diff --git a/src/Event.cc b/src/Event.cc index e196ef0..45e17e0 100644 --- a/src/Event.cc +++ b/src/Event.cc @@ -1,1176 +1,1294 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #include "HEJ/Event.hh" #include #include #include #include #include #include #include #include #include #include #include "fastjet/ClusterSequence.hh" #include "fastjet/JetDefinition.hh" #include "fastjet/PseudoJet.hh" #include "LHEF/LHEF.h" #include "HEJ/Constants.hh" #include "HEJ/exceptions.hh" #include "HEJ/optional.hh" #include "HEJ/PDG_codes.hh" #include "HEJ/RNG.hh" namespace HEJ{ namespace { using std::size_t; constexpr int status_in = -1; constexpr int status_decayed = 2; constexpr int status_out = 1; //! true if leptonic W decay bool valid_W_decay( int const w_type, // sign of W std::vector const & decays ){ if(decays.size() != 2) // no 1->2 decay return false; const int pidsum = decays[0].type + decays[1].type; if( std::abs(pidsum) != 1 || pidsum != w_type ) // correct charge return false; // leptonic decay (only check first, second follows from pidsum) if( w_type == 1 ) // W+ return is_antilepton(decays[0]) || is_neutrino(decays[0]); // W- return is_lepton(decays[0]) || is_antineutrino(decays[0]); } //! true for Z decay to charged leptons bool valid_Z_decay(std::vector const & decays){ if(decays.size() != 2) // no 1->2 decay return false; const int pidsum = decays[0].type + decays[1].type; if( std::abs(pidsum) != 0 ) // correct charge return false; // leptonic decay (only check first, second follows from pidsum) return is_anylepton(decays[0]) && !is_anyneutrino(decays[0]); } //! true if supported decay bool valid_decay(std::vector const & decays){ return valid_W_decay(+1, decays) || // Wp valid_W_decay(-1, decays) || // Wm valid_Z_decay( decays) // Z/gamma ; } /// @name helper functions to determine event type //@{ /** * \brief check if final state valid for HEJ * * check final state has the expected number of valid decays for bosons * and all the rest are quarks or gluons */ bool final_state_ok(Event const & ev){ size_t invalid_decays = ev.decays().size(); std::vector const & outgoing = ev.outgoing(); for( size_t i=0; i0?+1:-1, decay->second) ){ --invalid_decays; } else return false; } // Higgs decays (optional) else if(out.type == ParticleID::h){ if(decay != ev.decays().cend()) --invalid_decays; } // Z decays (required) else if(out.type == ParticleID::Z_photon_mix){ if( decay != ev.decays().cend() && valid_Z_decay(decay->second) ){ --invalid_decays; } else return false; } } else if(! is_parton(out.type)) return false; } // any invalid decays? if(invalid_decays != 0) return false; return true; } /** * returns all EventTypes implemented in HEJ */ size_t implemented_types(std::vector const & bosons){ using namespace event_type; if(bosons.empty()) return FKL | unob | unof | qqxexb | qqxexf | qqxmid; else if(bosons.size() == 1) { switch (bosons[0].type) { case ParticleID::Wp: case ParticleID::Wm: return FKL | unob | unof | qqxexb | qqxexf | qqxmid; case ParticleID::Z_photon_mix: return FKL | unob | unof; case ParticleID::h: return FKL | unob | unof; default: return non_resummable; } } else if(bosons.size() == 2) { if(bosons[0].type == ParticleID::Wp && bosons[1].type == ParticleID::Wp) { return FKL; } return non_resummable; } else { return non_resummable; } } /** * \brief function which determines if type change is consistent with Wp emission. * @param in incoming Particle id * @param out outgoing Particle id * @param qqx Current both incoming/both outgoing? * * \see is_Wm_Change */ bool is_Wp_Change(ParticleID in, ParticleID out, bool qqx){ if(!qqx && (in==-1 || in== 2 || in==-3 || in== 4)) return out== (in-1); if( qqx && (in== 1 || in==-2 || in== 3 || in==-4)) return out==-(in+1); return false; } /** * \brief function which determines if type change is consistent with Wm emission. * @param in incoming Particle id * @param out outgoing Particle id * @param qqx Current both incoming/both outgoing? * * Ensures that change type of quark line is possible by a flavour changing * Wm emission. Allows checking of qqx currents also. */ bool is_Wm_Change(ParticleID in, ParticleID out, bool qqx){ if(!qqx && (in== 1 || in==-2 || in== 3 || in==-4)) return out== (in+1); if( qqx && (in==-1 || in== 2 || in==-3 || in== 4)) return out==-(in-1); return false; } /** * \brief checks if particle type remains same from incoming to outgoing * @param in incoming Particle * @param out outgoing Particle * @param qqx Current both incoming/outgoing? */ bool no_flavour_change(ParticleID in, ParticleID out, bool qqx){ const int qqxCurrent = qqx?-1:1; if(std::abs(in)<=6 || in==pid::gluon) return (in==out*qqxCurrent); else return false; } bool has_2_jets(Event const & event){ return event.jets().size() >= 2; } /** * \brief check if we have a valid Impact factor * @param in incoming Particle * @param out outgoing Particle * @param qqx Current both incoming/outgoing? * @param W_change returns +1 if Wp, -1 if Wm, else 0 */ bool is_valid_impact_factor( ParticleID in, ParticleID out, bool qqx, int & W_change ){ if( no_flavour_change(in, out, qqx) ){ return true; } if( is_Wp_Change(in, out, qqx) ) { W_change+=1; return true; } if( is_Wm_Change(in, out, qqx) ) { W_change-=1; return true; } return false; } //! Returns all possible classifications from the impact factors // the beginning points are changed s.t. after the the classification they // point to the beginning of the (potential) FKL chain // sets W_change: + if Wp change // 0 if no change // - if Wm change // This function can be used with forward & backwards iterators template size_t possible_impact_factors( ParticleID incoming_id, // incoming OutIterator & begin_out, OutIterator const & end_out, // outgoing int & W_change, std::vector const & boson, bool const backward // backward? ){ using namespace event_type; // keep track of all states that we don't test size_t not_tested = qqxmid; if(backward) not_tested |= unof | qqxexf; else not_tested |= unob | qqxexb; // Is this LL current? if( is_valid_impact_factor(incoming_id, begin_out->type, false, W_change) ){ ++begin_out; return not_tested | FKL; } // or NLL current? // -> needs two partons in two different jets if( std::distance(begin_out, end_out)>=2 ){ auto next = std::next(begin_out); // Is this unordered emisson? if( incoming_id!=pid::gluon && begin_out->type==pid::gluon ){ if( is_valid_impact_factor( incoming_id, next->type, false, W_change ) ){ // veto Higgs inside uno assert(next!=end_out); if( !boson.empty() && boson.front().type == ParticleID::h ){ if( (backward && boson.front().rapidity() < next->rapidity()) ||(!backward && boson.front().rapidity() > next->rapidity())) return non_resummable; } begin_out = std::next(next); return not_tested | (backward?unob:unof); } } // Is this QQbar? else if( incoming_id==pid::gluon ){ if( is_valid_impact_factor( begin_out->type, next->type, true, W_change ) ){ // veto Higgs inside qqx assert(next!=end_out); if( !boson.empty() && boson.front().type == ParticleID::h ){ if( (backward && boson.front().rapidity() < next->rapidity()) ||(!backward && boson.front().rapidity() > next->rapidity())) return non_resummable; } begin_out = std::next(next); return not_tested | (backward?qqxexb:qqxexf); } } } return non_resummable; } //! Returns all possible classifications from central emissions // the beginning points are changed s.t. after the the classification they // point to the end of the emission chain // sets W_change: + if Wp change // 0 if no change // - if Wm change template size_t possible_central( OutIterator & begin_out, OutIterator const & end_out, int & W_change, std::vector const & boson ){ using namespace event_type; // if we already passed the central chain, // then it is not a valid all-order state if(std::distance(begin_out, end_out) < 0) return non_resummable; // keep track of all states that we don't test size_t possible = unob | unof | qqxexb | qqxexf; // Find the first non-gluon/non-FKL while( (begin_out->type==pid::gluon) && (begin_out!=end_out) ){ ++begin_out; } // end of chain -> FKL if( begin_out==end_out ){ return possible | FKL; } // is this a qqbar-pair? // needs two partons in two separate jets auto next = std::next(begin_out); if( is_valid_impact_factor( begin_out->type, next->type, true, W_change ) ){ // veto Higgs inside qqx if( !boson.empty() && boson.front().type == ParticleID::h && boson.front().rapidity() > begin_out->rapidity() && boson.front().rapidity() < next->rapidity() ){ return non_resummable; } begin_out = std::next(next); // remaining chain should be pure gluon/FKL for(; begin_out!=end_out; ++begin_out){ if(begin_out->type != pid::gluon) return non_resummable; } return possible | qqxmid; } return non_resummable; } /** * \brief Checks for all event types * @param ev Event * @returns Event Type * */ event_type::EventType classify(Event const & ev){ using namespace event_type; if(! has_2_jets(ev)) return no_2_jets; // currently we can't handle multiple boson states in the ME. So they are // considered "bad_final_state" even though the "classify" could work with // them. if(! final_state_ok(ev)) return bad_final_state; // initialise variables auto const & in = ev.incoming(); // range for current checks auto begin_out{ev.cbegin_partons()}; auto end_out{ev.crbegin_partons()}; assert(std::distance(begin(in), end(in)) == 2); assert(std::distance(begin_out, end_out.base()) >= 2); assert(std::is_sorted(begin_out, end_out.base(), rapidity_less{})); auto const bosons{ filter_AWZH_bosons(ev.outgoing()) }; // keep track of potential W couplings, at the end the sum should be 0 int remaining_Wp = 0; int remaining_Wm = 0; for(auto const & boson : bosons){ if(boson.type == ParticleID::Wp) ++remaining_Wp; else if(boson.type == ParticleID::Wm) ++remaining_Wm; } size_t final_type = ~(no_2_jets | bad_final_state); // check forward impact factor int W_change = 0; final_type &= possible_impact_factors( in.front().type, begin_out, end_out.base(), W_change, bosons, true ); if( final_type == non_resummable ) return non_resummable; if(W_change>0) remaining_Wp-=W_change; else if(W_change<0) remaining_Wm+=W_change; // check backward impact factor W_change = 0; final_type &= possible_impact_factors( in.back().type, end_out, std::make_reverse_iterator(begin_out), W_change, bosons, false ); if( final_type == non_resummable ) return non_resummable; if(W_change>0) remaining_Wp-=W_change; else if(W_change<0) remaining_Wm+=W_change; // check central emissions W_change = 0; final_type &= possible_central( begin_out, end_out.base(), W_change, bosons ); if( final_type == non_resummable ) return non_resummable; if(W_change>0) remaining_Wp-=W_change; else if(W_change<0) remaining_Wm+=W_change; // Check whether the right number of Ws are present if( remaining_Wp != 0 || remaining_Wm != 0 ) return non_resummable; // result has to be unique if( (final_type & (final_type-1)) != 0) return non_resummable; // check that each sub processes is implemented // (has to be done at the end) if( (final_type & ~implemented_types(bosons)) != 0 ) return non_resummable; return static_cast(final_type); } //@} Particle extract_particle(LHEF::HEPEUP const & hepeup, size_t i){ const ParticleID id = static_cast(hepeup.IDUP[i]); const fastjet::PseudoJet momentum{ hepeup.PUP[i][0], hepeup.PUP[i][1], hepeup.PUP[i][2], hepeup.PUP[i][3] }; if(is_parton(id)) return Particle{ id, std::move(momentum), hepeup.ICOLUP[i] }; return Particle{ id, std::move(momentum), {} }; } bool is_decay_product(std::pair const & mothers){ if(mothers.first == 0) return false; return mothers.second == 0 || mothers.first == mothers.second; } } // namespace anonymous Event::EventData::EventData(LHEF::HEPEUP const & hepeup){ parameters.central = EventParameters{ hepeup.scales.mur, hepeup.scales.muf, hepeup.XWGTUP }; size_t in_idx = 0; for (int i = 0; i < hepeup.NUP; ++i) { // skip decay products // we will add them later on, but we have to ensure that // the decayed particle is added before if(is_decay_product(hepeup.MOTHUP[i])) continue; auto particle = extract_particle(hepeup, i); // needed to identify mother particles for decay products particle.p.set_user_index(i+1); if(hepeup.ISTUP[i] == status_in){ if(in_idx > incoming.size()) { throw std::invalid_argument{ "Event has too many incoming particles" }; } incoming[in_idx++] = std::move(particle); } else outgoing.emplace_back(std::move(particle)); } // add decay products for (int i = 0; i < hepeup.NUP; ++i) { if(!is_decay_product(hepeup.MOTHUP[i])) continue; const int mother_id = hepeup.MOTHUP[i].first; const auto mother = std::find_if( begin(outgoing), end(outgoing), [mother_id](Particle const & particle){ return particle.p.user_index() == mother_id; } ); if(mother == end(outgoing)){ throw std::invalid_argument{"invalid decay product parent"}; } const int mother_idx = std::distance(begin(outgoing), mother); assert(mother_idx >= 0); decays[mother_idx].emplace_back(extract_particle(hepeup, i)); } } Event::Event( UnclusteredEvent const & ev, fastjet::JetDefinition const & jet_def, double const min_jet_pt ): Event( Event::EventData{ ev.incoming, ev.outgoing, ev.decays, Parameters{ev.central, ev.variations} }.cluster(jet_def, min_jet_pt) ) {} //! @TODO remove in HEJ 2.2.0 UnclusteredEvent::UnclusteredEvent(LHEF::HEPEUP const & hepeup){ Event::EventData const evData{hepeup}; incoming = evData.incoming; outgoing = evData.outgoing; decays = evData.decays; central = evData.parameters.central; variations = evData.parameters.variations; } void Event::EventData::sort(){ // sort particles std::sort( begin(incoming), end(incoming), [](Particle o1, Particle o2){return o1.p.pz() idx(old_outgoing.size()); std::iota(idx.begin(), idx.end(), 0); std::sort(idx.begin(), idx.end(), [&old_outgoing](size_t i, size_t j){ return old_outgoing[i].rapidity() < old_outgoing[j].rapidity(); }); outgoing.clear(); outgoing.reserve(old_outgoing.size()); for(size_t i: idx) { outgoing.emplace_back(std::move(old_outgoing[i])); } // find decays again if(!decays.empty()){ auto old_decays = std::move(decays); decays.clear(); for(size_t i=0; isecond)); } assert(old_decays.size() == decays.size()); } } namespace { // use valid_X_decay to determine boson type ParticleID reconstruct_type(std::vector const & progeny) { if(valid_W_decay(+1, progeny)) { return ParticleID::Wp; } if(valid_W_decay(-1, progeny)) { return ParticleID::Wm; } if(valid_Z_decay(progeny)) { return ParticleID::Z_photon_mix; } throw not_implemented{ "final state with decay X -> " + name(progeny[0].type) + " + " + name(progeny[1].type) }; } // reconstruct particle with explicit ParticleID Particle reconstruct_boson( std::vector const & progeny, ParticleID const & type ) { Particle progenitor; progenitor.p = progeny[0].p + progeny[1].p; progenitor.type = type; return progenitor; } // reconstruct via call to reconstruct_type Particle reconstruct_boson(std::vector const & progeny) { Particle progenitor {reconstruct_boson(progeny, reconstruct_type(progeny))}; assert(is_AWZH_boson(progenitor)); return progenitor; } + typedef std::vector< std::vector > GroupedParticles; + typedef std::pair > Decay; + typedef std::vector< Decay > Decays; + + // return groups of reconstructable progeny + std::vector group_progeny + ( + std::vector & leptons + ) { + /** + Warning: The partition in to charged/neutral leptons is valid ONLY for WW. + **/ + assert(leptons.size() == 4); + const auto begin_neutrino = std::partition( + begin(leptons), end(leptons), + [](Particle const & p) {return !is_anyneutrino(p);} + ); + + + std::vector neutrinos (begin_neutrino, end(leptons)); + leptons.erase(begin_neutrino, end(leptons)); + + std::sort(begin(leptons), end(leptons), type_less{}); + std::sort(begin(neutrinos), end(neutrinos), type_less{}); + + if(leptons.size() != 2 && neutrinos.size() != 2) { return {}; } + + assert(leptons.size() == 2 && neutrinos.size() == 2); + std::vector< GroupedParticles > candidate_grouping { + {{leptons[0], neutrinos[0]}, {leptons[1], neutrinos[1]}}, + {{leptons[1], neutrinos[0]}, {leptons[0], neutrinos[1]}} + }; + + // erase groupings containing invalid decays + candidate_grouping.erase( + std::remove_if(begin(candidate_grouping), end(candidate_grouping), + [] (GroupedParticles & candidate) -> bool { + return ! std::accumulate( + cbegin(candidate), cend(candidate), true, + [] (bool acc_valid, std::vector const & decay) -> bool { + return acc_valid && valid_decay(decay); + } + ); + } + ), + candidate_grouping.end() + ); + + return candidate_grouping; + } + + // 'best' decay ordering measure + double decay_measure(Particle reconstructed, EWConstants const & params) { + ParticleProperties ref = params.prop(reconstructed.type); + return std::abs(reconstructed.p.m() - ref.mass); + } + + // decay_measure accumulated over decays + double decay_measure(Decays const & decays, EWConstants const & params) { + return + std::accumulate( + cbegin(decays), cend(decays), 0., + [¶ms] (double dm, Decay const & decay) -> double { + return dm + decay_measure(decay.first, params); + } + ); + } + + // select best combination of decays for the event + Decays select_decays + ( + std::vector & leptons, + EWConstants const & ew_parameters + ) { + std::vector groupings = group_progeny(leptons); + + std::vector valid_decays; + valid_decays.reserve(groupings.size()); + + // Reconstruct all groupings + for(GroupedParticles const & group : groupings) { + Decays decays; + for(auto const & progeny : group) { + decays.emplace_back(make_pair(reconstruct_boson(progeny), progeny)); + } + valid_decays.emplace_back(decays); + } + if (valid_decays.empty()) { + throw not_implemented{"No supported intermediate reconstruction available"}; + } + else if (valid_decays.size() == 1) { return valid_decays[0]; } + else { + // select decay with smallest decay_measure + auto selected = std::min_element(cbegin(valid_decays), cend(valid_decays), + [&ew_parameters] (auto const & d1, auto const & d2) -> bool { + return decay_measure(d1, ew_parameters) < decay_measure(d2, ew_parameters); + } + ); + + return *selected; + } + } + } - void Event::EventData::reconstruct_intermediate(EWConstants const & /* ew_parameters */) { + void Event::EventData::reconstruct_intermediate(EWConstants const & ew_parameters) { const auto begin_leptons = std::partition( begin(outgoing), end(outgoing), [](Particle const & p) {return !is_anylepton(p);} ); if(begin_leptons == end(outgoing)) return; assert(is_anylepton(*begin_leptons)); std::vector leptons(begin_leptons, end(outgoing)); outgoing.erase(begin_leptons, end(outgoing)); - if(leptons.size() != 2) { - throw not_implemented{"Final states with one or more than two leptons"}; + if(leptons.empty()) { return; } // nothing to do + else if(leptons.size() == 2) { + outgoing.emplace_back(reconstruct_boson(leptons)); + std::sort(begin(leptons), end(leptons), type_less{}); + decays.emplace(outgoing.size()-1, std::move(leptons)); + } + else if(leptons.size() == 4) { + // select_decays only supports WpWp + Decays valid_decays = select_decays(leptons, ew_parameters); + for(auto &decay : valid_decays) { + outgoing.emplace_back(decay.first); + std::sort(begin(decay.second), end(decay.second), type_less{}); + decays.emplace(outgoing.size()-1, std::move(decay.second)); + } + } + else { + throw not_implemented { + std::to_string(leptons.size()) + + " leptons in the final state" + }; } - std::sort(begin(leptons), end(leptons), type_less{}); - outgoing.emplace_back(reconstruct_boson(leptons)); - decays.emplace(outgoing.size()-1, std::move(leptons)); } Event Event::EventData::cluster( fastjet::JetDefinition const & jet_def, double const min_jet_pt ){ sort(); return Event{ std::move(incoming), std::move(outgoing), std::move(decays), std::move(parameters), jet_def, min_jet_pt }; } Event::Event( std::array && incoming, std::vector && outgoing, std::unordered_map> && decays, Parameters && parameters, fastjet::JetDefinition const & jet_def, double const min_jet_pt ): incoming_{std::move(incoming)}, outgoing_{std::move(outgoing)}, decays_{std::move(decays)}, parameters_{std::move(parameters)}, cs_{ to_PseudoJet( filter_partons(outgoing_) ), jet_def }, min_jet_pt_{min_jet_pt} { jets_ = sorted_by_rapidity(cs_.inclusive_jets(min_jet_pt_)); assert(std::is_sorted(begin(outgoing_), end(outgoing_), rapidity_less{})); type_ = classify(*this); } namespace { //! check that Particles have a reasonable colour bool correct_colour(Particle const & part){ ParticleID id{ part.type }; if(!is_parton(id)) return !part.colour; if(!part.colour) return false; Colour const & col{ *part.colour }; if(is_quark(id)) return col.first != 0 && col.second == 0; if(is_antiquark(id)) return col.first == 0 && col.second != 0; assert(id==ParticleID::gluon); return col.first != 0 && col.second != 0 && col.first != col.second; } //! Connect parton to t-channel colour line & update the line //! returns false if connection not possible template bool try_connect_t(OutIterator const & it_part, Colour & line_colour){ if( line_colour.first == it_part->colour->second ){ line_colour.first = it_part->colour->first; return true; } if( line_colour.second == it_part->colour->first ){ line_colour.second = it_part->colour->second; return true; } return false; } //! Connect parton to u-channel colour line & update the line //! returns false if connection not possible template bool try_connect_u(OutIterator & it_part, Colour & line_colour){ auto it_next = std::next(it_part); if( try_connect_t(it_next, line_colour) && try_connect_t(it_part, line_colour) ){ it_part=it_next; return true; } return false; } } // namespace anonymous bool Event::is_leading_colour() const { if( !correct_colour(incoming()[0]) || !correct_colour(incoming()[1]) ) return false; Colour line_colour = *incoming()[0].colour; std::swap(line_colour.first, line_colour.second); // reasonable colour if(!std::all_of(outgoing().cbegin(), outgoing().cend(), correct_colour)) return false; for(auto it_part = cbegin_partons(); it_part!=cend_partons(); ++it_part){ switch (type()) { case event_type::FKL: if( !try_connect_t(it_part, line_colour) ) return false; break; case event_type::unob: case event_type::qqxexb: { if( !try_connect_t(it_part, line_colour) // u-channel only allowed at impact factor && (std::distance(cbegin_partons(), it_part)!=0 || !try_connect_u(it_part, line_colour))) return false; break; } case event_type::unof: case event_type::qqxexf: { if( !try_connect_t(it_part, line_colour) // u-channel only allowed at impact factor && (std::distance(it_part, cend_partons())!=2 || !try_connect_u(it_part, line_colour))) return false; break; } case event_type::qqxmid:{ auto it_next = std::next(it_part); if( !try_connect_t(it_part, line_colour) // u-channel only allowed at qqx/qxq pair && ( ( !(is_quark(*it_part) && is_antiquark(*it_next)) && !(is_antiquark(*it_part) && is_quark(*it_next))) || !try_connect_u(it_part, line_colour)) ) return false; break; } default: throw std::logic_error{"unreachable"}; } // no colour singlet exchange/disconnected diagram if(line_colour.first == line_colour.second) return false; } return (incoming()[1].colour->first == line_colour.first) && (incoming()[1].colour->second == line_colour.second); } namespace { //! connect incoming Particle to colour flow void connect_incoming(Particle & in, int & colour, int & anti_colour){ in.colour = std::make_pair(anti_colour, colour); // gluon if(in.type == pid::gluon) return; if(in.type > 0){ // quark assert(is_quark(in)); in.colour->second = 0; colour*=-1; return; } // anti-quark assert(is_antiquark(in)); in.colour->first = 0; anti_colour*=-1; return; } //! connect outgoing Particle to t-channel colour flow template void connect_tchannel( OutIterator & it_part, int & colour, int & anti_colour, RNG & ran ){ assert(colour>0 || anti_colour>0); if(it_part->type == ParticleID::gluon){ // gluon if(colour>0 && anti_colour>0){ // on g line => connect to colour OR anti-colour (random) if(ran.flat() < 0.5){ it_part->colour = std::make_pair(colour+2,colour); colour+=2; } else { it_part->colour = std::make_pair(anti_colour, anti_colour+2); anti_colour+=2; } } else if(colour > 0){ // on q line => connect to available colour it_part->colour = std::make_pair(colour+2, colour); colour+=2; } else { assert(colour<0 && anti_colour>0); // on qx line => connect to available anti-colour it_part->colour = std::make_pair(anti_colour, anti_colour+2); anti_colour+=2; } } else if(is_quark(*it_part)) { // quark assert(anti_colour>0); if(colour>0){ // on g line => connect and remove anti-colour it_part->colour = std::make_pair(anti_colour, 0); anti_colour+=2; anti_colour*=-1; } else { // on qx line => new colour colour*=-1; it_part->colour = std::make_pair(colour, 0); } } else if(is_antiquark(*it_part)) { // anti-quark assert(colour>0); if(anti_colour>0){ // on g line => connect and remove colour it_part->colour = std::make_pair(0, colour); colour+=2; colour*=-1; } else { // on q line => new anti-colour anti_colour*=-1; it_part->colour = std::make_pair(0, anti_colour); } } else { // not a parton assert(!is_parton(*it_part)); it_part->colour = {}; } } //! connect to t- or u-channel colour flow template void connect_utchannel( OutIterator & it_part, int & colour, int & anti_colour, RNG & ran ){ OutIterator it_first = it_part++; if(ran.flat()<.5) {// t-channel connect_tchannel(it_first, colour, anti_colour, ran); connect_tchannel(it_part, colour, anti_colour, ran); } else { // u-channel connect_tchannel(it_part, colour, anti_colour, ran); connect_tchannel(it_first, colour, anti_colour, ran); } } } // namespace anonymous bool Event::generate_colours(RNG & ran){ // generate only for HEJ events if(!event_type::is_resummable(type())) return false; assert(std::is_sorted( begin(outgoing()), end(outgoing()), rapidity_less{})); assert(incoming()[0].pz() < incoming()[1].pz()); // positive (anti-)colour -> can connect // negative (anti-)colour -> not available/used up by (anti-)quark int colour = COLOUR_OFFSET; int anti_colour = colour+1; // initialise first connect_incoming(incoming_[0], colour, anti_colour); // reset outgoing colours std::for_each(outgoing_.begin(), outgoing_.end(), [](Particle & part){ part.colour = {};}); for(auto it_part = begin_partons(); it_part!=end_partons(); ++it_part){ switch (type()) { // subleading can connect to t- or u-channel case event_type::unob: case event_type::qqxexb: { if( std::distance(begin_partons(), it_part)==0) connect_utchannel(it_part, colour, anti_colour, ran); else connect_tchannel(it_part, colour, anti_colour, ran); break; } case event_type::unof: case event_type::qqxexf: { if( std::distance(it_part, end_partons())==2) connect_utchannel(it_part, colour, anti_colour, ran); else connect_tchannel(it_part, colour, anti_colour, ran); break; } case event_type::qqxmid:{ auto it_next = std::next(it_part); if( std::distance(begin_partons(), it_part)>0 && std::distance(it_part, end_partons())>2 && ( (is_quark(*it_part) && is_antiquark(*it_next)) || (is_antiquark(*it_part) && is_quark(*it_next)) ) ) connect_utchannel(it_part, colour, anti_colour, ran); else connect_tchannel(it_part, colour, anti_colour, ran); break; } default: // rest has to be t-channel connect_tchannel(it_part, colour, anti_colour, ran); } } // Connect last connect_incoming(incoming_[1], anti_colour, colour); assert(is_leading_colour()); return true; } // generate_colours namespace { bool valid_parton( std::vector const & jets, Particle const & parton, int const idx, double const max_ext_soft_pt_fraction, double const min_extparton_pt ){ // TODO code overlap with PhaseSpacePoint::pass_extremal_cuts if(min_extparton_pt > parton.pt()) return false; if(idx<0) return false; assert(static_cast(jets.size())>=idx); auto const & jet{ jets[idx] }; if( (parton.p - jet).pt()/jet.pt() > max_ext_soft_pt_fraction) return false; return true; } } // this should work with multiple types bool Event::valid_hej_state(double const max_frac, double const min_pt ) const { using namespace event_type; if(!is_resummable(type())) return false; auto const & jet_idx{ particle_jet_indices() }; auto idx_begin{ jet_idx.cbegin() }; auto idx_end{ jet_idx.crbegin() }; auto part_begin{ cbegin_partons() }; auto part_end{ crbegin_partons() }; // always seperate extremal jets if( !valid_parton(jets(), *part_begin, *idx_begin, max_frac, min_pt) ) return false; ++part_begin; ++idx_begin; if( !valid_parton(jets(), *part_end, *idx_end, max_frac, min_pt) ) return false; ++part_end; ++idx_end; // unob -> second parton in own jet if( type() & (unob | qqxexb) ){ if( !valid_parton(jets(), *part_begin, *idx_begin, max_frac, min_pt) ) return false; ++part_begin; ++idx_begin; } if( type() & (unof | qqxexf) ){ if( !valid_parton(jets(), *part_end, *idx_end, max_frac, min_pt) ) return false; ++part_end; // ++idx_end; // last check, we don't need idx_end afterwards } if( type() & qqxmid ){ // find qqx pair auto begin_qqx{ std::find_if( part_begin, part_end.base(), [](Particle const & part) -> bool { return part.type != ParticleID::gluon; } )}; assert(begin_qqx != part_end.base()); long int qqx_pos{ std::distance(part_begin, begin_qqx) }; assert(qqx_pos >= 0); idx_begin+=qqx_pos; if( !( valid_parton(jets(),*begin_qqx, *idx_begin, max_frac,min_pt) && valid_parton(jets(),*(++begin_qqx),*(++idx_begin),max_frac,min_pt) )) return false; } return true; } Event::ConstPartonIterator Event::begin_partons() const { return cbegin_partons(); } Event::ConstPartonIterator Event::cbegin_partons() const { return boost::make_filter_iterator( static_cast(is_parton), cbegin(outgoing()), cend(outgoing()) ); } Event::ConstPartonIterator Event::end_partons() const { return cend_partons(); } Event::ConstPartonIterator Event::cend_partons() const { return boost::make_filter_iterator( static_cast(is_parton), cend(outgoing()), cend(outgoing()) ); } Event::ConstReversePartonIterator Event::rbegin_partons() const { return crbegin_partons(); } Event::ConstReversePartonIterator Event::crbegin_partons() const { return std::reverse_iterator( cend_partons() ); } Event::ConstReversePartonIterator Event::rend_partons() const { return crend_partons(); } Event::ConstReversePartonIterator Event::crend_partons() const { return std::reverse_iterator( cbegin_partons() ); } Event::PartonIterator Event::begin_partons() { return boost::make_filter_iterator( static_cast(is_parton), begin(outgoing_), end(outgoing_) ); } Event::PartonIterator Event::end_partons() { return boost::make_filter_iterator( static_cast(is_parton), end(outgoing_), end(outgoing_) ); } Event::ReversePartonIterator Event::rbegin_partons() { return std::reverse_iterator( end_partons() ); } Event::ReversePartonIterator Event::rend_partons() { return std::reverse_iterator( begin_partons() ); } namespace { void print_momentum(std::ostream & os, fastjet::PseudoJet const & part){ const std::streamsize orig_prec = os.precision(); os < const & col){ if(!col) os << "(no color)"; // American spelling for better alignment else os << "(" <first << ", " <second << ")"; } } std::ostream& operator<<(std::ostream & os, Event const & ev){ const std::streamsize orig_prec = os.precision(); os < rapidity=" < rapidity=" < 0 ){ os << "\nDecays: " << ev.decays().size() << "\n"; for(auto const & decay: ev.decays()){ os < rapidity=" < incoming{ event.incoming() }; // First incoming should be positive pz according to LHE standard // (or at least most (everyone?) do it this way, and Pythia assumes it) if(incoming[0].pz() < incoming[1].pz()) std::swap(incoming[0], incoming[1]); for(Particle const & in: incoming){ result.IDUP.emplace_back(in.type); result.ISTUP.emplace_back(status_in); result.PUP.push_back({in.p[0], in.p[1], in.p[2], in.p[3], in.p.m()}); result.MOTHUP.emplace_back(0, 0); assert(in.colour); result.ICOLUP.emplace_back(*in.colour); } // outgoing for(size_t i = 0; i < event.outgoing().size(); ++i){ Particle const & out = event.outgoing()[i]; result.IDUP.emplace_back(out.type); const int status = event.decays().count(i)?status_decayed:status_out; result.ISTUP.emplace_back(status); result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()}); result.MOTHUP.emplace_back(1, 2); if(out.colour) result.ICOLUP.emplace_back(*out.colour); else{ result.ICOLUP.emplace_back(std::make_pair(0,0)); } } // decays for(auto const & decay: event.decays()){ for(auto const & out: decay.second){ result.IDUP.emplace_back(out.type); result.ISTUP.emplace_back(status_out); result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()}); const size_t mother_idx = 1 + event.incoming().size() + decay.first; result.MOTHUP.emplace_back(mother_idx, mother_idx); result.ICOLUP.emplace_back(0,0); } } assert(result.ICOLUP.size() == num_particles); static constexpr double unknown_spin = 9.; //per Les Houches accord result.VTIMUP = std::vector(num_particles, unknown_spin); result.SPINUP = result.VTIMUP; return result; } }