diff --git a/FixedOrderGen/include/Subleading.hh b/FixedOrderGen/include/Subleading.hh index 8395370..c152cde 100644 --- a/FixedOrderGen/include/Subleading.hh +++ b/FixedOrderGen/include/Subleading.hh @@ -1,29 +1,34 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019 * \copyright GPLv2 or later */ #pragma once #include namespace HEJFOG { namespace subleading { //!< @TODO confusing name with capital Subleading /** * Bit position of different subleading channels * e.g. (unsigned int) 1 => only unordered */ enum Channels: unsigned { uno, unordered = uno, cqqx, central_qqx = cqqx, eqqx, extremal_qqx = eqqx, first = uno, last = eqqx, }; } using Subleading = std::bitset; + + namespace subleading { + static constexpr Subleading ALL{~0u}; + static constexpr Subleading NONE{0u}; + } } diff --git a/FixedOrderGen/src/PhaseSpacePoint.cc b/FixedOrderGen/src/PhaseSpacePoint.cc index 063c0cd..40332ad 100644 --- a/FixedOrderGen/src/PhaseSpacePoint.cc +++ b/FixedOrderGen/src/PhaseSpacePoint.cc @@ -1,922 +1,922 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #include "PhaseSpacePoint.hh" #include #include #include #include #include #include #include #include #include #include #include "fastjet/ClusterSequence.hh" #include "HEJ/Constants.hh" #include "HEJ/EWConstants.hh" #include "HEJ/exceptions.hh" #include "HEJ/kinematics.hh" #include "HEJ/Particle.hh" #include "HEJ/PDF.hh" #include "HEJ/RNG.hh" #include "HEJ/utility.hh" #include "JetParameters.hh" #include "Process.hh" namespace { static_assert( std::numeric_limits::has_quiet_NaN, "no quiet NaN for double" ); constexpr double NaN = std::numeric_limits::quiet_NaN(); } // namespace anonymous namespace HEJFOG { HEJ::Event::EventData to_EventData(PhaseSpacePoint psp){ //! @TODO Same function already in HEJ HEJ::Event::EventData result; result.incoming = std::move(psp).incoming_; assert(result.incoming.size() == 2); result.outgoing = std::move(psp).outgoing_; // technically Event::EventData doesn't have to be sorted, // but PhaseSpacePoint should be anyway assert( std::is_sorted( begin(result.outgoing), end(result.outgoing), HEJ::rapidity_less{} ) ); assert(result.outgoing.size() >= 2); result.decays = std::move(psp).decays_; result.parameters.central = {NaN, NaN, psp.weight()}; return result; } PhaseSpacePoint::ConstPartonIterator PhaseSpacePoint::begin_partons() const { return cbegin_partons(); } PhaseSpacePoint::ConstPartonIterator PhaseSpacePoint::cbegin_partons() const { return {HEJ::is_parton, cbegin(outgoing()), cend(outgoing())}; } PhaseSpacePoint::ConstPartonIterator PhaseSpacePoint::end_partons() const { return cend_partons(); } PhaseSpacePoint::ConstPartonIterator PhaseSpacePoint::cend_partons() const { return {HEJ::is_parton, cend(outgoing()), cend(outgoing())}; } PhaseSpacePoint::ConstReversePartonIterator PhaseSpacePoint::rbegin_partons() const { return crbegin_partons(); } PhaseSpacePoint::ConstReversePartonIterator PhaseSpacePoint::crbegin_partons() const { return std::reverse_iterator( cend_partons() ); } PhaseSpacePoint::ConstReversePartonIterator PhaseSpacePoint::rend_partons() const { return crend_partons(); } PhaseSpacePoint::ConstReversePartonIterator PhaseSpacePoint::crend_partons() const { return std::reverse_iterator( cbegin_partons() ); } PhaseSpacePoint::PartonIterator PhaseSpacePoint::begin_partons() { return {HEJ::is_parton, begin(outgoing_), end(outgoing_)}; } PhaseSpacePoint::PartonIterator PhaseSpacePoint::end_partons() { return {HEJ::is_parton, end(outgoing_), end(outgoing_)}; } PhaseSpacePoint::ReversePartonIterator PhaseSpacePoint::rbegin_partons() { return std::reverse_iterator( end_partons() ); } PhaseSpacePoint::ReversePartonIterator PhaseSpacePoint::rend_partons() { return std::reverse_iterator( begin_partons() ); } namespace { bool can_swap_to_uno( HEJ::Particle const & p1, HEJ::Particle const & p2 ){ assert(is_parton(p1) && is_parton(p2)); return p1.type != HEJ::pid::gluon && p2.type == HEJ::pid::gluon; } size_t count_gluons(PhaseSpacePoint::ConstPartonIterator first, PhaseSpacePoint::ConstPartonIterator last ){ return std::count_if(first, last, [](HEJ::Particle const & p) {return p.type == HEJ::pid::gluon;}); } /** assumes FKL configurations between first and last, * else there can be a quark in a non-extreme position * e.g. uno configuration gqg would pass */ Subleading possible_qqx( PhaseSpacePoint::ConstPartonIterator first, PhaseSpacePoint::ConstReversePartonIterator last ){ using namespace subleading; assert( std::distance( first,last.base() )>2 ); - Subleading channels(~0l); + Subleading channels = ALL; channels.reset(eqqx); channels.reset(cqqx); auto const ngluon = count_gluons(first,last.base()); if(ngluon < 2) return channels; if(first->type==HEJ::pid::gluon || last->type==HEJ::pid::gluon){ channels.set(eqqx); } if(std::distance(first,last.base())>=4){ channels.set(cqqx); } return channels; } bool is_AWZ_proccess(Process const & proc){ return proc.boson && HEJ::is_AWZ_boson(*proc.boson); } bool is_up_type(HEJ::Particle const & part){ return is_anyquark(part) && !(std::abs(part.type)%2); } bool is_down_type(HEJ::Particle const & part){ return is_anyquark(part) && std::abs(part.type)%2; } bool can_couple_to_W( HEJ::Particle const & part, HEJ::pid::ParticleID const W_id ){ const int W_charge = W_id>0?1:-1; return std::abs(part.type)<5 && ( (W_charge*part.type > 0 && is_up_type(part)) || (W_charge*part.type < 0 && is_down_type(part)) ); } } void PhaseSpacePoint::maybe_turn_to_subl( double chance, Subleading channels, Process const & proc, HEJ::RNG & ran ){ using namespace HEJ; if(proc.njets <= 2) return; assert(outgoing_.size() >= 2); // decide what kind of subleading process is allowed bool can_be_uno_backward = can_swap_to_uno( *cbegin_partons(), *(++cbegin_partons()) ); bool can_be_uno_forward = can_swap_to_uno( *crbegin_partons(), *(++crbegin_partons()) ); // Special case: Higgs can not be outside of uno if(proc.boson && *proc.boson==pid::Higgs){ if(outgoing_.begin()->type == pid::Higgs || (++outgoing_.begin())->type==pid::Higgs){ can_be_uno_backward = false; } if(outgoing_.rbegin()->type == pid::Higgs || (++outgoing_.rbegin())->type==pid::Higgs){ can_be_uno_forward = false; } } if(channels[subleading::uno]){ channels.set(subleading::uno, can_be_uno_backward || can_be_uno_forward); } channels &= possible_qqx(cbegin_partons(), crbegin_partons()); bool allow_strange = true; if(is_AWZ_proccess(proc)) { if(std::none_of(cbegin_partons(), cend_partons(), [&proc](Particle const & p){ return can_couple_to_W(p, *proc.boson);})) { // enforce qqx if A/W/Z can't couple somewhere else // this is ensured to work through filter_partons in reconstruct_incoming channels.reset(subleading::uno); assert(channels.any()); chance = 1.; // strange not allowed for W if(std::abs(*proc.boson)== pid::Wp) allow_strange = false; } } std::size_t const nchannels = channels.count(); // no subleading if(nchannels==0) return; if(ran.flat() >= chance){ weight_ /= 1 - chance; return; } weight_ /= chance; // select channel double const step = 1./nchannels; weight_*=nchannels; unsigned selected = subleading::first; double rnd = nchannels>1?ran.flat():0.; for(; selected<=subleading::last; ++selected){ assert(rnd>=0); if(channels[selected]){ if(rndtype, (++begin_partons())->type); } return std::swap(rbegin_partons()->type, (++rbegin_partons())->type); } if(can_be_uno_backward){ return std::swap(begin_partons()->type, (++begin_partons())->type); } assert(can_be_uno_forward); std::swap(rbegin_partons()->type, (++rbegin_partons())->type); } //! select flavour of quark HEJ::ParticleID PhaseSpacePoint::select_qqx_flavour( const bool allow_strange, HEJ::RNG & ran ){ const double r1 = 2.*ran.flat()-1.; const double max_flavour = allow_strange?HEJ::N_F:HEJ::N_F-1; weight_ *= max_flavour*2; double const flavour = HEJ::pid::down + std::floor(std::abs(r1)*max_flavour); return static_cast(flavour*(r1<0.?-1:1)); } void PhaseSpacePoint::turn_to_cqqx(const bool allow_strange, HEJ::RNG & ran){ // we assume all FKL partons to be gluons auto first = ++begin_partons(); auto last = ++rbegin_partons(); auto const ng = std::distance(first, last.base()); if(ng < 2) throw std::logic_error("not enough gluons to create qqx"); auto flavour = select_qqx_flavour(allow_strange, ran); // select gluon for switch if(ng!=2){ const double steps = 1./(ng-1); weight_ /= steps; for(auto rnd = ran.flat(); rnd>steps; ++first){ rnd-=steps; } } first->type = flavour; (++first)->type = anti(flavour); } void PhaseSpacePoint::turn_to_eqqx(const bool allow_strange, HEJ::RNG & ran){ /// find first and last gluon in FKL chain auto first = begin_partons(); const bool can_forward = !is_anyquark(*first); auto last = rbegin_partons(); const bool can_backward = !is_anyquark(*last); if(std::distance(first, last.base()) < 2) throw std::logic_error("not enough gluons to create qqx"); auto flavour = select_qqx_flavour(allow_strange, ran); // select gluon for switch if(can_forward && !can_backward){ first->type = flavour; (++first)->type = anti(flavour); return; } if(!can_forward && can_backward){ last->type = flavour; (++last)->type = anti(flavour); return; } assert(can_forward && can_backward); weight_*=2.; if(ran.flat()>0.5){ first->type = flavour; (++first)->type = anti(flavour); return; } last->type = flavour; (++last)->type = anti(flavour); } template fastjet::PseudoJet PhaseSpacePoint::gen_last_momentum( ParticleMomenta const & other_momenta, const double mass_square, const double y ) const { std::array pt{0.,0.}; for (auto const & p: other_momenta) { pt[0]-= p.px(); pt[1]-= p.py(); } const double mperp = std::sqrt(pt[0]*pt[0]+pt[1]*pt[1]+mass_square); const double pz=mperp*std::sinh(y); const double E=mperp*std::cosh(y); return {pt[0], pt[1], pz, E}; } namespace { //! adds a particle to target (in correct rapidity ordering) //! @returns positon of insertion auto insert_particle(std::vector & target, HEJ::Particle && particle ){ const auto pos = std::upper_bound( begin(target),end(target),particle,HEJ::rapidity_less{} ); target.insert(pos, std::move(particle)); return pos; } } PhaseSpacePoint::PhaseSpacePoint( Process const & proc, JetParameters const & jet_param, HEJ::PDF & pdf, double E_beam, double const subl_chance, Subleading subl_channels, ParticlesDecayMap const & particle_decays, HEJ::EWConstants const & ew_parameters, HEJ::RNG & ran ){ assert(proc.njets >= 2); status_ = Status::good; weight_ = 1; // ensure that all setting are consistent if(subl_chance == 0.) subl_channels.reset(); const int nout = proc.njets + (proc.boson?1:0) + proc.boson_decay.size(); outgoing_.reserve(nout); // generate parton momenta const bool is_pure_jets = (nout == proc.njets); auto partons = gen_LO_partons( proc.njets, is_pure_jets, jet_param, E_beam, ran ); // pre fill flavour with gluons for(auto&& p_out: partons) { outgoing_.emplace_back(HEJ::Particle{HEJ::pid::gluon, std::move(p_out), {}}); } if(status_ != Status::good) return; if(proc.boson){ // decay boson auto const & boson_prop = ew_parameters.prop(*proc.boson) ; auto boson{ gen_boson(*proc.boson, boson_prop.mass, boson_prop.width, ran) }; const auto pos{insert_particle(outgoing_, std::move(boson))}; const size_t boson_idx = std::distance(begin(outgoing_), pos); auto const & boson_decay = particle_decays.find(*proc.boson); if( !proc.boson_decay.empty() ){ // decay given in proc decays_.emplace( boson_idx, decay_boson(outgoing_[boson_idx], proc.boson_decay, ran) ); } else if( boson_decay != particle_decays.end() && !boson_decay->second.empty() ){ // decay given explicitly decays_.emplace( boson_idx, decay_boson(outgoing_[boson_idx], boson_decay->second, ran) ); } } // normalisation of momentum-conserving delta function weight_ *= std::pow(2*M_PI, 4); /** @TODO * uf (jet_param.min_pt) doesn't correspond to our final scale choice. * The HEJ scale generators currently expect a full event as input, * so fixing this is not completely trivial */ reconstruct_incoming(proc, subl_chance, subl_channels, pdf, E_beam, jet_param.min_pt, ran); if(status_ != Status::good) return; // set outgoing states begin_partons()->type = incoming_[0].type; rbegin_partons()->type = incoming_[1].type; maybe_turn_to_subl(subl_chance, subl_channels, proc, ran); if(proc.boson) couple_boson(*proc.boson, ran); } // pt generation, see eq:pt_sampling in developer manual double PhaseSpacePoint::gen_hard_pt( const int np , const double ptmin, const double ptmax, const double /* y */, HEJ::RNG & ran ){ // heuristic parameter for pt sampling, see eq:pt_par in developer manual const double ptpar = ptmin + np/5.; const double arctan = std::atan((ptmax - ptmin)/ptpar); const double xpt = ran.flat(); const double pt = ptmin + ptpar*std::tan(xpt*arctan); const double cosine = std::cos(xpt*arctan); weight_ *= pt*ptpar*arctan/(cosine*cosine); return pt; } double PhaseSpacePoint::gen_soft_pt(int np, double max_pt, HEJ::RNG & ran) { constexpr double ptpar = 4.; const double r = ran.flat(); const double pt = max_pt + ptpar/np*std::log(r); weight_ *= pt*ptpar/(np*r); return pt; } double PhaseSpacePoint::gen_parton_pt( int count, JetParameters const & jet_param, double max_pt, double y, HEJ::RNG & ran ) { constexpr double p_small_pt = 0.02; if(! jet_param.peak_pt) { return gen_hard_pt(count, jet_param.min_pt, max_pt, y, ran); } const double r = ran.flat(); if(r > p_small_pt) { weight_ /= 1. - p_small_pt; return gen_hard_pt(count, *jet_param.peak_pt, max_pt, y, ran); } weight_ /= p_small_pt; const double pt = gen_soft_pt(count, *jet_param.peak_pt, ran); if(pt < jet_param.min_pt) { weight_=0.0; status_ = Status::not_enough_jets; return jet_param.min_pt; } return pt; } std::vector PhaseSpacePoint::gen_LO_partons( int np, bool is_pure_jets, JetParameters const & jet_param, double max_pt, HEJ::RNG & ran ){ if (np<2) throw std::invalid_argument{"Not enough partons in gen_LO_partons"}; weight_ /= std::pow(16.*std::pow(M_PI,3),np); weight_ /= std::tgamma(np+1); //remove rapidity ordering std::vector partons; partons.reserve(np); for(int i = 0; i < np; ++i){ const double y = -jet_param.max_y + 2*jet_param.max_y*ran.flat(); weight_ *= 2*jet_param.max_y; const bool is_last_parton = i+1 == np; if(is_pure_jets && is_last_parton) { constexpr double parton_mass_sq = 0.; partons.emplace_back(gen_last_momentum(partons, parton_mass_sq, y)); break; } const double phi = 2*M_PI*ran.flat(); weight_ *= 2.0*M_PI; const double pt = gen_parton_pt(np, jet_param, max_pt, y, ran); if(weight_ == 0.0) return {}; partons.emplace_back(fastjet::PtYPhiM(pt, y, phi)); assert(jet_param.min_pt <= partons[i].pt()); assert(partons[i].pt() <= max_pt+1e-5); } // Need to check that at LO, the number of jets = number of partons; fastjet::ClusterSequence cs(partons, jet_param.def); auto cluster_jets=cs.inclusive_jets(jet_param.min_pt); if (cluster_jets.size()!=unsigned(np)){ weight_=0.0; status_ = Status::not_enough_jets; return {}; } std::sort(begin(partons), end(partons), HEJ::rapidity_less{}); return partons; } HEJ::Particle PhaseSpacePoint::gen_boson( HEJ::ParticleID bosonid, double mass, double width, HEJ::RNG & ran ){ // Usual phase space measure weight_ /= 16.*std::pow(M_PI, 3); // Generate a y Gaussian distributed around 0 /// @TODO check magic numbers for different boson Higgs /// @TODO better sampling for W const double stddev_y = 1.6; const double y = random_normal(stddev_y, ran); const double r1 = ran.flat(); const double s_boson = mass*( mass + width*std::tan(M_PI/2.*r1 + (r1-1.)*std::atan(mass/width)) ); // off-shell s_boson sampling, compensates for Breit-Wigner /// @TODO use a flag instead if(std::abs(bosonid) == HEJ::pid::Wp){ weight_/=M_PI*M_PI*16.; //Corrects B-W factors, see git issue 132 weight_*= mass*width*( M_PI+2.*std::atan(mass/width) ) / ( 1. + std::cos( M_PI*r1 + 2.*(r1-1.)*std::atan(mass/width) ) ); } auto p = gen_last_momentum(outgoing_, s_boson, y); return HEJ::Particle{bosonid, std::move(p), {}}; } namespace { /// partons are ordered: even = anti, 0 = gluon HEJ::ParticleID index_to_pid(size_t i){ if(!i) return HEJ::pid::gluon; return static_cast( i%2 ? (i+1)/2 : -i/2 ); } /// partons are ordered: even = anti, 0 = gluon size_t pid_to_index(HEJ::ParticleID id){ if(id==HEJ::pid::gluon) return 0; return id>0 ? id*2-1 : std::abs(id)*2; } using part_mask = std::bitset<11>; //!< Selection mask for partons part_mask init_allowed(HEJ::ParticleID const id){ if(std::abs(id) == HEJ::pid::proton) return ~0; part_mask out{0}; if(HEJ::is_parton(id)) out[pid_to_index(id)] = 1; return out; } /// decides which "index" (see index_to_pid) are allowed for process part_mask allowed_quarks(HEJ::ParticleID const boson){ if(std::abs(boson) != HEJ::pid::Wp){ return ~1; // not a gluon } // special case W: // Wp: anti-down or up-type quark, no b/t // Wm: down or anti-up-type quark, no b/t return boson>0?0b00011001100 :0b00100110010; } } /** * @brief Returns list of all allowed initial states partons * * checks which partons are allowed as initial state: * 1. only allow what is given in the Runcard (p -> all) * 2. A/W/Z require something to couple to * a) no qqx => no incoming gluon * b) 2j => no incoming gluon * c) >3j => can couple OR is gluon => 2 gluons become qqx later * 3. pure eqqx requires at least one gluon * 4. pure uno requires at least one quark */ std::array PhaseSpacePoint::filter_partons( Process const & proc, double const subl_chance, Subleading const subl_channels, HEJ::RNG & ran ){ // all possible incoming states std::array allowed_partons{ init_allowed(proc.incoming[0]), init_allowed(proc.incoming[1]) }; // special case A/W/Z if(proc.boson){ auto couple_parton = allowed_quarks(*proc.boson); if(is_AWZ_proccess(proc) // coupling possible through input && allowed_partons[0] != (couple_parton&allowed_partons[0]) && allowed_partons[1] != (couple_parton&allowed_partons[1]) // qqx not possible && (proc.njets < 4 || (!subl_channels[subleading::eqqx] && !subl_channels[subleading::cqqx]) ) ){ // eqqx only possible if one incoming is a gluon if(proc.njets >= 3 && subl_channels[subleading::eqqx]){ couple_parton.set(pid_to_index(HEJ::ParticleID::gluon)); } if( (allowed_partons[0]&couple_parton).any() &&(allowed_partons[1]&couple_parton).none() ){ allowed_partons[0]&=couple_parton; } else if( (allowed_partons[0]&couple_parton).none() && (allowed_partons[1]&couple_parton).any() ){ allowed_partons[1]&=couple_parton; } else if( (allowed_partons[0]&couple_parton).any() && (allowed_partons[1]&couple_parton).any() ){ double rnd = ran.flat(); weight_*=3.; if(rnd<1./3.){ allowed_partons[0] &= couple_parton; allowed_partons[1] &= ~couple_parton; } else if(rnd<2./3.){ allowed_partons[0] &= ~couple_parton; allowed_partons[1] &= couple_parton; } else { allowed_partons[0] &= couple_parton; allowed_partons[1] &= couple_parton; } } else { throw std::invalid_argument{"Incoming state not allowed."}; } } } // special case: pure subleading if(subl_chance!=1.){ return allowed_partons; } auto other_channels = subl_channels; // pure eqqx other_channels.reset(subleading::eqqx); if(other_channels.none()){ auto const gluon_idx = pid_to_index(HEJ::pid::gluon); auto & first_beam = allowed_partons[0]; auto & second_beam = allowed_partons[1]; if(first_beam[gluon_idx] && !second_beam[gluon_idx]){ first_beam.reset(); first_beam.set(gluon_idx); return allowed_partons; } if(!first_beam[gluon_idx] && second_beam[gluon_idx]) { second_beam.reset(); second_beam.set(gluon_idx); return allowed_partons; } if(first_beam[gluon_idx] && second_beam[gluon_idx]) { // both beams can be gluons // if one can't be a quark everything is good auto first_quarks = first_beam; first_quarks.reset(gluon_idx); auto second_quarks = second_beam; second_quarks.reset(gluon_idx); if(first_quarks.none() || second_quarks.none()){ return allowed_partons; } // else choose one to be a gluon double rnd = ran.flat(); weight_*=3.; if(rnd<1./3.){ allowed_partons[0].reset(); allowed_partons[0].set(gluon_idx); allowed_partons[1].reset(gluon_idx); } else if(rnd<2./3.){ allowed_partons[1].reset(); allowed_partons[1].set(gluon_idx); allowed_partons[0].reset(gluon_idx); } else { allowed_partons[0].reset(); allowed_partons[0].set(gluon_idx); allowed_partons[1].reset(); allowed_partons[1].set(gluon_idx); } return allowed_partons; } throw std::invalid_argument{ "Incoming state not allowed for pure central qqx."}; } other_channels = subl_channels; // pure uno other_channels.reset(subleading::uno); if(other_channels.none()){ auto const gluon_idx = pid_to_index(HEJ::pid::gluon); auto & first_beam = allowed_partons[0]; auto first_quarks = first_beam; first_quarks.reset(gluon_idx); auto & second_beam = allowed_partons[1]; auto second_quarks = second_beam; second_quarks.reset(gluon_idx); if(first_quarks.any() && second_quarks.none()){ first_beam.reset(gluon_idx); return allowed_partons; } if(first_quarks.none() && second_quarks.any()) { second_beam.reset(gluon_idx); return allowed_partons; } if(first_quarks.any() && second_quarks.any()) { // both beams can be quarks // if one can't be gluon everything is good if(!first_beam[gluon_idx] || !second_beam[gluon_idx]){ return allowed_partons; } // else choose one to be a quark double rnd = ran.flat(); weight_*=3.; if(rnd<1./3.){ allowed_partons[0].reset(gluon_idx); allowed_partons[1].reset(); allowed_partons[1].set(gluon_idx); } else if(rnd<2./3.){ allowed_partons[1].reset(gluon_idx); allowed_partons[0].reset(); allowed_partons[0].set(gluon_idx); } else { allowed_partons[0].reset(gluon_idx); allowed_partons[1].reset(gluon_idx); } return allowed_partons; } throw std::invalid_argument{ "Incoming state not allowed for pure unordered."}; } return allowed_partons; } void PhaseSpacePoint::reconstruct_incoming( Process const & proc, double const subl_chance, Subleading const subl_channels, HEJ::PDF & pdf, double E_beam, double uf, HEJ::RNG & ran ){ std::tie(incoming_[0].p, incoming_[1].p) = incoming_momenta(outgoing_); // calculate xa, xb const double sqrts=2*E_beam; const double xa=(incoming_[0].E()-incoming_[0].pz())/sqrts; const double xb=(incoming_[1].E()+incoming_[1].pz())/sqrts; // abort if phase space point is outside of collider energy reach if (xa>1. || xb>1.){ weight_=0; status_ = Status::too_much_energy; return; } auto const & ids = proc.incoming; std::array allowed_partons = filter_partons(proc, subl_chance, subl_channels, ran); for(size_t i = 0; i < 2; ++i){ if(ids[i] == HEJ::pid::proton || ids[i] == HEJ::pid::p_bar){ // pick ids according to pdfs incoming_[i].type = generate_incoming_id(i, i?xb:xa, uf, pdf, allowed_partons[i], ran); } else { assert(allowed_partons[i][pid_to_index(ids[i])]); incoming_[i].type = ids[i]; } } assert(momentum_conserved(1e-7)); } HEJ::ParticleID PhaseSpacePoint::generate_incoming_id( size_t const beam_idx, double const x, double const uf, HEJ::PDF & pdf, part_mask allowed_partons, HEJ::RNG & ran ){ std::array pdf_wt; pdf_wt[0] = allowed_partons[0]? std::fabs(pdf.pdfpt(beam_idx,x,uf,HEJ::pid::gluon)):0.; double pdftot = pdf_wt[0]; for(size_t i = 1; i < pdf_wt.size(); ++i){ pdf_wt[i] = allowed_partons[i]? 4./9.*std::fabs(pdf.pdfpt(beam_idx,x,uf,index_to_pid(i))):0; pdftot += pdf_wt[i]; } const double r1 = pdftot * ran.flat(); double sum = 0; for(size_t i=0; i < pdf_wt.size(); ++i){ if (r1 < (sum+=pdf_wt[i])){ weight_*= pdftot/pdf_wt[i]; return index_to_pid(i); } } std::cerr << "Error in choosing incoming parton: "< allowed_parts; for(auto part_it=begin_partons(); part_it!=end_partons(); ++part_it){ // Wp -> up OR anti-down, Wm -> anti-up OR down, no bottom if ( can_couple_to_W(*part_it, boson) ) allowed_parts.push_back(part_it); } if(allowed_parts.size() == 0){ throw std::logic_error{"Found no parton for coupling with boson"}; } // select one and flip it size_t idx = 0; if(allowed_parts.size() > 1){ /// @TODO more efficient sampling /// old code: probability[i] = exp(parton[i].y - W.y) idx = std::floor(ran.flat()*allowed_parts.size()); weight_ *= allowed_parts.size(); } const int W_charge = boson>0?1:-1; allowed_parts[idx]->type = static_cast( allowed_parts[idx]->type - W_charge ); } double PhaseSpacePoint::random_normal( double stddev, HEJ::RNG & ran ){ const double r1 = ran.flat(); const double r2 = ran.flat(); const double lninvr1 = -std::log(r1); const double result = stddev*std::sqrt(2.*lninvr1)*std::cos(2.*M_PI*r2); weight_ *= exp(result*result/(2*stddev*stddev))*std::sqrt(2.*M_PI)*stddev; return result; } bool PhaseSpacePoint::momentum_conserved(double ep) const{ fastjet::PseudoJet diff; for(auto const & in: incoming()) diff += in.p; for(auto const & out: outgoing()) diff -= out.p; return HEJ::nearby_ep(diff, fastjet::PseudoJet{}, ep); } Decay PhaseSpacePoint::select_decay_channel( std::vector const & decays, HEJ::RNG & ran ){ double br_total = 0.; for(auto const & decay: decays) br_total += decay.branching_ratio; // adjust weight // this is given by (channel branching ratio)/(chance to pick channel) // where (chance to pick channel) = // (channel branching ratio)/(total branching ratio) weight_ *= br_total; if(decays.size()==1) return decays.front(); const double r1 = br_total*ran.flat(); double br_sum = 0.; for(auto const & decay: decays){ br_sum += decay.branching_ratio; if(r1 < br_sum) return decay; } throw std::logic_error{"unreachable"}; } std::vector PhaseSpacePoint::decay_boson( HEJ::Particle const & parent, std::vector const & decays, HEJ::RNG & ran ){ const auto channel = select_decay_channel(decays, ran); return decay_boson(parent, channel.products, ran); } std::vector PhaseSpacePoint::decay_boson( HEJ::Particle const & parent, std::vector const & decays, HEJ::RNG & ran ){ if(decays.size() != 2){ throw HEJ::not_implemented{ "only decays into two particles are implemented" }; } std::vector decay_products(decays.size()); for(size_t i = 0; i < decays.size(); ++i){ decay_products[i].type = decays[i]; } // choose polar and azimuth angle in parent rest frame const double E = parent.m()/2; const double theta = 2.*M_PI*ran.flat(); const double cos_phi = 2.*ran.flat()-1.; // Jacobian Factors for W in line 418 const double sin_phi = std::sqrt(1. - cos_phi*cos_phi); // Know 0 < phi < pi const double px = E*std::cos(theta)*sin_phi; const double py = E*std::sin(theta)*sin_phi; const double pz = E*cos_phi; decay_products[0].p.reset(px, py, pz, E); decay_products[1].p.reset(-px, -py, -pz, E); for(auto & particle: decay_products) particle.p.boost(parent.p); return decay_products; } } diff --git a/FixedOrderGen/src/config.cc b/FixedOrderGen/src/config.cc index 42c39f5..7598d8d 100644 --- a/FixedOrderGen/src/config.cc +++ b/FixedOrderGen/src/config.cc @@ -1,440 +1,440 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #include "config.hh" #include #include #include #include #include #include #include #include "HEJ/exceptions.hh" #include "HEJ/PDG_codes.hh" #include "HEJ/YAMLreader.hh" namespace HEJFOG { using HEJ::set_from_yaml; using HEJ::set_from_yaml_if_defined; using HEJ::pid::ParticleID; namespace { //! Get YAML tree of supported options /** * The configuration file is checked against this tree of options * in assert_all_options_known. */ YAML::Node const & get_supported_options(){ const static YAML::Node supported = [](){ YAML::Node supported; static const auto opts = { "process", "events", "subleading fraction","subleading channels", "scales", "scale factors", "max scale ratio", "pdf", "vev", "event output", "analyses", "analysis", "import scales" }; // add subnodes to "supported" - the assigned value is irrelevant for(auto && opt: opts) supported[opt] = ""; for(auto && jet_opt: {"min pt", "peak pt", "algorithm", "R", "max rapidity"}){ supported["jets"][jet_opt] = ""; } for(auto && particle_type: {"Higgs", "W", "Z"}){ for(auto && particle_opt: {"mass", "width"}){ supported["particle properties"][particle_type][particle_opt] = ""; } } for(auto && particle_type: {"Higgs", "Wp", "W+", "Wm", "W-", "Z"}){ for(auto && particle_opt: {"into", "branching ratio"}){ supported["decays"][particle_type][particle_opt] = ""; } } for(auto && opt: {"mt", "use impact factors", "include bottom", "mb"}){ supported["Higgs coupling"][opt] = ""; } for(auto && beam_opt: {"energy", "particles"}){ supported["beam"][beam_opt] = ""; } for(auto && unweight_opt: {"sample size", "max deviation"}){ supported["unweight"][unweight_opt] = ""; } for(auto && opt: {"name", "seed"}){ supported["random generator"][opt] = ""; } return supported; }(); return supported; } JetParameters get_jet_parameters( YAML::Node const & node, std::string const & entry ){ const auto p = HEJ::get_jet_parameters(node, entry); JetParameters result; result.def = p.def; result.min_pt = p.min_pt; set_from_yaml(result.max_y, node, entry, "max rapidity"); set_from_yaml_if_defined(result.peak_pt, node, entry, "peak pt"); if(result.peak_pt && *result.peak_pt <= result.min_pt) throw std::invalid_argument{ "Value of option 'peak pt' has to be larger than 'min pt'." }; return result; } Beam get_Beam( YAML::Node const & node, std::string const & entry ){ Beam beam; std::vector particles; set_from_yaml(beam.energy, node, entry, "energy"); set_from_yaml_if_defined(particles, node, entry, "particles"); if(! particles.empty()){ for(HEJ::ParticleID particle: particles){ if(particle != HEJ::pid::p && particle != HEJ::pid::p_bar){ throw std::invalid_argument{ "Unsupported value in option " + entry + ": particles:" " only proton ('p') and antiproton ('p_bar') beams are supported" }; } } if(particles.size() != 2){ throw std::invalid_argument{"Not exactly two beam particles"}; } beam.particles.front() = particles.front(); beam.particles.back() = particles.back(); } return beam; } std::vector split( std::string const & str, std::string const & delims ){ std::vector result; for(size_t begin, end = 0; end != str.npos;){ begin = str.find_first_not_of(delims, end); if(begin == str.npos) break; end = str.find_first_of(delims, begin + 1); result.emplace_back(str.substr(begin, end - begin)); } return result; } std::invalid_argument invalid_incoming(std::string const & what){ return std::invalid_argument{ "Incoming particle type " + what + " not supported," " incoming particles have to be 'p', 'p_bar' or partons" }; } std::invalid_argument invalid_outgoing(std::string const & what){ return std::invalid_argument{ "Outgoing particle type " + what + " not supported," " outgoing particles have to be 'j', 'photon', 'H', 'Wm', 'Wp', 'e-', 'e+', 'nu_e', 'nu_e_bar'" }; } HEJ::ParticleID reconstruct_boson_id( std::vector const & ids ){ assert(ids.size()==2); const int pidsum = ids[0] + ids[1]; if(pidsum == +1) { assert(HEJ::is_antilepton(ids[0])); if(HEJ::is_antineutrino(ids[0])) { throw HEJ::not_implemented{"lepton-flavour violating final state"}; } assert(HEJ::is_neutrino(ids[1])); // charged antilepton + neutrino means we had a W+ return HEJ::pid::Wp; } if(pidsum == -1) { assert(HEJ::is_antilepton(ids[0])); if(HEJ::is_neutrino(ids[1])) { throw HEJ::not_implemented{"lepton-flavour violating final state"}; } assert(HEJ::is_antineutrino(ids[0])); // charged lepton + antineutrino means we had a W- return HEJ::pid::Wm; } throw HEJ::not_implemented{ "final state with leptons "+name(ids[0])+" and "+name(ids[1]) +" not supported" }; } Process get_process( YAML::Node const & node, std::string const & entry ){ Process result; std::string process_string; set_from_yaml(process_string, node, entry); assert(! process_string.empty()); const auto particles = split(process_string, " \n\t\v=>"); if(particles.size() < 3){ throw std::invalid_argument{ "Bad format in option process: '" + process_string + "', expected format is 'in1 in2 => out1 ...'" }; } result.incoming.front() = HEJ::to_ParticleID(particles[0]); result.incoming.back() = HEJ::to_ParticleID(particles[1]); for(size_t i = 0; i < result.incoming.size(); ++i){ const HEJ::ParticleID in = result.incoming[i]; if( in != HEJ::pid::proton && in != HEJ::pid::p_bar && !HEJ::is_parton(in) ){ throw invalid_incoming(particles[i]); } } result.njets = 0; for(size_t i = result.incoming.size(); i < particles.size(); ++i){ assert(! particles[i].empty()); if(particles[i] == "j") ++result.njets; else if(std::isdigit(particles[i].front()) && particles[i].back() == 'j') result.njets += std::stoi(particles[i]); else{ const auto pid = HEJ::to_ParticleID(particles[i]); if(pid==HEJ::pid::Higgs || pid==HEJ::pid::Wp || pid==HEJ::pid::Wm){ if(result.boson) throw std::invalid_argument{ "More than one outgoing boson is not supported" }; if(!result.boson_decay.empty()) throw std::invalid_argument{ "Production of a boson together with a lepton is not supported" }; result.boson = pid; } else if (HEJ::is_anylepton(pid)){ // Do not accept more leptons, if two leptons are already mentioned if( result.boson_decay.size()>=2 ) throw std::invalid_argument{"Too many leptons provided"}; if(result.boson) throw std::invalid_argument{ "Production of a lepton together with a boson is not supported" }; result.boson_decay.emplace_back(pid); } else { throw invalid_outgoing(particles[i]); } } } if(result.njets < 2){ throw std::invalid_argument{ "Process has to include at least two jets ('j')" }; } if(!result.boson_decay.empty()){ std::sort(begin(result.boson_decay),end(result.boson_decay)); assert(!result.boson); result.boson = reconstruct_boson_id(result.boson_decay); } return result; } HEJFOG::Subleading to_subleading_channel(YAML::Node const & yaml){ std::string name; using namespace HEJFOG::subleading; Subleading channel; set_from_yaml(name, yaml); if(name == "none") return channel; if(name == "all") return channel.set(); if(name == "unordered" || name == "uno") return channel.set(uno); if(name == "central qqx" || name == "cqqx") return channel.set(cqqx); if(name == "extremal qqx" || name == "eqqx") return channel.set(eqqx); throw HEJ::unknown_option("Unknown subleading channel '"+name+"'"); } Subleading get_subleading_channels(YAML::Node const & node){ using YAML::NodeType; using namespace HEJFOG::subleading; // all channels allowed by default - if(!node) return ~0u; + if(!node) return ALL; switch(node.Type()){ case NodeType::Undefined: - return ~0u; + return ALL; case NodeType::Null: - return 0u; + return NONE; case NodeType::Scalar: return to_subleading_channel(node); case NodeType::Map: throw HEJ::invalid_type{"map is not a valid option for subleading channels"}; case NodeType::Sequence: Subleading channels; for(auto && channel_node: node){ channels |= get_subleading_channels(channel_node); } return channels; } throw std::logic_error{"unreachable"}; } Decay get_decay(YAML::Node const & node, std::string const & entry, std::string const & boson ){ Decay decay; set_from_yaml(decay.products, node, entry, boson, "into"); decay.branching_ratio=1; set_from_yaml_if_defined(decay.branching_ratio, node, entry, boson, "branching ratio"); return decay; } std::vector get_decays(YAML::Node const & node, std::string const & entry, std::string const & boson ){ using YAML::NodeType; if(!node[entry][boson]) return {}; switch(node[entry][boson].Type()){ case NodeType::Null: case NodeType::Undefined: return {}; case NodeType::Scalar: throw HEJ::invalid_type{"value is not a list of decays"}; case NodeType::Map: return {get_decay(node, entry, boson)}; case NodeType::Sequence: std::vector result; for(auto && decay_str: node[entry][boson]){ result.emplace_back(get_decay(decay_str, entry, boson)); } return result; } throw std::logic_error{"unreachable"}; } ParticlesDecayMap get_all_decays(YAML::Node const & node, std::string const & entry ){ if(!node[entry]) return {}; if(!node[entry].IsMap()) throw HEJ::invalid_type{entry + " have to be a map"}; ParticlesDecayMap result; for(auto const & sub_node: node[entry]) { const auto boson = sub_node.first.as(); const auto id = HEJ::to_ParticleID(boson); result.emplace(id, get_decays(node, entry, boson)); } return result; } HEJ::ParticleProperties get_particle_properties( YAML::Node const & node, std::string const & entry, std::string const & boson ){ HEJ::ParticleProperties result; set_from_yaml(result.mass, node, entry, boson, "mass"); set_from_yaml(result.width, node, entry, boson, "width"); return result; } HEJ::EWConstants get_ew_parameters(YAML::Node const & node){ HEJ::EWConstants result; double vev; set_from_yaml(vev, node, "vev"); result.set_vevWZH(vev, get_particle_properties(node, "particle properties", "W"), get_particle_properties(node, "particle properties", "Z"), get_particle_properties(node, "particle properties", "Higgs") ); return result; } UnweightSettings get_unweight( YAML::Node const & node, std::string const & entry ){ UnweightSettings result; set_from_yaml(result.sample_size, node, entry, "sample size"); if(result.sample_size <= 0){ throw std::invalid_argument{ "negative sample size " + std::to_string(result.sample_size) }; } set_from_yaml(result.max_dev, node, entry, "max deviation"); return result; } Config to_Config(YAML::Node const & yaml){ try{ HEJ::assert_all_options_known(yaml, get_supported_options()); } catch(HEJ::unknown_option const & ex){ throw HEJ::unknown_option{std::string{"Unknown option '"} + ex.what() + "'"}; } Config config; config.process = get_process(yaml, "process"); set_from_yaml(config.events, yaml, "events"); config.jets = get_jet_parameters(yaml, "jets"); config.beam = get_Beam(yaml, "beam"); for(size_t i = 0; i < config.process.incoming.size(); ++i){ auto const & in = config.process.incoming[i]; using namespace HEJ::pid; if( (in == p || in == p_bar) && in != config.beam.particles[i]){ throw std::invalid_argument{ "Particle type of beam " + std::to_string(i+1) + " incompatible" + " with type of incoming particle " + std::to_string(i+1) }; } } set_from_yaml(config.pdf_id, yaml, "pdf"); set_from_yaml(config.subleading_fraction, yaml, "subleading fraction"); if(config.subleading_fraction == 0) config.subleading_channels.reset(); else config.subleading_channels = get_subleading_channels(yaml["subleading channels"]); config.ew_parameters = get_ew_parameters(yaml); config.particle_decays = get_all_decays(yaml, "decays"); if(config.process.boson // check that Ws always decay && std::abs(*config.process.boson) == HEJ::ParticleID::Wp && config.process.boson_decay.empty() ){ auto const & decay = config.particle_decays.find(*config.process.boson); if(decay == config.particle_decays.end() || decay->second.empty()) throw std::invalid_argument{ "Decay for "+name(*config.process.boson)+" is required"}; } set_from_yaml_if_defined(config.analyses_parameters, yaml, "analyses"); if(yaml["analysis"]){ std::cerr << "WARNING: Configuration entry 'analysis' is deprecated. " " Use 'analyses' instead.\n"; YAML::Node ana; set_from_yaml(ana, yaml, "analysis"); if(!ana.IsNull()){ config.analyses_parameters.push_back(ana); } } config.scales = HEJ::to_ScaleConfig(yaml); set_from_yaml_if_defined(config.output, yaml, "event output"); config.rng = HEJ::to_RNGConfig(yaml, "random generator"); config.Higgs_coupling = HEJ::get_Higgs_coupling(yaml, "Higgs coupling"); if(yaml["unweight"]) config.unweight = get_unweight(yaml, "unweight"); return config; } } // namespace anonymous Config load_config(std::string const & config_file){ try{ return to_Config(YAML::LoadFile(config_file)); } catch(...){ std::cerr << "Error reading " << config_file << ":\n "; throw; } } } diff --git a/FixedOrderGen/t/W_2j_classify.cc b/FixedOrderGen/t/W_2j_classify.cc index c9adfd2..414cb31 100644 --- a/FixedOrderGen/t/W_2j_classify.cc +++ b/FixedOrderGen/t/W_2j_classify.cc @@ -1,165 +1,165 @@ /** * \brief check that the PSP generates only "valid" W + 2 jets events * * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #include #include #include #include #include "fastjet/JetDefinition.hh" #include "HEJ/EWConstants.hh" #include "HEJ/exceptions.hh" #include "HEJ/Mixmax.hh" #include "HEJ/Particle.hh" #include "HEJ/PDF.hh" #include "HEJ/PDG_codes.hh" #include "Decay.hh" #include "JetParameters.hh" #include "PhaseSpacePoint.hh" #include "Process.hh" #include "Status.hh" #include "Subleading.hh" namespace { using namespace HEJFOG; using namespace HEJ; void print_psp(PhaseSpacePoint const & psp){ std::cerr << "Process:\n" << psp.incoming()[0].type << " + "<< psp.incoming()[1].type << " -> "; for(auto const & out: psp.outgoing()){ std::cerr << out.type << " "; } std::cerr << "\n"; } void bail_out(PhaseSpacePoint const & psp, std::string msg){ print_psp(psp); throw std::logic_error{msg}; } bool is_up_type(Particle const & part){ return HEJ::is_anyquark(part) && !(std::abs(part.type)%2); } bool is_down_type(Particle const & part){ return HEJ::is_anyquark(part) && std::abs(part.type)%2; } bool check_W2j(PhaseSpacePoint const & psp, ParticleID const W_type){ bool found_quark = false; bool found_anti = false; std::vector out_partons; std::vector Wp; for(auto const & p: psp.outgoing()){ if(p.type == W_type) Wp.push_back(p); else if(is_parton(p)) out_partons.push_back(p); else bail_out(psp, "Found particle with is not " +std::to_string(int(W_type))+" or parton"); } if(Wp.size() != 1 || out_partons.size() != 2){ bail_out(psp, "Found wrong number of outgoing partons"); } for(std::size_t j=0; j<2; ++j){ auto const & in = psp.incoming()[j]; auto const & out = out_partons[j]; if(is_quark(in) || is_antiquark(in)) { found_quark = true; if(in.type != out.type) { // switch in quark type -> Wp couples to it if(found_anti){ // already found qq for coupling to W bail_out(psp, "Found second up/down pair"); } else if(std::abs(in.type)>4 || std::abs(out.type)>4){ bail_out(psp, "Found bottom/top pair"); } found_anti = true; if( is_up_type(in)) { // "up" in if(W_type > 0){ // -> only allowed u -> Wp + d if(in.type < 0 || is_up_type(out) || out.type < 0) bail_out(psp, "u -/> Wp + d"); } else { // -> only allowed ux -> Wm + dx if(in.type > 0 || is_up_type(out) || out.type > 0) bail_out(psp, "ux -/> Wm + dx"); } } else { // "down" in if(W_type > 0){ // -> only allowed dx -> Wp + ux if(in.type > 0 || is_down_type(out) || out.type > 0) bail_out(psp, "dx -/> Wp + ux"); } else { // -> only allowed d -> Wm + u if(in.type < 0 || is_down_type(out) || out.type < 0) bail_out(psp, "d -/> Wm + u"); } } } } } if(!found_quark) { bail_out(psp, "Found no initial quarks"); } else if(!found_anti){ bail_out(psp, "Found no up/down pair"); } return true; } } int main(){ constexpr std::size_t n_psp_base = 1337; const JetParameters jet_para{ fastjet::JetDefinition(fastjet::JetAlgorithm::antikt_algorithm, 0.4), 30, 5, 30}; PDF pdf(11000, pid::proton, pid::proton); constexpr double E_cms = 13000.; constexpr double subl_chance = 0.5; - const Subleading subl_channels(~0l); + const Subleading subl_channels = subleading::ALL; const ParticlesDecayMap boson_decays{ {pid::Wp, {Decay{ {pid::e_bar, pid::nu_e}, 1.} }}, {pid::Wm, {Decay{ {pid::e, pid::nu_e_bar}, 1.} }} }; const EWConstants ew_constants{246.2196508, ParticleProperties{80.385, 2.085}, ParticleProperties{91.187, 2.495}, ParticleProperties{125, 0.004165} }; HEJ::Mixmax ran{}; // Wp2j Process proc {{pid::proton,pid::proton}, 2, pid::Wp, {}}; std::size_t n_psp = n_psp_base; for( std::size_t i = 0; i try again ++n_psp; } } std::cout << "Wp+2j: Took " << n_psp << " to generate " << n_psp_base << " successfully PSP (" << 1.*n_psp/n_psp_base << " trials/PSP)" << std::endl; // Wm2j proc = Process{{pid::proton,pid::proton}, 2, pid::Wm, {}}; n_psp = n_psp_base; for( std::size_t i = 0; i try again ++n_psp; } } std::cout << "Wm+2j: Took " << n_psp << " to generate " << n_psp_base << " successfully PSP (" << 1.*n_psp/n_psp_base << " trials/PSP)" << std::endl; std::cout << "All processes passed." << std::endl; return EXIT_SUCCESS; } diff --git a/FixedOrderGen/t/W_nj_classify.cc b/FixedOrderGen/t/W_nj_classify.cc index b2e02dd..2cabb8e 100644 --- a/FixedOrderGen/t/W_nj_classify.cc +++ b/FixedOrderGen/t/W_nj_classify.cc @@ -1,227 +1,227 @@ /** * \brief check that the PSP generates the all W+jet subleading processes * * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #include #include #include #include #include #include #include #include #include "HEJ/Event.hh" #include "HEJ/event_types.hh" #include "HEJ/EWConstants.hh" #include "HEJ/exceptions.hh" #include "HEJ/Mixmax.hh" #include "HEJ/PDF.hh" #include "HEJ/PDG_codes.hh" #include "fastjet/JetDefinition.hh" #include "Decay.hh" #include "JetParameters.hh" #include "PhaseSpacePoint.hh" #include "Process.hh" #include "Status.hh" #include "Subleading.hh" namespace { using namespace HEJFOG; using namespace HEJ; void print_psp(PhaseSpacePoint const & psp){ std::cerr << "Process:\n" << psp.incoming()[0].type << " + "<< psp.incoming()[1].type << " -> "; for(auto const & out: psp.outgoing()){ std::cerr << out.type << " "; } std::cerr << "\n"; } void bail_out(PhaseSpacePoint const & psp, std::string msg){ print_psp(psp); throw std::logic_error{msg}; } #if !defined(__clang__) && defined(__GNUC__) && (__GNUC__ < 6) // gcc version < 6 explicitly needs hash function for enum // see https://gcc.gnu.org/bugzilla/show_bug.cgi?id=60970 using type_map = std::unordered_map>; #else using type_map = std::unordered_map; #endif } int main(){ constexpr std::size_t n_psp_base = 10375; const JetParameters jet_para{ fastjet::JetDefinition(fastjet::JetAlgorithm::antikt_algorithm, 0.4), 30, 5, 30}; PDF pdf(11000, pid::proton, pid::proton); constexpr double E_cms = 13000.; constexpr double subl_chance = 0.8; const ParticlesDecayMap boson_decays{ {pid::Wp, {Decay{ {pid::e_bar, pid::nu_e}, 1.} }}, {pid::Wm, {Decay{ {pid::e, pid::nu_e_bar}, 1.} }} }; const EWConstants ew_constants{246.2196508, ParticleProperties{80.385, 2.085}, ParticleProperties{91.187, 2.495}, ParticleProperties{125, 0.004165} }; HEJ::Mixmax ran{}; - Subleading subl_channels(~0l); + Subleading subl_channels = subleading::ALL; std::vector allowed_types{event_type::FKL, event_type::unob, event_type::unof, event_type::qqxexb, event_type::qqxexf}; std::cout << "Wp3j" << std::endl; // Wp3j Process proc {{pid::proton,pid::proton}, 3, pid::Wp, {}}; std::size_t n_psp = n_psp_base; type_map type_counter; for( std::size_t i = 0; i try again ++n_psp; } } std::cout << "Wp+3j: Took " << n_psp << " to generate " << n_psp_base << " successfully PSP (" << 1.*n_psp/n_psp_base << " trials/PSP)" << std::endl; std::cout << "States by classification:\n"; for(auto const & entry: type_counter){ const double fraction = static_cast(entry.second)/n_psp_base; const int percent = std::round(100*fraction); std::cout << std::left << std::setw(25) << (name(entry.first) + std::string(":")) << entry.second << " (" << percent << "%)\n"; } for(auto const & t: allowed_types){ if(type_counter[t] < 0.05 * n_psp_base){ std::cerr << "Less than 5% of the events are of type " << name(t) << std::endl; return EXIT_FAILURE; } } // Wm3j - only uno proc = Process{{pid::proton,pid::proton}, 3, pid::Wm, {}}; n_psp = n_psp_base; subl_channels.reset(); subl_channels.set(subleading::uno); allowed_types = {event_type::FKL, event_type::unob, event_type::unof}; type_counter.clear(); for( std::size_t i = 0; i try again ++n_psp; } } std::cout << "Wm+3j (only uno): Took " << n_psp << " to generate " << n_psp_base << " successfully PSP (" << 1.*n_psp/n_psp_base << " trials/PSP)" << std::endl; std::cout << "States by classification:\n"; for(auto const & entry: type_counter){ const double fraction = static_cast(entry.second)/n_psp_base; const int percent = std::round(100*fraction); std::cout << std::left << std::setw(25) << (name(entry.first) + std::string(":")) << entry.second << " (" << percent << "%)\n"; } for(auto const & t: allowed_types){ if(type_counter[t] < 0.05 * n_psp_base){ std::cerr << "Less than 5% of the events are of type " << name(t) << std::endl; return EXIT_FAILURE; } } // Wm4j proc = Process{{pid::proton,pid::proton}, 4, pid::Wm, {}}; n_psp = n_psp_base; subl_channels.set(); allowed_types = {event_type::FKL, event_type::unob, event_type::unof, event_type::qqxexb, event_type::qqxexf, event_type::qqxmid}; type_counter.clear(); std::array wpos_counter; // position of the W boson (back, central, forward) for( std::size_t i = 0; itype==pid::Wm){ ++wpos_counter[0][ev.type()]; } else if(ev.outgoing().rbegin()->type==pid::Wm){ ++wpos_counter[2][ev.type()]; } else { ++wpos_counter[1][ev.type()]; } } else { // bad process -> try again ++n_psp; } } std::cout << "Wm+4j: Took " << n_psp << " to generate " << n_psp_base << " successfully PSP (" << 1.*n_psp/n_psp_base << " trials/PSP)" << std::endl; std::cout << "States by classification:\n"; for(auto const & entry: type_counter){ const double fraction = static_cast(entry.second)/n_psp_base; const int percent = std::round(100*fraction); std::cout << std::left << std::setw(25) << (name(entry.first) + std::string(":")) << entry.second << " (" << percent << "%)\n"; } for(auto const & t: allowed_types){ if(type_counter[t] < 0.03 * n_psp_base){ std::cerr << "Less than 3% of the events are of type " << name(t) << std::endl; return EXIT_FAILURE; } } std::cout << "Stats by Wpos:\n"; for(std::size_t i=0; i