diff --git a/Hadronization/ClusterFissioner.cc b/Hadronization/ClusterFissioner.cc
--- a/Hadronization/ClusterFissioner.cc
+++ b/Hadronization/ClusterFissioner.cc
@@ -1,2163 +1,2177 @@
 // -*- C++ -*-
 //
 // ClusterFissioner.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
 // Copyright (C) 2002-2019 The Herwig Collaboration
 //
 // Herwig is licenced under version 3 of the GPL, see COPYING for details.
 // Please respect the MCnet academic guidelines, see GUIDELINES for details.
 //
 //
 // Thisk is the implementation of the non-inlined, non-templated member
 // functions of the ClusterFissioner class.
 //
 
 #include "ClusterFissioner.h"
 #include <ThePEG/Interface/ClassDocumentation.h>
 #include <ThePEG/Interface/Reference.h>
 #include <ThePEG/Interface/Parameter.h>
 #include <ThePEG/Interface/Switch.h>
 #include <ThePEG/Persistency/PersistentOStream.h>
 #include <ThePEG/Persistency/PersistentIStream.h>
 #include <ThePEG/PDT/EnumParticles.h>
 #include "Herwig/Utilities/Kinematics.h"
 #include "Cluster.h"
 #include "ThePEG/Repository/UseRandom.h"
 #include "ThePEG/Repository/EventGenerator.h"
 #include <ThePEG/Utilities/DescribeClass.h>
 #include "ThePEG/Interface/ParMap.h"
 
 #include <boost/numeric/ublas/matrix.hpp>
 #include <boost/numeric/ublas/io.hpp>
 #include <boost/numeric/ublas/lu.hpp>
 using namespace Herwig;
 
 DescribeClass<ClusterFissioner,Interfaced>
 describeClusterFissioner("Herwig::ClusterFissioner","Herwig.so");
 
 ClusterFissioner::ClusterFissioner() :
   _clMaxLight(3.35*GeV),
   _clMaxExotic(3.35*GeV),
   _clPowLight(2.0),
   _clPowExotic(2.0),
   _pSplitLight(1.0),
   _pSplitExotic(1.0),
   _phaseSpaceWeights(false),
   _dim(4),
   _fissionCluster(0),
   _kinematicThresholdChoice(0),
   _pwtDIquark(0.0),
   _diquarkClusterFission(-1),
   _btClM(1.0*GeV),
   _iopRem(1),
   _kappa(1.0e15*GeV/meter),
   _kinematics(0),
   _fluxTubeWidth(0.0),
   _enhanceSProb(0),
   _m0Fission(2.*GeV),
   _massMeasure(0),
   _probPowFactor(4.0),
   _probShift(0.0),
   _kinThresholdShift(1.0*sqr(GeV)),
   _strictDiquarkKinematics(0),
   _covariantBoost(false),
   _allowHadronFinalStates(0),
   _massSampler(0),
   _phaseSpaceSampler(0),
   _matrixElement(0)
 {}
 
 IBPtr ClusterFissioner::clone() const {
   return new_ptr(*this);
 }
 
 IBPtr ClusterFissioner::fullclone() const {
   return new_ptr(*this);
 }
 
 void ClusterFissioner::persistentOutput(PersistentOStream & os) const {
   os << ounit(_clMaxLight,GeV)
      << ounit(_clMaxHeavy,GeV) << ounit(_clMaxExotic,GeV) << _clPowLight << _clPowHeavy
      << _clPowExotic << _pSplitLight
      << _pSplitHeavy << _pSplitExotic
      << _fissionCluster << _fissionPwt
 	 << _pwtDIquark
 	 << _diquarkClusterFission
 	 << _kinematics
 	 << _fluxTubeWidth
 	 << ounit(_btClM,GeV)
      << _iopRem  << ounit(_kappa, GeV/meter)
      << _enhanceSProb << ounit(_m0Fission,GeV) << _massMeasure << _dim << _phaseSpaceWeights
      << _hadronSpectrum
      << _probPowFactor << _probShift << ounit(_kinThresholdShift,sqr(GeV))
 	 << _strictDiquarkKinematics
 	 << _covariantBoost
 	 << _allowHadronFinalStates
 	 << _massSampler
 	 << _phaseSpaceSampler
 	 << _matrixElement;
 }
 
 void ClusterFissioner::persistentInput(PersistentIStream & is, int) {
   is >> iunit(_clMaxLight,GeV)
      >> iunit(_clMaxHeavy,GeV) >> iunit(_clMaxExotic,GeV) >> _clPowLight >> _clPowHeavy
      >> _clPowExotic >> _pSplitLight
      >> _pSplitHeavy >> _pSplitExotic
      >> _fissionCluster >> _fissionPwt
 	 >> _pwtDIquark
 	 >> _diquarkClusterFission
 	 >> _kinematics
 	 >> _fluxTubeWidth
      >> iunit(_btClM,GeV)
 	 >> _iopRem >> iunit(_kappa, GeV/meter)
      >> _enhanceSProb >> iunit(_m0Fission,GeV) >> _massMeasure >> _dim >> _phaseSpaceWeights
      >> _hadronSpectrum
      >> _probPowFactor >> _probShift >> iunit(_kinThresholdShift,sqr(GeV))
 	 >> _strictDiquarkKinematics
 	 >> _covariantBoost
 	 >> _allowHadronFinalStates
 	 >> _massSampler
 	 >> _phaseSpaceSampler
 	 >> _matrixElement;
 }
 
 void ClusterFissioner::doinit() {
   Interfaced::doinit();
   for ( const long& id : spectrum()->heavyHadronizingQuarks() ) {
     if ( _pSplitHeavy.find(id) == _pSplitHeavy.end() ||
 	 _clPowHeavy.find(id) == _clPowHeavy.end() ||
 	 _clMaxHeavy.find(id) == _clMaxHeavy.end() )
       throw InitException() << "not all parameters have been set for heavy quark cluster fission";
   }
   // for default Pwts not needed to initialize
   if (_fissionCluster==0) return;  
   for ( const long& id : spectrum()->lightHadronizingQuarks() ) {
 	  if ( _fissionPwt.find(id) == _fissionPwt.end() )
 		  // check that all relevant weights are set
 		  throw InitException() << "fission weights for light quarks have not been set";
   }
   /*
   // Not needed since we set Diquark weights from quark weights
   for ( const long& id : spectrum()->lightHadronizingDiquarks() ) {
 	  if ( _fissionPwt.find(id) == _fissionPwt.end() )
 		  throw InitException() << "fission weights for light diquarks have not been set";
   }*/
   double pwtDquark=_fissionPwt.find(ParticleID::d)->second;
   double pwtUquark=_fissionPwt.find(ParticleID::u)->second;
   double pwtSquark=_fissionPwt.find(ParticleID::s)->second;
   // ERROR: TODO makeDiquarkID is protected function ?
   // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::d,ParticleID::d,3)] =       _pwtDIquark * pwtDquark * pwtDquark;
   // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::u,ParticleID::d,1)] = 0.5 * _pwtDIquark * pwtUquark * pwtDquark;
   // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::u,ParticleID::u,3)] =       _pwtDIquark * pwtUquark * pwtUquark;
   // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::s,ParticleID::d,1)] = 0.5 * _pwtDIquark * pwtSquark * pwtDquark;
   // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::s,ParticleID::u,1)] = 0.5 * _pwtDIquark * pwtSquark * pwtUquark;
   // _fissionPwt[spectrum()->makeDiquarkID(ParticleID::s,ParticleID::s,3)] =       _pwtDIquark * pwtSquark * pwtSquark;
   // TODO better solution for this magic  number alternative
   _fissionPwt[1103] =       _pwtDIquark * pwtDquark * pwtDquark;
   _fissionPwt[2101] = 0.5 * _pwtDIquark * pwtUquark * pwtDquark;
   _fissionPwt[2203] =       _pwtDIquark * pwtUquark * pwtUquark;
   _fissionPwt[3101] = 0.5 * _pwtDIquark * pwtSquark * pwtDquark;
   _fissionPwt[3201] = 0.5 * _pwtDIquark * pwtSquark * pwtUquark;
   _fissionPwt[3303] =       _pwtDIquark * pwtSquark * pwtSquark;
 }
 
 void ClusterFissioner::Init() {
 
   static ClassDocumentation<ClusterFissioner> documentation
     ("Class responsibles for chopping up the clusters");
 
   static Reference<ClusterFissioner,HadronSpectrum> interfaceHadronSpectrum
     ("HadronSpectrum",
      "Set the Hadron spectrum for this cluster fissioner.",
      &ClusterFissioner::_hadronSpectrum, false, false, true, false);
 
   // ClMax for light, Bottom, Charm and exotic (e.g. Susy) quarks
   static Parameter<ClusterFissioner,Energy>
     interfaceClMaxLight ("ClMaxLight","cluster max mass for light quarks (unit [GeV])",
                     &ClusterFissioner::_clMaxLight, GeV, 3.35*GeV, ZERO, 10.0*GeV,
 		    false,false,false);  
   static ParMap<ClusterFissioner,Energy> interfaceClMaxHeavy
     ("ClMaxHeavy",
      "ClMax for heavy quarkls",
      &ClusterFissioner::_clMaxHeavy, GeV, -1, 3.35*GeV, ZERO, 10.0*GeV,
      false, false, Interface::upperlim);
   static Parameter<ClusterFissioner,Energy>
     interfaceClMaxExotic ("ClMaxExotic","cluster max mass  for exotic quarks (unit [GeV])",
                     &ClusterFissioner::_clMaxExotic, GeV, 3.35*GeV, ZERO, 10.0*GeV,
 		    false,false,false);
 
  // ClPow for light, Bottom, Charm and exotic (e.g. Susy) quarks
  static Parameter<ClusterFissioner,double>
     interfaceClPowLight ("ClPowLight","cluster mass exponent for light quarks",
                     &ClusterFissioner::_clPowLight, 0, 2.0, 0.0, 10.0,false,false,false); 
   static ParMap<ClusterFissioner,double> interfaceClPowHeavy
     ("ClPowHeavy",
      "ClPow for heavy quarks",
      &ClusterFissioner::_clPowHeavy, -1, 1.0, 0.0, 10.0,
      false, false, Interface::upperlim); 
  static Parameter<ClusterFissioner,double>
     interfaceClPowExotic ("ClPowExotic","cluster mass exponent for exotic quarks",
                     &ClusterFissioner::_clPowExotic, 0, 2.0, 0.0, 10.0,false,false,false);
 
  // PSplit for light, Bottom, Charm and exotic (e.g. Susy) quarks
   static Parameter<ClusterFissioner,double>
     interfacePSplitLight ("PSplitLight","cluster mass splitting param for light quarks",
                     &ClusterFissioner::_pSplitLight, 0, 1.0, 0.0, 10.0,false,false,false);
   static ParMap<ClusterFissioner,double> interfacePSplitHeavy
     ("PSplitHeavy",
      "PSplit for heavy quarks",
      &ClusterFissioner::_pSplitHeavy, -1, 1.0, 0.0, 10.0,
      false, false, Interface::upperlim);
  static Parameter<ClusterFissioner,double>
     interfacePSplitExotic ("PSplitExotic","cluster mass splitting param for exotic quarks",
                     &ClusterFissioner::_pSplitExotic, 0, 1.0, 0.0, 10.0,false,false,false);
 
 
   static Switch<ClusterFissioner,int> interfaceFission
     ("Fission",
      "Option for different Fission options",
      &ClusterFissioner::_fissionCluster, 0, false, false);
   static SwitchOption interfaceFissionDefault
     (interfaceFission,
      "Default",
      "Normal cluster fission which depends on the hadron selector class.",
      0);
   static SwitchOption interfaceFissionNew
     (interfaceFission,
      "New",
      "Alternative cluster fission which does not depend on the hadron selector class",
      1);
 
   // Switch C->H1,C2 C->H1,H2 on or off
   static Switch<ClusterFissioner,int> interfaceAllowHadronFinalStates
     ("AllowHadronFinalStates",
      "Option for allowing hadron final states of cluster fission",
      &ClusterFissioner::_allowHadronFinalStates, 0, false, false);
   static SwitchOption interfaceAllowHadronFinalStatesAll
     (interfaceAllowHadronFinalStates,
      "All",
      "Option for allowing hadron final states of cluster fission "
 	 "of type C->H1,C2 or C->H1,H2",
      0);
   static SwitchOption interfaceAllowHadronFinalStatesSemiHadronicOnly
     (interfaceAllowHadronFinalStates,
      "SemiHadronicOnly",
      "Option for allowing hadron final states of cluster fission "
 	 "of type C->H1,C2",
      1);
   static SwitchOption interfaceAllowHadronFinalStatesNone
     (interfaceAllowHadronFinalStates,
      "None",
      "Option for disabling hadron final states of cluster fission",
      2);
 
   // Mass Sampler Switch
   static Switch<ClusterFissioner,int> interfaceMassSampler
     ("MassSampler",
      "Option for different Mass sampling options",
      &ClusterFissioner::_massSampler, 0, false, false);
   static SwitchOption interfaceMassSamplerDefault
     (interfaceMassSampler,
      "Default",
      "Choose H7.2.3 default mass sampling using PSplitX",
      0);
   static SwitchOption interfaceMassSamplerUniform
     (interfaceMassSampler,
      "Uniform",
      "Choose Uniform Mass sampling in M1,M2 space",
      1);
   static SwitchOption interfaceMassSamplerFlatPhaseSpace
     (interfaceMassSampler,
      "FlatPhaseSpace",
      "Choose Flat Phase Space sampling of Mass in M1,M2 space",
      2);
   static SwitchOption interfaceMassSampleSoftMEPheno
     (interfaceMassSampler,
      "SoftMEPheno",
      "Choose skewed Phase Space sampling of Masses in M1,M2 space "
 	 "for greater efficiency in soft matrix element sampling",
      3);
 
   // Phase Space Sampler Switch
   static Switch<ClusterFissioner,int> interfacePhaseSpaceSampler
     ("PhaseSpaceSampler",
      "Option for different phase space sampling options",
      &ClusterFissioner::_phaseSpaceSampler, 0, false, false);
   static SwitchOption interfacePhaseSpaceSamplerDefault
     (interfacePhaseSpaceSampler,
      "FullyAligned",
      "Herwig H7.2.3 default Cluster fission of all partons "
 	 "aligned to the relative momentum of the mother cluster",
      0);
   static SwitchOption interfacePhaseSpaceSamplerAlignedIsotropic
     (interfacePhaseSpaceSampler,
      "AlignedIsotropic",
      "Aligned Clusters but isotropic partons in their respective rest frame",
      1);
   static SwitchOption interfacePhaseSpaceSamplerFullyIsotropic
     (interfacePhaseSpaceSampler,
      "FullyIsotropic",
      "Isotropic Clusters and isotropic partons in their respective rest frame "
 	 "NOTE: Testing only!!",
      2);
 
   // Matrix Element Choice Switch
   static Switch<ClusterFissioner,int> interfaceMatrixElement
     ("MatrixElement",
      "Option for different Matrix Element options",
      &ClusterFissioner::_matrixElement, 0, false, false);
   static SwitchOption interfaceMatrixElementDefault
     (interfaceMatrixElement,
      "Default",
      "Choose trivial matrix element i.e. whatever comes from the mass and "
 	 "phase space sampling",
      0);
   static SwitchOption interfaceMatrixElementSoftQQbar
     (interfaceMatrixElement,
      "SoftQQbar",
 	 "Choose Soft q1,q2->q1,q2,g*->q1,q2,q,qbar matrix element",
      1);
 
   static Switch<ClusterFissioner,int> interfaceDiquarkClusterFission
     ("DiquarkClusterFission",
      "Allow clusters to fission to 1 or 2 diquark Clusters",
      &ClusterFissioner::_diquarkClusterFission, -1, false, false);
   static SwitchOption interfaceDiquarkClusterFissionAll
 	(interfaceDiquarkClusterFission,
      "All",
      "Allow diquark clusters and baryon clusters to fission to new diquark Clusters",
      2);
   static SwitchOption interfaceDiquarkClusterFissionOnlyBaryonClusters
 	(interfaceDiquarkClusterFission,
      "OnlyBaryonClusters",
      "Allow only baryon clusters to fission to new diquark Clusters",
      1);
   static SwitchOption interfaceDiquarkClusterFissionNo
     (interfaceDiquarkClusterFission,
      "No",
      "Don't allow clusters to fission to new diquark Clusters",
      0);
   static SwitchOption interfaceDiquarkClusterFissionNoDiquarks
     (interfaceDiquarkClusterFission,
      "NoDiquarks",
      "Don't allow diquark-antidiquark pairs to pop out of the vacuum",
      -1);
 
   static ParMap<ClusterFissioner,double> interfaceFissionPwt
     ("FissionPwt",
      "The weights for quarks in the fission process.",
      &ClusterFissioner::_fissionPwt, -1, 1.0, 0.0, 10.0,
      false, false, Interface::upperlim);
 
   
 
   static Switch<ClusterFissioner,int> interfaceRemnantOption
     ("RemnantOption",
      "Option for the treatment of remnant clusters",
      &ClusterFissioner::_iopRem, 1, false, false);
   static SwitchOption interfaceRemnantOptionSoft
     (interfaceRemnantOption,
      "Soft",
      "Both clusters produced in the fission of the beam cluster"
      " are treated as soft clusters.",
      0);
   static SwitchOption interfaceRemnantOptionHard
     (interfaceRemnantOption,
      "Hard",
      "Only the cluster containing the remnant is treated as a soft cluster.",
      1);
   static SwitchOption interfaceRemnantOptionVeryHard
     (interfaceRemnantOption,
      "VeryHard",
      "Even remnant clusters are treated as hard, i.e. all clusters the same",
      2);
 
   static Parameter<ClusterFissioner,Energy> interfaceBTCLM
     ("SoftClusterFactor",
      "Parameter for the mass spectrum of remnant clusters",
      &ClusterFissioner::_btClM, GeV, 1.*GeV, 0.1*GeV, 10.0*GeV,
      false, false, Interface::limited);
 
 
   static Parameter<ClusterFissioner,Tension> interfaceStringTension
     ("StringTension",
      "String tension used in vertex displacement calculation",
      &ClusterFissioner::_kappa, GeV/meter,
      1.0e15*GeV/meter, ZERO, ZERO,
      false, false, Interface::lowerlim);
 
   static Switch<ClusterFissioner,int> interfaceEnhanceSProb
     ("EnhanceSProb",
      "Option for enhancing strangeness",
      &ClusterFissioner::_enhanceSProb, 0, false, false);
   static SwitchOption interfaceEnhanceSProbNo
     (interfaceEnhanceSProb,
      "No",
      "No strangeness enhancement.",
      0);
   static SwitchOption interfaceEnhanceSProbScaled
     (interfaceEnhanceSProb,
      "Scaled",
      "Scaled strangeness enhancement",
      1);
   static SwitchOption interfaceEnhanceSProbExponential
     (interfaceEnhanceSProb,
      "Exponential",
      "Exponential strangeness enhancement",
      2);
   static Switch<ClusterFissioner,int> interfaceKinematics
     ("Kinematics",
      "Option for selecting different Kinematics for ClusterFission",
      &ClusterFissioner::_kinematics, 0, false, false);
   static SwitchOption interfaceKinematicsDefault
     (interfaceKinematics,
      "Default",
      "Fully aligned Cluster Fission along the Original cluster direction",
      0);
   static SwitchOption interfaceKinematicsIsotropic
     (interfaceKinematics,
      "Isotropic",
      "Fully isotropic two body decay. Not recommended!",
      1);
   static SwitchOption interfaceKinematicsFluxTube
     (interfaceKinematics,
      "FluxTube",
      "Aligned decay with gaussian pT kick with sigma=ClusterFissioner::FluxTube",
      2);
 
    static Switch<ClusterFissioner,int> interfaceMassMeasure
      ("MassMeasure",
       "Option to use different mass measures",
       &ClusterFissioner::_massMeasure,0,false,false);
    static SwitchOption interfaceMassMeasureMass
      (interfaceMassMeasure,
       "Mass",
       "Mass Measure",
       0);
    static SwitchOption interfaceMassMeasureLambda
      (interfaceMassMeasure,
       "Lambda",
       "Lambda Measure",
       1);
 
   static Parameter<ClusterFissioner,Energy> interfaceFissionMassScale
     ("FissionMassScale",
      "Cluster fission mass scale",
      &ClusterFissioner::_m0Fission, GeV, 2.0*GeV, 0.1*GeV, 50.*GeV,
      false, false, Interface::limited);
 
   static Parameter<ClusterFissioner,double> interfaceProbPowFactor
      ("ProbablityPowerFactor",
       "Power factor in ClausterFissioner bell probablity function",
       &ClusterFissioner::_probPowFactor, 2.0, 1.0, 20.0,
       false, false, Interface::limited);
 
   static Parameter<ClusterFissioner,double> interfaceFluxTubeWidth
     ("FluxTubeWidth",
      "sigma of gaussian sampling of pT for FluxTube kinematics",
      &ClusterFissioner::_fluxTubeWidth, 0.0, 0.0, 1.0,
      false, false, Interface::limited);
 
   static Parameter<ClusterFissioner,double> interfaceProbShift
      ("ProbablityShift",
       "Shifts from the center in ClausterFissioner bell probablity function",
       &ClusterFissioner::_probShift, 0.0, -10.0, 10.0,
       false, false, Interface::limited);
 
   static Parameter<ClusterFissioner,Energy2> interfaceKineticThresholdShift
      ("KineticThresholdShift",
       "Shifts from the kinetic threshold in ClausterFissioner",
       &ClusterFissioner::_kinThresholdShift, sqr(GeV), 0.*sqr(GeV), -10.0*sqr(GeV), 10.0*sqr(GeV),
       false, false, Interface::limited);
 
   static Switch<ClusterFissioner,int> interfaceKinematicThreshold
     ("KinematicThreshold",
      "Option for using static or dynamic kinematic thresholds in cluster splittings",
      &ClusterFissioner::_kinematicThresholdChoice, 0, false, false);
   static SwitchOption interfaceKinematicThresholdStatic
     (interfaceKinematicThreshold,
      "Static",
      "Set static kinematic thresholds for cluster splittings.",
      0);
   static SwitchOption interfaceKinematicThresholdDynamic
     (interfaceKinematicThreshold,
      "Dynamic",
      "Set dynamic kinematic thresholds for cluster splittings.",
      1);
 
   
   static Switch<ClusterFissioner,bool> interfacePhaseSpaceWeights
     ("PhaseSpaceWeights",
      "Include phase space weights.",
      &ClusterFissioner::_phaseSpaceWeights, false, false, false);
   static SwitchOption interfacePhaseSpaceWeightsYes
     (interfacePhaseSpaceWeights,
      "Yes",
      "Do include the effect of cluster fission phase space",
      true);
   static SwitchOption interfacePhaseSpaceWeightsNo
     (interfacePhaseSpaceWeights,
      "No",
      "Do not include the effect of cluster phase space",
      false);
 
   static Switch<ClusterFissioner,bool> interfaceCovariantBoost
     ("CovariantBoost",
      "Use single Covariant Boost for Cluster Fission",
      &ClusterFissioner::_covariantBoost, false, false, false);
   static SwitchOption interfaceCovariantBoostYes
     (interfaceCovariantBoost,
      "Yes",
      "Use Covariant boost",
      true);
   static SwitchOption interfaceCovariantBoostNo
     (interfaceCovariantBoost,
      "No",
      "Do NOT use Covariant boost",
      false);
   
 
   static Parameter<ClusterFissioner,double>
     interfaceDim ("Dimension","Dimension in which phase space weights are calculated",
 	 &ClusterFissioner::_dim, 0, 4.0, 3.0, 10.0,false,false, Interface::limited);
 
   static Switch<ClusterFissioner,int> interfaceStrictDiquarkKinematics
     ("StrictDiquarkKinematics",
      "Option for selecting different selection criterions of diquarks for ClusterFission",
      &ClusterFissioner::_strictDiquarkKinematics, 0, false, false);
   static SwitchOption interfaceStrictDiquarkKinematicsLoose
     (interfaceStrictDiquarkKinematics,
      "Loose",
      "No kinematic threshold for diquark selection except for Mass bigger than 2 baryons",
      0);
   static SwitchOption interfaceStrictDiquarkKinematicsStrict
     (interfaceStrictDiquarkKinematics,
      "Strict",
      "Resulting clusters are at least as heavy as 2 lightest baryons",
      1);
 
   static Parameter<ClusterFissioner,double> interfacePwtDIquark
      ("PwtDIquark",
       "specific probability for choosing a d diquark",
       &ClusterFissioner::_pwtDIquark, 0.0, 0.0, 10.0,
       false, false, Interface::limited);
 }
 
 tPVector ClusterFissioner::fission(ClusterVector & clusters, bool softUEisOn) {
   // return if no clusters
   if (clusters.empty()) return tPVector();
 
   /*****************
    * Loop over the (input) collection of cluster pointers, and store in
    * the vector  splitClusters  all the clusters that need to be split
    * (these are beam clusters, if soft underlying event is off, and
    *  heavy non-beam clusters).
    ********************/
 
   stack<ClusterPtr> splitClusters;
   for(ClusterVector::iterator it = clusters.begin() ;
       it != clusters.end() ; ++it) {
     /**************
      * Skip 3-component clusters that have been redefined (as 2-component
      * clusters) or not available clusters. The latter check is indeed
      * redundant now, but it is used for possible future extensions in which,
      * for some reasons, some of the clusters found by ClusterFinder are tagged
      * straight away as not available.
      **************/
     if((*it)->isRedefined() || !(*it)->isAvailable()) continue;
     // if the cluster is a beam cluster add it to the vector of clusters
     // to be split or if it is heavy
 		// TODO maybe BeamClusters must not necessarily be split since can be very light
 		// 			i.e. also lighter than the lightest constituents one can make of those
     if((*it)->isBeamCluster() || isHeavy(*it)) splitClusters.push(*it);
   }
   tPVector finalhadrons;
   cut(splitClusters, clusters, finalhadrons, softUEisOn);
   return finalhadrons;
 }
 
 void ClusterFissioner::cut(stack<ClusterPtr> & clusterStack,
    			   ClusterVector &clusters, tPVector & finalhadrons,
 			   bool softUEisOn) {
   /**************************************************
    * This method does the splitting of the cluster pointed by  cluPtr
    * and "recursively" by all of its cluster children, if heavy. All of these
    * new children clusters are added (indeed the pointers to them) to the
    * collection of cluster pointers  collecCluPtr. The method works as follows.
    * Initially the vector vecCluPtr contains just the input pointer to the
    * cluster to be split. Then it will be filled "recursively" by all
    * of the cluster's children that are heavy enough to require, in their turn,
    * to be split. In each loop, the last element of the vector vecCluPtr is
    * considered (only once because it is then removed from the vector).
    * This approach is conceptually recursive, but avoid the overhead of
    * a concrete recursive function. Furthermore it requires minimal changes
    * in the case that the fission of an heavy cluster could produce more
    * than two cluster children as assumed now.
    *
    * Draw the masses: for normal, non-beam clusters a power-like mass dist
    * is used, whereas for beam clusters a fast-decreasing exponential mass
    * dist is used instead (to avoid many iterative splitting which could
    * produce an unphysical large transverse energy from a supposed soft beam
    * remnant process).
    ****************************************/
   // Here we recursively loop over clusters in the stack and cut them
   while (!clusterStack.empty()) {
     // take the last element of the vector
     ClusterPtr iCluster = clusterStack.top(); clusterStack.pop();
     // split it
     cutType ct = iCluster->numComponents() == 2 ?
       cutTwo(iCluster, finalhadrons, softUEisOn) :
       cutThree(iCluster, finalhadrons, softUEisOn);
 
     // There are cases when we don't want to split, even if it fails mass test
     if(!ct.first.first || !ct.second.first) {
       // if an unsplit beam cluster leave if for the underlying event
       if(iCluster->isBeamCluster() && softUEisOn)
 	iCluster->isAvailable(false);
       continue;
     }
     // check if clusters
     ClusterPtr one = dynamic_ptr_cast<ClusterPtr>(ct.first.first);
     ClusterPtr two = dynamic_ptr_cast<ClusterPtr>(ct.second.first);
     // is a beam cluster must be split into two clusters
     if(iCluster->isBeamCluster() && (!one||!two) && softUEisOn) {
       iCluster->isAvailable(false);
       continue;
     }
 
     // There should always be a intermediate quark(s) from the splitting
     assert(ct.first.second && ct.second.second);
     /// \todo sort out motherless quark pairs here. Watch out for 'quark in final state' errors
     iCluster->addChild(ct.first.first);
     //    iCluster->addChild(ct.first.second);
     //    ct.first.second->addChild(ct.first.first);
 
     iCluster->addChild(ct.second.first);
     //    iCluster->addChild(ct.second.second);
     //    ct.second.second->addChild(ct.second.first);
 
     // Sometimes the clusters decay C -> H + C' or C -> H + H' rather then C -> C' + C''
     if(one) {
       clusters.push_back(one);
       if(one->isBeamCluster() && softUEisOn)
 	one->isAvailable(false);
       if(isHeavy(one) && one->isAvailable())
 	clusterStack.push(one);
     }
     if(two) {
       clusters.push_back(two);
       if(two->isBeamCluster() && softUEisOn)
 	two->isAvailable(false);
       if(isHeavy(two) && two->isAvailable())
 	clusterStack.push(two);
     }
   }
 }
 
 ClusterFissioner::cutType
 ClusterFissioner::cutTwo(ClusterPtr & cluster, tPVector & finalhadrons,
 			 bool softUEisOn) {
   // need to make sure only 2-cpt clusters get here
   assert(cluster->numComponents() == 2);
   tPPtr ptrQ1 = cluster->particle(0);
   tPPtr ptrQ2 = cluster->particle(1);
 	Energy Mc = cluster->mass();
 	// Energy Mcm = cluster->momentum().m();
 	// if (fabs((Mc-Mcm)/GeV)>0.1 ) {
 		// std::cout << "Mc = "<<Mc/GeV <<"\tMcm = "<< Mcm/GeV <<"\n";
 		// exit(2);
 	// }
   assert(ptrQ1);
   assert(ptrQ2);
 
   // And check if those particles are from a beam remnant
   bool rem1 = cluster->isBeamRemnant(0);
   bool rem2 = cluster->isBeamRemnant(1);
   // workout which distribution to use
   bool soft1(false),soft2(false);
   switch (_iopRem) {
   case 0:
     soft1 = rem1 || rem2;
     soft2 = rem2 || rem1;
     break;
   case 1:
     soft1 = rem1;
     soft2 = rem2;
     break;
   }
   // Initialization for the exponential ("soft") mass distribution.
   static const int max_loop = 1000;
   int counter = 0;
   Energy Mc1 = ZERO;
 	Energy Mc2 = ZERO;
 	Energy m=ZERO;
 	Energy m1 = ptrQ1->data().constituentMass();
 	Energy m2 = ptrQ2->data().constituentMass();
   tcPDPtr toHadron1, toHadron2;
   PPtr newPtr1 = PPtr ();
   PPtr newPtr2 = PPtr ();
   Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2;
 	Lorentz5Momentum pClu = cluster->momentum(); // known
 	Lorentz5Momentum p0Q1 = ptrQ1->momentum(); // known (mom Q1 before fission)
 	Lorentz5Momentum p0Q2 = ptrQ2->momentum(); // known (mom Q2 before fission)
 	// where to return to in case of rejected sample
 	enum returnTo {
 		FlavourSampling,
 		MassSampling,
 		PhaseSpaceSampling,
 		MatrixElementSampling,
 		Done
 	};
 	// start with FlavourSampling
 	returnTo retTo=FlavourSampling;
   // ### Flavour, Mass, PhaseSpace and MatrixElement Sampling loop until accepted: ###
   do
   {
 		counter++;
 	  switch (retTo)
 	  {
 			case FlavourSampling:
 			{
 				// ## Flavour sampling and kinematic constraints ##
 				drawNewFlavour(newPtr1,newPtr2,cluster);
 				// get a flavour for the qqbar pair
 				// check for right ordering
 				assert (ptrQ2);
 				assert (newPtr2);
 				assert (ptrQ2->dataPtr());
 				assert (newPtr2->dataPtr());
 				// TODO careful if DiquarkClusters can exist
 				bool Q1diq = DiquarkMatcher::Check(ptrQ1->id());
 				bool Q2diq = DiquarkMatcher::Check(ptrQ2->id());
 				bool newQ1diq = DiquarkMatcher::Check(newPtr1->id());
 				bool newQ2diq = DiquarkMatcher::Check(newPtr2->id());
 				bool diqClu1 = Q1diq && newQ1diq;
 				bool diqClu2 = Q2diq && newQ2diq;
 				// DEBUG only:
 				// std::cout << "Make Clusters: ( " << ptrQ1->PDGName() << " " << newPtr1->PDGName() << " ), ( "
 				// << ptrQ2->PDGName() << " " << newPtr2->PDGName() << " )\n";
 				// check if Hadron formation is possible
 				if (!( diqClu1 || diqClu2 )
 						&& (cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2))) {
 					swap(newPtr1, newPtr2);
 					// check again
 					if(cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2)) {
 						throw Exception()
 							<< "ClusterFissioner cannot split the cluster ("
 							<< ptrQ1->PDGName() << ' ' << ptrQ2->PDGName()
 							<< ") into hadrons.\n"
 							<< "drawn Flavour: "<< newPtr1->PDGName()<<"\n"<< Exception::runerror;
 					}
 				}
 				else if ( diqClu1 || diqClu2 ){
 					bool swapped=false;
 					if ( !diqClu1 && cantMakeHadron(ptrQ1,newPtr1) ) {
 						swap(newPtr1, newPtr2);
 						swapped=true;
 					}
 					if ( !diqClu2 && cantMakeHadron(ptrQ2,newPtr2) ) {
 						assert(!swapped);
 						swap(newPtr1, newPtr2);
 					}
 					if ( diqClu2 && diqClu1 && ptrQ1->id()*newPtr1->id()>0 ) {
 						assert(!swapped);
 						swap(newPtr1, newPtr2);
 					}
 					if (!diqClu1) assert(!cantMakeHadron(ptrQ1,newPtr1));
 					if (!diqClu2) assert(!cantMakeHadron(ptrQ2,newPtr2));
 				}
 				// Check that new clusters can produce particles and there is enough
 				// phase space to choose the drawn flavour
 				m  = newPtr1->data().constituentMass();
 				// Do not split in the case there is no phase space available
 				if(Mc <  m1 + m + m2 + m) {
 					retTo = FlavourSampling;
 					continue;
 				}
 				pQ1.setMass(m1);
 				pQone.setMass(m);
 				pQtwo.setMass(m);
 				pQ2.setMass(m2);
 				// Note: want to fallthrough (in C++17 one could uncomment
 				// 			 the line below to show that this is intentional)
 				[[fallthrough]];
 			}
 			/*
 			 * MassSampling choices:
 			 * 	- Default (default)
 			 * 	- Uniform
 			 * 	- FlatPhaseSpace
 			 * 	- SoftMEPheno
 			 * 	*/
 			case MassSampling:
 			{
 				// TODO insert modular function
 				bool failure = drawNewMasses(Mc, soft1, soft2, pClu1, pClu2,
 						ptrQ1, pQ1, newPtr1, pQone,
 						newPtr2, pQtwo, ptrQ2, pQ2);
 
 				if(failure) {
 					retTo = FlavourSampling;
 					continue;
 				}
 
 				// derive the masses of the children
 				Mc1 = pClu1.mass();
 				Mc2 = pClu2.mass();
 
 				// TODO include this in the drawNewMasses ? --> not necessary if we include this already in drawNewMasses
 				// static kinematic threshold
 				if(_kinematicThresholdChoice == 0) {
 					if(Mc1 < m1+m || Mc2 < m+m2 || Mc1+Mc2 > Mc){
 						retTo = FlavourSampling;
 						continue;
 					}
 					// dynamic kinematic threshold
 				} else if(_kinematicThresholdChoice == 1) {
 					bool C1 = ( sqr(Mc1) )/( sqr(m1) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false;
 					bool C2 = ( sqr(Mc2) )/( sqr(m2) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false;
 					bool C3 = ( sqr(Mc1) + sqr(Mc2) )/( sqr(Mc) ) > 1.0 ? true : false;
 
 					if( C1 || C2 || C3 ) {
 						retTo = FlavourSampling;
 						continue;
 					}
 				}
 
 
 				// TODO change this to use the interface _allowHadronFinalStates
 				// avoid C-> C1,H2 or H1,H2
 				// if ( Mc1 < spectrum()->massLightestHadronPair(ptrQ1->dataPtr(),newPtr1->dataPtr())) {
 				// std::cout << "Cluster decays to hadron MC"<< Mc1/GeV << "\t MLHP "<<  spectrum()->massLightestHadronPair(ptrQ1->dataPtr(),newPtr1->dataPtr())/GeV<<"\n";
 				// std::cout << "Flavour " << ptrQ1->PDGName() <<", " <<  newPtr1->PDGName()<< "\n";
 				// continue;
 				// }
 				// if ( Mc2 < spectrum()->massLightestHadronPair(ptrQ2->dataPtr(),newPtr2->dataPtr())) {
 				// std::cout << "Cluster decays to hadron MC"<< Mc2/GeV << "\t MLHP "<<  spectrum()->massLightestHadronPair(ptrQ2->dataPtr(),newPtr2->dataPtr())/GeV<<"\n";
 				// std::cout << "Flavour " << ptrQ2->PDGName() <<", " <<  newPtr2->PDGName()<< "\n";
 				// continue;
 				// }
 
 				/**************************
 				 * New (not present in Fortran Herwig):
 				 * check whether the fragment masses  Mc1  and  Mc2  are above the
 				 * threshold for the production of the lightest pair of hadrons with the
 				 * right flavours. If not, then set by hand the mass to the lightest
 				 * single hadron with the right flavours, in order to solve correctly
 				 * the kinematics, and (later in this method) create directly such hadron
 				 * and add it to the children hadrons of the cluster that undergoes the
 				 * fission (i.e. the one pointed by iCluPtr). Notice that in this special
 				 * case, the heavy cluster that undergoes the fission has one single
 				 * cluster child and one single hadron child. We prefer this approach,
 				 * rather than to create a light cluster, with the mass set equal to
 				 * the lightest hadron, and let then the class LightClusterDecayer to do
 				 * the job to decay it to that single hadron, for two reasons:
 				 * First, because the sum of the masses of the two constituents can be,
 				 * in this case, greater than the mass of that hadron, hence it would
 				 * be impossible to solve the kinematics for such two components, and
 				 * therefore we would have a cluster whose components are undefined.
 				 * Second, the algorithm is faster, because it avoids the reshuffling
 				 * procedure that would be necessary if we used LightClusterDecayer
 				 * to decay the light cluster to the lightest hadron.
 				 ****************************/
 				// override chosen masses if needed 
 				toHadron1 = _hadronSpectrum->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc1);
 				if (toHadron1 && _allowHadronFinalStates == 2 ) {
 					retTo = FlavourSampling;
 					continue;
 				}
 				if(toHadron1) {
 					Mc1 = toHadron1->mass();
 					pClu1.setMass(Mc1);
 				}
 				toHadron2 = _hadronSpectrum->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc2);
 				if (toHadron2 && _allowHadronFinalStates == 2 ) {
 					retTo = FlavourSampling;
 					continue;
 				}
 				if(toHadron2) {
 					Mc2 = toHadron2->mass();
 					pClu2.setMass(Mc2);
 				}
 				if (_allowHadronFinalStates && toHadron1 && toHadron2) {
 					retTo = FlavourSampling;
 					continue;
 				}
 				// if a beam cluster not allowed to decay to hadrons
 				if(cluster->isBeamCluster() && (toHadron1||toHadron2) && softUEisOn) {
 					retTo = FlavourSampling;
 					continue;
 				}
 				// Check if the decay kinematics is still possible: if not then
 				// force the one-hadron decay for the other cluster as well.
 				if(Mc1 + Mc2  >  Mc) {
 					// reject if we would need to create a C->H,H process if _allowHadronFinalStates>=1
 					if (_allowHadronFinalStates>=1) {
 						retTo = FlavourSampling;
 						continue;
 					}
 
 					if(!toHadron1) {
 						toHadron1 = _hadronSpectrum->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc-Mc2);
 						if(toHadron1) {
 							Mc1 = toHadron1->mass();
 							pClu1.setMass(Mc1);
 						}
 					}
 					else if(!toHadron2) {
 						toHadron2 = _hadronSpectrum->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc-Mc1);
 						if(toHadron2) {
 							Mc2 = toHadron2->mass();
 							pClu2.setMass(Mc2);
 						}
 					}
 				}
 				if (Mc <= Mc1+Mc2){
 					retTo = FlavourSampling;
 					continue;
 				}
 				// Determined the (5-components) momenta (all in the LAB frame)
 				p0Q1.setMass(ptrQ1->mass()); // known (mom Q1 before fission)
 				p0Q1.rescaleEnergy();
 				p0Q2.setMass(ptrQ2->mass()); // known (mom Q2 before fission)
 				p0Q2.rescaleEnergy();
 				pClu.rescaleMass();
 				// Note: want to fallthrough (in C++17 one could uncomment
 				// 			 the line below to show that this is intentional)
 				[[fallthrough]];
 			}
 			/*
 			 * PhaseSpaceSampling choices:
 			 * 	- FullyAligned (default)
 			 * 	- AlignedIsotropic
 			 * 	- FullyIsotropic
 			 * 	*/
 			case PhaseSpaceSampling:
 			{
 				// ### Sample the Phase Space with respect to Matrix Element: ###
 				// TODO insert here PhaseSpace sampler
 				calculateKinematics(pClu,p0Q1,toHadron1,toHadron2,
 						pClu1,pClu2,pQ1,pQone,pQtwo,pQ2);
 				// Should be precise i.e. no rejection expected
 				// Note: want to fallthrough (in C++17 one could uncomment
 				// 			 the line below to show that this is intentional)
 				[[fallthrough]];
 			}
 			/*
 			 * MatrixElementSampling choices:
 			 * 	- Default (default)
 			 * 	- SoftQQbar
 			 * 	*/
 			case MatrixElementSampling:
 			{
 				// TODO insert here partonic Matrix Element rejection
 				double Pacc = 1.0; // overestimate veto
 				std::ofstream out("Pacc.dat", std::ios::app | std::ios::out);
 				out << Pacc << "\n";
 				out.close();
 				if (UseRandom::rnd()<Pacc) {
 					retTo=Done;
 					break;
 				}
 				// retTo = FlavourSampling;
 				retTo = PhaseSpaceSampling;
 				continue;
 			}
 			default:
 			{
 				assert(false);
 			}
 	  }
   }
   while (retTo!=Done && counter < max_loop);
 
   if(counter >= max_loop) {
 		// happens if we get at too light cluster to begin with
 		// TODO exclude this by ensuring that there is always enough phase space for M>m1+m2+2*m and maybe other conditions
 		// std::cout << "ERROR: Max Looped\n";
 	  static const PPtr null = PPtr();
 	  return cutType(PPair(null,null),PPair(null,null));
   }
   // ==> full sample generated
   /******************
    * The previous methods have determined the kinematics and positions
    * of C -> C1 + C2.
    * In the case that one of the two product is light, that means either
    * decayOneHadronClu1 or decayOneHadronClu2 is true, then the momenta
    * of the components of that light product have not been determined,
    * and a (light) cluster will not be created: the heavy father cluster
    * decays, in this case, into a single (not-light) cluster and a
    * single hadron. In the other, "normal", cases the father cluster
    * decays into two clusters, each of which has well defined components.
    * Notice that, in the case of components which point to particles, the
    * momenta of the components is properly set to the new values, whereas
    * we do not change the momenta of the pointed particles, because we
    * want to keep all of the information (that is the new momentum of a
    * component after the splitting, which is contained in the _momentum
    * member of the Component class, and the (old) momentum of that component
    * before the splitting, which is contained in the momentum of the
    * pointed particle). Please not make confusion of this only apparent
    * inconsistency!
    ********************/
   LorentzPoint posC,pos1,pos2;
   posC = cluster->vertex();
   calculatePositions(pClu, posC, pClu1, pClu2, pos1, pos2);
   cutType rval;
   if(toHadron1) {
     rval.first = produceHadron(toHadron1, newPtr1, pClu1, pos1);
     finalhadrons.push_back(rval.first.first);
   }
   else {
     rval.first = produceCluster(ptrQ1, newPtr1, pClu1, pos1, pQ1, pQone, rem1);
   }
   if(toHadron2) {
     rval.second = produceHadron(toHadron2, newPtr2, pClu2, pos2);
     finalhadrons.push_back(rval.second.first);
   }
   else {
     rval.second = produceCluster(ptrQ2, newPtr2, pClu2, pos2, pQ2, pQtwo, rem2);
   }
   return rval;
 }
 
 
 ClusterFissioner::cutType
 ClusterFissioner::cutThree(ClusterPtr & cluster, tPVector & finalhadrons,
 			   bool softUEisOn) {
   // need to make sure only 3-cpt clusters get here
   assert(cluster->numComponents() == 3);
   // extract quarks
   tPPtr ptrQ[3] = {cluster->particle(0),cluster->particle(1),cluster->particle(2)};
   assert( ptrQ[0] && ptrQ[1] && ptrQ[2] );
   // find maximum mass pair
   Energy mmax(ZERO);
   Lorentz5Momentum pDiQuark;
   int iq1(-1),iq2(-1);
   Lorentz5Momentum psum;
   for(int q1=0;q1<3;++q1) {
     psum+= ptrQ[q1]->momentum();
     for(int q2=q1+1;q2<3;++q2) {
       Lorentz5Momentum ptest = ptrQ[q1]->momentum()+ptrQ[q2]->momentum();
       ptest.rescaleMass();
       Energy mass = ptest.m();
       if(mass>mmax) {
 	mmax = mass;
 	pDiQuark = ptest;
 	iq1  = q1;
 	iq2  = q2;
       }
     }
   }
   // and the spectators
   int iother(-1);
   for(int ix=0;ix<3;++ix) if(ix!=iq1&&ix!=iq2) iother=ix;
   assert(iq1>=0&&iq2>=0&&iother>=0);
 
   // And check if those particles are from a beam remnant
   bool rem1 = cluster->isBeamRemnant(iq1);
   bool rem2 = cluster->isBeamRemnant(iq2);
   // workout which distribution to use
   bool soft1(false),soft2(false);
   switch (_iopRem) {
   case 0:
     soft1 = rem1 || rem2;
     soft2 = rem2 || rem1;
     break;
   case 1:
     soft1 = rem1;
     soft2 = rem2;
     break;
   }
   // Initialization for the exponential ("soft") mass distribution.
   static const int max_loop = 1000;
   int counter = 0;
   Energy Mc1 = ZERO, Mc2 = ZERO, m1=ZERO, m2=ZERO, m=ZERO;
   tcPDPtr toHadron;
   bool toDiQuark(false);
   PPtr newPtr1 = PPtr(),newPtr2 = PPtr();
   PDPtr diquark;
   bool succeeded = false;
   Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2;
   do {
     succeeded = false;
     ++counter;
 
     // get a flavour for the qqbar pair
     drawNewFlavour(newPtr1,newPtr2,cluster);
     
     // randomly pick which will be (anti)diquark and which a mesonic cluster
     if(UseRandom::rndbool()) {
       swap(iq1,iq2);
       swap(rem1,rem2);
     }
     // check first order
     if(cantMakeHadron(ptrQ[iq1], newPtr1) || !spectrum()->canMakeDiQuark(ptrQ[iq2], newPtr2)) {
       swap(newPtr1,newPtr2);
     }
     // check again
     if(cantMakeHadron(ptrQ[iq1], newPtr1) || !spectrum()->canMakeDiQuark(ptrQ[iq2], newPtr2)) {
       throw Exception()
 	<< "ClusterFissioner cannot split the cluster ("
 	<< ptrQ[iq1]->PDGName() << ' ' << ptrQ[iq2]->PDGName()
 	<< ") into a hadron and diquark.\n" << Exception::runerror;
     }
     // Check that new clusters can produce particles and there is enough
     // phase space to choose the drawn flavour
     m1 = ptrQ[iq1]->data().constituentMass();
     m2 = ptrQ[iq2]->data().constituentMass();
     m  = newPtr1->data().constituentMass();
     // Do not split in the case there is no phase space available
     if(mmax <  m1+m + m2+m) continue;
 
     pQ1.setMass(m1);
     pQone.setMass(m);
     pQtwo.setMass(m);
     pQ2.setMass(m2);
 
     bool failure = drawNewMasses(mmax, soft1, soft2, pClu1, pClu2,
 					    ptrQ[iq1], pQ1, newPtr1, pQone,
 					    newPtr2, pQtwo, ptrQ[iq1], pQ2);
 
 		if (failure) continue;
 
     Mc1 = pClu1.mass();
 		Mc2 = pClu2.mass();
 
     if(Mc1 < m1+m || Mc2 < m+m2 || Mc1+Mc2 > mmax) continue;
 
     if ( _phaseSpaceWeights ) {
 		if ( phaseSpaceVeto(mmax,Mc1,Mc2,m,m1,m2) )
 			continue;
     }
     
     // check if need to force meson clster to hadron
     toHadron = _hadronSpectrum->chooseSingleHadron(ptrQ[iq1]->dataPtr(), newPtr1->dataPtr(),Mc1);
     if(toHadron) { Mc1 = toHadron->mass(); pClu1.setMass(Mc1); }
     // check if need to force diquark cluster to be on-shell
     toDiQuark = false;
     diquark = spectrum()->makeDiquark(ptrQ[iq2]->dataPtr(), newPtr2->dataPtr());
     if(Mc2 < diquark->constituentMass()) {
       Mc2 = diquark->constituentMass(); pClu2.setMass(Mc2);
       toDiQuark = true;
     }
     // if a beam cluster not allowed to decay to hadrons
     if(cluster->isBeamCluster() && toHadron && softUEisOn)
       continue;
     // Check if the decay kinematics is still possible: if not then
     // force the one-hadron decay for the other cluster as well.
     if(Mc1 + Mc2  >  mmax) {
       if(!toHadron) {
 	toHadron = _hadronSpectrum->chooseSingleHadron(ptrQ[iq1]->dataPtr(), newPtr1->dataPtr(),mmax-Mc2);
 	if(toHadron) { Mc1 = toHadron->mass(); pClu1.setMass(Mc1); }
       }
       else if(!toDiQuark) {
 	Mc2 = _hadronSpectrum->massLightestHadron(ptrQ[iq2]->dataPtr(), newPtr2->dataPtr()); pClu2.setMass(Mc2);
 	toDiQuark = true;
       }
     }
     succeeded = (mmax >= Mc1+Mc2);
   }
   while (!succeeded && counter < max_loop);
   // check no of tries
   if(counter >= max_loop) return cutType();
 
   // Determine the (5-components) momenta (all in the LAB frame)
   Lorentz5Momentum p0Q1 = ptrQ[iq1]->momentum();
   calculateKinematics(pDiQuark,p0Q1,toHadron,toDiQuark,
 		      pClu1,pClu2,pQ1,pQone,pQtwo,pQ2);
   // positions of the new clusters
   LorentzPoint pos1,pos2;
   Lorentz5Momentum pBaryon = pClu2+ptrQ[iother]->momentum();
   calculatePositions(cluster->momentum(), cluster->vertex(), pClu1, pBaryon, pos1, pos2);
   // first the mesonic cluster/meson
   cutType rval;
    if(toHadron) {
      rval.first = produceHadron(toHadron, newPtr1, pClu1, pos1);
      finalhadrons.push_back(rval.first.first);
    }
    else {
      rval.first = produceCluster(ptrQ[iq1], newPtr1, pClu1, pos1, pQ1, pQone, rem1);
    }
    if(toDiQuark) {
      rem2 |= cluster->isBeamRemnant(iother);
      PPtr newDiQuark = diquark->produceParticle(pClu2);
      rval.second = produceCluster(newDiQuark, ptrQ[iother], pBaryon, pos2, pClu2,
       				  ptrQ[iother]->momentum(), rem2);
    }
    else {
      rval.second = produceCluster(ptrQ[iq2], newPtr2, pBaryon, pos2, pQ2, pQtwo, rem2,
 				  ptrQ[iother],cluster->isBeamRemnant(iother));
    }
    cluster->isAvailable(false);
    return rval;
 }
 
 ClusterFissioner::PPair
 ClusterFissioner::produceHadron(tcPDPtr hadron, tPPtr newPtr, const Lorentz5Momentum &a,
 				const LorentzPoint &b) const {
   PPair rval;
   if(hadron->coloured()) {
     rval.first = (_hadronSpectrum->lightestHadron(hadron,newPtr->dataPtr()))->produceParticle();
   }
   else
     rval.first = hadron->produceParticle();
   rval.second = newPtr;
   rval.first->set5Momentum(a);
   rval.first->setVertex(b);
   return rval;
 }
 
 ClusterFissioner::PPair ClusterFissioner::produceCluster(tPPtr ptrQ, tPPtr newPtr,
 							 const Lorentz5Momentum & a,
 				                         const LorentzPoint & b,
 							 const Lorentz5Momentum & c,
 				                         const Lorentz5Momentum & d,
 							 bool isRem,
 							 tPPtr spect, bool remSpect) const {
   PPair rval;
   rval.second = newPtr;
   ClusterPtr cluster = !spect ? new_ptr(Cluster(ptrQ,rval.second)) : new_ptr(Cluster(ptrQ,rval.second,spect));
   rval.first = cluster;
   cluster->set5Momentum(a);
   cluster->setVertex(b);
   assert(cluster->particle(0)->id() == ptrQ->id());
   cluster->particle(0)->set5Momentum(c);
   cluster->particle(1)->set5Momentum(d);
   cluster->setBeamRemnant(0,isRem);
   if(remSpect) cluster->setBeamRemnant(2,remSpect);
   return rval;
 }
 
 namespace {
 	inline double kaellen(double x, double y, double z) {
 		return (x*x-(y+z)*(y+z))*(x*x-(y-z)*(y-z));
 	}
 };
 
 /**
  * Claculate a veto for the phase space weight
  */
 bool ClusterFissioner::phaseSpaceVeto(const Energy Mc, const Energy Mc1, const Energy Mc2,
 		const Energy m, const Energy m1, const Energy m2) const {
 	double M_temp = Mc/GeV;
 	double M1_temp = Mc1/GeV;
 	double M2_temp = Mc2/GeV;
 	double m_temp = m/GeV;
 	double m1_temp = m1/GeV;
 	double m2_temp = m2/GeV;
 	double lam1 = sqrt(kaellen(M1_temp, m1_temp, m_temp));
 	double lam2 = sqrt(kaellen(M2_temp, m2_temp, m_temp));
 	double lam3 = sqrt(kaellen(M_temp,  M1_temp, M2_temp));
 	double ratio;
 	double PSweight = pow(lam1*lam2*lam3,_dim-3.)*pow(M1_temp*M2_temp,2.-_dim);
 	// overestimate only possible for dim>=3.0
 	assert(_dim>=3.0);
 	double overEstimate = _dim>=4.0 ? pow(M_temp,4.*_dim-14.):pow(M_temp,2*(_dim-3.0))/pow((m1_temp+m_temp)*(m2_temp+m_temp),4.0-_dim);
 	ratio = PSweight/overEstimate;
 	// if (!(ratio>=0)) std::cout << "M "<<M_temp<<" M1 "<<M1_temp<<" M2 "<<M2_temp<<" m1 "<<m1_temp<<" m2 "<<m2_temp<<" m "<<m_temp<<"\n\n";
 	assert (ratio >= 0);
 	assert (ratio <= 1);
 	return (UseRandom::rnd()>ratio);
 }
 
 
 /**
  * Calculate the masses and possibly kinematics of the cluster
  * fission at hand; if claculateKineamtics is perfomring non-trivial
  * steps kinematics claulcated here will be overriden. Currentl;y resorts to the default
  */
 bool ClusterFissioner::drawNewMasses(const Energy Mc, bool soft1, bool soft2,
 		Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2,
 		tcPPtr ptrQ1,    const Lorentz5Momentum& pQ1, 
 		tcPPtr, const Lorentz5Momentum& pQone,
 		tcPPtr, const Lorentz5Momentum& pQtwo,
 		tcPPtr ptrQ2,    const Lorentz5Momentum& pQ2) const {
 	switch (_massSampler)
 	{
 		case 0:
 			return drawNewMassesDefault(Mc, soft1, soft2, pClu1, pClu2, ptrQ1, pQ1, pQone, pQtwo, ptrQ2, pQ2);
 			break;
 		case 1: 
 			return drawNewMassesUniform(Mc, pClu1, pClu2, pQ1, pQone, pQtwo, pQ2);
 			break;
 		case 2:
 			return drawNewMassesPhaseSpace(Mc, pClu1, pClu2, pQ1, pQone, pQtwo, pQ2);
 			break;
 		case 3:
 			return drawNewMassesPhaseSpaceExtended(Mc, pClu1, pClu2, pQ1, pQone, pQtwo, pQ2);
 			break;
 		default:
 			assert(false);
 	}
 	return false;// failure
 }
 
 
 
 /**
  * Calculate the masses and possibly kinematics of the cluster
  * fission at hand; if claculateKineamtics is perfomring non-trivial
  * steps kinematics claulcated here will be overriden. Currentl;y resorts to the default
  */
 bool ClusterFissioner::drawNewMassesDefault(const Energy Mc, bool soft1, bool soft2,
 		Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2,
 		tcPPtr ptrQ1, const Lorentz5Momentum& pQ1, 
 		const Lorentz5Momentum& pQone,
 		const Lorentz5Momentum& pQtwo,
 		tcPPtr ptrQ2,  const Lorentz5Momentum& pQ2) const {
 
 
 	// power for splitting
 	double exp1 = !spectrum()->isExotic(ptrQ1->dataPtr()) ? _pSplitLight : _pSplitExotic;
 	double exp2 = !spectrum()->isExotic(ptrQ2->dataPtr()) ? _pSplitLight : _pSplitExotic;
 	for ( const long& id : spectrum()->heavyHadronizingQuarks() ) {
 		assert(_pSplitHeavy.find(id) != _pSplitHeavy.end());
 		if ( spectrum()->hasHeavy(id,ptrQ1->dataPtr()) ) exp1 = _pSplitHeavy.find(id)->second;
 		if ( spectrum()->hasHeavy(id,ptrQ2->dataPtr()) ) exp2 = _pSplitHeavy.find(id)->second;
 	}
 
 	Energy M1 = drawChildMass(Mc,pQ1.mass(),pQ2.mass(),pQone.mass(),exp1,soft1);
 	Energy M2 = drawChildMass(Mc,pQ2.mass(),pQ1.mass(),pQtwo.mass(),exp2,soft2);
 
 	pClu1.setMass(M1);
 	pClu2.setMass(M2);
 
 	return false; // succeeds
 }
 
 
 /**
  * Sample the masses for flat phase space
  * */
 bool ClusterFissioner::drawNewMassesUniform(const Energy Mc,
 		Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2,
 		const Lorentz5Momentum& pQ1, 
 		const Lorentz5Momentum& pQone,
 		const Lorentz5Momentum& pQtwo,
 		const Lorentz5Momentum& pQ2) const {
 
 	Energy M1,M2;
 	const Energy m1 = pQ1.mass();
 	const Energy m2 = pQ2.mass();
 	const Energy m  = pQone.mass();
 	const Energy M1min = m1 + m;
 	const Energy M2min = m2 + m;
 	const Energy M1max = Mc - M2min;
 	const Energy M2max = Mc - M1min;
 
 	assert(M1max-M1min>ZERO);
 	assert(M2max-M2min>ZERO);
 
 	double r1;
 	double r2;
 
 	int counter = 0;
 	const int max_counter = 100;
 
 	while (counter < max_counter) {
 		r1 = UseRandom::rnd();
 		r2 = UseRandom::rnd();
 
 		M1 = (M1max-M1min)*r1 + M1min;
 		M2 = (M2max-M2min)*r2 + M2min;
 
 		counter++;
 		if ( Mc > M1 + M2) break;
 	}
 
 	if (counter==max_counter
 			|| Mc < M1 + M2
 			|| M1 <= M1min
 			|| M2 <= M2min ) return true; // failure
 
 	pClu1.setMass(M1);
 	pClu2.setMass(M2);
 
 	return false; // succeeds
 }
 
 
 
 /**
  * Sample the masses for flat phase space
  * */
 bool ClusterFissioner::drawNewMassesPhaseSpace(const Energy Mc,
 		Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2,
 		const Lorentz5Momentum& pQ1, 
 		const Lorentz5Momentum& pQone,
 		const Lorentz5Momentum& pQtwo,
 		const Lorentz5Momentum& pQ2) const {
 
-	Energy M1,M2;
+	Energy M1,M2,MuS;
 	const Energy m1 = pQ1.mass();
 	const Energy m2 = pQ2.mass();
 	const Energy m  = pQone.mass();
 	const Energy M1min = m1 + m;
 	const Energy M2min = m2 + m;
-	const Energy M1max = Mc - M2min;
-	const Energy M2max = Mc - M1min;
+	// const Energy M1max = Mc - M2min;
+	// const Energy M2max = Mc - M1min;
 
-	assert(M1max-M1min>ZERO);
-	assert(M2max-M2min>ZERO);
+	// assert(M1max-M1min>ZERO);
+	// assert(M2max-M2min>ZERO);
 
 	double r1;
 	double r2;
 
 	int counter = 0;
 	const int max_counter = 200;
+	// const Energy MuMminS = M1min + M2min;
+	// const Energy MuMminD = M1min - M2min;
+	const Energy MuMax = Mc - (M1min+M2min);
 
 	while (counter < max_counter) {
 		r1 = UseRandom::rnd();
 		r2 = UseRandom::rnd();
 
 		// TODO make this more efficient
-		M1 = (M1max-M1min)*r1 + M1min;
-		M2 = (M2max-M2min)*r2 + M2min;
+		// M1 = (M1max-M1min)*r1 + M1min;
+		// M2 = (M2max-M2min)*r2 + M2min;
+
+		MuS = MuMax * sqrt(r1);
+		// MD = 2*MS*r2 - MS + MuMminD;
+
+		M1 = M1min + MuS * r2;
+		M2 = M2min + MuS * (1.0 - r2);
 
 		counter++;
-		if ( Mc <= M1 + M2) continue;
-		if ( M1 <= M1min  ) continue;
-		if ( M2 <= M2min  ) continue;
+
+		// Automatically satisfied
+		// if ( Mc <= M1 + M2) std::cout << "Mc "<< Mc/GeV << " M1 "<< M1/GeV <<" M2 " <<M2/GeV << std::endl;;
+		// if ( M1 <= M1min  ) std::cout << "M1 "<< M1/GeV <<" M1min " <<M1min/GeV << std::endl;;
+		// if ( M2 <= M2min  ) std::cout << "M2 "<< M2/GeV <<" M2min " <<M2min/GeV << std::endl;;
+		// assert( Mc > M1 + M2) ;
+		// assert( M1 > M1min  ) ;
+		// assert( M2 > M2min  ) ;
+		// if ( Mc <= M1 + M2) continue;
+		// if ( M1 <= M1min  ) continue;
+		// if ( M2 <= M2min  ) continue;
 		if (!phaseSpaceVeto(Mc,M1,M2,m,m1,m2) ) break; // For FlatPhaseSpace sampling vetoing
 	}
-	if (counter==max_counter
-			|| Mc < M1 + M2
-			|| M1 <= M1min
-			|| M2 <= M2min ) return true; // failure
+	if (counter==max_counter) return true; // failure
 
 	pClu1.setMass(M1);
 	pClu2.setMass(M2);
 
 
 	return false; // succeeds
 }
 
 
 /**
  * Sample the masses for flat phase space with modulation e.g. here
  * FlatPhaseSpace*(M1*M2)**alpha
  * */
 bool ClusterFissioner::drawNewMassesPhaseSpaceExtended(const Energy Mc,
 		Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2,
 		const Lorentz5Momentum& pQ1, 
 		const Lorentz5Momentum& pQone,
 		const Lorentz5Momentum& pQtwo,
 		const Lorentz5Momentum& pQ2) const {
 
 	Energy M1,M2;
 	const Energy m1 = pQ1.mass();
 	const Energy m2 = pQ2.mass();
 	const Energy m  = pQone.mass();
 	const Energy M1min = m1 + m;
 	const Energy M2min = m2 + m;
 	const Energy M1max = Mc - M2min;
 	const Energy M2max = Mc - M1min;
 
 	assert(M1max-M1min>ZERO);
 	assert(M2max-M2min>ZERO);
 
 	double r1;
 	double r2;
 
 	int counter = 0;
 	const int max_counter = 200;
 
 	const int alpha = 8;
 
 	while (counter < max_counter) {
 		r1 = UseRandom::rnd();
 		r2 = UseRandom::rnd();
 
 		// TODO make this more efficient
 		// Uniform sampling
 		// M1 = (M1max-M1min)*r1 + M1min;
 		// M2 = (M2max-M2min)*r2 + M2min;
 		// Power sampling giving (M1*M2)**alpha
 		M1 = M1min * pow( 1.0 - r1 + r1 * pow(M1max/M1min,alpha+1.0) , 1.0/(alpha+1.0));
 		M2 = M2min * pow( 1.0 - r2 + r2 * pow(M2max/M2min,alpha+1.0) , 1.0/(alpha+1.0));
 
 		counter++;
 		if ( Mc <= M1 + M2) continue;
 		if ( M1 <= M1min  ) continue;
 		if ( M2 <= M2min  ) continue;
 		if (!phaseSpaceVeto(Mc,M1,M2,m,m1,m2) ) break; // For FlatPhaseSpace sampling vetoing
 	}
 	if (counter==max_counter
 			|| Mc < M1 + M2
 			|| M1 <= M1min
 			|| M2 <= M2min ) return true; // failure
 
 	pClu1.setMass(M1);
 	pClu2.setMass(M2);
 
 
 	return false; // succeeds
 }
 
 
 void ClusterFissioner::drawNewFlavourDiquarks(PPtr& newPtrPos,PPtr& newPtrNeg,
 		const ClusterPtr & clu) const {
 
 	// Flavour is assumed to be only  u, d, s,  with weights
 	// (which are not normalized probabilities) given
 	// by the same weights as used in HadronsSelector for
 	// the decay of clusters into two hadrons.
 
 	unsigned hasDiquarks=0;
 	assert(clu->numComponents()==2);
 	tcPDPtr pD1=clu->particle(0)->dataPtr();
 	tcPDPtr pD2=clu->particle(1)->dataPtr();
 	bool isDiq1=DiquarkMatcher::Check(pD1->id());
 	if (isDiq1) hasDiquarks++;
 	bool isDiq2=DiquarkMatcher::Check(pD2->id());
 	if (isDiq2) hasDiquarks++;
 	assert(hasDiquarks<=2);
 	Energy Mc=(clu->momentum().mass());
 	// if (fabs(clu->momentum().massError() )>1e-14) std::cout << "Mass inconsistency CF : " << std::scientific  << clu->momentum().massError() <<"\n";
 	// Not allow yet Diquark Clusters 
 	// if ( hasDiquarks>=1 || Mc < spectrum()->massLightestBaryonPair(pD1,pD2) )
 	// return drawNewFlavour(newPtrPos,newPtrNeg);
 
   Energy minMass;
   Selector<long> choice;
   // int countQ=0;
   // int countDiQ=0;
   // adding quark-antiquark pairs to the selection list
   for ( const long& id : spectrum()->lightHadronizingQuarks() ) {
 	  // TODO uncommenting below gives sometimes 0 selection possibility,
 	  // maybe need to be checked in the LightClusterDecayer and ColourReconnector
 	  // if (Mc < spectrum()->massLightestHadronPair(pD1,pD2)) continue;
 	  // countQ++;
 	  if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id);
 	  else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id);
 	  else assert(false);
   }
   // adding diquark-antidiquark pairs to the selection list
   switch (hasDiquarks)
   {
   	case 0:
 		for ( const long& id : spectrum()->lightHadronizingDiquarks() ) {
 			if (_strictDiquarkKinematics) {
 				tPDPtr cand = getParticleData(id);
 				minMass = spectrum()->massLightestHadron(pD2,cand)
 						+ spectrum()->massLightestHadron(cand,pD1);
 			}
 			else minMass = spectrum()->massLightestBaryonPair(pD1,pD2);
 			if (Mc < minMass) continue;
 			// countDiQ++;
 			if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id);
 			else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id);
 			else assert(false);
 		}
   		break;
   	case 1:
 		if (_diquarkClusterFission<1) break;
 		for ( const long& id : spectrum()->lightHadronizingDiquarks() ) {
 			tPDPtr diq = getParticleData(id);
 			if (isDiq1)
 				minMass = spectrum()->massLightestHadron(pD2,diq)
 						+ spectrum()->massLightestBaryonPair(diq,pD1);
 			else
 				minMass = spectrum()->massLightestHadron(pD1,diq)
 						+ spectrum()->massLightestBaryonPair(diq,pD2);
 			if (Mc < minMass) continue;
 			// countDiQ++;
 			if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id);
 			else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id);
 			else assert(false);
 		}
 		break;
   	case 2:
 		if (_diquarkClusterFission<2) break;
 		for ( const long& id : spectrum()->lightHadronizingDiquarks() ) {
 			tPDPtr diq = getParticleData(id);
 			if (Mc < spectrum()->massLightestBaryonPair(pD1,pD2)) {
 				throw Exception() << "Found Diquark Cluster:\n" << *clu << "\nwith  MassCluster = "
 					<< ounit(Mc,GeV) <<" GeV MassLightestBaryonPair = "
 					<< ounit(spectrum()->massLightestBaryonPair(pD1,pD2) ,GeV)
 					<< " GeV cannot decay" << Exception::eventerror;
 			}
 			minMass = spectrum()->massLightestBaryonPair(pD1,diq)
 					+ spectrum()->massLightestBaryonPair(diq,pD2);
 			if (Mc < minMass) continue;
 			// countDiQ++;
 			if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id);
 			else if (_fissionCluster==1) choice.insert(_fissionPwt.find(id)->second,id);
 			else assert(false);
 		}
   		break;
   	default:
   		assert(false);
   }
   assert(choice.size()>0);
   long idNew = choice.select(UseRandom::rnd());
   newPtrPos = getParticle(idNew);
   newPtrNeg = getParticle(-idNew);
   assert(newPtrPos);
   assert(newPtrNeg);
   assert(newPtrPos->dataPtr());
   assert(newPtrNeg->dataPtr());
 
 }
 
 void ClusterFissioner::drawNewFlavourQuarks(PPtr& newPtrPos,PPtr& newPtrNeg) const {
 
   // Flavour is assumed to be only  u, d, s,  with weights
   // (which are not normalized probabilities) given
   // by the same weights as used in HadronsSelector for
   // the decay of clusters into two hadrons.
 
 
   Selector<long> choice;
   switch(_fissionCluster){
   case 0:
     for ( const long& id : spectrum()->lightHadronizingQuarks() )
       choice.insert(_hadronSpectrum->pwtQuark(id),id);
     break;
   case 1:
     for ( const long& id : spectrum()->lightHadronizingQuarks() )
       choice.insert(_fissionPwt.find(id)->second,id);
     break;
   default :
     assert(false);
   }
   long idNew = choice.select(UseRandom::rnd());
   newPtrPos = getParticle(idNew);
   newPtrNeg = getParticle(-idNew);
   assert (newPtrPos);
   assert(newPtrNeg);
   assert (newPtrPos->dataPtr());
   assert(newPtrNeg->dataPtr());
 
 }
 
 void ClusterFissioner::drawNewFlavourEnhanced(PPtr& newPtrPos,PPtr& newPtrNeg,
                                               Energy2 mass2) const {
 
   if ( spectrum()->gluonId() != ParticleID::g )
     throw Exception() << "strange enhancement only working with Standard Model hadronization"
 		      << Exception::runerror;
   
   // Flavour is assumed to be only  u, d, s,  with weights
   // (which are not normalized probabilities) given
   // by the same weights as used in HadronsSelector for
   // the decay of clusters into two hadrons.
 
     double prob_d = 0.;
     double prob_u = 0.;
     double prob_s = 0.;
     double scale = abs(double(sqr(_m0Fission)/mass2));
     // Choose which splitting weights you wish to use
 switch(_fissionCluster){
   // 0: ClusterFissioner and ClusterDecayer use the same weights
   case 0:
     prob_d = _hadronSpectrum->pwtQuark(ParticleID::d);
      prob_u = _hadronSpectrum->pwtQuark(ParticleID::u);
      /* Strangeness enhancement:
         Case 1: probability scaling
         Case 2: Exponential scaling
      */
      if (_enhanceSProb == 1)
         prob_s = (_maxScale < scale) ? 0. : pow(_hadronSpectrum->pwtQuark(ParticleID::s),scale);
      else if (_enhanceSProb == 2)
         prob_s = (_maxScale < scale) ? 0. : exp(-scale);
     break;
     /* 1: ClusterFissioner uses its own unique set of weights,
        i.e. decoupled from ClusterDecayer */
   case 1:
     prob_d = _fissionPwt.find(ParticleID::d)->second;
     prob_u = _fissionPwt.find(ParticleID::u)->second;
      if (_enhanceSProb == 1)
        prob_s = (_maxScale < scale) ? 0. : pow(_fissionPwt.find(ParticleID::s)->second,scale);
      else if (_enhanceSProb == 2)
         prob_s = (_maxScale < scale) ? 0. : exp(-scale);
     break;
   default:
     assert(false);
   }
 
   int choice = UseRandom::rnd3(prob_u, prob_d, prob_s);
   long idNew = 0;
   switch (choice) {
   case 0: idNew = ThePEG::ParticleID::u; break;
   case 1: idNew = ThePEG::ParticleID::d; break;
   case 2: idNew = ThePEG::ParticleID::s; break;
   }
   newPtrPos = getParticle(idNew);
   newPtrNeg = getParticle(-idNew);
   assert (newPtrPos);
   assert(newPtrNeg);
   assert (newPtrPos->dataPtr());
   assert(newPtrNeg->dataPtr());
 
 }
 
 
 Energy2 ClusterFissioner::clustermass(const ClusterPtr & cluster) const {
   Lorentz5Momentum pIn = cluster->momentum();
   Energy2 endpointmass2 = sqr(cluster->particle(0)->mass() +
   cluster->particle(1)->mass());
   Energy2 singletm2 = pIn.m2();
   // Return either the cluster mass, or the lambda measure
   return (_massMeasure == 0) ? singletm2 : singletm2 - endpointmass2;
 }
 
 
 Energy ClusterFissioner::drawChildMass(const Energy M, const Energy m1,
 				       const Energy m2, const Energy m,
 				       const double expt, const bool soft) const {
 
   /***************************
    * This method, given in input the cluster mass Mclu of an heavy cluster C,
    * made of consituents of masses m1 and m2, draws the masses Mclu1 and Mclu2
    * of, respectively, the children cluster C1, made of constituent masses m1
    * and m, and cluster C2, of mass Mclu2 and made of constituent masses m2
    * and m. The mass is extracted from one of the two following mass
    * distributions:
    *   --- power-like ("normal" distribution)
    *                        d(Prob) / d(M^exponent) = const
    *       where the exponent can be different from the two children C1 (exp1)
    *       and C2 (exponent2).
    *   --- exponential ("soft" distribution)
    *                        d(Prob) / d(M^2) = exp(-b*M)
    *       where b = 2.0 / average.
    * Such distributions are limited below by the masses of
    * the constituents quarks, and above from the mass of decaying cluster C.
    * The choice of which of the two mass distributions to use for each of the
    * two cluster children is dictated by  iRemnant  (see below).
    * If the number of attempts to extract a pair of mass values that are
    * kinematically acceptable is above some fixed number (max_loop, see below)
    * the method gives up and returns false; otherwise, when it succeeds, it
    * returns true.
    *
    * These distributions have been modified from HERWIG:
    * Before these were:
    *      Mclu1 = m1 + (Mclu - m1 - m2)*pow( rnd(), 1.0/exponent1 );
    * The new one coded here is a more efficient version, same density
    * but taking into account 'in phase space from' beforehand
    ***************************/
   // hard cluster
   if(!soft) {
     return pow(UseRandom::rnd(pow((M-m1-m2-m)*UnitRemoval::InvE, expt),
 			      pow(m*UnitRemoval::InvE, expt)), 1./expt
 	       )*UnitRemoval::E + m1;
   }
   // Otherwise it uses a soft mass distribution
   else {
     static const InvEnergy b = 2.0 / _btClM;
     Energy max = M-m1-m2-2.0*m;
     double rmin = b*max;
     rmin = ( rmin < 50 ) ? exp(-rmin) : 0.;
     double r1;
     do {
       r1 = UseRandom::rnd(rmin, 1.0) * UseRandom::rnd(rmin, 1.0);
     }
     while (r1 < rmin);
     return m1 + m - log(r1)/b;
   }
 }
 // Axis ClusterFissioner::sampleDirectionBoostedAngle(const Lorentz5Momentum & pRelCOM) const {
 	// Axis pRelCOM.vect().unit();
 // }
 
 Axis ClusterFissioner::sampleDirectionAligned(const Lorentz5Momentum & pRelCOM) const {
 	return pRelCOM.vect().unit();
 }
 
 Axis ClusterFissioner::sampleDirectionUniform() const {
   double cosTheta = -1 + 2.0 * UseRandom::rnd();
   double sinTheta = sqrt(1.0-cosTheta*cosTheta);
   double Phi = 2.0 * Constants::pi * UseRandom::rnd();
   Axis uClusterUniform(cos(Phi)*cosTheta, sin(Phi)*cosTheta, sinTheta);
   return uClusterUniform.unit();
 }
 Axis ClusterFissioner::sampleDirectionSemiUniform(const Lorentz5Momentum & pRelCOM) const {
   Axis dir=pRelCOM.vect().unit();
   Axis res;
   do {
 	  res=sampleDirectionUniform();
   }
   while (dir*res<0);
   return res;
 }
 Energy ClusterFissioner::sample2DGaussianPT(const Energy & Pcom) const {
 	Energy sigmaPT=_fluxTubeWidth*Pcom;
 	if (_fluxTubeWidth==0) return ZERO;
 	Energy magnitude;
 	Energy pTx,pTy;
 	const int maxcount=100;
 	int count=0;
 	do {
 		if (count>=maxcount) {
 			if (Pcom>0.5*sigmaPT) throw Exception() << "Could not sample direction in ClusterFissioner::sampleDirectionGaussianPT() "
 				<< Exception::eventerror;
 			// Fallback uniform sampling
 			magnitude=UseRandom::rnd()*Pcom;
 			break;
 		}
 		pTx = UseRandom::rndGauss(sigmaPT);
 		pTy = UseRandom::rndGauss(sigmaPT);
 		magnitude=sqrt(sqr(pTx)+sqr(pTy));
 		count++;
 	}
 	while (magnitude>Pcom);
 	return magnitude;
 }
 
 Axis ClusterFissioner::sampleDirectionGaussianPT(const Lorentz5Momentum & pRelCOM,
 		const Energy Mass, const Energy mass1, const Energy mass2) const {
 	Energy pstarCOM = Kinematics::pstarTwoBodyDecay(Mass,mass1,mass2);
 	// sample gaussian pT kick with sigma=pstarCOM*_fluxTubeWidth
 	// to avoid jacobian factor for ClusterFission matrix element
 	Energy pT=sample2DGaussianPT(pstarCOM);
 	Energy2 pT2=pT*pT;
 	double phi=UseRandom::rnd()*2.0*Constants::pi;
 	Energy pTx=pT*cos(phi);
 	Energy pTy=pT*sin(phi);
 
 	Axis pRelativeDir=pRelCOM.vect().unit();
 
 	Axis TrvX = pRelativeDir.orthogonal().unit();
 	Axis TrvY = TrvX.cross(pRelativeDir).unit();
 	Axis pTkick = pTx/pstarCOM*TrvX + pTy/pstarCOM*TrvY;
 	Axis uClusterFluxTube = (pRelativeDir*sqrt(1.0-pT2/sqr(pstarCOM)) + pTkick);
 	return uClusterFluxTube.unit();
 }
 static Energy2 Min(const Lorentz5Momentum p1, const Lorentz5Momentum p2);
 static Energy2 Min(const Lorentz5Momentum p1, const Lorentz5Momentum p2){
 	Energy2 min=p1.e()*p2.e()-p1.vect().mag()*p2.vect().mag();
 	assert(min>=ZERO);
 	return min;
 }
 static Energy2 Max(const Lorentz5Momentum p1, const Lorentz5Momentum p2);
 static Energy2 Max(const Lorentz5Momentum p1, const Lorentz5Momentum p2){
 	Energy2 max=p1.e()*p2.e()+p1.vect().mag()*p2.vect().mag();
 	assert(max>=ZERO);
 	return max;
 }
 
 void ClusterFissioner::calculateKinematics(const Lorentz5Momentum & pClu,
 					   const Lorentz5Momentum & p0Q1,
 					   const bool toHadron1,
 					   const bool toHadron2,
 					   Lorentz5Momentum & pClu1,
 					   Lorentz5Momentum & pClu2,
 					   Lorentz5Momentum & pQ1,
 					   Lorentz5Momentum & pQbar,
 					   Lorentz5Momentum & pQ,
 					   Lorentz5Momentum & pQ2bar) const {
   /******************
    * This method solves the kinematics of the two body cluster decay:
    *    C (Q1 Q2bar)  --->  C1 (Q1 Qbar)  +  C2 (Q Q2bar)
    * In input we receive the momentum of C, pClu, and the momentum
    * of the quark Q1 (constituent of C), p0Q1, both in the LAB frame.
    * Furthermore, two boolean variables inform whether the two fission
    * products (C1, C2) decay immediately into a single hadron (in which
    * case the cluster itself is identify with that hadron) and we do
    * not have to solve the kinematics of the components (Q1,Qbar) for
    * C1 and (Q,Q2bar) for C2.
    * The output is given by the following momenta (all 5-components,
    * and all in the LAB frame):
    *   pClu1 , pClu2   respectively of   C1 , C2
    *   pQ1 , pQbar     respectively of   Q1 , Qbar  in  C1
    *   pQ  , pQ2bar    respectively of   Q  , Q2    in  C2
    * The assumption, suggested from the string model, is that, in C frame,
    * C1 and its constituents Q1 and Qbar are collinear, and collinear to
    * the direction of Q1 in C (that is before cluster decay); similarly,
    * (always in the C frame) C2 and its constituents Q and Q2bar are
    * collinear (and therefore anti-collinear with C1,Q1,Qbar).
    * The solution is then obtained by using Lorentz boosts, as follows.
    * The kinematics of C1 and C2 is solved in their parent C frame,
    * and then boosted back in the LAB. The kinematics of Q1 and Qbar
    * is solved in their parent C1 frame and then boosted back in the LAB;
    * similarly, the kinematics of Q and Q2bar is solved in their parent
    * C2 frame and then boosted back in the LAB. In each of the three
    * "two-body decay"-like cases, we use the fact that the direction
    * of the motion of the decay products is known in the rest frame of
    * their parent. This is obvious for the first case in which the
    * parent rest frame is C; but it is also true in the other two cases
    * where the rest frames are C1 and C2. This is because C1 and C2
    * are boosted w.r.t. C in the same direction where their components,
    * respectively (Q1,Qbar) and (Q,Q2bar) move in C1 and C2 rest frame
    * respectively.
    * Of course, although the notation used assumed that C = (Q1 Q2bar)
    * where Q1 is a quark and Q2bar an antiquark, indeed everything remain
    * unchanged also in all following cases:
    *  Q1 quark, Q2bar antiquark;           --> Q quark;
    *  Q1 antiquark , Q2bar quark;          --> Q antiquark;
    *  Q1 quark, Q2bar diquark;             --> Q quark
    *  Q1 antiquark, Q2bar anti-diquark;    --> Q antiquark
    *  Q1 diquark, Q2bar quark              --> Q antiquark
    *  Q1 anti-diquark, Q2bar antiquark;    --> Q quark
    **************************/
 
 
   if (pClu.mass() < pClu1.mass() + pClu2.mass()
 		  || pClu1.mass()<ZERO
 		  || pClu2.mass()<ZERO  ) {
     throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (A)"
 		      << Exception::eventerror;
   }
 
   // Calculate the unit three-vector, in the Cluster frame,
   // using the sampling funtion sampleDirection in the respective
   // clusters rest frame
 
   // Calculate the momenta of C1 and C2 in the (parent) C frame first,
   // where the direction of C1 is samples according to sampleDirection,
   // and then boost back in the LAB frame.
   //
   // relative momentum in centre of mass of cluster
   Lorentz5Momentum uRelCluster(p0Q1);
   uRelCluster.boost( -pClu.boostVector() );        // boost from LAB to C
 
   // sample direction (options = Default(aligned), Isotropic
   // or FluxTube(gaussian pT kick))
   Axis DirClu = sampleDirection(uRelCluster,
 		  pClu.mass(), pClu1.mass(), pClu2.mass());
   Axis DirClu1;
   Axis DirClu2;
 
   if (_covariantBoost) {
 	  const Lorentz5Momentum p0Q2(pQ2bar.mass(),(pClu-p0Q1).vect());
 	  const Energy M  = pClu.mass();
 	  const Energy M1 = pClu1.mass();
 	  const Energy M2 = pClu2.mass();
 	  const Energy PcomClu=Kinematics::pstarTwoBodyDecay(M,M1,M2);
 
 	  double r=0.0;
 	  double ratio=1.0;
 	  int counter=0;
 	  do {
 		  // Axis DirToClu = sampleDirectionUniform();
 		  Axis DirToClu = sampleDirectionAligned(uRelCluster);
 
 		  Momentum3 pClu1sampVect( PcomClu*DirToClu);
 		  Momentum3 pClu2sampVect(-PcomClu*DirToClu);
 		  pClu1.setMass(M1);
 		  pClu1.setVect(pClu1sampVect);
 		  pClu1.rescaleEnergy();
 		  pClu2.setMass(M2);
 		  pClu2.setVect(pClu2sampVect);
 		  pClu2.rescaleEnergy();
 
 
 		  // if (pClu1.m() < pQ1.mass() + pQbar.mass() ) {
 		  // throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (B)"
 		  // << Exception::eventerror;
 		  // }
 		  // sample direction (options = Default(aligned), Isotropic
 		  // or FluxTube(gaussian pT kick))
 		  DirClu1=sampleDirectionUniform();
 		  DirClu1=sampleDirectionAligned(pClu1);
 
 
 		  // if (pClu2.m() < pQ.mass() + pQ2bar.mass() ) {
 		  // throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics[FluxTube]() (C)"
 		  // << Exception::eventerror;
 		  // }
 		  // sample direction (options = Default(aligned), Isotropic
 		  // or FluxTube(gaussian pT kick))
 		  DirClu2=sampleDirectionUniform();
 		  DirClu2=sampleDirectionAligned(pClu2);
 
 		  // Need to boost constituents first into the pClu rest frame
 		  //  boost from Cluster1 rest frame to Cluster COM Frame
 		  Kinematics::twoBodyDecay(pClu1, pQ1.mass(), pQbar.mass(), DirClu1, pQ1, pQbar);
 		  //  boost from Cluster2 rest frame to Cluster COM Frame 
 		  Kinematics::twoBodyDecay(pClu2, pQ.mass(), pQ2bar.mass(), DirClu2, pQ, pQ2bar);
 		  
 		  Energy PstarQ12=Kinematics::pstarTwoBodyDecay(M,pQ1.mass(),pQ2bar.mass());
 		  Axis z(0,0,1);
 		  Lorentz5Momentum pQ1Hat(pQ1.mass(),PstarQ12*z);
 		  Lorentz5Momentum pQ2Hat(pQ2bar.mass(),-PstarQ12*z);
 
 		  Energy2 p1Dotp2 = pQ1Hat*pQ2Hat;
 		  Energy2 p1Dotp2Max = Max(pQ1Hat,pQ2Hat);
 		  Energy2 p1Dotq = pQ1Hat*pQ;
 		  Energy2 p1DotqMin = Min(pQ1Hat,pQ);
 		  Energy2 p1DotqMax = Max(pQ1Hat,pQ);
 		  Energy2 p2Dotq = pQ2Hat*pQ;
 		  Energy2 p2DotqMin = Min(pQ2Hat,pQ);
 		  Energy2 p2DotqMax = Max(pQ2Hat,pQ);
 		  Energy2 p1Dotqbar = pQ1Hat*pQbar;
 		  Energy2 p1DotqbarMin = Min(pQ1Hat,pQbar);
 		  Energy2 p1DotqbarMax = Max(pQ1Hat,pQbar);
 		  Energy2 p2Dotqbar = pQ2Hat*pQbar;
 		  Energy2 p2DotqbarMin = Min(pQ2Hat,pQbar);
 		  Energy2 p2DotqbarMax = Max(pQ2Hat,pQbar);
 		  Energy2 qDotqbar = pQ*pQbar;
 		  Energy2 qDotqbarMin = Min(pQ,pQbar);
 		  Energy2 qDotqbarMax = Max(pQ,pQbar);
 		  // double Msquared=-GeV2*GeV2*(p1Dotq*p2Dotqbar+p2Dotq*p1Dotqbar-p1Dotp2*qDotqbar)/(qDotqbar*qDotqbar*(p1Dotq+p1Dotqbar)*(p2Dotq+p2Dotqbar));
 		  double Msquared=GeV2*GeV2*(p1Dotp2*qDotqbar-p1Dotq*p2Dotqbar-p2Dotq*p1Dotqbar)/(sqr(qDotqbar+2*sqr(pQ.mass()))*(p1Dotq+p1Dotqbar)*(p2Dotq+p2Dotqbar));
 		  // if (Msquared<0) {std::cout << "Msq<0\n";continue;}
 		  if (Msquared<0) {continue;}
 		  // double overEstimate=GeV2*GeV2*(p1DotqMax*p2DotqbarMax+p2DotqMax*p1DotqbarMax-p1Dotp2Min*qDotqbarMin)/(qDotqbarMin*qDotqbarMin*(p1DotqMin+p1DotqbarMin)*(p2DotqMin+p2DotqbarMin));
 		  double overEstimate=GeV2*GeV2*(p1Dotp2Max*qDotqbarMin-p1DotqMin*p2DotqbarMin-p2DotqMin*p1DotqbarMin)/(sqr(qDotqbarMin+2*sqr(pQ.mass()))*(p1DotqMin+p1DotqbarMin)*(p2DotqMin+p2DotqbarMin));
 		  assert(overEstimate>0);
 		  ratio=Msquared/overEstimate;
 		  if (ratio<0 || ratio>1 || std::isinf(ratio) || std::isnan(ratio) || counter>100000){
 
 			  // std::cout << "Msquared     = " <<std::setprecision(18)<< Msquared << std::endl;
 			  // std::cout << "overestimate = " << overEstimate << std::endl;
 			  // std::cout << "p1Dotp2      = " << p1Dotp2/GeV2 << std::endl;
 			  // std::cout << "p1Dotq      = " << p1Dotq/GeV2 << std::endl;
 			  // std::cout << "p2Dotq      = " << p2Dotq/GeV2 << std::endl;
 			  // std::cout << "p1Dotqbar      = " << p1Dotqbar/GeV2 << std::endl;
 			  // std::cout << "p2Dotqbar      = " << p2Dotqbar/GeV2 << std::endl;
 			  // std::cout << "qDotqbar      = " << qDotqbar/GeV2 << std::endl;
 			  // std::cout << "numerator = " << (p1Dotq*p2Dotqbar+p2Dotq*p1Dotqbar-p1Dotp2*qDotqbar)/(GeV2*GeV2) << std::endl;
 			  // std::cout << "denom = " << (qDotqbar*qDotqbar*(p1Dotq+p1Dotqbar)*(p2Dotq+p2Dotqbar))
 // /(GeV2*GeV2*GeV2*GeV2) << std::endl;
 			  // std::cout << "ratio = " <<std::setprecision(18)<<ratio << std::endl;
 		  }
 		  r=UseRandom::rnd();
 		  counter++;
 	  } while (r<ratio);
 	  // Boost all momenta from the Cluster COM frame to the Lab frame
 	  Kinematics::BoostIntoTwoParticleFrame(pClu.mass(),p0Q1, p0Q2, pClu1, pClu2);
 	  Kinematics::BoostIntoTwoParticleFrame(pClu.mass(),p0Q1, p0Q2, pQ1, pQbar);
 	  Kinematics::BoostIntoTwoParticleFrame(pClu.mass(),p0Q1, p0Q2, pQ, pQ2bar);
   }
   else {
 	  Kinematics::twoBodyDecay(pClu, pClu1.mass(), pClu2.mass(),DirClu, pClu1, pClu2);
 	  DirClu1=DirClu;
 	  DirClu2=DirClu;
 	  // In the case that cluster1 does not decay immediately into a single hadron,
 	  // calculate the momenta of Q1 (as constituent of C1) and Qbar in the
 	  // (parent) C1 frame first, where the direction of Q1 is u.vect().unit(),
 	  // and then boost back in the LAB frame.
 	  if(!toHadron1) {
 		  if (pClu1.m() < pQ1.mass() + pQbar.mass() ) {
 			  throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics[FluxTube]() (B)"
 				  << Exception::eventerror;
 		  }
 		  // sample direction (options = Default(aligned), Isotropic
 		  // or FluxTube(gaussian pT kick))
 		  // Axis DirClu1 = sampleDirection(uRelCluster,
 		  // pClu1.mass(), pQ1.mass(), pQbar.mass());
 
 		  Kinematics::twoBodyDecay(pClu1, pQ1.mass(), pQbar.mass(),
 				  DirClu1, pQ1, pQbar);
 	  }
 
 	  // In the case that cluster2 does not decay immediately into a single hadron,
 	  // Calculate the momenta of Q and Q2bar (as constituent of C2) in the
 	  // (parent) C2 frame first, where the direction of Q is u.vect().unit(),
 	  // and then boost back in the LAB frame.
 	  if(!toHadron2) {
 		  if (pClu2.m() < pQ.mass() + pQ2bar.mass() ) {
 			  throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics[FluxTube]() (C)"
 				  << Exception::eventerror;
 		  }
 		  // sample direction (options = Default(aligned), Isotropic
 		  // or FluxTube(gaussian pT kick))
 		  // Axis DirClu2 = sampleDirection(uRelCluster,
 		  // pClu2.mass(), pQ2bar.mass(), pQ.mass());
 
 		  Kinematics::twoBodyDecay(pClu2, pQ.mass(), pQ2bar.mass(),
 				  DirClu2, pQ, pQ2bar);
 	  }
   }
 
 }
 
 
 void ClusterFissioner::calculatePositions(const Lorentz5Momentum & pClu,
 					  const LorentzPoint & positionClu,
 					  const Lorentz5Momentum & pClu1,
 					  const Lorentz5Momentum & pClu2,
 					  LorentzPoint & positionClu1,
 					  LorentzPoint & positionClu2) const {
   // Determine positions of cluster children.
   // See Marc Smith's thesis, page 127, formulas (4.122) and (4.123).
   Energy Mclu  = pClu.m();
   Energy Mclu1 = pClu1.m();
   Energy Mclu2 = pClu2.m();
 
   // Calculate the unit three-vector, in the C frame, along which
   // children clusters move.
   Lorentz5Momentum u(pClu1);
   u.boost( -pClu.boostVector() );        // boost from LAB to C frame
 
   // the unit three-vector is then  u.vect().unit()
 
   Energy pstarChild = Kinematics::pstarTwoBodyDecay(Mclu,Mclu1,Mclu2);
 
   // First, determine the relative positions of the children clusters
   // in the parent cluster reference frame.
 
   Energy2 mag2 = u.vect().mag2();
   InvEnergy fact = mag2>ZERO ? 1./sqrt(mag2) : 1./GeV;
 
   Length x1 = ( 0.25*Mclu + 0.5*( pstarChild + (sqr(Mclu2) - sqr(Mclu1))/(2.0*Mclu)))/_kappa;
   Length t1 = Mclu/_kappa - x1;
   LorentzDistance distanceClu1( x1 * fact * u.vect(), t1 );
 
   Length x2 = (-0.25*Mclu + 0.5*(-pstarChild + (sqr(Mclu2) - sqr(Mclu1))/(2.0*Mclu)))/_kappa;
   Length t2 = Mclu/_kappa + x2;
   LorentzDistance distanceClu2( x2 * fact * u.vect(), t2 );
 
   // Then, transform such relative positions from the parent cluster
   // reference frame to the Lab frame.
   distanceClu1.boost( pClu.boostVector() );
   distanceClu2.boost( pClu.boostVector() );
 
   // Finally, determine the absolute positions in the Lab frame.
   positionClu1 = positionClu + distanceClu1;
   positionClu2 = positionClu + distanceClu2;
 
 }
 
 bool ClusterFissioner::ProbablityFunction(double scale, double threshold) {
   double cut = UseRandom::rnd(0.0,1.0);
   return 1./(1.+pow(abs((threshold-_probShift)/scale),_probPowFactor)) > cut ? true : false;
 }
 
 bool ClusterFissioner::isHeavy(tcClusterPtr clu) {
   // particle data for constituents
   tcPDPtr cptr[3]={tcPDPtr(),tcPDPtr(),tcPDPtr()};
   for(size_t ix=0;ix<min(clu->numComponents(),3);++ix) {
     cptr[ix]=clu->particle(ix)->dataPtr();
   }
   // different parameters for exotic, bottom and charm clusters
   double clpow = !spectrum()->isExotic(cptr[0],cptr[1],cptr[1]) ? _clPowLight : _clPowExotic;
   Energy clmax = !spectrum()->isExotic(cptr[0],cptr[1],cptr[1]) ? _clMaxLight : _clMaxExotic;
   for ( const long& id : spectrum()->heavyHadronizingQuarks() ) {
     if ( spectrum()->hasHeavy(id,cptr[0],cptr[1],cptr[1]) ) {
       clpow = _clPowHeavy[id];
       clmax = _clMaxHeavy[id];
     }
   }
    // required test for SUSY clusters, since aboveCutoff alone
   // cannot guarantee (Mc > m1 + m2 + 2*m) in cut()
   static const Energy minmass
     = getParticleData(ParticleID::d)->constituentMass();
   bool aboveCutoff = false, canSplitMinimally = false;
   // static kinematic threshold
   if(_kinematicThresholdChoice == 0) {
     aboveCutoff = (
     	      pow(clu->mass()*UnitRemoval::InvE , clpow)
     	      >
     	      pow(clmax*UnitRemoval::InvE, clpow)
     	      + pow(clu->sumConstituentMasses()*UnitRemoval::InvE, clpow)
     	      );
 
     canSplitMinimally = clu->mass() > clu->sumConstituentMasses() + 2.0 * minmass;
   }
   // dynamic kinematic threshold
   else if(_kinematicThresholdChoice == 1) {
     //some smooth probablity function to create a dynamic thershold
     double scale     = pow(clu->mass()/GeV , clpow);
     double threshold = pow(clmax/GeV, clpow)
                      + pow(clu->sumConstituentMasses()/GeV, clpow);
     aboveCutoff = ProbablityFunction(scale,threshold);
 
     scale     = clu->mass()/GeV;
     threshold = clu->sumConstituentMasses()/GeV + 2.0 * minmass/GeV;
 
     canSplitMinimally = ProbablityFunction(scale,threshold);
   }
 
   return aboveCutoff && canSplitMinimally;
 }
diff --git a/Hadronization/ClusterFissioner.h b/Hadronization/ClusterFissioner.h
--- a/Hadronization/ClusterFissioner.h
+++ b/Hadronization/ClusterFissioner.h
@@ -1,664 +1,664 @@
 // -*- C++ -*-
 //
 // ClusterFissioner.h is a part of Herwig - A multi-purpose Monte Carlo event generator
 // Copyright (C) 2002-2019 The Herwig Collaboration
 //
 // Herwig is licenced under version 3 of the GPL, see COPYING for details.
 // Please respect the MCnet academic guidelines, see GUIDELINES for details.
 //
 #ifndef HERWIG_ClusterFissioner_H
 #define HERWIG_ClusterFissioner_H
 
 #include <ThePEG/Interface/Interfaced.h>
 #include "CluHadConfig.h"
 #include "ClusterFissioner.fh"
 #include "HadronSpectrum.h"
 
 namespace Herwig {
 using namespace ThePEG;
 
   //class Cluster;          // forward declaration
 
 /** \ingroup Hadronization
  *  \class ClusterFissioner
  *  \brief This class handles clusters which are too heavy.
  *  \author Philip Stephens
  *  \author Alberto Ribon
  *  \author Stefan Gieseke
  *
  *  This class does the job of chopping up either heavy clusters or beam
  *  clusters in two lighter ones. The procedure is repeated recursively until
  *  all of the cluster children have masses below some threshold values.
  *
  *  For the beam remnant clusters, at the moment what is done is the following.
  *  In the case that the soft underlying event is switched on, the
  *  beam remnant clusters are tagged as not available,
  *  therefore they will not be treated at all during the hadronization.
  *  In the case instead that the soft underlying event is switched off,
  *  then the beam remnant clusters are treated exactly as "normal" clusters,
  *  with the only exception of the mass spectrum used to generate the
  *  cluster children masses. For non-beam clusters, the masses of the cluster
  *  children are draw from a power-like mass distribution; for beam clusters,
  *  according to the value of the flag _IOpRem, either both
  *  children masses are draw from a fast-decreasing exponential mass
  *  distribution (case _IOpRem == 0, or, indendently by
  *  _IOpRem, in the special case that the beam cluster contains two
  *  beam remnants), or one mass from the exponential distribution (corresponding
  *  of the cluster child with the beam remnant) and the other with the usual
  *  power-like distribution (case _IOpRem == 1, which is the
  *  default one, as in Herwig 6.3).
  *
  *  The reason behind the use of a fast-decreasing exponential distribution
  *  is that to avoid a large transverse energy from the many sequential
  *  fissions that would otherwise occur due to the typical large cluster
  *  mass of beam clusters. Using instead an exponential distribution
  *  the masses of the two cluster children will be very small (order of
  *  GeV).
  *
  *  The rationale behind the implementation of the splitting of clusters
  *  has been to preserve *all* of the information about such splitting
  *  process. More explicitly a ThePEG::Step class is passed in and the
  *  new clusters are added to the step as the decay products of the
  *  heavy cluster. This approach has the twofold
  *  advantage to provide all of the information that could be needed
  *  (expecially in future developments), without any information loss,
  *  and furthermore it allows a better debugging.
  *
  * @see \ref ClusterFissionerInterfaces "The interfaces"
  * defined for ClusterFissioner.
  */
 class ClusterFissioner: public Interfaced {
 
 public:
 
   /** @name Standard constructors and destructors. */
   //@{
   /**
    * Default constructor.
    */
    ClusterFissioner();
 
   //@}
 
   /** Splits the clusters which are too heavy.
    *
    * Split either heavy clusters or beam clusters recursively until all
    * children have mass below some threshold. Heavy clusters are those that
    * satisfy the condition
    * \f[ M^P > C^P + S^P \f]
    * where \f$ M \f$ is the clusters mass, \f$ P \f$ is the parameter
    * ClPow, \f$ C \f$ is the parameter ClMax and \f$ S \f$ is the
    * sum of the clusters constituent partons.
    * For beam clusters, they are split only if the soft underlying event
    * is switched off, otherwise these clusters will be tagged as unavailable
    * and they will not be treated by the hadronization altogether.
    * In the case beam clusters will be split, the procedure is exactly
    * the same as for normal non-beam clusters, with the only exception
    * of the mass spectrum from which to draw the masses of the two
    * cluster children (see method drawChildrenMasses for details).
    */
   tPVector fission(ClusterVector & clusters, bool softUEisOn);
 
   /**
    * Return the hadron spectrum
    */
   Ptr<HadronSpectrum>::tptr spectrum() const {
     return _hadronSpectrum;
   }
 
 public:
 
   /** @name Functions used by the persistent I/O system. */
   //@{
   /**
    * Function used to write out object persistently.
    * @param os the persistent output stream written to.
    */
   void persistentOutput(PersistentOStream & os) const;
 
   /**
    * Function used to read in object persistently.
    * @param is the persistent input stream read from.
    * @param version the version number of the object when written.
    */
   void persistentInput(PersistentIStream & is, int version);
   //@}
 
   /**
    * Standard Init function used to initialize the interfaces.
    */
   static void Init();
 
 protected:
 
   /** @name Clone Methods. */
   //@{
   /**
    * Make a simple clone of this object.
    * @return a pointer to the new object.
    */
   virtual IBPtr clone() const;
 
   /** Make a clone of this object, possibly modifying the cloned object
    * to make it sane.
    * @return a pointer to the new object.
    */
   virtual IBPtr fullclone() const;
   //@}
 
 private:
 
   /**
    * Private and non-existent assignment operator.
    */
   ClusterFissioner & operator=(const ClusterFissioner &) = delete;
 
   /**
    * This method directs the splitting of the heavy clusters
    *
    * This method does the splitting of the clusters and all of its cluster
    * children, if heavy. All of these new children clusters are added to the
    * collection of clusters. The method works as follows.
    * Initially the vector contains just the stack of input pointers to the
    * clusters to be split. Then it will be filled recursively by all
    * of the cluster's children that are heavy enough to require
    * to be split. In each loop, the last element of the vector is
    * considered (only once because it is then removed from the vector).
    *
    * \todo is the following still true?
    * For normal, non-beam clusters, a power-like mass distribution
    * is used, whereas for beam clusters a fast-decreasing exponential mass
    * distribution is used instead. This avoids many iterative splitting which
    * could produce an unphysical large transverse energy from a supposed
    * soft beam remnant process.
    */
   void cut(stack<ClusterPtr> &,
 	   ClusterVector&, tPVector & finalhadrons, bool softUEisOn);
 
 public:
 
   /**
    * Definition for easy passing of two particles.
    */
   typedef pair<PPtr,PPtr> PPair;
 
   /**
    * Definition for use in the cut function.
    */
   typedef pair<PPair,PPair> cutType;
 
   /**
    * Splits the input cluster.
    *
    * Split the input cluster (which can be either an heavy non-beam
    * cluster or a beam cluster). The result is two pairs of particles. The
    * first element of each pair is new cluster/hadron, while the second
    * element of each pair is the particle drawn from the vacuum to create
    * the new cluster/hadron.
    * Notice that this method treats also beam clusters by using a different
    * mass spectrum used to generate the cluster child masses (see method
    * drawChildMass).
    */
   //@{
   /**
    *  Split two-component cluster
    */
   virtual cutType cutTwo(ClusterPtr &, tPVector & finalhadrons, bool softUEisOn);
 
   /**
    *  Split three-component cluster
    */
   virtual cutType cutThree(ClusterPtr &, tPVector & finalhadrons, bool softUEisOn);
   //@}
 public:
 
   /**
    * Produces a hadron and returns the flavour drawn from the vacuum.
    *
    * This routine produces a new hadron. It
    * also sets the momentum and vertex to the values given.
    */
   PPair produceHadron(tcPDPtr hadron, tPPtr newPtr, const Lorentz5Momentum &a,
 		      const LorentzPoint &b) const;
 protected:
 
   /**
    * Produces a cluster from the flavours passed in.
    *
    * This routine produces a new cluster with the flavours given by ptrQ and newPtr.
    * The new 5 momentum is a and the parent momentum are c and d. C is for the
    * ptrQ and d is for the new particle newPtr. rem specifies whether the existing
    * particle is a beam remnant or not.
    */
   PPair produceCluster(tPPtr ptrQ, tPPtr newPtr, const Lorentz5Momentum &a,
 		       const LorentzPoint &b, const Lorentz5Momentum &c,
 		       const Lorentz5Momentum &d, const bool rem,
 		       tPPtr spect=tPPtr(), bool remSpect=false) const;
 
   /**
    * Returns the new quark-antiquark pair
    * needed for fission of a heavy cluster. Equal probabilities
    * are assumed for producing  u, d, or s pairs.
    */
   void drawNewFlavourQuarks(PPtr& newPtrPos,PPtr& newPtrNeg) const;
 
   /**
    * Returns the new quark-antiquark pair or diquark -
    * antidiquark pair needed for fission of a heavy cluster.
    */
   void drawNewFlavourDiquarks(PPtr& newPtrPos,PPtr& newPtrNeg,
 		  		const ClusterPtr & clu) const;
 
   /**
    * Returns the new quark-antiquark pair
    * needed for fission of a heavy cluster. Equal probabilities
    * are assumed for producing  u, d, or s pairs.
    * Extra argument is used when performing strangeness enhancement
    */
   void drawNewFlavourEnhanced(PPtr& newPtrPos,PPtr& newPtrNeg, Energy2 mass2) const;
 
 
   /**
    * Produces the mass of a child cluster.
    *
    * Draw the masses \f$M'\f$ of the the cluster child produced
    * by the fission of an heavy cluster (of mass M). m1, m2 are the masses
    * of the constituents of the cluster; m is the mass of the quark extract
    * from the vacuum (together with its antiparticle). The algorithm produces
    * the mass of the cluster formed with consituent m1.
    * Two mass distributions can be used for the child cluster mass:
    * -# power-like mass distribution ("normal" mass) with power exp
    *    \f[ M' = {\rm rnd}((M-m_1-m_2-m)^P, m^p)^{1/P} + m_1 \f]
    *    where \f$ P \f$ is a parameter of the model and \f$ \rm{rnd} \f$ is
    *    the function:
    *    \f[ \rm{rnd}(a,b) = (1-r)a + r b \f]
    *    and here \f$ r \f$ is a random number [0,1].
    * -# fast-decreasing exponential mass distribution ("soft" mass) with
    *    rmin. rmin is given by
    *    \f[ r_{\rm min} = \exp(-b (M - m_1 - m_2 - 2 m))  \f]
    *    where \f$ b \f$ is a parameter of the model. The generated mass is
    *    given by
    *    \f[ M' = m_1 + m - \frac{\log\left(
    *             {\rm rnd}(r_{\rm min}, 1-r_{\rm min})\right)}{b} \f].
    *
    * The choice of which mass distribution should be used for each of the two
    * cluster children is dictated by the parameter soft.
    */
   Energy drawChildMass(const Energy M, const Energy m1, const Energy m2,
 		       const Energy m, const double exp, const bool soft) const;
 
   /**
    * Determine the positions of the two children clusters.
    *
    * This routine generates the momentum of the decay products. It also
    * generates the momentum in the lab frame of the partons drawn out of
    * the vacuum.
    */
   void calculatePositions(const Lorentz5Momentum &pClu,
 		          const LorentzPoint & positionClu,
 			  const Lorentz5Momentum & pClu1,
 			  const Lorentz5Momentum & pClu2,
 			  LorentzPoint & positionClu1,
 			  LorentzPoint & positionClu2 ) const;
 
 protected:
 
   /**
    *  Dimension used to calculate phase space weights
    */
   double dim() const {return _dim;}
 
   /**
    *  Access to soft-cluster parameter
    */
   Energy btClM() const {return _btClM;}
 
   /**
   *  Function that returns either the cluster mass or the lambda measure
   */
   Energy2 clustermass(const ClusterPtr & cluster) const;
   
   /**
    * Draw a new flavour for the given cluster; currently defaults to
    * the default model
    */
   virtual void drawNewFlavour(PPtr& newPtr1, PPtr& newPtr2, const ClusterPtr & cluster) const {
     if (_enhanceSProb == 0){
       if (_diquarkClusterFission>=0) drawNewFlavourDiquarks(newPtr1,newPtr2,cluster);
 	  else drawNewFlavourQuarks(newPtr1,newPtr2);
     }
     else {
       drawNewFlavourEnhanced(newPtr1,newPtr2,clustermass(cluster));
     }
   }
 
   /**
    * Calculate the masses and possibly kinematics of the cluster
    * fission at hand; if claculateKineamtics is perfomring non-trivial
    * steps kinematics claulcated here will be overriden. Currentl;y resorts to the default
    */
   virtual bool drawNewMasses(const Energy Mc, bool soft1, bool soft2,
 					    Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2,
 					    tcPPtr ptrQ1,    const Lorentz5Momentum& pQ1, 
 					    tcPPtr, const Lorentz5Momentum& pQone,
 					    tcPPtr, const Lorentz5Momentum& pQtwo,
 					    tcPPtr ptrQ2,    const Lorentz5Momentum& pQ2) const;
 	/**
    * Calculate the masses and possibly kinematics of the cluster
    * fission at hand; if claculateKineamtics is perfomring non-trivial
    * steps kinematics claulcated here will be overriden. Currentl;y resorts to the default
    */
   bool drawNewMassesDefault(const Energy Mc, bool soft1, bool soft2,
 					    Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2,
 					    tcPPtr ptrQ1, const Lorentz5Momentum& pQ1, 
 					    const Lorentz5Momentum& pQone,
 					    const Lorentz5Momentum& pQtwo,
 					    tcPPtr ptrQ2,  const Lorentz5Momentum& pQ2) const;
 
 
   /**
    * Sample the masses for flat phase space
 	 * */
   bool drawNewMassesUniform(const Energy Mc,
 					    Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2,
 					    const Lorentz5Momentum& pQ1, 
 					    const Lorentz5Momentum& pQone,
 					    const Lorentz5Momentum& pQtwo,
 					    const Lorentz5Momentum& pQ2) const;
 
 
 
   /**
    * Sample the masses for flat phase space
 	 * */
   bool drawNewMassesPhaseSpace(const Energy Mc,
 					    Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2,
 					    const Lorentz5Momentum& pQ1, 
 					    const Lorentz5Momentum& pQone,
 					    const Lorentz5Momentum& pQtwo,
 					    const Lorentz5Momentum& pQ2) const;
 
 
   /**
    * Sample the masses for flat phase space with modulation
 	 * */
   bool drawNewMassesPhaseSpaceExtended(const Energy Mc,
 					    Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2,
 					    const Lorentz5Momentum& pQ1, 
 					    const Lorentz5Momentum& pQone,
 					    const Lorentz5Momentum& pQtwo,
 					    const Lorentz5Momentum& pQ2) const;
   /**
    * Calculate the final kinematics of a heavy cluster decay C->C1 +
    * C2, if not already performed by drawNewMasses
    */
   void calculateKinematics(const Lorentz5Momentum &pClu,
 				   const Lorentz5Momentum &p0Q1,
 				   const bool toHadron1, const bool toHadron2,
 				   Lorentz5Momentum &pClu1, Lorentz5Momentum &pClu2,
 				   Lorentz5Momentum &pQ1, Lorentz5Momentum &pQb,
 				   Lorentz5Momentum &pQ, Lorentz5Momentum &pQ2b) const;
 protected:
 
   /** @name Access members for child classes. */
   //@{
   /**
    *  Access to the hadron selector
    */
   HadronSpectrumPtr hadronSpectrum() const {return _hadronSpectrum;}
   //@}
 
 protected:
 
   /** @name Standard Interfaced functions. */
   //@{
   /**
    * Initialize this object after the setup phase before saving an
    * EventGenerator to disk.
    * @throws InitException if object could not be initialized properly.
    */
   virtual void doinit();
 
 //@}
 
 private:
 
   virtual Axis sampleDirection(
 		  const Lorentz5Momentum & pRelCOM,
 		  const Energy Mass,
 		  const Energy mass1,
 		  const Energy mass2) const {
 	  switch (_kinematics)
 	  {
 	  	case 0:
 	  		// Default
 			return sampleDirectionAligned(pRelCOM);
 	  	case 1:
 	  		// Isotropic
 			return sampleDirectionUniform();
 	  	case 2:
 	  		// FluxTube
 			return sampleDirectionGaussianPT(pRelCOM,
 					Mass, mass1, mass2);
 	  	default:
 	  		assert(false);  
 	  }
   };
   /**
    * Samples the direction of Cluster Fission products uniformly
    **/
   Axis sampleDirectionUniform() const;
 
   /**
    * Samples the direction of Cluster Fission products uniformly
    * but only accepts those flying in the direction of pRelCOM
    **/
   Axis sampleDirectionSemiUniform(const Lorentz5Momentum & pRelCOM) const;
   /**
    * Samples the direction of Cluster Fission products according to Gaussian
    * pT kick
    * */
   Axis sampleDirectionGaussianPT(const Lorentz5Momentum & pRelCOM, const Energy Mass,
 		  const Energy mass1, const Energy mass2) const;
 
   /**
    * Samples the direction of Cluster Fission products according to Default
    * fully aligned D = 1+1 Fission
    * */
   Axis sampleDirectionAligned(const Lorentz5Momentum & pRelCOM) const;
   Energy sample2DGaussianPT(const Energy & Pcom) const;
   
   /**
   * Smooth probability for dynamic threshold cuts:
   * @scale the current scale, e.g. the mass of the cluster,
   * @threshold the physical threshold,
    */
   bool ProbablityFunction(double scale, double threshold);
 
   /**
    * Check if a cluster is heavy enough to split again
    */
   bool isHeavy(tcClusterPtr );
 
   /**
    * Check if a cluster is heavy enough to be at least kinematically able to split
    */
   bool canSplitMinimally(tcClusterPtr, Energy);
 
   /**
    *  Check if can't make a hadron from the partons
    */
   inline bool cantMakeHadron(tcPPtr p1, tcPPtr p2) {
     return ! spectrum()->canBeHadron(p1->dataPtr(), p2->dataPtr());
   }
 
   /**
-   * Claculate a veto for the phase space weight
+   * Calculate a veto for the phase space weight
    */
   bool phaseSpaceVeto(const Energy Mc, const Energy Mc1, const Energy Mc2,
 			     const Energy m, const Energy m1, const Energy m2) const;
 
   /**
    * A pointer to a Herwig::HadronSpectrum object for generating hadrons.
    */
   HadronSpectrumPtr _hadronSpectrum;
 
   /**
    * @name The Cluster max mass,dependant on which quarks are involved, used to determine when
    * fission will occur.
    */
   //@{
   Energy _clMaxLight;
   map<long,Energy> _clMaxHeavy;
   Energy _clMaxExotic;
   //@}
   /**
    * @name The power used to determine when cluster fission will occur.
    */
   //@{
   double _clPowLight;
   map<long,double> _clPowHeavy;
   double _clPowExotic;
   //@}
   /**
    * @name The power, dependant on whic quarks are involved, used in the cluster mass generation.
    */
   //@{
   double _pSplitLight;
   map<long,double> _pSplitHeavy;
   double _pSplitExotic;
 
   /**
    * Weights for alternative cluster fission
    */
   map<long,double> _fissionPwt;
 
   /**
    * Include phase space weights
    */
   bool _phaseSpaceWeights;
 
   /**
    * Dimensionality of phase space weight
    */
   double _dim;
 
   /**
   * Flag used to determine between normal cluster fission and alternative cluster fission
   */
   int _fissionCluster;
 
   /**
   * Flag to choose static or dynamic kinematic thresholds in cluster splittings
   */
   int _kinematicThresholdChoice;
 
   /**
    * Pwt weight for drawing diquark
    */
   double _pwtDIquark;
 
   /**
    * allow clusters to fission to 1 (or 2) diquark clusters or not
    */
   int _diquarkClusterFission;
 
   //@}
    /**
    * Parameter used (2/b) for the beam cluster mass generation.
    * Currently hard coded value.
    */
   Energy _btClM;
 
   /**
    * Flag used to determine what distributions to use for the cluster masses.
    */
   int _iopRem;
 
   /**
    * The string constant
    */
   Tension _kappa;
 
   /**
    * Flag for choosing kinematics of ClusterFission
    */
   int _kinematics;
 
   /**
    * Width of the gaussian sampling for the FluxTube Kinematics
    */
   double _fluxTubeWidth;
 
   /**
   *  Flag that switches between no strangeness enhancement, scaling enhancement,
   *  and exponential enhancement (in numerical order)
   */
   int _enhanceSProb;
 
   /**
   *  Parameter that governs the strangeness enhancement scaling
   */
   Energy _m0Fission;
 
   /**
   *  Flag that switches between mass measures used in strangeness enhancement:
   *  cluster mass, or the lambda measure -  ( m_{clu}^2 - (m_q + m_{qbar})^2 )
   */
   int _massMeasure;
 
   /**
   *  Constant variable which stops the scale from being to large, and not worth
   *  calculating
   */
   const double _maxScale = 20.;
 
  /**
   * Power factor in ClausterFissioner bell probablity function
   */
   double _probPowFactor;
 
   /**
   * Shifts from the center in ClausterFissioner bell probablity function
   */
   double _probShift;
 
   /**
   * Shifts from the kinetic threshold in ClausterFissioner
   */
   Energy2 _kinThresholdShift;
 
   /**
    * Flag for strict diquark selection according to kinematics
    */
   int _strictDiquarkKinematics;
 
   /**
    * Use Covariant boost in ClusterFissioner
    */
   bool _covariantBoost;
 
   /**
    * Flag for allowing Hadron Final states in Cluster Fission
    */
   int _allowHadronFinalStates;
 
   /**
    * Choice of Mass sampling for ClusterFissioner
    */
   int _massSampler;
 
   /**
    * Choice of Phase Space sampling for ClusterFissioner
    */
   int _phaseSpaceSampler;
 
   /**
    * Choice of Matrix Element for ClusterFissioner
    */
   int _matrixElement;
 };
 
 }
 
 #endif /* HERWIG_ClusterFissioner_H */