diff --git a/Changes.md b/Changes.md
index 4cd4d0e..542d109 100644
--- a/Changes.md
+++ b/Changes.md
@@ -1,145 +1,145 @@
 # Changelog
 
 This is the log for changes to the HEJ program. Further changes to the HEJ API
 are documented in [`Changes-API.md`](Changes-API.md). If you are using HEJ as a
 library, please also read the changes there.
 
 ## Version 2.1
 
 This release adds support for two new processes:
 
 * W boson with jets.
 * Jets with a charged lepton-antilepton pair via a virtual Z boson or photon.
 
 In addition, the complete set of first subleading processes (unordered
 gluon, central and extremal quark-antiquark pair) is implemented for
 pure jets and W + jets, see
-[arXiv:TODO](https://arxiv.org/abs/TODO). Unordered gluon emission is
-also supported for Higgs boson + jets and Z boson/photon + jets.
+[arXiv:2012.10310](https://arxiv.org/abs/2012.10310). Unordered gluon emission
+is also supported for Higgs boson + jets and Z boson/photon + jets.
 
 This release include many changes to the code, which affect users of
 HEJ as a library (see [`Changes-API.md`](Changes-API.md)).
 
 ### 2.1.0
 
 #### New Processes
 * Resummation for W bosons with jets
   - New subleading processes `extremal qqbar` & `central qqbar` for a quark and
     anti-quark in the final state, e.g. `g g => u d_bar Wm g` (the other
     subleading processes also work with W's)
   - `HEJFOG` can generate multiple jets together with a (off-shell) W bosons
     decaying into lepton & neutrino
 * Resummation for jets with a charged lepton-antilepton pair via a
   virtual Z boson or photon. Includes the `unordered` subleading process.
 * Resummation can now be performed on all subleading processes within pure
   jets also. This includes `unordered`, `extremal qqbar` and `central
   qqbar` processes.
 
 #### More Physics implementation
 * Partons now have a Colour charge
   - Colours are read from and written to LHE files
   - For reweighted events the colours are created according to leading colour in
     the FKL limit
 * Use relative fraction for soft transverse momentum in tagging jets (`soft pt
   regulator`) as new (optional) parameter.
   - This supersedes `min extparton pt`, which is marked **deprecated** and will
     be removed in version 2.2.0
   - This is a direct replacement for the old `max ext soft pt fraction`, which
     is also **deprecated**.
 * Changed the redistribution of the momenta of soft emissions. Now also bosons
   can take part of the recoil (previously only jets).
 
 #### Updates to Runcard
 * Allow multiplication and division of multiple scale functions e.g.
   `H_T/2*m_j1j2`
 * Grouped `event treatment` for subleading channels together in runcard
   - Rename `non-HEJ` processes to `non-resummable`
 * Read electro-weak constants from input
   - new mandatory setting `vev` to change vacuum expectation value
   - new mandatory settings `particle properties` to specify mass & width of
     bosons
   - `HEJFOG`: decays are now specified in `decays` setting (previously under
     `particle properties`)
 * Allow loading multiple analyses with `analyses`. The old `analysis` (with "i")
   is marked **deprecated**.
 * Optional setting to specify maximal number of Fixed Order events (`max
   events`, default is all)
 * Allow changing the regulator lambda in input (`regulator parameter`, only for
   advanced users)
 
 #### Changes to Input/Output
 * Added support to read & write `hdf5` event files suggested in
   [arXiv:1905.05120](https://arxiv.org/abs/1905.05120) (needs
   [HighFive](https://github.com/BlueBrain/HighFive))
 * Support input with average weight equal to the cross section (`IDWTUP=1 or 4`)
 * Support unmodified Les Houches Event Files written by Sherpa with
   `cross section = sum(weights)/sum(trials)`
 * Analyses now get general run information (`LHEF::HEPRUP`) in the
   constructor. **This might break previously written, external analyses!**
   - external analyses should now be created with
     `make_analysis(YAML::Node const & config, LHEF::HEPRUP const & heprup)`
 * Support `rivet` version 3 with both `HepMC` version 2 and 3
   - Multiple weights with `rivet 3` will only create one `.yoda` file (instead
     of one per weight/scale)
 * Added option to unweight only resummation events
   (`unweight: {type: resummation}`)
 * Added option for partially unweighting resummation events, similar to
   the fixed-order generator.
 * Improved unweighting algorithm.
 * Follow HepMC convention for particle Status codes: incoming = 11,
   decaying = 2, outgoing = 1 (unchanged)
 
 #### Miscellaneous
 * Print cross sections at end of run
 * Added example analysis & scale to `examples/`. Everything in `examples/` will
   be build when the flag `-DBUILD_EXAMPLES=TRUE` is set in `cmake`.
 * Dropped support for HepMC 3.0.0, either HepMC version 2 or >3.1 is required
   - It is now possible to write out both HepMC 2 and HepMC 3 events at the same
     time
 * Require LHADPF version 6. Dropped support for all other versions.
 * Use `git-lfs` for raw data in test (`make test` now requires `git-lfs`)
 * Currents are now generated with [`FORM`](https://github.com/vermaseren/form)
   - `FORM` is included as a `git submodule`, use `git submodule update --init`
     to download `FORM`
 * Create [Sphinx](http://sphinx-doc.org/) and [Doxygen](http://doxygen.org/)
   documentation by `make sphinx` or `make doxygen` in your `build/` folder
 
 ## Version 2.0
 
 First release of HEJ 2. Complete code rewrite compared to HEJ 1. Improved
 matching to Fixed Order ([arXiv:1805.04446](https://arxiv.org/abs/1805.04446)).
 Implemented processes: Higgs boson with jets (FKL and unordered gluon emission,
 with finite quark mass loop,
 [arXiv:1812.08072](https://arxiv.org/abs/1812.08072)), and pure jets (only FKL).
 See [arXiv:1902.08430](https://arxiv.org/abs/1902.08430)
 
 
 ### 2.0.6
 
 * Fixed compiling rivet when YODA headers are _outside_ of rivet directory
 
 ### 2.0.5
 
 * Fixed event classification for input not ordered in rapidity
 
 ### 2.0.4
 
 * Fixed wrong path of `HEJ_INCLUDE_DIR` in `hej-config.cmake`
 
 ### 2.0.3
 
 * Fixed parsing of (numerical factor) * (base scale) in configuration
 * Don't change scale names, but sanitise Rivet output file names instead
 
 ### 2.0.2
 
 * Changed scale names to `"_over_"` and `"_times_"` for proper file names (was
   `"/"` and `"*"` before)
 
 ### 2.0.1
 
 * Fixed name of fixed-order generator in error message.
 
 ### 2.0.0
 
 * First release
diff --git a/doc/developer_manual/biblio.bib b/doc/developer_manual/biblio.bib
index 82da7ee..71aae00 100644
--- a/doc/developer_manual/biblio.bib
+++ b/doc/developer_manual/biblio.bib
@@ -1,184 +1,194 @@
 @Article{Andersen:2008gc,
      author    = "Andersen, Jeppe R. and Del Duca, Vittorio and White, Chris
                   D.",
      title     = "{Higgs Boson Production in Association with Multiple Hard
                   Jets}",
      journal   = "JHEP",
      volume    = "02",
      year      = "2009",
      pages     = "015",
      eprint    = "0808.3696",
      archivePrefix = "arXiv",
      primaryClass  =  "hep-ph",
      doi       = "10.1088/1126-6708/2009/02/015",
      SLACcitation  = "%%CITATION = 0808.3696;%%"
 }
 @Article{Andersen:2008ue,
      author    = "Andersen, Jeppe R. and White, Chris D.",
      title     = "{A New Framework for Multijet Predictions and its
                   application to Higgs Boson production at the LHC}",
      journal   = "Phys. Rev.",
      volume    = "D78",
      year      = "2008",
      pages     = "051501",
      eprint    = "0802.2858",
      archivePrefix = "arXiv",
      primaryClass  =  "hep-ph",
      doi       = "10.1103/PhysRevD.78.051501",
      SLACcitation  = "%%CITATION = 0802.2858;%%"
 }
 @article{Alwall:2006yp,
       author         = "Alwall, Johan and others",
       title          = "{A Standard format for Les Houches event files}",
       booktitle      = "{Monte Carlos for the LHC: A Workshop on the Tools for
                         LHC Event Simulation (MC4LHC) Geneva, Switzerland, July
                         17-16, 2006}",
       journal        = "Comput. Phys. Commun.",
       volume         = "176",
       year           = "2007",
       pages          = "300-304",
       doi            = "10.1016/j.cpc.2006.11.010",
       eprint         = "hep-ph/0609017",
       archivePrefix  = "arXiv",
       primaryClass   = "hep-ph",
       reportNumber   = "FERMILAB-PUB-06-337-T, CERN-LCGAPP-2006-03",
       SLACcitation   = "%%CITATION = HEP-PH/0609017;%%"
 }
 @article{Andersen:2017kfc,
       author         = "Andersen, Jeppe R. and Hapola, Tuomas and Maier, Andreas
                         and Smillie, Jennifer M.",
       title          = "{Higgs Boson Plus Dijets: Higher Order Corrections}",
       journal        = "JHEP",
       volume         = "09",
       year           = "2017",
       pages          = "065",
       doi            = "10.1007/JHEP09(2017)065",
       eprint         = "1706.01002",
       archivePrefix  = "arXiv",
       primaryClass   = "hep-ph",
       reportNumber   = "EDINBURGH-2017-11, IPPP-17-33, DCPT-17-66, MCNET-17-9",
       SLACcitation   = "%%CITATION = ARXIV:1706.01002;%%"
 }
 @article{Andersen:2018tnm,
       author         = "Andersen, Jeppe R. and Hapola, Tuomas and Heil, Marian
                         and Maier, Andreas and Smillie, Jennifer M.",
       title          = "{Higgs-boson plus Dijets: Higher-Order Matching for
                         High-Energy Predictions}",
       year           = "2018",
       eprint         = "1805.04446",
       archivePrefix  = "arXiv",
       primaryClass   = "hep-ph",
       reportNumber   = "DCPT/18/66, IPPP/18/33, MCnet-18-10, DCPT-18-66,
                         IPPP-18-33, MCNET-18-10",
       SLACcitation   = "%%CITATION = ARXIV:1805.04446;%%"
 }
 @article{Andersen:2012gk,
       author         = "Andersen, Jeppe R. and Hapola, Tuomas and Smillie,
                         Jennifer M.",
       title          = "{W Plus Multiple Jets at the LHC with High Energy Jets}",
       journal        = "JHEP",
       volume         = "09",
       year           = "2012",
       pages          = "047",
       doi            = "10.1007/JHEP09(2012)047",
       eprint         = "1206.6763",
       archivePrefix  = "arXiv",
       primaryClass   = "hep-ph",
       reportNumber   = "EDINBURGH-2012-13, IPPP-12-45, DCPT-12-90,
                         CP3-ORIGINS-2012-017, DIAS-2012-18, --DIAS-2012-18",
       SLACcitation   = "%%CITATION = ARXIV:1206.6763;%%"
 }
 @article{Andersen:2016vkp,
       author         = "Andersen, Jeppe R. and Medley, Jack J. and Smillie,
                         Jennifer M.",
       title          = "{$Z/\gamma^{∗}$ plus multiple hard jets in high energy
                         collisions}",
       journal        = "JHEP",
       volume         = "05",
       year           = "2016",
       pages          = "136",
       doi            = "10.1007/JHEP05(2016)136",
       eprint         = "1603.05460",
       archivePrefix  = "arXiv",
       primaryClass   = "hep-ph",
       reportNumber   = "EDINBURGH-2016-03, IPPP-16-19, DCPT-16-38, MCNET-16-08",
       SLACcitation   = "%%CITATION = ARXIV:1603.05460;%%"
 }
 @article{DelDuca:2003ba,
       author         = "Del Duca, V. and Kilgore, W. and Oleari, C. and Schmidt,
                         C.R. and Zeppenfeld, D.",
       title          = "{Kinematical limits on Higgs boson production via gluon
                         fusion in association with jets}",
       journal        = "Phys.Rev.",
       volume         = "D67",
       pages          = "073003",
       doi            = "10.1103/PhysRevD.67.073003",
       year           = "2003",
       eprint         = "hep-ph/0301013",
       archivePrefix  = "arXiv",
       primaryClass   = "hep-ph",
       reportNumber   = "DCPT-02-148, DFTT-20-2002, IPPP-02-74, MADPH-02-1276,
                         MSUHEP-20620",
       SLACcitation   = "%%CITATION = HEP-PH/0301013;%%",
 }
 @article{DelDuca:2001fn,
       author         = "Del Duca, V. and Kilgore, W. and Oleari, C. and Schmidt,
                         C. and Zeppenfeld, D.",
       title          = "{Gluon fusion contributions to H + 2 jet production}",
       journal        = "Nucl.Phys.",
       volume         = "B616",
       pages          = "367-399",
       doi            = "10.1016/S0550-3213(01)00446-1",
       year           = "2001",
       eprint         = "hep-ph/0108030",
       archivePrefix  = "arXiv",
       primaryClass   = "hep-ph",
       reportNumber   = "MADPH-01-1235, BNL-HET-01-28, MSUHEP-10709, DFTT-19-2001",
       SLACcitation   = "%%CITATION = HEP-PH/0108030;%%",
 }
 @article{Andersen:2011zd,
       author         = "Andersen, Jeppe R. and Lonnblad, Leif and Smillie,
                         Jennifer M.",
       title          = "{A Parton Shower for High Energy Jets}",
       journal        = "JHEP",
       volume         = "07",
       year           = "2011",
       pages          = "110",
       doi            = "10.1007/JHEP07(2011)110",
       eprint         = "1104.1316",
       archivePrefix  = "arXiv",
       primaryClass   = "hep-ph",
       reportNumber   = "CERN-PH-TH-2011-072, CP3-ORIGINS-2011-14,
                         EDINBURGH-2011-16, LU-TP-11-15, MCNET-11-12, LU-TP
                         --11-15",
       SLACcitation   = "%%CITATION = ARXIV:1104.1316;%%"
 }
 @article{Andersen:2017sht,
       author         = "Andersen, Jeppe R. and Brooks, Helen M. and Lönnblad,
                         Leif",
       title          = "{Merging High Energy with Soft and Collinear Logarithms
                         using HEJ and PYTHIA}",
       journal        = "JHEP",
       volume         = "09",
       year           = "2018",
       pages          = "074",
       doi            = "10.1007/JHEP09(2018)074",
       eprint         = "1712.00178",
       archivePrefix  = "arXiv",
       primaryClass   = "hep-ph",
       reportNumber   = "CPT/17/184, IPPP/17/92, LU-TP 17-38, MCnet-17-22,
                         CoEPP-MN-17-22, CPT-17-184, IPPP-17-92, LU-TP-17-38,
                         MCNET-17-22, COEPP-MN-17-22",
       SLACcitation   = "%%CITATION = ARXIV:1712.00178;%%"
 }
 @article{Hoeche:2019rti,
       author         = "Höche, Stefan and Prestel, Stefan and Schulz, Holger",
       title          = "{Simulation of vector boson plus many jet final states at
                         the high luminosity LHC}",
       year           = "2019",
       eprint         = "1905.05120",
       archivePrefix  = "arXiv",
       primaryClass   = "hep-ph",
       reportNumber   = "FERMILAB-PUB-19-192-T, LU-TP 19-14, MCNET-19-09",
       SLACcitation   = "%%CITATION = ARXIV:1905.05120;%%"
 }
+@article{Andersen:2020yax,
+    author = "Andersen, Jeppe R. and Black, James A. and Brooks, Helen M. and Byrne, Emmet P. and Maier, Andreas and Smillie, Jennifer M.",
+    title = "{Combined subleading high-energy logarithms and NLO accuracy for W production in association with multiple jets}",
+    eprint = "2012.10310",
+    archivePrefix = "arXiv",
+    primaryClass = "hep-ph",
+    reportNumber = "DESY-20-233, DCPT/20/134, IPPP/20/67, MCnet-20-27, SAGEX-20-28",
+    month = "12",
+    year = "2020"
+}
diff --git a/doc/developer_manual/currents.tex b/doc/developer_manual/currents.tex
index e142aff..6ed450f 100644
--- a/doc/developer_manual/currents.tex
+++ b/doc/developer_manual/currents.tex
@@ -1,717 +1,717 @@
 \section{Currents}
 \label{sec:currents_impl}
 The following section contains a list of all the currents implemented
 in \HEJ. Clean up of the code structure is ongoing. All $W$+Jet
 currents are located in \texttt{src/Wjets.cc}, all Higgs+Jets currents
 are defined in \texttt{src/Hjets.cc}, Z/$\gamma$ + Jet currents are in
 \texttt{src/Zjets.cc} and pure jet currents are defined in in
 \texttt{src/jets.cc}. All of these have their own separate header
 files: \texttt{include/HEJ/Wjets.hh}, \texttt{include/HEJ/Hjets.hh},
 \texttt{include/HEJ/Zjets.hh} and \texttt{include/HEJ/jets.hh}
 respectively.
 
 The naming convention for the current contraction $\left\|S_{f_1 f_2\to f_1
 f_2}\right\|^2$ is \lstinline!ME_[Boson]_[subleading-type]_[incoming]!. For
 example \lstinline!ME_W_unob_qq! corresponds to the contraction $j_W^\mu
 j_{\text{uno}, \mu}$ ($qQ\to \bar{q}WQg$). For bosons on the same side as the
 subleading we drop the connecting underscore, e.g. \lstinline!ME_Wuno_qq!
 gives $j_{W,\text{uno}}^\mu j_\mu$ ($qQ\to g\bar{q}WQ$).
 
 \subsection{Pure Jets}
 \subsubsection{Quark}
 \label{sec:current_quark}
 
 \begin{align}
 j_\mu(p_i,p_j)=\bar{u}(p_i)\gamma_\mu u(p_j)
 \end{align}
 The exact form depends on the helicity and direction (forward/backwards) for the quarks.
 
 \subsubsection{Gluon}
 In \HEJ the currents for gluons and quarks are the same, up to a colour factor $K_g/C_F$, where
 \begin{align}
  K_g(p_1^-, p_a^-) = \frac{1}{2}\left(\frac{p_1^-}{p_a^-} + \frac{p_a^-}{p_1^-}\right)\left(C_A -
           \frac{1}{C_A}\right)+\frac{1}{C_A}.
 \end{align}
 Thus we can just reuse the results from sec.~\ref{sec:current_quark}.
 
 \subsubsection{Single unordered gluon}
 Configuration $q(p_a) \to g(p_1) q(p_2) g^*(\tilde{q}_2)$~\cite{Andersen:2017kfc}
 \begin{align}
 \label{eq:juno}
 \begin{split}
 &j^{{\rm uno}\; \mu\ cd}(p_2,p_1,p_a) = i \varepsilon_{1\nu} \left(  T_{2i}^{c}T_{ia}^d\
 \left(U_1^{\mu\nu}-L^{\mu\nu} \right) + T_{2i}^{d}T_{ia}^c\ \left(U_2^{\mu\nu} +
 L^{\mu\nu} \right) \right). \\
 U_1^{\mu\nu} &= \frac1{s_{21}} \left( j_{21}^\nu j_{1a}^\mu + 2 p_2^\nu
 j_{2a}^\mu \right) \qquad  \qquad U_2^{\mu\nu} = \frac1{t_{a1}} \left( 2
 j_{2a}^\mu p_a^\nu - j_{21}^\mu  j_{1a}^\nu \right) \\
 L^{\mu\nu} &= \frac1{t_{a2}} \left(-2p_1^\mu j_{2a}^\nu+2p_1.j_{2a}
 g^{\mu\nu} + (\tilde{q}_1+\tilde{q}_2)^\nu j_{2a}^\mu + \frac{t_{b2}}{2} j_{2a}^\mu \left(
 \frac{p_2^\nu}{p_1.p_2} + \frac{p_b^\nu}{p_1.p_b} \right) \right) ,
 \end{split}
 \end{align}
 $j^{{\rm uno}\; \mu}$ is currently not calculated as a separate current, but always as needed for the ME (i.e. in \lstinline!ME_unob_XX!).
 
 \subsubsection{Extremal \texorpdfstring{$q\bar{q}$}{qqbar}}
 In Pure jets we also include the subleading process which arises when
 an incoming gluon splits into a $q\bar{q}$ pair. This splitting impact
 factor is related to the unordered current by simple means of a
 crossing symmetry.
 
 \subsubsection{Central \texorpdfstring{$q\bar{q}$}{qqbar}}
 The final subleading process type in the Pure Jets case is Central
 $q\bar{q}$. In this process type, we have two currents scattering off
 of each other, but this time, via an effective vertex, which connects
 together two FKL chains. Each FKL chain t-channel gluon splits into a
 $q\bar{q}$ and this results in a quark and anti-quark in between the
 most forward and backward jets. One can see an example of such a
 process in Figure \ref{fig:qqbarcen_example}.
 
 \begin{figure}[ht]
 \centering
 \includegraphics[]{Cenqqbar_jx}
 \caption{Momentum labeling for a central $q\bar{q}$ process.}
 \label{fig:qqbarcen_example}
 \end{figure}
 
 As the new central $q\bar{q}$ piece contains the quark propagator, we will treat
 this as part of the skeleton process.  This means that we do not impose strong ordering
 between the $q\bar{q}$-pair taking
 \begin{align}
 \label{eq:cenqqbarraporder}
   y_1 \ll y_q,y_{\bar{q}} \ll y_n.
 \end{align}
 The HEJ Matrix element for this process can be calculated as:
   \begin{align}
   \label{eq:Mcentral}
     i\mathcal{M} &= g_s^4 T^d_{1a} T^e_{nb}\ \frac{j_{\mu}(p_a,p_1)\ X^{ab\, \mu
     \nu}_{{\rm cen}}(p_q,p_{\bar{q}},q_1,q_3)\
     j_{\nu}(p_b,p_n)}{t_{a1}t_{bn}}.
   \end{align}
 where $X^{\mu \nu}_{\rm cen}$ is given by:
 \begin{equation}
   \label{eq:Xcen}
   \begin{split}
   X^{\mu \nu}_{\rm cen} ={}&\frac{f^{ced}T^c_{q\bar{q}}}{s_{q\bar{q}}}
      \left(\eta^{\mu \nu} X_{sym}^\sigma + V^{\mu \nu \sigma}_{\bar{q}g} \right)
      \bar{u}(p_q) \gamma^\sigma u(p_{\bar{q}}) \\ & \qquad + \frac{i
      T^d_{qj}T^e_{j\bar{q}}}{(q_1-p_q)^2} X^{\mu\nu}_{\text{qprop}} - \frac{i
      T^e_{qj}T^d_{j\bar{q}}}{(q_1-p_{\bar{q}})^2} X^{\mu\nu}_{\text{crossed}}\,,
  \end{split}
 \end{equation}
 with
 \begin{align}
   \label{eq:Xsym}
   X_{sym}^\sigma ={}& q_1^2 \left(
   \frac{p_a^\sigma}{s_{aq} + s_{a\bar{q}}} +  \frac{p_1^\sigma}{s_{1q} + s_{1\bar{q}}}
   \right) - q_3^2 \left(
   \frac{p_b^\sigma}{s_{bq} + s_{b\bar{q}}} +  \frac{p_n^\sigma}{s_{nq} + s_{n\bar{q}}}
   \right)\,,\\
   \label{eq:V3g}
   V_{3g}^{\mu\nu\sigma} ={}& (q_1 + p_q + p_{\bar{q}})^\nu \eta^{\mu\sigma}
   + (q_3 - p_q - p_{\bar{q}})^\mu \eta^{\nu\sigma}
   - (q_1 + q_3)^\sigma \eta^{\mu\nu}\,,\\
   \label{eq:Xqprop}
   X^{\mu\nu}_{\text{qprop}} ={}& \frac{\langle p_q | \mu (q_1-p_q) \nu | p_{\bar{q}}\rangle}{(q_1-p_q)^2}\,,\\
   \label{eq:Xcrossed}
   X^{\mu\nu}_{\text{crossed}} ={}& \frac{\langle p_q | \nu (q_1-p_{\bar{q}}) \mu | p_{\bar{q}}\rangle}{(q_1-p_{\bar{q}})^2}\,,
 \end{align}
 and $q_3 = q_1 - p_q - p_{\bar{q}}$.
 
 \subsection{Higgs}
 Different rapidity orderings \todo{give name of functions}
 \begin{enumerate}
 \item $qQ\to HqQ/qHQ/qQH$ (any rapidity order, full LO ME) $\Rightarrow$ see~\ref{sec:V_H}
 \item $qg\to Hqg$ (Higgs outside quark) $\Rightarrow$ see~\ref{sec:V_H}
 \item $qg\to qHg$ (central Higgs) $\Rightarrow$ see~\ref{sec:V_H}
 \item $qg\to qgH$ (Higgs outside gluon) $\Rightarrow$ see~\ref{sec:jH_mt}
 \item $gg\to gHg$ (central Higgs) $\Rightarrow$ see~\ref{sec:V_H}
 \item $gg\to ggH$ (Higgs outside gluon) $\Rightarrow$ see~\ref{sec:jH_mt}
 \end{enumerate}
 
 \subsubsection{Higgs gluon vertex}
 \label{sec:V_H}
 The coupling of the Higgs boson to gluons via a virtual quark loop can be written as
 \begin{align}
 \label{eq:VH}
 V^{\mu\nu}_H(q_1, q_2) = \mathgraphics{V_H.pdf} &=
 \frac{\alpha_s m^2}{\pi v}\big[
 g^{\mu\nu} T_1(q_1, q_2) - q_2^\mu q_1^\nu T_2(q_1, q_2)
 \big]\, \\
 &\xrightarrow{m \to \infty} \frac{\alpha_s}{3\pi
     v} \left(g^{\mu\nu} q_1\cdot q_2 - q_2^\mu q_1^\nu\right).
 \end{align}
 The outgoing momentum of the Higgs boson is $p_H = q_1 - q_2$.
 As a contraction with two currents this by implemented in \lstinline!cHdot! inside \texttt{src/Hjets.cc}.
 The form factors $T_1$ and $T_2$ are then given by~\cite{DelDuca:2003ba}
 \begin{align}
 \label{eq:T_1}
 T_1(q_1, q_2) ={}& -C_0(q_1, q_2)\*\left[2\*m^2+\frac{1}{2}\*\left(q_1^2+q_2^2-p_H^2\right)+\frac{2\*q_1^2\*q_2^2\*p_H^2}{\lambda}\right]\notag\\
 &-\left[B_0(q_2)-B_0(p_H)\right]\*\frac{q_2^2}{\lambda}\*\left(q_2^2-q_1^2-p_H^2\right)\notag\\
 &-\left[B_0(q_1)-B_0(p_H)\right]\*\frac{q_1^2}{\lambda}\*\left(q_1^2-q_2^2-p_H^2\right)-1\,,\displaybreak[0]\\
 \label{eq:T_2}
 T_2(q_1, q_2) ={}& C_0(q_1,
 q_2)\*\left[\frac{4\*m^2}{\lambda}\*\left(p_H^2-q_1^2-q_2^2\right)-1-\frac{4\*q_1^2\*q_2^2}{\lambda}
 -
 \frac{12\*q_1^2\*q_2^2\*p_H^2}{\lambda^2}\*\left(q_1^2+q_2^2-p_H^2\right)\right]\notag\\
 &-\left[B_0(q_2)-B_0(p_H)\right]\*\left[\frac{2\*q_2^2}{\lambda}+\frac{12\*q_1^2\*q_2^2}{\lambda^2}\*\left(q_2^2-q_1^2+p_H^2\right)\right]\notag\\
 &-\left[B_0(q_1)-B_0(p_H)\right]\*\left[\frac{2\*q_1^2}{\lambda}+\frac{12\*q_1^2\*q_2^2}{\lambda^2}\*\left(q_1^2-q_2^2+p_H^2\right)\right]\notag\\
 &-\frac{2}{\lambda}\*\left(q_1^2+q_2^2-p_H^2\right)\,,
 \end{align}
 where we have used the scalar bubble and triangle integrals
 \begin{align}
 \label{eq:B0}
 B_0\left(p\right) ={}& \int \frac{d^dl}{i\pi^{\frac{d}{2}}}
 \frac{1}{\left(l^2-m^2\right)\left((l+p)^2-m^2\right)}\,,\\
 \label{eq:C0}
 C_0\left(p,q\right) ={}& \int \frac{d^dl}{i\pi^{\frac{d}{2}}} \frac{1}{\left(l^2-m^2\right)\left((l+p)^2-m^2\right)\left((l+p-q)^2-m^2\right)}\,,
 \end{align}
 and the K\"{a}ll\'{e}n function
 \begin{equation}
 \label{eq:lambda}
 \lambda = q_1^4 + q_2^4 + p_H^4 - 2\*q_1^2\*q_2^2 - 2\*q_1^2\*p_H^2- 2\*q_2^2\*p_H^2\,.
 \end{equation}
 The Integrals as such are provided by \QCDloop{} (see wrapper functions \lstinline!B0DD! and \lstinline!C0DD! in \texttt{src/Hjets.cc}).
 In the code we are sticking to the convention of~\cite{DelDuca:2003ba}, thus instead of the $T_{1/2}$ we implement (in the functions \lstinline!A1! and \lstinline!A2!)
 \begin{align}
 \label{eq:A_1}
 A_1(q_1, q_2) ={}& \frac{i}{16\pi^2}\*T_2(-q_1, q_2)\,,\\
 \label{eq:A_2}
 A_2(q_1, q_2) ={}& -\frac{i}{16\pi^2}\*T_1(-q_1, q_2)\,.
 \end{align}
 
 \subsubsection{Peripheral Higgs emission - Finite quark mass}
 \label{sec:jH_mt}
 
 We describe the emission of a peripheral Higgs boson close to a
 scattering gluon with an effective current. In the following we consider
 a lightcone decomposition of the gluon momenta, i.e. $p^\pm = E \pm p_z$
 and $p_\perp = p_x + i p_y$. The incoming gluon momentum $p_a$ defines
 the $-$ direction, so that $p_a^+ = p_{a\perp} = 0$. The outgoing
 momenta are $p_1$ for the gluon and $p_H$ for the Higgs boson. We choose
 the following polarisation vectors
 \begin{equation}
   \label{eq:pol_vectors}
   \epsilon_\mu^\pm(p_a) = \epsilon_\mu^\pm(p_a, p_1),\qquad \epsilon_\mu^\pm(p_1) = \epsilon_\mu^\pm(p_1, p_a)\,.
 \end{equation} The polarisation vectors with two momentum arguments
 are defined in equation~(\ref{eq:pol_vector}).
 
 Following~\cite{DelDuca:2001fn}, we introduce effective polarisation
 vectors to describe the contraction with the Higgs-boson production
 vertex eq.~\eqref{eq:VH}:
 \begin{align}
   \label{eq:eps_H}
   \epsilon_{H,\mu}(p_a) = \frac{T_2(p_a, p_a-p_H)}{(p_a-p_H)^2}\big[p_a\cdot
   p_H\epsilon_\mu(p_a) - p_H\cdot\epsilon(p_a) p_{a,\mu}\big]\,,\\
   \epsilon_{H,\mu}^*(p_1) = -\frac{T_2(p_1+p_H, p_1)}{(p_1+p_H)^2}\big[p_1\cdot
   p_H\epsilon_\mu^*(p_1) - p_H\cdot\epsilon^*(p_1) p_{1,\mu}\big]\,,
 \end{align}
 with $T_1$ from equation~\eqref{eq:T_1} and $T_2$ from equation~\eqref{eq:T_2}.
 
 Without loss of generality, we consider only the case where the incoming
 gluon has positive helicity. The remaining helicity configurations can
 be obtained through parity transformation.
 
 Labelling the effective current by the helicities of the gluons we obtain
 for the same-helicity case
 \begin{equation}
   \label{eq:jH_same_helicity}
   \begin{split}
     j_{H,\mu}^{++}{}&(p_1,p_a,p_H) =
     \frac{m^2}{\pi v}\bigg[\\
       &-\sqrt{\frac{2p_1^-}{p_a^-}}\frac{p_{1\perp}^*}{|p_{1\perp}|}\frac{t_2}{\spb a.1}\epsilon^{+,*}_{H,\mu}(p_1)
       +\sqrt{\frac{2p_a^-}{p_1^-}}\frac{p_{1\perp}^*}{|p_{1\perp}|}\frac{t_2}{\spa 1.a}\epsilon^{+}_{H,\mu}(p_a)\\
       &+ [1|H|a\rangle \bigg(
         \frac{\sqrt{2}}{\spa 1.a}\epsilon^{+}_{H,\mu}(p_a)
         +         \frac{\sqrt{2}}{\spb a.1}\epsilon^{+,*}_{H,\mu}(p_1)-\frac{\spa 1.a T_2(p_a, p_a-p_H)}{\sqrt{2}(p_a-p_H)^2}\epsilon^{+,*}_{\mu}(p_1)\\
         &
         \qquad
         -\frac{\spb a.1 T_2(p_1+p_H,
           p_1)}{\sqrt{2}(p_1+p_H)^2}\epsilon^{+}_{\mu}(p_a)-\frac{RH_4}{\sqrt{2}\spb a.1}\epsilon^{+,*}_{\mu}(p_1)+\frac{RH_5}{\sqrt{2}\spa 1.a}\epsilon^{+}_{\mu}(p_a)
         \bigg)\\
         &
         - \frac{[1|H|a\rangle^2}{2 t_1}(p_{a,\mu} RH_{10} - p_{1,\mu} RH_{12})\bigg]
   \end{split}
 \end{equation}
 with $t_1 = (p_a-p_1)^2$, $t_2 = (p_a-p_1-p_H)^2$ and $R = 8 \pi^2$\todo{Code has $R=8\pi^2 i$}. Like other special currents, eq.~\eqref{eq:jH_same_helicity}
 is implemented in \texttt{current\_generator/include/currents.frm}.
 
 The currents with a helicity flip is given through
 \begin{equation}
   \label{eq:jH_helicity_flip}
   \begin{split}
     j_{H,\mu}^{+-}{}&(p_1,p_a,p_H) =
     \frac{m^2}{\pi v}\bigg[\\
     &-\sqrt{\frac{2p_1^-}{p_a^-}}\frac{p_{1\perp}^*}{|p_{1\perp}|}\frac{t_2}{\spb
       a.1}\epsilon^{-,*}_{H,\mu}(p_1)
     +\sqrt{\frac{2p_a^-}{p_1^-}}\frac{p_{1\perp}}{|p_{1\perp}|}\frac{t_2}{\spb a.1}\epsilon^{+}_{H,\mu}(p_a)\\
     &+ [1|H|a\rangle \left(
     \frac{\sqrt{2}}{\spb a.1} \epsilon^{-,*}_{H,\mu}(p_1)
     -\frac{\spa 1.a T_2(p_a, p_a-p_H)}{\sqrt{2}(p_a-p_H)^2}\epsilon^{-,*}_{\mu}(p_1)
     - \frac{RH_4}{\sqrt{2}\spb a.1}\epsilon^{-,*}_{\mu}(p_1)\right)
     \\
     &+ [a|H|1\rangle \left(
       \frac{\sqrt{2}}{\spb a.1}\epsilon^{+}_{H,\mu}(p_a)
       -\frac{\spa 1.a
         T_2(p_1+p_H,p_1)}{\sqrt{2}(p_1+p_H)^2}\epsilon^{+}_{\mu}(p_a)
       +\frac{RH_5}{\sqrt{2}\spb a.1}\epsilon^{+}_{\mu}(p_a)
     \right)\\
     & - \frac{[1|H|a\rangle [a|H|1\rangle}{2 \spb a.1 ^2}(p_{a,\mu} RH_{10} - p_{1,\mu}
     RH_{12})\\
     &+ \frac{\spa 1.a}{\spb a.1}\bigg(RH_1p_{1,\mu}-RH_2p_{a,\mu}+2
     p_1\cdot p_H \frac{T_2(p_1+p_H, p_1)}{(p_1+p_H)^2} p_{a,\mu}
     \\
     &
     \qquad- 2p_a \cdot p_H \frac{T_2(p_a, p_a-p_H)}{(p_a-p_H)^2} p_{1,\mu}+ T_1(p_a-p_1, p_a-p_1-p_H)\frac{(p_1 + p_a)_\mu}{t_1}\\
     &\qquad-\frac{(p_1+p_a)\cdot p_H}{t_1} T_2(p_a-p_1, p_a-p_1-p_H)(p_1 - p_a)_\mu
     \bigg)
     \bigg]\,,
   \end{split}
 \end{equation}
 and implemented again in \texttt{current\_generator/include/currents.frm}.\todo{sign mismatch in line 5 and negative-helicity polarisation vectors}
 If we instead choose the gluon momentum in the $+$ direction, so that
 $p_a^- = p_{a\perp} = 0$, the corresponding currents are obtained by
 replacing $p_1^- \to p_1^+, p_a^- \to p_a^+,
 \frac{p_{1\perp}}{|p_{1\perp}|} \to -1$ in the second line of
 eq.~\eqref{eq:jH_same_helicity} and eq.~\eqref{eq:jH_helicity_flip}..
 
  The form factors $H_1,H_2,H_4,H_5, H_{10}, H_{12}$ are given in~\cite{DelDuca:2003ba}, and are implemented as \lstinline!H1DD,H2DD! etc. in \texttt{src/Hjets.cc}. They reduce down to fundamental QCD integrals, which are again provided by \QCDloop.
 
 \subsubsection{Peripheral Higgs emission - Infinite top mass}
 \label{sec:jH_eff}
 
 To get the result with infinite top mass we could either take the limit $m_t\to \infty$ in~\eqref{eq:jH_helicity_flip} and~\eqref{eq:jH_same_helicity}, or use the \textit{impact factors} as given in~\cite{DelDuca:2003ba}. Both methods are equivalent, and lead to the same result. For the first one would find
 \begin{align}
 \lim_{m_t\to\infty} m_t^2 H_1    &= i \frac{1}{24 \pi^2}\\
 \lim_{m_t\to\infty} m_t^2 H_2    &=-i \frac{1}{24 \pi^2}\\
 \lim_{m_t\to\infty} m_t^2 H_4    &= i \frac{1}{24 \pi^2}\\
 \lim_{m_t\to\infty} m_t^2 H_5    &=-i \frac{1}{24 \pi^2}\\
 \lim_{m_t\to\infty} m_t^2 H_{10} &= 0 \\
 \lim_{m_t\to\infty} m_t^2 H_{12} &= 0.
 \end{align}
 \todo{double check this, see James thesis eq. 4.33}
 However only the second method is implemented in the code through \lstinline!C2gHgp!
 and \lstinline!C2gHgm! inside \texttt{src/Hjets.cc}, each function
 calculates the square of eq. (4.23) and (4.22) from~\cite{DelDuca:2003ba} respectively.
 
 \subsection{Vector Boson + Jets}
 \label{sec:currents_W}
 \subsubsection{Quark+ Vector Boson}
 
 \begin{figure}
   \centering
   \begin{minipage}[b]{0.2\textwidth}
     \includegraphics[width=\textwidth]{Wbits.pdf}
   \end{minipage}
   \begin{minipage}[b]{0.1\textwidth}
     \centering{=}
     \vspace{0.7cm}
   \end{minipage}
   \begin{minipage}[b]{0.2\textwidth}
     \includegraphics[width=\textwidth]{Wbits2.pdf}
   \end{minipage}
   \begin{minipage}[b]{0.1\textwidth}
     \centering{+}
     \vspace{0.7cm}
   \end{minipage}
   \begin{minipage}[b]{0.2\textwidth}
     \includegraphics[width=\textwidth]{Wbits3.pdf}
   \end{minipage}
   \caption{The $j_V$ current is constructed from the two diagrams which
     contribute to the emission of a vector boson from a given quark line.}
   \label{fig:jV}
 \end{figure}
 For a $W, Z$, or photon emission we require a fermion. The current is actually a sum of
 two separate contributions, see figure~\ref{fig:jV}, one with a vector boson emission
 from the initial state, and one with the vector boson emission from the final state.
 This can be seen as the following two
-terms, given for the example of a $W$ emission~\cite{Andersen:2012gk}\todo{cite W subleading paper}:
+terms, given for the example of a $W$ emission~\cite{Andersen:2012gk,Andersen:2020yax}
 \begin{align}
   \label{eq:Weffcur1}
   j_W^\mu(p_a,p_{\ell},p_{\bar{\ell}}, p_1) =&\ \frac{g_W^2}{2}\
      \frac1{p_W^2-M_W^2+i\ \Gamma_W M_W}\ \bar{u}^-(p_\ell) \gamma_\alpha
                                                v^-(p_{\bar\ell})\nonumber \\
 & \cdot \left( \frac{ \bar{u}^-(p_1) \gamma^\alpha (\slashed{p}_W +
   \slashed{p}_1)\gamma^\mu u^-(p_a)}{(p_W+p_1)^2} +
 \frac{ \bar{u}^-(p_1)\gamma^\mu (\slashed{p}_a - \slashed{p}_W)\gamma^\alpha u^-(p_a)}{(p_a-p_W)^2} \right).
 \end{align}
 
 There are a couple of subtleties here. There is a minus sign
 distinction between the quark-anti-quark cases due to the fermion flow
 of the propagator in the current. Note that the type of $W$ emission
 (+ or -) will depend on the quark flavour, and that the handedness of
 the quark-line is given by whether its a quark or anti-quark.
 
 The coupling and propagator factor in eq.~(\ref{eq:Weffcur1}) have to
 be adapted depending on the emitted boson. The remaining product of
 currents
 \begin{equation}
   \label{eq:J_V}
     J_{\text{V}}^\mu(p_2,p_l,p_{\bar{l}},p_3)=\left( \frac{ \bar{u}_2 \gamma^\nu (\slashed{p}_2 +
         \slashed{p}_l +
         \slashed{p}_{\bar{l}}) \gamma^\mu u_3}{s_{2l\bar{l}}} -  \frac{\bar u_2
         \gamma^\mu(\slashed{p}_3 + \slashed{p}_l + \slashed{p}_{\bar{l}}) \gamma^\nu
         u_3}{s_{3l\bar{l}}} \right) [\bar{u}_l \gamma_\nu u_{\bar{l}}]
 \end{equation}
 with $s_{il\bar{l}} = (p_i + p_l +p_{\bar{l}})^2$ is universal. The
 implementation is in \texttt{include/currents.frm} inside the
 \texttt{current\_generator} (see section~\ref{sec:cur_gen}). To use it
 inside \FORM use the place-holder
 \lstinline!JV(h1, hl, mu, pa, p1, plbar, pl)!, where \lstinline!h1! is
 the helicity of the quark line and \lstinline!hl! the helicity of the
 lepton line.
 
 \subsubsection{Vector boson with unordered emission}
 \begin{figure}
   \centering
   \begin{subfigure}{0.45\textwidth}
   \centering
   \includegraphics{vuno1}
   \caption{}
   \label{fig:U1diags}
 \end{subfigure}
 \begin{subfigure}{0.45\textwidth}
   \centering
 \includegraphics{vuno2}
 \caption{}
 \label{fig:U2diags}
 \end{subfigure}
 \begin{subfigure}{0.45\textwidth}
   \centering
   \includegraphics{vuno3}
 \caption{}
 \label{fig:Cdiags}
 \end{subfigure}
 \begin{subfigure}{0.45\textwidth}
 \centering
 \includegraphics{vuno4}
 \caption{}
  \label{fig:Ddiags}
  \end{subfigure}
   \vspace{0.4cm}
   \caption{Examples of each of the four categories of Feynman diagram which
     contribute to at leading-order; there are twelve in total.  (a) is an example where the gluon and vector
     boson are emitted from the same quark line and the gluon comes after the
     $t$-channel propagator.  In (b), the gluon and vector boson are emitted from
     the same quark line and the gluon comes before the $t$-channel proagator.
     In (c) the gluon is emitted from the $t$-channel gluon and in (d) the gluon
     is emitted from the $b$--$3$ quark line.}
   \label{fig:Vunodiags}
 \end{figure}
 It is necessary to include subleading processes in vector boson + jets
 also. Similarly to the pure jet case, the unordered currents are not
 calculated separately, and only in the ME functions when required in
 the \texttt{src/Wjets.cc} or \texttt{src/Zjets.cc} file. The following shows the derivation of the calculation of
 this ME within HEJ. We start with a contraction of two currents:
 \begin{equation}
   \label{eq:SabsVuno}
   S_{qQ\to Vgq^\prime Q} =
   j_{V{\rm uno}\,\mu}^d(p_a,p_1,p_2,p_\ell,p_{\bar\ell})\  g^{\mu
     \nu}\ T^d_{3b}\  j^{h_b,h_3}_{\nu}(p_b,p_{3}),
 \end{equation}
 where $j_{V,{\rm uno}}$ is our new unordered current which is is
 only non-zero for $h_a=h_1=-$ and hence we have suppressed its
 helicity indices.  It is derived from the 12 leading-order Feynman
 diagrams in the QMRK limit (see figure~\ref{fig:Vunodiags}). Using
 $T^m_{ij}$ represent fundamental colour matrices between quark state
 $i$ and $j$ with adjoint index $m$ we find
 \begin{align}\label{eq:wunocurrent}
 \begin{split}
   j^{d\,\mu}_{\rm V,uno}(p_a,p_1,p_2,p_\ell,p_{\bar{\ell}}) =& \ i \varepsilon_{\nu}(p_1)\
   \bar{u}^-(p_\ell) \gamma_\rho v^-(p_{\bar \ell}) \\ & \quad \times\
   \left(T^1_{2i} T^d_{ia} (\tilde U_1^{\nu\mu\rho}-\tilde L^{\nu\mu\rho}) +
     T^d_{2i} T^1_{ia} (\tilde U_2^{\nu\mu\rho}+\tilde L^{\nu\mu\rho}) \right),
   \end{split}
 \end{align}
 where expressions for $\tilde U_{1,2}^{\nu\mu\rho}$ and $\tilde L^{\nu\mu\rho}$
 are given as:
 \begin{align}
   \label{eq:U1tensor}
   \begin{split}
     \tilde U_1^{\nu\mu\rho} ={}&\frac{\langle 2|\nu (\slashed{p}_2+ \slashed{p}_1)\mu (\slashed{p}_a - \slashed{p}_V)\rho P_L |a\rangle }{s_{12}t_{aV}}  + \frac{\langle 2|\nu (\slashed{p}_2+ \slashed{p}_1)\rho P_L (\slashed{p}_2+\slashed{p}_1 + \slashed{p}_V)\mu |a\rangle }{s_{12}s_{12V}} \\
     &+ \frac{\langle 2|\rho P_L (\slashed{p}_2+ \slashed{p}_V) \nu
       (\slashed{p}_1 + \slashed{p}_2+\slashed{p}_V)\mu |a\rangle}{s_{2V}s_{12V}}\,,
   \end{split}\\
   \label{eq:U2tensor}
   \begin{split}
     \tilde U_2^{\nu\mu\rho} ={}&\frac{\langle 2|\mu (\slashed{p}_a-\slashed{p}_V-\slashed{p}_1)\nu (\slashed{p}_a - \slashed{p}_V)\rho P_L |a\rangle }{t_{aV1}t_{aV}}  + \frac{\langle 2|\mu (\slashed{p}_a-\slashed{p}_V- \slashed{p}_1)\rho P_L (\slashed{p}_a-\slashed{p}_1) \nu |a\rangle }{t_{a1V}t_{a1}}  \\
     &+ \frac{\langle 2|\rho P_L (\slashed{p}_2+ \slashed{p}_V) \mu
       (\slashed{p}_a-\slashed{p}_1)\nu |a\rangle}{s_{2V}t_{a1}}\,,
   \end{split}\\
 \label{eq:Ltensor}
 \begin{split}
   \tilde L^{\nu\mu\rho} ={}& \frac{1}{t_{aV2}}\left[
    \frac{\langle 2 | \sigma (\slashed{p}_a-\slashed{p}_V)\rho|a\rangle}{t_{aV}}
    +\frac{\langle 2 | \rho (\slashed{p}_2+\slashed{p}_V)\sigma|a\rangle}{s_{2V}}
 \right]\\
 &\times \left\{\left(\frac{p_b^\nu}{s_{1b}} + \frac{p_3^\nu}{s_{13}}\right)(q_1-p_1)^2g^{\mu\sigma}+(2q_1-p_1)^\nu g^{\mu\sigma} - 2p_1^\mu g^{\nu\sigma} + (2p_1-q_1)^\sigma g^{\mu\nu} \right\}\,,
 \end{split}
 \end{align}
 where $s_{ij\dots} = (p_i + p_j + \dots)^2, t_{ij\dots} = (p_i - p_j -
 \dots)^2$ and $q_1 = p_a-p_2-p_V$. This is actually calculated and
 used in the code in a much cleaner way as follows:
 \begin{align}\label{eq:spinorstringVuno}
   S_{qQ\to Vgq^\prime Q} = i\varepsilon_\nu (p_g) \bar{u}^-(p_2)&\gamma_\rho\nu(p_{\bar{q}})\times T^d_{3b} \bar{u}^{h_3}(p_3)\gamma_\mu u^{h_b}(p_b) \times \nonumber \\
   &\left( T^1_{2i}T^d_{ia} \left( \tilde{U}_1^{\nu\mu\rho}-\tilde{L}^{\nu\mu\rho}\right)+T^d_{2i}T^1_{ia}\left(\tilde{U}_2^{\nu\mu\rho}+\tilde{L}^{\nu\mu\rho}\right) \right)
 \end{align}
 If we define the objects:
 \begin{align}\label{eq:VunoX}
  X &= \varepsilon_\nu(p_g) \left[ \bar{u}^-(p_2)\gamma_\rho\nu(p_{\bar{q}})\right] \left[ \bar{u}^{h_3}(p_3)\gamma_\mu u^{h_b}(p_b)\right] \left( \tilde{U}_1^{\nu\mu\rho}-\tilde{L}^{\nu\mu\rho}\right)\\
  Y &= \varepsilon_\nu(p_g) \left[ \bar{u}^-(p_2)\gamma_\rho\nu(p_{\bar{q}})\right] \left[ \bar{u}^{h_3}(p_3)\gamma_\mu u^{h_b}(p_b)\right] \left( \tilde{U}_2^{\nu\mu\rho}+\tilde{L}^{\nu\mu\rho}\right)
  \label{eq:WunoY}
 \end{align}
 then we can rewrite Equation \eqref{eq:spinorstringVuno} in the much simpler form:
 \begin{equation}
   S_{qQ\to Vgq^\prime Q} = iT^d_{3b} \left( T^{1}_{2i}T^d_{ia} X + T^d_{2i}T^1_{ia} Y \right)
 \end{equation}
 then, by using:
 \begin{align}
   \sum_{\text{all indices}}& T^d_{3b}T^e_{b3}T^1_{2i}T^d_{ia}T^e_{ai}T^1_{i2} = \frac{1}{2}C_F^2C_A \\
   \sum_{\text{all indices}}& T^d_{3b}T^e_{b3}T^1_{2i}T^d_{ia}T^1_{ai}T^e_{i2} = \frac{1}{2}C_F^2C_A - \frac{1}{4}C_A^2C_F = -\frac{1}{4}C_F
 \end{align}
 giving then, the spin summed and helicity averaged spinor string as:
 \begin{equation}\label{eq:VunoSumAveS}
   ||\;\bar{S}_{qQ\to Vgq^\prime Q}\;|| = \frac{1}{4N_C^2} \left( \frac{1}{2}C_F^2C_A\left(|X|^2+|Y|^2\right)-\frac{1}{4}C_F\times2\mathrm{Re}\left(XY^*\right)\right)
 \end{equation}
 
 
 
 \subsubsection{\texorpdfstring{$W$}{W}+Extremal \texorpdfstring{$\mathbf{q\bar{q}}$}{qqbar}}
 \todo{Update when included in $Z$ + jets}
 The $W$+Jet sub-leading processes containing an extremal $q\bar{q}$ are
 related by crossing symmetry to the $W$+Jet unordered processes. This
 means that one can simply perform a crossing symmetry argument on
 eq.~\ref{eq:wunocurrent} to arrive at the extremal $q\bar{q}$ current
 required.We show the basic structure of the extremal $q\bar{q}$
 current in figure~\ref{fig:qgimp}, neglecting the $W$-emission for
 simplicity.
 
 \begin{figure}
 \centering
 \includegraphics[width=0.3\textwidth]{{qqbarex_schem}}
 \caption{Schematic structure of the $gq \to \bar{Q}Qq$ amplitude in the limit
   $y_1 \sim y_2 \ll y_3$}
 \label{fig:qgimp}
 \end{figure}
 
 \begin{figure}
 \centering
 \begin{subfigure}{0.45\textwidth}
 \centering
 \includegraphics{qqbarex1}
 \end{subfigure}
 \begin{subfigure}{0.45\textwidth}
 \centering
 \includegraphics{qqbarex2}
 \end{subfigure}
 \begin{subfigure}{0.45\textwidth}
 \centering
 \includegraphics{qqbarex4}
 \end{subfigure}
 \begin{subfigure}{0.45\textwidth}
 \centering
 \includegraphics{qqbarex5}
 \end{subfigure}
 \begin{subfigure}{0.45\textwidth}
 \centering
 \includegraphics{qqbarex3}
 \end{subfigure}
 \caption{The five tree-level graphs which contribute to the process $gq \to \bar{Q}Qq$.}
 \label{fig:qg_qQQ_graphs}
 \end{figure}
 We can obtain the current for $g\rightarrow W q \bar{q}$ by evaluating
 the current for $W$ plus unordered emissions with the normal arguments
 $p_a \leftrightarrow -p_1 $ interchanged.  This is a non-trivial
 statement: due to the minimality of the approximations made, the
 crossing symmetry normally present in the full amplitude may be
 extended to the factorised current.
 
 We must again note that swapping $p_a \leftrightarrow -p_1$ will lead
 to $u$-spinors with momenta with negative energy.  These are identical
 to $v$-spinors with momenta with positive energy, up to an overall
 phase which is common to all terms, and can therefore be neglected.
 
 Mathematically, this is given by:
 
 \begin{align}\label{eq:crossedJ}
   j^\mu_{\rm W,g\to Q\bar{Q}}(p_a,p_1,p_2,p_\ell,p_{\bar{\ell}}) =i \varepsilon_{g\nu}
   \langle \ell | \rho | \bar \ell \rangle_L
 \left(T^1_{2i} T^d_{ia} (\tilde U_{1,X}^{\nu\mu\rho}-\tilde L^{\nu\mu\rho}_X) + T^d_{2i} T^1_{ia} (\tilde U_{2,X}^{\nu\mu\rho}+\tilde L_X^{\nu\mu\rho}) \right),
 \end{align}
 where the components are now given by
 \begin{align}
   \label{eq:U1tensorX}
   \begin{split}
     \tilde U_{1,X}^{\nu\mu\rho} =&\frac{\langle 2|\nu (\slashed{p}_a- \slashed{p}_2)\mu (\slashed{p}_1 + \slashed{p}_W)\rho P_L |1\rangle }{t_{a2}s_{1W}}  + \frac{\langle 2|\nu (\slashed{p}_a- \slashed{p}_2)\rho P_L (\slashed{p}_a-\slashed{p}_2 - \slashed{p}_W)\mu |1\rangle }{t_{a2}t_{a2W}} \\
     &- \frac{\langle 2|\rho P_L (\slashed{p}_2+ \slashed{p}_W) \nu
       (\slashed{p}_a - \slashed{p}_2-\slashed{p}_W)\mu
       |1\rangle}{s_{2W}t_{a2W}}\,,
   \end{split}\\
   \label{eq:U2tensorX}
   \begin{split}
     \tilde U_{2,X}^{\nu\mu\rho} =&-\frac{\langle 2|\mu (\slashed{p}_a-\slashed{p}_W-\slashed{p}_1)\nu (\slashed{p}_1 + \slashed{p}_W)\rho P_L |1\rangle }{t_{aW1}s_{1W}}  + \frac{\langle 2|\mu (\slashed{p}_a-\slashed{p}_W- \slashed{p}_1)\rho P_L (\slashed{p}_a-\slashed{p}_1) \nu |1\rangle }{t_{a1W}t_{a1}}  \\
     &+ \frac{\langle 2|\rho P_L (\slashed{p}_2+ \slashed{p}_W) \mu
       (\slashed{p}_a-\slashed{p}_1)\nu |1\rangle}{s_{2W}t_{a1}}\,,
   \end{split}\\
   \label{eq:LtensorX}
   \begin{split}
     \tilde L^{\nu\mu\rho}_X &= \frac{1}{s_{W12}}\left[-\frac{\langle 2 |\sigma (\slashed{p}_1 + \slashed{p}_W) \rho P_L | 1\rangle}{s_{1W}} + \frac{\langle 2 |\rho P_L (\slashed{p}_2 + \slashed{p}_W) \sigma | 1\rangle }{s_{2W}} \right] \\
     &\vphantom{+\frac{1}{t_{aW2}}}\quad\cdot \left( -\left(
         \frac{p_b^\nu}{s_{ab}} + \frac{p_n^\nu}{s_{an}} \right) (q_1+p_a)^2 g^{\sigma\mu}+ g^{\sigma \mu} (2q_1 +p_a)^\nu - g^{\mu \nu}(2p_a+q_1)^\sigma+ 2g^{\nu \sigma}p_a^\mu \right)\,,
   \end{split}
 \end{align}
 where $q_1=-(p_1+p_2+p_W)$.  Notice in particular the similarity to the $W$+uno scenario (from which
 this has been derived).
 
 \subsubsection{Central \texorpdfstring{$\mathbf{q\bar{q}}$}{qqbar} Vertex}
 The final subleading process in the $W$+Jet case is the Central
 $q\bar{q}$ vertex. This subleading process does not require an altered
 current, but an effective vertex which is contracted with two regular
 \HEJ currents. This complexity is dealt with nicely by the \FORM inside the
 \texttt{current\_generator/j\_Wqqbar\_j.frm}, which is detailed in
 section~\ref{sec:contr_calc}.
 
 The $W$-emission can be from the central effective vertex (scenario
 dealt with by the function \lstinline!ME_WCenqqbar_qq! in the file
 \texttt{src/Wjets.cc}); or from either of the external quark legs
 (scenario dealt with by \lstinline!ME_W_Cenqqbar_qq! in same file).  In
 the pure jets case, there are 7 separate diagrams which contribute to
 this, which can be seen in figure~\ref{fig:qq_qQQq_graphs}. In the $W$+Jets
 case, there are then 45 separate contributions.
 
 \begin{figure}
 \centering
 \begin{subfigure}{0.45\textwidth}
 \centering
 \includegraphics{qqbarcen1}
 \end{subfigure}
 \begin{subfigure}{0.45\textwidth}
 \centering
 \includegraphics{qqbarcen2}
 \end{subfigure}
 \begin{subfigure}{0.45\textwidth}
 \centering
 \includegraphics{qqbarcen3}
 \end{subfigure}
 \begin{subfigure}{0.45\textwidth}
 \centering
 \includegraphics{qqbarcen4}
 \end{subfigure}
 \begin{subfigure}{0.45\textwidth}
 \centering
 \includegraphics{qqbarcen5}
 \end{subfigure}
 \begin{subfigure}{0.45\textwidth}
 \centering
 \includegraphics{qqbarcen6}
 \end{subfigure}
 \begin{subfigure}{0.45\textwidth}
 \centering
 \includegraphics{qqbarcen7}
 \end{subfigure}
 \caption{All Feynman diagrams which contribute to $qq' \to qQ\bar{Q}q'$ at
   leading order.}
 \label{fig:qq_qQQq_graphs}
 \end{figure}
 
 The end result is of the effective vertex, after derivation, is:
 \begin{align}
   \label{eq:EffectiveVertexqqbar}
   \begin{split}
   V^{\mu\nu}_{\text{Eff}}=&
   - i \frac{C_1}{s_{23AB}}\left(X^{\mu\nu\sigma}_{1a}\hat{t_1} + X^{\mu\nu\sigma}_{4b}\hat{t_3} +V^{\mu\nu\sigma}_{3g}\right)J_{\text{V} \sigma}(p_2,p_A,p_B,p_3)
   \\
   &\quad +iC_2X^{\mu\nu}_{Unc}+iC_3X^{\mu\nu}_{Cro},
   \end{split}
 \end{align}
 where:
 \begin{align}
   \begin{split}
   C_1=&T^e_{1q}T^g_{qa}T^e_{23}T^g_{4b} -
   T^g_{1q}T^e_{qa}T^e_{23}T^g_{4b} = f^{egc}T^c_{1a}T^e_{23}T^g_{4b},
   \\
   C_2=&T^g_{1a}T^g_{2q}T^{g'}_{q3}T^{g'}_{4b}
   \\
   C_3=&T^g_{1a}T^{g'}_{2q}T^g_{q3}T^{g'}_{4b}
   \end{split}
 \end{align}
 are the colour factors of different contributions and $J_\text{V}$ is
 given in equation~(\ref{eq:J_V}).
 
 The following tensor structures correspond to groupings of diagrams in
 figure~\ref{fig:qq_qQQq_graphs}.
 \begin{eqnarray}
   \label{eq:X_1a}
   X_{1a}^{\mu\nu\sigma} &=
 \frac{-g^{\mu\nu}}{s_{23AB}\hat{t_3}}\left(\frac{p^\sigma_a}{s_{a2} + s_{a3} + s_{aA} + s_{aB}} +
                     \frac{p^\sigma_1}{s_{12} + s_{13} + s_{1A} + s_{1B}}\right)
   \\
   \label{eq:X_4b}
   X_{4b}^{\mu\nu\sigma}
                         &=\frac{g^{\mu\nu}}{s_{23AB}\hat{t_1}}\left(\frac{p^\sigma_b}{s_{b2} + s_{b3} + s_{bA} + s_{bB}}+
                           \frac{p^\sigma_4}{s_{42} + s_{43} + s_{4A} + s_{4B}}\right)
 \end{eqnarray}
 correspond to the first and second row of diagrams in figure~\ref{fig:qq_qQQq_graphs}.
 \begin{align}
   \label{eq:3GluonWEmit}
   \begin{split}
   V^{\mu\nu\sigma}_{3g}=\frac{1}{
     \hat{t}_1s_{23AB}\,\hat{t}_3}
   \bigg[&\left(q_1+p_2+p_3+p_A+p_B\right)^\nu
   g^{\mu\sigma}+
   \\
   &\quad\left(q_3-p_2-p_3-p_A-p_B\right)^\mu g^{\sigma\nu}-
   \\
   & \qquad\left(q_1+q_3\right)^\sigma g^{\mu\nu}\bigg]J_{\text{V} \sigma}(p_2,p_A,p_B,p_3)
   \end{split}
 \end{align}
 corresponds to the left diagram on the third row in
 figure~\ref{fig:qq_qQQq_graphs}. One notes that all of these
 contributions have the same colour factor, and as such we can group
 them together nicely before summing over helicities etc. As such, the function
 \lstinline!M_sym_W! returns a contraction of the above tensor containing the
 information from these 5 groupings of contributions (30 diagrams in total). It
 is available through the generated header \texttt{j\_Wqqbar\_j.hh} (see
 section~\ref{sec:cur_gen}).
 \begin{align}
   \label{eq:X_Unc}
   \begin{split}
       X^{\mu\nu}_{Unc}=\frac{\langle A|\sigma P_L|B\rangle}{\hat{t_1}\hat{t_3}} \bar{u}_2&\left[-\frac{
   \gamma^\sigma P_L(\slashed{p}_2+\slashed{p}_A+\slashed{p}_B)\gamma^\mu
   (\slashed{q}_3+ \slashed{p}_3)\gamma^\nu}{(s_{2AB})(t_{unc_{2}})}\right.+
   \\
     &\qquad\left. \frac{\gamma^\mu(\slashed{q}_1-\slashed{p}_2)\gamma^\sigma
         P_L(\slashed{q}_3+\slashed{p}_3)\gamma^\nu}{(t_{unc_{1}})(t_{unc_{2}})}\right. +
   \\
     &\qquad\qquad\left. \frac{\gamma^\mu(\slashed{q}_1-\slashed{p}_2)\gamma^\nu(\slashed{p}_3+\slashed{p}_A+\slashed{p}_B)\gamma^\sigma P_L
   }{(t_{unc_1})(s_{3AB})}\right]v_3
   \end{split}
 \end{align}
 corresponds to the diagram on the right of row three in
 figure~\ref{fig:qq_qQQq_graphs}. This contribution to the current
 contraction can be obtained in the code with the function
 \lstinline!M_uncross_W!.
 \begin{align}
   \begin{split}
   \label{eq:X_Cro}
     X^{\mu\nu}_{Cro}=\frac{\langle
 A|\sigma P_L|B\rangle}{\hat{t_1}\hat{t_3}} \bar{u}_2&\left[-\frac{
 \gamma^\nu(\slashed{q}_3+\slashed{p}_2)\gamma^\mu
 (\slashed{p}_3+\slashed{p}_A+\slashed{p}_B)\gamma^\sigma P_L}{(t_{cro_1})(s_{3AB})}\right.+
 \\
 &\qquad\left. \frac{\gamma^\nu(\slashed{q}_3+\slashed{p}_2)\gamma^\sigma
     P_L(\slashed{q}_1-\slashed{p}_3)\gamma^\mu}{(t_{cro_{1}})(t_{cro_{2}})}\right.+
 \\ &\qquad\qquad\left
 . \frac{\gamma^\sigma P_L(\slashed{p}_2+\slashed{p}_A+\slashed{p}_B)\gamma^\nu(\slashed{q}_1-\slashed{p}_3)\gamma^\mu
 }{(s_{2AB})(t_{cro_2})}\right]v_3
   \end{split}
 \end{align}
 corresponds to the last diagram in
 figure~\ref{fig:qq_qQQq_graphs}. This contribution to the current
 contraction can be obtained in the code with the function
 \lstinline!M_cross_W!.
 
 %%% Local Variables:
 %%% mode: latex
 %%% TeX-master: "developer_manual"
 %%% End:
diff --git a/include/HEJ/Analysis.hh b/include/HEJ/Analysis.hh
index 9d64c32..b165b38 100644
--- a/include/HEJ/Analysis.hh
+++ b/include/HEJ/Analysis.hh
@@ -1,50 +1,50 @@
 /** \file
  *  \brief Header file for the Analysis interface
  *
- * This header contains declarations that faciliate creating custom analyses
+ * This header contains declarations that facilitate creating custom analyses
  * to be used with HEJ 2.
  * \todo link to user documentation
  *
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #pragma once
 
 namespace LHEF {
   class HEPRUP;
 }
 
 //! Main HEJ 2 Namespace
 namespace HEJ {
   class Event;
 
   //! Analysis base class
   /**
    *  This is the interface that all analyses should implement,
    *  i.e. all custom analyses have to be derived from this struct.
    */
   struct Analysis {
     /**
      * @param res_event     The event in resummation phase space
      * @param FO_event      The original fixed-order event
      */
     virtual void fill(Event const & res_event, Event const & FO_event) = 0;
     //! Decide whether an event passes the cuts
     /**
      * @param res_event     The event in resummation phase space
      * @param FO_event      The original fixed-order event
      * @returns             Whether the event passes all cuts
      */
     virtual bool pass_cuts(Event const & res_event, Event const & FO_event) = 0;
     //! Finalise analysis
     /**
      * This function is called after all events have been processed and
      * can be used for example to print out or save the results.
      */
     virtual void finalise() = 0;
 
     virtual ~Analysis() = default;
   };
 
 } // namespace HEJ