diff --git a/src/Event.cc b/src/Event.cc index 262f749..600fd85 100644 --- a/src/Event.cc +++ b/src/Event.cc @@ -1,1415 +1,1508 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #include "HEJ/Event.hh" #include +#include #include #include #include #include #include #include #include #include #include #include #include #include "HEJ/event_types.hh" #include "fastjet/ClusterSequence.hh" #include "fastjet/JetDefinition.hh" #include "fastjet/PseudoJet.hh" #include "LHEF/LHEF.h" #include "HEJ/Constants.hh" #include "HEJ/EWConstants.hh" #include "HEJ/PDG_codes.hh" #include "HEJ/RNG.hh" #include "HEJ/exceptions.hh" #include "HEJ/LorentzVector.hh" #include "HEJ/utility.hh" namespace HEJ { /** * returns all EventTypes implemented in HEJ */ size_t implemented_types(std::vector const & bosons){ using namespace event_type; // no bosons if(bosons.empty()) return FKL | UNO | QQBAR; // 1 boson if(bosons.size()== 1) { switch (bosons[0].type) { case ParticleID::Wp: case ParticleID::Wm: return FKL | UNO | QQBAR; case ParticleID::Z_photon_mix: return FKL | UNO; case ParticleID::h: return FKL | UNO; default: return non_resummable; } } // 2 bosons if(bosons.size() == 2) { // Resum only samesign W events if(bosons[0].type == ParticleID::Wp && bosons[1].type == ParticleID::Wp) { return FKL; } else if(bosons[0].type == ParticleID::Wm && bosons[1].type == ParticleID::Wm) { return FKL; } } return non_resummable; } namespace { using std::size_t; //! LHE status codes namespace lhe_status { enum Status: int { in = -1, decay = 2, out = 1, }; } using LHE_Status = lhe_status::Status; //! true if leptonic W decay bool valid_W_decay( int const w_charge, std::vector const & decays ){ assert(std::abs(w_charge) == 1); if(decays.size() != 2) // no 1->2 decay return false; const int pidsum = decays[0].type + decays[1].type; if( std::abs(pidsum) != 1 || pidsum != w_charge ) // correct charge return false; // leptonic decay (only check first, second follows from pidsum) if( w_charge == 1 ) // W+ return is_charged_antilepton(decays[0]) || is_neutrino(decays[0]); // W- return is_charged_lepton(decays[0]) || is_antineutrino(decays[0]); } //! true for Z decay to charged leptons bool valid_Z_decay(std::vector const & decays){ if(decays.size() != 2) // no 1->2 decay return false; if(decays[0].type != anti(decays[1].type)) { return false; } // leptonic decay (only check first, second follows from above) return is_charged_anylepton(decays[0]); } //! true if supported decay bool valid_decay(std::vector const & decays){ return valid_W_decay(+1, decays) || // Wp valid_W_decay(-1, decays) || // Wm valid_Z_decay( decays) // Z/gamma ; } /// @name helper functions to determine event type //@{ /** - * \brief check if final state valid for HEJ - * - * check final state has the expected number of valid decays for bosons - * and all the rest are quarks or gluons - */ - bool final_state_ok(Event const & ev){ - size_t invalid_decays = ev.decays().size(); - - std::vector const & outgoing = ev.outgoing(); - for( size_t i=0; i second; - - fastjet::PseudoJet res = std::accumulate( - progeny.cbegin(), progeny.cend(), fastjet::PseudoJet(), - [](fastjet::PseudoJet & sum, Particle const & p) -> fastjet::PseudoJet { - return std::move(sum) + p.p; - } - ); - - if(!nearby(out.p, res, out.E())){ return false; } - } - - // W decays (required) - if(std::abs(out.type) == ParticleID::Wp){ - if( decay != ev.decays().cend() && - valid_W_decay(out.type>0?+1:-1, decay->second) - ){ - --invalid_decays; - } - else return false; - } - - // Higgs decays (optional) - else if(out.type == ParticleID::h){ - if(decay != ev.decays().cend()) --invalid_decays; - } - - // Z decays (required) - else if(out.type == ParticleID::Z_photon_mix){ - if( decay != ev.decays().cend() && - valid_Z_decay(decay->second) - ){ - --invalid_decays; - } - else return false; - } - } - else if(! is_parton(out.type)) return false; - } - // any invalid decays? - return invalid_decays == 0; - } - - - - /** * \brief function which determines if type change is consistent with Wp emission. * @param in incoming Particle id * @param out outgoing Particle id * @param is_qqbar Current both incoming/both outgoing? * * \see is_Wm_Change */ bool is_Wp_Change(ParticleID in, ParticleID out, bool is_qqbar){ using namespace pid; if(!is_qqbar && (in==d_bar || in==u || in==s_bar || in==c)) return out == (in-1); if( is_qqbar && (in==d || in==u_bar || in==s || in==c_bar)) return out == -(in+1); return false; } /** * \brief function which determines if type change is consistent with Wm emission. * @param in incoming Particle id * @param out outgoing Particle id * @param is_qqbar Current both incoming/both outgoing? * * Ensures that change type of quark line is possible by a flavour changing * Wm emission. Allows checking of is_qqbar currents also. */ bool is_Wm_Change(ParticleID in, ParticleID out, bool is_qqbar){ using namespace pid; if(!is_qqbar && (in==d || in==u_bar || in==s || in==c_bar)) return out == (in+1); if( is_qqbar && (in==d_bar || in==u || in==s_bar || in==c)) return out == -(in-1); return false; } /** * \brief checks if particle type remains same from incoming to outgoing * @param in incoming Particle * @param out outgoing Particle * @param is_qqbar Current both incoming/outgoing? */ bool no_flavour_change(ParticleID in, ParticleID out, bool is_qqbar){ const int qqbarCurrent = is_qqbar?-1:1; if(std::abs(in)<=pid::top || in==pid::gluon) return (in==out*qqbarCurrent); return false; } - bool has_enough_jets(Event const & event){ - if(event.jets().size() >= 2) return true; - if(event.jets().empty()) return false; - // check for h+jet - const auto the_higgs = std::find_if( - begin(event.outgoing()), end(event.outgoing()), - [](const auto & particle) { return particle.type == pid::higgs; } - ); - return the_higgs != end(event.outgoing()); - } - bool is_gluon_to_Higgs(const ParticleID in, const ParticleID out) { return in == pid::gluon && out == pid::Higgs; } /** * \brief check if we have a valid Impact factor * @param in incoming Particle * @param out outgoing Particle * @param is_qqbar Current both incoming/outgoing? * @param W_change returns +1 if Wp, -1 if Wm, else 0 */ bool is_valid_impact_factor( ParticleID in, ParticleID out, bool is_qqbar, int & W_change ){ if( no_flavour_change(in, out, is_qqbar) || is_gluon_to_Higgs(in, out)) { return true; } if( is_Wp_Change(in, out, is_qqbar) ) { W_change+=1; return true; } if( is_Wm_Change(in, out, is_qqbar) ) { W_change-=1; return true; } return false; } bool is_extremal_higgs_off_quark( const ParticleID in, const ParticleID extremal_out, const ParticleID out ) { return in == out && extremal_out == pid::higgs && is_anyquark(in); } //! Returns all possible classifications from the impact factors // the beginning points are changed s.t. after the the classification they // point to the beginning of the (potential) FKL chain // sets W_change: + if Wp change // 0 if no change // - if Wm change // This function can be used with forward & backwards iterators template size_t possible_impact_factors( ParticleID incoming_id, // incoming OutIterator & begin_out, OutIterator const & end_out, // outgoing int & W_change, std::vector const & boson, bool const backward // backward? ){ using namespace event_type; if(begin_out == end_out) return non_resummable; // keep track of all states that we don't test size_t not_tested = qqbar_mid; if(backward) not_tested |= unof | qqbar_exf; else not_tested |= unob | qqbar_exb; // Is this LL current? if( is_valid_impact_factor(incoming_id, begin_out->type, false, W_change) ){ ++begin_out; return not_tested | FKL; } // q -> H q and qbar -> H qbar are technically not LL, // but we treat them as such anyway const auto next = std::next(begin_out); if( // first ensure that the next particle is not part of the *other* impact factor next != end_out && is_extremal_higgs_off_quark(incoming_id, begin_out->type, next->type) ) { std::advance(begin_out, 2); return not_tested | FKL; } // or NLL current? // -> needs two partons in two different jets if( std::distance(begin_out, end_out)>=2 ){ auto next = std::next(begin_out); // Is this unordered emisson? if( incoming_id!=pid::gluon && begin_out->type==pid::gluon ){ if( is_valid_impact_factor( incoming_id, next->type, false, W_change ) ){ // veto Higgs inside uno assert(next!=end_out); if( !boson.empty() && boson.front().type == ParticleID::h ){ if( (backward && boson.front().rapidity() < next->rapidity()) ||(!backward && boson.front().rapidity() > next->rapidity())) return non_resummable; } begin_out = std::next(next); return not_tested | (backward?unob:unof); } } // Is this QQbar? else if( incoming_id==pid::gluon ){ if( is_valid_impact_factor( begin_out->type, next->type, true, W_change ) ){ // veto Higgs inside qqbar assert(next!=end_out); if( !boson.empty() && boson.front().type == ParticleID::h ){ if( (backward && boson.front().rapidity() < next->rapidity()) ||(!backward && boson.front().rapidity() > next->rapidity())) return non_resummable; } begin_out = std::next(next); return not_tested | (backward?qqbar_exb:qqbar_exf); } } } return non_resummable; } //! Returns all possible classifications from central emissions // the beginning points are changed s.t. after the the classification they // point to the end of the emission chain // sets W_change: + if Wp change // 0 if no change // - if Wm change template size_t possible_central( OutIterator & begin_out, OutIterator const & end_out, int & W_change, std::vector const & boson ){ using namespace event_type; // if we already passed the central chain, // then it is not a valid all-order state if(std::distance(begin_out, end_out) < 0) return non_resummable; // keep track of all states that we don't test size_t possible = UNO | EXTREMAL_QQBAR; // Find the first quark or antiquark emission begin_out = std::find_if( begin_out, end_out, [](Particle const & p) { return is_anyquark(p); } ); // end of chain -> FKL if( begin_out==end_out ){ return possible | FKL; } // is this a qqbar-pair? // needs two partons in two separate jets auto next = std::next(begin_out); if( next != end_out && is_valid_impact_factor(begin_out->type, next->type, true, W_change) ){ // veto Higgs inside qqbar if( !boson.empty() && boson.front().type == ParticleID::h && boson.front().rapidity() > begin_out->rapidity() && boson.front().rapidity() < next->rapidity() ){ return non_resummable; } begin_out = std::next(next); // remaining chain should be pure FKL (gluon or higgs) if(std::any_of( begin_out, end_out, [](Particle const & p) { return is_anyquark(p); } )) { return non_resummable; } return possible | qqbar_mid; } return non_resummable; } namespace { bool is_parton_or_higgs(Particle const & p) { return is_parton(p) || p.type == pid::higgs; } + + bool decay_conserves_charge( + Particle const &parent, + std::vector const &products + ) { + auto charge_diff = charge(parent); + for (auto const &p : products) { + charge_diff -= charge(p); + } + return charge_diff == 0; + } + + bool charge_conserved(Event const &ev) { + boost::rational charge_diff{0}; + for (auto const &in : ev.incoming()) { + charge_diff += charge(in); + } + for (auto const &out : ev.outgoing()) { + charge_diff -= charge(out); + } + if (charge_diff != 0) return false; + + return std::all_of( + ev.decays().begin(), ev.decays().end(), + [&ev](auto const &decay) { + auto const &[parent, products] = decay; + return decay_conserves_charge(ev.outgoing()[parent], products); + }); + } + + bool decay_conserves_momentum( + Particle const &parent, + std::vector const &products, + const double tolerance + ) { + fastjet::PseudoJet total_p; + for (auto const &p : products) total_p += p.p; + return nearby_ep(parent.p, total_p, tolerance); + } + + bool event_momentum_conserved(Event const &ev, const double tolerance) { + return momentum_conserved(ev, tolerance) + && std::all_of( + ev.decays().begin(), ev.decays().end(), + [&ev, tolerance](auto const &decay) { + auto const &[parent, products] = decay; + return decay_conserves_momentum( + ev.outgoing()[parent], products, tolerance); + }); + } + + template + bool massless_particles_onshell( + Container const &c, + const double tolerance + ) { + return std::all_of( + c.begin(), c.end(), + [tolerance](Particle const &p) { + return is_massive(p) || p.m() < tolerance * p.E(); + }); + } + + bool all_massless_particles_onshell( + Event const &ev, + const double tolerance + ) { + return massless_particles_onshell(ev.incoming(), tolerance) + && massless_particles_onshell(ev.outgoing(), tolerance) + && std::all_of( + ev.decays().begin(), ev.decays().end(), + [tolerance](auto const &decay) { + return massless_particles_onshell(decay.second, tolerance); + }); + } + + bool no_incoming_pt(Event const &ev, const double tolerance) { + return std::all_of( + ev.incoming().cbegin(), ev.incoming().end(), + [tolerance](Particle const &p) { + return std::abs(p.px()) < tolerance && std::abs(p.py()) < tolerance; + }); + } + + bool is_invalid(Event const &ev, const double tolerance) { + return !( + charge_conserved(ev) + && event_momentum_conserved(ev, tolerance) + && no_incoming_pt(ev, tolerance) + && all_massless_particles_onshell(ev, tolerance) + ); + } + + // TODO: choose reasonable value or make configurable + constexpr double TOLERANCE = 1e-3; + + bool incoming_are_partons(Event const &ev) { + return std::all_of( + ev.incoming().begin(), ev.incoming().end(), + [](Particle const &p) { return is_parton(p); } + ); + } + + bool known_outgoing(Event const &ev) { + return std::all_of( + ev.outgoing().begin(), ev.outgoing().end(), + [](Particle const &p) { + return is_parton(p) + || p.type == pid::Higgs + || std::abs(p.type) == pid::Wp + || p.type == pid::Z_photon_mix; + }); + } + + bool is_same_sign_WW(std::vector const &particles) { + return particles.size() == 2 + && std::abs(particles.front().type) == pid::Wp + && particles.front().type == particles.back().type; + } + + bool all_W_Zphoton_decay(Event const &ev) { + auto const &out = ev.outgoing(); + for (std::size_t i = 0; i < out.size(); ++i) { + if ( + (std::abs(out[i].type) == pid::Wp || out[i].type == pid::Z_photon_mix) + && ev.decays().count(i) == 0 + ) { + return false; + } + } + return true; + } + + bool decay_known( + Particle const &parent, + std::vector const &products + ) { + if (parent.type == pid::Higgs) return true; + if (parent.type == pid::Z_photon_mix) return valid_Z_decay(products); + if (std::abs(parent.type) == pid::Wp) { + assert(charge(parent).denominator() == 1); + return valid_W_decay(charge(parent).numerator(), products); + } + return false; + } + + bool all_decays_known(Event const &ev) { + return std::all_of( + ev.decays().begin(), ev.decays().end(), + [&ev](auto const &decay) { + auto const &[parent, products] = decay; + return decay_known(ev.outgoing()[parent], products); + }); + } + + bool is_known_process_type(Event const &ev) { + if (!incoming_are_partons(ev)) return false; + if (!known_outgoing(ev)) return false; + if (!all_W_Zphoton_decay(ev)) return false; + if (!all_decays_known(ev)) return false; + auto const bosons = filter_AWZH_bosons(ev.outgoing()); + if (bosons.size() > 2) return false; + if (bosons.size() == 2 && !is_same_sign_WW(bosons)) { + return false; + } + if (bosons.size() == 1 && bosons.front().type == pid::Higgs) { + return !ev.jets().empty(); + } + return ev.jets().size() >= 2; + } } /** * \brief Checks for all event types * @param ev Event * @returns Event Type * */ event_type::EventType classify(Event const & ev){ using namespace event_type; - if(! has_enough_jets(ev)) - return not_enough_jets; - // currently we can't handle multiple boson states in the ME. So they are - // considered "bad_final_state" even though the "classify" could work with - // them. - if(! final_state_ok(ev)) - return bad_final_state; + if(is_invalid(ev, TOLERANCE)) return invalid; + if(! is_known_process_type(ev)) return unknown; // initialise variables auto const & in = ev.incoming(); // range for current checks auto begin_out = boost::make_filter_iterator( is_parton_or_higgs, cbegin(ev.outgoing()), cend(ev.outgoing()) ); auto rbegin_out = std::make_reverse_iterator( boost::make_filter_iterator( is_parton_or_higgs, cend(ev.outgoing()), cend(ev.outgoing()) ) ); assert(std::distance(begin(in), end(in)) == 2); assert(std::distance(begin_out, rbegin_out.base()) >= 2); assert(std::is_sorted(begin_out, rbegin_out.base(), rapidity_less{})); auto const bosons{ filter_AWZH_bosons(ev.outgoing()) }; // keep track of potential W couplings, at the end the sum should be 0 int remaining_Wp = 0; int remaining_Wm = 0; for(auto const & boson : bosons){ if(boson.type == ParticleID::Wp) ++remaining_Wp; else if(boson.type == ParticleID::Wm) ++remaining_Wm; } size_t final_type = VALID; // check forward impact factor int W_change = 0; final_type &= possible_impact_factors( in.front().type, begin_out, rbegin_out.base(), W_change, bosons, true ); if( final_type == non_resummable ) return non_resummable; if(W_change>0) remaining_Wp-=W_change; else if(W_change<0) remaining_Wm+=W_change; // check backward impact factor W_change = 0; final_type &= possible_impact_factors( in.back().type, rbegin_out, std::make_reverse_iterator(begin_out), W_change, bosons, false ); if( final_type == non_resummable ) return non_resummable; if(W_change>0) remaining_Wp-=W_change; else if(W_change<0) remaining_Wm+=W_change; // check central emissions W_change = 0; final_type &= possible_central( begin_out, rbegin_out.base(), W_change, bosons ); if( final_type == non_resummable ) return non_resummable; if(W_change>0) remaining_Wp-=W_change; else if(W_change<0) remaining_Wm+=W_change; // Check whether the right number of Ws are present if( remaining_Wp != 0 || remaining_Wm != 0 ) return non_resummable; // result has to be unique if( (final_type & (final_type-1)) != 0) return non_resummable; // check that each sub processes is implemented // (has to be done at the end) if( (final_type & ~implemented_types(bosons)) != 0 ) return non_resummable; return static_cast(final_type); } //@} Particle extract_particle(LHEF::HEPEUP const & hepeup, size_t i){ auto id = static_cast(hepeup.IDUP[i]); auto colour = is_parton(id)?hepeup.ICOLUP[i]:std::optional(); return { id, { hepeup.PUP[i][0], hepeup.PUP[i][1], hepeup.PUP[i][2], hepeup.PUP[i][3] }, colour }; } bool is_decay_product(std::pair const & mothers){ if(mothers.first == 0) return false; return mothers.second == 0 || mothers.first == mothers.second; } } // namespace Event::EventData::EventData(LHEF::HEPEUP const & hepeup){ parameters.central = EventParameters{ hepeup.scales.mur, hepeup.scales.muf, hepeup.XWGTUP }; size_t in_idx = 0; for (int i = 0; i < hepeup.NUP; ++i) { // skip decay products // we will add them later on, but we have to ensure that // the decayed particle is added before if(is_decay_product(hepeup.MOTHUP[i])) continue; auto particle = extract_particle(hepeup, i); // needed to identify mother particles for decay products particle.p.set_user_index(i+1); if(hepeup.ISTUP[i] == LHE_Status::in){ if(in_idx > incoming.size()) { throw std::invalid_argument{ "Event has too many incoming particles" }; } incoming[in_idx++] = std::move(particle); } else outgoing.emplace_back(std::move(particle)); } // add decay products for (int i = 0; i < hepeup.NUP; ++i) { if(!is_decay_product(hepeup.MOTHUP[i])) continue; const int mother_id = hepeup.MOTHUP[i].first; const auto mother = std::find_if( begin(outgoing), end(outgoing), [mother_id](Particle const & particle){ return particle.p.user_index() == mother_id; } ); if(mother == end(outgoing)){ throw std::invalid_argument{"invalid decay product parent"}; } const int mother_idx = std::distance(begin(outgoing), mother); assert(mother_idx >= 0); decays[mother_idx].emplace_back(extract_particle(hepeup, i)); } } Event::Event( UnclusteredEvent const & ev, fastjet::JetDefinition const & jet_def, double const min_jet_pt ): Event( Event::EventData{ ev.incoming, ev.outgoing, ev.decays, Parameters{ev.central, ev.variations} }.cluster(jet_def, min_jet_pt) ) {} //! @TODO remove in HEJ 2.2.0 UnclusteredEvent::UnclusteredEvent(LHEF::HEPEUP const & hepeup){ Event::EventData const evData{hepeup}; incoming = evData.incoming; outgoing = evData.outgoing; decays = evData.decays; central = evData.parameters.central; variations = evData.parameters.variations; } void Event::EventData::sort(){ // sort particles std::sort( begin(incoming), end(incoming), [](Particle const & o1, Particle const & o2){return o1.p.pz() idx(old_outgoing.size()); std::iota(idx.begin(), idx.end(), 0); std::sort(idx.begin(), idx.end(), [&old_outgoing](size_t i, size_t j){ return old_outgoing[i].rapidity() < old_outgoing[j].rapidity(); }); outgoing.clear(); outgoing.reserve(old_outgoing.size()); for(size_t i: idx) { outgoing.emplace_back(std::move(old_outgoing[i])); } // find decays again if(!decays.empty()){ auto old_decays = std::move(decays); decays.clear(); for(size_t i=0; isecond)); } assert(old_decays.size() == decays.size()); } } namespace { // use valid_X_decay to determine boson type ParticleID reconstruct_type(std::vector const & progeny) { if(valid_W_decay(+1, progeny)) { return ParticleID::Wp; } if(valid_W_decay(-1, progeny)) { return ParticleID::Wm; } if(valid_Z_decay(progeny)) { return ParticleID::Z_photon_mix; } throw not_implemented{ "final state with decay X -> " + name(progeny[0].type) + " + " + name(progeny[1].type) }; } // reconstruct particle with explicit ParticleID Particle reconstruct_boson( std::vector const & progeny, ParticleID const & type ) { Particle progenitor; progenitor.p = progeny[0].p + progeny[1].p; progenitor.type = type; return progenitor; } // reconstruct via call to reconstruct_type Particle reconstruct_boson(std::vector const & progeny) { Particle progenitor {reconstruct_boson(progeny, reconstruct_type(progeny))}; assert(is_AWZH_boson(progenitor)); return progenitor; } using GroupedParticles = std::vector >; using Decay = std::pair >; using Decays = std::vector; // return groups of reconstructable progeny std::vector group_progeny(std::vector & leptons) { /** Warning: The partition in to charged/neutral leptons is valid ONLY for WW. **/ assert(leptons.size() == 4); auto const begin_neutrino = std::partition( begin(leptons), end(leptons), [](Particle const & p) {return !is_anyneutrino(p);} ); std::vector neutrinos (begin_neutrino, end(leptons)); leptons.erase(begin_neutrino, end(leptons)); if(leptons.size() != 2 || neutrinos.size() != 2) { return {}; } assert(leptons.size() == 2 && neutrinos.size() == 2); std::vector valid_groupings; GroupedParticles candidate_grouping{{leptons[0], neutrinos[0]}, {leptons[1], neutrinos[1]}}; if(valid_decay(candidate_grouping.front()) && valid_decay(candidate_grouping.back())) { valid_groupings.emplace_back(std::move(candidate_grouping)); } candidate_grouping = {{leptons[1], neutrinos[0]}, {leptons[0], neutrinos[1]}}; if(valid_decay(candidate_grouping.front()) && valid_decay(candidate_grouping.back())) { valid_groupings.emplace_back(std::move(candidate_grouping)); } return valid_groupings; } // 'best' decay ordering measure double decay_measure(const Particle& reconstructed, EWConstants const & params) { ParticleProperties ref = params.prop(reconstructed.type); return std::abs(reconstructed.p.m() - ref.mass); } // decay_measure accumulated over decays double decay_measure(Decays const & decays, EWConstants const & params) { return std::accumulate( cbegin(decays), cend(decays), 0., [¶ms] (double dm, Decay const & decay) -> double { return dm + decay_measure(decay.first, params); } ); } // select best combination of decays for the event Decays select_decays ( std::vector & leptons, EWConstants const & ew_parameters ) { std::vector groupings = group_progeny(leptons); std::vector valid_decays; valid_decays.reserve(groupings.size()); // Reconstruct all groupings for(GroupedParticles const & group : groupings) { Decays decays; for(auto const & progeny : group) { decays.emplace_back(make_pair(reconstruct_boson(progeny), progeny)); } valid_decays.emplace_back(decays); } if (valid_decays.empty()) { throw not_implemented{"No supported intermediate reconstruction available"}; } if (valid_decays.size() == 1) { return valid_decays[0]; } // select decay with smallest decay_measure auto selected = std::min_element(cbegin(valid_decays), cend(valid_decays), [&ew_parameters] (auto const & d1, auto const & d2) -> bool { return decay_measure(d1, ew_parameters) < decay_measure(d2, ew_parameters); } ); return *selected; } } // namespace void Event::EventData::reconstruct_intermediate(EWConstants const & ew_parameters) { auto const begin_leptons = std::partition( begin(outgoing), end(outgoing), [](Particle const & p) {return !is_anylepton(p);} ); std::vector leptons(begin_leptons, end(outgoing)); outgoing.erase(begin_leptons, end(outgoing)); if(leptons.empty()) { return; } // nothing to do if(leptons.size() == 2) { outgoing.emplace_back(reconstruct_boson(leptons)); std::sort(begin(leptons), end(leptons), type_less{}); decays.emplace(outgoing.size()-1, std::move(leptons)); } else if(leptons.size() == 4) { Decays valid_decays = select_decays(leptons, ew_parameters); for(auto &decay : valid_decays) { outgoing.emplace_back(decay.first); std::sort(begin(decay.second), end(decay.second), type_less{}); decays.emplace(outgoing.size()-1, std::move(decay.second)); } } else { throw not_implemented { std::to_string(leptons.size()) + " leptons in the final state" }; } } namespace { void repair_momentum(fastjet::PseudoJet & p, const double tolerance) { if(p.e() > 0. && p.m2() != 0. && (p.m2() < tolerance * tolerance)) { const double rescale = std::sqrt(p.modp() / p.e()); const double e = p.e() * rescale; const double px = p.px() / rescale; const double py = p.py() / rescale; const double pz = p.pz() / rescale; p.reset(px, py, pz, e); } } } void Event::EventData::repair_momenta(const double tolerance) { for(auto & in: incoming) { if(is_massless(in)) { const double px = (std::abs(in.px()) < tolerance)?0.:in.px(); const double py = (std::abs(in.py()) < tolerance)?0.:in.py(); in.p.reset(px, py, in.p.pz(), in.p.e()); repair_momentum(in.p, tolerance); } } for(auto & out: outgoing) { if(is_massless(out)) repair_momentum(out.p, tolerance); } for(auto & decay: decays) { for(auto & out: decay.second) { if(is_massless(out)) repair_momentum(out.p, tolerance); } } } Event Event::EventData::cluster( fastjet::JetDefinition const & jet_def, double const min_jet_pt ){ sort(); return Event{ std::move(incoming), std::move(outgoing), std::move(decays), std::move(parameters), jet_def, min_jet_pt }; } Event::Event( std::array && incoming, std::vector && outgoing, std::unordered_map> && decays, Parameters && parameters, fastjet::JetDefinition const & jet_def, double const min_jet_pt ): incoming_{std::move(incoming)}, outgoing_{std::move(outgoing)}, decays_{std::move(decays)}, parameters_{std::move(parameters)}, cs_{ to_PseudoJet( filter_partons(outgoing_) ), jet_def }, min_jet_pt_{min_jet_pt} { jets_ = sorted_by_rapidity(cs_.inclusive_jets(min_jet_pt_)); assert(std::is_sorted(begin(outgoing_), end(outgoing_), rapidity_less{})); type_ = classify(*this); } namespace { //! check that Particles have a reasonable colour bool correct_colour(Particle const & part){ ParticleID id{ part.type }; if(!is_parton(id)) return !part.colour; if(!part.colour) return false; Colour const & col{ *part.colour }; if(is_quark(id)) return col.first != 0 && col.second == 0; if(is_antiquark(id)) return col.first == 0 && col.second != 0; assert(id==ParticleID::gluon); return col.first != 0 && col.second != 0 && col.first != col.second; } //! Connect parton to t-channel colour line & update the line //! returns false if connection not possible template bool try_connect_t(OutIterator const & it_part, Colour & line_colour){ if( line_colour.first == it_part->colour->second ){ line_colour.first = it_part->colour->first; return true; } if( line_colour.second == it_part->colour->first ){ line_colour.second = it_part->colour->second; return true; } return false; } //! Connect parton to u-channel colour line & update the line //! returns false if connection not possible template bool try_connect_u(OutIterator & it_part, Colour & line_colour){ auto it_next = std::next(it_part); if( try_connect_t(it_next, line_colour) && try_connect_t(it_part, line_colour) ){ it_part=it_next; return true; } return false; } } // namespace bool Event::is_leading_colour() const { if( !correct_colour(incoming()[0]) || !correct_colour(incoming()[1]) ) return false; Colour line_colour = *incoming()[0].colour; std::swap(line_colour.first, line_colour.second); // reasonable colour if(!std::all_of(outgoing().cbegin(), outgoing().cend(), correct_colour)) return false; for(auto it_part = cbegin_partons(); it_part!=cend_partons(); ++it_part){ switch (type()) { case event_type::FKL: if( !try_connect_t(it_part, line_colour) ) return false; break; case event_type::unob: case event_type::qqbar_exb: { if( !try_connect_t(it_part, line_colour) // u-channel only allowed at impact factor && (std::distance(cbegin_partons(), it_part)!=0 || !try_connect_u(it_part, line_colour))) return false; break; } case event_type::unof: case event_type::qqbar_exf: { if( !try_connect_t(it_part, line_colour) // u-channel only allowed at impact factor && (std::distance(it_part, cend_partons())!=2 || !try_connect_u(it_part, line_colour))) return false; break; } case event_type::qqbar_mid:{ auto it_next = std::next(it_part); if( !try_connect_t(it_part, line_colour) // u-channel only allowed at q-qbar/qbar-q pair && ( ( !(is_quark(*it_part) && is_antiquark(*it_next)) && !(is_antiquark(*it_part) && is_quark(*it_next))) || !try_connect_u(it_part, line_colour)) ) return false; break; } default: throw std::logic_error{"unreachable"}; } // no colour singlet exchange/disconnected diagram if(line_colour.first == line_colour.second) return false; } return (incoming()[1].colour->first == line_colour.first) && (incoming()[1].colour->second == line_colour.second); } namespace { //! connect incoming Particle to colour flow void connect_incoming(Particle & in, int & colour, int & anti_colour){ in.colour = std::make_pair(anti_colour, colour); // gluon if(in.type == pid::gluon) return; if(in.type > 0){ // quark assert(is_quark(in)); in.colour->second = 0; colour*=-1; return; } // anti-quark assert(is_antiquark(in)); in.colour->first = 0; anti_colour*=-1; } //! connect outgoing Particle to t-channel colour flow template void connect_tchannel( OutIterator & it_part, int & colour, int & anti_colour, RNG & ran ){ assert(colour>0 || anti_colour>0); if(it_part->type == ParticleID::gluon){ // gluon if(colour>0 && anti_colour>0){ // on g line => connect to colour OR anti-colour (random) if(ran.flat() < 0.5){ it_part->colour = std::make_pair(colour+2,colour); colour+=2; } else { it_part->colour = std::make_pair(anti_colour, anti_colour+2); anti_colour+=2; } } else if(colour > 0){ // on q line => connect to available colour it_part->colour = std::make_pair(colour+2, colour); colour+=2; } else { assert(colour<0 && anti_colour>0); // on qbar line => connect to available anti-colour it_part->colour = std::make_pair(anti_colour, anti_colour+2); anti_colour+=2; } } else if(is_quark(*it_part)) { // quark assert(anti_colour>0); if(colour>0){ // on g line => connect and remove anti-colour it_part->colour = std::make_pair(anti_colour, 0); anti_colour+=2; anti_colour*=-1; } else { // on qbar line => new colour colour*=-1; it_part->colour = std::make_pair(colour, 0); } } else if(is_antiquark(*it_part)) { // anti-quark assert(colour>0); if(anti_colour>0){ // on g line => connect and remove colour it_part->colour = std::make_pair(0, colour); colour+=2; colour*=-1; } else { // on q line => new anti-colour anti_colour*=-1; it_part->colour = std::make_pair(0, anti_colour); } } else { // not a parton assert(!is_parton(*it_part)); it_part->colour = {}; } } //! connect to t- or u-channel colour flow template void connect_utchannel( OutIterator & it_part, int & colour, int & anti_colour, RNG & ran ){ OutIterator it_first = it_part++; if(ran.flat()<.5) {// t-channel connect_tchannel(it_first, colour, anti_colour, ran); connect_tchannel(it_part, colour, anti_colour, ran); } else { // u-channel connect_tchannel(it_part, colour, anti_colour, ran); connect_tchannel(it_first, colour, anti_colour, ran); } } } // namespace bool Event::generate_colours(RNG & ran){ // generate only for HEJ events if(!event_type::is_resummable(type())) return false; assert(std::is_sorted( begin(outgoing()), end(outgoing()), rapidity_less{})); assert(incoming()[0].pz() < incoming()[1].pz()); // positive (anti-)colour -> can connect // negative (anti-)colour -> not available/used up by (anti-)quark int colour = COLOUR_OFFSET; int anti_colour = colour+1; // initialise first connect_incoming(incoming_[0], colour, anti_colour); // reset outgoing colours std::for_each(outgoing_.begin(), outgoing_.end(), [](Particle & part){ part.colour = {};}); for(auto it_part = begin_partons(); it_part!=end_partons(); ++it_part){ switch (type()) { // subleading can connect to t- or u-channel case event_type::unob: case event_type::qqbar_exb: { if( std::distance(begin_partons(), it_part)==0) connect_utchannel(it_part, colour, anti_colour, ran); else connect_tchannel(it_part, colour, anti_colour, ran); break; } case event_type::unof: case event_type::qqbar_exf: { if( std::distance(it_part, end_partons())==2) connect_utchannel(it_part, colour, anti_colour, ran); else connect_tchannel(it_part, colour, anti_colour, ran); break; } case event_type::qqbar_mid:{ auto it_next = std::next(it_part); if( std::distance(begin_partons(), it_part)>0 && std::distance(it_part, end_partons())>2 && ( (is_quark(*it_part) && is_antiquark(*it_next)) || (is_antiquark(*it_part) && is_quark(*it_next)) ) ) connect_utchannel(it_part, colour, anti_colour, ran); else connect_tchannel(it_part, colour, anti_colour, ran); break; } default: // rest has to be t-channel connect_tchannel(it_part, colour, anti_colour, ran); } } // Connect last connect_incoming(incoming_[1], anti_colour, colour); assert(is_leading_colour()); return true; } // generate_colours namespace { bool valid_parton( std::vector const & jets, Particle const & parton, int const idx, double const soft_pt_regulator, double const min_extparton_pt ){ // TODO code overlap with PhaseSpacePoint::pass_extremal_cuts if(min_extparton_pt > parton.pt()) return false; if(idx<0) return false; assert(static_cast(jets.size())>=idx); auto const & jet{ jets[idx] }; return (parton.p - jet).pt()/jet.pt() <= soft_pt_regulator; } } // namespace bool Event::valid_hej_state(double const soft_pt_regulator, double const min_pt ) const { using namespace event_type; const auto is_valid_parton = [&](Particle const & parton, int const jet_idx) { return valid_parton(jets(), parton, jet_idx, soft_pt_regulator, min_pt); }; if(!is_resummable(type())) return false; auto const & jet_indices{ particle_jet_indices() }; auto jet_idx_begin{ jet_indices.cbegin() }; auto jet_idx_end{ jet_indices.crbegin() }; auto part_begin{ cbegin_partons() }; auto part_end{ crbegin_partons() }; if(!is_backward_g_to_h(*this)) { const int first_jet_idx = *jet_idx_begin; if(! is_valid_parton(*part_begin, first_jet_idx)) { return false; } ++part_begin; ++jet_idx_begin; // unob -> second parton in own jet if( type() & (unob | qqbar_exb) ){ if( (*jet_idx_begin == first_jet_idx) || !is_valid_parton(*part_begin, *jet_idx_begin) ) { return false; } ++part_begin; ++jet_idx_begin; } } if(!is_forward_g_to_h(*this)) { const int last_jet_idx = *jet_idx_end; if(!is_valid_parton(*part_end, last_jet_idx)) { return false; } ++part_end; ++jet_idx_end; if( type() & (unof | qqbar_exf) ){ if( (*jet_idx_end == last_jet_idx) || !is_valid_parton(*part_end, *jet_idx_end) ) { return false; } ++part_end; // ++jet_idx_end; // last check, we don't need idx_end afterwards } } if( type() & qqbar_mid ){ // find qqbar pair auto begin_qqbar{ std::find_if( part_begin, part_end.base(), [](Particle const & part) -> bool { return part.type != ParticleID::gluon; } )}; assert(begin_qqbar != part_end.base()); long int qqbar_pos{ std::distance(part_begin, begin_qqbar) }; assert(qqbar_pos >= 0); jet_idx_begin += qqbar_pos; const int next_jet_idx = *std::next(jet_idx_begin); if( (*jet_idx_begin == next_jet_idx) || ! is_valid_parton(*begin_qqbar, *jet_idx_begin) || ! is_valid_parton(*std::next(begin_qqbar), next_jet_idx) ) { return false; } } return true; } bool Event::valid_incoming() const{ for(std::size_t i=0; i < incoming_.size(); ++i){ if(!(HEJ::nearby_ep(std::abs(incoming_[i].pz()), incoming_[i].E(), TOL*incoming_[i].E()) && (incoming_[i].pt()==0.))) return false; } return true; } Event::ConstPartonIterator Event::begin_partons() const { return cbegin_partons(); } Event::ConstPartonIterator Event::cbegin_partons() const { return {HEJ::is_parton, cbegin(outgoing()), cend(outgoing())}; } Event::ConstPartonIterator Event::end_partons() const { return cend_partons(); } Event::ConstPartonIterator Event::cend_partons() const { return {HEJ::is_parton, cend(outgoing()), cend(outgoing())}; } Event::ConstReversePartonIterator Event::rbegin_partons() const { return crbegin_partons(); } Event::ConstReversePartonIterator Event::crbegin_partons() const { return std::reverse_iterator( cend_partons() ); } Event::ConstReversePartonIterator Event::rend_partons() const { return crend_partons(); } Event::ConstReversePartonIterator Event::crend_partons() const { return std::reverse_iterator( cbegin_partons() ); } Event::PartonIterator Event::begin_partons() { return {HEJ::is_parton, begin(outgoing_), end(outgoing_)}; } Event::PartonIterator Event::end_partons() { return {HEJ::is_parton, end(outgoing_), end(outgoing_)}; } Event::ReversePartonIterator Event::rbegin_partons() { return std::reverse_iterator( end_partons() ); } Event::ReversePartonIterator Event::rend_partons() { return std::reverse_iterator( begin_partons() ); } namespace { void print_momentum(std::ostream & os, fastjet::PseudoJet const & part){ constexpr int prec = 6; const std::streamsize orig_prec = os.precision(); os < const & col){ constexpr int width = 3; if(!col) os << "(no color)"; // American spelling for better alignment else os << "(" <first << ", " <second << ")"; } } // namespace std::ostream& operator<<(std::ostream & os, Event const & ev){ constexpr int prec = 4; constexpr int wtype = 3; // width for types const std::streamsize orig_prec = os.precision(); os < rapidity=" < rapidity=" < rapidity=" < incoming{ event.incoming() }; // First incoming should be positive pz according to LHE standard // (or at least most (everyone?) do it this way, and Pythia assumes it) if(incoming[0].pz() < incoming[1].pz()) std::swap(incoming[0], incoming[1]); for(Particle const & in: incoming){ result.IDUP.emplace_back(in.type); result.ISTUP.emplace_back(LHE_Status::in); result.PUP.push_back({in.p[0], in.p[1], in.p[2], in.p[3], in.p.m()}); result.MOTHUP.emplace_back(0, 0); assert(in.colour); result.ICOLUP.emplace_back(*in.colour); } // outgoing for(size_t i = 0; i < event.outgoing().size(); ++i){ Particle const & out = event.outgoing()[i]; result.IDUP.emplace_back(out.type); const int status = event.decays().count(i) != 0u ?LHE_Status::decay :LHE_Status::out; result.ISTUP.emplace_back(status); result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()}); result.MOTHUP.emplace_back(1, 2); if(out.colour) result.ICOLUP.emplace_back(*out.colour); else{ result.ICOLUP.emplace_back(std::make_pair(0,0)); } } // decays for(auto const & decay: event.decays()){ for(auto const & out: decay.second){ result.IDUP.emplace_back(out.type); result.ISTUP.emplace_back(LHE_Status::out); result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()}); const size_t mother_idx = 1 + event.incoming().size() + decay.first; result.MOTHUP.emplace_back(mother_idx, mother_idx); result.ICOLUP.emplace_back(0,0); } } assert(result.ICOLUP.size() == num_particles); static constexpr double unknown_spin = 9.; //per Les Houches accord result.VTIMUP = std::vector(num_particles, unknown_spin); result.SPINUP = result.VTIMUP; return result; } } // namespace HEJ