diff --git a/src/MatrixElement.cc b/src/MatrixElement.cc index 1efbb92..5adb70d 100644 --- a/src/MatrixElement.cc +++ b/src/MatrixElement.cc @@ -1,1604 +1,1604 @@ #include "RHEJ/MatrixElement.hh" #include #include #include "RHEJ/Constants.hh" #include "RHEJ/currents.hh" #include "RHEJ/PDG_codes.hh" #include "RHEJ/uno.hh" #include "RHEJ/qqx.hh" #include "RHEJ/utility.hh" namespace RHEJ{ //cf. last line of eq. (22) in \ref Andersen:2011hs double MatrixElement::omega0( double alpha_s, double mur, fastjet::PseudoJet const & q_j, double lambda ) const { const double result = - alpha_s*N_C/M_PI*log(q_j.perp2()/(lambda*lambda)); if(! param_.log_correction) return result; // use alpha_s(sqrt(q_j*lambda)), evolved to mur return ( 1. + alpha_s/(4.*M_PI)*beta0*log(mur*mur/(q_j.perp()*lambda)) )*result; } double MatrixElement::virtual_corrections( double mur, std::array const & in, std::vector const & out ) const{ fastjet::PseudoJet const & pa = in.front().p; #ifndef NDEBUG fastjet::PseudoJet const & pb = in.back().p; double const norm = (in.front().p + in.back().p).E(); #endif assert(std::is_sorted(out.begin(), out.end(), rapidity_less{})); assert(out.size() >= 2); assert(pa.pz() < pb.pz()); fastjet::PseudoJet q = pa - out[0].p; size_t first_idx = 0; size_t last_idx = out.size() - 1; // if there is a Higgs or unordered gluon outside the extremal partons // then it is not part of the FKL ladder and does not contribute // to the virtual corrections if(out.front().type == pid::Higgs || has_unob_gluon(in, out)){ q -= out[1].p; ++first_idx; } if(out.back().type == pid::Higgs || has_unof_gluon(in, out)){ --last_idx; } double exponent = 0; const double alpha_s = alpha_s_(mur); for(size_t j = first_idx; j < last_idx; ++j){ exponent += omega0(alpha_s, mur, q, CLAMBDA)*( out[j+1].rapidity() - out[j].rapidity() ); q -= out[j+1].p; } assert( nearby(q, -1*pb, norm) || out.back().type == pid::Higgs || has_unof_gluon(in, out) ); return exp(exponent); } } // namespace RHEJ namespace { //! Lipatov vertex for partons emitted into extremal jets double C2Lipatov(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2) { CLHEP::HepLorentzVector temptrans=-(qav+qbv); CLHEP::HepLorentzVector p5=qav-qbv; CLHEP::HepLorentzVector CL=temptrans + p1*(qav.m2()/p5.dot(p1) + 2.*p5.dot(p2)/p1.dot(p2)) - p2*(qbv.m2()/p5.dot(p2) + 2.*p5.dot(p1)/p1.dot(p2)); // cout << "#Fadin qa : "<fabs(CL.dot(CL))) // not sufficient! // return 0.; // else return -CL.dot(CL); } //! Lipatov vertex with soft subtraction for partons emitted into extremal jets double C2Lipatovots(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2) { double kperp=(qav-qbv).perp(); if (kperp>RHEJ::CLAMBDA) return C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2()); else { double Cls=(C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2())); return Cls-4./(kperp*kperp); } } //! Lipatov vertex double C2Lipatov(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv, CLHEP::HepLorentzVector pim, CLHEP::HepLorentzVector pip, CLHEP::HepLorentzVector pom, CLHEP::HepLorentzVector pop) // B { CLHEP::HepLorentzVector temptrans=-(qav+qbv); CLHEP::HepLorentzVector p5=qav-qbv; CLHEP::HepLorentzVector CL=temptrans + qav.m2()*(1./p5.dot(pip)*pip + 1./p5.dot(pop)*pop)/2. - qbv.m2()*(1./p5.dot(pim)*pim + 1./p5.dot(pom)*pom)/2. + ( pip*(p5.dot(pim)/pip.dot(pim) + p5.dot(pom)/pip.dot(pom)) + pop*(p5.dot(pim)/pop.dot(pim) + p5.dot(pom)/pop.dot(pom)) - pim*(p5.dot(pip)/pip.dot(pim) + p5.dot(pop)/pop.dot(pim)) - pom*(p5.dot(pip)/pip.dot(pom) + p5.dot(pop)/pop.dot(pom)) )/2.; return -CL.dot(CL); } //! Lipatov vertex with soft subtraction double C2Lipatovots(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv, CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2) { double kperp=(qav-qbv).perp(); if (kperp>RHEJ::CLAMBDA) return C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2()); else { double Cls=(C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2())); double temp=Cls-4./(kperp*kperp); return temp; } } /** Matrix element squared for tree-level current-current scattering * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @returns ME Squared for Tree-Level Current-Current Scattering */ double ME_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa ){ if (aptype==21&&bptype==21) { return jM2gg(pn,pb,p1,pa); } else if (aptype==21&&bptype!=21) { if (bptype > 0) return jM2qg(pn,pb,p1,pa); else return jM2qbarg(pn,pb,p1,pa); } else if (bptype==21&&aptype!=21) { // ----- || ----- if (aptype > 0) return jM2qg(p1,pa,pn,pb); else return jM2qbarg(p1,pa,pn,pb); } else { // they are both quark if (bptype>0) { if (aptype>0) return jM2qQ(pn,pb,p1,pa); else return jM2qQbar(pn,pb,p1,pa); } else { if (aptype>0) return jM2qQbar(p1,pa,pn,pb); else return jM2qbarQbar(pn,pb,p1,pa); } } throw std::logic_error("unknown particle types"); } /** Matrix element squared for tree-level current-current scattering With W+Jets * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @returns ME Squared for Tree-Level Current-Current Scattering */ double ME_W_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, bool const wc ){ // We know it cannot be gg incoming. if (aptype==21&&bptype!=21) { if (bptype > 0) return jMWqg(pn,pl,plbar,pb,p1,pa); else return jMWqbarg(pn,pl,plbar,pb,p1,pa); } else if (bptype==21&&aptype!=21) { // ----- || ----- if (aptype > 0) return jMWqg(p1,pl,plbar,pa,pn,pb); else return jMWqbarg(p1,pl,plbar,pa,pn,pb); } else { // they are both quark if (wc==true){ // emission off b, (first argument pbout) if (bptype>0) { if (aptype>0) return jMWqQ(pn,pl,plbar,pb,p1,pa); else return jMWqQbar(pn,pl,plbar,pb,p1,pa); } else { if (aptype>0) return jMWqbarQ(pn,pl,plbar,pb,p1,pa); else return jMWqbarQbar(pn,pl,plbar,pb,p1,pa); } } else{ // emission off a, (first argument paout) if (aptype > 0) { if (bptype > 0) return jMWqQ(p1,plbar,pl,pa,pn,pb); else return jMWqQbar(p1,plbar,pl,pa,pn,pb); } else { // a is anti-quark if (bptype > 0) return jMWqbarQ(p1,plbar,pl,pa,pn,pb); else return jMWqbarQbar(p1,plbar,pl,pa,pn,pb); } } } throw std::logic_error("unknown particle types"); } /** Matrix element squared for backwards uno tree-level current-current scattering With W+Jets * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param pg Unordered gluon momentum * @returns ME Squared for unob Tree-Level Current-Current Scattering */ double ME_W_unob_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pg, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, bool const wc ){ // we know they are not both gluons if (bptype == 21 && aptype != 21) { // b gluon => W emission off a if (aptype > 0) return jM2Wunogqg(pg,p1,plbar,pl,pa,pn,pb); else return jM2Wunogqbarg(pg,p1,plbar,pl,pa,pn,pb); } else { // they are both quark if (wc==true) {// emission off b, i.e. b is first current if (bptype>0){ if (aptype>0) return junobMWqQg(pn,plbar,pl,pb,p1,pa,pg); else return junobMWqQbarg(pn,plbar,pl,pb,p1,pa,pg); } else{ if (aptype>0) return junobMWqbarQg(pn,plbar,pl,pb,p1,pa,pg); else return junobMWqbarQbarg(pn,plbar,pl,pb,p1,pa,pg); } } else {// wc == false, emission off a, i.e. a is first current if (aptype > 0) { if (bptype > 0) //qq return jM2WunogqQ(pg,p1,plbar,pl,pa,pn,pb); else //qqbar return jM2WunogqQbar(pg,p1,plbar,pl,pa,pn,pb); } else { // a is anti-quark if (bptype > 0) //qbarq return jM2WunogqbarQ(pg,p1,plbar,pl,pa,pn,pb); else //qbarqbar return jM2WunogqbarQbar(pg,p1,plbar,pl,pa,pn,pb); } } } } /** Matrix element squared for uno forward tree-level current-current scattering With W+Jets * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param pg Unordered gluon momentum * @returns ME Squared for unof Tree-Level Current-Current Scattering */ double ME_W_unof_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pg, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, bool const wc ){ // we know they are not both gluons if (aptype==21 && bptype!=21) {//a gluon => W emission off b if (bptype > 0) return jM2Wunogqg(pg, pn,plbar, pl, pb, p1, pa); else return jM2Wunogqbarg(pg, pn,plbar, pl, pb, p1, pa); } else { // they are both quark if (wc==true) {// emission off b, i.e. b is first current if (bptype>0){ if (aptype>0) return jM2WunogqQ(pg,pn,plbar,pl,pb,p1,pa); else return jM2WunogqQbar(pg,pn,plbar,pl,pb,p1,pa); } else{ if (aptype>0) return jM2WunogqbarQ(pg,pn,plbar,pl,pb,p1,pa); else return jM2WunogqbarQbar(pg,pn,plbar,pl,pb,p1,pa); } } else {// wc == false, emission off a, i.e. a is first current if (aptype > 0) { if (bptype > 0) //qq return junofMWgqQ(pg,pn,pb,p1,plbar,pl,pa); else //qqbar return junofMWgqQbar(pg,pn,pb,p1,plbar,pl,pa); } else { // a is anti-quark if (bptype > 0) //qbarq return junofMWgqbarQ(pg,pn,pb,p1,plbar,pl,pa); else //qbarqbar return junofMWgqbarQbar(pg,pn,pb,p1,plbar,pl,pa); } } } } /** \brief Matrix element squared for backward qqx tree-level current-current scattering With W+Jets * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pa Initial state a Momentum * @param pb Initial state b Momentum * @param pq Final state q Momentum * @param pqbar Final state qbar Momentum * @param pn Final state n Momentum * @param plbar Final state anti-lepton momentum * @param pl Final state lepton momentum * @returns ME Squared for qqxb Tree-Level Current-Current Scattering */ double ME_W_qqxb_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & pq, CLHEP::HepLorentzVector const & pqbar, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, bool const wc ){ // CAM factors for the qqx amps, and qqbar ordering (default, qbar extremal) bool swapQuarkAntiquark=false; double CFbackward; if (pqbar.rapidity() > pq.rapidity()){ swapQuarkAntiquark=true; CFbackward = (0.5*(3.-1./3.)*(pa.minus()/(pq.minus())+(pq.minus())/pa.minus())+1./3.)*3./4.; } else{ CFbackward = (0.5*(3.-1./3.)*(pa.minus()/(pqbar.minus())+(pqbar.minus())/pa.minus())+1./3.)*3./4.; } // With qqbar we could have 2 incoming gluons and W Emission if (aptype==21&&bptype==21) {//a gluon, b gluon gg->qqbarWg // This will be a wqqx emission as there is no other possible W Emission Site. if (swapQuarkAntiquark){ return jM2Wggtoqqbarg(pa, pqbar, plbar, pl, pq, pn,pb)*CFbackward;} else { return jM2Wggtoqbarqg(pa, pq, plbar, pl, pqbar, pn,pb)*CFbackward;} } else if (aptype==21&&bptype!=21 ) {//a gluon => W emission off b leg or qqx if (wc!=1){ // W Emitted from backwards qqx if (swapQuarkAntiquark){ return jM2WgQtoqqbarQ(pa, pq, plbar, pl, pqbar, pn, pb)*CFbackward;} else{ return jM2WgQtoqbarqQ(pa, pq, plbar, pl, pqbar, pn, pb)*CFbackward;} } else { // W Must be emitted from forwards leg. if (swapQuarkAntiquark){ return jM2WgqtoQQqW(pb, pa, pn, pqbar, pq, plbar, pl)*CFbackward;} else{ return jM2WgqtoQQqW(pb, pa, pn, pq, pqbar, plbar, pl)*CFbackward;} } } else{ throw std::logic_error("Incompatible incoming particle types with qqxb"); } } /* \brief Matrix element squared for forward qqx tree-level current-current scattering With W+Jets * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pa Initial state a Momentum * @param pb Initial state b Momentum * @param pq Final state q Momentum * @param pqbar Final state qbar Momentum * @param p1 Final state 1 Momentum * @param plbar Final state anti-lepton momentum * @param pl Final state lepton momentum * @returns ME Squared for qqxf Tree-Level Current-Current Scattering */ double ME_W_qqxf_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & pq, CLHEP::HepLorentzVector const & pqbar, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, bool const wc ){ // CAM factors for the qqx amps, and qqbar ordering (default, qbar extremal) bool swapQuarkAntiquark=false; double CFforward; if (pqbar.rapidity() < pq.rapidity()){ swapQuarkAntiquark=true; CFforward = (0.5*(3.-1./3.)*(pb.plus()/(pq.plus())+(pq.plus())/pb.plus())+1./3.)*3./4.; } else{ CFforward = (0.5*(3.-1./3.)*(pb.plus()/(pqbar.plus())+(pqbar.plus())/pb.plus())+1./3.)*3./4.; } // With qqbar we could have 2 incoming gluons and W Emission if (aptype==21&&bptype==21) {//a gluon, b gluon gg->qqbarWg // This will be a wqqx emission as there is no other possible W Emission Site. if (swapQuarkAntiquark){ return jM2Wggtoqqbarg(pb, pqbar, plbar, pl, pq, p1,pa)*CFforward;} else { return jM2Wggtoqbarqg(pb, pq, plbar, pl, pqbar, p1,pa)*CFforward;} } else if (bptype==21&&aptype!=21) {// b gluon => W emission off a or qqx if (wc==1){ // W Emitted from forwards qqx if (swapQuarkAntiquark){ return jM2WgQtoqbarqQ(pb, pq, plbar,pl, pqbar, p1, pa)*CFforward;} else { return jM2WgQtoqqbarQ(pb, pq, plbar,pl, pqbar, p1, pa)*CFforward;} } // W Must be emitted from backwards leg. if (swapQuarkAntiquark){ return jM2WgqtoQQqW(pa,pb, p1, pqbar, pq, plbar, pl)*CFforward;} else{ return jM2WgqtoQQqW(pa,pb, p1, pq, pqbar, plbar, pl)*CFforward;} } else{ throw std::logic_error("Incompatible incoming particle types with qqxf"); } } /* \brief Matrix element squared for central qqx tree-level current-current scattering With W+Jets * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param nabove Number of gluons emitted before central qqxpair * @param nbelow Number of gluons emitted after central qqxpair * @param pa Initial state a Momentum * @param pb Initial state b Momentum\ * @param pq Final state qbar Momentum * @param pqbar Final state q Momentum * @param partons Vector of all outgoing partons * @param plbar Final state anti-lepton momentum * @param pl Final state lepton momentum * @param wqq Boolean. True siginfies W boson is emitted from Central qqx * @param wc Boolean. wc=true signifies w boson emitted from leg b; if wqq=false. * @returns ME Squared for qqxmid Tree-Level Current-Current Scattering */ double ME_W_qqxmid_current( int aptype, int bptype, int nabove, int nbelow, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & pq, CLHEP::HepLorentzVector const & pqbar, std::vector partons, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, bool const wqq, bool const wc ){ // CAM factors for the qqx amps, and qqbar ordering (default, pq backwards) bool swapQuarkAntiquark=false; if (pqbar.rapidity() < pq.rapidity()){ swapQuarkAntiquark=true; } double CFforward = (0.5*(3.-1./3.)*(pb.plus()/(partons[partons.size()-1].plus())+(partons[partons.size()-1].plus())/pb.plus())+1./3.)*3./4.; double CFbackward = (0.5*(3.-1./3.)*(pa.minus()/(partons[0].minus())+(partons[0].minus())/pa.minus())+1./3.)*3./4.; double wt=1.; if (aptype==21) wt*=CFbackward; if (bptype==21) wt*=CFforward; if (aptype <=0 && bptype <=0){ // Both External AntiQuark if (wqq==1){//emission from central qqbar return wt*jM2WqqtoqQQq(pa, pb, pl,plbar, partons,true,true, swapQuarkAntiquark, nabove, nbelow); } else if (wc==1){//emission from b leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, true,true, swapQuarkAntiquark, nabove, nbelow, true); } else { // emission from a leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, true,true, swapQuarkAntiquark, nabove, nbelow, false); } } // end both antiquark else if (aptype<=0){ // a is antiquark if (wqq==1){//emission from central qqbar return wt*jM2WqqtoqQQq(pa, pb, pl,plbar, partons, false, true, swapQuarkAntiquark, nabove, nbelow); } else if (wc==1){//emission from b leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons,false,true, swapQuarkAntiquark, nabove, nbelow, true); } else { // emission from a leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, false, true, swapQuarkAntiquark, nabove, nbelow, false); } } // end a is antiquark else if (bptype<=0){ // b is antiquark if (wqq==1){//emission from central qqbar return wt*jM2WqqtoqQQq(pa, pb, pl,plbar, partons, true, false, swapQuarkAntiquark, nabove, nbelow); } else if (wc==1){//emission from b leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, true, false, swapQuarkAntiquark, nabove, nbelow, true); } else { // emission from a leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, true, false, swapQuarkAntiquark, nabove, nbelow, false); } } //end b is antiquark else{ //Both Quark or gluon if (wqq==1){//emission from central qqbar return wt*jM2WqqtoqQQq(pa, pb, pl, plbar, partons, false, false, swapQuarkAntiquark, nabove, nbelow);} else if (wc==1){//emission from b leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, false, false, swapQuarkAntiquark, nabove, nbelow, true); } else { // emission from a leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, false, false, swapQuarkAntiquark, nabove, nbelow, false); } } } /** \brief Matrix element squared for tree-level current-current scattering with Higgs * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param qH t-channel momentum before Higgs * @param qHp1 t-channel momentum after Higgs * @returns ME Squared for Tree-Level Current-Current Scattering with Higgs */ double ME_Higgs_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs double mt, bool include_bottom, double mb ){ if (aptype==21&&bptype==21) // gg initial state return MH2gg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb); else if (aptype==21&&bptype!=21) { if (bptype > 0) return MH2qg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4./9.; else return MH2qbarg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4./9.; } else if (bptype==21&&aptype!=21) { if (aptype > 0) return MH2qg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4./9.; else return MH2qbarg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4./9.; } else { // they are both quark if (bptype>0) { if (aptype>0) return MH2qQ(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.); else return MH2qQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.); } else { if (aptype>0) return MH2qQbar(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4.*4./(9.*9.); else return MH2qbarQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.); } } throw std::logic_error("unknown particle types"); } /** \brief Current matrix element squared with Higgs and unordered forward emission * @param aptype Particle A PDG ID * @param bptype Particle B PDG ID * @param punof Unordered Particle Momentum * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param qH t-channel momentum before Higgs * @param qHp1 t-channel momentum after Higgs * @returns ME Squared with Higgs and unordered forward emission */ double ME_Higgs_current_unof( int aptype, int bptype, CLHEP::HepLorentzVector const & punof, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs double mt, bool include_bottom, double mb ){ if (aptype==21&&bptype!=21) { if (bptype > 0) return jM2unogqHg(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb); else return jM2unogqbarHg(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb); } else { // they are both quark if (bptype>0) { if (aptype>0) return jM2unogqHQ(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb); else return jM2unogqHQbar(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb); } else { if (aptype>0) return jM2unogqbarHQ(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb); else return jM2unogqbarHQbar(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb); } } throw std::logic_error("unknown particle types"); } /** \brief Current matrix element squared with Higgs and unordered backward emission * @param aptype Particle A PDG ID * @param bptype Particle B PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param punob Unordered back Particle Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param qH t-channel momentum before Higgs * @param qHp1 t-channel momentum after Higgs * @returns ME Squared with Higgs and unordered backward emission */ double ME_Higgs_current_unob( int aptype, int bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & punob, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs double mt, bool include_bottom, double mb ){ if (bptype==21&&aptype!=21) { if (aptype > 0) return jM2unobgHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb); else return jM2unobgHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb); } else { // they are both quark if (aptype>0) { if (bptype>0) return jM2unobqHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb); else return jM2unobqbarHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb); } else { if (bptype>0) return jM2unobqHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb); else return jM2unobqbarHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb); } } throw std::logic_error("unknown particle types"); } CLHEP::HepLorentzVector to_HepLorentzVector(RHEJ::Particle const & particle){ return {particle.p.px(), particle.p.py(), particle.p.pz(), particle.p.E()}; } void validate(RHEJ::MatrixElementConfig const & config) { #ifndef RHEJ_BUILD_WITH_QCDLOOP if(!config.Higgs_coupling.use_impact_factors) { throw std::invalid_argument{ "Invalid Higgs coupling settings.\n" "HEJ without QCDloop support can only use impact factors.\n" "Set use_impact_factors to true or recompile HEJ.\n" }; } #endif if(config.Higgs_coupling.use_impact_factors && config.Higgs_coupling.mt != std::numeric_limits::infinity()) { throw std::invalid_argument{ "Conflicting settings: " "impact factors may only be used in the infinite top mass limit" }; } } } // namespace anonymous namespace RHEJ{ MatrixElement::MatrixElement( std::function alpha_s, MatrixElementConfig conf ): alpha_s_{std::move(alpha_s)}, param_{std::move(conf)} { validate(param_); } double MatrixElement::operator()( double mur, std::array const & incoming, std::vector const & outgoing, std::unordered_map> const & decays, bool check_momenta ) const { return tree( mur, incoming, outgoing, decays, check_momenta )*virtual_corrections( mur, incoming, outgoing ); } double MatrixElement::tree_kin( std::array const & incoming, std::vector const & outgoing, std::unordered_map> const & decays, bool check_momenta ) const { assert( std::is_sorted( incoming.begin(), incoming.end(), [](Particle o1, Particle o2){return o1.p.pz()type){ case pid::Higgs: { return tree_kin_Higgs(incoming, outgoing, check_momenta); } // TODO case pid::Wp: { return tree_kin_W(incoming, outgoing, decays, true, check_momenta); } case pid::Wm: { return tree_kin_W(incoming, outgoing, decays, false, check_momenta); } case pid::photon: case pid::Z: default: throw std::logic_error("Emission of boson of unsupported type."); } } namespace{ constexpr int extremal_jet_idx = 1; constexpr int no_extremal_jet_idx = 0; bool treat_as_extremal(Particle const & parton){ return parton.p.user_index() == extremal_jet_idx; } template double FKL_ladder_weight( InputIterator begin_gluon, InputIterator end_gluon, CLHEP::HepLorentzVector const & q0, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pn ){ double wt = 1; auto qi = q0; for(auto gluon_it = begin_gluon; gluon_it != end_gluon; ++gluon_it){ assert(gluon_it->type == pid::gluon); const auto g = to_HepLorentzVector(*gluon_it); const auto qip1 = qi - g; if(treat_as_extremal(*gluon_it)){ wt *= C2Lipatovots(qip1, qi, pa, pb)*C_A; } else{ wt *= C2Lipatovots(qip1, qi, pa, pb, p1, pn)*C_A; } qi = qip1; } return wt; } } // namespace anonymous std::vector MatrixElement::tag_extremal_jet_partons( std::array const & incoming, std::vector out_partons, bool check_momenta ) const{ if(!check_momenta){ for(auto & parton: out_partons){ parton.p.set_user_index(no_extremal_jet_idx); } return out_partons; } fastjet::ClusterSequence cs(to_PseudoJet(out_partons), param_.jet_param.def); const auto jets = sorted_by_rapidity(cs.inclusive_jets(param_.jet_param.min_pt)); assert(jets.size() >= 2); auto most_backward = begin(jets); auto most_forward = end(jets) - 1; // skip jets caused by unordered emission if(has_unob_gluon(incoming, out_partons)){ assert(jets.size() >= 3); ++most_backward; } else if(has_unof_gluon(incoming, out_partons)){ assert(jets.size() >= 3); --most_forward; } const auto extremal_jet_indices = cs.particle_jet_indices( {*most_backward, *most_forward} ); assert(extremal_jet_indices.size() == out_partons.size()); for(size_t i = 0; i < out_partons.size(); ++i){ assert(RHEJ::is_parton(out_partons[i])); const int idx = (extremal_jet_indices[i]>=0)? extremal_jet_idx: no_extremal_jet_idx; out_partons[i].p.set_user_index(idx); } return out_partons; } double MatrixElement::tree_kin_jets( std::array const & incoming, std::vector partons, bool check_momenta ) const { partons = tag_extremal_jet_partons(incoming, partons, check_momenta); if(has_unob_gluon(incoming, partons) || has_unof_gluon(incoming, partons)){ throw std::logic_error("unordered emission not implemented for pure jets"); } const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); const auto p1 = to_HepLorentzVector(partons.front()); const auto pn = to_HepLorentzVector(partons.back()); return ME_current( incoming[0].type, incoming[1].type, pn, pb, p1, pa )/(4*(N_C*N_C - 1))*FKL_ladder_weight( begin(partons) + 1, end(partons) - 1, pa - p1, pa, pb, p1, pn ); } namespace{ double tree_kin_W_FKL( int aptype, int bptype, HLV pa, HLV pb, std::vector const & partons, HLV plbar, HLV pl, bool WPlus ) { auto p1 = to_HepLorentzVector(partons[0]); auto pn = to_HepLorentzVector(partons[partons.size() - 1]); auto q0 = pa - p1; auto begin_ladder = begin(partons) + 1; auto end_ladder = end(partons) - 1; bool wc; if (aptype==partons[0].type) { //leg b emits w wc = true;} else{ wc = false; q0 -=pl + plbar; } double current_factor; if (WPlus){ current_factor = ME_W_current( aptype, bptype, pn, pb, p1, pa, pl, plbar, wc ); } else{ current_factor = ME_W_current( aptype, bptype, pn, pb, p1, pa, plbar, pl, wc ); } const double ladder_factor = FKL_ladder_weight( begin_ladder, end_ladder, q0, pa, pb, p1, pn ); - return current_factor*9./8.*ladder_factor; + return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } double tree_kin_W_unob( int aptype, int bptype, HLV pa, HLV pb, std::vector const & partons, HLV plbar, HLV pl, bool WPlus ) { auto pg = to_HepLorentzVector(partons[0]); auto p1 = to_HepLorentzVector(partons[1]); auto pn = to_HepLorentzVector(partons[partons.size() - 1]); auto q0 = pa - p1- pg; auto begin_ladder = begin(partons) + 2; auto end_ladder = end(partons) - 1; bool wc; if (aptype==partons[1].type) { //leg b emits w wc = true;} else{ wc = false; q0 -=pl + plbar; } double current_factor; if (WPlus){ current_factor = ME_W_unob_current( aptype, bptype, pn, pb, p1, pa, pg, pl, plbar, wc ); } else{ current_factor = ME_W_unob_current( aptype, bptype, pn, pb, p1, pa, pg, plbar, pl, wc ); } const double ladder_factor = FKL_ladder_weight( begin_ladder, end_ladder, q0, pa, pb, p1, pn ); - return current_factor*9./8.*ladder_factor; + return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } double tree_kin_W_unof( int aptype, int bptype, HLV pa, HLV pb, std::vector const & partons, HLV plbar, HLV pl, bool WPlus ) { auto p1 = to_HepLorentzVector(partons[0]); auto pn = to_HepLorentzVector(partons[partons.size() - 2]); auto pg = to_HepLorentzVector(partons[partons.size() - 1]); auto q0 = pa - p1; auto begin_ladder = begin(partons) + 1; auto end_ladder = end(partons) - 2; bool wc; if (aptype==partons[0].type) { //leg b emits w wc = true;} else{ wc = false; q0 -=pl + plbar; } double current_factor; if (WPlus){ current_factor = ME_W_unof_current( aptype, bptype, pn, pb, p1, pa, pg, pl, plbar, wc ); } else{ current_factor = ME_W_unof_current( aptype, bptype, pn, pb, p1, pa, pg, plbar, pl, wc ); } const double ladder_factor = FKL_ladder_weight( begin_ladder, end_ladder, q0, pa, pb, p1, pn ); - return current_factor*9./8.*ladder_factor; + return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } double tree_kin_W_qqxb( int aptype, int bptype, HLV pa, HLV pb, std::vector const & partons, HLV plbar, HLV pl, bool WPlus ) { HLV pq,pqbar; if(is_quark(partons[0])){ pq = to_HepLorentzVector(partons[0]); pqbar = to_HepLorentzVector(partons[1]); } else{ pq = to_HepLorentzVector(partons[1]); pqbar = to_HepLorentzVector(partons[0]); } auto p1 = to_HepLorentzVector(partons[0]); auto pn = to_HepLorentzVector(partons[partons.size() - 1]); auto q0 = pa - pq - pqbar; auto begin_ladder = begin(partons) + 2; auto end_ladder = end(partons) - 1; bool wc; if (partons[0].type==-partons[1].type) { //leg b emits w wc = true;} else{ wc = false; q0 -=pl + plbar; } double current_factor; if (WPlus){ current_factor = ME_W_qqxb_current( aptype, bptype, pa, pb, pq, pqbar, pn, pl, plbar, wc ); } else{ current_factor = ME_W_qqxb_current( aptype, bptype, pa, pb, pq, pqbar, pn, plbar, pl, wc ); } const double ladder_factor = FKL_ladder_weight( begin_ladder, end_ladder, q0, pa, pb, p1, pn ); - return current_factor*9./8.*ladder_factor; + return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } double tree_kin_W_qqxf( int aptype, int bptype, HLV pa, HLV pb, std::vector const & partons, HLV plbar, HLV pl, bool WPlus ) { HLV pq,pqbar; if(is_quark(partons[partons.size() - 1])){ pq = to_HepLorentzVector(partons[partons.size() - 1]); pqbar = to_HepLorentzVector(partons[partons.size() - 2]); } else{ pq = to_HepLorentzVector(partons[partons.size() - 2]); pqbar = to_HepLorentzVector(partons[partons.size() - 1]); } auto p1 = to_HepLorentzVector(partons[0]); auto pn = to_HepLorentzVector(partons[partons.size() - 1]); auto q0 = pa - p1; auto begin_ladder = begin(partons) + 1; auto end_ladder = end(partons) - 2; bool wc; if (aptype==partons[0].type) { //leg b emits w wc = true;} else{ wc = false; q0 -=pl + plbar; } double current_factor; if (WPlus){ current_factor = ME_W_qqxf_current( aptype, bptype, pa, pb, pq, pqbar, p1, pl, plbar, wc ); } else{ current_factor = ME_W_qqxf_current( aptype, bptype, pa, pb, pq, pqbar, p1, plbar, pl, wc ); } const double ladder_factor = FKL_ladder_weight( begin_ladder, end_ladder, q0, pa, pb, p1, pn ); - return current_factor*9./8.*ladder_factor; + return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } double tree_kin_W_qqxmid( int aptype, int bptype, HLV pa, HLV pb, std::vector const & partons, HLV plbar, HLV pl, bool WPlus ) { HLV pq,pqbar; const auto backmidquark = std::find_if( begin(partons)+1, end(partons)-1, [](Particle const & s){ return s.type != pid::gluon; } ); if (is_quark(backmidquark->type)){ pq = to_HepLorentzVector(*backmidquark); pqbar = to_HepLorentzVector(*(backmidquark+1)); } else { pqbar = to_HepLorentzVector(*backmidquark); pq = to_HepLorentzVector(*(backmidquark+1)); } auto p1 = to_HepLorentzVector(partons[0]); auto pn = to_HepLorentzVector(partons[partons.size() - 1]); auto q0 = pa - p1; // t-channel momentum after qqx auto qqxt = q0; bool wc, wqq; if (backmidquark->type == -(backmidquark+1)->type){ // Central qqx does not emit wqq=false; if (aptype==partons[0].type) { wc = true; } else{ wc = false; q0-=pl+plbar; } } else{ wqq = true; wc = false; qqxt-=pl+plbar; } auto begin_ladder = begin(partons) + 1; auto end_ladder = end(partons) - 1; auto first_after_qqx = (backmidquark+2); for(auto parton_it = begin_ladder; parton_it != first_after_qqx; ++parton_it){ qqxt -= to_HepLorentzVector(*parton_it); } int nabove = std::distance(begin_ladder, backmidquark-1); int nbelow = std::distance(first_after_qqx, end_ladder); std::vector partonsHLV; partonsHLV.reserve(partons.size()); for (size_t i = 0; i != partons.size(); ++i) { partonsHLV.push_back(to_HepLorentzVector(partons[i])); } double current_factor; if (WPlus){ current_factor = ME_W_qqxmid_current( aptype, bptype, nabove, nbelow, pa, pb, pq, pqbar, partonsHLV, pl, plbar, wqq, wc ); } else{ current_factor = ME_W_qqxmid_current( aptype, bptype, nabove, nbelow, pa, pb, pq, pqbar, partonsHLV, plbar, pl, wqq, wc ); } const double ladder_factor = FKL_ladder_weight( begin_ladder, backmidquark-1, q0, pa, pb, p1, pn )*FKL_ladder_weight( first_after_qqx, end_ladder, qqxt, pa, pb, p1, pn ); return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } } double MatrixElement::tree_kin_W( std::array const & incoming, std::vector const & outgoing, std::unordered_map> const & decays, bool WPlus, bool check_momenta ) const { HLV plbar, pl; for (auto& x: decays) { if (x.second.at(0).type < 0){ plbar = to_HepLorentzVector(x.second.at(0)); pl = to_HepLorentzVector(x.second.at(1)); } else{ pl = to_HepLorentzVector(x.second.at(0)); plbar = to_HepLorentzVector(x.second.at(1)); } } const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); const auto the_W = std::find_if( begin(outgoing), end(outgoing), [](Particle const & s){ return abs(s.type) == pid::Wp; } ); std::vector partons(begin(outgoing), the_W); partons.insert(end(partons), the_W + 1, end(outgoing)); partons = tag_extremal_jet_partons(incoming, partons, check_momenta); if(has_unob_gluon(incoming, outgoing)){ return tree_kin_W_unob(incoming[0].type, incoming[1].type, pa, pb, partons, plbar, pl, WPlus); } else if(has_unof_gluon(incoming, outgoing)){ return tree_kin_W_unof(incoming[0].type, incoming[1].type, pa, pb, partons, plbar, pl, WPlus); } else if(has_Ex_qqxb(incoming, outgoing)){ return tree_kin_W_qqxb(incoming[0].type, incoming[1].type, pa, pb, partons, plbar, pl, WPlus); } else if(has_Ex_qqxf(incoming, outgoing)){ return tree_kin_W_qqxf(incoming[0].type, incoming[1].type, pa, pb, partons, plbar, pl, WPlus); } else if(has_mid_qqx(outgoing)){ return tree_kin_W_qqxmid(incoming[0].type, incoming[1].type, pa, pb, partons, plbar, pl, WPlus); } return tree_kin_W_FKL(incoming[0].type, incoming[1].type, pa, pb, partons, plbar, pl, WPlus); } double MatrixElement::tree_kin_Higgs( std::array const & incoming, std::vector const & outgoing, bool check_momenta ) const { if(has_uno_gluon(incoming, outgoing)){ return tree_kin_Higgs_between(incoming, outgoing, check_momenta); } if(outgoing.front().type == pid::Higgs){ return tree_kin_Higgs_first(incoming, outgoing, check_momenta); } if(outgoing.back().type == pid::Higgs){ return tree_kin_Higgs_last(incoming, outgoing, check_momenta); } return tree_kin_Higgs_between(incoming, outgoing, check_momenta); } namespace { // Colour acceleration multipliers, for gluons see eq. (7) in arXiv:0910.5113 // TODO: code duplication with currents.cc double K_g(double p1minus, double paminus) { return 1./2.*(p1minus/paminus + paminus/p1minus)*(C_A - 1./C_A) + 1./C_A; } double K_g( CLHEP::HepLorentzVector const & pout, CLHEP::HepLorentzVector const & pin ) { if(pin.z() > 0) return K_g(pout.plus(), pin.plus()); return K_g(pout.minus(), pin.minus()); } double K( ParticleID type, CLHEP::HepLorentzVector const & pout, CLHEP::HepLorentzVector const & pin ) { if(type == ParticleID::gluon) return K_g(pout, pin); return C_F; } // Colour factor in strict MRK limit double K_MRK(ParticleID type) { return (type == ParticleID::gluon)?C_A:C_F; } } double MatrixElement::MH2_forwardH( CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, ParticleID type2, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector pH, double t1, double t2 ) const{ ignore(p2out, p2in); const double shat = p1in.invariantMass2(p2in); // gluon case #ifdef RHEJ_BUILD_WITH_QCDLOOP if(!param_.Higgs_coupling.use_impact_factors){ return K(type2, p2out, p2in)*C_A*1./(16*M_PI*M_PI)*t1/t2*MH2gq_outsideH( p1out, p1in, p2out, p2in, pH, param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb )/(4*(N_C*N_C - 1)); } #endif return K_MRK(type2)/C_A*9./2.*shat*shat*( C2gHgp(p1in,p1out,pH) + C2gHgm(p1in,p1out,pH) )/(t1*t2); } double MatrixElement::tree_kin_Higgs_first( std::array const & incoming, std::vector const & outgoing, bool check_momenta ) const { assert(outgoing.front().type == pid::Higgs); if(outgoing[1].type != pid::gluon) { assert(incoming.front().type == outgoing[1].type); return tree_kin_Higgs_between(incoming, outgoing, check_momenta); } const auto pH = to_HepLorentzVector(outgoing.front()); const auto partons = tag_extremal_jet_partons( incoming, std::vector(begin(outgoing) + 1, end(outgoing)), check_momenta ); const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); const auto p1 = to_HepLorentzVector(partons.front()); const auto pn = to_HepLorentzVector(partons.back()); const auto q0 = pa - p1 - pH; const double t1 = q0.m2(); const double t2 = (pn - pb).m2(); return MH2_forwardH( p1, pa, incoming[1].type, pn, pb, pH, t1, t2 )*FKL_ladder_weight( begin(partons) + 1, end(partons) - 1, q0, pa, pb, p1, pn ); } double MatrixElement::tree_kin_Higgs_last( std::array const & incoming, std::vector const & outgoing, bool check_momenta ) const { assert(outgoing.back().type == pid::Higgs); if(outgoing[outgoing.size()-2].type != pid::gluon) { assert(incoming.back().type == outgoing[outgoing.size()-2].type); return tree_kin_Higgs_between(incoming, outgoing, check_momenta); } const auto pH = to_HepLorentzVector(outgoing.back()); const auto partons = tag_extremal_jet_partons( incoming, std::vector(begin(outgoing), end(outgoing) - 1), check_momenta ); const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); auto p1 = to_HepLorentzVector(partons.front()); const auto pn = to_HepLorentzVector(partons.back()); auto q0 = pa - p1; const double t1 = q0.m2(); const double t2 = (pn + pH - pb).m2(); return MH2_forwardH( pn, pb, incoming[0].type, p1, pa, pH, t2, t1 )*FKL_ladder_weight( begin(partons) + 1, end(partons) - 1, q0, pa, pb, p1, pn ); } double MatrixElement::tree_kin_Higgs_between( std::array const & incoming, std::vector const & outgoing, bool check_momenta ) const { const auto the_Higgs = std::find_if( begin(outgoing), end(outgoing), [](Particle const & s){ return s.type == pid::Higgs; } ); assert(the_Higgs != end(outgoing)); const auto pH = to_HepLorentzVector(*the_Higgs); std::vector partons(begin(outgoing), the_Higgs); partons.insert(end(partons), the_Higgs + 1, end(outgoing)); partons = tag_extremal_jet_partons(incoming, partons, check_momenta); const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); auto p1 = to_HepLorentzVector( partons[has_unob_gluon(incoming, outgoing)?1:0] ); auto pn = to_HepLorentzVector( partons[partons.size() - (has_unof_gluon(incoming, outgoing)?2:1)] ); auto first_after_Higgs = begin(partons) + (the_Higgs-begin(outgoing)); assert( (first_after_Higgs == end(partons) && ( has_unob_gluon(incoming, outgoing) || partons.back().type != pid::gluon )) || first_after_Higgs->rapidity() >= the_Higgs->rapidity() ); assert( (first_after_Higgs == begin(partons) && ( has_unof_gluon(incoming, outgoing) || partons.front().type != pid::gluon )) || (first_after_Higgs-1)->rapidity() <= the_Higgs->rapidity() ); // always treat the Higgs as if it were in between the extremal FKL partons if(first_after_Higgs == begin(partons)) ++first_after_Higgs; else if(first_after_Higgs == end(partons)) --first_after_Higgs; // t-channel momentum before Higgs auto qH = pa; for(auto parton_it = begin(partons); parton_it != first_after_Higgs; ++parton_it){ qH -= to_HepLorentzVector(*parton_it); } auto q0 = pa - p1; auto begin_ladder = begin(partons) + 1; auto end_ladder = end(partons) - 1; double current_factor; if(has_unob_gluon(incoming, outgoing)){ current_factor = C_A*C_A/2.*ME_Higgs_current_unob( // 1/2 = "K_uno" incoming[0].type, incoming[1].type, pn, pb, to_HepLorentzVector(partons.front()), p1, pa, qH, qH - pH, param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb ); const auto p_unob = to_HepLorentzVector(partons.front()); q0 -= p_unob; p1 += p_unob; ++begin_ladder; } else if(has_unof_gluon(incoming, outgoing)){ current_factor = C_A*C_A/2.*ME_Higgs_current_unof( // 1/2 = "K_uno" incoming[0].type, incoming[1].type, to_HepLorentzVector(partons.back()), pn, pb, p1, pa, qH, qH - pH, param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb ); pn += to_HepLorentzVector(partons.back()); --end_ladder; } else{ current_factor = ME_Higgs_current( incoming[0].type, incoming[1].type, pn, pb, p1, pa, qH, qH - pH, param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb ); } const double ladder_factor = FKL_ladder_weight( begin_ladder, first_after_Higgs, q0, pa, pb, p1, pn )*FKL_ladder_weight( first_after_Higgs, end_ladder, qH - pH, pa, pb, p1, pn ); return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } double MatrixElement::tree_param_partons( double alpha_s, double mur, std::vector const & partons ) const{ const double gs2 = 4.*M_PI*alpha_s; double wt = std::pow(gs2, partons.size()); if(param_.log_correction){ // use alpha_s(q_perp), evolved to mur assert(partons.size() >= 2); for(size_t i = 1; i < partons.size()-1; ++i){ wt *= 1 + alpha_s/(2*M_PI)*beta0*log(mur/partons[i].p.perp()); } } return wt; } double MatrixElement::tree_param( double mur, std::array const & incoming, std::vector const & outgoing ) const{ const double alpha_s = alpha_s_(mur); auto AWZH_boson = std::find_if( begin(outgoing), end(outgoing), [](auto const & p){return is_AWZH_boson(p);} ); double AWZH_coupling = 1.; if(AWZH_boson != end(outgoing)){ switch(AWZH_boson->type){ case pid::Higgs: { AWZH_coupling = alpha_s*alpha_s; break; } // TODO case pid::Wp:{ AWZH_coupling = alpha_w*alpha_w/2; break; } case pid::Wm:{ AWZH_coupling = alpha_w*alpha_w/2; break; } case pid::photon: case pid::Z: default: throw std::logic_error("Emission of boson of unsupported type"); } } if(has_unob_gluon(incoming, outgoing)){ return AWZH_coupling*4*M_PI*alpha_s*tree_param_partons( alpha_s, mur, filter_partons({begin(outgoing) + 1, end(outgoing)}) ); } if(has_unof_gluon(incoming, outgoing)){ return AWZH_coupling*4*M_PI*alpha_s*tree_param_partons( alpha_s, mur, filter_partons({begin(outgoing), end(outgoing) - 1}) ); } return AWZH_coupling*tree_param_partons(alpha_s, mur, filter_partons(outgoing)); } double MatrixElement::tree( double mur, std::array const & incoming, std::vector const & outgoing, std::unordered_map> const & decays, bool check_momenta ) const { return tree_param(mur, incoming, outgoing)*tree_kin( incoming, outgoing, decays, check_momenta ); } } // namespace RHEJ diff --git a/src/Wjets.cc b/src/Wjets.cc index cd5a520..1645acc 100644 --- a/src/Wjets.cc +++ b/src/Wjets.cc @@ -1,2019 +1,1964 @@ #include "RHEJ/currents.hh" #include "RHEJ/utility.hh" #include "RHEJ/Tensor.hh" #include "RHEJ/Constants.hh" #include #include namespace { // Helper Functions // FKL W Helper Functions void jW (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pe, bool hele, CLHEP::HepLorentzVector pnu, bool helnu, CLHEP::HepLorentzVector pin, bool helin, current cur) { // NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is anti-lepton(5) // Need to swap e and nu for events with W- --> e- nubar! if (helin==helout && hele==helnu) { CLHEP::HepLorentzVector qa=pout+pe+pnu; CLHEP::HepLorentzVector qb=pin-pe-pnu; double ta(qa.m2()),tb(qb.m2()); current t65,vout,vin,temp2,temp3,temp5; joo(pnu,helnu,pe,hele,t65); vout[0]=pout.e(); vout[1]=pout.x(); vout[2]=pout.y(); vout[3]=pout.z(); vin[0]=pin.e(); vin[1]=pin.x(); vin[2]=pin.y(); vin[3]=pin.z(); COM brac615=cdot(t65,vout); COM brac645=cdot(t65,vin); // prod1565 and prod6465 are zero for Ws (not Zs)!! joo(pout,helout,pnu,helout,temp2); COM prod1665=cdot(temp2,t65); j(pe,helin,pin,helin,temp3); COM prod5465=cdot(temp3,t65); joo(pout,helout,pe,helout,temp2); j(pnu,helnu,pin,helin,temp3); j(pout,helout,pin,helin,temp5); current term1,term2,term3,sum; cmult(2.*brac615/ta+2.*brac645/tb,temp5,term1); cmult(prod1665/ta,temp3,term2); cmult(-prod5465/tb,temp2,term3); cadd(term1,term2,term3,sum); cur[0]=sum[0]; cur[1]=sum[1]; cur[2]=sum[2]; cur[3]=sum[3]; } } void jWbar (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pe, bool hele, CLHEP::HepLorentzVector pnu, bool helnu, CLHEP::HepLorentzVector pin, bool helin, current cur) { // NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is anti-lepton(5) // Need to swap e and nu for events with W- --> e- nubar! if (helin==helout && hele==helnu) { CLHEP::HepLorentzVector qa=pout+pe+pnu; CLHEP::HepLorentzVector qb=pin-pe-pnu; double ta(qa.m2()),tb(qb.m2()); current t65,vout,vin,temp2,temp3,temp5; joo(pnu,helnu,pe,hele,t65); vout[0]=pout.e(); vout[1]=pout.x(); vout[2]=pout.y(); vout[3]=pout.z(); vin[0]=pin.e(); vin[1]=pin.x(); vin[2]=pin.y(); vin[3]=pin.z(); COM brac615=cdot(t65,vout); COM brac645=cdot(t65,vin); // prod1565 and prod6465 are zero for Ws (not Zs)!! joo(pe,helout,pout,helout,temp2); // temp2 is <5|alpha|1> COM prod5165=cdot(temp2,t65); jio(pin,helin,pnu,helin,temp3); // temp3 is <4|alpha|6> COM prod4665=cdot(temp3,t65); joo(pnu,helout,pout,helout,temp2); // temp2 is now <6|mu|1> jio(pin,helin,pe,helin,temp3); // temp3 is now <4|mu|5> jio(pin,helin,pout,helout,temp5); // temp5 is <4|mu|1> current term1,term2,term3,sum; cmult(-2.*brac615/ta-2.*brac645/tb,temp5,term1); cmult(-prod5165/ta,temp3,term2); cmult(prod4665/tb,temp2,term3); cadd(term1,term2,term3,sum); cur[0]=sum[0]; cur[1]=sum[1]; cur[2]=sum[2]; cur[3]=sum[3]; } } CCurrent jW (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pe, bool hele, CLHEP::HepLorentzVector pnu, bool helnu, CLHEP::HepLorentzVector pin, bool helin) { COM cur[4]; cur[0]=0.; cur[1]=0.; cur[2]=0.; cur[3]=0.; CCurrent sum(0.,0.,0.,0.); // NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is anti-lepton(5) // Need to swap e and nu for events with W- --> e- nubar! if (helin==helout && hele==helnu) { CLHEP::HepLorentzVector qa=pout+pe+pnu; CLHEP::HepLorentzVector qb=pin-pe-pnu; double ta(qa.m2()),tb(qb.m2()); CCurrent temp2,temp3,temp5; CCurrent t65 = joo(pnu,helnu,pe,hele); CCurrent vout(pout.e(),pout.x(),pout.y(),pout.z()); CCurrent vin(pin.e(),pin.x(),pin.y(),pin.z()); COM brac615=t65.dot(vout); COM brac645=t65.dot(vin); // prod1565 and prod6465 are zero for Ws (not Zs)!! temp2 = joo(pout,helout,pnu,helout); COM prod1665=temp2.dot(t65); temp3 = j(pe,helin,pin,helin); COM prod5465=temp3.dot(t65); temp2=joo(pout,helout,pe,helout); temp3=j(pnu,helnu,pin,helin); temp5=j(pout,helout,pin,helin); CCurrent term1,term2,term3; term1=(2.*brac615/ta+2.*brac645/tb)*temp5; term2=(prod1665/ta)*temp3; term3=(-prod5465/tb)*temp2; sum=term1+term2+term3; } return sum; } CCurrent jWbar (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pe, bool hele, CLHEP::HepLorentzVector pnu, bool helnu, CLHEP::HepLorentzVector pin, bool helin) { COM cur[4]; cur[0]=0.; cur[1]=0.; cur[2]=0.; cur[3]=0.; CCurrent sum(0.,0.,0.,0.); // NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is anti-lepton(5) // Need to swap e and nu for events with W- --> e- nubar! if (helin==helout && hele==helnu) { CLHEP::HepLorentzVector qa=pout+pe+pnu; CLHEP::HepLorentzVector qb=pin-pe-pnu; double ta(qa.m2()),tb(qb.m2()); CCurrent temp2,temp3,temp5; CCurrent t65 = joo(pnu,helnu,pe,hele); CCurrent vout(pout.e(),pout.x(),pout.y(),pout.z()); CCurrent vin(pin.e(),pin.x(),pin.y(),pin.z()); COM brac615=t65.dot(vout); COM brac645=t65.dot(vin); // prod1565 and prod6465 are zero for Ws (not Zs)!! temp2 = joo(pe,helout,pout,helout); // temp2 is <5|alpha|1> COM prod5165=temp2.dot(t65); temp3 = jio(pin,helin,pnu,helin); // temp3 is <4|alpha|6> COM prod4665=temp3.dot(t65); temp2=joo(pnu,helout,pout,helout); // temp2 is now <6|mu|1> temp3=jio(pin,helin,pe,helin); // temp3 is now <4|mu|5> temp5=jio(pin,helin,pout,helout); // temp5 is <4|mu|1> CCurrent term1,term2,term3; term1 =(-2.*brac615/ta-2.*brac645/tb)*temp5; term2 =(-prod5165/ta)*temp3; term3 =(prod4665/tb)*temp2; sum = term1 + term2 + term3; } return sum; } // Relevant W+Jets Unordered Contribution Helper Functions // W+Jets Uno double jM2Wuno(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1,CLHEP::HepLorentzVector plbar, CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector pa, bool h1, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector pb, bool h2, bool pol) { static bool is_sigma_index_set(false); if(!is_sigma_index_set){ //std::cout<<"Setting sigma_index...." << std::endl; if(init_sigma_index()) is_sigma_index_set = true; else return 0.; } CLHEP::HepLorentzVector pW = pl+plbar; CLHEP::HepLorentzVector q1g=pa-pW-p1-pg; CLHEP::HepLorentzVector q1 = pa-p1-pW; CLHEP::HepLorentzVector q2 = p2-pb; const double taW = (pa-pW).m2(); const double taW1 = (pa-pW-p1).m2(); const double tb2 = (pb-p2).m2(); const double tb2g = (pb-p2-pg).m2(); const double s1W = (p1+pW).m2(); const double s1gW = (p1+pW+pg).m2(); const double s1g = (p1+pg).m2(); const double tag = (pa-pg).m2(); const double taWg = (pa-pW-pg).m2(); - const double ca = RHEJ::C_A; - const double cf = RHEJ::C_F; /// epsg = eps(pg,p2,pol); Tensor<1,4> epsW = TCurrent(pl,false,plbar,false); Tensor<1,4> j2b = TCurrent(p2,h2,pb,h2); Tensor<1,4> Tq1q2 = Construct1Tensor((q1+q2)/taW1 + (pb/pb.dot(pg) + p2/p2.dot(pg)) * tb2/(2*tb2g)); Tensor<1,4> Tq1g = Construct1Tensor((-pg-q1))/taW1; Tensor<1,4> Tq2g = Construct1Tensor((pg-q2)); Tensor<1,4> TqaW = Construct1Tensor((pa-pW));//pa-pw Tensor<1,4> Tqag = Construct1Tensor((pa-pg)); Tensor<1,4> TqaWg = Construct1Tensor((pa-pg-pW)); Tensor<1,4> Tp1g = Construct1Tensor((p1+pg)); Tensor<1,4> Tp1W = Construct1Tensor((p1+pW));//p1+pw Tensor<1,4> Tp1gW = Construct1Tensor((p1+pg+pW));//p1+pw+pg Tensor<2,4> g=Metric(); Tensor<3,4> J31a = T3Current(p1, h1, pa, h1); Tensor<2,4> J2_qaW =J31a.contract(TqaW/taW, 2); Tensor<2,4> J2_p1W =J31a.contract(Tp1W/s1W, 2); Tensor<3,4> L1a =J2_qaW.leftprod(Tq1q2); Tensor<3,4> L1b =J2_p1W.leftprod(Tq1q2); Tensor<3,4> L2a = J2_qaW.leftprod(Tq1g); Tensor<3,4> L2b = J2_p1W.leftprod(Tq1g); Tensor<3,4> L3 = (g.rightprod(J2_qaW.contract(Tq2g,1)+J2_p1W.contract(Tq2g,2)))/taW1; Tensor<3,4> L(0.); Tensor<5,4> J51a = T5Current(p1, h1, pa, h1); Tensor<4,4> J_qaW = J51a.contract(TqaW,4); Tensor<4,4> J_qag = J51a.contract(Tqag,4); Tensor<4,4> J_p1gW = J51a.contract(Tp1gW,4); Tensor<3,4> U1a = J_qaW.contract(Tp1g,2); Tensor<3,4> U1b = J_p1gW.contract(Tp1g,2); Tensor<3,4> U1c = J_p1gW.contract(Tp1W,2); Tensor<3,4> U1(0.); Tensor<3,4> U2a = J_qaW.contract(TqaWg,2); Tensor<3,4> U2b = J_qag.contract(TqaWg,2); Tensor<3,4> U2c = J_qag.contract(Tp1W,2); Tensor<3,4> U2(0.); for(int nu=0; nu<4;nu++){ for(int mu=0;mu<4;mu++){ for(int rho=0;rho<4;rho++){ L.Set(nu, mu, rho, L1a.at(nu,mu,rho) + L1b.at(nu,rho,mu) + L2a.at(mu,nu,rho) + L2b.at(mu,rho,nu) + L3.at(mu,nu,rho)); U1.Set(nu, mu, rho, U1a.at(nu, mu, rho) / (s1g*taW) + U1b.at(nu,rho,mu) / (s1g*s1gW) + U1c.at(rho,nu,mu) / (s1W*s1gW)); U2.Set(nu,mu,rho,U2a.at(mu,nu,rho) / (taWg*taW) + U2b.at(mu,rho,nu) / (taWg*tag) + U2c.at(rho,mu,nu) / (s1W*tag)); } } } COM X = ((((U1-L).contract(epsW,3)).contract(j2b,2)).contract(epsg,1)).at(0); COM Y = ((((U2+L).contract(epsW,3)).contract(j2b,2)).contract(epsg,1)).at(0); - double amp = ca*cf*cf/2.*(norm(X)+norm(Y)) - cf/2.*(X*conj(Y)).real(); + double amp = RHEJ::C_A*RHEJ::C_F*RHEJ::C_F/2.*(norm(X)+norm(Y)) - RHEJ::C_F/2.*(X*conj(Y)).real(); double t1 = q1g.m2(); double t2 = q2.m2(); //Divide by t-channels amp/=(t1*t2); //Average over initial states - amp/=(4.*ca*ca); + amp/=(4.*RHEJ::C_A*RHEJ::C_A); return amp; } // Relevant Wqqx Helper Functions. //g->qxqlxl (Calculates gluon to qqx Current. See JV_\mu in WSubleading Notes) Tensor <1,4> gtqqxW(CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar,CLHEP::HepLorentzVector pl,CLHEP::HepLorentzVector plbar){ double s2AB=(pl+plbar+pq).m2(); double s3AB=(pl+plbar+pqbar).m2(); Tensor<1,4> Tpq = Construct1Tensor(pq); Tensor<1,4> Tpqbar = Construct1Tensor(pqbar); Tensor<1,4> TAB = Construct1Tensor(pl+plbar); // Define llx current. Tensor<1,4> ABCur = TCurrent(pl, false, plbar, false); //blank 3 Gamma Current Tensor<3,4> JV23 = T3Current(pq,false,pqbar,false); // Components of g->qqW before W Contraction Tensor<2,4> JV1 = JV23.contract((Tpq + TAB),2)/(s2AB); Tensor<2,4> JV2 = JV23.contract((Tpqbar + TAB),2)/(s3AB); // g->qqW Current. Note Minus between terms due to momentum flow. // Also note: (-I)^2 from W vert. (I) from Quark prop. Tensor<1,4> JVCur = (JV1.contract(ABCur,1) - JV2.contract(ABCur,2))*COM(0.,-1.); return JVCur; } // Helper Functions Calculate the Crossed Contribution Tensor <2,4> MCrossW(CLHEP::HepLorentzVector pa,CLHEP::HepLorentzVector p1,CLHEP::HepLorentzVector pb,CLHEP::HepLorentzVector p4, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar,CLHEP::HepLorentzVector pl,CLHEP::HepLorentzVector plbar, std::vector partons, int nabove){ // Useful propagator factors double s2AB=(pl+plbar+pq).m2(); double s3AB=(pl+plbar+pqbar).m2(); CLHEP::HepLorentzVector q1, q3; q1=pa; for(int i=0; i Tp1 = Construct1Tensor(p1); Tensor<1,4> Tp4 = Construct1Tensor(p4); Tensor<1,4> Tpa = Construct1Tensor(pa); Tensor<1,4> Tpb = Construct1Tensor(pb); Tensor<1,4> Tpq = Construct1Tensor(pq); Tensor<1,4> Tpqbar = Construct1Tensor(pqbar); Tensor<1,4> TAB = Construct1Tensor(pl+plbar); Tensor<1,4> Tq1 = Construct1Tensor(q1); Tensor<1,4> Tq3 = Construct1Tensor(q3); Tensor<2,4> g=Metric(); // Define llx current. Tensor<1,4> ABCur = TCurrent(pl, false, plbar,false); //Blank 5 gamma Current Tensor<5,4> J523 = T5Current(pq,false,pqbar,false); // 4 gamma currents (with 1 contraction already). Tensor<4,4> J_q3q = J523.contract((Tq3+Tpq),2); Tensor<4,4> J_2AB = J523.contract((Tpq+TAB),2); // Components of Crossed Vertex Contribution Tensor<3,4> Xcro1 = J_q3q.contract((Tpqbar + TAB),3); Tensor<3,4> Xcro2 = J_q3q.contract((Tq1-Tpqbar),3); Tensor<3,4> Xcro3 = J_2AB.contract((Tq1-Tpqbar),3); // Term Denominators Taken Care of at this stage Tensor<2,4> Xcro1Cont = Xcro1.contract(ABCur,3)/(tcro1*s3AB); Tensor<2,4> Xcro2Cont = Xcro2.contract(ABCur,2)/(tcro1*tcro2); Tensor<2,4> Xcro3Cont = Xcro3.contract(ABCur,1)/(s2AB*tcro2); //Initialise the Crossed Vertex Object Tensor<2,4> Xcro(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xcro.Set(mu,nu, -(-Xcro1Cont.at(nu,mu)+Xcro2Cont.at(nu,mu)+Xcro3Cont.at(nu,mu))); } } return Xcro; } // Helper Functions Calculate the Uncrossed Contribution Tensor <2,4> MUncrossW(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p4, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar,CLHEP::HepLorentzVector pl,CLHEP::HepLorentzVector plbar, std::vector partons, int nabove){ double s2AB=(pl+plbar+pq).m2(); double s3AB=(pl+plbar+pqbar).m2(); CLHEP::HepLorentzVector q1, q3; q1=pa; for(int i=0; i Tp1 = Construct1Tensor(p1); Tensor<1,4> Tp4 = Construct1Tensor(p4); Tensor<1,4> Tpa = Construct1Tensor(pa); Tensor<1,4> Tpb = Construct1Tensor(pb); Tensor<1,4> Tpq = Construct1Tensor(pq); Tensor<1,4> Tpqbar = Construct1Tensor(pqbar); Tensor<1,4> TAB = Construct1Tensor(pl+plbar); Tensor<1,4> Tq1 = Construct1Tensor(q1); Tensor<1,4> Tq3 = Construct1Tensor(q3); Tensor<2,4> g=Metric(); // Define llx current. Tensor<1,4> ABCur = TCurrent(pl, false, plbar, false); //Blank 5 gamma Current Tensor<5,4> J523 = T5Current(pq,false,pqbar,false); // 4 gamma currents (with 1 contraction already). Tensor<4,4> J_2AB = J523.contract((Tpq+TAB),2); Tensor<4,4> J_q1q = J523.contract((Tq1-Tpq),2); // 2 Contractions taken care of. Tensor<3,4> Xunc1 = J_2AB.contract((Tq3+Tpqbar),3); Tensor<3,4> Xunc2 = J_q1q.contract((Tq3+Tpqbar),3); Tensor<3,4> Xunc3 = J_q1q.contract((Tpqbar+TAB),3); // Term Denominators Taken Care of at this stage Tensor<2,4> Xunc1Cont = Xunc1.contract(ABCur,1)/(s2AB*tunc2); Tensor<2,4> Xunc2Cont = Xunc2.contract(ABCur,2)/(tunc1*tunc2); Tensor<2,4> Xunc3Cont = Xunc3.contract(ABCur,3)/(tunc1*s3AB); //Initialise the Uncrossed Vertex Object Tensor<2,4> Xunc(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xunc.Set(mu,nu,-(- Xunc1Cont.at(mu,nu)+Xunc2Cont.at(mu,nu) +Xunc3Cont.at(mu,nu))); } } return Xunc; } // Helper Functions Calculate the g->qqxW (Eikonal) Contributions Tensor <2,4> MSymW(CLHEP::HepLorentzVector pa,CLHEP::HepLorentzVector p1,CLHEP::HepLorentzVector pb,CLHEP::HepLorentzVector p4, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar,CLHEP::HepLorentzVector pl,CLHEP::HepLorentzVector plbar, std::vector partons, int nabove){ double sa2=(pa+pq).m2(); double s12=(p1+pq).m2(); double sa3=(pa+pqbar).m2(); double s13=(p1+pqbar).m2(); double saA=(pa+pl).m2(); double s1A=(p1+pl).m2(); double saB=(pa+plbar).m2(); double s1B=(p1+plbar).m2(); double sb2=(pb+pq).m2(); double s42=(p4+pq).m2(); double sb3=(pb+pqbar).m2(); double s43=(p4+pqbar).m2(); double sbA=(pb+pl).m2(); double s4A=(p4+pl).m2(); double sbB=(pb+plbar).m2(); double s4B=(p4+plbar).m2(); double s23AB=(pl+plbar+pq+pqbar).m2(); CLHEP::HepLorentzVector q1,q3; q1=pa; for(int i=0;i Tp1 = Construct1Tensor(p1); Tensor<1,4> Tp4 = Construct1Tensor(p4); Tensor<1,4> Tpa = Construct1Tensor(pa); Tensor<1,4> Tpb = Construct1Tensor(pb); Tensor<1,4> Tpq = Construct1Tensor(pq); Tensor<1,4> Tpqbar = Construct1Tensor(pqbar); Tensor<1,4> TAB = Construct1Tensor(pl+plbar); Tensor<1,4> Tq1 = Construct1Tensor(q1); Tensor<1,4> Tq3 = Construct1Tensor(q3); Tensor<2,4> g=Metric(); // g->qqW Current (Factors of sqrt2 dealt with in this function.) Tensor<1,4> JV = gtqqxW(pq,pqbar,pl,plbar); // 1a gluon emisson Contribution Tensor<3,4> X1a = g.rightprod(Tp1*(t1/(s12+s13+s1A+s1B)) + Tpa*(t1/(sa2+sa3+saA+saB))); Tensor<2,4> X1aCont = X1a.contract(JV,3); //4b gluon emission Contribution Tensor<3,4> X4b = g.rightprod(Tp4*(t3/(s42+s43+s4A+s4B)) + Tpb*(t3/(sb2+sb3+sbA+sbB))); Tensor<2,4> X4bCont = X4b.contract(JV,3); //Set up each term of 3G diagram. Tensor<3,4> X3g1 = g.leftprod(Tq1+Tpq+Tpqbar+TAB); Tensor<3,4> X3g2 = g.leftprod(Tq3-Tpq-Tpqbar-TAB); Tensor<3,4> X3g3 = g.leftprod((Tq1+Tq3)); // Note the contraction of indices changes term by term Tensor<2,4> X3g1Cont = X3g1.contract(JV,3); Tensor<2,4> X3g2Cont = X3g2.contract(JV,2); Tensor<2,4> X3g3Cont = X3g3.contract(JV,1); // XSym is an amalgamation of x1a, X4b and X3g. Makes sense from a colour factor point of view. Tensor<2,4>Xsym(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xsym.Set(mu,nu, (X3g1Cont.at(nu,mu) + X3g2Cont.at(mu,nu) - X3g3Cont.at(nu,mu)) + (X1aCont.at(mu,nu) - X4bCont.at(mu,nu)) ); } } return Xsym/s23AB; } Tensor <2,4> MCross(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar, std::vector partons, bool hq, int nabove){ CLHEP::HepLorentzVector q1; q1=pa; for(int i=0;i Tq1 = Construct1Tensor(q1-pqbar); //Blank 3 gamma Current Tensor<3,4> J323 = T3Current(pq,hq,pqbar,hq); // 2 gamma current (with 1 contraction already). Tensor<2,4> XCroCont = J323.contract((Tq1),2)/(t2); //Initialise the Crossed Vertex Tensor<2,4> Xcro(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xcro.Set(mu,nu, (XCroCont.at(nu,mu))); } } return Xcro; } // Helper Functions Calculate the Uncrossed Contribution Tensor <2,4> MUncross(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar, std::vector partons, bool hq, int nabove){ CLHEP::HepLorentzVector q1; q1=pa; for(int i=0;i Tq1 = Construct1Tensor(q1-pq); //Blank 3 gamma Current Tensor<3,4> J323 = T3Current(pq,hq,pqbar,hq); // 2 gamma currents (with 1 contraction already). Tensor<2,4> XUncCont = J323.contract((Tq1),2)/t2; //Initialise the Uncrossed Vertex Tensor<2,4> Xunc(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xunc.Set(mu,nu,-(XUncCont.at(mu,nu))); } } return Xunc; } // Helper Functions Calculate the Eikonal Contributions Tensor <2,4> MSym(CLHEP::HepLorentzVector pa,CLHEP::HepLorentzVector p1,CLHEP::HepLorentzVector pb,CLHEP::HepLorentzVector p4, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar, std::vector partons, bool hq, int nabove){ CLHEP::HepLorentzVector q1, q3; q1=pa; for(int i=0;i Tp1 = Construct1Tensor(p1); Tensor<1,4> Tp4 = Construct1Tensor(p4); Tensor<1,4> Tpa = Construct1Tensor(pa); Tensor<1,4> Tpb = Construct1Tensor(pb); Tensor<1,4> Tpq = Construct1Tensor(pq); Tensor<1,4> Tpqbar = Construct1Tensor(pqbar); Tensor<1,4> Tq1 = Construct1Tensor(q1); Tensor<1,4> Tq3 = Construct1Tensor(q3); Tensor<2,4> g=Metric(); Tensor<1,4> qqxCur = TCurrent(pq, hq, pqbar, hq); // // 1a gluon emisson Contribution Tensor<3,4> X1a = g.rightprod(Tp1*(t1/(s12+s13))+Tpa*(t1/(sa2+sa3))); Tensor<2,4> X1aCont = X1a.contract(qqxCur,3); // //4b gluon emission Contribution Tensor<3,4> X4b = g.rightprod(Tp4*(t3/(s42+s43)) + Tpb*(t3/(sb2+sb3))); Tensor<2,4> X4bCont = X4b.contract(qqxCur,3); // New Formulation Corresponding to New Analytics Tensor<3,4> X3g1 = g.leftprod(Tq1+Tpq+Tpqbar); Tensor<3,4> X3g2 = g.leftprod(Tq3-Tpq-Tpqbar); Tensor<3,4> X3g3 = g.leftprod((Tq1+Tq3)); // Note the contraction of indices changes term by term Tensor<2,4> X3g1Cont = X3g1.contract(qqxCur,3); Tensor<2,4> X3g2Cont = X3g2.contract(qqxCur,2); Tensor<2,4> X3g3Cont = X3g3.contract(qqxCur,1); Tensor<2,4>Xsym(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xsym.Set(mu, nu, COM(0,1) * ( (X3g1Cont.at(nu,mu) + X3g2Cont.at(mu,nu) - X3g3Cont.at(nu,mu)) + (X1aCont.at(mu,nu) - X4bCont.at(mu,nu)) ) ); } } return Xsym/s23; } Tensor <1,4> jW4bEmit(HLV pb, HLV p4, HLV pl, HLV plbar, bool aqlinepb){ // Build the external quark line W Emmision Tensor<1,4> ABCurr = TCurrent(pl, false, plbar, false)/2; Tensor<1,4> Tp4W = Construct1Tensor((p4+pl+plbar));//p4+pw Tensor<1,4> TpbW = Construct1Tensor((pb-pl-plbar));//pb-pw Tensor<3,4> J4bBlank; if (aqlinepb){ J4bBlank = T3Current(pb,false,p4,false); } else{ J4bBlank = T3Current(p4,false,pb,false); } double t4AB = (p4+pl+plbar).m2(); double tbAB = (pb-pl-plbar).m2(); Tensor<2,4> J4b1 = (J4bBlank.contract(Tp4W,2))/t4AB; Tensor<2,4> J4b2 = (J4bBlank.contract(TpbW,2))/tbAB; Tensor<2,4> T4bmMom(0.); if (aqlinepb){ for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ T4bmMom.Set(mu,nu, (J4b1.at(nu,mu) + J4b2.at(mu,nu))*(COM(-1,0))); } } } else{ for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ T4bmMom.Set(nu,mu, (J4b1.at(nu,mu) + J4b2.at(mu,nu))); } } } Tensor<1,4> T4bm = T4bmMom.contract(ABCurr,1); return T4bm; } } // Anonymous Namespace helper functions - - //Functions which can be called elsewhere (declarations in currents.hh). // W+Jets Unordered Contributions - //qQ->qQWg_unob double junobMWqQg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector pg) // Calculates the square of the current contractions for qQ->qenuQ scattering // p1: quark (with W emittance) // p2: Quark { CCurrent mj1m,mj2p,mj2m; CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu; CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); CLHEP::HepLorentzVector q3=-(p2in-p2out); mj1m=jW(p1out,false,pe,false,pnu,false,p1in,false); mj2p=j(p2out,true,p2in,true); mj2m=j(p2out,false,p2in,false); // Dot products of these which occur again and again COM MWmp=mj1m.dot(mj2p); // And now for the Higgs ones COM MWmm=mj1m.dot(mj2m); CCurrent jgbm,jgbp,j2gm,j2gp; j2gp=joo(p2out,true,pg,true); j2gm=joo(p2out,false,pg,false); jgbp=j(pg,true,p2in,true); jgbm=j(pg,false,p2in,false); CCurrent qsum(q2+q3); CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in); CCurrent p2o(p2out); CCurrent p2i(p2in); Lmm=((-1.)*qsum*(MWmm) + (-2.*mj1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmm/2.))/q3.m2(); Lmp=((-1.)*qsum*(MWmp) + (-2.*mj1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmp/2.))/q3.m2(); U1mm=(jgbm.dot(mj1m)*j2gm+2.*p2o*MWmm)/(p2out+pg).m2(); U1mp=(jgbp.dot(mj1m)*j2gp+2.*p2o*MWmp)/(p2out+pg).m2(); U2mm=((-1.)*j2gm.dot(mj1m)*jgbm+2.*p2i*MWmm)/(p2in-pg).m2(); U2mp=((-1.)*j2gp.dot(mj1m)*jgbp+2.*p2i*MWmp)/(p2in-pg).m2(); - const double cf=RHEJ::C_F; double amm,amp; - amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm); - amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp); + amm=RHEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mm+U2mm); + amp=RHEJ::C_F*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mp+U2mp); double ampsq=-(amm+amp); // Now add the t-channels double th=q2.m2()*q1.m2(); ampsq/=th; ampsq/=16.; return ampsq; } //qQbar->qQbarWg_unob double junobMWqQbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector pg) // Calculates the square of the current contractions for qQ->qenuQ scattering // p1: quark (with W emittance) // p2: Quark { CCurrent mj1m,mj2p,mj2m; CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu; CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); CLHEP::HepLorentzVector q3=-(p2in-p2out); mj1m=jW(p1out,false,pe,false,pnu,false,p1in,false); mj2p=jio(p2in,true,p2out,true); mj2m=jio(p2in,false,p2out,false); // Dot products of these which occur again and again COM MWmp=mj1m.dot(mj2p); // And now for the Higgs ones COM MWmm=mj1m.dot(mj2m); CCurrent jgbm,jgbp,j2gm,j2gp; j2gp=joo(pg,true,p2out,true); j2gm=joo(pg,false,p2out,false); jgbp=jio(p2in,true,pg,true); jgbm=jio(p2in,false,pg,false); CCurrent qsum(q2+q3); CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in); CCurrent p2o(p2out); CCurrent p2i(p2in); Lmm=((-1.)*qsum*(MWmm) + (-2.*mj1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmm/2.))/q3.m2(); Lmp=((-1.)*qsum*(MWmp) + (-2.*mj1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmp/2.))/q3.m2(); U1mm=(jgbm.dot(mj1m)*j2gm+2.*p2o*MWmm)/(p2out+pg).m2(); U1mp=(jgbp.dot(mj1m)*j2gp+2.*p2o*MWmp)/(p2out+pg).m2(); U2mm=((-1.)*j2gm.dot(mj1m)*jgbm+2.*p2i*MWmm)/(p2in-pg).m2(); U2mp=((-1.)*j2gp.dot(mj1m)*jgbp+2.*p2i*MWmp)/(p2in-pg).m2(); - - const double cf=RHEJ::C_F; double amm,amp; - amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm); - amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp); + amm=RHEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mm+U2mm); + amp=RHEJ::C_F*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mp+U2mp); double ampsq=-(amm+amp); // Now add the t-channels double th=q2.m2()*q1.m2(); ampsq/=th; ampsq/=16.; return ampsq; } //qbarQ->qbarQWg_unob double junobMWqbarQg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector pg) // Calculates the square of the current contractions for qQ->qenuQ scattering // p1: quark (with W emittance) // p2: Quark { CCurrent mj1m,mj2p,mj2m; CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu; CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); CLHEP::HepLorentzVector q3=-(p2in-p2out); mj1m=jWbar(p1out,false,pe,false,pnu,false,p1in,false); mj2p=j(p2out,true,p2in,true); mj2m=j(p2out,false,p2in,false); // Dot products of these which occur again and again COM MWmp=mj1m.dot(mj2p); // And now for the Higgs ones COM MWmm=mj1m.dot(mj2m); CCurrent jgbm,jgbp,j2gm,j2gp; j2gp=joo(p2out,true,pg,true); j2gm=joo(p2out,false,pg,false); jgbp=j(pg,true,p2in,true); jgbm=j(pg,false,p2in,false); CCurrent qsum(q2+q3); CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in); CCurrent p2o(p2out); CCurrent p2i(p2in); Lmm=((-1.)*qsum*(MWmm) + (-2.*mj1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmm/2.))/q3.m2(); Lmp=((-1.)*qsum*(MWmp) + (-2.*mj1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmp/2.))/q3.m2(); U1mm=(jgbm.dot(mj1m)*j2gm+2.*p2o*MWmm)/(p2out+pg).m2(); U1mp=(jgbp.dot(mj1m)*j2gp+2.*p2o*MWmp)/(p2out+pg).m2(); U2mm=((-1.)*j2gm.dot(mj1m)*jgbm+2.*p2i*MWmm)/(p2in-pg).m2(); U2mp=((-1.)*j2gp.dot(mj1m)*jgbp+2.*p2i*MWmp)/(p2in-pg).m2(); - const double cf=RHEJ::C_F; double amm,amp; - amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm); - amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp); + amm=RHEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mm+U2mm); + amp=RHEJ::C_F*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mp+U2mp); double ampsq=-(amm+amp); // Now add the t-channels double th=q2.m2()*q1.m2(); ampsq/=th; ampsq/=16.; return ampsq; } //qbarQbar->qbarQbarWg_unob double junobMWqbarQbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector pg) // Calculates the square of the current contractions for qQ->qenuQ scattering // p1: quark (with W emittance) // p2: Quark { CCurrent mj1m,mj2p,mj2m; CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu; CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); CLHEP::HepLorentzVector q3=-(p2in-p2out); mj1m=jWbar(p1out,false,pe,false,pnu,false,p1in,false); mj2p=jio(p2in,true,p2out,true); mj2m=jio(p2in,false,p2out,false); // Dot products of these which occur again and again COM MWmp=mj1m.dot(mj2p); // And now for the Higgs ones COM MWmm=mj1m.dot(mj2m); CCurrent jgbm,jgbp,j2gm,j2gp; j2gp=joo(pg,true,p2out,true); j2gm=joo(pg,false,p2out,false); jgbp=jio(p2in,true,pg,true); jgbm=jio(p2in,false,pg,false); CCurrent qsum(q2+q3); CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in); CCurrent p2o(p2out); CCurrent p2i(p2in); Lmm=((-1.)*qsum*(MWmm) + (-2.*mj1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmm/2.))/q3.m2(); Lmp=((-1.)*qsum*(MWmp) + (-2.*mj1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmp/2.))/q3.m2(); U1mm=(jgbm.dot(mj1m)*j2gm+2.*p2o*MWmm)/(p2out+pg).m2(); U1mp=(jgbp.dot(mj1m)*j2gp+2.*p2o*MWmp)/(p2out+pg).m2(); U2mm=((-1.)*j2gm.dot(mj1m)*jgbm+2.*p2i*MWmm)/(p2in-pg).m2(); U2mp=((-1.)*j2gp.dot(mj1m)*jgbp+2.*p2i*MWmp)/(p2in-pg).m2(); - const double cf=RHEJ::C_F; double amm,amp; - amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm); - amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp); + amm=RHEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mm+U2mm); + amp=RHEJ::C_F*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mp+U2mp); double ampsq=-(amm+amp); // Now add the t-channels double th=q2.m2()*q1.m2(); ampsq/=th; ampsq/=16.; return ampsq; } //////////////////////////////////////////////////////////////////// //qQ->qQWg_unof double junofMWgqQ (CLHEP::HepLorentzVector pg,CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu, CLHEP::HepLorentzVector p2in) // Calculates the square of the current contractions for qQ->qenuQ scattering // p1: quark (with W emittance) // p2: Quark { CCurrent mj2m,mj1p,mj1m; CLHEP::HepLorentzVector q1=p1in-p1out; CLHEP::HepLorentzVector qg=p1in-p1out-pg; CLHEP::HepLorentzVector q2=-(p2in-p2out-pe-pnu); mj2m=jW(p2out,false,pe,false,pnu,false,p2in,false); mj1p=j(p1out,true,p1in,true); mj1m=j(p1out,false,p1in,false); // Dot products of these which occur again and again COM MWpm=mj1p.dot(mj2m); // And now for the Higgs ones COM MWmm=mj1m.dot(mj2m); CCurrent jgam,jgap,j2gm,j2gp; j2gp=joo(p1out,true,pg,true); j2gm=joo(p1out,false,pg,false); jgap=j(pg,true,p1in,true); jgam=j(pg,false,p1in,false); CCurrent qsum(q1+qg); CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in); CCurrent p1o(p1out); CCurrent p1i(p1in); Lmm=(qsum*(MWmm) + (-2.*mj2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWmm/2.))/q1.m2(); - Lpm=(qsum*(MWpm) + (-2.*mj2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWpm/2.))/q1.m2(); U1mm=(jgam.dot(mj2m)*j2gm+2.*p1o*MWmm)/(p1out+pg).m2(); - U1pm=(jgap.dot(mj2m)*j2gp+2.*p1o*MWpm)/(p1out+pg).m2(); U2mm=((-1.)*j2gm.dot(mj2m)*jgam+2.*p1i*MWmm)/(p1in-pg).m2(); - U2pm=((-1.)*j2gp.dot(mj2m)*jgap+2.*p1i*MWpm)/(p1in-pg).m2(); - - const double cf=RHEJ::C_F; double amm,apm; - - amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm); - - apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm); - - + amm=RHEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mm+U2mm); + apm=RHEJ::C_F*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1pm+U2pm); double ampsq=-(apm+amm); // Now add the t-channels double th=q2.m2()*qg.m2(); ampsq/=th; ampsq/=16.; return ampsq; } //qQbar->qQbarWg_unof double junofMWgqQbar (CLHEP::HepLorentzVector pg,CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu, CLHEP::HepLorentzVector p2in) // Calculates the square of the current contractions for qQ->qenuQ scattering // p1: quark (with W emittance) // p2: Quark { CCurrent mj2m,mj1p,mj1m; CLHEP::HepLorentzVector q1=p1in-p1out; CLHEP::HepLorentzVector qg=p1in-p1out-pg; CLHEP::HepLorentzVector q2=-(p2in-p2out-pe-pnu); mj2m=jWbar(p2out,false,pe,false,pnu,false,p2in,false); mj1p=j(p1out,true,p1in,true); mj1m=j(p1out,false,p1in,false); // Dot products of these which occur again and again COM MWpm=mj1p.dot(mj2m); // And now for the Higgs ones COM MWmm=mj1m.dot(mj2m); CCurrent jgam,jgap,j2gm,j2gp; j2gp=joo(p1out,true,pg,true); j2gm=joo(p1out,false,pg,false); jgap=j(pg,true,p1in,true); jgam=j(pg,false,p1in,false); CCurrent qsum(q1+qg); CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in); CCurrent p1o(p1out); CCurrent p1i(p1in); Lmm=(qsum*(MWmm) + (-2.*mj2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWmm/2.))/q1.m2(); - Lpm=(qsum*(MWpm) + (-2.*mj2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWpm/2.))/q1.m2(); U1mm=(jgam.dot(mj2m)*j2gm+2.*p1o*MWmm)/(p1out+pg).m2(); - U1pm=(jgap.dot(mj2m)*j2gp+2.*p1o*MWpm)/(p1out+pg).m2(); U2mm=((-1.)*j2gm.dot(mj2m)*jgam+2.*p1i*MWmm)/(p1in-pg).m2(); - U2pm=((-1.)*j2gp.dot(mj2m)*jgap+2.*p1i*MWpm)/(p1in-pg).m2(); - - const double cf=RHEJ::C_F; double amm,apm; - amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm); - - apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm); - - + amm=RHEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mm+U2mm); + apm=RHEJ::C_F*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1pm+U2pm); double ampsq=-(apm+amm); // Now add the t-channels double th=q2.m2()*qg.m2(); ampsq/=th; ampsq/=16.; return ampsq; } //qbarQ->qbarQWg_unof double junofMWgqbarQ (CLHEP::HepLorentzVector pg,CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu, CLHEP::HepLorentzVector p2in) // Calculates the square of the current contractions for qQ->qenuQ scattering // p1: quark (with W emittance) // p2: Quark { CCurrent mj2m,mj1p,mj1m; CLHEP::HepLorentzVector q1=p1in-p1out; CLHEP::HepLorentzVector qg=p1in-p1out-pg; CLHEP::HepLorentzVector q2=-(p2in-p2out-pe-pnu); mj2m=jW(p2out,false,pe,false,pnu,false,p2in,false); mj1p=jio(p1in,true,p1out,true); mj1m=jio(p1in,false,p1out,false); // Dot products of these which occur again and again COM MWpm=mj1p.dot(mj2m); // And now for the Higgs ones COM MWmm=mj1m.dot(mj2m); CCurrent jgam,jgap,j2gm,j2gp; j2gp=joo(pg,true,p1out,true); j2gm=joo(pg,false,p1out,false); jgap=jio(p1in,true,pg,true); jgam=jio(p1in,false,pg,false); CCurrent qsum(q1+qg); CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in); CCurrent p1o(p1out); CCurrent p1i(p1in); Lmm=(qsum*(MWmm) + (-2.*mj2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWmm/2.))/q1.m2(); - Lpm=(qsum*(MWpm) + (-2.*mj2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWpm/2.))/q1.m2(); U1mm=(jgam.dot(mj2m)*j2gm+2.*p1o*MWmm)/(p1out+pg).m2(); - U1pm=(jgap.dot(mj2m)*j2gp+2.*p1o*MWpm)/(p1out+pg).m2(); U2mm=((-1.)*j2gm.dot(mj2m)*jgam+2.*p1i*MWmm)/(p1in-pg).m2(); - U2pm=((-1.)*j2gp.dot(mj2m)*jgap+2.*p1i*MWpm)/(p1in-pg).m2(); - - const double cf=RHEJ::C_F; double amm,apm; - - amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm); - - apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm); - - + amm=RHEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mm+U2mm); + apm=RHEJ::C_F*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1pm+U2pm); double ampsq=-(apm+amm); // Now add the t-channels double th=q2.m2()*qg.m2(); ampsq/=th; ampsq/=16.; return ampsq; } //qbarQbar->qbarQbarWg_unof double junofMWgqbarQbar (CLHEP::HepLorentzVector pg,CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu, CLHEP::HepLorentzVector p2in) // Calculates the square of the current contractions for qQ->qenuQ scattering // p1: quark (with W emittance) // p2: Quark { CCurrent mj2m,mj1p,mj1m; CLHEP::HepLorentzVector q1=p1in-p1out; CLHEP::HepLorentzVector qg=p1in-p1out-pg; CLHEP::HepLorentzVector q2=-(p2in-p2out-pe-pnu); mj2m=jWbar(p2out,false,pe,false,pnu,false,p2in,false); mj1p=jio(p1in,true,p1out,true); mj1m=jio(p1in,false,p1out,false); // Dot products of these which occur again and again COM MWpm=mj1p.dot(mj2m); // And now for the Higgs ones COM MWmm=mj1m.dot(mj2m); CCurrent jgam,jgap,j2gm,j2gp; j2gp=joo(pg,true,p1out,true); j2gm=joo(pg,false,p1out,false); jgap=jio(p1in,true,pg,true); jgam=jio(p1in,false,pg,false); CCurrent qsum(q1+qg); CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in); CCurrent p1o(p1out); CCurrent p1i(p1in); Lmm=(qsum*(MWmm) + (-2.*mj2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWmm/2.))/q1.m2(); - Lpm=(qsum*(MWpm) + (-2.*mj2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWpm/2.))/q1.m2(); - U1mm=(jgam.dot(mj2m)*j2gm+2.*p1o*MWmm)/(p1out+pg).m2(); - U1pm=(jgap.dot(mj2m)*j2gp+2.*p1o*MWpm)/(p1out+pg).m2(); U2mm=((-1.)*j2gm.dot(mj2m)*jgam+2.*p1i*MWmm)/(p1in-pg).m2(); - U2pm=((-1.)*j2gp.dot(mj2m)*jgap+2.*p1i*MWpm)/(p1in-pg).m2(); - - const double cf=RHEJ::C_F; double amm,apm; - amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm); - - apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm); + amm=RHEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mm+U2mm); + apm=RHEJ::C_F*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1pm+U2pm); double ampsq=-(apm+amm); // Now add the t-channels double th=q2.m2()*qg.m2(); ampsq/=th; ampsq/=16.; return ampsq; } ///TODO make this comment more visible /// Naming scheme jM2-Wuno-g-({q/qbar}{Q/Qbar/g}) ///TODO Spit naming for more complicated functions? /// e.g. jM2WqqtoqQQq -> jM2_Wqq_to_qQQq double jM2WunogqQ(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in) { //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true); ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false); ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true); ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; return ME2; } //same as function above but actually obtaining the antiquark line by crossing symmetry, where p1out and p1in are expected to be negative. //should give same result as jM2WunogqbarQ below (verified) double jM2WunogqQ_crossqQ(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in) { //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true); ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false); ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true); ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; return ME2; } double jM2WunogqQbar(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in) { //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true); ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false); ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true); ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; return ME2; } double jM2Wunogqg(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in) { //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true); ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false); ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true); ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; - const double ca = RHEJ::C_A; - const double cf = RHEJ::C_F; ///0.) // if the gluon is the positive ratio=p2out.plus()/p2in.plus(); else // the gluon is the negative ratio=p2out.minus()/p2in.minus(); - double cam = ( (ca - 1/ca)*(ratio + 1./ratio)/2. + 1/ca)/cf; + double cam = ( (RHEJ::C_A - 1/RHEJ::C_A)*(ratio + 1./ratio)/2. + 1/RHEJ::C_A)/RHEJ::C_F; ME2*=cam; return ME2; } double jM2WunogqbarQ(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in) { //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,true); ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,false); ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,true); ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; return ME2; } double jM2WunogqbarQbar(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in) { //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,true); ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,false); ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,true); ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; return ME2; } double jM2Wunogqbarg(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in) { //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,true); ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,false); ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,true); ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; - const double ca = RHEJ::C_A; - const double cf = RHEJ::C_F; ///0.) // if the gluon is the positive ratio=p2out.plus()/p2in.plus(); else // the gluon is the negative ratio=p2out.minus()/p2in.minus(); - double cam = ( (ca - 1/ca)*(ratio + 1./ratio)/2. + 1/ca)/cf; + double cam = ( (RHEJ::C_A - 1/RHEJ::C_A)*(ratio + 1./ratio)/2. + 1/RHEJ::C_A)/RHEJ::C_F; ME2*=cam; return ME2; } // W+Jets qqxExtremal // W+Jets qqxExtremal Currents - wqq emission double jM2WgQtoqbarqQ(CLHEP::HepLorentzVector pgin, CLHEP::HepLorentzVector pqout,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector pqbarout, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in) { //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,true); ME2mpm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,false); ME2mmp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,true); ME2mmm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; //Correct colour averaging ME2*=(3.0/8.0); return ME2; } double jM2WgQtoqqbarQ(CLHEP::HepLorentzVector pgin, CLHEP::HepLorentzVector pqbarout,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector pqout, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in){ //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,true); ME2mpm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,false); ME2mmp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,true); ME2mmm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; //Correct colour averaging ME2*=(3.0/8.0); return ME2; } double jM2Wggtoqbarqg(CLHEP::HepLorentzVector pgin, CLHEP::HepLorentzVector pqout,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector pqbarout, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in) { //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,true); ME2mpm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,false); ME2mmp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,true); ME2mmm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; - const double ca = RHEJ::C_A; - const double cf = RHEJ::C_F; ///0.) // if the gluon is the positive ratio=p2out.plus()/p2in.plus(); else // the gluon is the negative ratio=p2out.minus()/p2in.minus(); - double cam = ( (ca - 1/ca)*(ratio + 1./ratio)/2. + 1/ca)/cf; + double cam = ( (RHEJ::C_A - 1/RHEJ::C_A)*(ratio + 1./ratio)/2. + 1/RHEJ::C_A)/RHEJ::C_F; ME2*=cam; //Correct colour averaging ME2*=(3.0/8.0); return ME2; } double jM2Wggtoqqbarg(CLHEP::HepLorentzVector pgin, CLHEP::HepLorentzVector pqbarout,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector pqout, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in){ //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,true); ME2mpm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,false); ME2mmp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,true); ME2mmm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; - const double ca = RHEJ::C_A; - const double cf = RHEJ::C_F; ///0.) // if the gluon is the positive ratio=p2out.plus()/p2in.plus(); else // the gluon is the negative ratio=p2out.minus()/p2in.minus(); - double cam = ( (ca - 1/ca)*(ratio + 1./ratio)/2. + 1/ca)/cf; + double cam = ( (RHEJ::C_A - 1/RHEJ::C_A)*(ratio + 1./ratio)/2. + 1/RHEJ::C_A)/RHEJ::C_F; ME2*=cam; //Correct colour averaging ME2*=(3.0/8.0); return ME2; } namespace { //First, a function for generating polarisation tensors. Output as 'current'. void eps(CLHEP::HepLorentzVector refmom, CLHEP::HepLorentzVector kb, bool hel, current &ep){ current curm,curp; //Recall - positive helicity eps has negative helicity choices for spinors and vice versa j(refmom,true,kb,true,curm); j(refmom,false,kb,false,curp); double norm=1.; if(kb.z()<0.) norm *= sqrt(2.*refmom.plus()*kb.minus()); if(kb.z()>0.) norm = sqrt(2.*refmom.minus()*kb.plus()); if(hel==false){ ep[0] = curm[0]/norm; ep[1] = curm[1]/norm; ep[2] = curm[2]/norm; ep[3] = curm[3]/norm; } if(hel==true){ ep[0] = curp[0]/norm; ep[1] = curp[1]/norm; ep[2] = curp[2]/norm; ep[3] = curp[3]/norm; } } //Now build up each part of the squared amplitude COM qWggm1(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p3, CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector plbar, bool helchain, bool heltop, bool helb,CLHEP::HepLorentzVector refmom){ current cur33, cur23, curb3, cur2b, ep; joo(p3, helchain, p3, helchain,cur33); joo(p2,helchain,p3,helchain,cur23); jio(pb,helchain,p3,helchain,curb3); joi(p2,helchain,pb,helchain,cur2b); // Build the external quark line W Emmision Tensor<1,4> ABCurr = TCurrent(pl, false, plbar, false); Tensor<1,4> Tp1W = Construct1Tensor((p1+pl+plbar));//p1+pw Tensor<1,4> TqaW = Construct1Tensor((pa-pl-plbar));//pa-pw Tensor<3,4> J1aBlank = T3Current(p1,false,pa,false); double t1AB = (p1+pl+plbar).m2(); double taAB = (pa-pl-plbar).m2(); Tensor<2,4> J1a1 = (J1aBlank.contract(Tp1W,2))/t1AB; Tensor<2,4> J1a2 = (J1aBlank.contract(TqaW,2))/taAB; Tensor<1,4> cur1a = J1a1.contract(ABCurr,1) + J1a2.contract(ABCurr,2); double t2 = (p3-pb)*(p3-pb); //Create vertex COM v1[4][4]; for(int u=0; u<4;u++) { for(int v=0; v<4; v++) { v1[u][v]=(cur23[u]*cur33[v]-cur2b[u]*curb3[v])/t2*(-1.); } } //Dot in current and eps //Metric tensor double eta[4][4]={}; eta[0][0]=1.; eta[1][1]=-1.; eta[2][2]=-1.; eta[3][3]=-1.; //eps eps(refmom,pb,helb, ep); COM M1=0.; for(int i=0;i<4;i++){ for(int j=0;j<4;j++){ for(int k=0; k<4; k++){ for(int l=0; l<4;l++){ M1+= eta[i][k]*cur1a.at(k)*(v1[i][j])*ep[l]*eta[l][j]; } } } } return M1; } COM qWggm2(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p3, CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector plbar, bool helchain, bool heltop, bool helb,CLHEP::HepLorentzVector refmom){ current cur22, cur23, curb3, cur2b, ep; joo(p2, helchain, p2, helchain,cur22); joo(p2,helchain,p3,helchain,cur23); jio(pb,helchain,p3,helchain,curb3); joi(p2,helchain,pb,helchain,cur2b); // Build the external quark line W Emmision Tensor<1,4> ABCurr = TCurrent(pl, false, plbar, false); Tensor<1,4> Tp1W = Construct1Tensor((p1+pl+plbar));//p1+pw Tensor<1,4> TqaW = Construct1Tensor((pa-pl-plbar));//pa-pw Tensor<3,4> J1aBlank = T3Current(p1,false,pa,false); double t1AB = (p1+pl+plbar).m2(); double taAB = (pa-pl-plbar).m2(); Tensor<2,4> J1a1 = (J1aBlank.contract(Tp1W,2))/t1AB; Tensor<2,4> J1a2 = (J1aBlank.contract(TqaW,2))/taAB; Tensor<1,4> cur1a = J1a1.contract(ABCurr,1) + J1a2.contract(ABCurr,2); double t2t = (p2-pb)*(p2-pb); //Create vertex COM v2[4][4]={}; for(int u=0; u<4;u++) { for(int v=0; v<4; v++) { v2[u][v]=(cur22[v]*cur23[u]-cur2b[v]*curb3[u])/t2t; } } //Dot in current and eps //Metric tensor double eta[4][4]={}; eta[0][0]=1.; eta[1][1]=-1.; eta[2][2]=-1.; eta[3][3]=-1.; //eps eps(refmom,pb,helb, ep); COM M2=0.; for(int i=0;i<4;i++){ for(int j=0;j<4;j++){ for(int k=0; k<4; k++){ for(int l=0; l<4;l++){ M2+= eta[i][k]*cur1a.at(k)*(v2[i][j])*ep[l]*eta[l][j]; } } } } return M2; } COM qWggm3(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p3, CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector plbar, bool helchain, bool heltop, bool helb,CLHEP::HepLorentzVector refmom){ //3 gluon vertex bit double eta[4][4]={}; eta[0][0]=1.; eta[1][1]=-1.; eta[2][2]=-1.; eta[3][3]=-1.; current spincur,ep; double s23 = (p2+p3)*(p2+p3); joo(p2,helchain,p3,helchain,spincur); // Build the external quark line W Emmision Tensor<1,4> ABCurr = TCurrent(pl, false, plbar, false); Tensor<1,4> Tp1W = Construct1Tensor((p1+pl+plbar));//p1+pw Tensor<1,4> TqaW = Construct1Tensor((pa-pl-plbar));//pa-pw Tensor<3,4> J1aBlank = T3Current(p1,false,pa,false); double t1AB = (p1+pl+plbar).m2(); double taAB = (pa-pl-plbar).m2(); Tensor<2,4> J1a1 = (J1aBlank.contract(Tp1W,2))/t1AB; Tensor<2,4> J1a2 = (J1aBlank.contract(TqaW,2))/taAB; Tensor<1,4> cur1a = J1a1.contract(ABCurr,1) + J1a2.contract(ABCurr,2); //Redefine relevant momenta as currents - for ease of calling correct part of vector current ka,k2,k3,kb; kb[0]=pb.e(); kb[1]=pb.x(); kb[2]=pb.y(); kb[3]=pb.z(); k2[0]=p2.e(); k2[1]=p2.x(); k2[2]=p2.y(); k2[3]=p2.z(); k3[0]=p3.e(); k3[1]=p3.x(); k3[2]=p3.y(); k3[3]=p3.z(); ka[0]=pa.e(); ka[1]=pa.x(); ka[2]=pa.y(); ka[3]=pa.z(); COM V3g[4][4]={}; for(int u=0;u<4;u++){ for(int v=0;v<4;v++){ for(int p=0;p<4;p++){ for(int r=0; r<4;r++){ V3g[u][v] += COM(0.,1.)*(((2.*k2[v]+2.*k3[v])*eta[u][p] - (2.*kb[u])*eta[p][v]+2.*kb[p]*eta[u][v])*spincur[r]*eta[r][p])/s23; } } } } COM diffextrabit[4][4]={}; for(int u=0;u<4;u++) { for(int v=0;v<4;v++) { diffextrabit[u][v] = 0.; } } //Dot in current and eps //eps eps(refmom,pb,helb, ep); COM M3=0.; for(int i=0;i<4;i++){ for(int j=0;j<4;j++){ for(int k=0; k<4; k++){ for(int l=0; l<4;l++){ M3+= eta[i][k]*cur1a.at(k)*(V3g[i][j]+diffextrabit[i][j])*ep[l]*eta[l][j]; } } } } return M3; } } // no wqq emission double jM2WgqtoQQqW(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p3,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl){ // 4 indepedent helicity choices (complex conjugation related). //Need to evalute each independent hel configuration and store that result somewhere COM Mmmm1 = qWggm1(pa,pb,p1,p2,p3,pl,plbar,false,false,false, pa); COM Mmmm2 = qWggm2(pa,pb,p1,p2,p3,pl,plbar,false,false,false, pa); COM Mmmm3 = qWggm3(pa,pb,p1,p2,p3,pl,plbar,false,false,false, pa); COM Mmmp1 = qWggm1(pa,pb,p1,p2,p3,pl,plbar,false,true,false, pa); COM Mmmp2 = qWggm2(pa,pb,p1,p2,p3,pl,plbar,false,true,false, pa); COM Mmmp3 = qWggm3(pa,pb,p1,p2,p3,pl,plbar,false,true,false, pa); COM Mpmm1 = qWggm1(pa,pb,p1,p2,p3,pl,plbar,false,false,true, pa); COM Mpmm2 = qWggm2(pa,pb,p1,p2,p3,pl,plbar,false,false,true, pa); COM Mpmm3 = qWggm3(pa,pb,p1,p2,p3,pl,plbar,false,false,true, pa); COM Mpmp1 = qWggm1(pa,pb,p1,p2,p3,pl,plbar,false,true,true, pa); COM Mpmp2 = qWggm2(pa,pb,p1,p2,p3,pl,plbar,false,true,true, pa); COM Mpmp3 = qWggm3(pa,pb,p1,p2,p3,pl,plbar,false,true,true, pa); //Colour factors: COM cm1m1,cm2m2,cm3m3,cm1m2,cm1m3,cm2m3; cm1m1=8./3.; cm2m2=8./3.; cm3m3=6.; cm1m2 =-1./3.; cm1m3 = -3.*COM(0.,1.); cm2m3 = 3.*COM(0.,1.); //Sqaure and sum for each helicity config: double Mmmm,Mmmp,Mpmm,Mpmp; Mmmm = real(cm1m1*pow(abs(Mmmm1),2)+cm2m2*pow(abs(Mmmm2),2)+cm3m3*pow(abs(Mmmm3),2)+2.*real(cm1m2*Mmmm1*conj(Mmmm2))+2.*real(cm1m3*Mmmm1*conj(Mmmm3))+2.*real(cm2m3*Mmmm2*conj(Mmmm3))); Mmmp = real(cm1m1*pow(abs(Mmmp1),2)+cm2m2*pow(abs(Mmmp2),2)+cm3m3*pow(abs(Mmmp3),2)+2.*real(cm1m2*Mmmp1*conj(Mmmp2))+2.*real(cm1m3*Mmmp1*conj(Mmmp3))+2.*real(cm2m3*Mmmp2*conj(Mmmp3))); Mpmm = real(cm1m1*pow(abs(Mpmm1),2)+cm2m2*pow(abs(Mpmm2),2)+cm3m3*pow(abs(Mpmm3),2)+2.*real(cm1m2*Mpmm1*conj(Mpmm2))+2.*real(cm1m3*Mpmm1*conj(Mpmm3))+2.*real(cm2m3*Mpmm2*conj(Mpmm3))); Mpmp = real(cm1m1*pow(abs(Mpmp1),2)+cm2m2*pow(abs(Mpmp2),2)+cm3m3*pow(abs(Mpmp3),2)+2.*real(cm1m2*Mpmp1*conj(Mpmp2))+2.*real(cm1m3*Mpmp1*conj(Mpmp3))+2.*real(cm2m3*Mpmp2*conj(Mpmp3))); return ((Mmmm+Mmmp+Mpmm+Mpmp)/24./4.)/(pa-p1).m2()/(p2+p3-pb).m2(); } // W+Jets qqxCentral double jM2WqqtoqQQq(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector plbar, std::vector partons, bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove, int nbelow) { static bool is_sigma_index_set(false); if(!is_sigma_index_set){ if(init_sigma_index()) is_sigma_index_set = true; else return 0.;} HLV pq, pqbar, p1, p4; if (qqxmarker){ pqbar = partons[nabove+1]; pq = partons[nabove+2];} else{ pq = partons[nabove+1]; pqbar = partons[nabove+2];} p1 = partons.front(); p4 = partons.back(); Tensor<1,4> T1am, T4bm, T1ap, T4bp; if(!(aqlinepa)){ T1ap = TCurrent(p1, true, pa, true); T1am = TCurrent(p1, false, pa, false);} else if(aqlinepa){ T1ap = TCurrent(pa, true, p1, true); T1am = TCurrent(pa, false, p1, false);} if(!(aqlinepb)){ T4bp = TCurrent(p4, true, pb, true); T4bm = TCurrent(p4, false, pb, false);} else if(aqlinepb){ T4bp = TCurrent(pb, true, p4, true); T4bm = TCurrent(pb, false, p4, false);} // Calculate the 3 separate contributions to the effective vertex Tensor<2,4> Xunc = MUncrossW(pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove); Tensor<2,4> Xcro = MCrossW( pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove); Tensor<2,4> Xsym = MSymW( pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove); // 4 Different Helicity Choices (Differs from Pure Jet Case, where there is also the choice in qqbar helicity. // (- - hel choice) COM M_mmUnc = (((Xunc).contract(T1am,1)).contract(T4bm,1)).at(0); COM M_mmCro = (((Xcro).contract(T1am,1)).contract(T4bm,1)).at(0); COM M_mmSym = (((Xsym).contract(T1am,1)).contract(T4bm,1)).at(0); // (- + hel choice) COM M_mpUnc = (((Xunc).contract(T1am,1)).contract(T4bp,1)).at(0); COM M_mpCro = (((Xcro).contract(T1am,1)).contract(T4bp,1)).at(0); COM M_mpSym = (((Xsym).contract(T1am,1)).contract(T4bp,1)).at(0); // (+ - hel choice) COM M_pmUnc = (((Xunc).contract(T1ap,1)).contract(T4bm,1)).at(0); COM M_pmCro = (((Xcro).contract(T1ap,1)).contract(T4bm,1)).at(0); COM M_pmSym = (((Xsym).contract(T1ap,1)).contract(T4bm,1)).at(0); // (+ + hel choice) COM M_ppUnc = (((Xunc).contract(T1ap,1)).contract(T4bp,1)).at(0); COM M_ppCro = (((Xcro).contract(T1ap,1)).contract(T4bp,1)).at(0); COM M_ppSym = (((Xsym).contract(T1ap,1)).contract(T4bp,1)).at(0); //Colour factors: COM cmsms,cmumu,cmcmc,cmsmu,cmsmc,cmumc; cmsms=3.; cmumu=4./3.; cmcmc=4./3.; cmsmu =3./2.*COM(0.,1.); cmsmc = -3./2.*COM(0.,1.); cmumc = -1./6.; // Work Out Interference in each case of helicity: double amp_mm = real(cmsms*pow(abs(M_mmSym),2) +cmumu*pow(abs(M_mmUnc),2) +cmcmc*pow(abs(M_mmCro),2) +2.*real(cmsmu*M_mmSym*conj(M_mmUnc)) +2.*real(cmsmc*M_mmSym*conj(M_mmCro)) +2.*real(cmumc*M_mmUnc*conj(M_mmCro))); double amp_mp = real(cmsms*pow(abs(M_mpSym),2) +cmumu*pow(abs(M_mpUnc),2) +cmcmc*pow(abs(M_mpCro),2) +2.*real(cmsmu*M_mpSym*conj(M_mpUnc)) +2.*real(cmsmc*M_mpSym*conj(M_mpCro)) +2.*real(cmumc*M_mpUnc*conj(M_mpCro))); double amp_pm = real(cmsms*pow(abs(M_pmSym),2) +cmumu*pow(abs(M_pmUnc),2) +cmcmc*pow(abs(M_pmCro),2) +2.*real(cmsmu*M_pmSym*conj(M_pmUnc)) +2.*real(cmsmc*M_pmSym*conj(M_pmCro)) +2.*real(cmumc*M_pmUnc*conj(M_pmCro))); double amp_pp = real(cmsms*pow(abs(M_ppSym),2) +cmumu*pow(abs(M_ppUnc),2) +cmcmc*pow(abs(M_ppCro),2) +2.*real(cmsmu*M_ppSym*conj(M_ppUnc)) +2.*real(cmsmc*M_ppSym*conj(M_ppCro)) +2.*real(cmumc*M_ppUnc*conj(M_ppCro))); double amp=((amp_mm+amp_mp+amp_pm+amp_pp)/(9.*4.)); CLHEP::HepLorentzVector q1,q3; q1=pa; for(int i=0;i partons, bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove, int nbelow, bool forwards){ static bool is_sigma_index_set(false); if(!is_sigma_index_set){ if(init_sigma_index()) is_sigma_index_set = true; else return 0.; } if (!forwards){ //If Emission from Leg a instead, flip process. HLV dummymom = pa; bool dummybool= aqlinepa; int dummyint = nabove; pa = pb; pb = dummymom; std::reverse(partons.begin(),partons.end()); qqxmarker = !(qqxmarker); aqlinepa = aqlinepb; aqlinepb = dummybool; nabove = nbelow; nbelow = dummyint; } HLV pq, pqbar, p1,p4; if (qqxmarker){ pqbar = partons[nabove+1]; pq = partons[nabove+2];} else{ pq = partons[nabove+1]; pqbar = partons[nabove+2];} p1 = partons.front(); p4 = partons.back(); Tensor<1,4> T1am(0.), T1ap(0.); if(!(aqlinepa)){ T1ap = TCurrent(p1, true, pa, true); T1am = TCurrent(p1, false, pa, false);} else if(aqlinepa){ T1ap = TCurrent(pa, true, p1, true); T1am = TCurrent(pa, false, p1, false);} Tensor <1,4> T4bm = jW4bEmit(pb, p4, pl, plbar, aqlinepb); // Calculate the 3 separate contributions to the effective vertex Tensor<2,4> Xunc_m = MUncross(pa, pq, pqbar,partons, false, nabove); Tensor<2,4> Xcro_m = MCross( pa, pq, pqbar,partons, false, nabove); Tensor<2,4> Xsym_m = MSym( pa, p1, pb, p4, pq, pqbar, partons, false, nabove); Tensor<2,4> Xunc_p = MUncross(pa, pq, pqbar,partons, true, nabove); Tensor<2,4> Xcro_p = MCross( pa, pq, pqbar,partons, true, nabove); Tensor<2,4> Xsym_p = MSym( pa, p1, pb, p4, pq, pqbar, partons, true, nabove); // (- - hel choice) COM M_mmUnc = (((Xunc_m).contract(T1am,1)).contract(T4bm,1)).at(0); COM M_mmCro = (((Xcro_m).contract(T1am,1)).contract(T4bm,1)).at(0); COM M_mmSym = (((Xsym_m).contract(T1am,1)).contract(T4bm,1)).at(0); // (- + hel choice) COM M_mpUnc = (((Xunc_p).contract(T1am,1)).contract(T4bm,1)).at(0); COM M_mpCro = (((Xcro_p).contract(T1am,1)).contract(T4bm,1)).at(0); COM M_mpSym = (((Xsym_p).contract(T1am,1)).contract(T4bm,1)).at(0); // (+ - hel choice) COM M_pmUnc = (((Xunc_m).contract(T1ap,1)).contract(T4bm,1)).at(0); COM M_pmCro = (((Xcro_m).contract(T1ap,1)).contract(T4bm,1)).at(0); COM M_pmSym = (((Xsym_m).contract(T1ap,1)).contract(T4bm,1)).at(0); // (+ + hel choice) COM M_ppUnc = (((Xunc_p).contract(T1ap,1)).contract(T4bm,1)).at(0); COM M_ppCro = (((Xcro_p).contract(T1ap,1)).contract(T4bm,1)).at(0); COM M_ppSym = (((Xsym_p).contract(T1ap,1)).contract(T4bm,1)).at(0); //Colour factors: COM cmsms,cmumu,cmcmc,cmsmu,cmsmc,cmumc; cmsms=3.; cmumu=4./3.; cmcmc=4./3.; cmsmu =3./2.*COM(0.,1.); cmsmc = -3./2.*COM(0.,1.); cmumc = -1./6.; // Work Out Interference in each case of helicity: double amp_mm = real(cmsms*pow(abs(M_mmSym),2) +cmumu*pow(abs(M_mmUnc),2) +cmcmc*pow(abs(M_mmCro),2) +2.*real(cmsmu*M_mmSym*conj(M_mmUnc)) +2.*real(cmsmc*M_mmSym*conj(M_mmCro)) +2.*real(cmumc*M_mmUnc*conj(M_mmCro))); double amp_mp = real(cmsms*pow(abs(M_mpSym),2) +cmumu*pow(abs(M_mpUnc),2) +cmcmc*pow(abs(M_mpCro),2) +2.*real(cmsmu*M_mpSym*conj(M_mpUnc)) +2.*real(cmsmc*M_mpSym*conj(M_mpCro)) +2.*real(cmumc*M_mpUnc*conj(M_mpCro))); double amp_pm = real(cmsms*pow(abs(M_pmSym),2) +cmumu*pow(abs(M_pmUnc),2) +cmcmc*pow(abs(M_pmCro),2) +2.*real(cmsmu*M_pmSym*conj(M_pmUnc)) +2.*real(cmsmc*M_pmSym*conj(M_pmCro)) +2.*real(cmumc*M_pmUnc*conj(M_pmCro))); double amp_pp = real(cmsms*pow(abs(M_ppSym),2) +cmumu*pow(abs(M_ppUnc),2) +cmcmc*pow(abs(M_ppCro),2) +2.*real(cmsmu*M_ppSym*conj(M_ppUnc)) +2.*real(cmsmc*M_ppSym*conj(M_ppCro)) +2.*real(cmumc*M_ppUnc*conj(M_ppCro))); double amp=((amp_mm+amp_mp+amp_pm+amp_pp)/(9.*4.)); CLHEP::HepLorentzVector q1,q3; q1=pa; for(int i=0;i namespace { // Loop integrals #ifdef RHEJ_BUILD_WITH_QCDLOOP COM B0DD(CLHEP::HepLorentzVector q, double mq) { static std::vector> result(3); static auto ql_B0 = [](){ ql::Bubble,double,double> ql_B0; ql_B0.setCacheSize(100); return ql_B0; }(); static std::vector masses(2); static std::vector momenta(1); for(auto & m: masses) m = mq*mq; momenta.front() = q.m2(); ql_B0.integral(result, 1, masses, momenta); return result[0]; } COM C0DD(CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mq) { static std::vector> result(3); static auto ql_C0 = [](){ ql::Triangle,double,double> ql_C0; ql_C0.setCacheSize(100); return ql_C0; }(); static std::vector masses(3); static std::vector momenta(3); for(auto & m: masses) m = mq*mq; momenta[0] = q1.m2(); momenta[1] = q2.m2(); momenta[2] = (q1+q2).m2(); ql_C0.integral(result, 1, masses, momenta); return result[0]; } COM D0DD(CLHEP::HepLorentzVector q1,CLHEP::HepLorentzVector q2, CLHEP::HepLorentzVector q3, double mq) { static std::vector> result(3); static auto ql_D0 = [](){ ql::Box,double,double> ql_D0; ql_D0.setCacheSize(100); return ql_D0; }(); static std::vector masses(4); static std::vector momenta(6); for(auto & m: masses) m = mq*mq; momenta[0] = q1.m2(); momenta[1] = q2.m2(); momenta[2] = q3.m2(); momenta[3] = (q1+q2+q3).m2(); momenta[4] = (q1+q2).m2(); momenta[5] = (q2+q3).m2(); ql_D0.integral(result, 1, masses, momenta); return result[0]; } COM A1(CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt) // As given in Eq. (B.2) of VDD { double q12,q22,Q2; CLHEP::HepLorentzVector Q; double Delta3,mt2; COM ans(COM(0.,0.)); q12=q1.m2(); q22=q2.m2(); Q=-q1-q2; // Define all momenta ingoing as in appendix of VDD Q2=Q.m2(); // std::cout<<"Higgs mass? : "< 0) return K_g(pout.plus(), pin.plus()); return K_g(pout.minus(), pin.minus()); } } // namespace anonymous CCurrent CCurrent::operator+(const CCurrent& other) { COM result_c0=c0 + other.c0; COM result_c1=c1 + other.c1; COM result_c2=c2 + other.c2; COM result_c3=c3 + other.c3; return CCurrent(result_c0,result_c1,result_c2,result_c3); } CCurrent CCurrent::operator-(const CCurrent& other) { COM result_c0=c0 - other.c0; COM result_c1=c1 - other.c1; COM result_c2=c2 - other.c2; COM result_c3=c3 - other.c3; return CCurrent(result_c0,result_c1,result_c2,result_c3); } CCurrent CCurrent::operator*(const double x) { COM result_c0=x*CCurrent::c0; COM result_c1=x*CCurrent::c1; COM result_c2=x*CCurrent::c2; COM result_c3=x*CCurrent::c3; return CCurrent(result_c0,result_c1,result_c2,result_c3); } CCurrent CCurrent::operator/(const double x) { COM result_c0=CCurrent::c0/x; COM result_c1=CCurrent::c1/x; COM result_c2=CCurrent::c2/x; COM result_c3=CCurrent::c3/x; return CCurrent(result_c0,result_c1,result_c2,result_c3); } CCurrent CCurrent::operator*(const COM x) { COM result_c0=x*CCurrent::c0; COM result_c1=x*CCurrent::c1; COM result_c2=x*CCurrent::c2; COM result_c3=x*CCurrent::c3; return CCurrent(result_c0,result_c1,result_c2,result_c3); } CCurrent CCurrent::operator/(const COM x) { COM result_c0=(CCurrent::c0)/x; COM result_c1=(CCurrent::c1)/x; COM result_c2=(CCurrent::c2)/x; COM result_c3=(CCurrent::c3)/x; return CCurrent(result_c0,result_c1,result_c2,result_c3); } std::ostream& operator <<(std::ostream& os, const CCurrent& cur) { os << "("<pin.minus()) { // if forward double sqpip=sqrt(pin.plus()); cur[0]=sqpop*sqpip; cur[1]=sqpom*sqpip*poperp/abs(poperp); cur[2]=-COM(0,1)*cur[1]; cur[3]=cur[0]; } else { // if backward double sqpim=sqrt(pin.minus()); cur[0]=-sqpom*sqpim*poperp/abs(poperp); cur[1]=-sqpim*sqpop; cur[2]=COM(0,1)*cur[1]; cur[3]=-cur[0]; } } else { // positive helicity if (pin.plus()>pin.minus()) { // if forward double sqpip=sqrt(pin.plus()); cur[0]=sqpop*sqpip; cur[1]=sqpom*sqpip*conj(poperp)/abs(poperp); cur[2]=COM(0,1)*cur[1]; cur[3]=cur[0]; } else { // if backward double sqpim=sqrt(pin.minus()); cur[0]=-sqpom*sqpim*conj(poperp)/abs(poperp); cur[1]=-sqpim*sqpop; cur[2]=-COM(0,1)*cur[1]; cur[3]=-cur[0]; } } } CCurrent j (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pin, bool helin) { COM cur[4]; cur[0]=0.; cur[1]=0.; cur[2]=0.; cur[3]=0.; double sqpop=sqrt(pout.plus()); double sqpom=sqrt(pout.minus()); COM poperp=pout.x()+COM(0,1)*pout.y(); if (helout!=helin) { std::cerr<< "void j : Non-matching helicities\n"; } else if (helout==false) { // negative helicity if (pin.plus()>pin.minus()) { // if forward double sqpip=sqrt(pin.plus()); cur[0]=sqpop*sqpip; cur[1]=sqpom*sqpip*poperp/abs(poperp); cur[2]=-COM(0,1)*cur[1]; cur[3]=cur[0]; } else { // if backward double sqpim=sqrt(pin.minus()); cur[0]=-sqpom*sqpim*poperp/abs(poperp); cur[1]=-sqpim*sqpop; cur[2]=COM(0,1)*cur[1]; cur[3]=-cur[0]; } } else { // positive helicity if (pin.plus()>pin.minus()) { // if forward double sqpip=sqrt(pin.plus()); cur[0]=sqpop*sqpip; cur[1]=sqpom*sqpip*conj(poperp)/abs(poperp); cur[2]=COM(0,1)*cur[1]; cur[3]=cur[0]; } else { // if backward double sqpim=sqrt(pin.minus()); cur[0]=-sqpom*sqpim*conj(poperp)/abs(poperp); cur[1]=-sqpim*sqpop; cur[2]=-COM(0,1)*cur[1]; cur[3]=-cur[0]; } } CCurrent temp(cur[0],cur[1],cur[2],cur[3]); return temp; } CCurrent jio (CLHEP::HepLorentzVector pin, bool helin, CLHEP::HepLorentzVector pout, bool helout) { COM cur[4]; cur[0]=0.; cur[1]=0.; cur[2]=0.; cur[3]=0.; double sqpop=sqrt(pout.plus()); double sqpom=sqrt(pout.minus()); COM poperp=pout.x()+COM(0,1)*pout.y(); if (helout!=helin) { std::cerr<< "void j : Non-matching helicities\n"; } else if (helout==false) { // negative helicity if (pin.plus()>pin.minus()) { // if forward double sqpip=sqrt(pin.plus()); cur[0]=sqpop*sqpip; cur[1]=sqpom*sqpip*conj(poperp)/abs(poperp); cur[2]=COM(0,1)*cur[1]; cur[3]=cur[0]; } else { // if backward double sqpim=sqrt(pin.minus()); cur[0]=-sqpom*sqpim*conj(poperp)/abs(poperp); cur[1]=-sqpim*sqpop; cur[2]=-COM(0,1)*cur[1]; cur[3]=-cur[0]; } } else { // positive helicity if (pin.plus()>pin.minus()) { // if forward double sqpip=sqrt(pin.plus()); cur[0]=sqpop*sqpip; cur[1]=sqpom*sqpip*poperp/abs(poperp); cur[2]=-COM(0,1)*cur[1]; cur[3]=cur[0]; } else { // if backward double sqpim=sqrt(pin.minus()); cur[0]=-sqpom*sqpim*poperp/abs(poperp); cur[1]=-sqpim*sqpop; cur[2]=COM(0,1)*cur[1]; cur[3]=-cur[0]; } } CCurrent temp(cur[0],cur[1],cur[2],cur[3]); return temp; } // Current for void jio(HLV pin, bool helin, HLV pout, bool helout, current &cur) { cur[0] = 0.0; cur[1] = 0.0; cur[2] = 0.0; cur[3] = 0.0; if(helin!=helout){ std::cout<<__LINE__<<" "<<__FILE__< pin.minus()) { // if forward double sqpip=sqrt(pin.plus()); cur[0] = sqpop * sqpip; cur[1] = sqpom * sqpip * conj(poperp) / abs(poperp); cur[2] = COM(0,1) * cur[1]; cur[3] = cur[0]; } else { double sqpim = sqrt(pin.minus()); cur[0] = -sqpom * sqpim * conj(poperp) / abs(poperp); cur[1] = -sqpim * sqpop; cur[2] = -COM(0,1) * cur[1]; cur[3] = -cur[0]; } } else { if (pin.plus() > pin.minus()) { // if forward double sqpip = sqrt(pin.plus()); cur[0] = sqpop * sqpip; cur[1] = sqpom * sqpip*poperp/abs(poperp); cur[2] = -COM(0,1)*cur[1]; cur[3] = cur[0]; } else { double sqpim = sqrt(pin.minus()); cur[0] = -sqpom * sqpim * poperp/abs(poperp); cur[1] = -sqpim * sqpop; cur[2] = COM(0,1)*cur[1]; cur[3] = -cur[0]; } } } // Current for void joo(HLV pi, bool heli, HLV pj, bool helj, current &cur) { // Zero our current cur[0] = 0.0; cur[1] = 0.0; cur[2] = 0.0; cur[3] = 0.0; if(helj){ std::cout<<__LINE__<<" "<<__FILE__< void joi(HLV pout, bool helout, HLV pin, bool helin, current &cur) { cur[0] = 0.0; cur[1] = 0.0; cur[2] = 0.0; cur[3] = 0.0; if(helin){ std::cout<<__LINE__<<" "<<__FILE__< pin.minus()) { // if forward double sqpip=sqrt(pin.plus()); cur[0] = sqpop * sqpip; cur[1] = sqpom * sqpip * poperp/abs(poperp); cur[2] = -COM(0,1)*cur[1]; cur[3] = cur[0]; } else { double sqpim = sqrt(pin.minus()); cur[0] = -sqpom*sqpim*poperp/abs(poperp); cur[1] = -sqpim*sqpop; cur[2] = COM(0,1)*cur[1]; cur[3] = -cur[0]; } } else { if (pin.plus() > pin.minus()) { // if forward double sqpip = sqrt(pin.plus()); cur[0] = sqpop * sqpip; cur[1] = sqpom * sqpip*conj(poperp)/abs(poperp); cur[2] = COM(0,1)*cur[1]; cur[3] = cur[0]; } else { double sqpim = sqrt(pin.minus()); cur[0] = -sqpom * sqpim * conj(poperp)/abs(poperp); cur[1] = -sqpim * sqpop; cur[2] = -COM(0,1)*cur[1]; cur[3] = -cur[0]; } } } namespace { /// @TODO unused function // double jM2 (CLHEP::HepLorentzVector p1out, bool hel1out, CLHEP::HepLorentzVector p1in, bool hel1in, CLHEP::HepLorentzVector p2out, bool hel2out, CLHEP::HepLorentzVector p2in, bool hel2in) // { // CLHEP::HepLorentzVector q1=p1in-p1out; // CLHEP::HepLorentzVector q2=-(p2in-p2out); // current C1,C2; // j (p1out,hel1out,p1in,hel1in, C1); // j (p2out,hel2out,p2in,hel2in, C2); // std::cout << "# From Currents, C1 : ("< e+ nu, so that nu is lepton(6), e is anti-lepton(5) // Need to swap e and nu for events with W- --> e- nubar! if (helin==helout && hele==helnu) { CLHEP::HepLorentzVector qa=pout+pe+pnu; CLHEP::HepLorentzVector qb=pin-pe-pnu; double ta(qa.m2()),tb(qb.m2()); current t65,vout,vin,temp2,temp3,temp5; joo(pnu,helnu,pe,hele,t65); vout[0]=pout.e(); vout[1]=pout.x(); vout[2]=pout.y(); vout[3]=pout.z(); vin[0]=pin.e(); vin[1]=pin.x(); vin[2]=pin.y(); vin[3]=pin.z(); COM brac615=cdot(t65,vout); COM brac645=cdot(t65,vin); // prod1565 and prod6465 are zero for Ws (not Zs)!! // noalias(temp)=prod(trans(CurrentOutOut(pout,helout,pnu,helout)),metric); joo(pout,helout,pnu,helout,temp2); // noalias(temp2)=prod(temp,ctemp); COM prod1665=cdot(temp2,t65); // noalias(temp)=prod(trans(Current(pe,helin,pin,helin)),metric); // noalias(temp2)=prod(temp,ctemp); j(pe,helin,pin,helin,temp3); COM prod5465=cdot(temp3,t65); // noalias(temp)=prod(trans(Current(pnu,helin,pin,helin)),metric); // noalias(temp2)=prod(temp,ctemp); joo(pout,helout,pe,helout,temp2); j(pnu,helnu,pin,helin,temp3); j(pout,helout,pin,helin,temp5); current term1,term2,term3,sum; cmult(2.*brac615/ta+2.*brac645/tb,temp5,term1); cmult(prod1665/ta,temp3,term2); cmult(-prod5465/tb,temp2,term3); // cur=((2.*brac615*Current(pout,helout,pin,helin)+prod1565*Current(pe,helin,pin,helin)+prod1665*Current(pnu,helin,pin,helin))/ta + (2.*brac645*Current(pout,helout,pin,helin)-prod5465*CurrentOutOut(pout,helout,pe,helout)-prod6465*CurrentOutOut(pout,helout,pnu,helout))/tb); // cur=((2.*brac615*temp5+prod1565*temp3+prod1665*temp4)/ta + (2.*brac645*temp5-prod5465*temp1-prod6465*temp2)/tb); cadd(term1,term2,term3,sum); // std::cout<<"sum: ("< e+ nu, so that nu is lepton(6), e is anti-lepton(5) // Need to swap e and nu for events with W- --> e- nubar! if (helin==helout && hele==helnu) { CLHEP::HepLorentzVector qa=pout+pe+pnu; CLHEP::HepLorentzVector qb=pin-pe-pnu; double ta(qa.m2()),tb(qb.m2()); current t65,vout,vin,temp2,temp3,temp5; joo(pnu,helnu,pe,hele,t65); vout[0]=pout.e(); vout[1]=pout.x(); vout[2]=pout.y(); vout[3]=pout.z(); vin[0]=pin.e(); vin[1]=pin.x(); vin[2]=pin.y(); vin[3]=pin.z(); COM brac615=cdot(t65,vout); COM brac645=cdot(t65,vin); // prod1565 and prod6465 are zero for Ws (not Zs)!! joo(pe,helout,pout,helout,temp2); // temp2 is <5|alpha|1> COM prod5165=cdot(temp2,t65); jio(pin,helin,pnu,helin,temp3); // temp3 is <4|alpha|6> COM prod4665=cdot(temp3,t65); joo(pnu,helout,pout,helout,temp2); // temp2 is now <6|mu|1> jio(pin,helin,pe,helin,temp3); // temp3 is now <4|mu|5> jio(pin,helin,pout,helout,temp5); // temp5 is <4|mu|1> current term1,term2,term3,sum; cmult(-2.*brac615/ta-2.*brac645/tb,temp5,term1); cmult(-prod5165/ta,temp3,term2); cmult(prod4665/tb,temp2,term3); // cur=((2.*brac615*Current(pout,helout,pin,helin)+prod1565*Current(pe,helin,pin,helin)+prod1665*Current(pnu,helin,pin,helin))/ta + (2.*brac645*Current(pout,helout,pin,helin)-prod5465*CurrentOutOut(pout,helout,pe,helout)-prod6465*CurrentOutOut(pout,helout,pnu,helout))/tb); // cur=((2.*brac615*temp5+prod1565*temp3+prod1665*temp4)/ta + (2.*brac645*temp5-prod5465*temp1-prod6465*temp2)/tb); cadd(term1,term2,term3,sum); // std::cout<<"term1: ("<qenuQ scattering // p1: quark (with W emittance) // p2: Quark { current mj1m,mj2p,mj2m; CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu; CLHEP::HepLorentzVector q2=-(p2in-p2out); jW(p1out,false,pe,false,pnu,false,p1in,false,mj1m); j(p2out,true,p2in,true,mj2p); j(p2out,false,p2in,false,mj2m); - // std::cout<<"jMW1: ("<qenuQ scattering // p1: quark (with W emittance) // p2: Quark { current mj1m,mj2p,mj2m; CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu; CLHEP::HepLorentzVector q2=-(p2in-p2out); jW(p1out,false,pe,false,pnu,false,p1in,false,mj1m); jio(p2in,true,p2out,true,mj2p); jio(p2in,false,p2out,false,mj2m); - // std::cout<<"jMW1: ("<qenuQ scattering // p1: quark (with W emittance) // p2: Quark { current mj1m,mj2p,mj2m; CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu; CLHEP::HepLorentzVector q2=-(p2in-p2out); jWbar(p1out,false,pe,false,pnu,false,p1in,false,mj1m); j(p2out,true,p2in,true,mj2p); j(p2out,false,p2in,false,mj2m); - // std::cout<<"jMW1: ("<qenuQ scattering // p1: quark (with W emittance) // p2: Quark { current mj1m,mj2p,mj2m; CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu; CLHEP::HepLorentzVector q2=-(p2in-p2out); jWbar(p1out,false,pe,false,pnu,false,p1in,false,mj1m); jio(p2in,true,p2out,true,mj2p); jio(p2in,false,p2out,false,mj2m); - // std::cout<<"jMW1: ("<qenug scattering // p1: quark // p2: gluon { CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu; CLHEP::HepLorentzVector q2=-(p2in-p2out); current mj1m,mj2p,mj2m; jW(p1out,false,pe,false,pnu,false,p1in,false,mj1m); j(p2out,true,p2in,true,mj2p); j(p2out,false,p2in,false,mj2m); // mj1m.mj2p - COM Mmp=cdot(mj1m,mj2p); // mj1m.mj2m COM Mmm=cdot(mj1m,mj2m); const double K = K_g(p2out, p2in); // sum of spinor strings ||^2 double a2Mmp=abs2(Mmp); double a2Mmm=abs2(Mmm); double sst = K/C_A*(a2Mmp+a2Mmm); - // double sstsave=sst; -// // Leave division by colour and Helicity avg until Tree files + // Leave division by colour and Helicity avg until Tree files // Leave multi. of couplings to later // Multiply by Cf*Ca=4 - return 4.*sst/(q1.m2()*q2.m2()); + return C_F*C_A*sst/(q1.m2()*q2.m2()); } double jMWqbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in) // Calculates the square of the current contractions for qg->qenug scattering // p1: quark // p2: gluon { CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu; CLHEP::HepLorentzVector q2=-(p2in-p2out); current mj1m,mj2p,mj2m; jWbar(p1out,false,pe,false,pnu,false,p1in,false,mj1m); j(p2out,true,p2in,true,mj2p); j(p2out,false,p2in,false,mj2m); // mj1m.mj2p - COM Mmp=cdot(mj1m,mj2p); // mj1m.mj2m COM Mmm=cdot(mj1m,mj2m); const double K = K_g(p2out, p2in); // sum of spinor strings ||^2 double a2Mmp=abs2(Mmp); double a2Mmm=abs2(Mmm); double sst = K/C_A*(a2Mmp+a2Mmm); - // double sstsave=sst; // // Leave division by colour and Helicity avg until Tree files // Leave multi. of couplings to later // Multiply by Cf*Ca=4 - return 4.*sst/(q1.m2()*q2.m2()); + return C_F*C_A*sst/(q1.m2()*q2.m2()); } double jM2qQ (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in) { // std::cerr<<"Current: "< 16 pi mt^2/v alphas, // and we divide by a factor 4 at the amp sqaured level later // which I absorb here (i.e. I divide by 2) /// @TODO move factor 1/2 from S to |ME|^2 => consistent with general notation return 8.*M_PI*mt*mt/v*(-cdot(C1,q2)*cdot(C2,q1)*A1(-vq1,vq2,mt)-cdot(C1,C2)*A2(-vq1,vq2,mt)); else return 8.*M_PI*mt*mt/v*(-cdot(C1,q2)*cdot(C2,q1)*A1(-vq1,vq2,mt)-cdot(C1,C2)*A2(-vq1,vq2,mt)) + 8.*M_PI*mb*mb/v*(-cdot(C1,q2)*cdot(C2,q1)*A1(-vq1,vq2,mb)-cdot(C1,C2)*A2(-vq1,vq2,mb)); } } } // namespace anonymous double MH2qQ (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb) { // CLHEP::HepLorentzVector q1=p1in-p1out; // CLHEP::HepLorentzVector q2=-(p2in-p2out); current j1p,j1m,j2p,j2m, q1v, q2v; j (p1out,true,p1in,true,j1p); j (p1out,false,p1in,false,j1m); j (p2out,true,p2in,true,j2p); j (p2out,false,p2in,false,j2m); to_current(q1, q1v); to_current(q2, q2v); COM Mmp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb); COM Mmm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb); COM Mpp=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb); COM Mpm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb); double sst=abs2(Mmp)+abs2(Mmm)+abs2(Mpp)+abs2(Mpm); // return (4./3.)*(4./3.)*sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2()); return sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2()); } double MH2qQbar (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb) { // CLHEP::HepLorentzVector q1=p1in-p1out; // CLHEP::HepLorentzVector q2=-(p2in-p2out); current j1p,j1m,j2p,j2m,q1v,q2v; j (p1out,true,p1in,true,j1p); j (p1out,false,p1in,false,j1m); jio (p2in,true,p2out,true,j2p); jio (p2in,false,p2out,false,j2m); to_current(q1, q1v); to_current(q2, q2v); COM Mmp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb); COM Mmm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb); COM Mpp=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb); COM Mpm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb); double sst=abs2(Mmp)+abs2(Mmm)+abs2(Mpp)+abs2(Mpm); // return (4./3.)*(4./3.)*sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2()); return sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2()); } double MH2qbarQ (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb) { // CLHEP::HepLorentzVector q1=p1in-p1out; // CLHEP::HepLorentzVector q2=-(p2in-p2out); current j1p,j1m,j2p,j2m,q1v,q2v; jio (p1in,true,p1out,true,j1p); jio (p1in,false,p1out,false,j1m); j (p2out,true,p2in,true,j2p); j (p2out,false,p2in,false,j2m); to_current(q1, q1v); to_current(q2, q2v); COM Mmp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb); COM Mmm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb); COM Mpp=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb); COM Mpm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb); double sst=abs2(Mmp)+abs2(Mmm)+abs2(Mpp)+abs2(Mpm); // return (4./3.)*(4./3.)*sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2()); return sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2()); } double MH2qbarQbar (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb) { // CLHEP::HepLorentzVector q1=p1in-p1out; // CLHEP::HepLorentzVector q2=-(p2in-p2out); current j1p,j1m,j2p,j2m,q1v,q2v; jio (p1in,true,p1out,true,j1p); jio (p1in,false,p1out,false,j1m); jio (p2in,true,p2out,true,j2p); jio (p2in,false,p2out,false,j2m); to_current(q1, q1v); to_current(q2, q2v); COM Mmp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb); COM Mmm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb); COM Mpp=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb); COM Mpm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb); double sst=abs2(Mmp)+abs2(Mmm)+abs2(Mpp)+abs2(Mpm); // return (4./3.)*(4./3.)*sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2()); return sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2()); } double MH2qg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb) // q~p1 g~p2 (i.e. ALWAYS p1 for quark, p2 for gluon) // should be called with q1 meant to be contracted with p2 in first part of vertex // (i.e. if g is backward, q1 is forward) { current j1p,j1m,j2p,j2m,q1v,q2v; j (p1out,true,p1in,true,j1p); j (p1out,false,p1in,false,j1m); j (p2out,true,p2in,true,j2p); j (p2out,false,p2in,false,j2m); to_current(q1, q1v); to_current(q2, q2v); // First, calculate the non-flipping amplitudes: COM Mpp=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb); COM Mpm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb); COM Mmp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb); COM Mmm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb); //cout << "Bits in MH2qg: " << Mpp << " " << Mpm << " " << Mmp << " " << Mmm << endl; const double K = K_g(p2out, p2in); double sst=K/C_A*(abs2(Mmp)+abs2(Mmm)+abs2(Mpp)+abs2(Mpm)); // Cf*Ca=4 // return 4.*sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2()); return sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2()); } double MH2qbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb) // qbar~p1 g~p2 (i.e. ALWAYS p1 for anti-quark, p2 for gluon) // should be called with q1 meant to be contracted with p2 in first part of vertex // (i.e. if g is backward, q1 is forward) { current j1p,j1m,j2p,j2m,q1v,q2v; jio (p1in,true,p1out,true,j1p); jio (p1in,false,p1out,false,j1m); j (p2out,true,p2in,true,j2p); j (p2out,false,p2in,false,j2m); to_current(q1, q1v); to_current(q2, q2v); // First, calculate the non-flipping amplitudes: COM amp,amm,apm,app; app=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb); apm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb); amp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb); amm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb); double MH2sum = abs2(app)+abs2(amm)+abs2(apm)+abs2(amp); const double K = K_g(p2out, p2in); MH2sum*=K/C_A; // Cf*Ca=4 // return 4.*MH2sum/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2()); return MH2sum/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2()); } double MH2gg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb) // g~p1 g~p2 // should be called with q1 meant to be contracted with p2 in first part of vertex // (i.e. if g is backward, q1 is forward) { current j1p,j1m,j2p,j2m,q1v,q2v; j (p1out,true,p1in,true,j1p); j (p1out,false,p1in,false,j1m); j (p2out,true,p2in,true,j2p); j (p2out,false,p2in,false,j2m); to_current(q1, q1v); to_current(q2, q2v); // First, calculate the non-flipping amplitudes: COM amp,amm,apm,app; app=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb); apm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb); amp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb); amm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb); double MH2sum = abs2(app)+abs2(amm)+abs2(apm)+abs2(amp); const double K_g1 = K_g(p1out, p1in); const double K_g2 = K_g(p2out, p2in); MH2sum*=K_g1/C_A*K_g2/C_A; // Ca*Ca=9 // return 9.*MH2sum/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2()); return MH2sum/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2()); } // // Z's stuff // void jZ(HLV pin, HLV pout, HLV pem, HLV pep, bool HelPartons, bool HelLeptons, current cur) { // // Init current to zero // cur[0] = 0.0; // cur[1] = 0.0; // cur[2] = 0.0; // cur[3] = 0.0; // // Temporary variables // COM temp; // current Term_1, Term_2, Term_3, Term_4, J_temp, TempCur1, TempCur2; // // Momentum of virtual gluons aroun weak boson emission site // HLV qa = pout + pep + pem; // HLV qb = pin - pep - pem; // double ta = qa.m2(); // double tb = qb.m2(); // // Out-Out currents: // current Em_Ep, Out_Em, Out_Ep; // // Other currents: // current Out_In, Em_In, Ep_In; // joi(pout, HelPartons, pin, HelPartons, Out_In); // joi(pem, HelLeptons, pin, HelPartons, Em_In); // joi(pep, HelLeptons, pin, HelPartons, Ep_In); // joo(pem, HelLeptons, pep, HelLeptons, Em_Ep); // joo(pout, HelPartons, pem, HelLeptons, Out_Em); // joo(pout, HelPartons, pep, HelLeptons, Out_Ep); // if (HelLeptons == HelPartons) { // temp = 2.0 * cdot(pout, Em_Ep); // cmult(temp / ta, Out_In, Term_1); // temp = cdot(Out_Em, Em_Ep); // cmult(temp / ta , Em_In, Term_2); // temp = 2.0 * cdot(pin, Em_Ep); // cmult(temp / tb, Out_In, Term_3); // temp = -cdot(Ep_In, Em_Ep); // cmult(temp / tb, Out_Ep, Term_4); // cadd(Term_1, Term_2, Term_3, Term_4, J_temp); // cur[0] = J_temp[0]; // cur[1] = J_temp[1]; // cur[2] = J_temp[2]; // cur[3] = J_temp[3]; // } // else { // if (HelPartons == true) { // temp = 2.0 * cdot(pout, Em_Ep); // cmult(temp / ta, Out_In, Term_1); // joo(pout, true, pep, true, TempCur1); // joi(pep, true, pin, true, TempCur2); // temp = cdot(TempCur1, Em_Ep); // cmult(temp / ta , TempCur2, Term_2); // temp = 2.0 * cdot(pin, Em_Ep); // cmult(temp / tb, Out_In, Term_3); // joo(pout, true, pem, true, TempCur1); // joi(pem, true, pin, true, TempCur2); // temp = -cdot(TempCur2, Em_Ep); // cmult(temp / tb, TempCur1, Term_4); // cadd(Term_1, Term_2, Term_3, Term_4, J_temp); // cur[0] = J_temp[0]; // cur[1] = J_temp[1]; // cur[2] = J_temp[2]; // cur[3] = J_temp[3]; // } // else { // temp = 2.0 * cdot(pout, Em_Ep); // cmult(temp / ta, Out_In, Term_1); // joo(pout, false, pep, false, TempCur1); // joi(pep, false, pin, false, TempCur2); // temp = cdot(TempCur1, Em_Ep); // cmult(temp / ta, TempCur2, Term_2); // temp = 2.0 * cdot(pin, Em_Ep); // cmult(temp / tb, Out_In, Term_3); // joo(pout, false, pem, false, TempCur1); // joi(pem, false, pin, false, TempCur2); // temp = -cdot(TempCur2, Em_Ep); // cmult(temp / tb, TempCur1, Term_4); // cadd(Term_1, Term_2, Term_3, Term_4, J_temp); // cur[0] = J_temp[0]; // cur[1] = J_temp[1]; // cur[2] = J_temp[2]; // cur[3] = J_temp[3]; // } // } // } // void jZbar(HLV pin, HLV pout, HLV pem, HLV pep, bool HelPartons, bool HelLeptons, current cur) { // // Init current to zero // cur[0] = 0.0; // cur[1] = 0.0; // cur[2] = 0.0; // cur[3] = 0.0; // // Temporary variables // COM temp; // current Term_1, Term_2, Term_3, Term_4, J_temp, TempCur1, TempCur2; // // Transfered 4-momenta // HLV qa = pout + pep + pem; // HLV qb = pin - pep - pem; // // The square of the transfered 4-momenta // double ta = qa.m2(); // double tb = qb.m2(); // // Out-Out currents: // current Em_Ep, Em_Out, Ep_Out; // // In-Out currents: // current In_Out, In_Em, In_Ep; // // Safe to use the currents since helicity structure is ok // if (HelPartons == HelLeptons) { // jio(pin, HelPartons, pout, HelPartons, In_Out); // joo(pem, HelLeptons, pep, HelLeptons, Em_Ep); // jio(pin, HelPartons, pem, HelLeptons, In_Em); // jio(pin, HelPartons, pep, HelLeptons, In_Ep); // joo(pem, HelLeptons, pout, HelPartons, Em_Out); // joo(pep, HelLeptons, pout, HelPartons, Ep_Out); // } // else { // jio(pin, HelPartons, pout, HelPartons, In_Out); // joo(pem, HelLeptons, pep, HelLeptons, Em_Ep); // In_Em[0] = 0.0; // In_Em[1] = 0.0; // In_Em[2] = 0.0; // In_Em[3] = 0.0; // In_Ep[0] = 0.0; // In_Ep[1] = 0.0; // In_Ep[2] = 0.0; // In_Ep[3] = 0.0; // Em_Out[0] = 0.0; // Em_Out[1] = 0.0; // Em_Out[2] = 0.0; // Em_Out[3] = 0.0; // Ep_Out[0] = 0.0; // Ep_Out[1] = 0.0; // Ep_Out[2] = 0.0; // Ep_Out[3] = 0.0; // } // if (HelLeptons == HelPartons) { // temp = 2.0 * cdot(pout, Em_Ep); // cmult(temp / ta, In_Out, Term_1); // temp = cdot(Ep_Out, Em_Ep); // cmult(temp / ta, In_Ep, Term_2); // temp = 2.0 * cdot(pin, Em_Ep); // cmult(temp / tb, In_Out, Term_3); // temp = - cdot(In_Em, Em_Ep); // cmult(temp / tb, Em_Out, Term_4); // cadd(Term_1, Term_2, Term_3, Term_4, J_temp); // cur[0] = J_temp[0]; // cur[1] = J_temp[1]; // cur[2] = J_temp[2]; // cur[3] = J_temp[3]; // } // else { // if (HelPartons == true) { // temp = 2.0 * cdot(pout, Em_Ep); // cmult(temp / ta, In_Out, Term_1); // joo(pem, true, pout, true, TempCur1); // jio(pin, true, pem, true, TempCur2); // temp = cdot(TempCur1, Em_Ep); // cmult(temp / ta , TempCur2, Term_2); // temp = 2.0 * cdot(pin, Em_Ep); // cmult(temp / tb, In_Out, Term_3); // joo(pep, true, pout, true, TempCur1); // jio(pin, true, pep, true, TempCur2); // temp = - cdot(TempCur2, Em_Ep); // cmult(temp / tb, TempCur1, Term_4); // cadd(Term_1, Term_2, Term_3, Term_4, J_temp); // cur[0] = J_temp[0]; // cur[1] = J_temp[1]; // cur[2] = J_temp[2]; // cur[3] = J_temp[3]; // } // else { // temp = 2.0 * cdot(pout, Em_Ep); // cmult(temp / ta, In_Out, Term_1); // joo(pem, false, pout, false, TempCur1); // jio(pin, false, pem, false, TempCur2); // temp = cdot(TempCur1, Em_Ep); // cmult(temp / ta , TempCur2, Term_2); // temp = 2.0 * cdot(pin, Em_Ep); // cmult(temp / tb, In_Out, Term_3); // joo(pep, false, pout, false, TempCur1); // jio(pin, false, pep, false, TempCur2); // temp = - cdot(TempCur2, Em_Ep); // cmult(temp / tb, TempCur1, Term_4); // cadd(Term_1, Term_2, Term_3, Term_4, J_temp); // cur[0] = J_temp[0]; // cur[1] = J_temp[1]; // cur[2] = J_temp[2]; // cur[3] = J_temp[3]; // } // } // } // // Progagators // COM PZ(double s) { // double MZ, GammaZ; // MZ = 9.118800e+01; // Mass of the mediating gauge boson // GammaZ = 2.441404e+00; // Z peak width // // Return Z Prop value // return 1.0 / (s - MZ * MZ + COM(0.0, 1.0) * GammaZ * MZ); // } // COM PG(double s) { // return 1.0 / s; // } // // Non-gluonic with pa emitting // std::vector jMZqQ (HLV pa, HLV pb, HLV p1, HLV p2, HLV pep, HLV pem, std::vector VProducts, std::vector < std::vector > Virtuals, int aptype, int bptype, bool UseVirtuals, bool BottomLineEmit) { // std::vector ScaledWeights; // double Sum; // // Propagator factors // COM PZs = PZ((pep + pem).m2()); // COM PGs = PG((pep + pem).m2()); // // Emitting current initialisation // current j1pptop, j1pmtop; // Emission from top line // current j1ppbot, j1pmbot; // Emission from bottom line // // Non-emitting current initialisation // current j2ptop, j2mtop; // Emission from top line // current j2pbot, j2mbot; // Emission from bottom line // // Currents for top emission // // Upper current calculations // // if a is a quark // if (aptype > 0) { // jZ(pa, p1, pem, pep, true, true, j1pptop); // jZ(pa, p1, pem, pep, true, false, j1pmtop); // } // // if a is an antiquark // else { // jZbar(pa, p1, pem, pep, true, true, j1pptop); // jZbar(pa, p1, pem, pep, true, false, j1pmtop); // } // // Lower current calculations // // if b is a quark // if (bptype > 0) { // joi(p2, true, pb, true, j2ptop); // joi(p2, false, pb, false, j2mtop); // } // // if b is an antiquark // else { // jio(pb, true, p2, true, j2ptop); // jio(pb, false, p2, false, j2mtop); // } // // Currents for bottom emission // // Lower current calculations // if (bptype > 0) { // jZ(pb, p2, pem, pep, true, true, j1ppbot); // jZ(pb, p2, pem, pep, true, false, j1pmbot); // } // else { // jZbar(pb, p2, pem, pep, true, true, j1ppbot); // jZbar(pb, p2, pem, pep, true, false, j1pmbot); // } // // Upper current calculations // if (aptype > 0) { // joi(p1, true, pa, true, j2pbot); // joi(p1, false, pa, false, j2mbot); // } // else { // jio(pa, true, p1, true, j2pbot); // jio(pa, false, p1, false, j2mbot); // } // COM Coeff[2][8]; // if (!Interference) { // double ZCharge_a_P = Zq(aptype, true); // double ZCharge_a_M = Zq(aptype, false); // double ZCharge_b_P = Zq(bptype, true); // double ZCharge_b_M = Zq(bptype, false); // if (BottomLineEmit) { // // Emission from top-line quark (pa/p1 line) // Coeff[0][0] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pptop, j2ptop); // Coeff[0][1] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pptop, j2mtop); // Coeff[0][2] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pmtop, j2ptop); // Coeff[0][3] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pmtop, j2mtop); // Coeff[0][4] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2ptop)); // Coeff[0][5] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2mtop)); // Coeff[0][6] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2ptop)); // Coeff[0][7] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2mtop)); // } // else { // // Emission from bottom-line quark (pb/p2 line) // Coeff[1][0] = (ZCharge_b_P * Zep * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1ppbot, j2pbot); // Coeff[1][7] = (ZCharge_b_P * Zep * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1ppbot, j2mbot); // Coeff[1][2] = (ZCharge_b_P * Zem * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1pmbot, j2pbot); // Coeff[1][5] = (ZCharge_b_P * Zem * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1pmbot, j2mbot); // Coeff[1][4] = (ZCharge_b_M * Zem * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1ppbot, j2pbot)); // Coeff[1][3] = (ZCharge_b_M * Zem * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1ppbot, j2mbot)); // Coeff[1][6] = (ZCharge_b_M * Zep * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1pmbot, j2pbot)); // Coeff[1][1] = (ZCharge_b_M * Zep * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1pmbot, j2mbot)); // } // } // // Else calculate all the possiblities // else { // double ZCharge_a_P = Zq(aptype, true); // double ZCharge_a_M = Zq(aptype, false); // double ZCharge_b_P = Zq(bptype, true); // double ZCharge_b_M = Zq(bptype, false); // // Emission from top-line quark (pa/p1 line) // Coeff[0][0] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pptop, j2ptop); // Coeff[0][1] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pptop, j2mtop); // Coeff[0][2] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pmtop, j2ptop); // Coeff[0][3] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pmtop, j2mtop); // Coeff[0][4] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2ptop)); // Coeff[0][5] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2mtop)); // Coeff[0][6] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2ptop)); // Coeff[0][7] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2mtop)); // // Emission from bottom-line quark (pb/p2 line) // Coeff[1][0] = (ZCharge_b_P * Zep * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1ppbot, j2pbot); // Coeff[1][7] = (ZCharge_b_P * Zep * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1ppbot, j2mbot); // Coeff[1][2] = (ZCharge_b_P * Zem * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1pmbot, j2pbot); // Coeff[1][5] = (ZCharge_b_P * Zem * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1pmbot, j2mbot); // Coeff[1][4] = (ZCharge_b_M * Zem * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1ppbot, j2pbot)); // Coeff[1][3] = (ZCharge_b_M * Zem * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1ppbot, j2mbot)); // Coeff[1][6] = (ZCharge_b_M * Zep * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1pmbot, j2pbot)); // Coeff[1][1] = (ZCharge_b_M * Zep * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1pmbot, j2mbot)); // } // // Find the numbers of scales // int ScaleCount; // #if calcscaleunc // ScaleCount = 20; // #else // ScaleCount = 1; // #endif // // For each scale... // for (int j = 0; j < ScaleCount; j++) { // Sum = 0.0; // // If we want to compare back to the W's code only emit from one quark and only couple to left handed particles // // virtuals arent here since they are calculated and included in weight() call. // if (!Interference) { // if (BottomLineEmit) for (int i = 0; i < 8; i++) Sum += abs2(Coeff[1][i]) * VProducts.at(1); // else for (int i = 0; i < 8; i++) Sum += abs2(Coeff[0][i]) * VProducts.at(0); // } // // Else work out the full interference // else { // // For the full calculation... // if (UseVirtuals) { // for (int i = 0; i < 8; i++) { // Sum += abs2(Coeff[0][i]) * VProducts.at(0) * Virtuals.at(j).at(0) // + abs2(Coeff[1][i]) * VProducts.at(1) * Virtuals.at(j).at(1) // + 2.0 * real(Coeff[0][i] * conj(Coeff[1][i])) * VProducts.at(2) * Virtuals.at(j).at(2); // } // } // // For the tree level calculation... // else { // for (int i = 0; i < 8; i++) { // Sum += abs2(Coeff[0][i]) * VProducts.at(0) // + abs2(Coeff[1][i]) * VProducts.at(1) // + 2.0 * real(Coeff[0][i] * conj(Coeff[1][i])) * VProducts.at(2); // } // } // } // // Add this to the vector to be returned with the other factors of C_A and the helicity sum/average factors. // ScaledWeights.push_back(Sum / 18.0); // } // // Return all the scale values // return ScaledWeights; // } // // Semi-gluonic with pa emitting // std::vector jMZqg (HLV pa, HLV pb, HLV p1, HLV p2, HLV pep, HLV pem, std::vector VProducts, std::vector < std::vector > Virtuals, int aptype, int bptype, bool UseVirtuals, bool BottomLineEmit) { // COM Coeff[8]; // double Sum; // std::vector ScaledWeights; // COM PZs = PZ((pep + pem).m2()); // COM PGs = PG((pep + pem).m2()); // // Emitting current initialisation - Emission from top line // current j1pptop, j1pmtop; // // Non-emitting current initialisation - Emission from top line // current j2ptop, j2mtop; // // Currents for top emission // // Upper current calculations // if (aptype > 0) { // jZ (pa, p1, pem, pep, true, true, j1pptop); // jZ (pa, p1, pem, pep, true, false, j1pmtop); // } // else { // jZbar(pa, p1, pem, pep, true, true, j1pptop); // jZbar(pa, p1, pem, pep, true, false, j1pmtop); // } // // Lower current calculations // joi(p2, true, pb, true, j2ptop); // joi(p2, false, pb, false, j2mtop); // // Calculate all the possiblities // double ZCharge_a_P = Zq(aptype, true); // double ZCharge_a_M = Zq(aptype, false); // // Emission from top-line quark (pa/p1 line) // Coeff[0] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pptop, j2ptop); // Coeff[1] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pptop, j2mtop); // Coeff[2] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pmtop, j2ptop); // Coeff[3] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pmtop, j2mtop); // Coeff[4] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2ptop)); // Coeff[5] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2mtop)); // Coeff[6] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2ptop)); // Coeff[7] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2mtop)); // // Calculate gluon colour accelerated factor // double CAMFactor, z; // // If b is a forward moving gluon define z (C.F. multiple jets papers) // if (pb.pz() > 0) z = p2.plus() / pb.plus(); // else z = p2.minus() / pb.minus(); // CAMFactor = (1.0 - 1.0 / 9.0) / 2.0 * (z + 1.0 / z) + 1.0 / 9.0; // // Find the numbers of scales // int ScaleCount; // #if calcscaleunc // ScaleCount = 20; // #else // ScaleCount = 1; // #endif // // For each scale... // for (int j = 0; j < ScaleCount; j++) { // Sum = 0.0; // // If we dont want the interference // if (!Interference) for (int i = 0; i < 8; i++) Sum += abs2(Coeff[i]) * VProducts.at(0); // // Else work out the full interference // else { // if (UseVirtuals) { // for (int i = 0; i < 8; i++) Sum += abs2(Coeff[i]) * VProducts.at(0) * Virtuals.at(j).at(0); // } // else { // for (int i = 0; i < 8; i++) Sum += abs2(Coeff[i]) * VProducts.at(0); // } // } // // Add this to the vector to be returned with the other factors of C_A, the colour accelerated factor and the helicity sum/average factors.: (4/3)*3/32 // ScaledWeights.push_back(CAMFactor * Sum / 8.0); // } // return ScaledWeights; // } // // Electroweak Charge Functions // double Zq (int PID, bool Helcitiy) { // double temp; // // Positive Spin // if (Helcitiy == true) { // if (PID == 1 || PID == 3 || PID == 5) temp = (+ 1.0 * stw2 / 3.0) / ctw; // if (PID == 2 || PID == 4) temp = (- 2.0 * stw2 / 3.0) / ctw; // if (PID == -1 || PID == -3 || PID == -5) temp = (- 1.0 * stw2 / 3.0) / ctw; // if (PID == -2 || PID == -4) temp = (+ 2.0 * stw2 / 3.0) / ctw; // // If electron or positron // if (PID == 7 || PID == -7) temp = Zep; // } // // Negative Spin // else { // if (PID == 1 || PID == 3 || PID == 5) temp = (-0.5 + 1.0 * stw2 / 3.0) / ctw; // if (PID == 2 || PID == 4) temp = ( 0.5 - 2.0 * stw2 / 3.0) / ctw; // if (PID == -1 || PID == -3 || PID == -5) temp = ( 0.5 - 1.0 * stw2 / 3.0) / ctw; // if (PID == -2 || PID == -4) temp = (-0.5 + 2.0 * stw2 / 3.0) / ctw; // // If electron or positron // if (PID == 7 || PID == -7) temp = Zem; // } // return temp; // } // double Gq (int PID) { // if (!VirtualPhoton) return 0.0; // if (PID == -1) return 1.0 * ee / 3.0; // if (PID == -2) return -2.0 * ee / 3.0; // if (PID == -3) return 1.0 * ee / 3.0; // if (PID == -4) return -2.0 * ee / 3.0; // if (PID == -5) return 1.0 * ee / 3.0; // if (PID == 1) return -1.0 * ee / 3.0; // if (PID == 2) return 2.0 * ee / 3.0; // if (PID == 3) return -1.0 * ee / 3.0; // if (PID == 4) return 2.0 * ee / 3.0; // if (PID == 5) return -1.0 * ee / 3.0; // std::cout << "ERROR! No Electroweak Charge Found at line " << __LINE__ << "..." << std::endl; // return 0.0; // } namespace { //@{ /// @brief Higgs vertex contracted with one current CCurrent jH (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pin, bool helin, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb) { CCurrent j2 = j(pout,helout,pin,helin); CCurrent jq2(q2.e(),q2.px(),q2.py(),q2.pz()); if(mt == infinity) return ((q1.dot(q2))*j2 - j2.dot(q1)*jq2)/(3*M_PI*v); else { if(incBot) return (-16.*M_PI*mb*mb/v*j2.dot(q1)*jq2*A1(-q1,q2,mb)-16.*M_PI*mb*mb/v*j2*A2(-q1,q2,mb)) + (-16.*M_PI*mt*mt/v*j2.dot(q1)*jq2*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j2*A2(-q1,q2,mt)); else return (-16.*M_PI*mt*mt/v*j2.dot(q1)*jq2*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j2*A2(-q1,q2,mt)); } } CCurrent jioH (CLHEP::HepLorentzVector pin, bool helin, CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb) { CCurrent j2 = jio(pin,helin,pout,helout); CCurrent jq2(q2.e(),q2.px(),q2.py(),q2.pz()); if(mt == infinity) return ((q1.dot(q2))*j2 - j2.dot(q1)*jq2)/(3*M_PI*v); else { if(incBot) return (-16.*M_PI*mb*mb/v*j2.dot(q1)*jq2*A1(-q1,q2,mb)-16.*M_PI*mb*mb/v*j2*A2(-q1,q2,mb)) + (-16.*M_PI*mt*mt/v*j2.dot(q1)*jq2*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j2*A2(-q1,q2,mt)); else return (-16.*M_PI*mt*mt/v*j2.dot(q1)*jq2*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j2*A2(-q1,q2,mt)); } } CCurrent jHtop (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pin, bool helin, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb) { CCurrent j1 = j(pout,helout,pin,helin); CCurrent jq1(q1.e(),q1.px(),q1.py(),q1.pz()); if(mt == infinity) return ((q1.dot(q2))*j1 - j1.dot(q2)*jq1)/(3*M_PI*v); else { if(incBot) return (-16.*M_PI*mb*mb/v*j1.dot(q2)*jq1*A1(-q1,q2,mb)-16.*M_PI*mb*mb/v*j1*A2(-q1,q2,mb)) + (-16.*M_PI*mt*mt/v*j1.dot(q2)*jq1*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j1*A2(-q1,q2,mt)); else return (-16.*M_PI*mt*mt/v*j1.dot(q2)*jq1*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j1*A2(-q1,q2,mt)); } } CCurrent jioHtop (CLHEP::HepLorentzVector pin, bool helin, CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb) { CCurrent j1 = jio(pin,helin,pout,helout); CCurrent jq1(q1.e(),q1.px(),q1.py(),q1.pz()); if(mt == infinity) return ((q1.dot(q2))*j1 - j1.dot(q2)*jq1)/(3*M_PI*v); else { if(incBot) return (-16.*M_PI*mb*mb/v*j1.dot(q2)*jq1*A1(-q1,q2,mb)-16.*M_PI*mb*mb/v*j1*A2(-q1,q2,mb)) + (-16.*M_PI*mt*mt/v*j1.dot(q2)*jq1*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j1*A2(-q1,q2,mt)); else return (-16.*M_PI*mt*mt/v*j1.dot(q2)*jq1*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j1*A2(-q1,q2,mt)); } } //@} } // namespace anonymous double jM2unogqHQ (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb) { // This construction is taking rapidity order: pg > p1out >> p2out // std::cerr<<"This Uno Current: "< 1.0000001) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // Now add the t-channels for the Higgs double th=qH1.m2()*qg.m2(); ampsq/=th; ampsq/=16.; ampsq*=RHEJ::C_F*RHEJ::C_F/RHEJ::C_A/RHEJ::C_A; // Factor of (Cf/Ca) for each quark to match MH2qQ. //Higgs coupling is included in Hjets.C return ampsq; } double jM2unogqbarHQ (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb) { // This construction is taking rapidity order: pg > p1out >> p2out // std::cerr<<"This Uno Current: "< 1.0000001) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // Now add the t-channels for the Higgs double th=qH1.m2()*qg.m2(); ampsq/=th; ampsq/=16.; ampsq*=4.*4./(9.*9.); // Factor of (Cf/Ca) for each quark to match MH2qQ. //Higgs coupling is included in Hjets.C return ampsq; } double jM2unogqHQbar (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb) { // This construction is taking rapidity order: pg > p1out >> p2out // std::cerr<<"This Uno Current: "< 1.0000001) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // Now add the t-channels for the Higgs double th=qH1.m2()*qg.m2(); ampsq/=th; ampsq/=16.; ampsq*=4.*4./(9.*9.); // Factor of (Cf/Ca) for each quark to match MH2qQ. //Higgs coupling is included in Hjets.C return ampsq; } double jM2unogqbarHQbar (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb) { // This construction is taking rapidity order: pg > p1out >> p2out // std::cerr<<"This Uno Current: "< 1.0000001) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // Now add the t-channels for the Higgs double th=qH1.m2()*qg.m2(); ampsq/=th; ampsq/=16.; //Higgs coupling is included in Hjets.C ampsq*=4.*4./(9.*9.); // Factor of (Cf/Ca) for each quark to match MH2qQ. return ampsq; } double jM2unogqHg (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb) { // This construction is taking rapidity order: pg > p1out >> p2out // std::cerr<<"This Uno Current: "< 1.0000001) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // Now add the t-channels for the Higgs double th=qH1.m2()*qg.m2(); ampsq/=th; ampsq/=16.; ampsq*=4./9.*4./9.; // Factor of (Cf/Ca) for each quark to match MH2qQ. // here we need 2 to match with the normalization // gq is 9./4. times the qQ //Higgs coupling is included in Hjets.C const double K = K_g(p2out, p2in); return ampsq*K/C_A*9./4.; //ca/cf = 9/4 } double jM2unogqbarHg (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb) { // This construction is taking rapidity order: pg > p1out >> p2out // std::cerr<<"This Uno Current: "< 1.0000001) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // Now add the t-channels for the Higgs double th=qH1.m2()*qg.m2(); ampsq/=th; ampsq/=16.; ampsq*=4./9.*4./9.; // Factor of (Cf/Ca) for each quark to match MH2qQ. // here we need 2 to match with the normalization // gq is 9./4. times the qQ //Higgs coupling is included in Hjets.C const double K = K_g(p2out, p2in); return ampsq*K/C_F; } double jM2unobqHQg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb) { // std::cout << "####################\n"; // std::cout << "# p1in : "< 1.0000001) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // Now add the t-channels for the Higgs const double th=qH2.m2()*q2.m2(); ampsq/=th; ampsq/=16.; ampsq*=RHEJ::C_F*RHEJ::C_F/(RHEJ::C_A*RHEJ::C_A); // Factor of (Cf/Ca) for each quark to match MH2qQ. return ampsq; } double jM2unobqbarHQg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb) { CLHEP::HepLorentzVector q1=p1in-p1out; // Top End CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); // Extra bit pre-gluon CLHEP::HepLorentzVector q3=-(p2in-p2out); // Bottom End // std::cerr<<"Current: "< 1.0000001) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // Now add the t-channels for the Higgs double th=qH2.m2()*q2.m2(); ampsq/=th; ampsq/=16.; ampsq*=4.*4./(9.*9.); // Factor of (Cf/Ca) for each quark to match MH2qQ. //Higgs coupling is included in Hjets.C return ampsq; } double jM2unobqHQbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb) { CLHEP::HepLorentzVector q1=p1in-p1out; // Top End CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); // Extra bit pre-gluon CLHEP::HepLorentzVector q3=-(p2in-p2out); // Bottom End // std::cerr<<"Current: "< 1.0000001) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // Now add the t-channels for the Higgs double th=qH2.m2()*q2.m2(); ampsq/=th; ampsq/=16.; ampsq*=4.*4./(9.*9.); // Factor of (Cf/Ca) for each quark to match MH2qQ. //Higgs coupling is included in Hjets.C return ampsq; } double jM2unobqbarHQbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb) { CLHEP::HepLorentzVector q1=p1in-p1out; // Top End CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); // Extra bit pre-gluon CLHEP::HepLorentzVector q3=-(p2in-p2out); // Bottom End // std::cerr<<"Current: "< 1.0000001) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // Now add the t-channels for the Higgs double th=qH2.m2()*q2.m2(); ampsq/=th; ampsq/=16.; ampsq*=4.*4./(9.*9.); // Factor of (Cf/Ca) for each quark to match MH2qQ. //Higgs coupling is included in Hjets.C return ampsq; } double jM2unobgHQg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb) { // std::cout << "####################\n"; // std::cout << "# p1in : "< 1.0000001) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // Now add the t-channels for the Higgs double th=qH2.m2()*q2.m2(); ampsq/=th; ampsq/=16.; ampsq*=4./9.*4./9.; // Factor of (Cf/Ca) for each quark to match MH2qQ. // need twice to match the normalization //Higgs coupling is included in Hjets.C const double K = K_g(p1out, p1in); return ampsq*K/C_F; } double jM2unobgHQbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb) { CLHEP::HepLorentzVector q1=p1in-p1out; // Top End CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); // Extra bit pre-gluon CLHEP::HepLorentzVector q3=-(p2in-p2out); // Bottom End // std::cerr<<"Current: "< 1.0000001) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999) // std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl; // Now add the t-channels for the Higgs double th=qH2.m2()*q2.m2(); ampsq/=th; ampsq/=16.; ampsq*=4./9.*4./9.; // Factor of (Cf/Ca) for each quark to match MH2qQ. //Higgs coupling is included in Hjets.C const double K = K_g(p1out, p1in); return ampsq*K/C_F; //ca/cf = 9/4 } // Begin finite mass stuff #ifdef RHEJ_BUILD_WITH_QCDLOOP namespace { // All the stuff needed for the box functions in qg->qgH now... //COM E1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq) COM E1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq) { //CLHEP::HepLorentzVector q2=k3+k4; CLHEP::HepLorentzVector q2=-(k1+k2+kh); double Delta, Sigma, S1, S2, s12, s34; S1 = 2.*k1.dot(q2); S2 = 2.*k2.dot(q2); s12 = 2.*k1.dot(k2); //s34 = 2.*k3.dot(k4); s34 = q2.m2(); Delta = s12*s34 - S1*S2; Sigma = 4.*s12*s34 - pow(S1+S2,2); return looprwfactor*(-s12*D0DD(k2, k1, q2, mq)*(1 - 8.*mq*mq/s12 + S2/(2.*s12) + S2*(s12 - 8.*mq*mq)*(s34 + S1)/(2.*s12*Delta) + 2.*(s34 + S1)*(s34 + S1)/Delta + S2*pow((s34 + S1),3)/Delta/Delta) - ((s12 + S2)*C0DD(k2, k1 + q2, mq) - s12*C0DD(k1, k2, mq) + (S1 - S2)*C0DD(k1 + k2, q2, mq) - S1*C0DD(k1, q2, mq))*(S2*(s12 - 4.*mq*mq)/(2.*s12*Delta) + 2.*(s34 + S1)/Delta + S2*pow((s34 + S1),2)/Delta/Delta) + (C0DD(k1, q2, mq) - C0DD(k1 + k2, q2, mq))*(1. - 4.*mq*mq/s12) - C0DD(k1 + k2, q2, mq)*2.*s34/ S1 - (B0DD(k1 + q2, mq) - B0DD(k1 + k2 + q2, mq))*2.*s34*(s34 + S1)/(S1*Delta) + (B0DD(q2, mq) - B0DD(k1 + k2 + q2, mq) + s12*C0DD(k1 + k2, q2, mq))*(2.*s34*(s34 + S1)*(S1 - S2)/(Delta*Sigma) + 2.*s34*(s34 + S1)/(S1*Delta)) + (B0DD(k1 + k2, mq) - B0DD(k1 + k2 + q2, mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*2.*(s34 + S1)*(2.*s12*s34 - S2*(S1 + S2))/(Delta*Sigma)); } //COM F1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq) COM F1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq) { //CLHEP::HepLorentzVector q2=k3+k4; CLHEP::HepLorentzVector q2 = -(k1+k2+kh); double Delta, Sigma, S1, S2, s12, s34; S1 = 2.*k1.dot(q2); S2 = 2.*k2.dot(q2); s12 = 2.*k1.dot(k2); //s34 = 2.*k3.dot(k4); s34 = q2.m2(); Delta = s12*s34 - S1*S2; Sigma = 4.*s12*s34 - pow(S1+S2,2); return looprwfactor*(-S2*D0DD(k1, k2, q2, mq)*(0.5 - (s12 - 8.*mq*mq)*(s34 + S2)/(2.*Delta) - s12*pow((s34 + S2),3)/Delta/Delta) + ((s12 + S1)*C0DD(k1, k2 + q2, mq) - s12*C0DD(k1, k2, mq) - (S1 - S2)*C0DD(k1 + k2, q2, mq) - S2*C0DD(k2, q2, mq))*(S2*(s12 - 4.*mq*mq)/(2.*s12*Delta) + S2*pow((s34 + S2),2)/Delta/Delta) - (C0DD(k1 + k2, q2, mq) - C0DD(k1, k2 + q2, mq))*(1. - 4.*mq*mq/s12) - C0DD(k1, k2 + q2, mq) + (B0DD(k2 + q2, mq) - B0DD(k1 + k2 + q2, mq))*2.*pow((s34 + S2),2)/((s12 + S1)*Delta) - (B0DD( q2, mq) - B0DD(k1 + k2 + q2, mq) + s12*C0DD(k1 + k2, q2, mq))*2.*s34*(s34 + S2)*(S2 - S1)/(Delta*Sigma) + (B0DD( k1 + k2, mq) - B0DD(k1 + k2 + q2, mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*2.*(s34 + S2)*(2.*s12*s34 - S2*(S1 + S2))/(Delta*Sigma)); } //COM G1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq) COM G1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq) { //CLHEP::HepLorentzVector q2=k3+k4; CLHEP::HepLorentzVector q2 = -(k1+k2+kh); double Delta, S1, S2, s12, s34; S1 = 2.*k1.dot(q2); S2 = 2.*k2.dot(q2); s12 = 2.*k1.dot(k2); //s34 = 2.*k3.dot(k4); s34 = q2.m2(); Delta = s12*s34 - S1*S2; return looprwfactor*(S2*D0DD(k1, q2, k2, mq)*(Delta/s12/s12 - 4.*mq*mq/s12) - S2*((s12 + S1)*C0DD(k1, k2 + q2, mq) - S1*C0DD(k1, q2, mq))*(1./ s12/s12 - (s12 - 4.*mq*mq)/(2.*s12*Delta)) - S2*((s12 + S2)*C0DD(k1 + q2, k2, mq) - S2*C0DD(k2, q2, mq))*(1./ s12/s12 + (s12 - 4.*mq*mq)/(2.*s12*Delta)) - C0DD(k1, q2, mq) - (C0DD(k1, k2 + q2, mq) - C0DD(k1, q2, mq))*4.*mq*mq/ s12 + (B0DD(k1 + q2, mq) - B0DD(k1 + k2 + q2, mq))*2./ s12 + (B0DD(k1 + q2, mq) - B0DD(q2, mq))*2.*s34/(s12*S1) + (B0DD(k2 + q2, mq) - B0DD(k1 + k2 + q2, mq))*2.*(s34 + S2)/(s12*(s12 + S1))); } //COM E4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq) COM E4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq) { //CLHEP::HepLorentzVector q2=k3+k4; CLHEP::HepLorentzVector q2 = -(k1+k2+kh); double Delta, Sigma, S1, S2, s12, s34; S1 = 2.*k1.dot(q2); S2 = 2.*k2.dot(q2); s12 = 2.*k1.dot(k2); //s34 = 2.*k3.dot(k4); s34 = q2.m2(); Delta = s12*s34 - S1*S2; Sigma = 4.*s12*s34 - pow(S1+S2,2); return looprwfactor* (-s12*D0DD(k2, k1, q2, mq)*(0.5 - (S1 - 8.*mq*mq)*(s34 + S1)/(2.*Delta) - s12*pow((s34 + S1),3)/Delta/Delta) + ((s12 + S2)*C0DD(k2, k1 + q2, mq) - s12*C0DD(k1, k2, mq) + (S1 - S2)*C0DD(k1 + k2, q2, mq) - S1*C0DD(k1, q2, mq))*((S1 - 4.*mq*mq)/(2.*Delta) + s12*pow((s34 + S1),2)/Delta/Delta) - C0DD(k1 + k2, q2, mq) + (B0DD(k1 + q2, mq) - B0DD(k1 + k2 + q2, mq))*(2.*s34/Delta + 2.*s12*(s34 + S1)/((s12 + S2)*Delta)) - (B0DD( q2, mq) - B0DD(k1 + k2 + q2, mq) + s12*C0DD(k1 + k2, q2, mq))*((2.*s34*(2.*s12*s34 - S2*(S1 + S2) + s12*(S1 - S2)))/(Delta*Sigma)) + (B0DD(k1 + k2, mq) - B0DD(k1 + k2 + q2, mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*((2.*s12*(2.*s12*s34 - S1*(S1 + S2) + s34*(S2 - S1)))/(Delta*Sigma))); } //COM F4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq) COM F4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq) { //CLHEP::HepLorentzVector q2=k3+k4; CLHEP::HepLorentzVector q2 = -(k1+k2+kh); double Delta, Sigma, S1, S2, s12, s34; S1 = 2.*k1.dot(q2); S2 = 2.*k2.dot(q2); s12 = 2.*k1.dot(k2); //s34 = 2.*k3.dot(k4); s34 = q2.m2(); Delta = s12*s34 - S1*S2; Sigma = 4.*s12*s34 - pow(S1+S2,2); return looprwfactor* (-s12*D0DD(k1, k2, q2, mq)*(0.5 + (S1 - 8.*mq*mq)*(s34 + S2)/(2.*Delta) + s12*pow((s34 + S2),3)/Delta/Delta) - ((s12 + S1)*C0DD(k1, k2 + q2, mq) - s12*C0DD(k1, k2, mq) - (S1 - S2)*C0DD(k1 + k2, q2, mq) - S2*C0DD(k2, q2, mq))*((S1 - 4.*mq*mq)/(2.*Delta) + s12*pow((s34 + S2),2)/Delta/Delta) - C0DD(k1 + k2, q2, mq) - (B0DD(k2 + q2, mq) - B0DD(k1 + k2 + q2, mq))*2.*(s34 + S2)/Delta + (B0DD(q2, mq) - B0DD(k1 + k2 + q2, mq) + s12*C0DD(k1 + k2, q2, mq))*2.*s34*(2.*s12*s34 - S1*(S1 + S2) + s12*(S2 - S1))/(Delta*Sigma) - (B0DD(k1 + k2, mq) - B0DD(k1 + k2 + q2, mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*(2.*s12*(2.*s12*s34 - S2*(S1 + S2) + s34*(S1 - S2))/(Delta*Sigma))); } //COM G4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq) COM G4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq) { //CLHEP::HepLorentzVector q2=k3+k4; CLHEP::HepLorentzVector q2 = -(k1+k2+kh); double Delta, S1, S2, s12, s34; S1 = 2.*k1.dot(q2); S2 = 2.*k2.dot(q2); s12 = 2.*k1.dot(k2); //s34 = 2.*k3.dot(k4); s34 = q2.m2(); Delta = s12*s34 - S1*S2; return looprwfactor* (-D0DD(k1, q2, k2, mq)*(Delta/s12 + (s12 + S1)/2. - 4.*mq*mq) + ((s12 + S1)*C0DD(k1, k2 + q2, mq) - S1*C0DD(k1, q2, mq))*(1./ s12 - (S1 - 4.*mq*mq)/(2.*Delta)) + ((s12 + S2)*C0DD( k1 + q2, k2, mq) - S2*C0DD(k2, q2, mq))*(1./ s12 + (S1 - 4.*mq*mq)/(2.*Delta)) + (B0DD( k1 + k2 + q2, mq) - B0DD(k1 + q2, mq))*2./(s12 + S2)); } //COM E10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq) COM E10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq) { //CLHEP::HepLorentzVector q2=k3+k4; CLHEP::HepLorentzVector q2 = -(k1+k2+kh); double Delta, Sigma, S1, S2, s12, s34; S1 = 2.*k1.dot(q2); S2 = 2.*k2.dot(q2); s12 = 2.*k1.dot(k2); //s34 = 2.*k3.dot(k4); s34 = q2.m2(); Delta = s12*s34 - S1*S2; Sigma = 4.*s12*s34 - pow(S1+S2,2); return looprwfactor*(-s12*D0DD(k2, k1, q2, mq)*((s34 + S1)/Delta + 12.*mq*mq*S1*(s34 + S1)/Delta/Delta - 4.*s12*S1*pow((s34 + S1),3)/Delta/Delta/Delta) - ((s12 + S2)*C0DD(k2, k1 + q2, mq) - s12*C0DD(k1, k2, mq) + (S1 - S2)*C0DD(k1 + k2, q2, mq) - S1*C0DD(k1, q2, mq))*(1./Delta + 4.*mq*mq*S1/Delta/Delta - 4.*s12*S1*pow((s34 + S1),2)/Delta/Delta/Delta) + C0DD(k1 + k2, q2, mq)*(4.*s12*s34*(S1 - S2)/(Delta*Sigma) - 4.*(s12 - 2.*mq*mq)*(2.*s12*s34 - S1*(S1 + S2))/(Delta*Sigma)) + (B0DD(k1 + q2, mq) - B0DD(k1 + k2 + q2, mq))*(4.*(s34 + S1)/((s12 + S2)*Delta) + 8.*S1*(s34 + S1)/Delta/Delta) + (B0DD(q2, mq) - B0DD(k1 + k2 + q2, mq) + s12*C0DD(k1 + k2, q2, mq))*(12.*s34*(2.*s12 + S1 + S2)*(2.*s12*s34 - S1*(S1 + S2))/(Delta*Sigma*Sigma) - 4.*s34*(4.*s12 + 3.*S1 + S2)/(Delta*Sigma) + 8.*s12*s34*(s34*(s12 + S2) - S1*(s34 + S1))/(Delta*Delta*Sigma)) + (B0DD(k1 + k2, mq) - B0DD(k1 + k2 + q2, mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*(12.*s12*(2.*s34 + S1 + S2)*(2.*s12*s34 - S1*(S1 + S2))/(Delta*Sigma*Sigma) + 8.*s12*S1*(s34*(s12 + S2) - S1*(s34 + S1))/(Delta*Delta*Sigma))) + (COM(0.,1.)/(4.*M_PI*M_PI))*((2.*s12*s34 - S1*(S1 + S2))/(Delta*Sigma)); } //COM F10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq) COM F10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq) { //CLHEP::HepLorentzVector q2=k3+k4; CLHEP::HepLorentzVector q2 = -(k1+k2+kh); double Delta, Sigma, S1, S2, s12, s34; S1 = 2.*k1.dot(q2); S2 = 2.*k2.dot(q2); s12 = 2.*k1.dot(k2); //s34 = 2.*k3.dot(k4); s34 = q2.m2(); Delta = s12*s34 - S1*S2; Sigma = 4.*s12*s34 - pow(S1+S2,2); return looprwfactor* (s12*D0DD(k1, k2, q2, mq)*((s34 + S2)/Delta - 4.*mq*mq/Delta + 12.*mq*mq*s34*(s12 + S1)/Delta/Delta - 4.*s12*pow((s34 + S2),2)/Delta/Delta - 4.*s12*S1*pow((s34 + S2),3)/Delta/Delta/Delta) + ((s12 + S1)*C0DD(k1, k2 + q2, mq) - s12*C0DD(k1, k2, mq) - (S1 - S2)*C0DD(k1 + k2, q2, mq) - S2*C0DD(k2, q2, mq))*(1./Delta + 4.*mq*mq*S1/Delta/Delta - 4.*s12*(s34 + S2)/Delta/Delta - 4.*s12*S1*pow((s34 + S2),2)/Delta/Delta/Delta) - C0DD(k1 + k2, q2, mq)*(4.*s12*s34/(S2*Delta) + 4.*s12*s34*(S2 - S1)/(Delta*Sigma) + 4.*(s12 - 2.*mq*mq)*(2.*s12*s34 - S1*(S1 + S2))/(Delta*Sigma)) - (B0DD( k2 + q2, mq) - B0DD(k1 + k2 + q2, mq))*(4.*s34/(S2*Delta) + 8.*s34*(s12 + S1)/Delta/Delta) - (B0DD(q2, mq) - B0DD(k1 + k2 + q2, mq) + s12*C0DD(k1 + k2, q2, mq))*(-12*s34*(2*s12 + S1 + S2)*(2.*s12*s34 - S1*(S1 + S2))/(Delta*Sigma*Sigma) - 4.*s12*s34*s34/(S2*Delta*Delta) + 4.*s34*S1/(Delta*Sigma) - 4.*s34*(s12*s34*(2.*s12 + S2) - S1*S1*(2.*s12 + S1))/(Delta*Delta*Sigma)) - (B0DD(k1 + k2, mq) - B0DD(k1 + k2 + q2, mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*(-12.*s12*(2.*s34 + S1 + S2)*(2.*s12*s34 - S1*(S1 + S2))/(Delta*Sigma*Sigma) + 8.*s12*(2.*s34 + S1)/(Delta*Sigma) - 8.*s12*s34*(2.*s12*s34 - S1*(S1 + S2) + s12*(S2 - S1))/(Delta*Delta*Sigma))) + (COM(0.,1.)/(4.*M_PI*M_PI))*((2.*s12*s34 - S1*(S1 + S2))/(Delta*Sigma)); } //COM G10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq) COM G10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq) { //CLHEP::HepLorentzVector q2=k3+k4; CLHEP::HepLorentzVector q2 = -(k1+k2+kh); double Delta, S1, S2, s12, s34; S1 = 2.*k1.dot(q2); S2 = 2.*k2.dot(q2); s12 = 2.*k1.dot(k2); //s34 = 2.*k3.dot(k4); s34 = q2.m2(); Delta = s12*s34 - S1*S2; return looprwfactor* (-D0DD(k1, q2, k2, mq)*(1. + 4.*S1*mq*mq/Delta) + ((s12 + S1)*C0DD(k1, k2 + q2, mq) - S1*C0DD(k1, q2, mq))*(1./Delta + 4.*S1*mq*mq/Delta/Delta) - ((s12 + S2)*C0DD(k1 + q2, k2, mq) - S2*C0DD(k2, q2, mq))*(1./Delta + 4.*S1*mq*mq/Delta/Delta) + (B0DD(k1 + k2 + q2, mq) - B0DD(k1 + q2, mq))*4.*(s34 + S1)/(Delta*(s12 + S2)) + (B0DD(q2, mq) - B0DD(k2 + q2, mq))*4.*s34/(Delta*S2)); } //COM H1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq) COM H1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq) { //return E1(k1,k2,k3,k4,mq)+F1(k1,k2,k3,k4,mq)+G1(k1,k2,k3,k4,mq); return E1(k1,k2,kh,mq)+F1(k1,k2,kh,mq)+G1(k1,k2,kh,mq); } //COM H4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq) COM H4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq) { //return E4(k1,k2,k3,k4,mq)+F4(k1,k2,k3,k4,mq)+G4(k1,k2,k3,k4,mq); return E4(k1,k2,kh,mq)+F4(k1,k2,kh,mq)+G4(k1,k2,kh,mq); } //COM H10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq) COM H10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq) { //return E10(k1,k2,k3,k4,mq)+F10(k1,k2,k3,k4,mq)+G10(k1,k2,k3,k4,mq); return E10(k1,k2,kh,mq)+F10(k1,k2,kh,mq)+G10(k1,k2,kh,mq); } //COM H2(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq) COM H2(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq) { //return -1.*H1(k2,k1,k3,k4,mq); return -1.*H1(k2,k1,kh,mq); } //COM H5(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq) COM H5(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq) { //return -1.*H4(k2,k1,k3,k4,mq); return -1.*H4(k2,k1,kh,mq); } //COM H12(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq) COM H12(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq) { //return -1.*H10(k2,k1,k3,k4,mq); return -1.*H10(k2,k1,kh,mq); } // FL and FT functions COM FL(CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mq) { CLHEP::HepLorentzVector Q = q1 + q2; double detQ2 = q1.m2()*q2.m2() - q1.dot(q2)*q1.dot(q2); return -1./(2.*detQ2)*((2.- 3.*q1.m2()*q2.dot(Q)/detQ2)*(B0DD(q1, mq) - B0DD(Q, mq)) + (2. - 3.*q2.m2()*q1.dot(Q)/detQ2)*(B0DD(q2, mq) - B0DD(Q, mq)) - (4.*mq*mq + q1.m2() + q2.m2() + Q.m2() - 3.*q1.m2()*q2.m2()*Q.m2()/detQ2)*C0DD( q1, q2, mq) - 2.); } COM FT(CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mq) { CLHEP::HepLorentzVector Q = q1 + q2; double detQ2 = q1.m2()*q2.m2() - q1.dot(q2)*q1.dot(q2); return -1./(2.*detQ2)*(Q.m2()*(B0DD(q1, mq) + B0DD(q2, mq) - 2.*B0DD(Q, mq) - 2.*q1.dot(q2)*C0DD(q1, q2, mq)) + (q1.m2() - q2.m2()) *(B0DD(q1, mq) - B0DD(q2, mq))) - q1.dot(q2)*FL(q1, q2, mq); } CLHEP::HepLorentzVector ParityFlip(CLHEP::HepLorentzVector p) { CLHEP::HepLorentzVector flippedVector; flippedVector.setE(p.e()); flippedVector.setX(-p.x()); flippedVector.setY(-p.y()); flippedVector.setZ(-p.z()); return flippedVector; } /// @brief HC amp for qg->qgH with finite top (i.e. j^{++}_H) void g_gH_HC(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector pH, double mq, current &retAns) { current cura1,pacur,p1cur,pHcur,conjeps1,conjepsH1,epsa,epsHa,epsHapart1, epsHapart2,conjepsH1part1,conjepsH1part2; COM ang1a,sqa1; const double F = 4.*mq*mq/v; // Easier to have the whole thing as current object so I can use cdot functionality. // Means I need to write pa,p1 as current objects to_current(pa, pacur); to_current(p1,p1cur); to_current(pH,pHcur); bool gluonforward = true; if(pa.z() < 0) gluonforward = false; //HEJ gauge jio(pa,false,p1,false,cura1); if(gluonforward){ // sqrt(2pa_-/p1_-)*p1_perp/abs(p1_perp) ang1a = sqrt(pa.plus()*p1.minus())*(p1.x()+COM(0.,1.)*p1.y())/p1.perp(); // sqrt(2pa_-/p1_-)*p1_perp*/abs(p1_perp) sqa1 = sqrt(pa.plus()*p1.minus())*(p1.x()-COM(0.,1.)*p1.y())/p1.perp(); } else { ang1a = sqrt(pa.minus()*p1.plus()); sqa1 = sqrt(pa.minus()*p1.plus()); } const double prop = (pa-p1-pH).m2(); cmult(-1./sqrt(2)/ang1a,cura1,conjeps1); cmult(1./sqrt(2)/sqa1,cura1,epsa); const COM Fta = FT(-pa,pa-pH,mq)/(pa-pH).m2(); const COM Ft1 = FT(-p1-pH,p1,mq)/(p1+pH).m2(); const COM h4 = H4(p1,-pa,pH,mq); const COM h5 = H5(p1,-pa,pH,mq); const COM h10 = H10(p1,-pa,pH,mq); const COM h12 = H12(p1,-pa,pH,mq); cmult(Fta*pa.dot(pH), epsa, epsHapart1); cmult(-1.*Fta*cdot(pHcur,epsa), pacur, epsHapart2); cmult(Ft1*cdot(pHcur,conjeps1), p1cur, conjepsH1part1); cmult(-Ft1*p1.dot(pH), conjeps1, conjepsH1part2); cadd(epsHapart1, epsHapart2, epsHa); cadd(conjepsH1part1, conjepsH1part2, conjepsH1); const COM aH1 = cdot(pHcur, cura1); current T1,T2,T3,T4,T5,T6,T7,T8,T9,T10; if(gluonforward){ cmult(sqrt(2.)*sqrt(p1.plus()/pa.plus())*prop/sqa1, conjepsH1, T1); cmult(-sqrt(2.)*sqrt(pa.plus()/p1.plus())*prop/ang1a, epsHa, T2); } else{ cmult(-sqrt(2.)*sqrt(p1.minus()/pa.minus()) *((p1.x()-COM(0.,1.)*p1.y())/p1.perp())*prop/sqa1, conjepsH1, T1); cmult(sqrt(2.)*sqrt(pa.minus()/p1.minus()) *((p1.x()-COM(0.,1.)*p1.y())/p1.perp())*prop/ang1a, epsHa, T2); } cmult(sqrt(2.)/ang1a*aH1, epsHa, T3); cmult(sqrt(2.)/sqa1*aH1, conjepsH1, T4); cmult(-sqrt(2.)*Fta*pa.dot(p1)*aH1/sqa1, conjeps1, T5); cmult(-sqrt(2.)*Ft1*pa.dot(p1)*aH1/ang1a, epsa, T6); cmult(-aH1/sqrt(2.)/sqa1*h4*8.*COM(0.,1.)*M_PI*M_PI, conjeps1, T7); cmult(aH1/sqrt(2.)/ang1a*h5*8.*COM(0.,1.)*M_PI*M_PI, epsa, T8); cmult(aH1*aH1/2./ang1a/sqa1*h10*8.*COM(0.,1.)*M_PI*M_PI, pacur, T9); cmult(-aH1*aH1/2./ang1a/sqa1*h12*8.*COM(0.,1.)*M_PI*M_PI, p1cur, T10); current ans; for(int i=0;i<4;i++) { ans[i] = T1[i]+T2[i]+T3[i]+T4[i]+T5[i]+T6[i]+T7[i]+T8[i]+T9[i]+T10[i]; } retAns[0] = F/prop*ans[0]; retAns[1] = F/prop*ans[1]; retAns[2] = F/prop*ans[2]; retAns[3] = F/prop*ans[3]; } /// @brief HNC amp for qg->qgH with finite top (i.e. j^{+-}_H) void g_gH_HNC(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector pH, double mq, current &retAns) { const double F = 4.*mq*mq/v; COM ang1a,sqa1; current conjepsH1,epsHa,p1cur,pacur,pHcur,conjeps1,epsa,paplusp1cur, p1minuspacur,cur1a,cura1,epsHapart1,epsHapart2,conjepsH1part1, conjepsH1part2; // Find here if pa, meaning the gluon, is forward or backward bool gluonforward = true; if(pa.z() < 0) gluonforward = false; jio(pa,true,p1,true,cura1); j(p1,true,pa,true,cur1a); to_current(pa,pacur); to_current(p1,p1cur); to_current(pH,pHcur); to_current(pa+p1,paplusp1cur); to_current(p1-pa,p1minuspacur); const COM aH1 = cdot(pHcur,cura1); const COM oneHa = std::conj(aH1); // = cdot(pHcur,cur1a) if(gluonforward){ // sqrt(2pa_-/p1_-)*p1_perp/abs(p1_perp) ang1a = sqrt(pa.plus()*p1.minus())*(p1.x()+COM(0.,1.)*p1.y())/p1.perp(); // sqrt(2pa_-/p1_-)*p1_perp*/abs(p1_perp) sqa1 = sqrt(pa.plus()*p1.minus())*(p1.x()-COM(0.,1.)*p1.y())/p1.perp(); } else { ang1a = sqrt(pa.minus()*p1.plus()); sqa1 = sqrt(pa.minus()*p1.plus()); } const double prop = (pa-p1-pH).m2(); cmult(1./sqrt(2)/sqa1, cur1a, epsa); cmult(-1./sqrt(2)/sqa1, cura1, conjeps1); const COM phase = cdot(conjeps1, epsa); const COM Fta = FT(-pa,pa-pH,mq)/(pa-pH).m2(); const COM Ft1 = FT(-p1-pH,p1,mq)/(p1+pH).m2(); const COM Falpha = FT(p1-pa,pa-p1-pH,mq); const COM Fbeta = FL(p1-pa,pa-p1-pH,mq); const COM h1 = H1(p1,-pa, pH, mq); const COM h2 = H2(p1,-pa, pH, mq); const COM h4 = H4(p1,-pa, pH, mq); const COM h5 = H5(p1,-pa, pH, mq); const COM h10 = H10(p1,-pa, pH, mq); const COM h12 = H12(p1,-pa, pH, mq); cmult(Fta*pa.dot(pH), epsa, epsHapart1); cmult(-1.*Fta*cdot(pHcur,epsa), pacur, epsHapart2); cmult(Ft1*cdot(pHcur,conjeps1), p1cur, conjepsH1part1); cmult(-Ft1*p1.dot(pH), conjeps1, conjepsH1part2); cadd(epsHapart1, epsHapart2, epsHa); cadd(conjepsH1part1, conjepsH1part2, conjepsH1); current T1,T2,T3,T4,T5a,T5b,T6,T7,T8a,T8b,T9,T10,T11a, T11b,T12a,T12b,T13; if(gluonforward){ cmult(sqrt(2.)*sqrt(p1.plus()/pa.plus())*prop/sqa1, conjepsH1, T1); cmult(-sqrt(2.)*sqrt(pa.plus()/p1.plus())*prop/sqa1, epsHa, T2); } else{ cmult(-sqrt(2.)*sqrt(p1.minus()/pa.minus())*((p1.x()-COM(0.,1.)*p1.y())/p1.perp()) *prop/sqa1, conjepsH1, T1); cmult(sqrt(2.)*sqrt(pa.minus()/p1.minus())*((p1.x()+COM(0.,1.)*p1.y())/p1.perp()) *prop/sqa1, epsHa, T2); } const COM boxdiagFact = 8.*COM(0.,1.)*M_PI*M_PI; cmult(aH1*sqrt(2.)/sqa1, epsHa, T3); cmult(oneHa*sqrt(2.)/sqa1, conjepsH1, T4); cmult(-2.*phase*Fta*pa.dot(pH), p1cur, T5a); cmult(2.*phase*Ft1*p1.dot(pH), pacur, T5b); cmult(-sqrt(2.)*Fta*p1.dot(pa)*oneHa/sqa1, conjeps1, T6); cmult(-sqrt(2.)*Ft1*pa.dot(p1)*aH1/sqa1, epsa, T7); cmult(-boxdiagFact*phase*h2, pacur, T8a); cmult(boxdiagFact*phase*h1, p1cur, T8b); cmult(boxdiagFact*aH1/sqrt(2.)/sqa1*h5, epsa, T9); cmult(-boxdiagFact*oneHa/sqrt(2.)/sqa1*h4, conjeps1, T10); cmult(boxdiagFact*aH1*oneHa/2./sqa1/sqa1*h10, pacur, T11a); cmult(-boxdiagFact*aH1*oneHa/2./sqa1/sqa1*h12, p1cur, T11b); cmult(-phase/(pa-p1).m2()*Falpha*(p1-pa).dot(pa-p1-pH), paplusp1cur, T12a); cmult(phase/(pa-p1).m2()*Falpha*(pa+p1).dot(pa-p1-pH), p1minuspacur, T12b); cmult(-phase*Fbeta*(pa-p1-pH).m2(), paplusp1cur, T13); current ans; for(int i=0;i<4;i++) { ans[i] = T1[i]+T2[i]+T3[i]+T4[i]+T5a[i]+T5b[i]+T6[i]+T7[i]+T8a[i]+T8b[i]+T9[i]+T10[i]+T11a[i]+T11b[i]+T12a[i]+T12b[i]+T13[i]; } retAns[0] = F/prop*ans[0]; retAns[1] = F/prop*ans[1]; retAns[2] = F/prop*ans[2]; retAns[3] = F/prop*ans[3]; } } // namespace anonymous // JDC - new amplitude with Higgs emitted close to gluon with full mt effects. Keep usual HEJ-style function call double MH2gq_outsideH(CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector pH, double mq, bool includeBottom, double mq2) { current cur2bplus,cur2bminus, cur2bplusFlip, cur2bminusFlip; current retAns,retAnsb; j(p2out,true,p2in,true,cur2bplus); j(p2out,false,p2in,false,cur2bminus); j(ParityFlip(p2out),true,ParityFlip(p2in),true,cur2bplusFlip); j(ParityFlip(p2out),false,ParityFlip(p2in),false,cur2bminusFlip); COM app1,app2,apm1,apm2; COM app3, app4, apm3, apm4; if(!includeBottom) { g_gH_HC(p1in,p1out,pH,mq,retAns); app1=cdot(retAns,cur2bplus); app2=cdot(retAns,cur2bminus); g_gH_HC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq,retAns); app3=cdot(retAns,cur2bplusFlip); app4=cdot(retAns,cur2bminusFlip); // And non-conserving bits g_gH_HNC(p1in,p1out,pH,mq,retAns); apm1=cdot(retAns,cur2bplus); apm2=cdot(retAns,cur2bminus); g_gH_HNC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq,retAns); apm3=cdot(retAns,cur2bplusFlip); apm4=cdot(retAns,cur2bminusFlip); } else { g_gH_HC(p1in,p1out,pH,mq,retAns); g_gH_HC(p1in,p1out,pH,mq2,retAnsb); app1=cdot(retAns,cur2bplus) + cdot(retAnsb,cur2bplus); app2=cdot(retAns,cur2bminus) + cdot(retAnsb,cur2bminus); g_gH_HC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq,retAns); g_gH_HC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq2,retAnsb); app3=cdot(retAns,cur2bplusFlip) + cdot(retAnsb,cur2bplusFlip); app4=cdot(retAns,cur2bminusFlip) + cdot(retAnsb,cur2bminusFlip); // And non-conserving bits g_gH_HNC(p1in,p1out,pH,mq,retAns); g_gH_HNC(p1in,p1out,pH,mq2,retAnsb); apm1=cdot(retAns,cur2bplus) + cdot(retAnsb,cur2bplus); apm2=cdot(retAns,cur2bminus) + cdot(retAnsb,cur2bminus); g_gH_HNC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq,retAns); g_gH_HNC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq2,retAnsb); apm3=cdot(retAns,cur2bplusFlip) + cdot(retAnsb,cur2bplusFlip); apm4=cdot(retAns,cur2bminusFlip) + cdot(retAnsb,cur2bminusFlip); } return abs2(app1) + abs2(app2) + abs2(app3) + abs2(app4) + abs2(apm1) + abs2(apm2) + abs2(apm3) + abs2(apm4); } #endif // RHEJ_BUILD_WITH_QCDLOOP double C2gHgm(CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector pH) { static double A=1./(3.*M_PI*v); // Implements Eq. (4.22) in hep-ph/0301013 with modifications to incoming plus momenta double s12,p1p,p2p; COM p1perp,p3perp,phperp; // Determine first whether this is the case p1p\sim php>>p3p og the opposite s12=p1.invariantMass2(-p2); if (p2.pz()>0.) { // case considered in hep-ph/0301013 p1p=p1.plus(); p2p=p2.plus(); } else { // opposite case p1p=p1.minus(); p2p=p2.minus(); } p1perp=p1.px()+COM(0,1)*p1.py(); phperp=pH.px()+COM(0,1)*pH.py(); p3perp=-(p1perp+phperp); COM temp=COM(0,1)*A/(2.*s12)*(p2p/p1p*conj(p1perp)*p3perp+p1p/p2p*p1perp*conj(p3perp)); temp=temp*conj(temp); return temp.real(); } double C2gHgp(CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector pH) { static double A=1./(3.*M_PI*v); // Implements Eq. (4.23) in hep-ph/0301013 double s12,php,p1p,phm; COM p1perp,p3perp,phperp; // Determine first whether this is the case p1p\sim php>>p3p og the opposite s12=p1.invariantMass2(-p2); if (p2.pz()>0.) { // case considered in hep-ph/0301013 php=pH.plus(); phm=pH.minus(); p1p=p1.plus(); } else { // opposite case php=pH.minus(); phm=pH.plus(); p1p=p1.minus(); } p1perp=p1.px()+COM(0,1)*p1.py(); phperp=pH.px()+COM(0,1)*pH.py(); p3perp=-(p1perp+phperp); COM temp=-COM(0,1)*A/(2.*s12)*(conj(p1perp*p3perp)*pow(php/p1p,2)/(1.+php/p1p)+s12*(pow(conj(phperp),2)/(pow(abs(phperp),2)+p1p*phm)-pow(conj(p3perp)+(1.+php/p1p)*conj(p1perp),2)/((1.+php/p1p)*(pH.m2()+2.*p1.dot(pH))))); temp=temp*conj(temp); return temp.real(); } double C2qHqm(CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector pH) { static double A=1./(3.*M_PI*v); // Implements Eq. (4.22) in hep-ph/0301013 double s12,p2p,p1p; COM p1perp,p3perp,phperp; // Determine first whether this is the case p1p\sim php>>p3p og the opposite s12=p1.invariantMass2(-p2); if (p2.pz()>0.) { // case considered in hep-ph/0301013 p2p=p2.plus(); p1p=p1.plus(); } else { // opposite case p2p=p2.minus(); p1p=p1.minus(); } p1perp=p1.px()+COM(0,1)*p1.py(); phperp=pH.px()+COM(0,1)*pH.py(); p3perp=-(p1perp+phperp); COM temp=A/(2.*s12)*(sqrt(p2p/p1p)*p3perp*conj(p1perp)+sqrt(p1p/p2p)*p1perp*conj(p3perp)); temp=temp*conj(temp); return temp.real(); }