soft underlying event is off, and * heavy non-beam clusters). ********************/ stack<ClusterPtr> splitClusters; for(ClusterVector::iterator it = clusters.begin() ; it != clusters.end() ; ++it) { /************** * Skip 3-component clusters that have been redefined (as 2-component * clusters) or not available clusters. The latter check is indeed * redundant now, but it is used for possible future extensions in which, * for some reasons, some of the clusters found by ClusterFinder are tagged * straight away as not available. **************/ if((*it)->isRedefined() || !(*it)->isAvailable()) continue; // if the cluster is a beam cluster add it to the vector of clusters // to be split or if it is heavy // TODO maybe BeamClusters must not necessarily be split since can be very light // i.e. also lighter than the lightest constituents one can make of those if((*it)->isBeamCluster() || isHeavy(*it)) splitClusters.push(*it); } tPVector finalhadrons; cut(splitClusters, clusters, finalhadrons, softUEisOn); return finalhadrons; } void ClusterFissioner::cut(stack<ClusterPtr> & clusterStack, ClusterVector &clusters, tPVector & finalhadrons, bool softUEisOn) { /************************************************** * This method does the splitting of the cluster pointed by cluPtr * and "recursively" by all of its cluster children, if heavy. All of these * new children clusters are added (indeed the pointers to them) to the * collection of cluster pointers collecCluPtr. The method works as follows. * Initially the vector vecCluPtr contains just the input pointer to the * cluster to be split. Then it will be filled "recursively" by all * of the cluster's children that are heavy enough to require, in their turn, * to be split. In each loop, the last element of the vector vecCluPtr is * considered (only once because it is then removed from the vector). * This approach is conceptually recursive, but avoid the overhead of * a concrete recursive function. Furthermore it requires minimal changes * in the case that the fission of an heavy cluster could produce more * than two cluster children as assumed now. * * Draw the masses: for normal, non-beam clusters a power-like mass dist * is used, whereas for beam clusters a fast-decreasing exponential mass * dist is used instead (to avoid many iterative splitting which could * produce an unphysical large transverse energy from a supposed soft beam * remnant process). ****************************************/ // Here we recursively loop over clusters in the stack and cut them while (!clusterStack.empty()) { // take the last element of the vector ClusterPtr iCluster = clusterStack.top(); clusterStack.pop(); // split it cutType ct = iCluster->numComponents() == 2 ? cutTwo(iCluster, finalhadrons, softUEisOn) : cutThree(iCluster, finalhadrons, softUEisOn); // There are cases when we don't want to split, even if it fails mass test if(!ct.first.first || !ct.second.first) { // if an unsplit beam cluster leave if for the underlying event if(iCluster->isBeamCluster() && softUEisOn) iCluster->isAvailable(false); continue; } // check if clusters ClusterPtr one = dynamic_ptr_cast<ClusterPtr>(ct.first.first); ClusterPtr two = dynamic_ptr_cast<ClusterPtr>(ct.second.first); // is a beam cluster must be split into two clusters if(iCluster->isBeamCluster() && (!one||!two) && softUEisOn) { iCluster->isAvailable(false); continue; } // There should always be a intermediate quark(s) from the splitting assert(ct.first.second && ct.second.second); /// \todo sort out motherless quark pairs here. Watch out for 'quark in final state' errors iCluster->addChild(ct.first.first); // iCluster->addChild(ct.first.second); // ct.first.second->addChild(ct.first.first); iCluster->addChild(ct.second.first); // iCluster->addChild(ct.second.second); // ct.second.second->addChild(ct.second.first); // Sometimes the clusters decay C -> H + C' or C -> H + H' rather then C -> C' + C'' if(one) { clusters.push_back(one); if(one->isBeamCluster() && softUEisOn) one->isAvailable(false); if(isHeavy(one) && one->isAvailable()) clusterStack.push(one); } if(two) { clusters.push_back(two); if(two->isBeamCluster() && softUEisOn) two->isAvailable(false); if(isHeavy(two) && two->isAvailable()) clusterStack.push(two); } } } ClusterFissioner::cutType ClusterFissioner::cutTwo(ClusterPtr & cluster, tPVector & finalhadrons, bool softUEisOn) { // need to make sure only 2-cpt clusters get here assert(cluster->numComponents() == 2); tPPtr ptrQ1 = cluster->particle(0); tPPtr ptrQ2 = cluster->particle(1); Energy Mc = cluster->mass(); // Energy Mcm = cluster->momentum().m(); // if (fabs((Mc-Mcm)/GeV)>0.1 ) { // std::cout << "Mc = "<<Mc/GeV <<"\tMcm = "<< Mcm/GeV <<"\n"; // exit(2); // } assert(ptrQ1); assert(ptrQ2); // And check if those particles are from a beam remnant bool rem1 = cluster->isBeamRemnant(0); bool rem2 = cluster->isBeamRemnant(1); // workout which distribution to use bool soft1(false),soft2(false); switch (_iopRem) { case 0: soft1 = rem1 || rem2; soft2 = rem2 || rem1; break; case 1: soft1 = rem1; soft2 = rem2; break; } // Initialization for the exponential ("soft") mass distribution. static const int max_loop = 1000; int counter = 0; Energy Mc1 = ZERO; Energy Mc2 = ZERO; Energy m=ZERO; Energy m1 = ptrQ1->data().constituentMass(); Energy m2 = ptrQ2->data().constituentMass(); tcPDPtr toHadron1, toHadron2; PPtr newPtr1 = PPtr (); PPtr newPtr2 = PPtr (); Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2; Lorentz5Momentum pClu = cluster->momentum(); // known Lorentz5Momentum p0Q1 = ptrQ1->momentum(); // known (mom Q1 before fission) Lorentz5Momentum p0Q2 = ptrQ2->momentum(); // known (mom Q2 before fission) // where to return to in case of rejected sample enum returnTo { FlavourSampling, MassSampling, PhaseSpaceSampling, MatrixElementSampling, Done }; // start with FlavourSampling returnTo retTo=FlavourSampling; // ### Flavour, Mass, PhaseSpace and MatrixElement Sampling loop until accepted: ### do { counter++; switch (retTo) { case FlavourSampling: { // ## Flavour sampling and kinematic constraints ## drawNewFlavour(newPtr1,newPtr2,cluster); // get a flavour for the qqbar pair // check for right ordering assert (ptrQ2); assert (newPtr2); assert (ptrQ2->dataPtr()); assert (newPtr2->dataPtr()); // TODO careful if DiquarkClusters can exist bool Q1diq = DiquarkMatcher::Check(ptrQ1->id()); bool Q2diq = DiquarkMatcher::Check(ptrQ2->id()); bool newQ1diq = DiquarkMatcher::Check(newPtr1->id()); bool newQ2diq = DiquarkMatcher::Check(newPtr2->id()); bool diqClu1 = Q1diq && newQ1diq; bool diqClu2 = Q2diq && newQ2diq; // DEBUG only: // std::cout << "Make Clusters: ( " << ptrQ1->PDGName() << " " << newPtr1->PDGName() << " ), ( " // << ptrQ2->PDGName() << " " << newPtr2->PDGName() << " )\n"; // check if Hadron formation is possible if (!( diqClu1 || diqClu2 ) && (cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2))) { swap(newPtr1, newPtr2); // check again if(cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2)) { throw Exception() << "ClusterFissioner cannot split the cluster (" << ptrQ1->PDGName() << ' ' << ptrQ2->PDGName() << ") into hadrons.\n" << "drawn Flavour: "<< newPtr1->PDGName()<<"\n"<< Exception::runerror; } } else if ( diqClu1 || diqClu2 ){ bool swapped=false; if ( !diqClu1 && cantMakeHadron(ptrQ1,newPtr1) ) { swap(newPtr1, newPtr2); swapped=true; } if ( !diqClu2 && cantMakeHadron(ptrQ2,newPtr2) ) { assert(!swapped); swap(newPtr1, newPtr2); } if ( diqClu2 && diqClu1 && ptrQ1->id()*newPtr1->id()>0 ) { assert(!swapped); swap(newPtr1, newPtr2); } if (!diqClu1) assert(!cantMakeHadron(ptrQ1,newPtr1)); if (!diqClu2) assert(!cantMakeHadron(ptrQ2,newPtr2)); } // Check that new clusters can produce particles and there is enough // phase space to choose the drawn flavour m = newPtr1->data().constituentMass(); // Do not split in the case there is no phase space available if(Mc < m1 + m + m2 + m) { retTo = FlavourSampling; continue; } pQ1.setMass(m1); pQone.setMass(m); pQtwo.setMass(m); pQ2.setMass(m2); // Note: want to fallthrough (in C++17 one could uncomment // the line below to show that this is intentional) [[fallthrough]]; } /* * MassSampling choices: * - Default (default) * - Uniform * - FlatPhaseSpace * - SoftMEPheno * */ case MassSampling: { // TODO insert modular function bool failure = drawNewMasses(Mc, soft1, soft2, pClu1, pClu2, ptrQ1, pQ1, newPtr1, pQone, newPtr2, pQtwo, ptrQ2, pQ2); if(failure) { retTo = FlavourSampling; continue; } // derive the masses of the children Mc1 = pClu1.mass(); Mc2 = pClu2.mass(); // TODO include this in the drawNewMasses ? --> not necessary if we include this already in drawNewMasses // static kinematic threshold if(_kinematicThresholdChoice == 0) { if(Mc1 < m1+m || Mc2 < m+m2 || Mc1+Mc2 > Mc){ retTo = FlavourSampling; continue; } // dynamic kinematic threshold } else if(_kinematicThresholdChoice == 1) { bool C1 = ( sqr(Mc1) )/( sqr(m1) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false; bool C2 = ( sqr(Mc2) )/( sqr(m2) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false; bool C3 = ( sqr(Mc1) + sqr(Mc2) )/( sqr(Mc) ) > 1.0 ? true : false; if( C1 || C2 || C3 ) { retTo = FlavourSampling; continue; } } // TODO change this to use the interface _allowHadronFinalStates // avoid C-> C1,H2 or H1,H2 // if ( Mc1 < spectrum()->massLightestHadronPair(ptrQ1->dataPtr(),newPtr1->dataPtr())) { // std::cout << "Cluster decays to hadron MC"<< Mc1/GeV << "\t MLHP "<< spectrum()->massLightestHadronPair(ptrQ1->dataPtr(),newPtr1->dataPtr())/GeV<<"\n"; // std::cout << "Flavour " << ptrQ1->PDGName() <<", " << newPtr1->PDGName()<< "\n"; // continue; // } // if ( Mc2 < spectrum()->massLightestHadronPair(ptrQ2->dataPtr(),newPtr2->dataPtr())) { // std::cout << "Cluster decays to hadron MC"<< Mc2/GeV << "\t MLHP "<< spectrum()->massLightestHadronPair(ptrQ2->dataPtr(),newPtr2->dataPtr())/GeV<<"\n"; // std::cout << "Flavour " << ptrQ2->PDGName() <<", " << newPtr2->PDGName()<< "\n"; // continue; // } /************************** * New (not present in Fortran Herwig): * check whether the fragment masses Mc1 and Mc2 are above the * threshold for the production of the lightest pair of hadrons with the * right flavours. If not, then set by hand the mass to the lightest * single hadron with the right flavours, in order to solve correctly * the kinematics, and (later in this method) create directly such hadron * and add it to the children hadrons of the cluster that undergoes the * fission (i.e. the one pointed by iCluPtr). Notice that in this special * case, the heavy cluster that undergoes the fission has one single * cluster child and one single hadron child. We prefer this approach, * rather than to create a light cluster, with the mass set equal to * the lightest hadron, and let then the class LightClusterDecayer to do * the job to decay it to that single hadron, for two reasons: * First, because the sum of the masses of the two constituents can be, * in this case, greater than the mass of that hadron, hence it would * be impossible to solve the kinematics for such two components, and * therefore we would have a cluster whose components are undefined. * Second, the algorithm is faster, because it avoids the reshuffling * procedure that would be necessary if we used LightClusterDecayer * to decay the light cluster to the lightest hadron. ****************************/ // override chosen masses if needed toHadron1 = _hadronSpectrum->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc1); if (toHadron1 && _allowHadronFinalStates == 2 ) { retTo = FlavourSampling; continue; } if(toHadron1) { Mc1 = toHadron1->mass(); pClu1.setMass(Mc1); } toHadron2 = _hadronSpectrum->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc2); if (toHadron2 && _allowHadronFinalStates == 2 ) { retTo = FlavourSampling; continue; } if(toHadron2) { Mc2 = toHadron2->mass(); pClu2.setMass(Mc2); } if (_allowHadronFinalStates && toHadron1 && toHadron2) { retTo = FlavourSampling; continue; } // if a beam cluster not allowed to decay to hadrons if(cluster->isBeamCluster() && (toHadron1||toHadron2) && softUEisOn) { retTo = FlavourSampling; continue; } // Check if the decay kinematics is still possible: if not then // force the one-hadron decay for the other cluster as well. if(Mc1 + Mc2 > Mc) { // reject if we would need to create a C->H,H process if _allowHadronFinalStates>=1 if (_allowHadronFinalStates>=1) { retTo = FlavourSampling; continue; } if(!toHadron1) { toHadron1 = _hadronSpectrum->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc-Mc2); if(toHadron1) { Mc1 = toHadron1->mass(); pClu1.setMass(Mc1); } } else if(!toHadron2) { toHadron2 = _hadronSpectrum->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc-Mc1); if(toHadron2) { Mc2 = toHadron2->mass(); pClu2.setMass(Mc2); } } } if (Mc <= Mc1+Mc2){ retTo = FlavourSampling; continue; } // Determined the (5-components) momenta (all in the LAB frame) p0Q1.setMass(ptrQ1->mass()); // known (mom Q1 before fission) p0Q1.rescaleEnergy(); p0Q2.setMass(ptrQ2->mass()); // known (mom Q2 before fission) p0Q2.rescaleEnergy(); pClu.rescaleMass(); // Note: want to fallthrough (in C++17 one could uncomment // the line below to show that this is intentional) [[fallthrough]]; } /* * PhaseSpaceSampling choices: * - FullyAligned (default) * - AlignedIsotropic * - FullyIsotropic * */ case PhaseSpaceSampling: { // ### Sample the Phase Space with respect to Matrix Element: ### // TODO insert here PhaseSpace sampler calculateKinematics(pClu,p0Q1,toHadron1,toHadron2, pClu1,pClu2,pQ1,pQone,pQtwo,pQ2); // Should be precise i.e. no rejection expected // Note: want to fallthrough (in C++17 one could uncomment // the line below to show that this is intentional) [[fallthrough]]; } /* * MatrixElementSampling choices: * - Default (default) * - SoftQQbar * */ case MatrixElementSampling: { // TODO insert here partonic Matrix Element rejection double Pacc = 1.0; // overestimate veto std::ofstream out("Pacc.dat", std::ios::app | std::ios::out); out << Pacc << "\n"; out.close(); if (UseRandom::rnd()<Pacc) { retTo=Done; break; } // retTo = FlavourSampling; retTo = PhaseSpaceSampling; continue; } default: { assert(false); } } } while (retTo!=Done && counter < max_loop); if(counter >= max_loop) { // happens if we get at too light cluster to begin with // TODO exclude this by ensuring that there is always enough phase space for M>m1+m2+2*m and maybe other conditions // std::cout << "ERROR: Max Looped\n"; static const PPtr null = PPtr(); return cutType(PPair(null,null),PPair(null,null)); } // ==> full sample generated /****************** * The previous methods have determined the kinematics and positions * of C -> C1 + C2. * In the case that one of the two product is light, that means either * decayOneHadronClu1 or decayOneHadronClu2 is true, then the momenta * of the components of that light product have not been determined, * and a (light) cluster will not be created: the heavy father cluster * decays, in this case, into a single (not-light) cluster and a * single hadron. In the other, "normal", cases the father cluster * decays into two clusters, each of which has well defined components. * Notice that, in the case of components which point to particles, the * momenta of the components is properly set to the new values, whereas * we do not change the momenta of the pointed particles, because we * want to keep all of the information (that is the new momentum of a * component after the splitting, which is contained in the _momentum * member of the Component class, and the (old) momentum of that component * before the splitting, which is contained in the momentum of the * pointed particle). Please not make confusion of this only apparent * inconsistency! ********************/ LorentzPoint posC,pos1,pos2; posC = cluster->vertex(); calculatePositions(pClu, posC, pClu1, pClu2, pos1, pos2); cutType rval; if(toHadron1) { rval.first = produceHadron(toHadron1, newPtr1, pClu1, pos1); finalhadrons.push_back(rval.first.first); } else { rval.first = produceCluster(ptrQ1, newPtr1, pClu1, pos1, pQ1, pQone, rem1); } if(toHadron2) { rval.second = produceHadron(toHadron2, newPtr2, pClu2, pos2); finalhadrons.push_back(rval.second.first); } else { rval.second = produceCluster(ptrQ2, newPtr2, pClu2, pos2, pQ2, pQtwo, rem2); } return rval; } ClusterFissioner::cutType ClusterFissioner::cutThree(ClusterPtr & cluster, tPVector & finalhadrons, bool softUEisOn) { // need to make sure only 3-cpt clusters get here assert(cluster->numComponents() == 3); // extract quarks tPPtr ptrQ[3] = {cluster->particle(0),cluster->particle(1),cluster->particle(2)}; assert( ptrQ[0] && ptrQ[1] && ptrQ[2] ); // find maximum mass pair Energy mmax(ZERO); Lorentz5Momentum pDiQuark; int iq1(-1),iq2(-1); Lorentz5Momentum psum; for(int q1=0;q1<3;++q1) { psum+= ptrQ[q1]->momentum(); for(int q2=q1+1;q2<3;++q2) { Lorentz5Momentum ptest = ptrQ[q1]->momentum()+ptrQ[q2]->momentum(); ptest.rescaleMass(); Energy mass = ptest.m(); if(mass>mmax) { mmax = mass; pDiQuark = ptest; iq1 = q1; iq2 = q2; } } } // and the spectators int iother(-1); for(int ix=0;ix<3;++ix) if(ix!=iq1&&ix!=iq2) iother=ix; assert(iq1>=0&&iq2>=0&&iother>=0); // And check if those particles are from a beam remnant bool rem1 = cluster->isBeamRemnant(iq1); bool rem2 = cluster->isBeamRemnant(iq2); // workout which distribution to use bool soft1(false),soft2(false); switch (_iopRem) { case 0: soft1 = rem1 || rem2; soft2 = rem2 || rem1; break; case 1: soft1 = rem1; soft2 = rem2; break; } // Initialization for the exponential ("soft") mass distribution. static const int max_loop = 1000; int counter = 0; Energy Mc1 = ZERO, Mc2 = ZERO, m1=ZERO, m2=ZERO, m=ZERO; tcPDPtr toHadron; bool toDiQuark(false); PPtr newPtr1 = PPtr(),newPtr2 = PPtr(); PDPtr diquark; bool succeeded = false; Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2; do { succeeded = false; ++counter; // get a flavour for the qqbar pair drawNewFlavour(newPtr1,newPtr2,cluster); // randomly pick which will be (anti)diquark and which a mesonic cluster if(UseRandom::rndbool()) { swap(iq1,iq2); swap(rem1,rem2); } // check first order if(cantMakeHadron(ptrQ[iq1], newPtr1) || !spectrum()->canMakeDiQuark(ptrQ[iq2], newPtr2)) { swap(newPtr1,newPtr2); } // check again if(cantMakeHadron(ptrQ[iq1], newPtr1) || !spectrum()->canMakeDiQuark(ptrQ[iq2], newPtr2)) { throw Exception() << "ClusterFissioner cannot split the cluster (" << ptrQ[iq1]->PDGName() << ' ' << ptrQ[iq2]->PDGName() << ") into a hadron and diquark.\n" << Exception::runerror; } // Check that new clusters can produce particles and there is enough // phase space to choose the drawn flavour m1 = ptrQ[iq1]->data().constituentMass(); m2 = ptrQ[iq2]->data().constituentMass(); m = newPtr1->data().constituentMass(); // Do not split in the case there is no phase space available if(mmax < m1+m + m2+m) continue; pQ1.setMass(m1); pQone.setMass(m); pQtwo.setMass(m); pQ2.setMass(m2); bool failure = drawNewMasses(mmax, soft1, soft2, pClu1, pClu2, ptrQ[iq1], pQ1, newPtr1, pQone, newPtr2, pQtwo, ptrQ[iq1], pQ2); if (failure) continue; Mc1 = pClu1.mass(); Mc2 = pClu2.mass(); if(Mc1 < m1+m || Mc2 < m+m2 || Mc1+Mc2 > mmax) continue; if ( _phaseSpaceWeights ) { if ( phaseSpaceVeto(mmax,Mc1,Mc2,m,m1,m2) ) continue; } // check if need to force meson clster to hadron toHadron = _hadronSpectrum->chooseSingleHadron(ptrQ[iq1]->dataPtr(), newPtr1->dataPtr(),Mc1); if(toHadron) { Mc1 = toHadron->mass(); pClu1.setMass(Mc1); } // check if need to force diquark cluster to be on-shell toDiQuark = false; diquark = spectrum()->makeDiquark(ptrQ[iq2]->dataPtr(), newPtr2->dataPtr()); if(Mc2 < diquark->constituentMass()) { Mc2 = diquark->constituentMass(); pClu2.setMass(Mc2); toDiQuark = true; } // if a beam cluster not allowed to decay to hadrons if(cluster->isBeamCluster() && toHadron && softUEisOn) continue; // Check if the decay kinematics is still possible: if not then // force the one-hadron decay for the other cluster as well. if(Mc1 + Mc2 > mmax) { if(!toHadron) { toHadron = _hadronSpectrum->chooseSingleHadron(ptrQ[iq1]->dataPtr(), newPtr1->dataPtr(),mmax-Mc2); if(toHadron) { Mc1 = toHadron->mass(); pClu1.setMass(Mc1); } } else if(!toDiQuark) { Mc2 = _hadronSpectrum->massLightestHadron(ptrQ[iq2]->dataPtr(), newPtr2->dataPtr()); pClu2.setMass(Mc2); toDiQuark = true; } } succeeded = (mmax >= Mc1+Mc2); } while (!succeeded && counter < max_loop); // check no of tries if(counter >= max_loop) return cutType(); // Determine the (5-components) momenta (all in the LAB frame) Lorentz5Momentum p0Q1 = ptrQ[iq1]->momentum(); calculateKinematics(pDiQuark,p0Q1,toHadron,toDiQuark, pClu1,pClu2,pQ1,pQone,pQtwo,pQ2); // positions of the new clusters LorentzPoint pos1,pos2; Lorentz5Momentum pBaryon = pClu2+ptrQ[iother]->momentum(); calculatePositions(cluster->momentum(), cluster->vertex(), pClu1, pBaryon, pos1, pos2); // first the mesonic cluster/meson cutType rval; if(toHadron) { rval.first = produceHadron(toHadron, newPtr1, pClu1, pos1); finalhadrons.push_back(rval.first.first); } else { rval.first = produceCluster(ptrQ[iq1], newPtr1, pClu1, pos1, pQ1, pQone, rem1); } if(toDiQuark) { rem2 |= cluster->isBeamRemnant(iother); PPtr newDiQuark = diquark->produceParticle(pClu2); rval.second = produceCluster(newDiQuark, ptrQ[iother], pBaryon, pos2, pClu2, ptrQ[iother]->momentum(), rem2); } else { rval.second = produceCluster(ptrQ[iq2], newPtr2, pBaryon, pos2, pQ2, pQtwo, rem2, ptrQ[iother],cluster->isBeamRemnant(iother)); } cluster->isAvailable(false); return rval; } ClusterFissioner::PPair ClusterFissioner::produceHadron(tcPDPtr hadron, tPPtr newPtr, const Lorentz5Momentum &a, const LorentzPoint &b) const { PPair rval; if(hadron->coloured()) { rval.first = (_hadronSpectrum->lightestHadron(hadron,newPtr->dataPtr()))->produceParticle(); } else rval.first = hadron->produceParticle(); rval.second = newPtr; rval.first->set5Momentum(a); rval.first->setVertex(b); return rval; } ClusterFissioner::PPair ClusterFissioner::produceCluster(tPPtr ptrQ, tPPtr newPtr, const Lorentz5Momentum & a, const LorentzPoint & b, const Lorentz5Momentum & c, const Lorentz5Momentum & d, bool isRem, tPPtr spect, bool remSpect) const { PPair rval; rval.second = newPtr; ClusterPtr cluster = !spect ? new_ptr(Cluster(ptrQ,rval.second)) : new_ptr(Cluster(ptrQ,rval.second,spect)); rval.first = cluster; cluster->set5Momentum(a); cluster->setVertex(b); assert(cluster->particle(0)->id() == ptrQ->id()); cluster->particle(0)->set5Momentum(c); cluster->particle(1)->set5Momentum(d); cluster->setBeamRemnant(0,isRem); if(remSpect) cluster->setBeamRemnant(2,remSpect); return rval; } namespace { inline double kaellen(double x, double y, double z) { return (x*x-(y+z)*(y+z))*(x*x-(y-z)*(y-z)); } }; /** * Claculate a veto for the phase space weight */ bool ClusterFissioner::phaseSpaceVeto(const Energy Mc, const Energy Mc1, const Energy Mc2, const Energy m, const Energy m1, const Energy m2) const { double M_temp = Mc/GeV; double M1_temp = Mc1/GeV; double M2_temp = Mc2/GeV; double m_temp = m/GeV; double m1_temp = m1/GeV; double m2_temp = m2/GeV; double lam1 = sqrt(kaellen(M1_temp, m1_temp, m_temp)); double lam2 = sqrt(kaellen(M2_temp, m2_temp, m_temp)); double lam3 = sqrt(kaellen(M_temp, M1_temp, M2_temp)); double ratio; double PSweight = pow(lam1*lam2*lam3,_dim-3.)*pow(M1_temp*M2_temp,2.-_dim); // overestimate only possible for dim>=3.0 assert(_dim>=3.0); double overEstimate = _dim>=4.0 ? pow(M_temp,4.*_dim-14.):pow(M_temp,2*(_dim-3.0))/pow((m1_temp+m_temp)*(m2_temp+m_temp),4.0-_dim); ratio = PSweight/overEstimate; // if (!(ratio>=0)) std::cout << "M "<<M_temp<<" M1 "<<M1_temp<<" M2 "<<M2_temp<<" m1 "<<m1_temp<<" m2 "<<m2_temp<<" m "<<m_temp<<"\n\n"; assert (ratio >= 0); assert (ratio <= 1); return (UseRandom::rnd()>ratio); } /** * Calculate the masses and possibly kinematics of the cluster * fission at hand; if claculateKineamtics is perfomring non-trivial * steps kinematics claulcated here will be overriden. Currentl;y resorts to the default */ bool ClusterFissioner::drawNewMasses(const Energy Mc, bool soft1, bool soft2, Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2, tcPPtr ptrQ1, const Lorentz5Momentum& pQ1, tcPPtr, const Lorentz5Momentum& pQone, tcPPtr, const Lorentz5Momentum& pQtwo, tcPPtr ptrQ2, const Lorentz5Momentum& pQ2) const { switch (_massSampler) { case 0: return drawNewMassesDefault(Mc, soft1, soft2, pClu1, pClu2, ptrQ1, pQ1, pQone, pQtwo, ptrQ2, pQ2); break; case 1: return drawNewMassesUniform(Mc, pClu1, pClu2, pQ1, pQone, pQtwo, pQ2); break; case 2: return drawNewMassesPhaseSpace(Mc, pClu1, pClu2, pQ1, pQone, pQtwo, pQ2); break; case 3: return drawNewMassesPhaseSpaceExtended(Mc, pClu1, pClu2, pQ1, pQone, pQtwo, pQ2); break; default: assert(false); } return false;// failure } /** * Calculate the masses and possibly kinematics of the cluster * fission at hand; if claculateKineamtics is perfomring non-trivial * steps kinematics claulcated here will be overriden. Currentl;y resorts to the default */ bool ClusterFissioner::drawNewMassesDefault(const Energy Mc, bool soft1, bool soft2, Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2, tcPPtr ptrQ1, const Lorentz5Momentum& pQ1, const Lorentz5Momentum& pQone, const Lorentz5Momentum& pQtwo, tcPPtr ptrQ2, const Lorentz5Momentum& pQ2) const { // power for splitting double exp1 = !spectrum()->isExotic(ptrQ1->dataPtr()) ? _pSplitLight : _pSplitExotic; double exp2 = !spectrum()->isExotic(ptrQ2->dataPtr()) ? _pSplitLight : _pSplitExotic; for ( const long& id : spectrum()->heavyHadronizingQuarks() ) { assert(_pSplitHeavy.find(id) != _pSplitHeavy.end()); if ( spectrum()->hasHeavy(id,ptrQ1->dataPtr()) ) exp1 = _pSplitHeavy.find(id)->second; if ( spectrum()->hasHeavy(id,ptrQ2->dataPtr()) ) exp2 = _pSplitHeavy.find(id)->second; } Energy M1 = drawChildMass(Mc,pQ1.mass(),pQ2.mass(),pQone.mass(),exp1,soft1); Energy M2 = drawChildMass(Mc,pQ2.mass(),pQ1.mass(),pQtwo.mass(),exp2,soft2); pClu1.setMass(M1); pClu2.setMass(M2); return false; // succeeds } /** * Sample the masses for flat phase space * */ bool ClusterFissioner::drawNewMassesUniform(const Energy Mc, Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2, const Lorentz5Momentum& pQ1, const Lorentz5Momentum& pQone, const Lorentz5Momentum& pQtwo, const Lorentz5Momentum& pQ2) const { Energy M1,M2; const Energy m1 = pQ1.mass(); const Energy m2 = pQ2.mass(); const Energy m = pQone.mass(); const Energy M1min = m1 + m; const Energy M2min = m2 + m; const Energy M1max = Mc - M2min; const Energy M2max = Mc - M1min; assert(M1max-M1min>ZERO); assert(M2max-M2min>ZERO); double r1; double r2; int counter = 0; const int max_counter = 100; while (counter < max_counter) { r1 = UseRandom::rnd(); r2 = UseRandom::rnd(); M1 = (M1max-M1min)*r1 + M1min; M2 = (M2max-M2min)*r2 + M2min; counter++; if ( Mc > M1 + M2) break; } if (counter==max_counter || Mc < M1 + M2 || M1 <= M1min || M2 <= M2min ) return true; // failure pClu1.setMass(M1); pClu2.setMass(M2); return false; // succeeds } /** * Sample the masses for flat phase space * */ bool ClusterFissioner::drawNewMassesPhaseSpace(const Energy Mc, Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2, const Lorentz5Momentum& pQ1, const Lorentz5Momentum& pQone, const Lorentz5Momentum& pQtwo, const Lorentz5Momentum& pQ2) const { - Energy M1,M2; + Energy M1,M2,MuS; const Energy m1 = pQ1.mass(); const Energy m2 = pQ2.mass(); const Energy m = pQone.mass(); const Energy M1min = m1 + m; const Energy M2min = m2 + m; - const Energy M1max = Mc - M2min; - const Energy M2max = Mc - M1min; + // const Energy M1max = Mc - M2min; + // const Energy M2max = Mc - M1min; - assert(M1max-M1min>ZERO); - assert(M2max-M2min>ZERO); + // assert(M1max-M1min>ZERO); + // assert(M2max-M2min>ZERO); double r1; double r2; int counter = 0; const int max_counter = 200; + // const Energy MuMminS = M1min + M2min; + // const Energy MuMminD = M1min - M2min; + const Energy MuMax = Mc - (M1min+M2min); while (counter < max_counter) { r1 = UseRandom::rnd(); r2 = UseRandom::rnd(); // TODO make this more efficient - M1 = (M1max-M1min)*r1 + M1min; - M2 = (M2max-M2min)*r2 + M2min; + // M1 = (M1max-M1min)*r1 + M1min; + // M2 = (M2max-M2min)*r2 + M2min; + + MuS = MuMax * sqrt(r1); + // MD = 2*MS*r2 - MS + MuMminD; + + M1 = M1min + MuS * r2; + M2 = M2min + MuS * (1.0 - r2); counter++; - if ( Mc <= M1 + M2) continue; - if ( M1 <= M1min ) continue; - if ( M2 <= M2min ) continue; + + // Automatically satisfied + // if ( Mc <= M1 + M2) std::cout << "Mc "<< Mc/GeV << " M1 "<< M1/GeV <<" M2 " <<M2/GeV << std::endl;; + // if ( M1 <= M1min ) std::cout << "M1 "<< M1/GeV <<" M1min " <<M1min/GeV << std::endl;; + // if ( M2 <= M2min ) std::cout << "M2 "<< M2/GeV <<" M2min " <<M2min/GeV << std::endl;; + // assert( Mc > M1 + M2) ; + // assert( M1 > M1min ) ; + // assert( M2 > M2min ) ; + // if ( Mc <= M1 + M2) continue; + // if ( M1 <= M1min ) continue; + // if ( M2 <= M2min ) continue; if (!phaseSpaceVeto(Mc,M1,M2,m,m1,m2) ) break; // For FlatPhaseSpace sampling vetoing } - if (counter==max_counter - || Mc < M1 + M2 - || M1 <= M1min - || M2 <= M2min ) return true; // failure + if (counter==max_counter) return true; // failure pClu1.setMass(M1); pClu2.setMass(M2); return false; // succeeds } /** * Sample the masses for flat phase space with modulation e.g. here * FlatPhaseSpace*(M1*M2)**alpha * */ bool ClusterFissioner::drawNewMassesPhaseSpaceExtended(const Energy Mc, Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2, const Lorentz5Momentum& pQ1, const Lorentz5Momentum& pQone, const Lorentz5Momentum& pQtwo, const Lorentz5Momentum& pQ2) const { Energy M1,M2; const Energy m1 = pQ1.mass(); const Energy m2 = pQ2.mass(); const Energy m = pQone.mass(); const Energy M1min = m1 + m; const Energy M2min = m2 + m; const Energy M1max = Mc - M2min; const Energy M2max = Mc - M1min; assert(M1max-M1min>ZERO); assert(M2max-M2min>ZERO); double r1; double r2; int counter = 0; const int max_counter = 200; const int alpha = 8; while (counter < max_counter) { r1 = UseRandom::rnd(); r2 = UseRandom::rnd(); // TODO make this more efficient // Uniform sampling // M1 = (M1max-M1min)*r1 + M1min; // M2 = (M2max-M2min)*r2 + M2min; // Power sampling giving (M1*M2)**alpha M1 = M1min * pow( 1.0 - r1 + r1 * pow(M1max/M1min,alpha+1.0) , 1.0/(alpha+1.0)); M2 = M2min * pow( 1.0 - r2 + r2 * pow(M2max/M2min,alpha+1.0) , 1.0/(alpha+1.0)); counter++; if ( Mc <= M1 + M2) continue; if ( M1 <= M1min ) continue; if ( M2 <= M2min ) continue; if (!phaseSpaceVeto(Mc,M1,M2,m,m1,m2) ) break; // For FlatPhaseSpace sampling vetoing } if (counter==max_counter || Mc < M1 + M2 || M1 <= M1min || M2 <= M2min ) return true; // failure pClu1.setMass(M1); pClu2.setMass(M2); return false; // succeeds } void ClusterFissioner::drawNewFlavourDiquarks(PPtr& newPtrPos,PPtr& newPtrNeg, const ClusterPtr & clu) const { // Flavour is assumed to be only u, d, s, with weights // (which are not normalized probabilities) given // by the same weights as used in HadronsSelector for // the decay of clusters into two hadrons. unsigned hasDiquarks=0; assert(clu->numComponents()==2); tcPDPtr pD1=clu->particle(0)->dataPtr(); tcPDPtr pD2=clu->particle(1)->dataPtr(); bool isDiq1=DiquarkMatcher::Check(pD1->id()); if (isDiq1) hasDiquarks++; bool isDiq2=DiquarkMatcher::Check(pD2->id()); if (isDiq2) hasDiquarks++; assert(hasDiquarks<=2); Energy Mc=(clu->momentum().mass()); // if (fabs(clu->momentum().massError() )>1e-14) std::cout << "Mass inconsistency CF : " << std::scientific << clu->momentum().massError() <<"\n"; // Not allow yet Diquark Clusters // if ( hasDiquarks>=1 || Mc < spectrum()->massLightestBaryonPair(pD1,pD2) ) // return drawNewFlavour(newPtrPos,newPtrNeg); Energy minMass; Selector<long> choice; // int countQ=0; // int countDiQ=0; // adding quark-antiquark pairs to the selection list for ( const long& id : spectrum()->lightHadronizingQuarks() ) { // TODO uncommenting below gives sometimes 0 selection possibility, // maybe need to be checked in the LightClusterDecayer and ColourReconnector // if (Mc < spectrum()->massLightestHadronPair(pD1,pD2)) continue; // countQ++; if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id); else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id); else assert(false); } // adding diquark-antidiquark pairs to the selection list switch (hasDiquarks) { case 0: for ( const long& id : spectrum()->lightHadronizingDiquarks() ) { if (_strictDiquarkKinematics) { tPDPtr cand = getParticleData(id); minMass = spectrum()->massLightestHadron(pD2,cand) + spectrum()->massLightestHadron(cand,pD1); } else minMass = spectrum()->massLightestBaryonPair(pD1,pD2); if (Mc < minMass) continue; // countDiQ++; if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id); else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id); else assert(false); } break; case 1: if (_diquarkClusterFission<1) break; for ( const long& id : spectrum()->lightHadronizingDiquarks() ) { tPDPtr diq = getParticleData(id); if (isDiq1) minMass = spectrum()->massLightestHadron(pD2,diq) + spectrum()->massLightestBaryonPair(diq,pD1); else minMass = spectrum()->massLightestHadron(pD1,diq) + spectrum()->massLightestBaryonPair(diq,pD2); if (Mc < minMass) continue; // countDiQ++; if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id); else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id); else assert(false); } break; case 2: if (_diquarkClusterFission<2) break; for ( const long& id : spectrum()->lightHadronizingDiquarks() ) { tPDPtr diq = getParticleData(id); if (Mc < spectrum()->massLightestBaryonPair(pD1,pD2)) { throw Exception() << "Found Diquark Cluster:\n" << *clu << "\nwith MassCluster = " << ounit(Mc,GeV) <<" GeV MassLightestBaryonPair = " << ounit(spectrum()->massLightestBaryonPair(pD1,pD2) ,GeV) << " GeV cannot decay" << Exception::eventerror; } minMass = spectrum()->massLightestBaryonPair(pD1,diq) + spectrum()->massLightestBaryonPair(diq,pD2); if (Mc < minMass) continue; // countDiQ++; if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id); else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id); else assert(false); } break; default: assert(false); } assert(choice.size()>0); long idNew = choice.select(UseRandom::rnd()); newPtrPos = getParticle(idNew); newPtrNeg = getParticle(-idNew); assert(newPtrPos); assert(newPtrNeg); assert(newPtrPos->dataPtr()); assert(newPtrNeg->dataPtr()); } void ClusterFissioner::drawNewFlavourQuarks(PPtr& newPtrPos,PPtr& newPtrNeg) const { // Flavour is assumed to be only u, d, s, with weights // (which are not normalized probabilities) given // by the same weights as used in HadronsSelector for // the decay of clusters into two hadrons. Selector<long> choice; switch(_fissionCluster){ case 0: for ( const long& id : spectrum()->lightHadronizingQuarks() ) choice.insert(_hadronSpectrum->pwtQuark(id),id); break; case 1: for ( const long& id : spectrum()->lightHadronizingQuarks() ) choice.insert(_fissionPwt.find(id)->second,id); break; default : assert(false); } long idNew = choice.select(UseRandom::rnd()); newPtrPos = getParticle(idNew); newPtrNeg = getParticle(-idNew); assert (newPtrPos); assert(newPtrNeg); assert (newPtrPos->dataPtr()); assert(newPtrNeg->dataPtr()); } void ClusterFissioner::drawNewFlavourEnhanced(PPtr& newPtrPos,PPtr& newPtrNeg, Energy2 mass2) const { if ( spectrum()->gluonId() != ParticleID::g ) throw Exception() << "strange enhancement only working with Standard Model hadronization" << Exception::runerror; // Flavour is assumed to be only u, d, s, with weights // (which are not normalized probabilities) given // by the same weights as used in HadronsSelector for // the decay of clusters into two hadrons. double prob_d = 0.; double prob_u = 0.; double prob_s = 0.; double scale = abs(double(sqr(_m0Fission)/mass2)); // Choose which splitting weights you wish to use switch(_fissionCluster){ // 0: ClusterFissioner and ClusterDecayer use the same weights case 0: prob_d = _hadronSpectrum->pwtQuark(ParticleID::d); prob_u = _hadronSpectrum->pwtQuark(ParticleID::u); /* Strangeness enhancement: Case 1: probability scaling Case 2: Exponential scaling */ if (_enhanceSProb == 1) prob_s = (_maxScale < scale) ? 0. : pow(_hadronSpectrum->pwtQuark(ParticleID::s),scale); else if (_enhanceSProb == 2) prob_s = (_maxScale < scale) ? 0. : exp(-scale); break; /* 1: ClusterFissioner uses its own unique set of weights, i.e. decoupled from ClusterDecayer */ case 1: prob_d = _fissionPwt.find(ParticleID::d)->second; prob_u = _fissionPwt.find(ParticleID::u)->second; if (_enhanceSProb == 1) prob_s = (_maxScale < scale) ? 0. : pow(_fissionPwt.find(ParticleID::s)->second,scale); else if (_enhanceSProb == 2) prob_s = (_maxScale < scale) ? 0. : exp(-scale); break; default: assert(false); } int choice = UseRandom::rnd3(prob_u, prob_d, prob_s); long idNew = 0; switch (choice) { case 0: idNew = ThePEG::ParticleID::u; break; case 1: idNew = ThePEG::ParticleID::d; break; case 2: idNew = ThePEG::ParticleID::s; break; } newPtrPos = getParticle(idNew); newPtrNeg = getParticle(-idNew); assert (newPtrPos); assert(newPtrNeg); assert (newPtrPos->dataPtr()); assert(newPtrNeg->dataPtr()); } Energy2 ClusterFissioner::clustermass(const ClusterPtr & cluster) const { Lorentz5Momentum pIn = cluster->momentum(); Energy2 endpointmass2 = sqr(cluster->particle(0)->mass() + cluster->particle(1)->mass()); Energy2 singletm2 = pIn.m2(); // Return either the cluster mass, or the lambda measure return (_massMeasure == 0) ? singletm2 : singletm2 - endpointmass2; } Energy ClusterFissioner::drawChildMass(const Energy M, const Energy m1, const Energy m2, const Energy m, const double expt, const bool soft) const { /*************************** * This method, given in input the cluster mass Mclu of an heavy cluster C, * made of consituents of masses m1 and m2, draws the masses Mclu1 and Mclu2 * of, respectively, the children cluster C1, made of constituent masses m1 * and m, and cluster C2, of mass Mclu2 and made of constituent masses m2 * and m. The mass is extracted from one of the two following mass * distributions: * --- power-like ("normal" distribution) * d(Prob) / d(M^exponent) = const * where the exponent can be different from the two children C1 (exp1) * and C2 (exponent2). * --- exponential ("soft" distribution) * d(Prob) / d(M^2) = exp(-b*M) * where b = 2.0 / average. * Such distributions are limited below by the masses of * the constituents quarks, and above from the mass of decaying cluster C. * The choice of which of the two mass distributions to use for each of the * two cluster children is dictated by iRemnant (see below). * If the number of attempts to extract a pair of mass values that are * kinematically acceptable is above some fixed number (max_loop, see below) * the method gives up and returns false; otherwise, when it succeeds, it * returns true. * * These distributions have been modified from HERWIG: * Before these were: * Mclu1 = m1 + (Mclu - m1 - m2)*pow( rnd(), 1.0/exponent1 ); * The new one coded here is a more efficient version, same density * but taking into account 'in phase space from' beforehand ***************************/ // hard cluster if(!soft) { return pow(UseRandom::rnd(pow((M-m1-m2-m)*UnitRemoval::InvE, expt), pow(m*UnitRemoval::InvE, expt)), 1./expt )*UnitRemoval::E + m1; } // Otherwise it uses a soft mass distribution else { static const InvEnergy b = 2.0 / _btClM; Energy max = M-m1-m2-2.0*m; double rmin = b*max; rmin = ( rmin < 50 ) ? exp(-rmin) : 0.; double r1; do { r1 = UseRandom::rnd(rmin, 1.0) * UseRandom::rnd(rmin, 1.0); } while (r1 < rmin); return m1 + m - log(r1)/b; } } // Axis ClusterFissioner::sampleDirectionBoostedAngle(const Lorentz5Momentum & pRelCOM) const { // Axis pRelCOM.vect().unit(); // } Axis ClusterFissioner::sampleDirectionAligned(const Lorentz5Momentum & pRelCOM) const { return pRelCOM.vect().unit(); } Axis ClusterFissioner::sampleDirectionUniform() const { double cosTheta = -1 + 2.0 * UseRandom::rnd(); double sinTheta = sqrt(1.0-cosTheta*cosTheta); double Phi = 2.0 * Constants::pi * UseRandom::rnd(); Axis uClusterUniform(cos(Phi)*cosTheta, sin(Phi)*cosTheta, sinTheta); return uClusterUniform.unit(); } Axis ClusterFissioner::sampleDirectionSemiUniform(const Lorentz5Momentum & pRelCOM) const { Axis dir=pRelCOM.vect().unit(); Axis res; do { res=sampleDirectionUniform(); } while (dir*res<0); return res; } Energy ClusterFissioner::sample2DGaussianPT(const Energy & Pcom) const { Energy sigmaPT=_fluxTubeWidth*Pcom; if (_fluxTubeWidth==0) return ZERO; Energy magnitude; Energy pTx,pTy; const int maxcount=100; int count=0; do { if (count>=maxcount) { if (Pcom>0.5*sigmaPT) throw Exception() << "Could not sample direction in ClusterFissioner::sampleDirectionGaussianPT() " << Exception::eventerror; // Fallback uniform sampling magnitude=UseRandom::rnd()*Pcom; break; } pTx = UseRandom::rndGauss(sigmaPT); pTy = UseRandom::rndGauss(sigmaPT); magnitude=sqrt(sqr(pTx)+sqr(pTy)); count++; } while (magnitude>Pcom); return magnitude; } Axis ClusterFissioner::sampleDirectionGaussianPT(const Lorentz5Momentum & pRelCOM, const Energy Mass, const Energy mass1, const Energy mass2) const { Energy pstarCOM = Kinematics::pstarTwoBodyDecay(Mass,mass1,mass2); // sample gaussian pT kick with sigma=pstarCOM*_fluxTubeWidth // to avoid jacobian factor for ClusterFission matrix element Energy pT=sample2DGaussianPT(pstarCOM); Energy2 pT2=pT*pT; double phi=UseRandom::rnd()*2.0*Constants::pi; Energy pTx=pT*cos(phi); Energy pTy=pT*sin(phi); Axis pRelativeDir=pRelCOM.vect().unit(); Axis TrvX = pRelativeDir.orthogonal().unit(); Axis TrvY = TrvX.cross(pRelativeDir).unit(); Axis pTkick = pTx/pstarCOM*TrvX + pTy/pstarCOM*TrvY; Axis uClusterFluxTube = (pRelativeDir*sqrt(1.0-pT2/sqr(pstarCOM)) + pTkick); return uClusterFluxTube.unit(); } static Energy2 Min(const Lorentz5Momentum p1, const Lorentz5Momentum p2); static Energy2 Min(const Lorentz5Momentum p1, const Lorentz5Momentum p2){ Energy2 min=p1.e()*p2.e()-p1.vect().mag()*p2.vect().mag(); assert(min>=ZERO); return min; } static Energy2 Max(const Lorentz5Momentum p1, const Lorentz5Momentum p2); static Energy2 Max(const Lorentz5Momentum p1, const Lorentz5Momentum p2){ Energy2 max=p1.e()*p2.e()+p1.vect().mag()*p2.vect().mag(); assert(max>=ZERO); return max; } void ClusterFissioner::calculateKinematics(const Lorentz5Momentum & pClu, const Lorentz5Momentum & p0Q1, const bool toHadron1, const bool toHadron2, Lorentz5Momentum & pClu1, Lorentz5Momentum & pClu2, Lorentz5Momentum & pQ1, Lorentz5Momentum & pQbar, Lorentz5Momentum & pQ, Lorentz5Momentum & pQ2bar) const { /****************** * This method solves the kinematics of the two body cluster decay: * C (Q1 Q2bar) ---> C1 (Q1 Qbar) + C2 (Q Q2bar) * In input we receive the momentum of C, pClu, and the momentum * of the quark Q1 (constituent of C), p0Q1, both in the LAB frame. * Furthermore, two boolean variables inform whether the two fission * products (C1, C2) decay immediately into a single hadron (in which * case the cluster itself is identify with that hadron) and we do * not have to solve the kinematics of the components (Q1,Qbar) for * C1 and (Q,Q2bar) for C2. * The output is given by the following momenta (all 5-components, * and all in the LAB frame): * pClu1 , pClu2 respectively of C1 , C2 * pQ1 , pQbar respectively of Q1 , Qbar in C1 * pQ , pQ2bar respectively of Q , Q2 in C2 * The assumption, suggested from the string model, is that, in C frame, * C1 and its constituents Q1 and Qbar are collinear, and collinear to * the direction of Q1 in C (that is before cluster decay); similarly, * (always in the C frame) C2 and its constituents Q and Q2bar are * collinear (and therefore anti-collinear with C1,Q1,Qbar). * The solution is then obtained by using Lorentz boosts, as follows. * The kinematics of C1 and C2 is solved in their parent C frame, * and then boosted back in the LAB. The kinematics of Q1 and Qbar * is solved in their parent C1 frame and then boosted back in the LAB; * similarly, the kinematics of Q and Q2bar is solved in their parent * C2 frame and then boosted back in the LAB. In each of the three * "two-body decay"-like cases, we use the fact that the direction * of the motion of the decay products is known in the rest frame of * their parent. This is obvious for the first case in which the * parent rest frame is C; but it is also true in the other two cases * where the rest frames are C1 and C2. This is because C1 and C2 * are boosted w.r.t. C in the same direction where their components, * respectively (Q1,Qbar) and (Q,Q2bar) move in C1 and C2 rest frame * respectively. * Of course, although the notation used assumed that C = (Q1 Q2bar) * where Q1 is a quark and Q2bar an antiquark, indeed everything remain * unchanged also in all following cases: * Q1 quark, Q2bar antiquark; --> Q quark; * Q1 antiquark , Q2bar quark; --> Q antiquark; * Q1 quark, Q2bar diquark; --> Q quark * Q1 antiquark, Q2bar anti-diquark; --> Q antiquark * Q1 diquark, Q2bar quark --> Q antiquark * Q1 anti-diquark, Q2bar antiquark; --> Q quark **************************/ if (pClu.mass() < pClu1.mass() + pClu2.mass() || pClu1.mass()<ZERO || pClu2.mass()<ZERO ) { throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (A)" << Exception::eventerror; } // Calculate the unit three-vector, in the Cluster frame, // using the sampling funtion sampleDirection in the respective // clusters rest frame // Calculate the momenta of C1 and C2 in the (parent) C frame first, // where the direction of C1 is samples according to sampleDirection, // and then boost back in the LAB frame. // // relative momentum in centre of mass of cluster Lorentz5Momentum uRelCluster(p0Q1); uRelCluster.boost( -pClu.boostVector() ); // boost from LAB to C // sample direction (options = Default(aligned), Isotropic // or FluxTube(gaussian pT kick)) Axis DirClu = sampleDirection(uRelCluster, pClu.mass(), pClu1.mass(), pClu2.mass()); Axis DirClu1; Axis DirClu2; if (_covariantBoost) { const Lorentz5Momentum p0Q2(pQ2bar.mass(),(pClu-p0Q1).vect()); const Energy M = pClu.mass(); const Energy M1 = pClu1.mass(); const Energy M2 = pClu2.mass(); const Energy PcomClu=Kinematics::pstarTwoBodyDecay(M,M1,M2); double r=0.0; double ratio=1.0; int counter=0; do { // Axis DirToClu = sampleDirectionUniform(); Axis DirToClu = sampleDirectionAligned(uRelCluster); Momentum3 pClu1sampVect( PcomClu*DirToClu); Momentum3 pClu2sampVect(-PcomClu*DirToClu); pClu1.setMass(M1); pClu1.setVect(pClu1sampVect); pClu1.rescaleEnergy(); pClu2.setMass(M2); pClu2.setVect(pClu2sampVect); pClu2.rescaleEnergy(); // if (pClu1.m() < pQ1.mass() + pQbar.mass() ) { // throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (B)" // << Exception::eventerror; // } // sample direction (options = Default(aligned), Isotropic // or FluxTube(gaussian pT kick)) DirClu1=sampleDirectionUniform(); DirClu1=sampleDirectionAligned(pClu1); // if (pClu2.m() < pQ.mass() + pQ2bar.mass() ) { // throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics[FluxTube]() (C)" // << Exception::eventerror; // } // sample direction (options = Default(aligned), Isotropic // or FluxTube(gaussian pT kick)) DirClu2=sampleDirectionUniform(); DirClu2=sampleDirectionAligned(pClu2); // Need to boost constituents first into the pClu rest frame // boost from Cluster1 rest frame to Cluster COM Frame Kinematics::twoBodyDecay(pClu1, pQ1.mass(), pQbar.mass(), DirClu1, pQ1, pQbar); // boost from Cluster2 rest frame to Cluster COM Frame Kinematics::twoBodyDecay(pClu2, pQ.mass(), pQ2bar.mass(), DirClu2, pQ, pQ2bar); Energy PstarQ12=Kinematics::pstarTwoBodyDecay(M,pQ1.mass(),pQ2bar.mass()); Axis z(0,0,1); Lorentz5Momentum pQ1Hat(pQ1.mass(),PstarQ12*z); Lorentz5Momentum pQ2Hat(pQ2bar.mass(),-PstarQ12*z); Energy2 p1Dotp2 = pQ1Hat*pQ2Hat; Energy2 p1Dotp2Max = Max(pQ1Hat,pQ2Hat); Energy2 p1Dotq = pQ1Hat*pQ; Energy2 p1DotqMin = Min(pQ1Hat,pQ); Energy2 p1DotqMax = Max(pQ1Hat,pQ); Energy2 p2Dotq = pQ2Hat*pQ; Energy2 p2DotqMin = Min(pQ2Hat,pQ); Energy2 p2DotqMax = Max(pQ2Hat,pQ); Energy2 p1Dotqbar = pQ1Hat*pQbar; Energy2 p1DotqbarMin = Min(pQ1Hat,pQbar); Energy2 p1DotqbarMax = Max(pQ1Hat,pQbar); Energy2 p2Dotqbar = pQ2Hat*pQbar; Energy2 p2DotqbarMin = Min(pQ2Hat,pQbar); Energy2 p2DotqbarMax = Max(pQ2Hat,pQbar); Energy2 qDotqbar = pQ*pQbar; Energy2 qDotqbarMin = Min(pQ,pQbar); Energy2 qDotqbarMax = Max(pQ,pQbar); // double Msquared=-GeV2*GeV2*(p1Dotq*p2Dotqbar+p2Dotq*p1Dotqbar-p1Dotp2*qDotqbar)/(qDotqbar*qDotqbar*(p1Dotq+p1Dotqbar)*(p2Dotq+p2Dotqbar)); double Msquared=GeV2*GeV2*(p1Dotp2*qDotqbar-p1Dotq*p2Dotqbar-p2Dotq*p1Dotqbar)/(sqr(qDotqbar+2*sqr(pQ.mass()))*(p1Dotq+p1Dotqbar)*(p2Dotq+p2Dotqbar)); // if (Msquared<0) {std::cout << "Msq<0\n";continue;} if (Msquared<0) {continue;} // double overEstimate=GeV2*GeV2*(p1DotqMax*p2DotqbarMax+p2DotqMax*p1DotqbarMax-p1Dotp2Min*qDotqbarMin)/(qDotqbarMin*qDotqbarMin*(p1DotqMin+p1DotqbarMin)*(p2DotqMin+p2DotqbarMin)); double overEstimate=GeV2*GeV2*(p1Dotp2Max*qDotqbarMin-p1DotqMin*p2DotqbarMin-p2DotqMin*p1DotqbarMin)/(sqr(qDotqbarMin+2*sqr(pQ.mass()))*(p1DotqMin+p1DotqbarMin)*(p2DotqMin+p2DotqbarMin)); assert(overEstimate>0); ratio=Msquared/overEstimate; if (ratio<0 || ratio>1 || std::isinf(ratio) || std::isnan(ratio) || counter>100000){ // std::cout << "Msquared = " <<std::setprecision(18)<< Msquared << std::endl; // std::cout << "overestimate = " << overEstimate << std::endl; // std::cout << "p1Dotp2 = " << p1Dotp2/GeV2 << std::endl; // std::cout << "p1Dotq = " << p1Dotq/GeV2 << std::endl; // std::cout << "p2Dotq = " << p2Dotq/GeV2 << std::endl; // std::cout << "p1Dotqbar = " << p1Dotqbar/GeV2 << std::endl; // std::cout << "p2Dotqbar = " << p2Dotqbar/GeV2 << std::endl; // std::cout << "qDotqbar = " << qDotqbar/GeV2 << std::endl; // std::cout << "numerator = " << (p1Dotq*p2Dotqbar+p2Dotq*p1Dotqbar-p1Dotp2*qDotqbar)/(GeV2*GeV2) << std::endl; // std::cout << "denom = " << (qDotqbar*qDotqbar*(p1Dotq+p1Dotqbar)*(p2Dotq+p2Dotqbar)) // /(GeV2*GeV2*GeV2*GeV2) << std::endl; // std::cout << "ratio = " <<std::setprecision(18)<<ratio << std::endl; } r=UseRandom::rnd(); counter++; } while (r<ratio); // Boost all momenta from the Cluster COM frame to the Lab frame Kinematics::BoostIntoTwoParticleFrame(pClu.mass(),p0Q1, p0Q2, pClu1, pClu2); Kinematics::BoostIntoTwoParticleFrame(pClu.mass(),p0Q1, p0Q2, pQ1, pQbar); Kinematics::BoostIntoTwoParticleFrame(pClu.mass(),p0Q1, p0Q2, pQ, pQ2bar); } else { Kinematics::twoBodyDecay(pClu, pClu1.mass(), pClu2.mass(),DirClu, pClu1, pClu2); DirClu1=DirClu; DirClu2=DirClu; // In the case that cluster1 does not decay immediately into a single hadron, // calculate the momenta of Q1 (as constituent of C1) and Qbar in the // (parent) C1 frame first, where the direction of Q1 is u.vect().unit(), // and then boost back in the LAB frame. if(!toHadron1) { if (pClu1.m() < pQ1.mass() + pQbar.mass() ) { throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics[FluxTube]() (B)" << Exception::eventerror; } // sample direction (options = Default(aligned), Isotropic // or FluxTube(gaussian pT kick)) // Axis DirClu1 = sampleDirection(uRelCluster, // pClu1.mass(), pQ1.mass(), pQbar.mass()); Kinematics::twoBodyDecay(pClu1, pQ1.mass(), pQbar.mass(), DirClu1, pQ1, pQbar); } // In the case that cluster2 does not decay immediately into a single hadron, // Calculate the momenta of Q and Q2bar (as constituent of C2) in the // (parent) C2 frame first, where the direction of Q is u.vect().unit(), // and then boost back in the LAB frame. if(!toHadron2) { if (pClu2.m() < pQ.mass() + pQ2bar.mass() ) { throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics[FluxTube]() (C)" << Exception::eventerror; } // sample direction (options = Default(aligned), Isotropic // or FluxTube(gaussian pT kick)) // Axis DirClu2 = sampleDirection(uRelCluster, // pClu2.mass(), pQ2bar.mass(), pQ.mass()); Kinematics::twoBodyDecay(pClu2, pQ.mass(), pQ2bar.mass(), DirClu2, pQ, pQ2bar); } } } void ClusterFissioner::calculatePositions(const Lorentz5Momentum & pClu, const LorentzPoint & positionClu, const Lorentz5Momentum & pClu1, const Lorentz5Momentum & pClu2, LorentzPoint & positionClu1, LorentzPoint & positionClu2) const { // Determine positions of cluster children. // See Marc Smith's thesis, page 127, formulas (4.122) and (4.123). Energy Mclu = pClu.m(); Energy Mclu1 = pClu1.m(); Energy Mclu2 = pClu2.m(); // Calculate the unit three-vector, in the C frame, along which // children clusters move. Lorentz5Momentum u(pClu1); u.boost( -pClu.boostVector() ); // boost from LAB to C frame // the unit three-vector is then u.vect().unit() Energy pstarChild = Kinematics::pstarTwoBodyDecay(Mclu,Mclu1,Mclu2); // First, determine the relative positions of the children clusters // in the parent cluster reference frame. Energy2 mag2 = u.vect().mag2(); InvEnergy fact = mag2>ZERO ? 1./sqrt(mag2) : 1./GeV; Length x1 = ( 0.25*Mclu + 0.5*( pstarChild + (sqr(Mclu2) - sqr(Mclu1))/(2.0*Mclu)))/_kappa; Length t1 = Mclu/_kappa - x1; LorentzDistance distanceClu1( x1 * fact * u.vect(), t1 ); Length x2 = (-0.25*Mclu + 0.5*(-pstarChild + (sqr(Mclu2) - sqr(Mclu1))/(2.0*Mclu)))/_kappa; Length t2 = Mclu/_kappa + x2; LorentzDistance distanceClu2( x2 * fact * u.vect(), t2 ); // Then, transform such relative positions from the parent cluster // reference frame to the Lab frame. distanceClu1.boost( pClu.boostVector() ); distanceClu2.boost( pClu.boostVector() ); // Finally, determine the absolute positions in the Lab frame. positionClu1 = positionClu + distanceClu1; positionClu2 = positionClu + distanceClu2; } bool ClusterFissioner::ProbablityFunction(double scale, double threshold) { double cut = UseRandom::rnd(0.0,1.0); return 1./(1.+pow(abs((threshold-_probShift)/scale),_probPowFactor)) > cut ? true : false; } bool ClusterFissioner::isHeavy(tcClusterPtr clu) { // particle data for constituents tcPDPtr cptr[3]={tcPDPtr(),tcPDPtr(),tcPDPtr()}; for(size_t ix=0;ix<min(clu->numComponents(),3);++ix) { cptr[ix]=clu->particle(ix)->dataPtr(); } // different parameters for exotic, bottom and charm clusters double clpow = !spectrum()->isExotic(cptr[0],cptr[1],cptr[1]) ? _clPowLight : _clPowExotic; Energy clmax = !spectrum()->isExotic(cptr[0],cptr[1],cptr[1]) ? _clMaxLight : _clMaxExotic; for ( const long& id : spectrum()->heavyHadronizingQuarks() ) { if ( spectrum()->hasHeavy(id,cptr[0],cptr[1],cptr[1]) ) { clpow = _clPowHeavy[id]; clmax = _clMaxHeavy[id]; } } // required test for SUSY clusters, since aboveCutoff alone // cannot guarantee (Mc > m1 + m2 + 2*m) in cut() static const Energy minmass = getParticleData(ParticleID::d)->constituentMass(); bool aboveCutoff = false, canSplitMinimally = false; // static kinematic threshold if(_kinematicThresholdChoice == 0) { aboveCutoff = ( pow(clu->mass()*UnitRemoval::InvE , clpow) > pow(clmax*UnitRemoval::InvE, clpow) + pow(clu->sumConstituentMasses()*UnitRemoval::InvE, clpow) ); canSplitMinimally = clu->mass() > clu->sumConstituentMasses() + 2.0 * minmass; } // dynamic kinematic threshold else if(_kinematicThresholdChoice == 1) { //some smooth probablity function to create a dynamic thershold double scale = pow(clu->mass()/GeV , clpow); double threshold = pow(clmax/GeV, clpow) + pow(clu->sumConstituentMasses()/GeV, clpow); aboveCutoff = ProbablityFunction(scale,threshold); scale = clu->mass()/GeV; threshold = clu->sumConstituentMasses()/GeV + 2.0 * minmass/GeV; canSplitMinimally = ProbablityFunction(scale,threshold); } return aboveCutoff && canSplitMinimally; } diff --git a/Hadronization/ClusterFissioner.h b/Hadronization/ClusterFissioner.h --- a/Hadronization/ClusterFissioner.h +++ b/Hadronization/ClusterFissioner.h @@ -1,664 +1,664 @@ // -*- C++ -*- // // ClusterFissioner.h is a part of Herwig - A multi-purpose Monte Carlo event generator // Copyright (C) 2002-2019 The Herwig Collaboration // // Herwig is licenced under version 3 of the GPL, see COPYING for details. // Please respect the MCnet academic guidelines, see GUIDELINES for details. // #ifndef HERWIG_ClusterFissioner_H #define HERWIG_ClusterFissioner_H #include <ThePEG/Interface/Interfaced.h> #include "CluHadConfig.h" #include "ClusterFissioner.fh" #include "HadronSpectrum.h" namespace Herwig { using namespace ThePEG; //class Cluster; // forward declaration /** \ingroup Hadronization * \class ClusterFissioner * \brief This class handles clusters which are too heavy. * \author Philip Stephens * \author Alberto Ribon * \author Stefan Gieseke * * This class does the job of chopping up either heavy clusters or beam * clusters in two lighter ones. The procedure is repeated recursively until * all of the cluster children have masses below some threshold values. * * For the beam remnant clusters, at the moment what is done is the following. * In the case that the soft underlying event is switched on, the * beam remnant clusters are tagged as not available, * therefore they will not be treated at all during the hadronization. * In the case instead that the soft underlying event is switched off, * then the beam remnant clusters are treated exactly as "normal" clusters, * with the only exception of the mass spectrum used to generate the * cluster children masses. For non-beam clusters, the masses of the cluster * children are draw from a power-like mass distribution; for beam clusters, * according to the value of the flag _IOpRem, either both * children masses are draw from a fast-decreasing exponential mass * distribution (case _IOpRem == 0, or, indendently by * _IOpRem, in the special case that the beam cluster contains two * beam remnants), or one mass from the exponential distribution (corresponding * of the cluster child with the beam remnant) and the other with the usual * power-like distribution (case _IOpRem == 1, which is the * default one, as in Herwig 6.3). * * The reason behind the use of a fast-decreasing exponential distribution * is that to avoid a large transverse energy from the many sequential * fissions that would otherwise occur due to the typical large cluster * mass of beam clusters. Using instead an exponential distribution * the masses of the two cluster children will be very small (order of * GeV). * * The rationale behind the implementation of the splitting of clusters * has been to preserve *all* of the information about such splitting * process. More explicitly a ThePEG::Step class is passed in and the * new clusters are added to the step as the decay products of the * heavy cluster. This approach has the twofold * advantage to provide all of the information that could be needed * (expecially in future developments), without any information loss, * and furthermore it allows a better debugging. * * @see \ref ClusterFissionerInterfaces "The interfaces" * defined for ClusterFissioner. */ class ClusterFissioner: public Interfaced { public: /** @name Standard constructors and destructors. */ //@{ /** * Default constructor. */ ClusterFissioner(); //@} /** Splits the clusters which are too heavy. * * Split either heavy clusters or beam clusters recursively until all * children have mass below some threshold. Heavy clusters are those that * satisfy the condition * \f[ M^P > C^P + S^P \f] * where \f$ M \f$ is the clusters mass, \f$ P \f$ is the parameter * ClPow, \f$ C \f$ is the parameter ClMax and \f$ S \f$ is the * sum of the clusters constituent partons. * For beam clusters, they are split only if the soft underlying event * is switched off, otherwise these clusters will be tagged as unavailable * and they will not be treated by the hadronization altogether. * In the case beam clusters will be split, the procedure is exactly * the same as for normal non-beam clusters, with the only exception * of the mass spectrum from which to draw the masses of the two * cluster children (see method drawChildrenMasses for details). */ tPVector fission(ClusterVector & clusters, bool softUEisOn); /** * Return the hadron spectrum */ Ptr<HadronSpectrum>::tptr spectrum() const { return _hadronSpectrum; } public: /** @name Functions used by the persistent I/O system. */ //@{ /** * Function used to write out object persistently. * @param os the persistent output stream written to. */ void persistentOutput(PersistentOStream & os) const; /** * Function used to read in object persistently. * @param is the persistent input stream read from. * @param version the version number of the object when written. */ void persistentInput(PersistentIStream & is, int version); //@} /** * Standard Init function used to initialize the interfaces. */ static void Init(); protected: /** @name Clone Methods. */ //@{ /** * Make a simple clone of this object. * @return a pointer to the new object. */ virtual IBPtr clone() const; /** Make a clone of this object, possibly modifying the cloned object * to make it sane. * @return a pointer to the new object. */ virtual IBPtr fullclone() const; //@} private: /** * Private and non-existent assignment operator. */ ClusterFissioner & operator=(const ClusterFissioner &) = delete; /** * This method directs the splitting of the heavy clusters * * This method does the splitting of the clusters and all of its cluster * children, if heavy. All of these new children clusters are added to the * collection of clusters. The method works as follows. * Initially the vector contains just the stack of input pointers to the * clusters to be split. Then it will be filled recursively by all * of the cluster's children that are heavy enough to require * to be split. In each loop, the last element of the vector is * considered (only once because it is then removed from the vector). * * \todo is the following still true? * For normal, non-beam clusters, a power-like mass distribution * is used, whereas for beam clusters a fast-decreasing exponential mass * distribution is used instead. This avoids many iterative splitting which * could produce an unphysical large transverse energy from a supposed * soft beam remnant process. */ void cut(stack<ClusterPtr> &, ClusterVector&, tPVector & finalhadrons, bool softUEisOn); public: /** * Definition for easy passing of two particles. */ typedef pair<PPtr,PPtr> PPair; /** * Definition for use in the cut function. */ typedef pair<PPair,PPair> cutType; /** * Splits the input cluster. * * Split the input cluster (which can be either an heavy non-beam * cluster or a beam cluster). The result is two pairs of particles. The * first element of each pair is new cluster/hadron, while the second * element of each pair is the particle drawn from the vacuum to create * the new cluster/hadron. * Notice that this method treats also beam clusters by using a different * mass spectrum used to generate the cluster child masses (see method * drawChildMass). */ //@{ /** * Split two-component cluster */ virtual cutType cutTwo(ClusterPtr &, tPVector & finalhadrons, bool softUEisOn); /** * Split three-component cluster */ virtual cutType cutThree(ClusterPtr &, tPVector & finalhadrons, bool softUEisOn); //@} public: /** * Produces a hadron and returns the flavour drawn from the vacuum. * * This routine produces a new hadron. It * also sets the momentum and vertex to the values given. */ PPair produceHadron(tcPDPtr hadron, tPPtr newPtr, const Lorentz5Momentum &a, const LorentzPoint &b) const; protected: /** * Produces a cluster from the flavours passed in. * * This routine produces a new cluster with the flavours given by ptrQ and newPtr. * The new 5 momentum is a and the parent momentum are c and d. C is for the * ptrQ and d is for the new particle newPtr. rem specifies whether the existing * particle is a beam remnant or not. */ PPair produceCluster(tPPtr ptrQ, tPPtr newPtr, const Lorentz5Momentum &a, const LorentzPoint &b, const Lorentz5Momentum &c, const Lorentz5Momentum &d, const bool rem, tPPtr spect=tPPtr(), bool remSpect=false) const; /** * Returns the new quark-antiquark pair * needed for fission of a heavy cluster. Equal probabilities * are assumed for producing u, d, or s pairs. */ void drawNewFlavourQuarks(PPtr& newPtrPos,PPtr& newPtrNeg) const; /** * Returns the new quark-antiquark pair or diquark - * antidiquark pair needed for fission of a heavy cluster. */ void drawNewFlavourDiquarks(PPtr& newPtrPos,PPtr& newPtrNeg, const ClusterPtr & clu) const; /** * Returns the new quark-antiquark pair * needed for fission of a heavy cluster. Equal probabilities * are assumed for producing u, d, or s pairs. * Extra argument is used when performing strangeness enhancement */ void drawNewFlavourEnhanced(PPtr& newPtrPos,PPtr& newPtrNeg, Energy2 mass2) const; /** * Produces the mass of a child cluster. * * Draw the masses \f$M'\f$ of the the cluster child produced * by the fission of an heavy cluster (of mass M). m1, m2 are the masses * of the constituents of the cluster; m is the mass of the quark extract * from the vacuum (together with its antiparticle). The algorithm produces * the mass of the cluster formed with consituent m1. * Two mass distributions can be used for the child cluster mass: * -# power-like mass distribution ("normal" mass) with power exp * \f[ M' = {\rm rnd}((M-m_1-m_2-m)^P, m^p)^{1/P} + m_1 \f] * where \f$ P \f$ is a parameter of the model and \f$ \rm{rnd} \f$ is * the function: * \f[ \rm{rnd}(a,b) = (1-r)a + r b \f] * and here \f$ r \f$ is a random number [0,1]. * -# fast-decreasing exponential mass distribution ("soft" mass) with * rmin. rmin is given by * \f[ r_{\rm min} = \exp(-b (M - m_1 - m_2 - 2 m)) \f] * where \f$ b \f$ is a parameter of the model. The generated mass is * given by * \f[ M' = m_1 + m - \frac{\log\left( * {\rm rnd}(r_{\rm min}, 1-r_{\rm min})\right)}{b} \f]. * * The choice of which mass distribution should be used for each of the two * cluster children is dictated by the parameter soft. */ Energy drawChildMass(const Energy M, const Energy m1, const Energy m2, const Energy m, const double exp, const bool soft) const; /** * Determine the positions of the two children clusters. * * This routine generates the momentum of the decay products. It also * generates the momentum in the lab frame of the partons drawn out of * the vacuum. */ void calculatePositions(const Lorentz5Momentum &pClu, const LorentzPoint & positionClu, const Lorentz5Momentum & pClu1, const Lorentz5Momentum & pClu2, LorentzPoint & positionClu1, LorentzPoint & positionClu2 ) const; protected: /** * Dimension used to calculate phase space weights */ double dim() const {return _dim;} /** * Access to soft-cluster parameter */ Energy btClM() const {return _btClM;} /** * Function that returns either the cluster mass or the lambda measure */ Energy2 clustermass(const ClusterPtr & cluster) const; /** * Draw a new flavour for the given cluster; currently defaults to * the default model */ virtual void drawNewFlavour(PPtr& newPtr1, PPtr& newPtr2, const ClusterPtr & cluster) const { if (_enhanceSProb == 0){ if (_diquarkClusterFission>=0) drawNewFlavourDiquarks(newPtr1,newPtr2,cluster); else drawNewFlavourQuarks(newPtr1,newPtr2); } else { drawNewFlavourEnhanced(newPtr1,newPtr2,clustermass(cluster)); } } /** * Calculate the masses and possibly kinematics of the cluster * fission at hand; if claculateKineamtics is perfomring non-trivial * steps kinematics claulcated here will be overriden. Currentl;y resorts to the default */ virtual bool drawNewMasses(const Energy Mc, bool soft1, bool soft2, Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2, tcPPtr ptrQ1, const Lorentz5Momentum& pQ1, tcPPtr, const Lorentz5Momentum& pQone, tcPPtr, const Lorentz5Momentum& pQtwo, tcPPtr ptrQ2, const Lorentz5Momentum& pQ2) const; /** * Calculate the masses and possibly kinematics of the cluster * fission at hand; if claculateKineamtics is perfomring non-trivial * steps kinematics claulcated here will be overriden. Currentl;y resorts to the default */ bool drawNewMassesDefault(const Energy Mc, bool soft1, bool soft2, Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2, tcPPtr ptrQ1, const Lorentz5Momentum& pQ1, const Lorentz5Momentum& pQone, const Lorentz5Momentum& pQtwo, tcPPtr ptrQ2, const Lorentz5Momentum& pQ2) const; /** * Sample the masses for flat phase space * */ bool drawNewMassesUniform(const Energy Mc, Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2, const Lorentz5Momentum& pQ1, const Lorentz5Momentum& pQone, const Lorentz5Momentum& pQtwo, const Lorentz5Momentum& pQ2) const; /** * Sample the masses for flat phase space * */ bool drawNewMassesPhaseSpace(const Energy Mc, Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2, const Lorentz5Momentum& pQ1, const Lorentz5Momentum& pQone, const Lorentz5Momentum& pQtwo, const Lorentz5Momentum& pQ2) const; /** * Sample the masses for flat phase space with modulation * */ bool drawNewMassesPhaseSpaceExtended(const Energy Mc, Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2, const Lorentz5Momentum& pQ1, const Lorentz5Momentum& pQone, const Lorentz5Momentum& pQtwo, const Lorentz5Momentum& pQ2) const; /** * Calculate the final kinematics of a heavy cluster decay C->C1 + * C2, if not already performed by drawNewMasses */ void calculateKinematics(const Lorentz5Momentum &pClu, const Lorentz5Momentum &p0Q1, const bool toHadron1, const bool toHadron2, Lorentz5Momentum &pClu1, Lorentz5Momentum &pClu2, Lorentz5Momentum &pQ1, Lorentz5Momentum &pQb, Lorentz5Momentum &pQ, Lorentz5Momentum &pQ2b) const; protected: /** @name Access members for child classes. */ //@{ /** * Access to the hadron selector */ HadronSpectrumPtr hadronSpectrum() const {return _hadronSpectrum;} //@} protected: /** @name Standard Interfaced functions. */ //@{ /** * Initialize this object after the setup phase before saving an * EventGenerator to disk. * @throws InitException if object could not be initialized properly. */ virtual void doinit(); //@} private: virtual Axis sampleDirection( const Lorentz5Momentum & pRelCOM, const Energy Mass, const Energy mass1, const Energy mass2) const { switch (_kinematics) { case 0: // Default return sampleDirectionAligned(pRelCOM); case 1: // Isotropic return sampleDirectionUniform(); case 2: // FluxTube return sampleDirectionGaussianPT(pRelCOM, Mass, mass1, mass2); default: assert(false); } }; /** * Samples the direction of Cluster Fission products uniformly **/ Axis sampleDirectionUniform() const; /** * Samples the direction of Cluster Fission products uniformly * but only accepts those flying in the direction of pRelCOM **/ Axis sampleDirectionSemiUniform(const Lorentz5Momentum & pRelCOM) const; /** * Samples the direction of Cluster Fission products according to Gaussian * pT kick * */ Axis sampleDirectionGaussianPT(const Lorentz5Momentum & pRelCOM, const Energy Mass, const Energy mass1, const Energy mass2) const; /** * Samples the direction of Cluster Fission products according to Default * fully aligned D = 1+1 Fission * */ Axis sampleDirectionAligned(const Lorentz5Momentum & pRelCOM) const; Energy sample2DGaussianPT(const Energy & Pcom) const; /** * Smooth probability for dynamic threshold cuts: * @scale the current scale, e.g. the mass of the cluster, * @threshold the physical threshold, */ bool ProbablityFunction(double scale, double threshold); /** * Check if a cluster is heavy enough to split again */ bool isHeavy(tcClusterPtr ); /** * Check if a cluster is heavy enough to be at least kinematically able to split */ bool canSplitMinimally(tcClusterPtr, Energy); /** * Check if can't make a hadron from the partons */ inline bool cantMakeHadron(tcPPtr p1, tcPPtr p2) { return ! spectrum()->canBeHadron(p1->dataPtr(), p2->dataPtr()); } /** - * Claculate a veto for the phase space weight + * Calculate a veto for the phase space weight */ bool phaseSpaceVeto(const Energy Mc, const Energy Mc1, const Energy Mc2, const Energy m, const Energy m1, const Energy m2) const; /** * A pointer to a Herwig::HadronSpectrum object for generating hadrons. */ HadronSpectrumPtr _hadronSpectrum; /** * @name The Cluster max mass,dependant on which quarks are involved, used to determine when * fission will occur. */ //@{ Energy _clMaxLight; map<long,Energy> _clMaxHeavy; Energy _clMaxExotic; //@} /** * @name The power used to determine when cluster fission will occur. */ //@{ double _clPowLight; map<long,double> _clPowHeavy; double _clPowExotic; //@} /** * @name The power, dependant on whic quarks are involved, used in the cluster mass generation. */ //@{ double _pSplitLight; map<long,double> _pSplitHeavy; double _pSplitExotic; /** * Weights for alternative cluster fission */ map<long,double> _fissionPwt; /** * Include phase space weights */ bool _phaseSpaceWeights; /** * Dimensionality of phase space weight */ double _dim; /** * Flag used to determine between normal cluster fission and alternative cluster fission */ int _fissionCluster; /** * Flag to choose static or dynamic kinematic thresholds in cluster splittings */ int _kinematicThresholdChoice; /** * Pwt weight for drawing diquark */ double _pwtDIquark; /** * allow clusters to fission to 1 (or 2) diquark clusters or not */ int _diquarkClusterFission; //@} /** * Parameter used (2/b) for the beam cluster mass generation. * Currently hard coded value. */ Energy _btClM; /** * Flag used to determine what distributions to use for the cluster masses. */ int _iopRem; /** * The string constant */ Tension _kappa; /** * Flag for choosing kinematics of ClusterFission */ int _kinematics; /** * Width of the gaussian sampling for the FluxTube Kinematics */ double _fluxTubeWidth; /** * Flag that switches between no strangeness enhancement, scaling enhancement, * and exponential enhancement (in numerical order) */ int _enhanceSProb; /** * Parameter that governs the strangeness enhancement scaling */ Energy _m0Fission; /** * Flag that switches between mass measures used in strangeness enhancement: * cluster mass, or the lambda measure - ( m_{clu}^2 - (m_q + m_{qbar})^2 ) */ int _massMeasure; /** * Constant variable which stops the scale from being to large, and not worth * calculating */ const double _maxScale = 20.; /** * Power factor in ClausterFissioner bell probablity function */ double _probPowFactor; /** * Shifts from the center in ClausterFissioner bell probablity function */ double _probShift; /** * Shifts from the kinetic threshold in ClausterFissioner */ Energy2 _kinThresholdShift; /** * Flag for strict diquark selection according to kinematics */ int _strictDiquarkKinematics; /** * Use Covariant boost in ClusterFissioner */ bool _covariantBoost; /** * Flag for allowing Hadron Final states in Cluster Fission */ int _allowHadronFinalStates; /** * Choice of Mass sampling for ClusterFissioner */ int _massSampler; /** * Choice of Phase Space sampling for ClusterFissioner */ int _phaseSpaceSampler; /** * Choice of Matrix Element for ClusterFissioner */ int _matrixElement; }; } #endif /* HERWIG_ClusterFissioner_H */