diff --git a/CMakeLists.txt b/CMakeLists.txt
index 9f176cc..10bcf1a 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -1,208 +1,208 @@
 cmake_minimum_required(VERSION 3.1 FATAL_ERROR)
 
 set(CMAKE_LEGACY_CYGWIN_WIN32 0)
 set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
 
 project("HEJ" VERSION 2.0.6 LANGUAGES C CXX)
 
 ## User settings
 include(CMakeDependentOption)
 option(EXCLUDE_QCDloop "Do not include QCDloop" FALSE)
 option(EXCLUDE_HighFive "Do not include HighFive" FALSE)
 option(EXCLUDE_HepMC "Do not include HepMC version 2" FALSE)
 option(EXCLUDE_HepMC3 "Do not include HepMC version 3" FALSE)
 CMAKE_DEPENDENT_OPTION(EXCLUDE_rivet "Do not include rivet" FALSE
                                     "NOT EXCLUDE_HepMC OR NOT EXCLUDE_HepMC3" TRUE)
 
 option(TEST_ALL "Run additional (longer) tests" FALSE)
 option(TEST_COVERAGE "Generate test coverage with \"gcovr\"" FALSE)
 
 # Set a default build type if none was specified
 set(default_build_type "RelWithDebInfo")
 
 if(NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
   message(STATUS "Setting build type to '${default_build_type}' as none was specified.")
   set(CMAKE_BUILD_TYPE "${default_build_type}" CACHE
       STRING "Choose the type of build." FORCE)
   # Set the possible values of build type for cmake-gui
   set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS
     "Debug" "Release" "MinSizeRel" "RelWithDebInfo")
 endif()
 
 ## Global flags for the compiler (all warnings)
 if (CMAKE_COMPILER_IS_GNUCC OR CMAKE_COMPILER_IS_GNUCXX)
-  set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wextra")
+  set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wextra -Wpedantic")
 elseif (MSVC)
   set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /W4 /WX /EHsc")
 endif()
 set(CMAKE_CXX_STANDARD_REQUIRED ON)
 set(CMAKE_CXX_STANDARD 14)
 
 ## Create Version
 set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_SOURCE_DIR}/cmake/Modules/")
 
 # Get the latest abbreviated commit hash of the working branch
 execute_process(
   COMMAND git rev-parse HEAD
   WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
   OUTPUT_VARIABLE PROJECT_GIT_REVISION
   OUTPUT_STRIP_TRAILING_WHITESPACE
 )
 # Get the current working branch
 execute_process(
   COMMAND git rev-parse --abbrev-ref HEAD
   WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
   OUTPUT_VARIABLE PROJECT_GIT_BRANCH
   OUTPUT_STRIP_TRAILING_WHITESPACE
   )
 
 ## target directories for install
 set(INSTALL_INCLUDE_DIR_BASE include)
 set(INSTALL_INCLUDE_DIR ${INSTALL_INCLUDE_DIR_BASE}/HEJ)
 set(INSTALL_BIN_DIR bin)
 set(INSTALL_LIB_DIR lib)
 set(INSTALL_CONFIG_DIR lib/cmake/HEJ)
 
 ## Template files
 configure_file( ${CMAKE_CURRENT_SOURCE_DIR}/cmake/Templates/Version.hh.in
                 ${PROJECT_BINARY_DIR}/include/HEJ/Version.hh  @ONLY )
 
 configure_file( ${CMAKE_CURRENT_SOURCE_DIR}/cmake/Templates/HEJ-config.cc.in
                 ${PROJECT_BINARY_DIR}/src/bin/HEJ-config.cc  @ONLY )
 
 # Generate CMake config file
 include(CMakePackageConfigHelpers)
 configure_package_config_file(
   cmake/Templates/hej-config.cmake.in
   ${CMAKE_CURRENT_BINARY_DIR}/${INSTALL_CONFIG_DIR}/hej-config.cmake
   INSTALL_DESTINATION ${INSTALL_CONFIG_DIR}
   PATH_VARS INSTALL_INCLUDE_DIR_BASE INSTALL_LIB_DIR
   )
 write_basic_package_version_file(
   ${CMAKE_CURRENT_BINARY_DIR}/${INSTALL_CONFIG_DIR}/hej-config-version.cmake
   COMPATIBILITY SameMajorVersion
   )
 install(
   FILES ${CMAKE_CURRENT_BINARY_DIR}/${INSTALL_CONFIG_DIR}/hej-config.cmake
     ${CMAKE_CURRENT_BINARY_DIR}/${INSTALL_CONFIG_DIR}/hej-config-version.cmake
   DESTINATION ${INSTALL_CONFIG_DIR})
 
 ## find dependencies
 find_package(fastjet REQUIRED)
 find_package(CLHEP 2.3 REQUIRED)
 find_package(LHAPDF REQUIRED)
 ## Amend unintuitive behaviour of FindBoost.cmake
 ## Priority of BOOST_ROOT over BOOSTROOT matches FindBoost.cmake
 ## at least for cmake 3.12
 if(DEFINED BOOST_ROOT)
   message("BOOST_ROOT set - only looking for Boost in ${BOOST_ROOT}")
   set(Boost_NO_BOOST_CMAKE ON)
   elseif(DEFINED BOOSTROOT)
   message("BOOSTROOT set - only looking for Boost in ${BOOSTROOT}")
   set(Boost_NO_BOOST_CMAKE ON)
 endif()
 find_package(Boost REQUIRED COMPONENTS iostreams)
 find_package(yaml-cpp) # requiring yaml does not work with fedora
 
 if(EXCLUDE_HepMC)
   message(STATUS "Skipping HepMC")
 else()
   find_package(HepMC 2 EXACT)
 endif()
 if(EXCLUDE_HepMC3)
   message(STATUS "Skipping HepMC3")
 else()
   ## version 3.1: Finding version not possible in 3.1.1, see HepMC3 git 29e7a6c3
   find_package(HepMC3 QUIET) # suppress CMake warning if HepMC3 not available
   ## print standard message
   find_package_handle_standard_args( HepMC3
     FOUND_VAR
       HepMC3_FOUND
     REQUIRED_VARS
       HEPMC3_INCLUDE_DIR
       HEPMC3_LIBRARIES
     # VERSION_VAR
     #   HEPMC3_VERSION
   )
 endif()
 if(EXCLUDE_rivet)
   message(STATUS "Skipping rivet")
 else()
   find_package(rivet)
   if(rivet_FOUND)
     if(rivet_USE_HEPMC3 AND NOT HepMC3_FOUND)
       message(FATAL_ERROR "Rivet was compiled with HepMC version 3, "
                           "but HepMC3 was not found!")
     elseif(NOT rivet_USE_HEPMC3 AND NOT HepMC_FOUND)
       message(FATAL_ERROR "Rivet was compiled with HepMC version 2, "
                           "but HepMC2 was not found!")
     endif()
   endif()
 endif()
 
 if(EXCLUDE_QCDloop)
   message(STATUS "Skipping QCDloop")
 else()
   find_package(QCDloop 2)
 endif()
 if(EXCLUDE_HighFive)
   message(STATUS "Skipping HighFive")
 else()
   find_package(HighFive QUIET)
   find_package_handle_standard_args( HighFive CONFIG_MODE )
 endif()
 include(RepairTargets) # more reliable cmake targets
 
 ## shortcut for HEJ specific includes
 set(HEJ_INCLUDE_DIR
     $<INSTALL_INTERFACE:include>
     $<BUILD_INTERFACE:${PROJECT_BINARY_DIR}/include>
     $<BUILD_INTERFACE:${PROJECT_SOURCE_DIR}/include>
   )
 
 
 if (TEST_COVERAGE AND (CMAKE_COMPILER_IS_GNUCC OR CMAKE_COMPILER_IS_GNUCXX) )
   include(CodeCoverage)
   APPEND_COVERAGE_COMPILER_FLAGS()
   set(COVERAGE_GCOVR_EXCLUDES "${PROJECT_SOURCE_DIR}/include/LHEF/*"
                               "${PROJECT_SOURCE_DIR}/include/cxxopts.hpp"
                               "${PROJECT_SOURCE_DIR}/t/*")
   SETUP_TARGET_FOR_COVERAGE_GCOVR_HTML(
     NAME ctest_coverage                    # New target name
     EXECUTABLE ctest -j ${PROCESSOR_COUNT} # Executable in PROJECT_BINARY_DIR
   )
 endif()
 
 ## create main HEJ library
 add_subdirectory(src)
 
 ## define executable
 add_executable(HEJ_main src/bin/HEJ.cc)
 set_target_properties(HEJ_main PROPERTIES OUTPUT_NAME "HEJ")
 
 ## link libraries
 target_link_libraries(HEJ_main HEJ)
 
 add_executable(HEJ-config src/bin/HEJ-config.cc)
 target_include_directories(HEJ-config PRIVATE ${HEJ_INCLUDE_DIR})
 
 file(GLOB hej_headers
   ${CMAKE_CURRENT_SOURCE_DIR}/include/HEJ/*.hh
   ${PROJECT_BINARY_DIR}/include/HEJ/*.hh
 )
 file(GLOB hej_detail_headers ${CMAKE_CURRENT_SOURCE_DIR}/include/HEJ/detail/*.hh)
 file(GLOB lhef_headers ${CMAKE_CURRENT_SOURCE_DIR}/include/LHEF/*.h)
 install(FILES ${hej_headers} DESTINATION ${INSTALL_INCLUDE_DIR})
 install(FILES ${hej_detail_headers} DESTINATION ${INSTALL_INCLUDE_DIR}/detail/)
 install(FILES ${lhef_headers} DESTINATION ${INSTALL_INCLUDE_DIR_BASE}/LHEF/)
 install(TARGETS HEJ_main HEJ-config DESTINATION ${INSTALL_BIN_DIR})
 
 ## tests (prevent testing if current project is a subproject)
 if(CMAKE_PROJECT_NAME STREQUAL PROJECT_NAME)
   ## advanced version of enable_testing()
   ## adds "BUILD_TESTING" option to deactivate testing
   include(CTest)
   if(BUILD_TESTING)
     add_subdirectory(t)
   endif()
 endif()
diff --git a/FixedOrderGen/CMakeLists.txt b/FixedOrderGen/CMakeLists.txt
index 826b1dd..127c2e6 100644
--- a/FixedOrderGen/CMakeLists.txt
+++ b/FixedOrderGen/CMakeLists.txt
@@ -1,102 +1,102 @@
 cmake_minimum_required(VERSION 3.1 FATAL_ERROR)
 
 set(CMAKE_LEGACY_CYGWIN_WIN32 0)
 set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
 
 project("HEJ Fixed Order Generation" VERSION 2.0.6 LANGUAGES C CXX)
 
 # Set a default build type if none was specified
 set(default_build_type "RelWithDebInfo")
 
 if(NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
   message(STATUS "Setting build type to '${default_build_type}' as none was specified.")
   set(CMAKE_BUILD_TYPE "${default_build_type}" CACHE
       STRING "Choose the type of build." FORCE)
   # Set the possible values of build type for cmake-gui
   set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS
     "Debug" "Release" "MinSizeRel" "RelWithDebInfo")
 endif()
 
 ## Global flags for the compiler (all warnings)
 if (CMAKE_COMPILER_IS_GNUCC OR CMAKE_COMPILER_IS_GNUCXX)
-  set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wextra")
+  set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wextra -Wpedantic")
 elseif (MSVC)
   set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /W4 /WX /EHsc")
 endif()
 set(CMAKE_CXX_STANDARD_REQUIRED ON)
 set(CMAKE_CXX_STANDARD 14)
 
 ## Create Version
 set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_SOURCE_DIR}/cmake/Modules/")
 
 # Get the latest abbreviated commit hash of the working branch
 execute_process(
   COMMAND git rev-parse HEAD
   WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
   OUTPUT_VARIABLE PROJECT_GIT_REVISION
   OUTPUT_STRIP_TRAILING_WHITESPACE
 )
 # Get the current working branch
 execute_process(
   COMMAND git rev-parse --abbrev-ref HEAD
   WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
   OUTPUT_VARIABLE PROJECT_GIT_BRANCH
   OUTPUT_STRIP_TRAILING_WHITESPACE
   )
 
 CONFIGURE_FILE( ${CMAKE_CURRENT_SOURCE_DIR}/cmake/Templates/Version.hh.in
                 ${PROJECT_BINARY_DIR}/include/Version.hh  @ONLY )
 
 ## Use cmake modules from HEJ src
 set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_SOURCE_DIR}/../cmake/Modules/")
 
 ## Find HEJ (only dependency)
 ## HEJ includes all sub dependencies (fastjet, lhapdf, ...)
 find_package(HEJ 2 REQUIRED)
 include(RepairTargets) # more reliable cmake targets
 
 ## define executable
 file(GLOB HEJFOG_source ${CMAKE_CURRENT_SOURCE_DIR}/src/*.cc)
 list(REMOVE_ITEM HEJFOG_source ${CMAKE_CURRENT_SOURCE_DIR}/src/main.cc)
 add_library(hejfog_lib STATIC ${HEJFOG_source})
 target_include_directories(hejfog_lib
   PUBLIC
     ${PROJECT_SOURCE_DIR}/include
     ${PROJECT_BINARY_DIR}/include
 )
 add_executable(HEJFOG ${CMAKE_CURRENT_SOURCE_DIR}/src/main.cc)
 
 ## link libraries
 set(libraries ${CMAKE_DL_LIBS})
 
 target_link_libraries(hejfog_lib ${libraries} HEJ::HEJ)
 target_link_libraries(HEJFOG hejfog_lib)
 
 install(TARGETS HEJFOG DESTINATION bin)
 
 ## tests
 enable_testing()
 set(tst_dir "${CMAKE_CURRENT_SOURCE_DIR}/t")
 foreach(tst h_2j h_3j h_5j h_3j_uno1 h_3j_uno2 h_2j_decay 2j 4j W_reconstruct_enu
     W_2j_classify W_nj_classify)
   add_executable(test_${tst} ${tst_dir}/${tst}.cc)
   target_link_libraries(test_${tst} hejfog_lib)
   add_test(NAME t_${tst} COMMAND test_${tst} WORKING_DIRECTORY ${tst_dir})
 endforeach()
 # this only tests if the runcard actually works, not if the result is correct
 add_test(
   NAME t_main_2j
   COMMAND HEJFOG  ${tst_dir}/config_2j.yml
   )
 add_test(
   NAME t_main_h2j
   COMMAND HEJFOG  ${tst_dir}/config_h_2j.yml
   )
 add_test(
   NAME t_main_h2j_decay
   COMMAND HEJFOG  ${tst_dir}/config_h_2j_decay.yml
   )
 add_test(
   NAME t_peakpt
   COMMAND HEJFOG  ${tst_dir}/config_2j_peak.yml
   )
diff --git a/FixedOrderGen/cmake/Templates/Version.hh.in b/FixedOrderGen/cmake/Templates/Version.hh.in
index c33b5f3..cd4e363 100644
--- a/FixedOrderGen/cmake/Templates/Version.hh.in
+++ b/FixedOrderGen/cmake/Templates/Version.hh.in
@@ -1,49 +1,49 @@
 /** \file      Version.hh
  *  \brief     The file gives the current HEJ Fixed Order Generator Version
  *
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #pragma once
 
 #include <string>
 
 /// @brief Full name of this package.
 #define HEJFOG_PACKAGE_NAME  "@PROJECT_NAME@"
 
 /// @brief Version string of this package
 #define HEJFOG_VERSION "@PROJECT_VERSION@"
 
 /// @brief Full name and version of this package.
 #define HEJFOG_PACKAGE_STRING  "@PROJECT_NAME@ @PROJECT_VERSION@"
 
 /// @brief Major version of this package
 #define HEJFOG_VERSION_MAJOR  @PROJECT_VERSION_MAJOR@
 
 /// @brief Minor version of this package
 #define HEJFOG_VERSION_MINOR  @PROJECT_VERSION_MINOR@
 
 /// @brief Patch version of this package
 #define HEJFOG_VERSION_PATCH  @PROJECT_VERSION_PATCH@
 
 /// @brief Git revision of this package
 #define HEJFOG_GIT_revision  "@PROJECT_GIT_REVISION@"
 
 /// @brief Git branch name of this package
 #define HEJFOG_GIT_branch  "@PROJECT_GIT_BRANCH@"
 
 namespace HEJFOG {
 
   namespace Version {
 
     inline std::string String()             { return HEJFOG_VERSION; }
     inline std::string package_name()       { return HEJFOG_PACKAGE_NAME; }
     inline std::string package_name_full()  { return HEJFOG_PACKAGE_STRING; }
     inline int Major()                      { return HEJFOG_VERSION_MAJOR; }
     inline int Minor()                      { return HEJFOG_VERSION_MINOR; }
     inline int Patch()                      { return HEJFOG_VERSION_PATCH; }
     inline std::string revision()           { return HEJFOG_GIT_revision; }
 
-  };
+  }
 }
diff --git a/cmake/Templates/Version.hh.in b/cmake/Templates/Version.hh.in
index fc394ac..6409fe7 100644
--- a/cmake/Templates/Version.hh.in
+++ b/cmake/Templates/Version.hh.in
@@ -1,49 +1,49 @@
 /** \file      Version.hh
  *  \brief     The file gives the current HEJ Version
  *
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #pragma once
 
 #include <string>
 
 /// @brief Full name of this package.
 #define HEJ_PACKAGE_NAME  "@PROJECT_NAME@"
 
 /// @brief HEJ version string
 #define HEJ_VERSION "@PROJECT_VERSION@"
 
 /// @brief Full name and version of this package.
 #define HEJ_PACKAGE_STRING  "@PROJECT_NAME@ @PROJECT_VERSION@"
 
 /// @brief Major version of this package
 #define HEJ_VERSION_MAJOR  @PROJECT_VERSION_MAJOR@
 
 /// @brief Minor version of this package
 #define HEJ_VERSION_MINOR  @PROJECT_VERSION_MINOR@
 
 /// @brief Patch version of this package
 #define HEJ_VERSION_PATCH  @PROJECT_VERSION_PATCH@
 
 /// @brief Git revision of this package
 #define HEJ_GIT_revision  "@PROJECT_GIT_REVISION@"
 
 /// @brief Git branch name of this package
 #define HEJ_GIT_branch  "@PROJECT_GIT_BRANCH@"
 
 namespace HEJ {
 
   namespace Version {
 
     inline std::string String()             { return HEJ_VERSION; }
     inline std::string package_name()       { return HEJ_PACKAGE_NAME; }
     inline std::string package_name_full()  { return HEJ_PACKAGE_STRING; }
     inline int Major()                      { return HEJ_VERSION_MAJOR; }
     inline int Minor()                      { return HEJ_VERSION_MINOR; }
     inline int Patch()                      { return HEJ_VERSION_PATCH; }
     inline std::string revision()           { return HEJ_GIT_revision; }
 
-  };
+  }
 }
diff --git a/src/Event.cc b/src/Event.cc
index 7424cdd..ed5c499 100644
--- a/src/Event.cc
+++ b/src/Event.cc
@@ -1,987 +1,987 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #include "HEJ/Event.hh"
 
 #include <algorithm>
 #include <assert.h>
 #include <iterator>
 #include <numeric>
 #include <unordered_set>
 #include <utility>
 
 #include "LHEF/LHEF.h"
 
 #include "fastjet/JetDefinition.hh"
 
 #include "HEJ/Constants.hh"
 #include "HEJ/exceptions.hh"
 #include "HEJ/PDG_codes.hh"
 
 namespace HEJ{
 
   namespace {
     constexpr int status_in = -1;
     constexpr int status_decayed = 2;
     constexpr int status_out = 1;
 
     //! true if leptonic W decay
     bool valid_W_decay( int const w_type, // sign of W
                         std::vector<Particle> const & decays
     ){
       if(decays.size() != 2) // no 1->2 decay
         return false;
       const int pidsum = decays[0].type + decays[1].type;
       if( std::abs(pidsum) != 1 || pidsum != w_type ) // correct charge
         return false;
       // leptonic decay (only check first, second follows from pidsum)
       if( w_type == 1 ) // W+
         return is_antilepton(decays[0]) || is_neutrino(decays[0]);
       // W-
       return is_lepton(decays[0]) || is_antineutrino(decays[0]);
     }
 
     /// @name helper functions to determine event type
     //@{
 
     /**
      * \brief check if final state valid for HEJ
      *
      * check if there is at most one photon, W, H, Z in the final state
      * and all the rest are quarks or gluons
      */
     bool final_state_ok(Event const & ev){
       std::vector<Particle> const & outgoing = ev.outgoing();
       if(ev.decays().size() > 1) // at most one decay
         return false;
       bool has_AWZH_boson = false;
       for( size_t i=0; i<outgoing.size(); ++i ){
         auto const & out{ outgoing[i] };
         if(is_AWZH_boson(out.type)){
           // at most one boson
           if(has_AWZH_boson) return false;
           has_AWZH_boson = true;
 
           // valid decay for W
           if(std::abs(out.type) == ParticleID::Wp){
             // exactly 1 decay of W
             if( ev.decays().size() != 1 || ev.decays().cbegin()->first != i )
               return false;
             if( !valid_W_decay(out.type>0?+1:-1, ev.decays().cbegin()->second) )
               return false;
           }
         }
         else if(! is_parton(out.type)) return false;
       }
       return true;
     }
 
     /**
      * returns all EventTypes implemented in HEJ
      */
     size_t implemented_types(std::vector<Particle> const & bosons){
       using namespace event_type;
       if(bosons.empty()) return FKL | unob | unof | qqxexb | qqxexf; // pure jets
       if(bosons.size()>1) return non_resummable; // multi boson
       switch (bosons[0].type) {
         case ParticleID::Wp:
         case ParticleID::Wm:
           return FKL | unob | unof | qqxexb | qqxexf | qqxmid;
         case ParticleID::h:
           return FKL | unob | unof;
         default:
           return non_resummable;
       }
     }
 
     /**
      * \brief function which determines if type change is consistent with Wp emission.
      * @param in                      incoming Particle id
      * @param out                     outgoing Particle id
      * @param qqx                     Current both incoming/both outgoing?
      *
      * \see is_Wm_Change
      */
     bool is_Wp_Change(ParticleID in, ParticleID out, bool qqx){
       if(!qqx && (in==-1 || in== 2 || in==-3 || in== 4)) return out== (in-1);
       if( qqx && (in== 1 || in==-2 || in== 3 || in==-4)) return out==-(in+1);
       return false;
     }
 
     /**
      * \brief function which determines if type change is consistent with Wm emission.
      * @param in                      incoming Particle id
      * @param out                     outgoing Particle id
      * @param qqx                     Current both incoming/both outgoing?
      *
      * Ensures that change type of quark line is possible by a flavour changing
      * Wm emission. Allows checking of qqx currents also.
      */
     bool is_Wm_Change(ParticleID in, ParticleID out, bool qqx){
       if(!qqx && (in== 1 || in==-2 || in== 3 || in==-4)) return out== (in+1);
       if( qqx && (in==-1 || in== 2 || in==-3 || in== 4)) return out==-(in-1);
       return false;
     }
 
     /**
      * \brief checks if particle type remains same from incoming to outgoing
      * @param in                      incoming Particle
      * @param out                     outgoing Particle
      * @param qqx                     Current both incoming/outgoing?
      */
     bool no_flavour_change(ParticleID in, ParticleID out, bool qqx){
       const int qqxCurrent = qqx?-1:1;
       if(abs(in)<=6 || in==pid::gluon) return (in==out*qqxCurrent);
       else return false;
     }
 
     bool has_2_jets(Event const & event){
       return event.jets().size() >= 2;
     }
 
     /**
      * \brief check if we have a valid Impact factor
      * @param in                      incoming Particle
      * @param out                     outgoing Particle
      * @param qqx                     Current both incoming/outgoing?
      * @param qqx                     returns +1 if Wp, -1 if Wm, else 0
      */
     bool is_valid_impact_factor(
       ParticleID in, ParticleID out, bool qqx, int & W_change
     ){
       if( no_flavour_change(in, out, qqx) ){
         return true;
       }
       if( is_Wp_Change(in, out, qqx) ) {
         W_change+=1;
         return true;
       }
       if( is_Wm_Change(in, out, qqx) ) {
         W_change-=1;
         return true;
       }
       return false;
     }
 
     //! Returns all possible classifications from the impact factors
     // the beginning points are changed s.t. after the the classification they
     // point to the beginning of the (potential) FKL chain
     // sets W_change: + if Wp change
     //                0 if no change
     //                - if Wm change
     // This function can be used with forward & backwards iterators
     template<class OutIterator>
     size_t possible_impact_factors(
       ParticleID incoming_id,                                   // incoming
       OutIterator   & begin_out, OutIterator   const & end_out, // outgoing
       int & W_change, std::vector<Particle> const & boson,
       bool const backward                                       // backward?
     ){
       using namespace event_type;
       assert(boson.size() < 2);
       // keep track of all states that we don't test
       size_t not_tested = qqxmid;
       if(backward)
         not_tested |= unof | qqxexf;
       else
         not_tested |= unob | qqxexb;
 
       // Is this LL current?
       if( is_valid_impact_factor(incoming_id, begin_out->type, false, W_change) ){
         ++begin_out;
         return not_tested | FKL;
       }
 
       // or NLL current?
       // -> needs two partons in two different jets
       if( std::distance(begin_out, end_out)>=2
       ){
         // Is this unordered emisson?
         if( incoming_id!=pid::gluon && begin_out->type==pid::gluon ){
           if( is_valid_impact_factor(
                 incoming_id, (begin_out+1)->type, false, W_change )
           ){
             // veto Higgs inside uno
             assert((begin_out+1)<end_out);
             if( !boson.empty() && boson.front().type == ParticleID::h
             ){
               if(  (backward && boson.front().rapidity() < (begin_out+1)->rapidity())
                 ||(!backward && boson.front().rapidity() > (begin_out+1)->rapidity()))
               return non_resummable;
             }
             begin_out+=2;
             return not_tested | (backward?unob:unof);
           }
         }
         // Is this QQbar?
         else if( incoming_id==pid::gluon ){
           if( is_valid_impact_factor(
                 begin_out->type, (begin_out+1)->type, true, W_change )
           ){
             // veto Higgs inside qqx
             assert((begin_out+1)<end_out);
             if( !boson.empty() && boson.front().type == ParticleID::h
             ){
               if(  (backward && boson.front().rapidity() < (begin_out+1)->rapidity())
                 ||(!backward && boson.front().rapidity() > (begin_out+1)->rapidity()))
               return non_resummable;
             }
             begin_out+=2;
             return not_tested | (backward?qqxexb:qqxexf);
           }
         }
       }
       return non_resummable;
     }
 
     //! Returns all possible classifications from central emissions
     // the beginning points are changed s.t. after the the classification they
     // point to the end of the emission chain
     // sets W_change: + if Wp change
     //               0 if no change
     //               - if Wm change
     template<class OutIterator>
     size_t possible_central(
       OutIterator & begin_out, OutIterator const & end_out,
       int & W_change, std::vector<Particle> const & boson
     ){
       using namespace event_type;
       assert(boson.size() < 2);
       // if we already passed the central chain,
       // then it is not a valid all-order state
       if(std::distance(begin_out, end_out) < 0) return non_resummable;
       // keep track of all states that we don't test
       size_t possible = unob | unof
                           | qqxexb | qqxexf;
 
       // Find the first non-gluon/non-FKL
       while( (begin_out->type==pid::gluon) && (begin_out<end_out) ){
         ++begin_out;
       }
       // end of chain -> FKL
       if( begin_out==end_out ){
         return possible | FKL;
       }
 
       // is this a qqbar-pair?
       // needs two partons in two separate jets
       if( is_valid_impact_factor(
             begin_out->type, (begin_out+1)->type, true, W_change )
       ){
         // veto Higgs inside qqx
         if( !boson.empty() && boson.front().type == ParticleID::h
             && boson.front().rapidity() > begin_out->rapidity()
             && boson.front().rapidity() < (begin_out+1)->rapidity()
         ){
           return non_resummable;
         }
         begin_out+=2;
         // remaining chain should be pure gluon/FKL
         for(; begin_out<end_out; ++begin_out){
           if(begin_out->type != pid::gluon) return non_resummable;
         }
         return possible | qqxmid;
       }
       return non_resummable;
     }
 
     /**
      * \brief Checks for all event types
      * @param ev          Event
      * @returns           Event Type
      *
      */
     event_type::EventType classify(Event const & ev){
       using namespace event_type;
       if(! has_2_jets(ev))
         return no_2_jets;
       // currently we can't handle multiple boson states in the ME. So they are
       // considered "bad_final_state" even though the "classify" could work with
       // them.
       if(! final_state_ok(ev))
         return bad_final_state;
 
       // initialise variables
       auto const & in = ev.incoming();
       auto const & out = filter_partons(ev.outgoing());
 
       assert(std::distance(begin(in), end(in)) == 2);
       assert(out.size() >= 2);
       assert(std::distance(begin(out), end(out)) >= 2);
       assert(std::is_sorted(begin(out), end(out), rapidity_less{}));
 
       auto const boson{ filter_AWZH_bosons(ev.outgoing()) };
       // we only allow one boson through final_state_ok
       assert(boson.size()<=1);
 
       // keep track of potential W couplings, at the end the sum should be 0
       int remaining_Wp = 0;
       int remaining_Wm = 0;
       if(!boson.empty() && abs(boson.front().type) == ParticleID::Wp ){
         if(boson.front().type>0) ++remaining_Wp;
         else ++remaining_Wm;
       }
       int W_change = 0;
 
       // range for current checks
       auto begin_out{out.cbegin()};
       auto end_out{out.crbegin()};
 
       size_t final_type = ~(no_2_jets | bad_final_state);
 
       // check forward impact factor
       final_type &= possible_impact_factors(
         in.front().type,
         begin_out, end_out.base(),
         W_change, boson, true );
       if( final_type == non_resummable )
         return non_resummable;
       if(W_change>0) remaining_Wp-=W_change;
       else if(W_change<0) remaining_Wm+=W_change;
       W_change = 0;
 
       // check backward impact factor
       final_type &= possible_impact_factors(
         in.back().type,
         end_out, std::make_reverse_iterator(begin_out),
         W_change, boson, false );
       if( final_type == non_resummable )
         return non_resummable;
       if(W_change>0) remaining_Wp-=W_change;
       else if(W_change<0) remaining_Wm+=W_change;
       W_change = 0;
 
       // check central emissions
       final_type &= possible_central(
         begin_out, end_out.base(), W_change, boson );
       if( final_type == non_resummable )
         return non_resummable;
       if(W_change>0) remaining_Wp-=W_change;
       else if(W_change<0) remaining_Wm+=W_change;
 
       // Check whether the right number of Ws are present
       if( remaining_Wp != 0 || remaining_Wm != 0 ) return non_resummable;
 
       // result has to be unique
       if( (final_type & (final_type-1)) != 0) return non_resummable;
 
       // check that each sub processes is implemented
       // (has to be done at the end)
       if( (final_type & ~implemented_types(boson)) != 0 )
         return non_resummable;
 
       return static_cast<EventType>(final_type);
     }
     //@}
 
     Particle extract_particle(LHEF::HEPEUP const & hepeup, int i){
       const ParticleID id = static_cast<ParticleID>(hepeup.IDUP[i]);
       const fastjet::PseudoJet momentum{
         hepeup.PUP[i][0], hepeup.PUP[i][1],
         hepeup.PUP[i][2], hepeup.PUP[i][3]
       };
       if(is_parton(id))
         return Particle{ id, std::move(momentum), hepeup.ICOLUP[i] };
       return Particle{ id, std::move(momentum), {} };
     }
 
     bool is_decay_product(std::pair<int, int> const & mothers){
       if(mothers.first == 0) return false;
       return mothers.second == 0 || mothers.first == mothers.second;
     }
 
   } // namespace anonymous
 
   Event::EventData::EventData(LHEF::HEPEUP const & hepeup){
     parameters.central = EventParameters{
       hepeup.scales.mur, hepeup.scales.muf, hepeup.weight()
     };
     size_t in_idx = 0;
     for (int i = 0; i < hepeup.NUP; ++i) {
       // skip decay products
       // we will add them later on, but we have to ensure that
       // the decayed particle is added before
       if(is_decay_product(hepeup.MOTHUP[i])) continue;
 
       auto particle = extract_particle(hepeup, i);
       // needed to identify mother particles for decay products
       particle.p.set_user_index(i+1);
 
       if(hepeup.ISTUP[i] == status_in){
         if(in_idx > incoming.size()) {
           throw std::invalid_argument{
             "Event has too many incoming particles"
           };
         }
         incoming[in_idx++] = std::move(particle);
       }
       else outgoing.emplace_back(std::move(particle));
     }
 
     // add decay products
     for (int i = 0; i < hepeup.NUP; ++i) {
       if(!is_decay_product(hepeup.MOTHUP[i])) continue;
       const int mother_id = hepeup.MOTHUP[i].first;
       const auto mother = std::find_if(
           begin(outgoing), end(outgoing),
           [mother_id](Particle const & particle){
             return particle.p.user_index() == mother_id;
           }
       );
       if(mother == end(outgoing)){
         throw std::invalid_argument{"invalid decay product parent"};
       }
       const int mother_idx = std::distance(begin(outgoing), mother);
       assert(mother_idx >= 0);
       decays[mother_idx].emplace_back(extract_particle(hepeup, i));
     }
   }
 
   Event::Event(
     UnclusteredEvent const & ev,
     fastjet::JetDefinition const & jet_def, double const min_jet_pt
   ):
     Event( Event::EventData{
       ev.incoming, ev.outgoing, ev.decays,
       Parameters<EventParameters>{ev.central, ev.variations}
     }.cluster(jet_def, min_jet_pt) )
   {}
 
   //! @TODO remove in HEJ 2.2.0
   UnclusteredEvent::UnclusteredEvent(LHEF::HEPEUP const & hepeup){
       Event::EventData const evData{hepeup};
       incoming = evData.incoming;
       outgoing = evData.outgoing;
       decays = evData.decays;
       central = evData.parameters.central;
       variations = evData.parameters.variations;
   }
 
   void Event::EventData::sort(){
     // sort particles
     std::sort(
         begin(incoming), end(incoming),
         [](Particle o1, Particle o2){return o1.p.pz()<o2.p.pz();}
     );
 
     auto old_outgoing = std::move(outgoing);
     std::vector<size_t> idx(old_outgoing.size());
     std::iota(idx.begin(), idx.end(), 0);
     std::sort(idx.begin(), idx.end(), [&old_outgoing](size_t i, size_t j){
       return old_outgoing[i].rapidity() < old_outgoing[j].rapidity();
     });
     outgoing.clear();
     outgoing.reserve(old_outgoing.size());
     for(size_t i: idx) {
       outgoing.emplace_back(std::move(old_outgoing[i]));
     }
 
     // find decays again
     if(!decays.empty()){
       auto old_decays = std::move(decays);
       decays.clear();
       for(size_t i=0; i<idx.size(); ++i) {
         auto decay = old_decays.find(idx[i]);
         if(decay != old_decays.end())
           decays.emplace(i, std::move(decay->second));
       }
       assert(old_decays.size() == decays.size());
     }
   }
 
   namespace {
     Particle reconstruct_boson(std::vector<Particle> const & leptons) {
       Particle decayed_boson;
       decayed_boson.p = leptons[0].p + leptons[1].p;
       const int pidsum = leptons[0].type + leptons[1].type;
       if(pidsum == +1) {
         assert(is_antilepton(leptons[0]));
         if(is_antineutrino(leptons[0])) {
           throw not_implemented{"lepton-flavour violating final state"};
         }
         assert(is_neutrino(leptons[1]));
         // charged antilepton + neutrino means we had a W+
         decayed_boson.type = pid::Wp;
       }
       else if(pidsum == -1) {
         assert(is_antilepton(leptons[0]));
         if(is_neutrino(leptons[1])) {
           throw not_implemented{"lepton-flavour violating final state"};
         }
         assert(is_antineutrino(leptons[0]));
         // charged lepton + antineutrino means we had a W-
         decayed_boson.type = pid::Wm;
       }
       else {
         throw not_implemented{
           "final state with leptons "
             + name(leptons[0].type)
             + " and "
             + name(leptons[1].type)
         };
       }
       return decayed_boson;
     }
   }
 
   void Event::EventData::reconstruct_intermediate() {
     const auto begin_leptons = std::partition(
         begin(outgoing), end(outgoing),
         [](Particle const & p) {return !is_anylepton(p);}
     );
     if(begin_leptons == end(outgoing)) return;
     assert(is_anylepton(*begin_leptons));
     std::vector<Particle> leptons(begin_leptons, end(outgoing));
     outgoing.erase(begin_leptons, end(outgoing));
     if(leptons.size() != 2) {
       throw not_implemented{"Final states with one or more than two leptons"};
     }
     std::sort(
         begin(leptons), end(leptons),
         [](Particle const & p0, Particle const & p1) {
           return p0.type < p1.type;
         }
     );
     outgoing.emplace_back(reconstruct_boson(leptons));
     decays.emplace(outgoing.size()-1, std::move(leptons));
   }
 
   Event Event::EventData::cluster(
       fastjet::JetDefinition const & jet_def, double const min_jet_pt
   ){
     sort();
     Event ev{ std::move(incoming), std::move(outgoing), std::move(decays),
       std::move(parameters),
       jet_def, min_jet_pt
     };
     assert(std::is_sorted(begin(ev.outgoing_), end(ev.outgoing_),
       rapidity_less{}));
     ev.type_ = classify(ev);
     return ev;
   }
 
   Event::Event(
       std::array<Particle, 2> && incoming,
       std::vector<Particle> && outgoing,
       std::unordered_map<size_t, std::vector<Particle>> && decays,
       Parameters<EventParameters> && parameters,
       fastjet::JetDefinition const & jet_def,
       double const min_jet_pt
     ): incoming_{std::move(incoming)},
        outgoing_{std::move(outgoing)},
        decays_{std::move(decays)},
        parameters_{std::move(parameters)},
        cs_{ to_PseudoJet( filter_partons(outgoing_) ), jet_def },
        min_jet_pt_{min_jet_pt}
     {
       jets_ = sorted_by_rapidity(cs_.inclusive_jets(min_jet_pt_));
     }
 
   namespace {
     // check that Particles have a reasonable colour
     bool correct_colour(Particle const & part){
       ParticleID id{ part.type };
       if(!is_parton(id))
         return !part.colour;
 
       if(!part.colour)
         return false;
 
       Colour const & col{ *part.colour };
       if(is_quark(id))
         return col.first != 0 && col.second == 0;
       if(is_antiquark(id))
         return col.first == 0 && col.second != 0;
       assert(id==ParticleID::gluon);
       return col.first != 0 && col.second != 0 && col.first != col.second;
     }
   }
 
   bool Event::is_leading_colour() const {
     if( !correct_colour(incoming()[0]) || !correct_colour(incoming()[1]) )
       return false;
 
     Colour line_colour = *incoming()[0].colour;
     std::swap(line_colour.first, line_colour.second);
 
     for(auto const & part: outgoing()){
       // reasonable colour
       if(!correct_colour(part))
         return false;
       if(!is_parton(part)) // skip colour neutral particles
           continue;
 
        // if possible connect to line
       if( line_colour.first == part.colour->second )
         line_colour.first = part.colour->first;
       else if( line_colour.second == part.colour->first )
         line_colour.second = part.colour->second;
       else
         return false;
 
       // no colour singlet exchange/disconnected diagram
       if(line_colour.first == line_colour.second)
         return false;
     }
 
     return (incoming()[1].colour->first == line_colour.first)
         && (incoming()[1].colour->second == line_colour.second);
   }
 
   namespace {
     void connect_incoming(Particle & in, int & colour, int & anti_colour){
       in.colour = std::make_pair(anti_colour, colour);
       // gluon
       if(in.type == pid::gluon)
         return;
       if(in.type > 0){
         // quark
         assert(is_quark(in));
         in.colour->second = 0;
         colour*=-1;
         return;
       }
       // anti-quark
       assert(is_antiquark(in));
       in.colour->first = 0;
       anti_colour*=-1;
       return;
     }
   }
 
   bool Event::generate_colours(RNG & ran){
     // generate only for HEJ events
     if(!event_type::is_resummable(type()))
       return false;
     assert(std::is_sorted(
       begin(outgoing()), end(outgoing()), rapidity_less{}));
     assert(incoming()[0].pz() < incoming()[1].pz());
 
     // positive (anti-)colour -> can connect
     // negative (anti-)colour -> not available/used up by (anti-)quark
     int colour = COLOUR_OFFSET;
     int anti_colour = colour+1;
     // initialise first
     connect_incoming(incoming_[0], colour, anti_colour);
 
     for(auto & part: outgoing_){
       assert(colour>0 || anti_colour>0);
       if(part.type == ParticleID::gluon){
         // gluon
         if(colour>0 && anti_colour>0){
           // on g line => connect to colour OR anti-colour (random)
           if(ran.flat() < 0.5){
             part.colour = std::make_pair(colour+2,colour);
             colour+=2;
           } else {
             part.colour = std::make_pair(anti_colour, anti_colour+2);
             anti_colour+=2;
           }
         } else if(colour > 0){
           // on q line => connect to available colour
             part.colour = std::make_pair(colour+2, colour);
             colour+=2;
         } else {
           assert(colour<0 && anti_colour>0);
           // on qx line => connect to available anti-colour
           part.colour = std::make_pair(anti_colour, anti_colour+2);
           anti_colour+=2;
         }
       } else if(is_quark(part)) {
         // quark
         assert(anti_colour>0);
         if(colour>0){
           // on g line => connect and remove anti-colour
           part.colour = std::make_pair(anti_colour, 0);
           anti_colour+=2;
           anti_colour*=-1;
         } else {
           // on qx line => new colour
           colour*=-1;
           part.colour = std::make_pair(colour, 0);
         }
       } else if(is_antiquark(part)) {
         // anti-quark
         assert(colour>0);
         if(anti_colour>0){
           // on g line => connect and remove colour
           part.colour = std::make_pair(0, colour);
           colour+=2;
           colour*=-1;
         } else {
           // on q line => new anti-colour
           anti_colour*=-1;
           part.colour = std::make_pair(0, anti_colour);
         }
       } else { // not a parton
         assert(!is_parton(part));
         part.colour = {};
       }
     }
     // Connect last
     connect_incoming(incoming_[1], anti_colour, colour);
     assert(is_leading_colour());
     return true;
   } // generate_colours
 
   namespace {
     bool valid_parton(
       std::vector<fastjet::PseudoJet> const & jets,
       Particle const & parton, int const idx,
       double const max_ext_soft_pt_fraction, double const min_extparton_pt
     ){
       // TODO code overlap with PhaseSpacePoint::pass_extremal_cuts
       if(min_extparton_pt > parton.pt()) return false;
       if(idx<0) return false;
       assert((int) jets.size()>=idx);
       auto const & jet{ jets[idx] };
       if( (parton.p - jet).pt()/jet.pt() > max_ext_soft_pt_fraction)
         return false;
       return true;
     }
   }
 
   // this should work with multiple types
   bool Event::valid_hej_state(double const max_frac,
                               double const min_pt
   ) const {
     using namespace event_type;
     if(!is_resummable(type()))
       return false;
 
     auto const & jet_idx{ particle_jet_indices() };
     auto idx_begin{ jet_idx.cbegin() };
     auto idx_end{  jet_idx.crbegin() };
 
     auto part_begin{ cbegin_partons() };
     auto part_end{  crbegin_partons() };
 
     // always seperate extremal jets
     if( !valid_parton(jets(), *part_begin, *idx_begin, max_frac, min_pt) )
       return false;
     ++part_begin;
     ++idx_begin;
     if( !valid_parton(jets(), *part_end,   *idx_end,   max_frac, min_pt) )
       return false;
     ++part_end;
     ++idx_end;
 
     // unob -> second parton in own jet
     if( type() & (unob | qqxexb) ){
       if( !valid_parton(jets(), *part_begin, *idx_begin, max_frac, min_pt) )
         return false;
       ++part_begin;
       ++idx_begin;
     }
 
     if( type() & (unof | qqxexf) ){
       if( !valid_parton(jets(), *part_end,   *idx_end,   max_frac, min_pt) )
         return false;
       ++part_end;
       ++idx_end;
     }
 
     if( type() & qqxmid ){
       // find qqx pair
       auto begin_qqx{ std::find_if( part_begin, part_end.base(),
         [](Particle const & part) -> bool {
           return part.type != ParticleID::gluon;
         }
       )};
       assert(begin_qqx != part_end.base());
       long int qqx_pos{ std::distance(part_begin, begin_qqx) };
       assert(qqx_pos >= 0);
       idx_begin+=qqx_pos;
       if( !( valid_parton(jets(),*begin_qqx,    *idx_begin,    max_frac,min_pt)
           && valid_parton(jets(),*(++begin_qqx),*(++idx_begin),max_frac,min_pt)
       ))
         return false;
     }
     return true;
   }
 
   Event::ConstPartonIterator Event::begin_partons() const {
     return cbegin_partons();
-  };
+  }
   Event::ConstPartonIterator Event::cbegin_partons() const {
     return boost::make_filter_iterator(
         static_cast<bool (*)(Particle const &)>(is_parton),
         cbegin(outgoing()),
         cend(outgoing())
     );
-  };
+  }
 
   Event::ConstPartonIterator Event::end_partons() const {
     return cend_partons();
-  };
+  }
   Event::ConstPartonIterator Event::cend_partons() const {
     return boost::make_filter_iterator(
         static_cast<bool (*)(Particle const &)>(is_parton),
         cend(outgoing()),
         cend(outgoing())
     );
-  };
+  }
 
   Event::ConstReversePartonIterator Event::rbegin_partons() const {
     return crbegin_partons();
   }
   Event::ConstReversePartonIterator Event::crbegin_partons() const {
     return std::reverse_iterator<ConstPartonIterator>( cend_partons() );
-  };
+  }
 
   Event::ConstReversePartonIterator Event::rend_partons() const {
     return crend_partons();
   }
   Event::ConstReversePartonIterator Event::crend_partons() const {
     return std::reverse_iterator<ConstPartonIterator>( cbegin_partons() );
-  };
+  }
 
   namespace {
     void print_momentum(std::ostream & os, fastjet::PseudoJet const & part){
     const std::streamsize orig_prec = os.precision();
       os <<std::scientific<<std::setprecision(6) << "["
         <<std::setw(13)<<std::right<< part.px() << ", "
         <<std::setw(13)<<std::right<< part.py() << ", "
         <<std::setw(13)<<std::right<< part.pz() << ", "
         <<std::setw(13)<<std::right<< part.E() << "]"<< std::fixed;
       os.precision(orig_prec);
     }
 
     void print_colour(std::ostream & os, optional<Colour> const & col){
       if(!col)
         os << "(no color)"; // American spelling for better alignment
       else
         os << "(" <<std::setw(3)<<std::right<< col->first
            << ", " <<std::setw(3)<<std::right<< col->second << ")";
     }
   }
 
   std::ostream& operator<<(std::ostream & os, Event const & ev){
     const std::streamsize orig_prec = os.precision();
     os <<std::setprecision(4)<<std::fixed;
     os << "########## " << event_type::name(ev.type()) << " ##########" << std::endl;
     os << "Incoming particles:\n";
     for(auto const & in: ev.incoming()){
       os <<std::setw(3)<< in.type << ": ";
       print_colour(os, in.colour);
       os << " ";
       print_momentum(os, in.p);
       os << std::endl;
     }
     os << "\nOutgoing particles: " << ev.outgoing().size() << "\n";
     for(auto const & out: ev.outgoing()){
       os <<std::setw(3)<< out.type << ": ";
       print_colour(os, out.colour);
       os << " ";
       print_momentum(os, out.p);
       os << " => rapidity="
         <<std::setw(7)<<std::right<< out.rapidity() << std::endl;
     }
     os << "\nForming Jets: " << ev.jets().size() << "\n";
     for(auto const & jet: ev.jets()){
       print_momentum(os, jet);
       os << " => rapidity="
         <<std::setw(7)<<std::right<< jet.rapidity() << std::endl;
     }
     if(ev.decays().size() > 0 ){
       os << "\nDecays: " << ev.decays().size() << "\n";
       for(auto const & decay: ev.decays()){
         os <<std::setw(3)<< ev.outgoing()[decay.first].type
           << " (" << decay.first << ") to:\n";
         for(auto const & out: decay.second){
           os <<"  "<<std::setw(3)<< out.type << ": ";
           print_momentum(os, out.p);
           os << " => rapidity="
             <<std::setw(7)<<std::right<< out.rapidity() << std::endl;
         }
       }
 
     }
     os << std::defaultfloat;
     os.precision(orig_prec);
     return os;
   }
 
   double shat(Event const & ev){
     return (ev.incoming()[0].p + ev.incoming()[1].p).m2();
   }
 
   LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP * heprup){
     LHEF::HEPEUP result;
     result.heprup = heprup;
     result.weights = {{event.central().weight, nullptr}};
     for(auto const & var: event.variations()){
       result.weights.emplace_back(var.weight, nullptr);
     }
     size_t num_particles = event.incoming().size() + event.outgoing().size();
     for(auto const & decay: event.decays()) num_particles += decay.second.size();
     result.NUP = num_particles;
     // the following entries are pretty much meaningless
     result.IDPRUP = event.type();  // event type
     result.AQEDUP = 1./128.;  // alpha_EW
     //result.AQCDUP = 0.118 // alpha_QCD
     // end meaningless part
     result.XWGTUP = event.central().weight;
     result.SCALUP = event.central().muf;
     result.scales.muf = event.central().muf;
     result.scales.mur = event.central().mur;
     result.scales.SCALUP = event.central().muf;
     result.pdfinfo.p1 = event.incoming().front().type;
     result.pdfinfo.p2 = event.incoming().back().type;
     result.pdfinfo.scale = event.central().muf;
 
     result.IDUP.reserve(num_particles);   // PID
     result.ISTUP.reserve(num_particles);  // status (in, out, decay)
     result.PUP.reserve(num_particles);    // momentum
     result.MOTHUP.reserve(num_particles); // index mother particle
     result.ICOLUP.reserve(num_particles); // colour
     // incoming
     std::array<Particle, 2> incoming{ event.incoming() };
     // First incoming should be positive pz according to LHE standard
     // (or at least most (everyone?) do it this way, and Pythia assumes it)
     if(incoming[0].pz() < incoming[1].pz())
       std::swap(incoming[0], incoming[1]);
     for(Particle const & in: incoming){
       result.IDUP.emplace_back(in.type);
       result.ISTUP.emplace_back(status_in);
       result.PUP.push_back({in.p[0], in.p[1], in.p[2], in.p[3], in.p.m()});
       result.MOTHUP.emplace_back(0, 0);
       assert(in.colour);
       result.ICOLUP.emplace_back(*in.colour);
     }
     // outgoing
     for(size_t i = 0; i < event.outgoing().size(); ++i){
       Particle const & out = event.outgoing()[i];
       result.IDUP.emplace_back(out.type);
       const int status = event.decays().count(i)?status_decayed:status_out;
       result.ISTUP.emplace_back(status);
       result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
       result.MOTHUP.emplace_back(1, 2);
       if(out.colour)
         result.ICOLUP.emplace_back(*out.colour);
       else{
         result.ICOLUP.emplace_back(std::make_pair(0,0));
       }
     }
     // decays
     for(auto const & decay: event.decays()){
       for(auto const out: decay.second){
         result.IDUP.emplace_back(out.type);
         result.ISTUP.emplace_back(status_out);
         result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
         const size_t mother_idx = 1 + event.incoming().size() + decay.first;
         result.MOTHUP.emplace_back(mother_idx, mother_idx);
         result.ICOLUP.emplace_back(0,0);
       }
     }
 
     assert(result.ICOLUP.size() == num_particles);
     static constexpr double unknown_spin = 9.;     //per Les Houches accord
     result.VTIMUP = std::vector<double>(num_particles, unknown_spin);
     result.SPINUP = result.VTIMUP;
     return result;
   }
 
 }
diff --git a/src/EventReweighter.cc b/src/EventReweighter.cc
index bca986e..5c0b48a 100644
--- a/src/EventReweighter.cc
+++ b/src/EventReweighter.cc
@@ -1,282 +1,282 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #include "HEJ/EventReweighter.hh"
 
 #include <algorithm>
 #include <assert.h>
 #include <limits>
 #include <math.h>
 #include <stddef.h>
 #include <string>
 #include <unordered_map>
 
 #include "fastjet/ClusterSequence.hh"
 
 #include "LHEF/LHEF.h"
 
 #include "HEJ/Event.hh"
 #include "HEJ/exceptions.hh"
 #include "HEJ/Particle.hh"
 #include "HEJ/PDG_codes.hh"
 #include "HEJ/PhaseSpacePoint.hh"
 
 namespace HEJ{
   using EventType = event_type::EventType;
 
   namespace {
 
     static_assert(
         std::numeric_limits<double>::has_quiet_NaN,
         "no quiet NaN for double"
     );
     constexpr double NaN = std::numeric_limits<double>::quiet_NaN();
 
     Event::EventData to_EventData(PhaseSpacePoint const & psp){
       Event::EventData result;
       result.incoming=psp.incoming();
       assert(result.incoming.size() == 2);
       result.outgoing=psp.outgoing();
       // technically Event::EventData doesn't have to be sorted,
       // but PhaseSpacePoint should be anyway
       assert(
           std::is_sorted(
               begin(result.outgoing), end(result.outgoing),
               rapidity_less{}
           )
       );
       assert(result.outgoing.size() >= 2);
       result.decays = psp.decays();
       result.parameters.central = {NaN, NaN, psp.weight()};
       return result;
     }
 
   } // namespace anonymous
 
   EventReweighter::EventReweighter(
       LHEF::HEPRUP const & heprup,
       ScaleGenerator scale_gen,
       EventReweighterConfig conf,
       HEJ::RNG & ran
   ):
     EventReweighter{
       HEJ::Beam{
         heprup.EBMUP.first,
         {{
           static_cast<HEJ::ParticleID>(heprup.IDBMUP.first),
           static_cast<HEJ::ParticleID>(heprup.IDBMUP.second)
         }}
       },
       heprup.PDFSUP.first,
       std::move(scale_gen),
       std::move(conf),
       ran
     }
   {
     if(heprup.EBMUP.second != E_beam_){
       throw std::invalid_argument(
           "asymmetric beam: " + std::to_string(E_beam_)
           + " ---> <--- " + std::to_string(heprup.EBMUP.second)
       );
     };
     if(heprup.PDFSUP.second != pdf_.id()){
       throw std::invalid_argument(
           "conflicting PDF ids: " + std::to_string(pdf_.id())
           + " vs. " + std::to_string(heprup.PDFSUP.second)
       );
     }
   }
 
   EventReweighter::EventReweighter(
       Beam beam,
       int pdf_id,
       ScaleGenerator scale_gen,
       EventReweighterConfig conf,
       HEJ::RNG & ran
   ):
     param_{std::move(conf)},
     E_beam_{beam.E},
     pdf_{pdf_id, beam.type.front(), beam.type.back()},
     MEt2_{
       [this](double mu){ return pdf_.Halphas(mu); },
       param_.ME_config
     },
     scale_gen_(std::move(scale_gen)),
     ran_{ran}
   {}
 
   PDF const & EventReweighter::pdf() const{
     return pdf_;
   }
 
   std::vector<Event> EventReweighter::reweight(
       Event const & input_ev, int num_events
   ){
     auto res_events{ gen_res_events(input_ev, num_events) };
     if(res_events.empty()) return {};
     for(auto & event: res_events) event = scale_gen_(std::move(event));
     return rescale(input_ev, std::move(res_events));
   }
 
   EventTreatment EventReweighter::treatment(EventType type) const {
     return param_.treat.at(type);
   }
 
   std::vector<Event> EventReweighter::gen_res_events(
       Event const & ev,
       size_t phase_space_points
   ){
     assert(ev.variations().empty());
     status_.clear();
 
     switch(treatment(ev.type())){
     case EventTreatment::discard: {
       status_.emplace_back(StatusCode::discard);
       return {};
     }
     case EventTreatment::keep:
       if(! jets_pass_resummation_cuts(ev)) {
         status_.emplace_back(StatusCode::failed_resummation_cuts);
         return {};
       }
       else {
         status_.emplace_back(StatusCode::good);
         return {ev};
       }
     default:;
     }
     const double Born_shat = shat(ev);
 
     std::vector<Event> resummation_events;
     status_.reserve(phase_space_points);
     for(size_t psp_number = 0; psp_number < phase_space_points; ++psp_number){
       PhaseSpacePoint psp{ev, param_.psp_config, ran_};
       status_.emplace_back(psp.status());
       assert(psp.status() != StatusCode::unspecified);
       if(psp.status() != StatusCode::good) continue;
       assert(psp.weight() != 0.);
       if(psp.incoming()[0].E() > E_beam_ || psp.incoming()[1].E() > E_beam_) {
         status_.back() = StatusCode::too_much_energy;
         continue;
       }
 
       resummation_events.emplace_back(
         to_EventData( std::move(psp) ).cluster(
           param_.jet_param.def, param_.jet_param.min_pt
         )
       );
       auto & new_event = resummation_events.back();
       assert( new_event.valid_hej_state(
         param_.psp_config.max_ext_soft_pt_fraction,
         param_.psp_config.min_extparton_pt ) );
       if( new_event.type() != ev.type() )
         throw std::logic_error{"Resummation Event does not match Born event"};
       new_event.generate_colours(ran_);
       assert(new_event.variations().empty());
       new_event.central().mur = ev.central().mur;
       new_event.central().muf = ev.central().muf;
       const double resum_shat = shat(new_event);
       new_event.central().weight *= ev.central().weight*Born_shat*Born_shat/
         (phase_space_points*resum_shat*resum_shat);
     }
     return resummation_events;
   }
 
   std::vector<Event> EventReweighter::rescale(
       Event const & Born_ev,
       std::vector<Event> events
   ) const{
     const double Born_pdf = pdf_factors(Born_ev).central;
     const double Born_ME = tree_matrix_element(Born_ev);
 
     for(auto & cur_event: events){
       const auto pdf = pdf_factors(cur_event);
       assert(pdf.variations.size() == cur_event.variations().size());
       const auto ME = matrix_elements(cur_event);
       assert(ME.variations.size() == cur_event.variations().size());
       cur_event.parameters() *= pdf*ME/(Born_pdf*Born_ME);
     }
     return events;
-  };
+  }
 
   bool EventReweighter::jets_pass_resummation_cuts(
       Event const & ev
   ) const{
     const auto out_as_PseudoJet = to_PseudoJet(filter_partons(ev.outgoing()));
     fastjet::ClusterSequence cs{out_as_PseudoJet, param_.jet_param.def};
     return cs.inclusive_jets(param_.jet_param.min_pt).size() == ev.jets().size();
   }
 
   Weights EventReweighter::pdf_factors(Event const & ev) const{
     auto const & a = ev.incoming().front();
     auto const & b = ev.incoming().back();
     const double xa = a.p.e()/E_beam_;
     const double xb = b.p.e()/E_beam_;
 
     Weights result;
     std::unordered_map<double, double> known_pdf;
     result.central =
       pdf_.pdfpt(0,xa,ev.central().muf,a.type)*
       pdf_.pdfpt(1,xb,ev.central().muf,b.type);
     known_pdf.emplace(ev.central().muf, result.central);
 
     result.variations.reserve(ev.variations().size());
     for(auto const & ev_param: ev.variations()){
       const double muf = ev_param.muf;
       auto cur_pdf = known_pdf.find(muf);
       if(cur_pdf == known_pdf.end()){
         cur_pdf = known_pdf.emplace(
             muf,
             pdf_.pdfpt(0,xa,muf,a.type)*pdf_.pdfpt(1,xb,muf,b.type)
         ).first;
       }
       result.variations.emplace_back(cur_pdf->second);
     }
     assert(result.variations.size() == ev.variations().size());
     return result;
   }
 
   Weights
   EventReweighter::matrix_elements(Event const & ev) const{
     assert(param_.treat.count(ev.type()) > 0);
     if(param_.treat.find(ev.type())->second == EventTreatment::keep){
       return fixed_order_scale_ME(ev);
     }
 
     return MEt2_(ev);
   }
 
   double EventReweighter::tree_matrix_element(Event const & ev) const{
     assert(ev.variations().empty());
     assert(param_.treat.count(ev.type()) > 0);
     if(param_.treat.find(ev.type())->second == EventTreatment::keep){
       return fixed_order_scale_ME(ev).central;
     }
     return MEt2_.tree(ev).central;
   }
 
   Weights
   EventReweighter::fixed_order_scale_ME(Event const & ev) const{
     int alpha_s_power = 0;
     for(auto const & part: ev.outgoing()){
       if(is_parton(part))
         ++alpha_s_power;
       else if(part.type == pid::Higgs) {
         alpha_s_power += 2;
       }
       // nothing to do for other uncoloured particles
     }
 
     Weights result;
     result.central = pow(pdf_.Halphas(ev.central().mur), alpha_s_power);
     for(auto const & var: ev.variations()){
       result.variations.emplace_back(
           pow(pdf_.Halphas(var.mur), alpha_s_power)
       );
     }
     return result;
   }
 
 } // namespace HEJ
diff --git a/src/PDF.cc b/src/PDF.cc
index 0792a99..c81a389 100644
--- a/src/PDF.cc
+++ b/src/PDF.cc
@@ -1,112 +1,112 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #include "HEJ/PDF.hh"
 
 #include <iostream>
 #include <stdexcept>
 #include <string>
 
 namespace HEJ{
 
   namespace{
 
     int to_beam(ParticleID id){
       if(std::abs(id) == pid::proton){
         return (id > 0)?1:-1;
       }
       throw std::invalid_argument(
           "unknown beam type: " + std::to_string(id)
       );
     }
 
   }
 
 #if defined LHAPDF_MAJOR_VERSION && LHAPDF_MAJOR_VERSION == 6
 
   PDF::PDF(int id, ParticleID beam1, ParticleID beam2):
     pdf{LHAPDF::mkPDF(id)},
     beamtype{{to_beam(beam1), to_beam(beam2)}}
   {}
 
   double PDF::pdfpt(size_t beam_idx, double x, double q, ParticleID id) const{
     if(!(inRangeQ(q) && inRangeX(x))) return 0.;
 
     if(id == pid::gluon){
       return pdf->xfxQ(21,x,q);
     }
     else if(abs(id) < 7){
       return pdf->xfxQ(id*beamtype[beam_idx],x,q);
     }
     else {
       std::cerr << "particle type unknown: "<< id << std::endl;
       return 0.0;
     }
   }
 
   double PDF::Halphas(double q) const{
     double as = pdf->alphasQ(q);
     if (std::isnan(as) || as > 0.5) {
       as = 0.5;
     }
     return as;
   }
 
   int PDF::id() const{
     return pdf->lhapdfID();
-  };
+  }
 
   bool PDF::inRangeQ(double q) const{
     return pdf->inRangeQ(q);
   }
 
   bool PDF::inRangeX(double x) const{
     return pdf->inRangeX(x);
   }
 
 #else /* LHAPDF version unknown or older than 6 */
 
   PDF::PDF(std::string LHAPDFName, int LHAPDFsubset, ParticleID beam1, ParticleID beam2):
     beamtype{{to_beam(beam1_type), to_beam(beam2_type)}}
 {
   LHAPDF::initPDFSet(LHAPDFName, LHAPDF::LHGRID, LHAPDFsubset);
 }
 
   double PDF::pdfpt(size_t beam_idx, double x, double q, ParticleID id) const{
 
     if(!(inRangeQ(q) && inRangeX(x))) return 0.;
 
     if (id == pid::gluon){
       return LHAPDF::xfx(x,q,0);
     }
     else if (abs(id) < 7){
       return LHAPDF::xfx(x,q,id*beamtype[beam_idx]);
     }
     else {
       std::cerr << "particle type unknown: "<< id <<std::endl;
       return 0.0;
     }
   }
 
   double PDF::Halphas(double q) const{
     double as = LHAPDF::alphasPDF(q);
     if (isnan(as) || as > 0.5) as = 0.5;
     return as;
   }
 
   bool PDF::inRangeQ(double q) const{
     // here we assume that all members actually have the same range!
     static constexpr int member = 0;
     return (LHAPDF::getQ2min(member) < q*q) && (q*q < LHAPDF::getQ2max(member));
   }
 
   bool PDF::inRangeX(double x) const{
     // here we assume that all members actually have the same range!
     static constexpr int member = 0;
     return (LHAPDF::getXmin(member) < x) && (x < LHAPDF::getXmax(member));
   }
 
 #endif
 }
diff --git a/src/YAMLreader.cc b/src/YAMLreader.cc
index 943c4f0..bfafc5c 100644
--- a/src/YAMLreader.cc
+++ b/src/YAMLreader.cc
@@ -1,555 +1,555 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #include "HEJ/YAMLreader.hh"
 
 #include <algorithm>
 #include <iostream>
 #include <limits>
 #include <map>
 #include <string>
 #include <unordered_map>
 #include <vector>
 
 #include <dlfcn.h>
 
 #include "HEJ/ScaleFunction.hh"
 #include "HEJ/event_types.hh"
 #include "HEJ/output_formats.hh"
 #include "HEJ/Constants.hh"
 
 namespace HEJ{
   class Event;
 
   namespace{
     //! Get YAML tree of supported options
     /**
      * The configuration file is checked against this tree of options
      * in assert_all_options_known.
      */
     YAML::Node const & get_supported_options(){
       const static YAML::Node supported = [](){
         YAML::Node supported;
         static const auto opts = {
           "trials", "min extparton pt", "max ext soft pt fraction",
           "scales", "scale factors", "max scale ratio", "import scales",
           "log correction", "event output", "analysis", "vev",
           "regulator parameter", "max events"
         };
         // add subnodes to "supported" - the assigned value is irrelevant
         for(auto && opt: opts) supported[opt] = "";
         for(auto && jet_opt: {"min pt", "algorithm", "R"}){
           supported["resummation jets"][jet_opt] = "";
           supported["fixed order jets"][jet_opt] = "";
         }
         for(auto && opt: {"mt", "use impact factors", "include bottom", "mb"}){
           supported["Higgs coupling"][opt] = "";
         }
         for(auto && opt: {"name", "seed"}){
           supported["random generator"][opt] = "";
         }
         for(auto && opt: {"FKL", "unordered", "extremal qqx", "central qqx", "non-resummable"}){
           supported["event treatment"][opt] = "";
         }
         for(auto && particle_type: {"Higgs", "W", "Z"}){
           for(auto && particle_opt: {"mass", "width"}){
             supported["particle properties"][particle_type][particle_opt] = "";
           }
         }
         for(auto && opt: {"type", "trials", "max deviation"}){
           supported["unweight"][opt] = "";
         }
         return supported;
       }();
       return supported;
     }
 
     fastjet::JetAlgorithm to_JetAlgorithm(std::string const & algo){
       using namespace fastjet;
       static const std::map<std::string, fastjet::JetAlgorithm> known = {
         {"kt", kt_algorithm},
         {"cambridge", cambridge_algorithm},
         {"antikt", antikt_algorithm},
         {"cambridge for passive", cambridge_for_passive_algorithm},
         {"plugin", plugin_algorithm}
       };
       const auto res = known.find(algo);
       if(res == known.end()){
         throw std::invalid_argument("Unknown jet algorithm \"" + algo + "\"");
       }
       return res->second;
     }
 
     EventTreatment to_EventTreatment(std::string const & name){
       static const std::map<std::string, EventTreatment> known = {
         {"reweight", EventTreatment::reweight},
         {"keep", EventTreatment::keep},
         {"discard", EventTreatment::discard}
       };
       const auto res = known.find(name);
       if(res == known.end()){
         throw std::invalid_argument("Unknown event treatment \"" + name + "\"");
       }
       return res->second;
     }
 
     WeightType to_weight_type(std::string const & setting){
       if(setting == "weighted")
           return WeightType::weighted;
       if(setting =="resummation")
           return WeightType::unweighted_resum;
       if(setting =="partial")
           return WeightType::partially_unweighted;
       throw std::invalid_argument{"Unknown weight type \"" + setting + "\""};
     }
 
   } // namespace anonymous
 
   namespace detail{
     void set_from_yaml(fastjet::JetAlgorithm & setting, YAML::Node const & yaml){
       setting = to_JetAlgorithm(yaml.as<std::string>());
     }
 
     void set_from_yaml(EventTreatment & setting, YAML::Node const & yaml){
       setting = to_EventTreatment(yaml.as<std::string>());
     }
 
     void set_from_yaml(ParticleID & setting, YAML::Node const & yaml){
       setting = to_ParticleID(yaml.as<std::string>());
     }
 
     void set_from_yaml(WeightType & setting, YAML::Node const & yaml){
       setting = to_weight_type(yaml.as<std::string>());
     }
 
   } // namespace detail
 
   JetParameters get_jet_parameters(
       YAML::Node const & node,
       std::string const & entry
   ){
     assert(node);
     JetParameters result;
     fastjet::JetAlgorithm jet_algo = fastjet::antikt_algorithm;
     double R;
     set_from_yaml_if_defined(jet_algo, node, entry, "algorithm");
     set_from_yaml(R, node, entry, "R");
     result.def = fastjet::JetDefinition{jet_algo, R};
     set_from_yaml(result.min_pt, node, entry, "min pt");
     return result;
   }
 
   RNGConfig to_RNGConfig(
       YAML::Node const & node,
       std::string const & entry
   ){
     assert(node);
     RNGConfig result;
     set_from_yaml(result.name, node, entry, "name");
     set_from_yaml_if_defined(result.seed, node, entry, "seed");
     return result;
   }
 
   ParticleProperties get_particle_properties(
       YAML::Node const & node, std::string const & entry,
       std::string const & boson
   ){
     ParticleProperties result;
     set_from_yaml(result.mass, node, entry, boson, "mass");
     set_from_yaml(result.width, node, entry, boson, "width");
     return result;
   }
 
   EWConstants get_ew_parameters(YAML::Node const & node){
     EWConstants result;
     double vev;
     set_from_yaml(vev, node, "vev");
     result.set_vevWZH(vev,
       get_particle_properties(node, "particle properties", "W"),
       get_particle_properties(node, "particle properties", "Z"),
       get_particle_properties(node, "particle properties", "Higgs")
     );
     return result;
   }
 
   HiggsCouplingSettings get_Higgs_coupling(
       YAML::Node const & node,
       std::string const & entry
   ){
     assert(node);
     static constexpr double mt_max = 2e4;
 #ifndef HEJ_BUILD_WITH_QCDLOOP
     if(node[entry]){
       throw std::invalid_argument{
         "Higgs coupling settings require building HEJ 2 "
           "with QCDloop support"
           };
     }
 #endif
     HiggsCouplingSettings settings;
     set_from_yaml_if_defined(settings.mt, node, entry, "mt");
     set_from_yaml_if_defined(settings.mb, node, entry, "mb");
     set_from_yaml_if_defined(settings.include_bottom, node, entry, "include bottom");
     set_from_yaml_if_defined(settings.use_impact_factors, node, entry, "use impact factors");
     if(settings.use_impact_factors){
       if(settings.mt != std::numeric_limits<double>::infinity()){
         throw std::invalid_argument{
           "Conflicting settings: "
             "impact factors may only be used in the infinite top mass limit"
             };
       }
     }
     else{
       // huge values of the top mass are numerically unstable
       settings.mt = std::min(settings.mt, mt_max);
     }
     return settings;
   }
 
   FileFormat to_FileFormat(std::string const & name){
     static const std::map<std::string, FileFormat> known = {
       {"Les Houches", FileFormat::Les_Houches},
       {"HepMC", FileFormat::HepMC},
       {"HepMC2", FileFormat::HepMC2},
       {"HepMC3", FileFormat::HepMC3},
       {"HDF5", FileFormat::HDF5}
     };
     const auto res = known.find(name);
     if(res == known.end()){
       throw std::invalid_argument("Unknown file format \"" + name + "\"");
     }
     return res->second;
   }
 
   std::string extract_suffix(std::string const & filename){
     size_t separator = filename.rfind('.');
     if(separator == filename.npos) return {};
     return filename.substr(separator + 1);
   }
 
   FileFormat format_from_suffix(std::string const & filename){
     const std::string suffix = extract_suffix(filename);
     if(suffix == "lhe") return FileFormat::Les_Houches;
     if(suffix == "hepmc") return FileFormat::HepMC;
     if(suffix == "hepmc3") return FileFormat::HepMC3;
     if(suffix == "hepmc2") return FileFormat::HepMC2;
     if(suffix == "hdf5") return FileFormat::HDF5;
     throw std::invalid_argument{
       "Can't determine format for output file \"" + filename  + "\""
     };
   }
 
   void assert_all_options_known(
       YAML::Node const & conf, YAML::Node const & supported
   ){
     if(!conf.IsMap()) return;
     if(!supported.IsMap()) throw invalid_type{"must not have sub-entries"};
     for(auto const & entry: conf){
       const auto name = entry.first.as<std::string>();
       if(! supported[name]) throw unknown_option{name};
       /* check sub-options, e.g. 'resummation jets: min pt'
        * we don't check analysis sub-options
        * those depend on the analysis being used and should be checked there
        * similar for "import scales"
        */
       if(name != "analysis" && name != "import scales"){
         try{
           assert_all_options_known(conf[name], supported[name]);
         }
         catch(unknown_option const & ex){
           throw unknown_option{name + ": " + ex.what()};
         }
         catch(invalid_type const & ex){
           throw invalid_type{name + ": " + ex.what()};
         }
       }
     }
   }
 
 } // namespace HEJ
 
 namespace YAML {
 
   Node convert<HEJ::OutputFile>::encode(HEJ::OutputFile const & outfile) {
     Node node;
     node[to_string(outfile.format)] = outfile.name;
     return node;
-  };
+  }
 
   bool convert<HEJ::OutputFile>::decode(Node const & node, HEJ::OutputFile & out) {
     switch(node.Type()){
     case NodeType::Map: {
       YAML::const_iterator it = node.begin();
       out.format = HEJ::to_FileFormat(it->first.as<std::string>());
       out.name = it->second.as<std::string>();
       return true;
     }
     case NodeType::Scalar:
       out.name = node.as<std::string>();
       out.format = HEJ::format_from_suffix(out.name);
       return true;
     default:
       return false;
     }
   }
 } // namespace YAML
 
 namespace HEJ{
 
   namespace detail{
     void set_from_yaml(OutputFile & setting, YAML::Node const & yaml){
       setting = yaml.as<OutputFile>();
     }
   }
 
   namespace{
     void update_fixed_order_jet_parameters(
         JetParameters & fixed_order_jets, YAML::Node const & yaml
     ){
       if(!yaml["fixed order jets"]) return;
       set_from_yaml_if_defined(
           fixed_order_jets.min_pt, yaml, "fixed order jets", "min pt"
       );
       fastjet::JetAlgorithm algo = fixed_order_jets.def.jet_algorithm();
       set_from_yaml_if_defined(algo, yaml, "fixed order jets", "algorithm");
       double R = fixed_order_jets.def.R();
       set_from_yaml_if_defined(R, yaml, "fixed order jets", "R");
       fixed_order_jets.def = fastjet::JetDefinition{algo, R};
     }
 
     // like std::stod, but throw if not the whole string can be converted
     double to_double(std::string const & str){
       std::size_t pos;
       const double result = std::stod(str, &pos);
       if(pos < str.size()){
         throw std::invalid_argument(str + " is not a valid double value");
       }
       return result;
     }
 
     using EventScale = double (*)(Event const &);
 
     void import_scale_functions(
         std::string const & file,
         std::vector<std::string> const & scale_names,
         std::unordered_map<std::string, EventScale> & known
     ) {
       auto handle = dlopen(file.c_str(), RTLD_NOW);
       char * error = dlerror();
       if(error != nullptr) throw std::runtime_error{error};
 
       for(auto const & scale: scale_names) {
         void * sym = dlsym(handle, scale.c_str());
         error = dlerror();
         if(error != nullptr) throw std::runtime_error{error};
         known.emplace(scale, reinterpret_cast<EventScale>(sym));
       }
     }
 
     auto get_scale_map(
         YAML::Node const & yaml
     ) {
       std::unordered_map<std::string, EventScale> scale_map;
       scale_map.emplace("H_T", H_T);
       scale_map.emplace("max jet pperp", max_jet_pt);
       scale_map.emplace("jet invariant mass", jet_invariant_mass);
       scale_map.emplace("m_j1j2", m_j1j2);
       if(yaml["import scales"]) {
         if(! yaml["import scales"].IsMap()) {
           throw invalid_type{"Entry 'import scales' is not a map"};
         }
         for(auto const & import: yaml["import scales"]) {
           const auto file = import.first.as<std::string>();
           const auto scale_names =
             import.second.IsSequence()
             ?import.second.as<std::vector<std::string>>()
             :std::vector<std::string>{import.second.as<std::string>()};
           import_scale_functions(file, scale_names, scale_map);
         }
       }
       return scale_map;
     }
 
     // simple (as in non-composite) scale functions
     /**
      * An example for a simple scale function would be H_T,
      * H_T/2 is then composite (take H_T and then divide by 2)
      */
     ScaleFunction parse_simple_ScaleFunction(
         std::string const & scale_fun,
         std::unordered_map<std::string, EventScale> const & known
     ) {
       assert(
           scale_fun.empty() ||
           (!std::isspace(scale_fun.front()) && !std::isspace(scale_fun.back()))
       );
       const auto it = known.find(scale_fun);
       if(it != end(known)) return {it->first, it->second};
       try{
         const double scale = to_double(scale_fun);
         return {scale_fun, FixedScale{scale}};
       } catch(std::invalid_argument const &){}
       throw std::invalid_argument{"Unknown scale choice: \"" + scale_fun + "\""};
     }
 
     std::string trim_front(std::string const & str){
       const auto new_begin = std::find_if(
           begin(str), end(str), [](char c){ return ! std::isspace(c); }
       );
       return std::string(new_begin, end(str));
     }
 
     std::string trim_back(std::string str){
       size_t pos = str.size() - 1;
       // use guaranteed wrap-around behaviour to check whether we have
       // traversed the whole string
       for(; pos < str.size() && std::isspace(str[pos]); --pos) {}
       str.resize(pos + 1); // note that pos + 1 can be 0
       return str;
     }
 
     ScaleFunction parse_ScaleFunction(
         std::string const & scale_fun,
         std::unordered_map<std::string, EventScale> const & known
     ){
       assert(
           scale_fun.empty() ||
           (!std::isspace(scale_fun.front()) && !std::isspace(scale_fun.back()))
       );
       // parse from right to left => a/b/c gives (a/b)/c
       const size_t delim = scale_fun.find_last_of("*/");
       if(delim == scale_fun.npos){
         return parse_simple_ScaleFunction(scale_fun, known);
       }
       const std::string first = trim_back(std::string{scale_fun, 0, delim});
       const std::string second = trim_front(std::string{scale_fun, delim+1});
       if(scale_fun[delim] == '/'){
         return parse_ScaleFunction(first, known)
           / parse_ScaleFunction(second, known);
       }
       else{
         assert(scale_fun[delim] == '*');
         return parse_ScaleFunction(first, known)
           * parse_ScaleFunction(second, known);
       }
     }
 
     EventTreatMap get_event_treatment(
       YAML::Node const & node, std::string const & entry
     ){
       using namespace event_type;
       EventTreatMap treat {
           {no_2_jets, EventTreatment::discard},
           {bad_final_state, EventTreatment::discard},
           {FKL, EventTreatment::discard},
           {unob, EventTreatment::discard},
           {unof, EventTreatment::discard},
           {qqxexb, EventTreatment::discard},
           {qqxexf, EventTreatment::discard},
           {qqxmid, EventTreatment::discard},
           {non_resummable, EventTreatment::discard}
         };
       set_from_yaml(treat.at(FKL), node, entry, "FKL");
       set_from_yaml(treat.at(unob), node, entry, "unordered");
       treat.at(unof) = treat.at(unob);
       set_from_yaml(treat.at(qqxexb), node, entry, "extremal qqx");
       treat.at(qqxexf) = treat.at(qqxexb);
       set_from_yaml(treat.at(qqxmid), node, entry, "central qqx");
       set_from_yaml(treat.at(non_resummable), node, entry, "non-resummable");
       if(treat[non_resummable] == EventTreatment::reweight){
         throw std::invalid_argument{"Cannot reweight Fixed Order events"};
       }
       return treat;
     }
 
     Config to_Config(YAML::Node const & yaml){
       try{
         assert_all_options_known(yaml, get_supported_options());
       }
       catch(unknown_option const & ex){
         throw unknown_option{std::string{"Unknown option '"} + ex.what() + "'"};
       }
 
       Config config;
       config.resummation_jets = get_jet_parameters(yaml, "resummation jets");
       config.fixed_order_jets = config.resummation_jets;
       update_fixed_order_jet_parameters(config.fixed_order_jets, yaml);
       set_from_yaml_if_defined(config.min_extparton_pt, yaml, "min extparton pt");
       if(config.min_extparton_pt!=0)
         std::cerr << "WARNING: \"min extparton pt\" is deprecated."
           << " Please use \"max ext soft pt fraction\" instead.\n";
       set_from_yaml(
           config.max_ext_soft_pt_fraction, yaml, "max ext soft pt fraction"
       );
       // Sets the standard value, then changes this if defined
       config.regulator_lambda=CLAMBDA;
       set_from_yaml_if_defined(config.regulator_lambda, yaml, "regulator parameter");
       set_from_yaml_if_defined(config.max_events, yaml, "max events");
       set_from_yaml(config.trials, yaml, "trials");
       config.weight_type = WeightType::weighted;
       set_from_yaml_if_defined(config.weight_type, yaml, "unweight", "type");
       if(config.weight_type == WeightType::partially_unweighted) {
         config.unweight_config = PartialUnweightConfig{};
         set_from_yaml(
             config.unweight_config->trials, yaml,
             "unweight", "trials"
         );
         set_from_yaml(
             config.unweight_config->max_dev, yaml,
             "unweight", "max deviation"
         );
       }
       else if(yaml["unweight"]) {
         for(auto && opt: {"trials", "max deviation"}) {
           if(yaml["unweight"][opt]) {
             throw std::invalid_argument{
               "'unweight: " + std::string{opt} + "' "
               "is only supported if 'unweight: type' is set to 'partial'"
             };
           }
         }
       }
       set_from_yaml(config.log_correction, yaml, "log correction");
       config.treat = get_event_treatment(yaml, "event treatment");
       set_from_yaml_if_defined(config.output, yaml, "event output");
       config.rng = to_RNGConfig(yaml, "random generator");
       set_from_yaml_if_defined(config.analysis_parameters, yaml, "analysis");
       config.scales = to_ScaleConfig(yaml);
       config.ew_parameters = get_ew_parameters(yaml);
       config.Higgs_coupling = get_Higgs_coupling(yaml, "Higgs coupling");
       return config;
     }
 
   } // namespace anonymous
 
   ScaleConfig to_ScaleConfig(YAML::Node const & yaml){
     ScaleConfig config;
     auto scale_funs = get_scale_map(yaml);
     std::vector<std::string> scales;
     set_from_yaml(scales, yaml, "scales");
     config.base.reserve(scales.size());
     std::transform(
         begin(scales), end(scales), std::back_inserter(config.base),
         [scale_funs](auto const & entry){
           return parse_ScaleFunction(entry, scale_funs);
         }
     );
     set_from_yaml_if_defined(config.factors, yaml, "scale factors");
     config.max_ratio = std::numeric_limits<double>::infinity();
     set_from_yaml_if_defined(config.max_ratio, yaml, "max scale ratio");
     return config;
   }
 
   Config load_config(std::string const & config_file){
     try{
       return to_Config(YAML::LoadFile(config_file));
     }
     catch(...){
       std::cerr << "Error reading " << config_file << ":\n  ";
       throw;
     }
   }
 
 } // namespace HEJ
diff --git a/t/check_res.cc b/t/check_res.cc
index ae65bfb..69ab76b 100644
--- a/t/check_res.cc
+++ b/t/check_res.cc
@@ -1,169 +1,169 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #include <cmath>
 #include <iostream>
 
 #include "LHEF/LHEF.h"
 
 #include "HEJ/CrossSectionAccumulator.hh"
 #include "HEJ/Event.hh"
 #include "HEJ/EventReweighter.hh"
 #include "HEJ/Mixmax.hh"
 #include "HEJ/stream.hh"
 
 #include "hej_test.hh"
 
 namespace{
   const fastjet::JetDefinition jet_def{fastjet::kt_algorithm, 0.4};
   const fastjet::JetDefinition Born_jet_def{jet_def};
   constexpr double Born_jetptmin = 30;
   constexpr double max_ext_soft_pt_fraction = 0.1;
   constexpr double jetptmin = 35;
   constexpr bool log_corr = false;
   const HEJ::ParticleProperties Wprop{80.385, 2.085};
   const HEJ::ParticleProperties Zprop{91.187, 2.495};
   const HEJ::ParticleProperties Hprop{125,    0.004165};
   constexpr double vev = 246.2196508;
   using EventTreatment = HEJ::EventTreatment;
   using namespace HEJ::event_type;
   HEJ::EventTreatMap treat{
     {no_2_jets, EventTreatment::discard},
     {bad_final_state, EventTreatment::discard},
     {non_resummable, EventTreatment::discard},
     {unof, EventTreatment::discard},
     {unob, EventTreatment::discard},
     {qqxexb, EventTreatment::discard},
     {qqxexf, EventTreatment::discard},
     {qqxmid, EventTreatment::discard},
     {FKL, EventTreatment::reweight}
   };
 
   /// true if colour is allowed for particle
   bool correct_colour(HEJ::Particle const & part){
     if(HEJ::is_AWZH_boson(part) && !part.colour) return true;
     if(!part.colour) return false;
     int const colour = part.colour->first;
     int const anti_colour = part.colour->second;
     if(part.type == HEJ::ParticleID::gluon)
       return colour != anti_colour && colour > 0 && anti_colour > 0;
     if(HEJ::is_quark(part))
       return anti_colour == 0 && colour > 0;
     return colour == 0 && anti_colour > 0;
   }
   bool correct_colour(HEJ::Event const & ev){
     if(!HEJ::event_type::is_resummable(ev.type()))
       return true;
     for(auto const & part: ev.incoming()){
       if(!correct_colour(part))
         return false;
     }
     for(auto const & part: ev.outgoing()){
       if(!correct_colour(part))
         return false;
     }
     return true;
   }
-};
+}
 
 int main(int argn, char** argv) {
   if(argn == 5 && std::string(argv[4]) == "unof"){
     --argn;
     treat[unof] = EventTreatment::reweight;
     treat[unob] = EventTreatment::discard;
     treat[FKL] = EventTreatment::discard;
   }
   if(argn == 5 && std::string(argv[4]) == "unob"){
     --argn;
     treat[unof] = EventTreatment::discard;
     treat[unob] = EventTreatment::reweight;
     treat[FKL] = EventTreatment::discard;
   }
   else if(argn == 5 && std::string(argv[4]) == "splitf"){
     --argn;
     treat[qqxexb] = EventTreatment::discard;
     treat[qqxexf] = EventTreatment::reweight;
     treat[FKL] = EventTreatment::discard;
   }
   else if(argn == 5 && std::string(argv[4]) == "splitb"){
     --argn;
     treat[qqxexb] = EventTreatment::reweight;
     treat[qqxexf] = EventTreatment::discard;
     treat[FKL] = EventTreatment::discard;
   }
   else if(argn == 5 && std::string(argv[4]) == "qqxmid"){
     --argn;
     treat[qqxmid] = EventTreatment::reweight;
     treat[FKL] = EventTreatment::discard;
   }
   if(argn != 4){
     std::cerr << "Usage: check_res eventfile xsection tolerance [uno]";
     return EXIT_FAILURE;
   }
 
   const double xsec_ref = std::stod(argv[2]);
   const double tolerance = std::stod(argv[3]);
 
   HEJ::istream in{argv[1]};
   LHEF::Reader reader{in};
 
   HEJ::PhaseSpacePointConfig psp_conf;
   psp_conf.jet_param = HEJ::JetParameters{jet_def, jetptmin};
   psp_conf.max_ext_soft_pt_fraction = max_ext_soft_pt_fraction;
   HEJ::MatrixElementConfig ME_conf;
   ME_conf.log_correction = log_corr;
   ME_conf.Higgs_coupling = HEJ::HiggsCouplingSettings{};
   ME_conf.ew_parameters.set_vevWZH(vev, Wprop, Zprop, Hprop);
   HEJ::EventReweighterConfig conf;
   conf.psp_config = std::move(psp_conf);
   conf.ME_config = std::move(ME_conf);
   conf.jet_param = psp_conf.jet_param;
   conf.treat = treat;
 
   reader.readEvent();
   const bool has_Higgs = std::find(
       begin(reader.hepeup.IDUP),
       end(reader.hepeup.IDUP),
       25
   ) != end(reader.hepeup.IDUP);
   const double mu = has_Higgs?125.:91.188;
   HEJ::ScaleGenerator scale_gen{
     {{std::to_string(mu), HEJ::FixedScale{mu}}}, {}, 1.
   };
   HEJ::Mixmax ran{};
   HEJ::EventReweighter hej{reader.heprup, std::move(scale_gen), conf, ran};
 
   HEJ::CrossSectionAccumulator xs;
   do{
     auto ev_data = HEJ::Event::EventData{reader.hepeup};
     shuffle_particles(ev_data);
     ev_data.reconstruct_intermediate();
     HEJ::Event ev{
       ev_data.cluster(
         Born_jet_def, Born_jetptmin
       )
     };
     auto resummed_events = hej.reweight(ev, 100);
     for(auto const & ev: resummed_events) {
       ASSERT(correct_colour(ev));
       ASSERT(std::isfinite(ev.central().weight));
       // we fill the xs uncorrelated since we only want to test the uncertainty
       // of the resummation
       xs.fill(ev);
     }
   } while(reader.readEvent());
   const double xsec = xs.total().value;
   const double xsec_err = std::sqrt(xs.total().error);
   const double significance =
     std::abs(xsec - xsec_ref) / std::sqrt( xsec_err*xsec_err + tolerance*tolerance );
   std::cout << xsec_ref << " +/- " << tolerance << " ~ "
     << xsec << " +- " << xsec_err << " => " << significance << " sigma\n";
 
   if(significance > 3.){
     std::cerr << "Cross section is off by over 3 sigma!\n";
     return EXIT_FAILURE;
   }
   return EXIT_SUCCESS;
 }
diff --git a/t/test_psp.cc b/t/test_psp.cc
index 10bcd48..1c502aa 100644
--- a/t/test_psp.cc
+++ b/t/test_psp.cc
@@ -1,68 +1,68 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #include "LHEF/LHEF.h"
 #include "HEJ/stream.hh"
 #include "HEJ/config.hh"
 #include "HEJ/event_types.hh"
 #include "HEJ/Event.hh"
 #include "HEJ/PhaseSpacePoint.hh"
 #include "HEJ/Ranlux64.hh"
 
 #include "hej_test.hh"
 
 namespace{
   constexpr int max_trials = 100;
   constexpr double max_ext_soft_pt_fraction = 0.1;
   const fastjet::JetDefinition jet_def{fastjet::kt_algorithm, 0.4};
   constexpr double min_jet_pt = 50;
-};
+}
 
 int main(int argn, char** argv) {
   if(argn != 2){
     std::cerr << "Usage: " << argv[0] << " eventfile";
     return EXIT_FAILURE;
   }
 
   HEJ::istream in{argv[1]};
   LHEF::Reader reader{in};
   LHEF::Writer writer{std::cerr};
   writer.heprup = reader.heprup;
 
   HEJ::PhaseSpacePointConfig conf;
   conf.jet_param = HEJ::JetParameters{jet_def, min_jet_pt};
   conf.max_ext_soft_pt_fraction = max_ext_soft_pt_fraction;
 
   HEJ::Ranlux64 ran{};
 
   while(reader.readEvent()){
     HEJ::Event::EventData ev_data{ reader.hepeup };
     shuffle_particles(ev_data);
     const HEJ::Event ev{ ev_data( jet_def, min_jet_pt ) };
     for(int trial = 0; trial < max_trials; ++trial){
       HEJ::PhaseSpacePoint psp{ev, conf, ran};
       if(psp.weight() != 0){
         HEJ::Event::EventData tmp_ev;
         tmp_ev.incoming = psp.incoming();
         tmp_ev.outgoing = psp.outgoing();
         tmp_ev.parameters.central = {0,0,0};
         shuffle_particles(tmp_ev);
         HEJ::Event out_ev{ tmp_ev(jet_def, min_jet_pt) };
         if(out_ev.type() != ev.type()){
           using HEJ::event_type::name;
           std::cerr << "Wrong class of phase space point:\n"
             "original event of class " << name(ev.type()) << ":\n";
           writer.hepeup = reader.hepeup;
           writer.writeEvent();
           std::cerr << "Phase space point of class " << name(out_ev.type()) << ":\n";
           writer.hepeup = to_HEPEUP(out_ev, &writer.heprup);
           writer.writeEvent();
           return EXIT_FAILURE;
         }
       }
     }
   }
   return EXIT_SUCCESS;
 }