diff --git a/Decay/HeavyMeson/HQETRadiativeDecayer.cc b/Decay/HeavyMeson/HQETRadiativeDecayer.cc --- a/Decay/HeavyMeson/HQETRadiativeDecayer.cc +++ b/Decay/HeavyMeson/HQETRadiativeDecayer.cc @@ -1,325 +1,326 @@ // -*- C++ -*- // // This is the implementation of the non-inlined, non-templated member // functions of the HQETRadiativeDecayer class. // #include "HQETRadiativeDecayer.h" #include "ThePEG/Interface/ClassDocumentation.h" #include "ThePEG/Interface/ParVector.h" #include "ThePEG/EventRecord/Particle.h" #include "ThePEG/Utilities/DescribeClass.h" #include "ThePEG/Persistency/PersistentOStream.h" #include "ThePEG/Persistency/PersistentIStream.h" #include "ThePEG/Helicity/WaveFunction/TensorWaveFunction.h" #include "ThePEG/Helicity/WaveFunction/VectorWaveFunction.h" #include "ThePEG/Helicity/WaveFunction/ScalarWaveFunction.h" #include "Herwig/Decay/TwoBodyDecayMatrixElement.h" #include "Herwig/Utilities/Kinematics.h" #include "ThePEG/Helicity/epsilon.h" #include "ThePEG/Helicity/HelicityFunctions.h" #include "Herwig/MatrixElement/Matchbox/Base/MatchboxMEBase.h" using namespace Herwig; HQETRadiativeDecayer::HQETRadiativeDecayer(): Ch_(-1.058455), deltaEta_(1./43.7), Lambda_(1.*GeV), incoming_ ({413,423,433, //D* EM decay modes: VtoSV 513,523,533}), //B* EM decay modes: VtoSV outgoingH_({411,421,431, 511,521,531}), outgoingL_({22,22,22, 22,22,22}), type_ ({1, 1, 1, 2, 2, 2}), maxWeight_({1., 1., 1., 1., 1., 1.}) {} void HQETRadiativeDecayer::doinit() { DecayIntegrator::doinit(); // check consistence of the parameters unsigned int isize=incoming_.size(); if(isize!=outgoingH_.size()||isize!=outgoingL_.size()|| isize!=maxWeight_.size()||isize!=type_ .size()) throw InitException() << "Inconsistent parameters in HQETRadiativeDecayer" << Exception::abortnow; // set up the integration channels PhaseSpaceModePtr mode; for(unsigned int ix=0;ixmaxWeight(); } } IBPtr HQETRadiativeDecayer::clone() const { return new_ptr(*this); } IBPtr HQETRadiativeDecayer::fullclone() const { return new_ptr(*this); } void HQETRadiativeDecayer::persistentOutput(PersistentOStream & os) const { os << Ch_ << deltaEta_<< ounit(Lambda_,GeV) << maxWeight_; } void HQETRadiativeDecayer::persistentInput(PersistentIStream & is, int) { is >> Ch_ >> deltaEta_>> iunit(Lambda_,GeV) >> maxWeight_; } // The following static variable is needed for the type // description system in ThePEG. DescribeClass describeHerwigHQETRadiativeDecayer("Herwig::HQETRadiativeDecayer", "HwHMDecay.so"); void HQETRadiativeDecayer::Init() { static ClassDocumentation documentation ("The HQETRadiativeDecayer class performs the EM decays of excited heavy mesons using HQET results."); static Parameter interfaceCh ("Ch", "EM coefficient for heavy meson decays", &HQETRadiativeDecayer::Ch_, -1.058455, -2.0, 2.0, false, false, Interface::limited); static ParVector interfaceMaxWeight ("MaxWeight", "The maximum weight for the decay mode", &HQETRadiativeDecayer::maxWeight_, 0, 0, 0, 0., 100000., false, false, true); static Parameter interfaceDeltaEta ("DeltaEta", "The mixing parameter for eta-pi0 of isospin violating decays", &HQETRadiativeDecayer::deltaEta_, 1./43.7, 0.0, 1., false, false, Interface::limited); static Parameter interfacefLambda ("Lambda", "Strong decays momentum scale", &HQETRadiativeDecayer::Lambda_, GeV, 1.*GeV, .1*GeV, 2.*GeV, false, false, Interface::limited); } int HQETRadiativeDecayer::modeNumber(bool & cc,tcPDPtr parent, const tPDVector & children) const { if(children.size()!=2) return -1; int id(parent->id()); int idbar = parent->CC() ? parent->CC()->id() : id; int id1(children[0]->id()); int id1bar = children[0]->CC() ? children[0]->CC()->id() : id1; int id2(children[1]->id()); int id2bar = children[1]->CC() ? children[1]->CC()->id() : id2; int imode(-1); unsigned int ix(0); cc=false; do { if(id ==incoming_[ix]) { if((id1 ==outgoingH_[ix]&&id2 ==outgoingL_[ix])|| (id2 ==outgoingH_[ix]&&id1 ==outgoingL_[ix])) imode=ix; } if(idbar==incoming_[ix]) { if((id1bar==outgoingH_[ix]&&id2bar==outgoingL_[ix])|| (id2bar==outgoingH_[ix]&&id1bar==outgoingL_[ix])) { imode=ix; cc=true; } } ++ix; } while(ixiSpin()) { case PDT::Spin0: Helicity::ScalarWaveFunction::constructSpinInfo(const_ptr_cast(&part), Helicity::incoming,true); break; case PDT::Spin1: Helicity::VectorWaveFunction::constructSpinInfo(vecIn_,const_ptr_cast(&part), Helicity::incoming,true,false); break; case PDT::Spin2: Helicity::TensorWaveFunction::constructSpinInfo(tensorIn_,const_ptr_cast(&part), Helicity::incoming,true,false); break; default: assert(false); } // set up the spin information for the decay products for(unsigned int ix=0;ixdataPtr()->iSpin()) { case PDT::Spin1: Helicity::VectorWaveFunction::constructSpinInfo(vecOut_,decay[ix], Helicity::outgoing,true,false); break; case PDT::Spin0: Helicity::ScalarWaveFunction::constructSpinInfo(decay[ix],Helicity::outgoing,true); break; default: assert(false); } } } // matrix elememt for the process double HQETRadiativeDecayer::me2(const int, const Particle & part, const tPDVector & outgoing, const vector & momenta, MEOption meopt) const { if(!ME()) { if(abs(type_[imode()])==1 || abs(type_[imode()])==2) { ME(new_ptr(TwoBodyDecayMatrixElement(PDT::Spin1,PDT::Spin0,PDT::Spin1))); } } // stuff for incoming particle if(meopt==Initialize) { unsigned int Type = abs(type_[imode()]); if(Type==1 || Type==2) { rho_ = RhoDMatrix(PDT::Spin1); Helicity::VectorWaveFunction::calculateWaveFunctions(vecIn_,rho_,const_ptr_cast(&part), Helicity::incoming,false); } else { cerr << "Unknown decay mode: type " << type_[imode()] << " for " << part << "\n"; assert(false); } } // calculate the matrix element Energy pcm = Kinematics::pstarTwoBodyDecay(part.mass(),momenta[0].mass(), momenta[1].mass()); if(abs(type_[imode()])==1 || abs(type_[imode()])==2) { // get the polarization vectors + vecOut_.resize(3); for(unsigned int ix=0;ix<3;++ix) { if(ix==1) continue; vecOut_[ix] = HelicityFunctions::polarizationVector(-momenta[1],ix,Helicity::outgoing); } // calculate coupling A InvEnergy A; Energy mQ; double eq(1./3.), eQ(2./3.); if(abs(part.id())==423 || abs(part.id())==523) { eq = -2./3.; } if(abs(type_[imode()])==7) { //i.e. for the c quarks mQ = getParticleData(ParticleID::c)->mass(); } else { //i.e. for the b quarks eQ = -1./3.; mQ = getParticleData(ParticleID::b)->mass(); } if(part.id()<0) { eq *= -1.; eQ *= -1.; } A = eQ/4./mQ*sqrt(SM().alphaEM(sqr(mQ)))+Ch_/Lambda_*eq*sqrt(SM().alphaEM(sqr(Lambda_))); //calculate ME InvEnergy2 fact = 4.*sqrt(8.*M_PI)*A*sqrt(momenta[0].mass()/part.mass())/part.mass(); for(unsigned int ix=0;ix<3;++ix) { for(unsigned int iy=0;iy<3;++iy) { if(iy==1) { (*ME())(ix,iy,0) = 0.; } else { (*ME())(ix,iy,0) = Complex(fact*epsilon(vecOut_[iy],momenta[1],vecIn_[ix]) *part.momentum()); } } } // analytic test of the answer //test = 32.*M_PI*sqr(A)*momenta[0].mass()/part.mass()/3. // *sqr(sqr(part.mass())-sqr(momenta[0].mass()))/sqr(part.mass()); } else { assert(false); } double output = ME()->contract(rho_).real(); // testing // double ratio = (output-test)/(output+test); // generator()->log() << "testing matrix element for " << part.PDGName() << " -> " // << outgoing[0]->PDGName() << " " << outgoing[1]->PDGName() << " " // << output << " " << test << " " << ratio << endl; // isospin factors if(abs(outgoing[1]->id())==ParticleID::pi0) { output *= type_[imode()]>0 ? 0.5 : 0.125*sqr(deltaEta_); } // return the answer return output; } bool HQETRadiativeDecayer::twoBodyMEcode(const DecayMode & dm,int & mecode, double & coupling) const { // int imode(-1); // int id(dm.parent()->id()); // int idbar = dm.parent()->CC() ? dm.parent()->CC()->id() : id; // ParticleMSet::const_iterator pit(dm.products().begin()); // int id1((**pit).id()); // int id1bar = (**pit).CC() ? (**pit).CC()->id() : id1; // ++pit; // int id2((**pit).id()); // int id2bar = (**pit).CC() ? (**pit).CC()->id() : id2; // unsigned int ix(0); bool order(false); // do { // if(id ==incoming_[ix]) { // if(id1==outgoingH_[ix]&&id2==outgoingL_[ix]) { // imode=ix; // order=true; // } // if(id2==outgoingH_[ix]&&id1==outgoingL_[ix]) { // imode=ix; // order=false; // } // } // if(idbar==incoming_[ix]&&imode<0) { // if(id1bar==outgoingH_[ix]&&id2bar==outgoingL_[ix]) { // imode=ix; // order=true; // } // if(id2bar==outgoingH_[ix]&&id1bar==outgoingL_[ix]) { // imode=ix; // order=false; // } // } // ++ix; // } // while(ixmass(); // mecode=7; // return order; } void HQETRadiativeDecayer::dataBaseOutput(ofstream & output, bool header) const { cerr<<"gets is dataBaseOutput\n"; if(header) output << "update decayers set parameters=\""; // parameters for the DecayIntegrator base class DecayIntegrator::dataBaseOutput(output,false); // the rest of the parameters // couplings output << "newdef " << name() << ":Ch " << Ch_ << "\n"; output << "newdef " << name() << ":Lambda " << Lambda_/GeV << "\n"; if(header) output << "\n\" where BINARY ThePEGName=\"" << fullName() << "\";" << endl; for(unsigned int ix=0;ix