diff --git a/src/Wjets.cc b/src/Wjets.cc index 3b65983..1755b5d 100644 --- a/src/Wjets.cc +++ b/src/Wjets.cc @@ -1,1277 +1,1278 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019 * \copyright GPLv2 or later */ #include "HEJ/currents.hh" #include "HEJ/utility.hh" #include "HEJ/Tensor.hh" #include "HEJ/Constants.hh" #include <array> #include <iostream> namespace { // Helper Functions // FKL W Helper Functions double WProp (const HLV & plbar, const HLV & pl){ COM propW = COM(0.,-1.)/( (pl+plbar).m2() - HEJ::MW*HEJ::MW + COM(0.,1.)*HEJ::MW*HEJ::GammaW); double PropFactor=(propW*conj(propW)).real(); return PropFactor; } CCurrent jW (HLV pout, bool helout, HLV pe, bool hele, HLV pnu, bool helnu, HLV pin, bool helin ){ COM cur[4]; cur[0]=0.; cur[1]=0.; cur[2]=0.; cur[3]=0.; CCurrent sum(0.,0.,0.,0.); // NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is // anti-lepton(5) // Need to swap e and nu for events with W- --> e- nubar! if (helin==helout && hele==helnu) { HLV qa=pout+pe+pnu; HLV qb=pin-pe-pnu; double ta(qa.m2()),tb(qb.m2()); CCurrent temp2,temp3,temp5; CCurrent t65 = joo(pnu,helnu,pe,hele); CCurrent vout(pout.e(),pout.x(),pout.y(),pout.z()); CCurrent vin(pin.e(),pin.x(),pin.y(),pin.z()); COM brac615=t65.dot(vout); COM brac645=t65.dot(vin); // prod1565 and prod6465 are zero for Ws (not Zs)!! temp2 = joo(pout,helout,pnu,helout); COM prod1665=temp2.dot(t65); temp3 = joi(pe,helin,pin,helin); COM prod5465=temp3.dot(t65); temp2=joo(pout,helout,pe,helout); temp3=joi(pnu,helnu,pin,helin); temp5=joi(pout,helout,pin,helin); CCurrent term1,term2,term3; term1=(2.*brac615/ta+2.*brac645/tb)*temp5; term2=(prod1665/ta)*temp3; term3=(-prod5465/tb)*temp2; sum=term1+term2+term3; } return sum; } CCurrent jWbar (HLV pout, bool helout, HLV pe, bool hele, HLV pnu, bool helnu, HLV pin, bool helin ){ COM cur[4]; cur[0]=0.; cur[1]=0.; cur[2]=0.; cur[3]=0.; CCurrent sum(0.,0.,0.,0.); // NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is // anti-lepton(5) // Need to swap e and nu for events with W- --> e- nubar! if (helin==helout && hele==helnu) { HLV qa=pout+pe+pnu; HLV qb=pin-pe-pnu; double ta(qa.m2()),tb(qb.m2()); CCurrent temp2,temp3,temp5; CCurrent t65 = joo(pnu,helnu,pe,hele); CCurrent vout(pout.e(),pout.x(),pout.y(),pout.z()); CCurrent vin(pin.e(),pin.x(),pin.y(),pin.z()); COM brac615=t65.dot(vout); COM brac645=t65.dot(vin); // prod1565 and prod6465 are zero for Ws (not Zs)!! temp2 = joo(pe,helout,pout,helout); // temp2 is <5|alpha|1> COM prod5165=temp2.dot(t65); temp3 = jio(pin,helin,pnu,helin); // temp3 is <4|alpha|6> COM prod4665=temp3.dot(t65); temp2=joo(pnu,helout,pout,helout); // temp2 is now <6|mu|1> temp3=jio(pin,helin,pe,helin); // temp3 is now <4|mu|5> temp5=jio(pin,helin,pout,helout); // temp5 is <4|mu|1> CCurrent term1,term2,term3; term1 =(-2.*brac615/ta-2.*brac645/tb)*temp5; term2 =(-prod5165/ta)*temp3; term3 =(prod4665/tb)*temp2; sum = term1 + term2 + term3; } return sum; } // Extremal quark current with W emission. // Using Tensor class rather than CCurrent Tensor <1> jW(HLV pin, HLV pout, HLV plbar, HLV pl, bool aqline){ // Build the external quark line W Emmision Tensor<1> ABCurr = TCurrent(pl, false, plbar, false); Tensor<1> Tp4W = Construct1Tensor((pout+pl+plbar));//p4+pw Tensor<1> TpbW = Construct1Tensor((pin-pl-plbar));//pb-pw Tensor<3> J4bBlank; if (aqline){ J4bBlank = T3Current(pin,false,pout,false); } else{ J4bBlank = T3Current(pout,false,pin,false); } double t4AB = (pout+pl+plbar).m2(); double tbAB = (pin-pl-plbar).m2(); Tensor<2> J4b1 = (J4bBlank.contract(Tp4W,2))/t4AB; Tensor<2> J4b2 = (J4bBlank.contract(TpbW,2))/tbAB; Tensor<2> T4bmMom(0.); if (aqline){ for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ T4bmMom(mu, nu) = (J4b1(nu,mu) + J4b2(mu,nu))*COM(0,-1); } } } else{ for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ T4bmMom(nu,mu) = (J4b1(nu,mu) + J4b2(mu,nu))*COM(0,1); } } } Tensor<1> T4bm = T4bmMom.contract(ABCurr,1); return T4bm; } // Relevant W+Jets Unordered Contribution Helper Functions // W+Jets Uno double jM2Wuno(HLV pg, HLV p1,HLV plbar, HLV pl, HLV pa, bool h1, HLV p2, HLV pb, bool h2, bool pol ){ static bool is_sigma_index_set(false); if(!is_sigma_index_set){ //std::cout<<"Setting sigma_index...." << std::endl; if(init_sigma_index()) is_sigma_index_set = true; else return 0.; } HLV pW = pl+plbar; HLV q1g=pa-pW-p1-pg; HLV q1 = pa-p1-pW; HLV q2 = p2-pb; const double taW = (pa-pW).m2(); const double taW1 = (pa-pW-p1).m2(); const double tb2 = (pb-p2).m2(); const double tb2g = (pb-p2-pg).m2(); const double s1W = (p1+pW).m2(); const double s1gW = (p1+pW+pg).m2(); const double s1g = (p1+pg).m2(); const double tag = (pa-pg).m2(); const double taWg = (pa-pW-pg).m2(); //use p1 as ref vec in pol tensor Tensor<1> epsg = eps(pg,p2,pol); Tensor<1> epsW = TCurrent(pl,false,plbar,false); Tensor<1> j2b = TCurrent(p2,h2,pb,h2); Tensor<1> Tq1q2 = Construct1Tensor((q1+q2)/taW1 + (pb/pb.dot(pg) + p2/p2.dot(pg)) * tb2/(2*tb2g)); Tensor<1> Tq1g = Construct1Tensor((-pg-q1))/taW1; Tensor<1> Tq2g = Construct1Tensor((pg-q2)); Tensor<1> TqaW = Construct1Tensor((pa-pW));//pa-pw Tensor<1> Tqag = Construct1Tensor((pa-pg)); Tensor<1> TqaWg = Construct1Tensor((pa-pg-pW)); Tensor<1> Tp1g = Construct1Tensor((p1+pg)); Tensor<1> Tp1W = Construct1Tensor((p1+pW));//p1+pw Tensor<1> Tp1gW = Construct1Tensor((p1+pg+pW));//p1+pw+pg Tensor<2> g=Metric(); Tensor<3> J31a = T3Current(p1, h1, pa, h1); Tensor<2> J2_qaW =J31a.contract(TqaW/taW, 2); Tensor<2> J2_p1W =J31a.contract(Tp1W/s1W, 2); Tensor<3> L1a = outer(Tq1q2, J2_qaW); Tensor<3> L1b = outer(Tq1q2, J2_p1W); Tensor<3> L2a = outer(Tq1g,J2_qaW); Tensor<3> L2b = outer(Tq1g, J2_p1W); Tensor<3> L3 = outer(g, J2_qaW.contract(Tq2g,1)+J2_p1W.contract(Tq2g,2))/taW1; Tensor<3> L(0.); Tensor<5> J51a = T5Current(p1, h1, pa, h1); Tensor<4> J_qaW = J51a.contract(TqaW,4); Tensor<4> J_qag = J51a.contract(Tqag,4); Tensor<4> J_p1gW = J51a.contract(Tp1gW,4); Tensor<3> U1a = J_qaW.contract(Tp1g,2); Tensor<3> U1b = J_p1gW.contract(Tp1g,2); Tensor<3> U1c = J_p1gW.contract(Tp1W,2); Tensor<3> U1(0.); Tensor<3> U2a = J_qaW.contract(TqaWg,2); Tensor<3> U2b = J_qag.contract(TqaWg,2); Tensor<3> U2c = J_qag.contract(Tp1W,2); Tensor<3> U2(0.); for(int nu=0; nu<4;nu++){ for(int mu=0;mu<4;mu++){ for(int rho=0;rho<4;rho++){ L(nu, mu, rho) = L1a(nu,mu,rho) + L1b(nu,rho,mu) + L2a(mu,nu,rho) + L2b(mu,rho,nu) + L3(mu,nu,rho); U1(nu, mu, rho) = U1a(nu, mu, rho) / (s1g*taW) + U1b(nu,rho,mu) / (s1g*s1gW) + U1c(rho,nu,mu) / (s1W*s1gW); U2(nu,mu,rho) = U2a(mu,nu,rho) / (taWg*taW) + U2b(mu,rho,nu) / (taWg*tag) + U2c(rho,mu,nu) / (s1W*tag); } } } COM X = ((((U1-L).contract(epsW,3)).contract(j2b,2)).contract(epsg,1)); COM Y = ((((U2+L).contract(epsW,3)).contract(j2b,2)).contract(epsg,1)); double amp = HEJ::C_A*HEJ::C_F*HEJ::C_F/2.*(norm(X)+norm(Y)) - HEJ::C_F/2.*(X*conj(Y)).real(); double t1 = q1g.m2(); double t2 = q2.m2(); double WPropfact = WProp(plbar, pl); //Divide by WProp amp*=WPropfact; //Divide by t-channels amp/=(t1*t2); //Average over initial states amp/=(4.*HEJ::C_A*HEJ::C_A); return amp; } // Relevant Wqqx Helper Functions. //g->qxqlxl (Calculates gluon to qqx Current. See JV_\mu in WSubleading Notes) Tensor <1> gtqqxW(HLV pq,HLV pqbar,HLV pl,HLV plbar){ - + //@TODO Simplify the calculation below (Less Tensor class use?) double s2AB=(pl+plbar+pq).m2(); double s3AB=(pl+plbar+pqbar).m2(); Tensor<1> Tpq = Construct1Tensor(pq); Tensor<1> Tpqbar = Construct1Tensor(pqbar); Tensor<1> TAB = Construct1Tensor(pl+plbar); // Define llx current. Tensor<1> ABCur = TCurrent(pl, false, plbar, false); //blank 3 Gamma Current Tensor<3> JV23 = T3Current(pq,false,pqbar,false); // Components of g->qqW before W Contraction Tensor<2> JV1 = JV23.contract((Tpq + TAB),2)/(s2AB); Tensor<2> JV2 = JV23.contract((Tpqbar + TAB),2)/(s3AB); // g->qqW Current. Note Minus between terms due to momentum flow. // Also note: (-I)^2 from W vert. (I) from Quark prop. Tensor<1> JVCur = (JV1.contract(ABCur,1) - JV2.contract(ABCur,2))*COM(0.,-1.); return JVCur; } // Helper Functions Calculate the Crossed Contribution Tensor <2> MCrossW(HLV pa, HLV, HLV, HLV, HLV pq, HLV pqbar, HLV pl, HLV plbar, std::vector<HLV> partons, int nabove ){ + //@TODO Simplify the calculation below Maybe combine with MCross? // Useful propagator factors double s2AB=(pl+plbar+pq).m2(); double s3AB=(pl+plbar+pqbar).m2(); HLV q1, q3; q1=pa; for(int i=0; i<nabove+1;i++){ q1=q1-partons.at(i); } q3 = q1 - pq - pqbar - pl - plbar; double tcro1=(q3+pq).m2(); double tcro2=(q1-pqbar).m2(); Tensor<1> Tpq = Construct1Tensor(pq); Tensor<1> Tpqbar = Construct1Tensor(pqbar); Tensor<1> TAB = Construct1Tensor(pl+plbar); Tensor<1> Tq1 = Construct1Tensor(q1); Tensor<1> Tq3 = Construct1Tensor(q3); // Define llx current. Tensor<1> ABCur = TCurrent(pl, false, plbar,false); //Blank 5 gamma Current Tensor<5> J523 = T5Current(pq,false,pqbar,false); // 4 gamma currents (with 1 contraction already). Tensor<4> J_q3q = J523.contract((Tq3+Tpq),2); Tensor<4> J_2AB = J523.contract((Tpq+TAB),2); // Components of Crossed Vertex Contribution Tensor<3> Xcro1 = J_q3q.contract((Tpqbar + TAB),3); Tensor<3> Xcro2 = J_q3q.contract((Tq1-Tpqbar),3); Tensor<3> Xcro3 = J_2AB.contract((Tq1-Tpqbar),3); // Term Denominators Taken Care of at this stage Tensor<2> Xcro1Cont = Xcro1.contract(ABCur,3)/(tcro1*s3AB); Tensor<2> Xcro2Cont = Xcro2.contract(ABCur,2)/(tcro1*tcro2); Tensor<2> Xcro3Cont = Xcro3.contract(ABCur,1)/(s2AB*tcro2); //Initialise the Crossed Vertex Object Tensor<2> Xcro(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xcro(mu,nu) = -(-Xcro1Cont(nu,mu)+Xcro2Cont(nu,mu)+Xcro3Cont(nu,mu)); } } return Xcro; } // Helper Functions Calculate the Uncrossed Contribution Tensor <2> MUncrossW(HLV pa, HLV, HLV, HLV, HLV pq, HLV pqbar, HLV pl, HLV plbar, std::vector<HLV> partons, int nabove ){ - + //@TODO Simplify the calculation below Maybe combine with MUncross? double s2AB=(pl+plbar+pq).m2(); double s3AB=(pl+plbar+pqbar).m2(); HLV q1, q3; q1=pa; for(int i=0; i<nabove+1;i++){ q1=q1-partons.at(i); } q3 = q1 - pl - plbar - pq - pqbar; double tunc1 = (q1-pq).m2(); double tunc2 = (q3+pqbar).m2(); Tensor<1> Tpq = Construct1Tensor(pq); Tensor<1> Tpqbar = Construct1Tensor(pqbar); Tensor<1> TAB = Construct1Tensor(pl+plbar); Tensor<1> Tq1 = Construct1Tensor(q1); Tensor<1> Tq3 = Construct1Tensor(q3); // Define llx current. Tensor<1> ABCur = TCurrent(pl, false, plbar, false); //Blank 5 gamma Current Tensor<5> J523 = T5Current(pq,false,pqbar,false); // 4 gamma currents (with 1 contraction already). Tensor<4> J_2AB = J523.contract((Tpq+TAB),2); Tensor<4> J_q1q = J523.contract((Tq1-Tpq),2); // 2 Contractions taken care of. Tensor<3> Xunc1 = J_2AB.contract((Tq3+Tpqbar),3); Tensor<3> Xunc2 = J_q1q.contract((Tq3+Tpqbar),3); Tensor<3> Xunc3 = J_q1q.contract((Tpqbar+TAB),3); // Term Denominators Taken Care of at this stage Tensor<2> Xunc1Cont = Xunc1.contract(ABCur,1)/(s2AB*tunc2); Tensor<2> Xunc2Cont = Xunc2.contract(ABCur,2)/(tunc1*tunc2); Tensor<2> Xunc3Cont = Xunc3.contract(ABCur,3)/(tunc1*s3AB); //Initialise the Uncrossed Vertex Object Tensor<2> Xunc(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xunc(mu,nu) = -(- Xunc1Cont(mu,nu)+Xunc2Cont(mu,nu) +Xunc3Cont(mu,nu)); } } return Xunc; } // Helper Functions Calculate the g->qqxW (Eikonal) Contributions Tensor <2> MSymW(HLV pa, HLV p1, HLV pb, HLV p4, HLV pq, HLV pqbar, HLV pl,HLV plbar, std::vector<HLV> partons, int nabove ){ - + //@TODO Simplify the calculation below Maybe combine with MSym? double sa2=(pa+pq).m2(); double s12=(p1+pq).m2(); double sa3=(pa+pqbar).m2(); double s13=(p1+pqbar).m2(); double saA=(pa+pl).m2(); double s1A=(p1+pl).m2(); double saB=(pa+plbar).m2(); double s1B=(p1+plbar).m2(); double sb2=(pb+pq).m2(); double s42=(p4+pq).m2(); double sb3=(pb+pqbar).m2(); double s43=(p4+pqbar).m2(); double sbA=(pb+pl).m2(); double s4A=(p4+pl).m2(); double sbB=(pb+plbar).m2(); double s4B=(p4+plbar).m2(); double s23AB=(pl+plbar+pq+pqbar).m2(); HLV q1,q3; q1=pa; for(int i=0;i<nabove+1;i++){ q1-=partons.at(i); } q3=q1-pq-pqbar-plbar-pl; double t1 = (q1).m2(); double t3 = (q3).m2(); //Define Tensors to be used Tensor<1> Tp1 = Construct1Tensor(p1); Tensor<1> Tp4 = Construct1Tensor(p4); Tensor<1> Tpa = Construct1Tensor(pa); Tensor<1> Tpb = Construct1Tensor(pb); Tensor<1> Tpq = Construct1Tensor(pq); Tensor<1> Tpqbar = Construct1Tensor(pqbar); Tensor<1> TAB = Construct1Tensor(pl+plbar); Tensor<1> Tq1 = Construct1Tensor(q1); Tensor<1> Tq3 = Construct1Tensor(q3); Tensor<2> g=Metric(); // g->qqW Current (Factors of sqrt2 dealt with in this function.) Tensor<1> JV = gtqqxW(pq,pqbar,pl,plbar); // 1a gluon emisson Contribution Tensor<3> X1a = outer(g, Tp1*(t1/(s12+s13+s1A+s1B)) + Tpa*(t1/(sa2+sa3+saA+saB)) ); Tensor<2> X1aCont = X1a.contract(JV,3); //4b gluon emission Contribution Tensor<3> X4b = outer(g, Tp4*(t3/(s42+s43+s4A+s4B)) + Tpb*(t3/(sb2+sb3+sbA+sbB)) ); Tensor<2> X4bCont = X4b.contract(JV,3); //Set up each term of 3G diagram. Tensor<3> X3g1 = outer(Tq1+Tpq+Tpqbar+TAB, g); Tensor<3> X3g2 = outer(Tq3-Tpq-Tpqbar-TAB, g); Tensor<3> X3g3 = outer(Tq1+Tq3, g); // Note the contraction of indices changes term by term Tensor<2> X3g1Cont = X3g1.contract(JV,3); Tensor<2> X3g2Cont = X3g2.contract(JV,2); Tensor<2> X3g3Cont = X3g3.contract(JV,1); // XSym is an amalgamation of x1a, X4b and X3g. // Makes sense from a colour factor point of view. Tensor<2>Xsym(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xsym(mu,nu) = (X3g1Cont(nu,mu) + X3g2Cont(mu,nu) - X3g3Cont(nu,mu)) + (X1aCont(mu,nu) - X4bCont(mu,nu)); } } return Xsym/s23AB; } Tensor <2> MCross(HLV pa, HLV pq, HLV pqbar, std::vector<HLV> partons, bool hq, int nabove ){ - + //@TODO Simplify the calculation below Maybe combine with MCrossW? HLV q1; q1=pa; for(int i=0;i<nabove+1;i++){ q1-=partons.at(i); } double t2=(q1-pqbar).m2(); Tensor<1> Tq1 = Construct1Tensor(q1-pqbar); //Blank 3 gamma Current Tensor<3> J323 = T3Current(pq,hq,pqbar,hq); // 2 gamma current (with 1 contraction already). Tensor<2> XCroCont = J323.contract((Tq1),2)/(t2); //Initialise the Crossed Vertex Tensor<2> Xcro(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xcro(mu,nu) = XCroCont(nu,mu); } } return Xcro; } // Helper Functions Calculate the Uncrossed Contribution Tensor <2> MUncross(HLV pa, HLV pq,HLV pqbar, std::vector<HLV> partons, bool hq, int nabove ){ - + //@TODO Simplify the calculation below Maybe combine with MUncrossW? HLV q1; q1=pa; for(int i=0;i<nabove+1;i++){ q1-=partons.at(i); } double t2 = (q1-pq).m2(); Tensor<1> Tq1 = Construct1Tensor(q1-pq); //Blank 3 gamma Current Tensor<3> J323 = T3Current(pq,hq,pqbar,hq); // 2 gamma currents (with 1 contraction already). Tensor<2> XUncCont = J323.contract((Tq1),2)/t2; //Initialise the Uncrossed Vertex Tensor<2> Xunc(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xunc(mu,nu) = -XUncCont(mu,nu); } } return Xunc; } // Helper Functions Calculate the Eikonal Contributions Tensor <2> MSym(HLV pa, HLV p1, HLV pb, HLV p4, HLV pq, HLV pqbar, std::vector<HLV> partons, bool hq, int nabove ){ - + //@TODO Simplify the calculation below Maybe combine with MsymW? HLV q1, q3; q1=pa; for(int i=0;i<nabove+1;i++){ q1-=partons.at(i); } q3 = q1-pq-pqbar; double t1 = (q1).m2(); double t3 = (q3).m2(); double s23 = (pq+pqbar).m2(); double sa2 = (pa+pq).m2(); double sa3 = (pa+pqbar).m2(); double s12 = (p1+pq).m2(); double s13 = (p1+pqbar).m2(); double sb2 = (pb+pq).m2(); double sb3 = (pb+pqbar).m2(); double s42 = (p4+pq).m2(); double s43 = (p4+pqbar).m2(); //Define Tensors to be used Tensor<1> Tp1 = Construct1Tensor(p1); Tensor<1> Tp4 = Construct1Tensor(p4); Tensor<1> Tpa = Construct1Tensor(pa); Tensor<1> Tpb = Construct1Tensor(pb); Tensor<1> Tpq = Construct1Tensor(pq); Tensor<1> Tpqbar = Construct1Tensor(pqbar); Tensor<1> Tq1 = Construct1Tensor(q1); Tensor<1> Tq3 = Construct1Tensor(q3); Tensor<2> g=Metric(); Tensor<1> qqxCur = TCurrent(pq, hq, pqbar, hq); // // 1a gluon emisson Contribution Tensor<3> X1a = outer(g, Tp1*(t1/(s12+s13))+Tpa*(t1/(sa2+sa3))); Tensor<2> X1aCont = X1a.contract(qqxCur,3); // //4b gluon emission Contribution Tensor<3> X4b = outer(g, Tp4*(t3/(s42+s43)) + Tpb*(t3/(sb2+sb3))); Tensor<2> X4bCont = X4b.contract(qqxCur,3); // New Formulation Corresponding to New Analytics Tensor<3> X3g1 = outer(Tq1+Tpq+Tpqbar, g); Tensor<3> X3g2 = outer(Tq3-Tpq-Tpqbar, g); Tensor<3> X3g3 = outer(Tq1+Tq3, g); // Note the contraction of indices changes term by term Tensor<2> X3g1Cont = X3g1.contract(qqxCur,3); Tensor<2> X3g2Cont = X3g2.contract(qqxCur,2); Tensor<2> X3g3Cont = X3g3.contract(qqxCur,1); Tensor<2>Xsym(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xsym(mu, nu) = COM(0,1) * ( (X3g1Cont(nu,mu) + X3g2Cont(mu,nu) - X3g3Cont(nu,mu)) + (X1aCont(mu,nu) - X4bCont(mu,nu)) ); } } return Xsym/s23; } } // Anonymous Namespace helper functions // W+Jets FKL Contributions /** * @brief W+Jets FKL Contributions, function to handle all incoming types. * @param p1out Outgoing Particle 1. (W emission) * @param pe Outgoing election momenta * @param pnu Outgoing neutrino momenta * @param p1in Incoming Particle 1. (W emission) * @param p2out Outgoing Particle 2 * @param p2in Incoming Particle 2 * @param aqlineb Bool. Is Backwards quark line an anti-quark line? * @param aqlinef Bool. Is Forwards quark line an anti-quark line? * * Calculates j_W ^\mu j_\mu. * Handles all possible incoming states. */ double jW_j(HLV p1out, HLV pe, HLV pnu,HLV p1in, HLV p2out, HLV p2in, bool aqlineb, bool aqlinef){ CCurrent mj1m,mj2p,mj2m; HLV q1=p1in-p1out-pe-pnu; HLV q2=-(p2in-p2out); if(aqlineb) mj1m=jWbar(p1out,false,pe,false,pnu,false,p1in,false); else mj1m=jW(p1out,false,pe,false,pnu,false,p1in,false); if(aqlinef){ mj2p=jio(p2in,true,p2out,true); mj2m=jio(p2in,false,p2out,false); } else{ mj2p=joi(p2out,true,p2in,true); mj2m=joi(p2out,false,p2in,false); } COM Mmp=mj1m.dot(mj2p); COM Mmm=mj1m.dot(mj2m); // sum of spinor strings ||^2 double a2Mmp=abs2(Mmp); double a2Mmm=abs2(Mmm); double WPropfact = WProp(pe, pnu); // Division by colour and Helicity average (Nc2-1)(4) // Multiply by Cf^2 return HEJ::C_F*HEJ::C_F*WPropfact*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2()*(HEJ::N_C*HEJ::N_C - 1)*4); } double ME_W_qQ (HLV p1out, HLV pe, HLV pnu,HLV p1in, HLV p2out, HLV p2in){ return jW_j(p1out, pe, pnu, p1in, p2out, p2in, false, false); } double ME_W_qQbar (HLV p1out, HLV pe, HLV pnu,HLV p1in, HLV p2out, HLV p2in){ return jW_j(p1out, pe, pnu, p1in, p2out, p2in, false, true); } double ME_W_qbarQ (HLV p1out, HLV pe, HLV pnu,HLV p1in, HLV p2out, HLV p2in){ return jW_j(p1out, pe, pnu, p1in, p2out, p2in, true, false); } double ME_W_qbarQbar (HLV p1out, HLV pe, HLV pnu,HLV p1in, HLV p2out, HLV p2in){ return jW_j(p1out, pe, pnu, p1in, p2out, p2in, true, true); } double ME_W_qg (HLV p1out, HLV pe, HLV pnu,HLV p1in, HLV p2out, HLV p2in){ return jW_j(p1out, pe, pnu, p1in, p2out, p2in, false, false)*K_g(p2out, p2in)/HEJ::C_F; } double ME_W_qbarg (HLV p1out, HLV pe, HLV pnu,HLV p1in, HLV p2out, HLV p2in){ return jW_j(p1out, pe, pnu, p1in, p2out, p2in, true, false)*K_g(p2out, p2in)/HEJ::C_F; } /** * @brief W+Jets Unordered Contributions, function to handle all incoming types. * @param p1out Outgoing Particle 1. (W emission) * @param pe Outgoing election momenta * @param pnu Outgoing neutrino momenta * @param p1in Incoming Particle 1. (W emission) * @param p2out Outgoing Particle 2 (Quark, unordered emission this side.) * @param p2in Incoming Particle 2 (Quark, unordered emission this side.) * @param pg Unordered Gluon momenta * @param aqlineb Bool. Is Backwards quark line an anti-quark line? * @param aqlinef Bool. Is Forwards quark line an anti-quark line? * * Calculates j_W ^\mu j_{uno}_\mu. Ie, unordered with W emission opposite side. * Handles all possible incoming states. */ double jW_juno (HLV p1out, HLV pe, HLV pnu,HLV p1in, HLV p2out, HLV p2in, HLV pg, bool aqlineb, bool aqlinef){ CCurrent mj1m,mj2p,mj2m, jgbm,jgbp,j2gm,j2gp; HLV q1=p1in-p1out-pe-pnu; HLV q2=-(p2in-p2out-pg); HLV q3=-(p2in-p2out); if(aqlineb) mj1m=jWbar(p1out,false,pe,false,pnu,false,p1in,false); else mj1m=jW(p1out,false,pe,false,pnu,false,p1in,false); //@TODO Is aqlinef necessary? Gives same results. if(aqlinef){ mj2p=jio(p2in,true,p2out,true); mj2m=jio(p2in,false,p2out,false); j2gp=joo(pg,true,p2out,true); j2gm=joo(pg,false,p2out,false); jgbp=jio(p2in,true,pg,true); jgbm=jio(p2in,false,pg,false); } else{ mj2p=joi(p2out,true,p2in,true); mj2m=joi(p2out,false,p2in,false); j2gp=joo(p2out,true,pg,true); j2gm=joo(p2out,false,pg,false); jgbp=joi(pg,true,p2in,true); jgbm=joi(pg,false,p2in,false); } // Dot products of these which occur again and again COM MWmp=mj1m.dot(mj2p); // And now for the Higgs ones COM MWmm=mj1m.dot(mj2m); CCurrent qsum(q2+q3); CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in); CCurrent p2o(p2out); CCurrent p2i(p2in); Lmm=( (-1.)*qsum*(MWmm) + (-2.*mj1m.dot(pg))*mj2m + 2.*mj2m.dot(pg)*mj1m + ( p1o/pg.dot(p1out) + p1i/pg.dot(p1in) )*( q2.m2()*MWmm/2. ) )/q3.m2(); Lmp=( (-1.)*qsum*(MWmp) + (-2.*mj1m.dot(pg))*mj2p + 2.*mj2p.dot(pg)*mj1m + ( p1o/pg.dot(p1out) + p1i/pg.dot(p1in) )*( q2.m2()*MWmp/2. ) )/q3.m2(); U1mm=(jgbm.dot(mj1m)*j2gm+2.*p2o*MWmm)/(p2out+pg).m2(); U1mp=(jgbp.dot(mj1m)*j2gp+2.*p2o*MWmp)/(p2out+pg).m2(); U2mm=((-1.)*j2gm.dot(mj1m)*jgbm+2.*p2i*MWmm)/(p2in-pg).m2(); U2mp=((-1.)*j2gp.dot(mj1m)*jgbp+2.*p2i*MWmp)/(p2in-pg).m2(); double amm,amp; amm=HEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mm+U2mm); amp=HEJ::C_F*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mp+U2mp); double ampsq=-(amm+amp); //Divide by WProp ampsq*=WProp(pe, pnu); return ampsq/((16)*(q2.m2()*q1.m2())); } double ME_W_unob_qQ(HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV pe, HLV pnu, HLV p2in){ return jW_juno(p1out, pe, pnu, p1in, p2out, p2in, pg, false, false); } double ME_W_unob_qQbar(HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV pe, HLV pnu, HLV p2in){ return jW_juno(p1out, pe, pnu, p1in, p2out, p2in, pg, false, true); } double ME_W_unob_qbarQ(HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV pe, HLV pnu, HLV p2in){ return jW_juno(p1out, pe, pnu, p1in, p2out, p2in, pg, true, false); } double ME_W_unob_qbarQbar(HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV pe, HLV pnu, HLV p2in){ return jW_juno(p1out, pe, pnu, p1in, p2out, p2in, pg, true, true); } double ME_W_unof_qQ(HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV pe, HLV pnu, HLV p2in){ return jW_juno(p2out, pe, pnu, p2in, p1out, p1in, pg, false, false); } double ME_W_unof_qQbar(HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV pe, HLV pnu, HLV p2in){ return jW_juno(p2out, pe, pnu, p2in, p1out, p1in, pg, true, false); } double ME_W_unof_qbarQ(HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV pe, HLV pnu, HLV p2in){ return jW_juno(p2out, pe, pnu, p2in, p1out, p1in, pg, false, true); } double ME_W_unof_qbarQbar(HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV pe, HLV pnu, HLV p2in){ return jW_juno(p2out, pe, pnu, p2in, p1out, p1in, pg, true, true); } /** * @brief W+Jets Unordered Contributions, function to handle all incoming types. * @param pg Unordered Gluon momenta * @param p1out Outgoing Particle 1. (Quark - W and Uno emission) * @param plbar Outgoing election momenta * @param pl Outgoing neutrino momenta * @param p1in Incoming Particle 1. (Quark - W and Uno emission) * @param p2out Outgoing Particle 2 * @param p2in Incoming Particle 2 * @param aqlineb Bool. Is Backwards quark line an anti-quark line? * * Calculates j_W_{uno} ^\mu j_\mu. Ie, unordered with W emission same side. * Handles all possible incoming states. */ double jWuno_j(HLV pg, HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in, bool aqlineb){ //Calculate different Helicity choices double ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,aqlineb,p2out,p2in,true,true); double ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,aqlineb,p2out,p2in,true,false); double ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,aqlineb,p2out,p2in,false,true); double ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,aqlineb,p2out,p2in,false,false); return ME2mpp + ME2mpm + ME2mmp + ME2mmm; } double ME_Wuno_qQ(HLV pg, HLV p1out,HLV plbar,HLV pl, HLV p1in, HLV p2out, HLV p2in){ return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, false); } double ME_Wuno_qQbar(HLV pg, HLV p1out,HLV plbar,HLV pl, HLV p1in, HLV p2out, HLV p2in){ return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, false); } double ME_Wuno_qbarQ(HLV pg, HLV p1out,HLV plbar,HLV pl, HLV p1in, HLV p2out, HLV p2in ){ return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, true); } double ME_Wuno_qbarQbar(HLV pg, HLV p1out,HLV plbar,HLV pl, HLV p1in, HLV p2out, HLV p2in){ return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, true); } double ME_Wuno_qg(HLV pg, HLV p1out,HLV plbar,HLV pl, HLV p1in, HLV p2out, HLV p2in){ return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, false)*K_g(p2out, p2in)/HEJ::C_F; } double ME_Wuno_qbarg(HLV pg, HLV p1out,HLV plbar,HLV pl, HLV p1in, HLV p2out, HLV p2in){ return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, true)*K_g(p2out, p2in)/HEJ::C_F; } /** * @brief W+Jets Extremal qqx Contributions, function to handle all incoming types. * @param pgin Incoming gluon which will split into qqx. * @param pqout Quark of extremal qqx outgoing (W-Emission). * @param plbar Outgoing anti-lepton momenta * @param pl Outgoing lepton momenta * @param pqbarout Anti-quark of extremal qqx pair. (W-Emission) * @param pout Outgoing Particle 2 (end of FKL chain) * @param p2in Incoming Particle 2 * @param aqlinef Bool. Is Forwards quark line an anti-quark line? * * Calculates j_W_{qqx} ^\mu j_\mu. Ie, Ex-QQX with W emission same side. * Handles all possible incoming states. Calculated via crossing symmetry from jWuno_j. */ double jWqqx_j(HLV pgin, HLV pqout,HLV plbar,HLV pl, HLV pqbarout, HLV p2out, HLV p2in, bool aqlinef){ //Calculate Different Helicity Configurations. double ME2mpp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,aqlinef,p2out,p2in,true,true); double ME2mpm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,aqlinef,p2out,p2in,true,false); double ME2mmp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,aqlinef,p2out,p2in,false,true); double ME2mmm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,aqlinef,p2out,p2in,false,false); //Helicity sum double ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; //Correct colour averaging after crossing: ME2*=(3.0/8.0); return ME2; } double ME_WExqqx_qbarqQ(HLV pgin, HLV pqout,HLV plbar,HLV pl, HLV pqbarout, HLV p2out, HLV p2in){ return jWqqx_j(pgin, pqout, plbar, pl, pqbarout, p2out, p2in, false); } double ME_WExqqx_qqbarQ(HLV pgin, HLV pqbarout,HLV plbar,HLV pl, HLV pqout, HLV p2out, HLV p2in){ return jWqqx_j(pgin, pqbarout, plbar, pl, pqout, p2out, p2in, true); } double ME_WExqqx_qbarqg(HLV pgin, HLV pqout,HLV plbar,HLV pl, HLV pqbarout, HLV p2out, HLV p2in){ return jWqqx_j(pgin, pqout, plbar, pl, pqbarout, p2out, p2in, false)*K_g(p2out,p2in)/HEJ::C_F; } double ME_WExqqx_qqbarg(HLV pgin, HLV pqbarout, HLV plbar, HLV pl, HLV pqout, HLV p2out, HLV p2in){ return jWqqx_j(pgin, pqbarout, plbar, pl, pqout, p2out, p2in, true)*K_g(p2out,p2in)/HEJ::C_F; } namespace { //Function to calculate Term 1 in Equation 3.23 in James Cockburn's Thesis. Tensor<1> qggm1(HLV pb, HLV p2, HLV p3, bool hel2, bool helg, HLV refmom){ - + //@TODO Simplify the calculation below. (Less Tensor class use?) double t1 = (p3-pb)*(p3-pb); Tensor<1> Tp3 = Construct1Tensor((p3));//p3 Tensor<1> Tpb = Construct1Tensor((pb));//pb // Gauge choice in polarisation tensor. (see JC's Thesis) Tensor<1> epsg = eps(pb, refmom, helg); Tensor<3> qqCurBlank = T3Current(p2,hel2,p3,hel2); Tensor<2> qqCur = qqCurBlank.contract(Tp3-Tpb,2); Tensor<1> gqqCur = qqCur.contract(epsg,2)/t1; return gqqCur*(-1); } //Function to calculate Term 2 in Equation 3.23 in James Cockburn's Thesis. Tensor<1> qggm2(HLV pb, HLV p2, HLV p3, bool hel2, bool helg, HLV refmom){ - + //@TODO Simplify the calculation below (Less Tensor class use?) double t1 = (p2-pb)*(p2-pb); Tensor<1> Tp2 = Construct1Tensor((p2));//p2 Tensor<1> Tpb = Construct1Tensor((pb));//pb // Gauge choice in polarisation tensor. (see JC's Thesis) Tensor<1> epsg = eps(pb,refmom, helg); Tensor<3> qqCurBlank = T3Current(p2,hel2,p3,hel2); Tensor<2> qqCur = qqCurBlank.contract(Tp2-Tpb,2); Tensor<1> gqqCur = qqCur.contract(epsg,1)/t1; return gqqCur; } //Function to calculate Term 3 in Equation 3.23 in James Cockburn's Thesis. Tensor<1> qggm3(HLV pb, HLV p2, HLV p3, bool hel2, bool helg, HLV refmom){ - + //@TODO Simplify the calculation below (Less Tensor class use?) double s23 = (p2+p3)*(p2+p3); Tensor<1> Tp2 = Construct1Tensor((p2));//p2 Tensor<1> Tp3 = Construct1Tensor((p3));//p3 Tensor<1> Tpb = Construct1Tensor((pb));//pb // Gauge choice in polarisation tensor. (see JC's Thesis) Tensor<1> epsg = eps(pb, refmom, helg); Tensor<2> g=Metric(); Tensor<3> qqCurBlank1 = outer(Tp2+Tp3, g)/s23; Tensor<3> qqCurBlank2 = outer(Tpb, g)/s23; Tensor<1> Cur23 = TCurrent(p2,hel2, p3,hel2); Tensor<2> qqCur1 = qqCurBlank1.contract(Cur23,3); Tensor<2> qqCur2 = qqCurBlank2.contract(Cur23,3); Tensor<2> qqCur3 = qqCurBlank2.contract(Cur23,1); Tensor<1> gqqCur = (qqCur1.contract(epsg,1) - qqCur2.contract(epsg,2) + qqCur3.contract(epsg,1))*2*COM(0,1); return gqqCur; } } // no wqq emission double ME_W_Exqqx_QQq(HLV pa, HLV pb, HLV p1, HLV p2, HLV p3,HLV plbar, HLV pl, bool aqlinepa ){ static bool is_sigma_index_set(false); if(!is_sigma_index_set){ if(init_sigma_index()) is_sigma_index_set = true; else return 0.;} // 2 independent helicity choices (complex conjugation related). Tensor<1> TMmmm1 = qggm1(pb,p2,p3,false,false, pa); Tensor<1> TMmmm2 = qggm2(pb,p2,p3,false,false, pa); Tensor<1> TMmmm3 = qggm3(pb,p2,p3,false,false, pa); Tensor<1> TMpmm1 = qggm1(pb,p2,p3,false,true, pa); Tensor<1> TMpmm2 = qggm2(pb,p2,p3,false,true, pa); Tensor<1> TMpmm3 = qggm3(pb,p2,p3,false,true, pa); // Build the external quark line W Emmision Tensor<1> cur1a = jW(pa,p1,plbar,pl, aqlinepa); //Contract with the qqxCurrent. COM Mmmm1 = TMmmm1.contract(cur1a,1); COM Mmmm2 = TMmmm2.contract(cur1a,1); COM Mmmm3 = TMmmm3.contract(cur1a,1); COM Mpmm1 = TMpmm1.contract(cur1a,1); COM Mpmm2 = TMpmm2.contract(cur1a,1); COM Mpmm3 = TMpmm3.contract(cur1a,1); //Colour factors: COM cm1m1,cm2m2,cm3m3,cm1m2,cm1m3,cm2m3; cm1m1=8./3.; cm2m2=8./3.; cm3m3=6.; cm1m2 =-1./3.; cm1m3 = -3.*COM(0.,1.); cm2m3 = 3.*COM(0.,1.); //Sqaure and sum for each helicity config: double Mmmm = real( cm1m1*pow(abs(Mmmm1),2) + cm2m2*pow(abs(Mmmm2),2) + cm3m3*pow(abs(Mmmm3),2) + 2.*real(cm1m2*Mmmm1*conj(Mmmm2)) + 2.*real(cm1m3*Mmmm1*conj(Mmmm3)) + 2.*real(cm2m3*Mmmm2*conj(Mmmm3)) ); double Mpmm = real( cm1m1*pow(abs(Mpmm1),2) + cm2m2*pow(abs(Mpmm2),2) + cm3m3*pow(abs(Mpmm3),2) + 2.*real(cm1m2*Mpmm1*conj(Mpmm2)) + 2.*real(cm1m3*Mpmm1*conj(Mpmm3)) + 2.*real(cm2m3*Mpmm2*conj(Mpmm3)) ); // Divide by WProp double WPropfact = WProp(plbar, pl); return (2*WPropfact*(Mmmm+Mpmm)/24./4.)/(pa-p1-pl-plbar).m2()/(p2+p3-pb).m2(); } // W+Jets qqxCentral double ME_WCenqqx_qq(HLV pa, HLV pb,HLV pl, HLV plbar, std::vector<HLV> partons, bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove ){ static bool is_sigma_index_set(false); if(!is_sigma_index_set){ if(init_sigma_index()) is_sigma_index_set = true; else return 0.;} HLV pq, pqbar, p1, p4; if (qqxmarker){ pqbar = partons[nabove+1]; pq = partons[nabove+2];} else{ pq = partons[nabove+1]; pqbar = partons[nabove+2];} p1 = partons.front(); p4 = partons.back(); Tensor<1> T1am, T4bm, T1ap, T4bp; if(!(aqlinepa)){ T1ap = TCurrent(p1, true, pa, true); T1am = TCurrent(p1, false, pa, false);} else if(aqlinepa){ T1ap = TCurrent(pa, true, p1, true); T1am = TCurrent(pa, false, p1, false);} if(!(aqlinepb)){ T4bp = TCurrent(p4, true, pb, true); T4bm = TCurrent(p4, false, pb, false);} else if(aqlinepb){ T4bp = TCurrent(pb, true, p4, true); T4bm = TCurrent(pb, false, p4, false);} // Calculate the 3 separate contributions to the effective vertex Tensor<2> Xunc = MUncrossW(pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove); Tensor<2> Xcro = MCrossW( pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove); Tensor<2> Xsym = MSymW( pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove); // 4 Different Helicity Choices (Differs from Pure Jet Case, where there is // also the choice in qqbar helicity. // (- - hel choice) COM M_mmUnc = (((Xunc).contract(T1am,1)).contract(T4bm,1)); COM M_mmCro = (((Xcro).contract(T1am,1)).contract(T4bm,1)); COM M_mmSym = (((Xsym).contract(T1am,1)).contract(T4bm,1)); // (- + hel choice) COM M_mpUnc = (((Xunc).contract(T1am,1)).contract(T4bp,1)); COM M_mpCro = (((Xcro).contract(T1am,1)).contract(T4bp,1)); COM M_mpSym = (((Xsym).contract(T1am,1)).contract(T4bp,1)); // (+ - hel choice) COM M_pmUnc = (((Xunc).contract(T1ap,1)).contract(T4bm,1)); COM M_pmCro = (((Xcro).contract(T1ap,1)).contract(T4bm,1)); COM M_pmSym = (((Xsym).contract(T1ap,1)).contract(T4bm,1)); // (+ + hel choice) COM M_ppUnc = (((Xunc).contract(T1ap,1)).contract(T4bp,1)); COM M_ppCro = (((Xcro).contract(T1ap,1)).contract(T4bp,1)); COM M_ppSym = (((Xsym).contract(T1ap,1)).contract(T4bp,1)); //Colour factors: COM cmsms,cmumu,cmcmc,cmsmu,cmsmc,cmumc; cmsms=3.; cmumu=4./3.; cmcmc=4./3.; cmsmu =3./2.*COM(0.,1.); cmsmc = -3./2.*COM(0.,1.); cmumc = -1./6.; // Work Out Interference in each case of helicity: double amp_mm = real(cmsms*pow(abs(M_mmSym),2) +cmumu*pow(abs(M_mmUnc),2) +cmcmc*pow(abs(M_mmCro),2) +2.*real(cmsmu*M_mmSym*conj(M_mmUnc)) +2.*real(cmsmc*M_mmSym*conj(M_mmCro)) +2.*real(cmumc*M_mmUnc*conj(M_mmCro))); double amp_mp = real(cmsms*pow(abs(M_mpSym),2) +cmumu*pow(abs(M_mpUnc),2) +cmcmc*pow(abs(M_mpCro),2) +2.*real(cmsmu*M_mpSym*conj(M_mpUnc)) +2.*real(cmsmc*M_mpSym*conj(M_mpCro)) +2.*real(cmumc*M_mpUnc*conj(M_mpCro))); double amp_pm = real(cmsms*pow(abs(M_pmSym),2) +cmumu*pow(abs(M_pmUnc),2) +cmcmc*pow(abs(M_pmCro),2) +2.*real(cmsmu*M_pmSym*conj(M_pmUnc)) +2.*real(cmsmc*M_pmSym*conj(M_pmCro)) +2.*real(cmumc*M_pmUnc*conj(M_pmCro))); double amp_pp = real(cmsms*pow(abs(M_ppSym),2) +cmumu*pow(abs(M_ppUnc),2) +cmcmc*pow(abs(M_ppCro),2) +2.*real(cmsmu*M_ppSym*conj(M_ppUnc)) +2.*real(cmsmc*M_ppSym*conj(M_ppCro)) +2.*real(cmumc*M_ppUnc*conj(M_ppCro))); double amp=((amp_mm+amp_mp+amp_pm+amp_pp)/(9.*4.)); HLV q1,q3; q1=pa; for(int i=0;i<nabove+1;i++){ q1-=partons.at(i); } q3 = q1 - pq - pqbar - pl - plbar; double t1 = (q1).m2(); double t3 = (q3).m2(); //Divide by t-channels amp/=(t1*t1*t3*t3); //Divide by WProp double WPropfact = WProp(plbar, pl); amp*=WPropfact; return amp; } // no wqq emission double ME_W_Cenqqx_qq(HLV pa, HLV pb,HLV pl,HLV plbar, std::vector<HLV> partons, bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove, int nbelow, bool forwards ){ static bool is_sigma_index_set(false); if(!is_sigma_index_set){ if(init_sigma_index()) is_sigma_index_set = true; else return 0.; } if (!forwards){ //If Emission from Leg a instead, flip process. HLV dummymom = pa; bool dummybool= aqlinepa; int dummyint = nabove; pa = pb; pb = dummymom; std::reverse(partons.begin(),partons.end()); qqxmarker = !(qqxmarker); aqlinepa = aqlinepb; aqlinepb = dummybool; nabove = nbelow; nbelow = dummyint; } HLV pq, pqbar, p1,p4; if (qqxmarker){ pqbar = partons[nabove+1]; pq = partons[nabove+2];} else{ pq = partons[nabove+1]; pqbar = partons[nabove+2];} p1 = partons.front(); p4 = partons.back(); Tensor<1> T1am(0.), T1ap(0.); if(!(aqlinepa)){ T1ap = TCurrent(p1, true, pa, true); T1am = TCurrent(p1, false, pa, false);} else if(aqlinepa){ T1ap = TCurrent(pa, true, p1, true); T1am = TCurrent(pa, false, p1, false);} Tensor <1> T4bm = jW(pb, p4, plbar, pl, aqlinepb); // Calculate the 3 separate contributions to the effective vertex Tensor<2> Xunc_m = MUncross(pa, pq, pqbar,partons, false, nabove); Tensor<2> Xcro_m = MCross( pa, pq, pqbar,partons, false, nabove); Tensor<2> Xsym_m = MSym( pa, p1, pb, p4, pq, pqbar, partons, false, nabove); Tensor<2> Xunc_p = MUncross(pa, pq, pqbar,partons, true, nabove); Tensor<2> Xcro_p = MCross( pa, pq, pqbar,partons, true, nabove); Tensor<2> Xsym_p = MSym( pa, p1, pb, p4, pq, pqbar, partons, true, nabove); // (- - hel choice) COM M_mmUnc = (((Xunc_m).contract(T1am,1)).contract(T4bm,1)); COM M_mmCro = (((Xcro_m).contract(T1am,1)).contract(T4bm,1)); COM M_mmSym = (((Xsym_m).contract(T1am,1)).contract(T4bm,1)); // (- + hel choice) COM M_mpUnc = (((Xunc_p).contract(T1am,1)).contract(T4bm,1)); COM M_mpCro = (((Xcro_p).contract(T1am,1)).contract(T4bm,1)); COM M_mpSym = (((Xsym_p).contract(T1am,1)).contract(T4bm,1)); // (+ - hel choice) COM M_pmUnc = (((Xunc_m).contract(T1ap,1)).contract(T4bm,1)); COM M_pmCro = (((Xcro_m).contract(T1ap,1)).contract(T4bm,1)); COM M_pmSym = (((Xsym_m).contract(T1ap,1)).contract(T4bm,1)); // (+ + hel choice) COM M_ppUnc = (((Xunc_p).contract(T1ap,1)).contract(T4bm,1)); COM M_ppCro = (((Xcro_p).contract(T1ap,1)).contract(T4bm,1)); COM M_ppSym = (((Xsym_p).contract(T1ap,1)).contract(T4bm,1)); //Colour factors: COM cmsms,cmumu,cmcmc,cmsmu,cmsmc,cmumc; cmsms=3.; cmumu=4./3.; cmcmc=4./3.; cmsmu =3./2.*COM(0.,1.); cmsmc = -3./2.*COM(0.,1.); cmumc = -1./6.; // Work Out Interference in each case of helicity: double amp_mm = real(cmsms*pow(abs(M_mmSym),2) +cmumu*pow(abs(M_mmUnc),2) +cmcmc*pow(abs(M_mmCro),2) +2.*real(cmsmu*M_mmSym*conj(M_mmUnc)) +2.*real(cmsmc*M_mmSym*conj(M_mmCro)) +2.*real(cmumc*M_mmUnc*conj(M_mmCro))); double amp_mp = real(cmsms*pow(abs(M_mpSym),2) +cmumu*pow(abs(M_mpUnc),2) +cmcmc*pow(abs(M_mpCro),2) +2.*real(cmsmu*M_mpSym*conj(M_mpUnc)) +2.*real(cmsmc*M_mpSym*conj(M_mpCro)) +2.*real(cmumc*M_mpUnc*conj(M_mpCro))); double amp_pm = real(cmsms*pow(abs(M_pmSym),2) +cmumu*pow(abs(M_pmUnc),2) +cmcmc*pow(abs(M_pmCro),2) +2.*real(cmsmu*M_pmSym*conj(M_pmUnc)) +2.*real(cmsmc*M_pmSym*conj(M_pmCro)) +2.*real(cmumc*M_pmUnc*conj(M_pmCro))); double amp_pp = real(cmsms*pow(abs(M_ppSym),2) +cmumu*pow(abs(M_ppUnc),2) +cmcmc*pow(abs(M_ppCro),2) +2.*real(cmsmu*M_ppSym*conj(M_ppUnc)) +2.*real(cmsmc*M_ppSym*conj(M_ppCro)) +2.*real(cmumc*M_ppUnc*conj(M_ppCro))); double amp=((amp_mm+amp_mp+amp_pm+amp_pp)/(9.*4.)); HLV q1,q3; q1=pa; for(int i=0;i<nabove+1;i++){ q1-=partons.at(i); } q3 = q1 - pq - pqbar; double t1 = (q1).m2(); double t3 = (q3).m2(); //Divide by t-channels amp/=(t1*t1*t3*t3); //Divide by WProp double WPropfact = WProp(plbar, pl); amp*=WPropfact; return amp; }