diff --git a/src/PhaseSpacePoint.cc b/src/PhaseSpacePoint.cc index 9ea93fa..f1c5fd1 100644 --- a/src/PhaseSpacePoint.cc +++ b/src/PhaseSpacePoint.cc @@ -1,631 +1,637 @@ /** * \authors Jeppe Andersen, Tuomas Hapola, Marian Heil, Andreas Maier, Jennifer Smillie * \date 2019 * \copyright GPLv2 or later */ #include "HEJ/PhaseSpacePoint.hh" #include #include #include #include #include "fastjet/ClusterSequence.hh" #include "HEJ/Constants.hh" #include "HEJ/Event.hh" #include "HEJ/JetSplitter.hh" #include "HEJ/kinematics.hh" #include "HEJ/resummation_jet.hh" #include "HEJ/utility.hh" #include "HEJ/PDG_codes.hh" #include "HEJ/event_types.hh" namespace HEJ{ namespace { constexpr int max_jet_user_idx = PhaseSpacePoint::ng_max; bool is_nonjet_parton(fastjet::PseudoJet const & parton){ assert(parton.user_index() != -1); return parton.user_index() > max_jet_user_idx; } bool is_jet_parton(fastjet::PseudoJet const & parton){ assert(parton.user_index() != -1); return parton.user_index() <= max_jet_user_idx; } // user indices for partons with extremal rapidity constexpr int qqxb_idx = -7; constexpr int qqxf_idx = -6; constexpr int unob_idx = -5; constexpr int unof_idx = -4; constexpr int backward_FKL_idx = -3; constexpr int forward_FKL_idx = -2; } namespace { double estimate_ng_mean(std::vector const & Born_jets){ const double delta_y = Born_jets.back().rapidity() - Born_jets.front().rapidity(); assert(delta_y > 0); // Formula derived from fit in arXiv:1805.04446 (see Fig. 2) return 0.975052*delta_y; } } std::vector PhaseSpacePoint::cluster_jets( std::vector const & partons ) const{ fastjet::ClusterSequence cs(partons, param_.jet_param.def); return cs.inclusive_jets(param_.jet_param.min_pt); } bool PhaseSpacePoint::pass_resummation_cuts( std::vector const & jets ) const{ return cluster_jets(jets).size() == jets.size(); } int PhaseSpacePoint::sample_ng(std::vector const & Born_jets){ const double ng_mean = estimate_ng_mean(Born_jets); std::poisson_distribution dist(ng_mean); const int ng = dist(ran_.get()); assert(ng >= 0); assert(ng < ng_max); weight_ *= std::tgamma(ng + 1)*std::exp(ng_mean)*std::pow(ng_mean, -ng); return ng; } void PhaseSpacePoint::copy_AWZH_boson_from(Event const & event){ auto const & from = event.outgoing(); const auto AWZH_boson = std::find_if( begin(from), end(from), [](Particle const & p){ return is_AWZH_boson(p); } ); if(AWZH_boson == end(from)) return; auto insertion_point = std::lower_bound( begin(outgoing_), end(outgoing_), *AWZH_boson, rapidity_less{} ); outgoing_.insert(insertion_point, *AWZH_boson); // copy decay products const int idx = std::distance(begin(from), AWZH_boson); assert(idx >= 0); const auto decay_it = event.decays().find(idx); if(decay_it != end(event.decays())){ const int new_idx = std::distance(begin(outgoing_), insertion_point); assert(new_idx >= 0); assert(outgoing_[new_idx].type == AWZH_boson->type); decays_.emplace(new_idx, decay_it->second); } assert(std::is_sorted(begin(outgoing_), end(outgoing_), rapidity_less{})); } //! \brief relabels qqx-pair with its PDG IDs. //*@param ev Born Event // // This function will label the qqx pair in a qqx event back to // their original types from the input event. void PhaseSpacePoint::label_qqx(Event const & event){ auto const & bornout = event.outgoing(); + bool Wstart = (abs(bornout[0].type)==pid::Wp); const auto backquark = std::find_if( - begin(bornout) + 1 - ((qqxb_)?1:0), end(bornout) - 1 + ((qqxf_)?1:0) , + begin(bornout) + 1 + ((Wstart)?1:0) - ((qqxb_)?1:0), end(bornout) - 1 + ((qqxf_)?1:0) , [](Particle const & s){ return (is_anyquark(s.type)); } ); if(backquark == end(bornout) || (backquark+1)->type==pid::gluon) weight_= 0; auto quark1type = backquark->type; auto quark2type = (backquark+1)->type; if(is_AWZ_boson((backquark+1)->type)) quark2type = (backquark+2)->type; if( !((is_quark(quark1type) && is_antiquark(quark2type)) && !(is_quark(quark2type) && is_antiquark(quark1type))) ){ weight_=0; } auto partons = to_PseudoJet(filter_partons(outgoing_)); fastjet::ClusterSequence cs(partons, event.jet_def()); const auto jets = fastjet::sorted_by_rapidity(cs.inclusive_jets(event.min_jet_pt())); const auto indices = cs.particle_jet_indices({jets}); assert(partons.size() == indices.size()); int qpart=-1; // Find Parton in res event closest to most backward qqx jet in born for (size_t i=0; irapidity(), partons[i].rapidity(), 0.1)){ qpart=i; outgoing_.at(qpart).type = quark1type; outgoing_.at(qpart+1).type = quark2type; break; } } - if(qpart==-1) weight_=0; assert(std::is_sorted(begin(outgoing_), end(outgoing_), rapidity_less{})); } PhaseSpacePoint::PhaseSpacePoint( Event const & ev, PhaseSpacePointConfig conf, HEJ::RNG & ran ): unob_{ev.type() == event_type::unob}, unof_{ev.type() == event_type::unof}, qqxb_{ev.type() == event_type::qqxexb}, qqxf_{ev.type() == event_type::qqxexf}, qqxmid_{ev.type() == event_type::qqxmid}, param_{std::move(conf)}, ran_{ran} { weight_ = 1; const auto Born_jets = sorted_by_rapidity(ev.jets()); const int ng = sample_ng(Born_jets); weight_ /= std::tgamma(ng + 1); const int ng_jets = sample_ng_jets(ng, Born_jets); std::vector out_partons = gen_non_jet( ng - ng_jets, CMINPT, param_.jet_param.min_pt ); const auto qperp = std::accumulate( begin(out_partons), end(out_partons), fastjet::PseudoJet{} ); const auto jets = reshuffle(Born_jets, qperp); if(weight_ == 0.) return; if(! pass_resummation_cuts(jets)){ weight_ = 0.; return; } std::vector jet_partons = split(jets, ng_jets); if(weight_ == 0.) return; rescale_rapidities( out_partons, most_backward_FKL(jet_partons).rapidity(), most_forward_FKL(jet_partons).rapidity() ); if(! cluster_jets(out_partons).empty()){ weight_ = 0.; return; } std::sort(begin(out_partons), end(out_partons), rapidity_less{}); assert( std::is_sorted(begin(jet_partons), end(jet_partons), rapidity_less{}) ); const auto first_jet_parton = out_partons.insert( end(out_partons), begin(jet_partons), end(jet_partons) ); std::inplace_merge( begin(out_partons), first_jet_parton, end(out_partons), rapidity_less{} ); if(! jets_ok(Born_jets, out_partons)){ weight_ = 0.; return; } weight_ *= phase_space_normalisation(Born_jets.size(), out_partons.size()); outgoing_.reserve(out_partons.size() + 1); // one slot for possible A, W, Z, H for(auto & p: out_partons){ outgoing_.emplace_back(Particle{pid::gluon, std::move(p), {}}); } const auto WEmit = std::find_if( begin(ev.outgoing()), end(ev.outgoing()), [](Particle const & s){ return abs(s.type) == pid::Wp; } ); if (WEmit != end(ev.outgoing())){ if(!qqxb_) outgoing_[unob_].type = filter_partons(ev.outgoing())[unob_].type; if(!qqxf_) outgoing_.rbegin()[unof_].type = filter_partons(ev.outgoing()).rbegin()[unof_].type; } else{ most_backward_FKL(outgoing_).type = ev.incoming().front().type; most_forward_FKL(outgoing_).type = ev.incoming().back().type; } if(qqxmid_||qqxb_||qqxf_){ label_qqx(ev); } + + if(! jets_ok(Born_jets, out_partons)){ + weight_ = 0.; + return; + } + copy_AWZH_boson_from(ev); assert(!outgoing_.empty()); reconstruct_incoming(ev.incoming()); } std::vector PhaseSpacePoint::gen_non_jet( int count, double ptmin, double ptmax ){ // heuristic parameters for pt sampling const double ptpar = 1.3 + count/5.; const double temp1 = atan((ptmax - ptmin)/ptpar); std::vector partons(count); for(size_t i = 0; i < (size_t) count; ++i){ const double r1 = ran_.get().flat(); const double pt = ptmin + ptpar*tan(r1*temp1); const double temp2 = cos(r1*temp1); const double phi = 2*M_PI*ran_.get().flat(); weight_ *= 2.0*M_PI*pt*ptpar*temp1/(temp2*temp2); // we don't know the allowed rapidity span yet, // set a random value to be rescaled later on const double y = ran_.get().flat(); partons[i].reset_PtYPhiM(pt, y, phi); // Set user index higher than any jet-parton index // in order to assert that these are not inside jets partons[i].set_user_index(i + 1 + ng_max); assert(ptmin-1e-5 <= partons[i].pt() && partons[i].pt() <= ptmax+1e-5); } assert(std::all_of(partons.cbegin(), partons.cend(), is_nonjet_parton)); return partons; } void PhaseSpacePoint::rescale_rapidities( std::vector & partons, double ymin, double ymax ){ constexpr double ep = 1e-7; for(auto & parton: partons){ assert(0 <= parton.rapidity() && parton.rapidity() <= 1); const double dy = ymax - ymin - 2*ep; const double y = ymin + ep + dy*parton.rapidity(); parton.reset_momentum_PtYPhiM(parton.pt(), y, parton.phi()); weight_ *= dy; assert(ymin <= parton.rapidity() && parton.rapidity() <= ymax); } } namespace { template auto min(T const & a, T const & b, Rest&&... r) { using std::min; return min(a, min(b, std::forward(r)...)); } } double PhaseSpacePoint::probability_in_jet( std::vector const & Born_jets ) const{ assert(std::is_sorted(begin(Born_jets), end(Born_jets), rapidity_less{})); assert(Born_jets.size() >= 2); const double dy = Born_jets.back().rapidity() - Born_jets.front().rapidity(); const double R = param_.jet_param.def.R(); const int njets = Born_jets.size(); const double p_J_y_large = (njets-1)*R*R/(2.*dy); const double p_J_y0 = njets*R/M_PI; return min(p_J_y_large, p_J_y0, 1.); } int PhaseSpacePoint::sample_ng_jets( int ng, std::vector const & Born_jets ){ const double p_J = probability_in_jet(Born_jets); std::binomial_distribution<> bin_dist(ng, p_J); const int ng_J = bin_dist(ran_.get()); weight_ *= std::pow(p_J, -ng_J)*std::pow(1 - p_J, ng_J - ng); return ng_J; } std::vector PhaseSpacePoint::reshuffle( std::vector const & Born_jets, fastjet::PseudoJet const & q ){ if(q == fastjet::PseudoJet{0, 0, 0, 0}) return Born_jets; const auto jets = resummation_jet_momenta(Born_jets, q); if(jets.empty()){ weight_ = 0; return {}; } // additional Jacobian to ensure Born integration over delta gives 1 weight_ *= resummation_jet_weight(Born_jets, q); return jets; } std::vector PhaseSpacePoint::distribute_jet_partons( int ng_jets, std::vector const & jets ){ size_t first_valid_jet = 0; size_t num_valid_jets = jets.size(); const double R_eff = 5./3.*param_.jet_param.def.R(); // if there is an unordered jet too far away from the FKL jets // then extra gluon constituents of the unordered jet would // violate the FKL rapidity ordering if((unob_||qqxb_) && jets[0].delta_R(jets[1]) > R_eff){ ++first_valid_jet; --num_valid_jets; } else if((unof_||qqxf_) && jets[jets.size()-1].delta_R(jets[jets.size()-2]) > R_eff){ --num_valid_jets; } std::vector np(jets.size(), 1); for(int i = 0; i < ng_jets; ++i){ ++np[first_valid_jet + ran_.get().flat() * num_valid_jets]; } weight_ *= std::pow(num_valid_jets, ng_jets); return np; } #ifndef NDEBUG namespace{ bool tagged_FKL_backward( std::vector const & jet_partons ){ return std::find_if( begin(jet_partons), end(jet_partons), [](fastjet::PseudoJet const & p){ return p.user_index() == backward_FKL_idx; } ) != end(jet_partons); } bool tagged_FKL_forward( std::vector const & jet_partons ){ // the most forward FKL parton is most likely near the end of jet_partons; // start search from there return std::find_if( jet_partons.rbegin(), jet_partons.rend(), [](fastjet::PseudoJet const & p){ return p.user_index() == forward_FKL_idx; } ) != jet_partons.rend(); } bool tagged_FKL_extremal( std::vector const & jet_partons ){ return tagged_FKL_backward(jet_partons) && tagged_FKL_forward(jet_partons); } } // namespace anonymous #endif std::vector PhaseSpacePoint::split( std::vector const & jets, int ng_jets ){ return split(jets, distribute_jet_partons(ng_jets, jets)); } bool PhaseSpacePoint::pass_extremal_cuts( fastjet::PseudoJet const & ext_parton, fastjet::PseudoJet const & jet ) const{ if(ext_parton.pt() < param_.min_extparton_pt) return false; return (ext_parton - jet).pt()/jet.pt() < param_.max_ext_soft_pt_fraction; } std::vector PhaseSpacePoint::split( std::vector const & jets, std::vector const & np ){ assert(! jets.empty()); assert(jets.size() == np.size()); assert(pass_resummation_cuts(jets)); const size_t most_backward_FKL_idx = 0 + unob_ + qqxb_; const size_t most_forward_FKL_idx = jets.size() - 1 - unof_ - qqxf_; const auto & jet = param_.jet_param; const JetSplitter jet_splitter{jet.def, jet.min_pt, ran_}; std::vector jet_partons; // randomly distribute jet gluons among jets for(size_t i = 0; i < jets.size(); ++i){ auto split_res = jet_splitter.split(jets[i], np[i]); weight_ *= split_res.weight; if(weight_ == 0) return {}; assert( std::all_of( begin(split_res.constituents), end(split_res.constituents), is_jet_parton ) ); const auto first_new_parton = jet_partons.insert( end(jet_partons), begin(split_res.constituents), end(split_res.constituents) ); // mark uno and extremal FKL emissions here so we can check // their position once all emissions are generated auto extremal = end(jet_partons); if (i == most_backward_FKL_idx){ //FKL backward emission extremal = std::min_element( first_new_parton, end(jet_partons), rapidity_less{} ); extremal->set_user_index(backward_FKL_idx); } else if(((unob_ || qqxb_) && i == 0)){ // unordered/qqxb extremal = std::min_element( first_new_parton, end(jet_partons), rapidity_less{} ); extremal->set_user_index((unob_)?unob_idx:qqxb_idx); } else if (i == most_forward_FKL_idx){ extremal = std::max_element( first_new_parton, end(jet_partons), rapidity_less{} ); extremal->set_user_index(forward_FKL_idx); } else if(((unof_ || qqxf_) && i == jets.size() - 1)){ // unordered/qqxf extremal = std::max_element( first_new_parton, end(jet_partons), rapidity_less{} ); extremal->set_user_index((unof_)?unof_idx:qqxf_idx); } if( extremal != end(jet_partons) && !pass_extremal_cuts(*extremal, jets[i]) ){ weight_ = 0; return {}; } } assert(tagged_FKL_extremal(jet_partons)); std::sort(begin(jet_partons), end(jet_partons), rapidity_less{}); if( !extremal_ok(jet_partons) || !split_preserved_jets(jets, jet_partons) ){ weight_ = 0.; return {}; } return jet_partons; } bool PhaseSpacePoint::extremal_ok( std::vector const & partons ) const{ assert(std::is_sorted(begin(partons), end(partons), rapidity_less{})); if(unob_ && partons.front().user_index() != unob_idx) return false; if(unof_ && partons.back().user_index() != unof_idx) return false; if(qqxb_ && partons.front().user_index() != qqxb_idx) return false; if(qqxf_ && partons.back().user_index() != qqxf_idx) return false; return most_backward_FKL(partons).user_index() == backward_FKL_idx && most_forward_FKL(partons).user_index() == forward_FKL_idx; } bool PhaseSpacePoint::split_preserved_jets( std::vector const & jets, std::vector const & jet_partons ) const{ assert(std::is_sorted(begin(jets), end(jets), rapidity_less{})); const auto split_jets = sorted_by_rapidity(cluster_jets(jet_partons)); // this can happen if two overlapping jets // are both split into more than one parton if(split_jets.size() != jets.size()) return false; for(size_t i = 0; i < split_jets.size(); ++i){ // this can happen if there are two overlapping jets // and a parton is assigned to the "wrong" jet if(!nearby_ep(jets[i].rapidity(), split_jets[i].rapidity(), 1e-2)){ return false; } } return true; } template Particle const & PhaseSpacePoint::most_backward_FKL( std::vector const & partons ) const{ return partons[0 + unob_ + qqxb_]; } template Particle const & PhaseSpacePoint::most_forward_FKL( std::vector const & partons ) const{ const size_t idx = partons.size() - 1 - unof_ - qqxf_; assert(idx < partons.size()); return partons[idx]; } template Particle & PhaseSpacePoint::most_backward_FKL( std::vector & partons ) const{ return partons[0 + unob_ + qqxb_]; } template Particle & PhaseSpacePoint::most_forward_FKL( std::vector & partons ) const{ const size_t idx = partons.size() - 1 - unof_ - qqxf_; assert(idx < partons.size()); return partons[idx]; } namespace { bool contains_idx( fastjet::PseudoJet const & jet, fastjet::PseudoJet const & parton ){ auto const & constituents = jet.constituents(); const int idx = parton.user_index(); return std::find_if( begin(constituents), end(constituents), [idx](fastjet::PseudoJet const & con){return con.user_index() == idx;} ) != end(constituents); } } /** * final jet test: * - number of jets must match Born kinematics * - no partons designated as nonjet may end up inside jets * - all other outgoing partons *must* end up inside jets * - the extremal (in rapidity) partons must be inside the extremal jets * - rapidities must be the same (by construction) */ bool PhaseSpacePoint::jets_ok( std::vector const & Born_jets, std::vector const & partons ) const{ fastjet::ClusterSequence cs(partons, param_.jet_param.def); const auto jets = sorted_by_rapidity(cs.inclusive_jets(param_.jet_param.min_pt)); if(jets.size() != Born_jets.size()) return false; int in_jet = 0; for(size_t i = 0; i < jets.size(); ++i){ assert(jets[i].has_constituents()); for(auto && parton: jets[i].constituents()){ if(is_nonjet_parton(parton)) return false; } in_jet += jets[i].constituents().size(); } const int expect_in_jet = std::count_if( partons.cbegin(), partons.cend(), is_jet_parton ); if(in_jet != expect_in_jet) return false; // note that PseudoJet::contains does not work here if(! ( contains_idx(most_backward_FKL(jets), most_backward_FKL(partons)) && contains_idx(most_forward_FKL(jets), most_forward_FKL(partons)) )) return false; if(unob_ && !contains_idx(jets.front(), partons.front())) return false; if(unof_ && !contains_idx(jets.back(), partons.back())) return false; for(size_t i = 0; i < jets.size(); ++i){ assert(nearby_ep(jets[i].rapidity(), Born_jets[i].rapidity(), 1e-2)); } return true; } void PhaseSpacePoint::reconstruct_incoming( std::array const & Born_incoming ){ std::tie(incoming_[0].p, incoming_[1].p) = incoming_momenta(outgoing_); for(size_t i = 0; i < incoming_.size(); ++i){ incoming_[i].type = Born_incoming[i].type; } assert(momentum_conserved()); } double PhaseSpacePoint::phase_space_normalisation( int num_Born_jets, int num_out_partons ) const{ return pow(16*pow(M_PI,3), num_Born_jets - num_out_partons); } bool PhaseSpacePoint::momentum_conserved() const{ fastjet::PseudoJet diff; for(auto const & in: incoming()) diff += in.p; const double norm = diff.E(); for(auto const & out: outgoing()) diff -= out.p; return nearby(diff, fastjet::PseudoJet{}, norm); } } //namespace HEJ