diff --git a/Changes.md b/Changes.md index 03df478..f1d36fb 100644 --- a/Changes.md +++ b/Changes.md @@ -1,41 +1,43 @@ # Changelog This is the log for changes to the HEJ program. Further changes to the HEJ API are documented in `Changes-API.md`. If you are using HEJ as a library, please also read the changes there. ## Version 2.X ### 2.X.0 * Allow multiplication and division of multiple scale functions e.g. `H_T/2*m_j1j2` * Print cross sections at end of run * Follow HepMC convention for particle Status codes: incoming = 11, decaying = 2, outgoing = 1 (unchanged) * Partons now have a Colour charge - Colours are read from and written to LHE files - For reweighted events the colours are created according to leading colour in the FKL limit +* Allow changing the regulator lambda in input (`regulator parameter`, only for + advanced users) ## 2.0.5 * Fixed event classification for input not ordered in rapidity ### 2.0.4 * Fixed wrong path of `HEJ_INCLUDE_DIR` in `hej-config.cmake` ### 2.0.3 * Fixed parsing of (numerical factor) * (base scale) in configuration * Don't change scale names, but sanitise Rivet output file names instead ### 2.0.2 * Changed scale names to `"_over_"` and `"_times_"` for proper file names (was `"/"` and `"*"` before) ### 2.0.1 * Fixed name of fixed-order generator in error message. diff --git a/config.yml b/config.yml index e289b78..bb93dad 100644 --- a/config.yml +++ b/config.yml @@ -1,90 +1,97 @@ # number of attempted resummation phase space points for each input event trials: 10 min extparton pt: 30 # minimum transverse momentum of extremal partons # maximum soft transverse momentum fraction in extremal jets # # max ext soft pt fraction: 0.1 resummation jets: # resummation jet properties min pt: 35 # minimum jet transverse momentum algorithm: antikt # jet clustering algorithm R: 0.4 # jet R parameter fixed order jets: # properties of input jets min pt: 30 # by default, algorithm and R are like for resummation jets # treatment of he various event classes # the supported settings are: reweight, keep, discard # non-HEJ events cannot be reweighted FKL: reweight unordered: keep qqx: keep non-HEJ: keep # central scale choice or choices # # scales: [125, max jet pperp, H_T/2, 2*jet invariant mass, m_j1j2] scales: 91.188 # factors by which the central scales should be multiplied # renormalisation and factorisation scales are varied independently # # scale factors: [0.5, 0.7071, 1, 1.41421, 2] # maximum ratio between renormalisation and factorisation scale # # max scale ratio: 2.0001 # import scale setting functions # # import scales: # lib_my_scales.so: [scale0,scale1] log correction: false # whether or not to include higher order logs # event output files # # the supported formats are # - Les Houches (suffix .lhe) # - HepMC (suffix .hepmc3) # TODO: - ROOT ntuples (suffix .root) # # An output file's format is deduced either automatically from the suffix # or from an explicit specification, e.g. # - Les Houches: outfile event output: - HEJ.lhe # - HEJ_events.hepmc # to use a rivet analysis # # analysis: # rivet: MC_XS # rivet analysis name # output: HEJ # name of the yoda files, ".yoda" and scale suffix will be added # # to use a custom analysis # # analysis: # plugin: /path/to/libmyanalysis.so # my analysis parameter: some value # selection of random number generator and seed # the choices are # - mixmax (seed is an integer) # - ranlux64 (seed is a filename containing parameters) random generator: name: mixmax # seed: 1 # parameters for Higgs-gluon couplings # this requires compilation with qcdloop # # Higgs coupling: # use impact factors: false # mt: 174 # include bottom: true # mb: 4.7 + +## ---------------------------------------------------------------------- ## +## The following settings are only intended for advances users. ## +## Please DO NOT SET them unless you know exactly what you are doing! ## +## ---------------------------------------------------------------------- ## +# +# regulator parameter: 0.2 # The regulator lambda for the subtraction terms diff --git a/doc/developer_manual/developer_manual.tex b/doc/developer_manual/developer_manual.tex index 8fafed2..6c83b9a 100644 --- a/doc/developer_manual/developer_manual.tex +++ b/doc/developer_manual/developer_manual.tex @@ -1,1535 +1,1537 @@ \documentclass[a4paper,11pt]{article} \usepackage{fourier} \usepackage[T1]{fontenc} \usepackage{microtype} \usepackage{geometry} \usepackage{enumitem} \setlist[description]{leftmargin=\parindent,labelindent=\parindent} \usepackage{amsmath} \usepackage{amssymb} \usepackage[utf8x]{inputenc} \usepackage{graphicx} \usepackage{xcolor} \usepackage{todonotes} \usepackage{listings} \usepackage{xspace} \usepackage{tikz} \usepackage{subcaption} \usetikzlibrary{arrows.meta} \usetikzlibrary{shapes} \usetikzlibrary{calc} \usepackage[colorlinks,linkcolor={blue!50!black}]{hyperref} \graphicspath{{build/figures/}{figures/}} \emergencystretch \hsize \newcommand{\HEJ}{{\tt HEJ}\xspace} \newcommand{\HIGHEJ}{\emph{High Energy Jets}\xspace} \newcommand{\cmake}{\href{https://cmake.org/}{cmake}\xspace} \newcommand{\html}{\href{https://www.w3.org/html/}{html}\xspace} \newcommand{\YAML}{\href{http://yaml.org/}{YAML}\xspace} \newcommand{\QCDloop}{\href{https://github.com/scarrazza/qcdloop}{QCDloop}\xspace} \newcommand{\as}{\alpha_s} \DeclareRobustCommand{\mathgraphics}[1]{\vcenter{\hbox{\includegraphics{#1}}}} \def\spa#1.#2{\left\langle#1\,#2\right\rangle} \def\spb#1.#2{\left[#1\,#2\right]} \def\spaa#1.#2.#3{\langle\mskip-1mu{#1} | #2 | {#3}\mskip-1mu\rangle} \def\spbb#1.#2.#3{[\mskip-1mu{#1} | #2 | {#3}\mskip-1mu]} \def\spab#1.#2.#3{\langle\mskip-1mu{#1} | #2 | {#3}\mskip-1mu\rangle} \def\spba#1.#2.#3{\langle\mskip-1mu{#1}^+ | #2 | {#3}^+\mskip-1mu\rangle} \def\spav#1.#2.#3{\|\mskip-1mu{#1} | #2 | {#3}\mskip-1mu\|^2} \def\jc#1.#2.#3{j^{#1}_{#2#3}} \definecolor{darkgreen}{rgb}{0,0.4,0} \lstset{ % backgroundcolor=\color{lightgray}, % choose the background color; you must add \usepackage{color} or \usepackage{xcolor} basicstyle=\footnotesize\usefont{T1}{DejaVuSansMono-TLF}{m}{n}, % the size of the fonts that are used for the code breakatwhitespace=false, % sets if automatic breaks should only happen at whitespace breaklines=false, % sets automatic line breaking captionpos=t, % sets the caption-position to bottom commentstyle=\color{red}, % comment style deletekeywords={...}, % if you want to delete keywords from the given language escapeinside={\%*}{*)}, % if you want to add LaTeX within your code extendedchars=true, % lets you use non-ASCII characters; for 8-bits encodings only, does not work with UTF-8 frame=false, % adds a frame around the code keepspaces=true, % keeps spaces in text, useful for keeping indentation of code (possibly needs columns=flexible) keywordstyle=\color{blue}, % keyword style otherkeywords={}, % if you want to add more keywords to the set numbers=none, % where to put the line-numbers; possible values are (none, left, right) numbersep=5pt, % how far the line-numbers are from the code rulecolor=\color{black}, % if not set, the frame-color may be changed on line-breaks within not-black text (e.g. comments (green here)) showspaces=false, % show spaces everywhere adding particular underscores; it overrides 'showstringspaces' showstringspaces=false, % underline spaces within strings only showtabs=false, % show tabs within strings adding particular underscores stepnumber=2, % the step between two line-numbers. If it's 1, each line will be numbered stringstyle=\color{gray}, % string literal style tabsize=2, % sets default tabsize to 2 spaces title=\lstname, emph={}, emphstyle=\color{darkgreen} } \begin{document} \tikzstyle{mynode}=[rectangle split,rectangle split parts=2, draw,rectangle split part fill={lightgray, none}] \title{HEJ 2 developer manual} \author{} \maketitle \tableofcontents \newpage \section{Overview} \label{sec:overview} HEJ 2 is a C++ program and library implementing an algorithm to apply \HIGHEJ resummation~\cite{Andersen:2008ue,Andersen:2008gc} to pre-generated fixed-order events. This document is intended to give an overview over the concepts and structure of this implementation. \subsection{Project structure} \label{sec:project} HEJ 2 is developed under the \href{https://git-scm.com/}{git} version control system. The main repository is on the IPPP \href{https://gitlab.com/}{gitlab} server under \url{https://gitlab.dur.scotgrid.ac.uk/hej/hej}. To get a local copy, get an account on the gitlab server and use \begin{lstlisting}[language=sh,caption={}] git clone git@gitlab.dur.scotgrid.ac.uk:hej/hej.git \end{lstlisting} This should create a directory \texttt{hej} with the following contents: \begin{description} \item[doc:] Contains additional documentation, see section~\ref{sec:doc}. \item[include:] Contains the C++ header files. \item[src:] Contains the C++ source files. \item[t:] Contains the source code for the automated tests. \item[CMakeLists.txt:] Configuration file for the \cmake build system. See section~\ref{sec:cmake}. \item[cmake:] Auxiliary files for \cmake. This includes modules for finding installed software in \texttt{cmake/Modules} and templates for code generation during the build process in \texttt{cmake/Templates}. \item[config.yml:] Sample configuration file for running HEJ 2. \item[FixedOrderGen:] Contains the code for the fixed-order generator, see section~\ref{sec:HEJFOG}. \end{description} In the following all paths are given relative to the \texttt{hej} directory. \subsection{Documentation} \label{sec:doc} The \texttt{doc} directory contains user documentation in \texttt{doc/sphinx} and the configuration to generate source code documentation in \texttt{doc/doxygen}. The user documentation explains how to install and run HEJ 2. The format is \href{http://docutils.sourceforge.net/rst.html}{reStructuredText}, which is mostly human-readable. Other formats, like \html, can be generated with the \href{http://www.sphinx-doc.org/en/master/}{sphinx} generator with \begin{lstlisting}[language=sh,caption={}] make html \end{lstlisting} To document the source code we use \href{https://www.stack.nl/~dimitri/doxygen/}{doxygen}. To generate \html documentation, use the command \begin{lstlisting}[language=sh,caption={}] doxygen Doxyfile \end{lstlisting} in the \texttt{doc/doxygen} directory. \subsection{Build system} \label{sec:cmake} For the most part, HEJ 2 is a library providing classes and functions that can be used to add resummation to fixed-order events. In addition, there is a relatively small executable program leveraging this library to read in events from an input file and produce resummation events. Both the library and the program are built and installed with the help of \cmake. Debug information can be turned on by using \begin{lstlisting}[language=sh,caption={}] cmake base/directory -DCMAKE_BUILD_TYPE=Debug make install \end{lstlisting} This facilitates the use of debuggers like \href{https://www.gnu.org/software/gdb/}{gdb}. The main \cmake configuration file is \texttt{CMakeLists.txt}. It defines the compiler flags, software prerequisites, header and source files used to build HEJ 2, and the automated tests. \texttt{cmake/Modules} contains module files that help with the detection of the software prerequisites and \texttt{cmake/Templates} template files for the automatic generation of header and source files. For example, this allows to only keep the version information in one central location (\texttt{CMakeLists.txt}) and automatically generate a header file from the template \texttt{Version.hh.in} to propagate this to the C++ code. \subsection{General coding guidelines} \label{sec:notes} The goal is to make the HEJ 2 code well-structured and readable. Here are a number of guidelines to this end. \begin{description} \item[Observe the boy scout rule.] Always leave the code cleaner than how you found it. Ugly hacks can be useful for testing, but shouldn't make their way into the main branch. \item[Ask if something is unclear.] Often there is a good reason why code is written the way it is. Sometimes that reason is only obvious to the original author (use \lstinline!git blame! to find them), in which case they should be poked to add a comment. Sometimes there is no good reason, but nobody has had the time to come up with something better, yet. In some places the code might just be bad. \item[Don't break tests.] There are a number of tests in the \texttt{t} directory, which can be run with \lstinline!make test!. Ideally, all tests should run successfully in each git revision. If your latest commit broke a test and you haven't pushed to the central repository yet, you can fix it with \lstinline!git commit --amend!. If an earlier local commit broke a test, you can use \lstinline!git rebase -i! if you feel confident. Additionally each \lstinline!git push! is also automatically tested via the GitLab CI (see appendix~\ref{sec:gitlabCI}). \item[Test your new code.] When you add some new functionality, also add an automated test. This can be useful even if you don't know the ``correct'' result because it prevents the code from changing its behaviour silently in the future. \href{http://www.valgrind.org/}{valgrind} is a very useful tool to detect potential memory leaks. \item[Stick to the coding style.] It is somewhat easier to read code that has a uniform coding and indentation style. We don't have a strict style, but it helps if your code looks similar to what is already there. \end{description} \section{Program flow} \label{sec:flow} A run of the HEJ 2 program has three stages: initialisation, event processing, and cleanup. The following sections outline these stages and their relations to the various classes and functions in the code. Unless denoted otherwise, all classes and functions are part of the \lstinline!HEJ! namespace. The code for the HEJ 2 program is in \texttt{src/bin/HEJ.cc}, all other code comprises the HEJ 2 library. Classes and free functions are usually implemented in header and source files with a corresponding name, i.e. the code for \lstinline!MyClass! can usually be found in \texttt{include/HEJ/MyClass.hh} and \texttt{src/MyClass.cc}. \subsection{Initialisation} \label{sec:init} The first step is to load and parse the \YAML configuration file. The entry point for this is the \lstinline!load_config! function and the related code can be found in \texttt{include/HEJ/YAMLreader.hh}, \texttt{include/HEJ/config.hh} and the corresponding \texttt{.cc} files in the \texttt{src} directory. The implementation is based on the \href{https://github.com/jbeder/yaml-cpp}{yaml-cpp} library. The \lstinline!load_config! function returns a \lstinline!Config! object containing all settings. To detect potential mistakes as early as possible, we throw an exception whenever one of the following errors occurs: \begin{itemize} \item There is an unknown option in the \YAML file. \item A setting is invalid, for example a string is given where a number would be expected. \item An option value is not set. \end{itemize} The third rule is sometimes relaxed for ``advanced'' settings with an obvious default, like for importing custom scales or analyses. The information stored in the \lstinline!Config! object is then used to initialise various objects required for the event processing stage described in section~\ref{sec:processing}. First, the \lstinline!get_analysis! function creates an object that inherits from the \lstinline!Analysis! interface.\footnote{In the context of C++ the proper technical expression is ``pure abstract class''.} Using an interface allows us to decide the concrete type of the analysis at run time instead of having to make a compile-time decision. Depending on the settings, \lstinline!get_analysis! creates either a user-defined analysis loaded from an external library (see the user documentation \url{https://hej.web.cern.ch/HEJ/doc/current/user/}) or the default \lstinline!EmptyAnalysis!, which does nothing. Together with a number of further objects, whose roles are described in section~\ref{sec:processing}, we also initialise the global random number generator. We again use an interface to defer deciding the concrete type until the program is actually run. Currently, we support the \href{https://mixmax.hepforge.org/}{MIXMAX} (\texttt{include/HEJ/Mixmax.hh}) and Ranlux64 (\texttt{include/HEJ/Ranlux64.hh}) random number generators, both are provided by \href{http://proj-clhep.web.cern.ch/}{CLHEP}. We also set up a \lstinline!LHEF::Reader! object (see \href{http://home.thep.lu.se/~leif/LHEF/}{\texttt{include/LHEF/LHEF.h}}) for reading events from a file in the Les Houches event file format~\cite{Alwall:2006yp}. A small wrapper around the \href{https://www.boost.org/doc/libs/1_67_0/libs/iostreams/doc/index.html}{boost iostreams} library allows us to also read event files compressed with \href{https://www.gnu.org/software/gzip/}{gzip}. The wrapper code is in \texttt{include/HEJ/stream.hh} and the \texttt{src/stream.cc}. \subsection{Event processing} \label{sec:processing} In the second stage events are continously read from the event file. After jet clustering, a number of corresponding resummation events are generated for each input event and fed into the analysis and a number of output files. The roles of various classes and functions are illustrated in the following flow chart: \begin{center} \begin{tikzpicture}[node distance=2cm and 5mm] \node (reader) [mynode] {\lstinline!LHEF::Reader::readEvent!\nodepart{second}{read event}}; \node (data) [mynode,below=of reader] {\lstinline!Event::EventData! constructor\nodepart{second}{convert to \HEJ object}}; \node (cluster) [mynode,below=of data] {\lstinline!Event::EventData::cluster!\nodepart{second}{cluster jets \& classify \lstinline!EventType!}}; \node (resum) [mynode,below=of cluster] {\lstinline!EventReweighter::reweight!\nodepart{second}{perform resummation}}; \node (cut) [mynode,below=of resum] {\lstinline!Analysis::pass_cuts!\nodepart{second}{apply cuts}}; \node (fill) [mynode,below left=of cut] {\lstinline!Analysis::fill!\nodepart{second}{analyse event}}; \node (write) [mynode,below right=of cut] {\lstinline!CombinedEventWriter::write!\nodepart{second}{write out event}}; \node (control) [below=of cut] {}; \draw[-{Latex[length=3mm, width=1.5mm]}] (reader.south) -- node[left] {\lstinline!LHEF::HEPEUP!} (data.north); \draw[-{Latex[length=3mm, width=1.5mm]}] (data.south) -- node[left] {\lstinline!Event::EventData!} (cluster.north); \draw[-{Latex[length=3mm, width=1.5mm]}] (cluster.south) -- node[left] {\lstinline!Event!} (resum.north); \draw[-{Latex[length=3mm, width=1.5mm]}] (resum.south) -- (cut.north); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(resum.south)+(7mm, 0cm)$) -- ($(cut.north)+(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(resum.south)-(7mm, 0cm)$) -- node[left] {\lstinline!Event!} ($(cut.north)-(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(cut.south)-(3mm,0mm)$) .. controls ($(control)-(3mm,0mm)$) ..node[left] {\lstinline!Event!} (fill.east); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(cut.south)-(3mm,0mm)$) .. controls ($(control)-(3mm,0mm)$) .. (write.west); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(cut.south)+(3mm,0mm)$) .. controls ($(control)+(3mm,0mm)$) .. (fill.east); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(cut.south)+(3mm,0mm)$) .. controls ($(control)+(3mm,0mm)$) ..node[right] {\lstinline!Event!} (write.west); \end{tikzpicture} \end{center} \lstinline!EventData! is an intermediate container, its members are completely accessible. In contrast after jet clustering and classification the phase space inside \lstinline!Event! can not be changed any more (\href{https://wikipedia.org/wiki/Builder_pattern}{Builder design pattern}). The resummation is performed by the \lstinline!EventReweighter! class, which is described in more detail in section~\ref{sec:resum}. The \lstinline!CombinedEventWriter! writes events to zero or more output files. To this end, it contains a number of objects implementing the \lstinline!EventWriter! interface. These event writers typically write the events to a file in a given format. We currently have the \lstinline!LesHouchesWriter! for event files in the Les Houches Event File format and the \lstinline!HepMCWriter! for the \href{https://hepmc.web.cern.ch/hepmc/}{HepMC} format (Version 2 and 3). \subsection{Resummation} \label{sec:resum} In the \lstinline!EventReweighter::reweight! member function, we first classify the input fixed-order event (FKL, unordered, non-HEJ, \dots) and decide according to the user settings whether to discard, keep, or resum the event. If we perform resummation for the given event, we generate a number of trial \lstinline!PhaseSpacePoint! objects. Phase space generation is discussed in more detail in section~\ref{sec:pspgen}. We then perform jet clustering according to the settings for the resummation jets on each \lstinline!PhaseSpacePoint!, update the factorisation and renormalisation scale in the resulting \lstinline!Event! and reweight it according to the ratio of pdf factors and \HEJ matrix elements between resummation and original fixed-order event: \begin{center} \begin{tikzpicture}[node distance=1.5cm and 5mm] \node (in) {}; \node (treat) [diamond,draw,below=of in,minimum size=3.5cm, label={[anchor=west, inner sep=8pt]west:discard}, label={[anchor=east, inner sep=14pt]east:keep}, label={[anchor=south, inner sep=20pt]south:reweight} ] {}; \draw (treat.north west) -- (treat.south east); \draw (treat.north east) -- (treat.south west); \node (psp) [mynode,below=of treat] {\lstinline!PhaseSpacePoint! constructor}; \node (cluster) [mynode,below=of psp] {\lstinline!Event::EventData::cluster!\nodepart{second}{cluster jets}}; \node (colour) [mynode,below=of cluster] {\lstinline!Event::generate_colours()!\nodepart{second}{generate particle colour}}; \node (gen_scales) [mynode,below=of colour] {\lstinline!ScaleGenerator::operator()!\nodepart{second}{update scales}}; \node (rescale) [mynode,below=of gen_scales] {\lstinline!PDF::pdfpt!, \lstinline!MatrixElement!\nodepart{second}{reweight}}; \node (out) [below of=rescale] {}; \draw[-{Latex[length=3mm, width=1.5mm]}] (in.south) -- node[left] {\lstinline!Event!} (treat.north); \draw[-{Latex[length=3mm, width=1.5mm]}] (treat.south) -- node[left] {\lstinline!Event!} (psp.north); \draw[-{Latex[length=3mm, width=1.5mm]}] (psp.south) -- (cluster.north); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(psp.south)+(7mm, 0cm)$) -- ($(cluster.north)+(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(psp.south)-(7mm, 0cm)$) -- node[left] {\lstinline!PhaseSpacePoint!} ($(cluster.north)-(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] (cluster.south) -- (colour.north); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(cluster.south)+(7mm, 0cm)$) -- ($(colour.north)+(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(cluster.south)-(7mm, 0cm)$) -- node[left] {\lstinline!Event!} ($(colour.north)-(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] (colour.south) -- (gen_scales.north); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(colour.south)+(7mm, 0cm)$) -- ($(gen_scales.north)+(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(colour.south)-(7mm, 0cm)$) -- node[left] {\lstinline!Event!} ($(gen_scales.north)-(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] (gen_scales.south) -- (rescale.north); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(gen_scales.south)+(7mm, 0cm)$) -- ($(rescale.north)+(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(gen_scales.south)-(7mm, 0cm)$) -- node[left] {\lstinline!Event!} ($(rescale.north)-(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] (rescale.south) -- (out.north); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(rescale.south)+(7mm, 0cm)$) -- ($(out.north)+(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(rescale.south)-(7mm, 0cm)$) -- node[left] {\lstinline!Event!} ($(out.north)-(7mm, 0cm)$); \node (helper) at ($(treat.east) + (15mm,0cm)$) {}; \draw[-{Latex[length=3mm, width=1.5mm]}] (treat.east) -- ($(treat.east) + (15mm,0cm)$) -- node[left] {\lstinline!Event!} (helper |- gen_scales.east) -- (gen_scales.east) ; \end{tikzpicture} \end{center} \subsection{Phase space point generation} \label{sec:pspgen} The resummed and matched \HEJ cross section for pure jet production of FKL configurations is given by (cf. eq. (3) of~\cite{Andersen:2018tnm}) \begin{align} \label{eq:resumdijetFKLmatched2} % \begin{split} \sigma&_{2j}^\mathrm{resum, match}=\sum_{f_1, f_2}\ \sum_m \prod_{j=1}^m\left( \int_{p_{j\perp}^B=0}^{p_{j\perp}^B=\infty} \frac{\mathrm{d}^2\mathbf{p}_{j\perp}^B}{(2\pi)^3}\ \int \frac{\mathrm{d} y_j^B}{2} \right) \ (2\pi)^4\ \delta^{(2)}\!\!\left(\sum_{k=1}^{m} \mathbf{p}_{k\perp}^B\right)\nonumber\\ &\times\ x_a^B\ f_{a, f_1}(x_a^B, Q_a^B)\ x_b^B\ f_{b, f_2}(x_b^B, Q_b^B)\ \frac{\overline{\left|\mathcal{M}_\text{LO}^{f_1f_2\to f_1g\cdots gf_2}\big(\big\{p^B_j\big\}\big)\right|}^2}{(\hat {s}^B)^2}\nonumber\\ & \times (2\pi)^{-4+3m}\ 2^m \nonumber\\ &\times\ \sum_{n=2}^\infty\ \int_{p_{1\perp}=p_{\perp,\mathrm{min}} }^{p_{1\perp}=\infty} \frac{\mathrm{d}^2\mathbf{p}_{1\perp}}{(2\pi)^3}\ \int_{p_{n\perp}=p_{\perp,\mathrm{min}}}^{p_{n\perp}=\infty} \frac{\mathrm{d}^2\mathbf{p}_{n\perp}}{(2\pi)^3}\ \prod_{i=2}^{n-1}\int_{p_{i\perp}=\lambda}^{p_{i\perp}=\infty} \frac{\mathrm{d}^2\mathbf{p}_{i\perp}}{(2\pi)^3}\ (2\pi)^4\ \delta^{(2)}\!\!\left(\sum_{k=1}^n \mathbf{p}_{k\perp}\right )\\ &\times \ \mathbf{T}_y \prod_{i=1}^n \left(\int \frac{\mathrm{d} y_i}{2}\right)\ \mathcal{O}_{mj}^e\ \left(\prod_{l=1}^{m-1}\delta^{(2)}(\mathbf{p}_{\mathcal{J}_{l}\perp}^B - \mathbf{j}_{l\perp})\right)\ \left(\prod_{l=1}^m\delta(y^B_{\mathcal{J}_l}-y_{\mathcal{J}_l})\right) \ \mathcal{O}_{2j}(\{p_i\})\nonumber\\ &\times \frac{(\hat{s}^B)^2}{\hat{s}^2}\ \frac{x_a f_{a,f_1}(x_a, Q_a)\ x_b f_{b,f_2}(x_b, Q_b)}{x_a^B\ f_{a,f_1}(x_a^B, Q_a^B)\ x_b^B\ f_{b,f_2}(x_b^B, Q_b^B)}\ \frac{\overline{\left|\mathcal{M}_{\mathrm{HEJ}}^{f_1 f_2\to f_1 g\cdots gf_2}(\{ p_i\})\right|}^2}{\overline{\left|\mathcal{M}_\text{LO, HEJ}^{f_1f_2\to f_1g\cdots gf_2}\big(\big\{p^B_j\big\}\big)\right|}^{2}} \,.\nonumber % \end{split} \end{align} The first two lines correspond to the generation of the fixed-order input events with incoming partons $f_1, f_2$ and outgoing momenta $p_j^B$, where $\mathbf{p}_{j\perp}^B$ and $y_j^B$ denote the respective transverse momentum and rapidity. Note that, at leading order, these coincide with the fixed-order jet momenta $p_{\mathcal{J}_j}^B$. $f_{a,f_1}(x_a, Q_a),f_{b,f_2}(x_b, Q_b)$ are the pdf factors for the incoming partons with momentum fractions $x_a$ and $x_b$. The square of the partonic centre-of-mass energy is denoted by $\hat{s}^B$ and $\mathcal{M}_\text{LO}^{f_1f_2\to f_1g\cdots gf_2}$ is the leading-order matrix element. The third line is a factor accounting for the different multiplicities between fixed-order and resummation events. Lines four and five are the integration over the resummation phase space described in this section. $p_i$ are the momenta of the outgoing partons in resummation phase space. $\mathbf{T}_y$ denotes rapidity ordering and $\mathcal{O}_{mj}^e$ projects out the exclusive $m$-jet component. The relation between resummation and fixed-order momenta is fixed by the $\delta$ functions. The first sets each transverse fixed-order jet momentum to some function $\mathbf{j_{l\perp}}$ of the resummation momenta. The exact form is described in section~\ref{sec:ptj_res}. The second $\delta$ forces the rapidities of resummation and fixed-order jets to be the same. Finally, the last line is the reweighting of pdf and matrix element factors already shown in section~\ref{sec:resum}. There are two kinds of cut-off in the integration over the resummation partons. $\lambda$ is a technical cut-off connected to the cancellation of infrared divergencies between real and virtual corrections. Its numerical value is set in \texttt{include/HEJ/Constants.h}. $p_{\perp,\mathrm{min}}$ regulates and \emph{uncancelled} divergence in the extremal parton momenta. Its size is set by the user configuration \url{https://hej.web.cern.ch/HEJ/doc/current/user/HEJ.html#settings}. It is straightforward to generalise eq.~(\ref{eq:resumdijetFKLmatched2}) to unordered configurations and processes with additional colourless emissions, for example a Higgs or electroweak boson. In the latter case only the fixed-order integration and the matrix elements change. \subsubsection{Gluon Multiplicity} \label{sec:psp_ng} The first step in evaluating the resummation phase space in eq.~(\ref{eq:resumdijetFKLmatched2}) is to randomly pick terms in the sum over the number of emissions. This sampling of the gluon multiplicity is done in the \lstinline!PhaseSpacePoint::sample_ng! function in \texttt{src/PhaseSpacePoint.cc}. The typical number of extra emissions depends strongly on the rapidity span of the underlying fixed-order event. Let us, for example, consider a fixed-order FKL-type multi-jet configuration with rapidities $y_{j_f},\,y_{j_b}$ of the most forward and backward jets, respectively. By eq.~(\ref{eq:resumdijetFKLmatched2}), the jet multiplicity and the rapidity of each jet are conserved when adding resummation. This implies that additional hard radiation is restricted to rapidities $y$ within a region $y_{j_b} \lesssim y \lesssim y_{j_f}$. Within \HEJ, we require the most forward and most backward emissions to be hard \todo{specify how hard} in order to avoid divergences, so this constraint in fact applies to \emph{all} additional radiation. To simplify the remaining discussion, let us remove the FKL rapidity ordering \begin{equation} \label{eq:remove_y_order} \mathbf{T}_y \prod_{i=1}^n\int \frac{\mathrm{d}y_i}{2} = \frac{1}{n!}\prod_{i=1}^n\int \frac{\mathrm{d}y_i}{2}\,, \end{equation} where all rapidity integrals now cover a region which is approximately bounded by $y_{j_b}$ and $y_{j_f}$. Each of the $m$ jets has to contain at least one parton; selecting random emissions we can rewrite the phase space integrals as \begin{equation} \label{eq:select_jets} \frac{1}{n!}\prod_{i=1}^n\int [\mathrm{d}p_i] = \left(\prod_{i=1}^{m}\int [\mathrm{d}p_i]\ {\cal J}_i(p_i)\right) \frac{1}{n_g!}\prod_{i=m+1}^{m+n_g}\int [\mathrm{d}p_i] \end{equation} with jet selection functions \begin{equation} \label{eq:def_jet_selection} {\cal J}_i(p) = \begin{cases} 1 &p\text{ clustered into jet }i\\ 0 & \text{otherwise} \end{cases} \end{equation} and $n_g \equiv n - m$. Here and in the following we use the short-hand notation $[\mathrm{d}p_i]$ to denote the phase-space measure for parton $i$. As is evident from eq.~\eqref{eq:select_jets}, adding an extra emission $n_g+1$ introduces a suppression factor $\tfrac{1}{n_g+1}$. However, the additional phase space integral also results in an enhancement proportional to $\Delta y_{j_f j_b} = y_{j_f} - y_{j_b}$. This is a result of the rapidity-independence of the MRK limit of the integrand, consisting of the matrix elements divided by the flux factor. Indeed, we observe that the typical number of gluon emissions is to a good approximation proportional to the rapidity separation and the phase space integral is dominated by events with $n_g \approx \Delta y_{j_f j_b}$. For the actual phase space sampling, we assume a Poisson distribution and extract the mean number of gluon emissions in different rapidity bins and fit the results to a linear function in $\Delta y_{j_f j_b}$, finding a coefficient of $0.975$ for the inclusive production of a Higgs boson with two jets. Here are the observed and fitted average gluon multiplicities as a function of $\Delta y_{j_f j_b}$: \begin{center} \includegraphics[width=.75\textwidth]{ng_mean} \end{center} As shown for two rapidity slices the assumption of a Poisson distribution is also a good approximation: \begin{center} \includegraphics[width=.49\textwidth]{{ng_1.5}.pdf}\hfill \includegraphics[width=.49\textwidth]{{ng_5.5}.pdf} \end{center} \subsubsection{Number of Gluons inside Jets} \label{sec:psp_ng_jet} For each of the $n_g$ gluon emissions we can split the phase-space integral into a (disconnected) region inside the jets and a remainder: \begin{equation} \label{eq:psp_split} \int [\mathrm{d}p_i] = \int [\mathrm{d}p_i]\, \theta\bigg(\sum_{j=1}^{m}{\cal J}_j(p_i)\bigg) + \int [\mathrm{d}p_i]\, \bigg[1-\theta\bigg(\sum_{j=1}^{m}{\cal J}_j(p_i)\bigg)\bigg]\,. \end{equation} The next step is to decide how many of the gluons will form part of a jet. This is done in the \lstinline!PhaseSpacePoint::sample_ng_jets! function. We choose an importance sampling which is flat in the plane spanned by the azimuthal angle $\phi$ and the rapidity $y$. This is observed in BFKL and valid in the limit of Multi-Regge-Kinematics (MRK). Furthermore, we assume anti-$k_t$ jets, which cover an area of $\pi R^2$. In principle, the total accessible area in the $y$-$\phi$ plane is given by $2\pi \Delta y_{fb}$, where $\Delta y_{fb}\geq \Delta y_{j_f j_b}$ is the a priori unknown rapidity separation between the most forward and backward partons. In most cases the extremal jets consist of single partons, so that $\Delta y_{fb} = \Delta y_{j_f j_b}$. For the less common case of two partons forming a jet we observe a maximum distance of $R$ between the constituents and the jet centre. In rare cases jets have more than two constituents. Empirically, they are always within a distance of $\tfrac{5}{3}R$ to the centre of the jet, so $\Delta y_{fb} \leq \Delta y_{j_f j_b} + \tfrac{10}{3} R$. In practice, the extremal partons are required to carry a large fraction of the jet transverse momentum and will therefore be much closer to the jet axis. In summary, for sufficiently large rapidity separations we can use the approximation $\Delta y_{fb} \approx \Delta y_{j_f j_b}$. This scenario is depicted here: \begin{center} \includegraphics[width=0.5\linewidth]{ps_large_y} \end{center} If there is no overlap between jets, the probability $p_{\cal J, >}$ for an extra gluon to end up inside a jet is then given by \begin{equation} \label{eq:p_J_large} p_{\cal J, >} = \frac{(m - 1)\*R^2}{2\Delta y_{j_f j_b}}\,. \end{equation} For a very small rapidity separation, eq.~\eqref{eq:p_J_large} obviously overestimates the true probability. The maximum phase space covered by jets in the limit of a vanishing rapidity distance between all partons is $2mR \Delta y_{fb}$: \begin{center} \includegraphics[width=0.5\linewidth]{ps_small_y} \end{center} We therefore estimate the probability for a parton to end up inside a jet as \begin{equation} \label{eq:p_J} p_{\cal J} = \min\bigg(\frac{(m - 1)\*R^2}{2\Delta y_{j_f j_b}}, \frac{mR}{\pi}\bigg)\,. \end{equation} Here we compare this estimate with the actually observed fraction of additional emissions into jets as a function of the rapidity separation: \begin{center} \includegraphics[width=0.75\linewidth]{pJ} \end{center} \subsubsection{Gluons outside Jets} \label{sec:gluons_nonjet} Using our estimate for the probability of a gluon to be a jet constituent, we choose a number $n_{g,{\cal J}}$ of gluons inside jets, which also fixes the number $n_g - n_{g,{\cal J}}$ of gluons outside jets. As explained later on, we need to generate the momenta of the gluons outside jets first. This is done in \lstinline!PhaseSpacePoint::gen_non_jet!. The azimuthal angle $\phi$ is generated flat within $0\leq \phi \leq 2 \pi$. The allowed rapidity interval is set by the most forward and backward partons, which are necessarily inside jets. Since these parton rapidities are not known at this point, we also have to postpone the rapidity generation for the gluons outside jets. For the scalar transverse momentum $p_\perp = |\mathbf{p}_\perp|$ of a gluon outside jets we use the parametrisation \begin{equation} \label{eq:p_nonjet} p_\perp = \lambda + \tilde{p}_\perp\*\tan(\tau\*r)\,, \qquad \tau = \arctan\bigg(\frac{p_{\perp{\cal J}_\text{min}} - \lambda}{\tilde{p}_\perp}\bigg)\,. \end{equation} For $r \in [0,1)$, $p_\perp$ is always less than the minimum momentum $p_{\perp{\cal J}_\text{min}}$ required for a jet. $\tilde{p}_\perp$ is a free parameter, a good empirical value is $\tilde{p}_\perp = [1.3 + 0.2\*(n_g - n_{g,\cal J})]\,$GeV \subsubsection{Resummation jet momenta} \label{sec:ptj_res} On the one hand, each jet momentum is given by the sum of its constituent momenta. On the other hand, the resummation jet momenta are fixed by the constraints in line five of the master equation~\eqref{eq:resumdijetFKLmatched2}. We therefore have to calculate the resummation jet momenta from these constraints before generating the momenta of the gluons inside jets. This is done in \lstinline!PhaseSpacePoint::reshuffle! and in the free \lstinline!resummation_jet_momenta! function (declared in \texttt{resummation\_jet.hh}). The resummation jet momenta are determined by the $\delta$ functions in line five of eq.~(\ref{eq:resumdijetFKLmatched2}). The rapidities are fixed to the rapidities of the jets in the input fixed-order events, so that the FKL ordering is guaranteed to be preserved. In traditional \HEJ reshuffling the transverse momentum are given through \begin{equation} \label{eq:ptreassign_old} \mathbf{p}^B_{\mathcal{J}_{l\perp}} = \mathbf{j}_{l\perp} \equiv \mathbf{p}_{\mathcal{J}_{l}\perp} + \mathbf{q}_\perp \,\frac{|\mathbf{p}_{\mathcal{J}_{l}\perp}|}{P_\perp}, \end{equation} where $\mathbf{q}_\perp = \sum_{j=1}^n \mathbf{p}_{i\perp} \bigg[1-\theta\bigg(\sum_{j=1}^{m}{\cal J}_j(p_i)\bigg)\bigg] $ is the total transverse momentum of all partons \emph{outside} jets and $P_\perp = \sum_{j=1}^m |\mathbf{p}_{\mathcal{J}_{j}\perp}|$. Since the total transverse momentum of an event vanishes, we can also use $\mathbf{q}_\perp = - \sum_{j=1}^m \mathbf{p}_{\mathcal{J}_{j}\perp}$. Eq.~(\ref{eq:ptreassign}) is a non-linear system of equations in the resummation jet momenta $\mathbf{p}_{\mathcal{J}_{l}\perp}$. Hence we would have to solve \begin{equation} \label{eq:ptreassign_eq} \mathbf{p}_{\mathcal{J}_{l}\perp}=\mathbf{j}^B_{l\perp} \equiv\mathbf{j}_{l\perp}^{-1} \left(\mathbf{p}^B_{\mathcal{J}_{l\perp}}\right) \end{equation} numerically. Since solving such a system is computationally expensive, we instead change the reshuffling around to be linear in the resummation jet momenta. Hence~\eqref{eq:ptreassign_eq} gets replaces by \begin{equation} \label{eq:ptreassign} \mathbf{p}_{\mathcal{J}_{l\perp}} = \mathbf{j}^B_{l\perp} \equiv \mathbf{p}^B_{\mathcal{J}_{l}\perp} - \mathbf{q}_\perp \,\frac{|\mathbf{p}^B_{\mathcal{J}_{l}\perp}|}{P^B_\perp}, \end{equation} which is linear in the resummation momentum. Consequently the equivalent of~\eqref{eq:ptreassign_old} is non-linear in the Born momentum. However the exact form of~\eqref{eq:ptreassign_old} is not relevant for the resummation. Both methods have been tested for two and three jets with the \textsc{rivet} standard analysis \texttt{MC\_JETS}. They didn't show any differences even after $10^9$ events. The reshuffling relation~\eqref{eq:ptreassign} allows the transverse momenta $p^B_{\mathcal{J}_{l\perp}}$ of the fixed-order jets to be somewhat below the minimum transverse momentum of resummation jets. It is crucial that this difference does not become too large, as the fixed-order cross section diverges for vanishing transverse momenta. In the production of a Higgs boson with resummation jets above $30\,$GeV we observe that the contribution from fixed-order events with jets softer than about $20\,$GeV can be safely neglected. This is shown in the following plot of the differential cross section over the transverse momentum of the softest fixed-order jet: \begin{center} \includegraphics[width=.75\textwidth]{ptBMin} \end{center} Finally, we have to account for the fact that the reshuffling relation~\eqref{eq:ptreassign} is non-linear in the Born momenta. To arrive at the master formula~\eqref{eq:resumdijetFKLmatched2} for the cross section, we have introduced unity in the form of an integral over the Born momenta with $\delta$ functions in the integrand, that is \begin{equation} \label{eq:delta_intro} 1 = \int_{p_{j\perp}^B=0}^{p_{j\perp}^B=\infty} \mathrm{d}^2\mathbf{p}_{j\perp}^B\delta^{(2)}(\mathbf{p}_{\mathcal{J}_{j\perp}}^B - \mathbf{j}_{j\perp})\,. \end{equation} If the arguments of the $\delta$ functions are not linear in the Born momenta, we have to compensate with additional Jacobians as factors. Explicitly, for the reshuffling relation~\eqref{eq:ptreassign} we have \begin{equation} \label{eq:delta_rewrite} \prod_{l=1}^m \delta^{(2)}(\mathbf{p}_{\mathcal{J}_{l\perp}}^B - \mathbf{j}_{l\perp}) = \Delta \prod_{l=1}^m \delta^{(2)}(\mathbf{p}_{\mathcal{J}_{l\perp}} - \mathbf{j}_{l\perp}^B)\,, \end{equation} where $\mathbf{j}_{l\perp}^B$ is given by~\eqref{eq:ptreassign_eq} and only depends on the Born momenta. We have extended the product to run to $m$ instead of $m-1$ by eliminating the last $\delta$ function $\delta^{(2)}\!\!\left(\sum_{k=1}^n \mathbf{p}_{k\perp}\right )$. The Jacobian $\Delta$ is the determinant of a $2m \times 2m$ matrix with $l, l' = 1,\dots,m$ and $X, X' = x,y$. \begin{equation} \label{eq:jacobian} \Delta = \left|\frac{\partial\,\mathbf{j}^B_{l'\perp}}{\partial\, \mathbf{p}^B_{{\cal J}_l \perp}} \right| = \left| \delta_{l l'} \delta_{X X'} - \frac{q_X\, p^B_{{\cal J}_{l'}X'}}{\left|\mathbf{p}^B_{{\cal J}_{l'} \perp}\right| P^B_\perp}\left(\delta_{l l'} - \frac{\left|\mathbf{p}^B_{{\cal J}_l \perp}\right|}{P^B_\perp}\right)\right|\,. \end{equation} The determinant is calculated in \lstinline!resummation_jet_weight!, again coming from the \texttt{resummation\_jet.hh} header. Having to introduce this Jacobian is not a disadvantage specific to the new reshuffling. If we instead use the old reshuffling relation~\eqref{eq:ptreassign_old} we \emph{also} have to introduce a similar Jacobian since we actually want to integrate over the resummation phase space and need to transform the argument of the $\delta$ function to be linear in the resummation momenta for this. \subsubsection{Gluons inside Jets} \label{sec:gluons_jet} After the steps outlined in section~\ref{sec:psp_ng_jet}, we have a total number of $m + n_{g,{\cal J}}$ constituents. In \lstinline!PhaseSpacePoint::distribute_jet_partons! we distribute them randomly among the jets such that each jet has at least one constituent. We then generate their momenta in \lstinline!PhaseSpacePoint::split! using the \lstinline!Splitter! class. The phase space integral for a jet ${\cal J}$ is given by \begin{equation} \label{eq:ps_jetparton} \prod_{i\text{ in }{\cal J}} \bigg(\int \mathrm{d}\mathbf{p}_{i\perp}\ \int \mathrm{d} y_i \bigg)\delta^{(2)}\Big(\sum_{i\text{ in }{\cal J}} \mathbf{p}_{i\perp} - \mathbf{j}_{\perp}^B\Big)\delta(y_{\mathcal{J}}-y^B_{\mathcal{J}})\,. \end{equation} For jets with a single constituent, the parton momentum is obiously equal to the jet momentum. In the case of two constituents, we observe that the partons are always inside the jet cone with radius $R$ and often very close to the jet centre. The following plots show the typical relative distance $\Delta R/R$ for this scenario: \begin{center} \includegraphics[width=0.45\linewidth]{dR_2} \includegraphics[width=0.45\linewidth]{dR_2_small} \end{center} According to this preference for small values of $\Delta R$, we parametrise the $\Delta R$ integrals as \begin{equation} \label{eq:dR_sampling} \frac{\Delta R}{R} = \begin{cases} 0.25\,x_R & x_R < 0.4 \\ 1.5\,x_R - 0.5 & x_R \geq 0.4 \end{cases}\,. \end{equation} Next, we generate $\Theta_1 \equiv \Theta$ and use the constraint $\Theta_2 = \Theta \pm \pi$. The transverse momentum of the first parton is then given by \begin{equation} \label{eq:delta_constraints} p_{1\perp} = \frac{p_{\mathcal{J} y} - \tan(\phi_2) p_{\mathcal{J} x}}{\sin(\phi_1) - \tan(\phi_2)\cos(\phi_1)}\,. \end{equation} We get $p_{2\perp}$ by exchanging $1 \leftrightarrow 2$ in the indices. To obtain the Jacobian of the transformation, we start from the single jet phase space eq.~(\ref{eq:ps_jetparton}) with the rapidity delta function already rewritten to be linear in the rapidity of the last parton, i.e. \begin{equation} \label{eq:jet_2p} \prod_{i=1,2} \bigg(\int \mathrm{d}\mathbf{p}_{i\perp}\ \int \mathrm{d} y_i \bigg)\delta^{(2)}\Big(\mathbf{p}_{1\perp} + \mathbf{p}_{2\perp} - \mathbf{j}_{\perp}^B\Big)\delta(y_2- \dots)\,. \end{equation} The integral over the second parton momentum is now trivial; we can just replace the integral over $y_2$ with the equivalent constraint \begin{equation} \label{eq:R2} \int \mathrm{d}R_2 \ \delta\bigg(R_2 - \bigg[\phi_{\cal J} - \arctan \bigg(\frac{p_{{\cal J}y} - p_{1y}}{p_{{\cal J}x} - p_{1x}}\bigg)\bigg]/\cos \Theta\bigg) \,. \end{equation} In order to fix the integral over $p_{1\perp}$ instead, we rewrite this $\delta$ function. This introduces the Jacobian \begin{equation} \label{eq:jac_pt1} \bigg|\frac{\partial p_{1\perp}}{\partial R_2} \bigg| = \frac{\cos(\Theta)\mathbf{p}_{2\perp}^2}{p_{{\cal J}\perp}\sin(\phi_{\cal J}-\phi_1)}\,. \end{equation} The final form of the integral over the two parton momenta is then \begin{equation} \label{eq:ps_jet_2p} \int \mathrm{d}R_1\ R_1 \int \mathrm{d}R_2 \int \mathrm{d}x_\Theta\ 2\pi \int \mathrm{d}p_{1\perp}\ p_{1\perp} \int \mathrm{d}p_{2\perp} \ \bigg|\frac{\partial p_{1\perp}}{\partial R_2} \bigg|\delta(p_{1\perp} -\dots) \delta(p_{2\perp} - \dots)\,. \end{equation} As is evident from section~\ref{sec:psp_ng_jet}, jets with three or more constituents are rare and an efficient phase-space sampling is less important. For such jets, we exploit the observation that partons with a distance larger than $R_{\text{max}} = \tfrac{5}{3} R$ to the jet centre are never clustered into the jet. Assuming $N$ constituents, we generate all components for the first $N-1$ partons and fix the remaining parton with the $\delta$-functional. In order to end up inside the jet, we use the parametrisation \begin{align} \label{eq:ps_jet_param} \phi_i ={}& \phi_{\cal J} + \Delta \phi_i\,, & \Delta \phi_i ={}& \Delta R_i \cos(\Theta_i)\,, \\ y_i ={}& y_{\cal J} + \Delta y_i\,, & \Delta y_i ={}& \Delta R_i \sin(\Theta_i)\,, \end{align} and generate $\Theta_i$ and $\Delta R_i$ randomly with $\Delta R_i \leq R_{\text{max}}$ and the empiric value $R_{\text{max}} = 5\*R/3$. We can then write the phase space integral for a single parton as $(p_\perp = |\mathbf{p}_\perp|)$ \begin{equation} \label{eq:ps_jetparton_x} \int \mathrm{d}\mathbf{p}_{\perp}\ \int \mathrm{d} y \approx \int_{\Box} \mathrm{d}x_{\perp} \mathrm{d}x_{ R} \mathrm{d}x_{\theta}\ 2\*\pi\,\*R_{\text{max}}^2\,\*x_{R}\,\*p_{\perp}\,\*(p_{\perp,\text{max}} - p_{\perp,\text{min}}) \end{equation} with \begin{align} \label{eq:ps_jetparton_parameters} \Delta \phi ={}& R_{\text{max}}\*x_{R}\*\cos(2\*\pi\*x_\theta)\,,& \Delta y ={}& R_{\text{max}}\*x_{R}\*\sin(2\*\pi\*x_\theta)\,, \\ p_{\perp} ={}& (p_{\perp,\text{max}} - p_{\perp,\text{min}})\*x_\perp + p_{\perp,\text{min}}\,. \end{align} $p_{\perp,\text{max}}$ is determined from the requirement that the total contribution from the first $n-1$ partons --- i.e. the projection onto the jet $p_{\perp}$ axis --- must never exceed the jet $p_\perp$. This gives \todo{This bound is too high} \begin{equation} \label{eq:pt_max} p_{i\perp,\text{max}} = \frac{p_{{\cal J}\perp} - \sum_{j<i} p_{j\perp} \cos \Delta \phi_j}{\cos \Delta \phi_i}\,. \end{equation} The $x$ and $y$ components of the last parton follow immediately from the first $\delta$ function. The last rapidity is fixed by the condition that the jet rapidity is kept fixed by the reshuffling, i.e. \begin{equation} \label{eq:yJ_delta} y^B_{\cal J} = y_{\cal J} = \frac 1 2 \ln \frac{\sum_{i=1}^n E_i+ p_{iz}}{\sum_{i=1}^n E_i - p_{iz}}\,. \end{equation} With $E_n \pm p_{nz} = p_{n\perp}\exp(\pm y_n)$ this can be rewritten to \begin{equation} \label{eq:yn_quad_eq} \exp(2y_{\cal J}) = \frac{\sum_{i=1}^{n-1} E_i+ p_{iz}+p_{n\perp} \exp(y_n)}{\sum_{i=1}^{n-1} E_i - p_{iz}+p_{n\perp} \exp(-y_n)}\,, \end{equation} which is a quadratic equation in $\exp(y_n)$. The physical solution is \begin{align} \label{eq:yn} y_n ={}& \log\Big(-b + \sqrt{b^2 + \exp(2y_{\cal J})}\,\Big)\,,\\ b ={}& \bigg(\sum_{i=1}^{n-1} E_i + p_{iz} - \exp(2y_{\cal J}) \sum_{i=1}^{n-1} E_i - p_{iz}\bigg)/(2 p_{n\perp})\,. \end{align} \todo{what's wrong with the following?} To eliminate the remaining rapidity integral, we transform the $\delta$ function to be linear in the rapidity $y$ of the last parton. The corresponding Jacobian is \begin{equation} \label{eq:jacobian_y} \bigg|\frac{\partial y_{\cal J}}{\partial y_n}\bigg|^{-1} = 2 \bigg( \frac{E_n + p_{nz}}{E_{\cal J} + p_{{\cal J}z}} + \frac{E_n - p_{nz}}{E_{\cal J} - p_{{\cal J}z}}\bigg)^{-1}\,. \end{equation} Finally, we check that all designated constituents are actually clustered into the considered jet. \subsubsection{Final steps} \label{sec:final} Knowing the rapidity span covered by the extremal partons, we can now generate the rapdities for the partons outside jets. We perform jet clustering on all partons and check in \lstinline!PhaseSpacePoint::jets_ok! that all the following criteria are fulfilled: \begin{itemize} \item The number of resummation jets must match the number of fixed-order jets. \item No partons designated to be outside jets may end up inside jets. \item All other outgoing partons \emph{must} end up inside jets. \item The extremal (in rapidity) partons must be inside the extremal jets. If there is, for example, an unordered forward emission, the most forward parton must end up inside the most forward jet and the next parton must end up inside second jet. \item The rapidities of fixed-order and resummation jets must match. \end{itemize} After this, we adjust the phase-space normalisation according to the third line of eq.~(\ref{eq:resumdijetFKLmatched2}), determine the flavours of the outgoing partons, and adopt any additional colourless bosons from the fixed-order input event. Finally, we use momentum conservation to reconstruct the momenta of the incoming partons. \subsection{Colour connection} \label{sec:Colour} \begin{figure} \input{src/ColourConnect.tex} \caption{Left: Non-crossing colour flow dominating in the MRK limit. The crossing of the colour line connecting to particle 2 can be resolved by writing particle 2 on the left. Right: A colour flow with a (manifest) colour-crossing. The crossing can only be resolved if one breaks the rapidities order, e.g. switching particles 2 and 3. From~\cite{Andersen:2017sht}.} \label{fig:Colour_crossing} \end{figure} After the phase space for the resummation event is generated, we can construct the colour for each particle. To generate the colour flow one has to call \lstinline!Event::generate_colours! on any \HEJ configuration. For non-\HEJ event we do not change the colour, and assume it is provided by the user (e.g. through the LHE file input). The colour connection is done in the large $N_c$ (infinite number of colour) limit with leading colour in MRK~\cite{Andersen:2008ue, Andersen:2017sht}. The idea is to allow only $t$-channel colour exchange, without any crossing colour lines. For example the colour crossing in the colour connection on the left of figure~\ref{fig:Colour_crossing} can be resolved by switching \textit{particle 2} to the left. We can write down the colour connections by following the colour flow from \textit{gluon a} to \textit{gluon b} and back to \textit{gluon a}, e.g. figure~\ref{fig:Colour_gleft} corresponds to $a123ba$. In such an expression any valid, non-crossing colour flow will connect all external legs while respecting the rapidity ordering. Thus configurations like the left of figure~\ref{fig:Colour_crossing} are allowed ($a134b2a$), but the right of the same figures breaks the rapidity ordering between 2 and 3 ($a1324ba$). Note that connections between $b$ and $a$ are in inverse order, e.g. $ab321a$ corresponds to~\ref{fig:Colour_gright} ($a123ba$) just with colour and anti-colour swapped. \begin{figure} \centering \subcaptionbox{$a123ba$\label{fig:Colour_gright}}{ \includegraphics[height=0.25\textwidth]{figures/colour_gright.jpg}} \subcaptionbox{$a13b2a$\label{fig:Colour_gleft}}{ \includegraphics[height=0.25\textwidth]{figures/colour_gleft.jpg}} \subcaptionbox{$a\_123ba$\label{fig:Colour_qx}}{ \includegraphics[height=0.25\textwidth]{figures/colour_qx.jpg}} \subcaptionbox{$a\_23b1a$\label{fig:Colour_uno}}{ \includegraphics[height=0.25\textwidth]{figures/colour_uno.jpg}} \subcaptionbox{$a14b3\_2a$\label{fig:Colour_qqx}}{ \includegraphics[height=0.25\textwidth]{figures/colour_centralqqx.jpg}} \caption{Different colour non-crossing colour connections. Both incoming particles are drawn at the top or bottom and the outgoing left or right. The Feynman diagram is shown in black and the colour flow in blue.} %TODO Maybe make these plots nicer (in Latex/asy) \end{figure} If we replace two gluons with a quark, (anti-)quark pair we break one of the colour connections. Still the basic concept from before holds, we just have to treat the connection between two (anti-)quarks like an unmovable (anti-)colour. We denote such a connection by a underscore (e.g. $1\_a$). For example the equivalent of~\ref{fig:Colour_gright} ($a123ba$) with an incoming antiquark is~\ref{fig:Colour_qx} ($a\_123ba$). As said this also holds for other subleading configurations like unordered emission~\ref{fig:Colour_uno} or central quark-antiquark pairs~\ref{fig:Colour_qqx} \footnote{Obviously this can not be guaranteed for non-\HEJ configurations, e.g. $qQ\to Qq$ requires a $u$-channel exchange.}. Some rapidity ordering can have multiple possible colour connections, e.g.~\ref{fig:Colour_gright} and~\ref{fig:Colour_gleft}. This is always the case if a gluon radiates off a gluon line. In that case we randomly connect the gluon to either the colour or anti-colour. Thus in the generation we keep track whether we are on a quark or gluon line, and act accordingly. \subsection{The matrix element } \label{sec:ME} The derivation of the \HEJ matrix element is explained in some detail in~\cite{Andersen:2017kfc}, where also results for leading and subleading matrix elements for pure multijet production and production of a Higgs boson with at least two associated jets are listed. Matrix elements for $W$ and $Z/\gamma^*$ production together with jets are given in~\cite{Andersen:2012gk,Andersen:2016vkp}, but not yet included. The matrix elements are implemented in the \lstinline!MatrixElement! class. To discuss the structure, let us consider the squared matrix element for FKL multijet production with $n$ final-state partons: \begin{align} \label{eq:ME} \begin{split} \overline{\left|\mathcal{M}_\text{HEJ}^{f_1 f_2 \to f_1 g\cdots g f_2}\right|}^2 = \ &\frac {(4\pi\alpha_s)^n} {4\ (N_c^2-1)} \cdot\ \textcolor{blue}{\frac {K_{f_1}(p_1^-, p_a^-)} {t_1}\ \cdot\ \frac{K_{f_2}(p_n^+, p_b^+)}{t_{n-1}}\ \cdot\ \left\|S_{f_1 f_2\to f_1 f_2}\right\|^2}\\ & \cdot \prod_{i=1}^{n-2} \textcolor{gray}{\left( \frac{-C_A}{t_it_{i+1}}\ V^\mu(q_i,q_{i+1})V_\mu(q_i,q_{i+1}) \right)}\\ & \cdot \prod_{j=1}^{n-1} \textcolor{red}{\exp\left[\omega^0(q_{j\perp})(y_{j+1}-y_j)\right]}. \end{split} \end{align} The structure and momentum assignment of the unsquared matrix element is as illustrated here: \begin{center} \includegraphics{HEJ_amplitude} \end{center} The square -of the complete matrix element as given in eq.~(\ref{eq:ME}) is +of the complete matrix element as given in eq.~\eqref{eq:ME} is calculated by \lstinline!MatrixElement::operator()!. The \textcolor{red}{last line} of eq.~\eqref{eq:ME} constitutes the all-order virtual correction, implemented in \lstinline!MatrixElement::virtual_corrections!. $\omega^0$ is the \textit{regularised Regge trajectory} \begin{equation} \label{eq:omega_0} \omega^0(q_\perp) = - C_A \frac{\alpha_s}{\pi} \log \left(\frac{q_\perp^2}{\lambda^2}\right)\,, \end{equation} where $\lambda$ is the slicing parameter limiting the softness of real -gluon emissions, cf. eq.~(\ref{eq:resumdijetFKLmatched2}). +gluon emissions, cf. eq.~\eqref{eq:resumdijetFKLmatched2}. $\lambda$ can be +changed at runtime by setting \lstinline!regulator parameter! in +\lstinline!conifg.yml!. The remaining parts, which correspond to the square of the leading-order HEJ matrix element $\overline{\left|\mathcal{M}_\text{LO, HEJ}^{f_1f_2\to f_1g\cdots gf_2}\big(\big\{p^B_j\big\}\big)\right|}^{2}$, are computed in \lstinline!MatrixElement::tree!. We can further factor off the scale-dependent ``parametric'' part \lstinline!MatrixElement::tree_param! containing all factors of the strong coupling $4\pi\alpha_s$. Using this function saves some CPU time when adjusting the renormalisation scale, see section~\ref{sec:resum}. The remaining ``kinematic'' factors are calculated in \lstinline!MatrixElement::kin!. \subsubsection{Matrix elements for Higgs plus dijet} \label{sec:ME_h_jets} In the production of a Higgs boson together with jets the parametric parts and the virtual corrections only require minor changes in the respective functions. However, in the ``kinematic'' parts we have to distinguish between several cases, which is done in \lstinline!MatrixElement::tree_kin_Higgs!. The Higgs boson can be \emph{central}, i.e. inside the rapidity range spanned by the extremal partons (\lstinline!MatrixElement::tree_kin_Higgs_central!) or \emph{peripheral} and outside this range (\lstinline!MatrixElement::tree_kin_Higgs_first! or \lstinline!MatrixElement::tree_kin_Higgs_last!). In case there is also an unordered gluon emission the matrix element is already suppressed by one logarithm $\log(s/t)$. Therefore at NLL the Higgs boson can only be emitted centrally\footnote{In principle emitting a Higgs boson \textit{on the other side} of the unordered gluon is possible by contracting an unordered and external Higgs current. Obviously this would not cover all possible configurations, e.g. $qQ\to HgqQ$ requires contraction of the standard $Q\to Q$ current with an (unknown) $q\to Hgq$ one.}. If a Higgs boson with momentum $p_H$ is emitted centrally, after parton $j$ in rapidity, the matrix element reads \begin{equation} \label{eq:ME_h_jets_central} \begin{split} \overline{\left|\mathcal{M}_\text{HEJ}^{f_1 f_2 \to f_1 g\cdot H \cdot g f_2}\right|}^2 = \ &\frac {\alpha_s^2 (4\pi\alpha_s)^n} {4\ (N_c^2-1)} \cdot\ \textcolor{blue}{\frac {K_{f_1}(p_1^-, p_a^-)} {t_1}\ \cdot\ \frac{1}{t_j t_{j+1}} \cdot\ \frac{K_{f_2}(p_n^+, p_b^+)}{t_{n}}\ \cdot\ \left\|S_{f_1 f_2\to f_1 H f_2}\right\|^2}\\ & \cdot \prod_{\substack{i=1\\i \neq j}}^{n-1} \textcolor{gray}{\left( \frac{-C_A}{t_it_{i+1}}\ V^\mu(q_i,q_{i+1})V_\mu(q_i,q_{i+1}) \right)}\\ & \cdot \textcolor{red}{\prod_{i=1}^{n-1} \exp\left[\omega^0(q_{i\perp})\Delta y_i\right]} \end{split} \end{equation} with the momentum definitions \begin{center} \includegraphics{HEJ_central_Higgs_amplitude} \end{center} $q_i$ is the $i$th $t$-channel momentum and $\Delta y_i$ the rapidity gap between outgoing \emph{particles} (not partons) $i$ and $i+1$ in rapidity ordering. For \emph{peripheral} emission in the backward direction (\lstinline!MatrixElement::tree_kin_Higgs_first!) we first check whether the most backward parton is a gluon or an (anti-)quark. In the latter case the leading contribution to the matrix element arises through emission off the $t$-channel gluons and we can use the same formula eq.~(\ref{eq:ME_h_jets_central}) as for central emission. If the most backward parton is a gluon, the square of the matrix element can be written as \begin{equation} \label{eq:ME_h_jets_peripheral} \begin{split} \overline{\left|\mathcal{M}_\text{HEJ}^{g f_2 \to H g\cdot g f_2}\right|}^2 = \ &\frac {\alpha_s^2 (4\pi\alpha_s)^n} {\textcolor{blue}{4\ (N_c^2-1)}} \textcolor{blue}{\cdot\ K_{H}\ \frac{K_{f_2}(p_n^+, p_b^+)}{t_{n-1}}\ \cdot\ \left\|S_{g f_2\to H g f_2}\right\|^2}\\ & \cdot \prod_{\substack{i=1}}^{n-2} \textcolor{gray}{\left( \frac{-C_A}{t_it_{i+1}}\ V^\mu(q_i,q_{i+1})V_\mu(q_i,q_{i+1}) \right)}\\ & \cdot \textcolor{red}{\prod_{i=1}^{n-1} \exp\left[\omega^0(q_{i\perp}) (y_{i+1} - y_i)\right]} \end{split} \end{equation} with the momenta as follows: \begin{center} \includegraphics{HEJ_peripheral_Higgs_amplitude} \end{center} The \textcolor{blue}{blue part} is implemented in \lstinline!MatrixElement::MH2_forwardH!. All other building blocks are already available.\todo{Impact factors} The actual current contraction is calculated in \lstinline!MH2gq_outsideH! inside \lstinline!currents.cc!, which corresponds to $\tfrac{16 \pi^2}{t_1} \left\|S_{g f_2\to H g f_2}\right\|^2$.\todo{Fix this insane normalisation} The forward emission of a Higgs boson is completely analogous. We can use the same function \lstinline!MatrixElement::MH2_forwardH!, swapping $p_1 \leftrightarrow p_n,\,p_a \leftrightarrow p_b$. \subsubsection{FKL ladder and Lipatov vertices} \label{sec:FKL_ladder} The ``FKL ladder'' is the product \begin{equation} \label{eq:FKL_ladder} \prod_{i=1}^{n-2} \left( \frac{-C_A}{t_it_{i+1}}\ V^\mu(q_i,q_{i+1})V_\mu(q_i,q_{i+1}) \right) \end{equation} appearing in the square of the matrix element for $n$ parton production, cf. eq.~(\ref{eq:ME}), and implemented in \lstinline!MatrixElement::FKL_ladder_weight!. The Lipatov vertex contraction $V^\mu(q_i,q_{i+1})V_\mu(q_i,q_{i+1})$ is implemented \lstinline!C2Lipatovots!. It is given by \todo{equation} \todo{mention difference between the two versions of \lstinline!C2Lipatovots!, maybe even get rid of one}. \subsubsection{Currents} \label{sec:currents} The current factors $\frac{K_{f_1}K_{f_2}}{t_1 t_{n-1}}\left\|S_{f_1 f_2\to f_1 f_2}\right\|^2$ and their extensions for unordered and Higgs boson emissions are implemented in the \lstinline!jM2!$\dots$ functions of \texttt{src/currents.cc}. \todo{Only $\|S\|^2$ should be in currents} \footnote{The current implementation for Higgs production in \texttt{src/currents.cc} includes the $1/4$ factor inside $S$, opposing to~\eqref{eq:ME}. Thus the overall normalisation is unaffected.} The ``colour acceleration multiplier'' (CAM) $K_{f}$ for a parton $f\in\{g,q,\bar{q}\}$ is defined as \begin{align} \label{eq:K_g} K_g(p_1^-, p_a^-) ={}& \frac{1}{2}\left(\frac{p_1^-}{p_a^-} + \frac{p_a^-}{p_1^-}\right)\left(C_A - \frac{1}{C_A}\right)+\frac{1}{C_A}\\ \label{eq:K_q} K_q(p_1^-, p_a^-) ={}&K_{\bar{q}}(p_1^-, p_a^-) = C_F\,. \end{align} The Higgs current CAM used in eq.~(\ref{eq:ME_h_jets_peripheral}) is \begin{equation} \label{eq:K_H} K_H = C_A\,. \end{equation} The current contractions are given by\todo{check all this carefully!} \begin{align} \label{eq:S} \left\|S_{f_1 f_2\to f_1 f_2}\right\|^2 ={}& \sum_{\substack{\lambda_a = +,-\\\lambda_b = +,-}} \left|j^{\lambda_a}_\mu(p_1, p_a)\ j^{\lambda_b\,\mu}(p_n, p_b)\right|^2 = 2\sum_{\lambda = +,-} \left|j^{-}_\mu(p_1, p_a)\ j^{\lambda\,\mu}(p_n, p_b)\right|^2\,,\\ \left\|S_{f_1 f_2\to f_1 H f_2}\right\|^2 ={}& \sum_{\substack{\lambda_a = +,-\\\lambda_b = +,-}} \left|j^{\lambda_a}_\mu(p_1, p_a)V_H^{\mu\nu}(q_j, q_{j+1})\ j^{\lambda_b}_\nu(p_n, p_b)\right|^2\,,\\ \left\|S_{g f_2 \to H g f_2}\right\|^2 ={}& \sum_{ \substack{ \lambda_{a} = +,-\\ \lambda_{1} =+,-\\ \lambda_{b} = +,- }} \left|j^{\lambda_a\lambda_1}_{H\,\mu}(p_1, p_a, p_H)\ j^{\lambda_b\,\mu}(p_n, p_b)\right|^2\,. \end{align} The ``basic'' currents $j$ are independent of the parton flavour and read \begin{equation} \label{eq:j} j^\pm_\mu(p, q) = u^{\pm,\dagger}(p)\ \sigma^\pm_\mu\ u^{\pm}(q)\,, \end{equation} where $\sigma_\mu^\pm = (1, \pm \sigma_i)$ and $\sigma_i$ are the Pauli matrices \begin{equation} \label{eq:Pauli_matrices} \sigma_1 = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \,, \qquad \sigma_2 = \begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix} \,, \qquad \sigma_3 = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \,. \end{equation} The two-component chiral spinors are given by \begin{align} \label{eq:u_plus} u^+(p)={}& \left(\sqrt{p^+}, \sqrt{p^-} \hat{p}_\perp \right) \,,\\ \label{eq:u_minus} u^-(p)={}& \left(\sqrt{p^-} \hat{p}^*_\perp, -\sqrt{p^+}\right)\,, \end{align} with $p^\pm = E\pm p_z,\, \hat{p}_\perp = \tfrac{p_\perp}{|p_\perp|},\, p_\perp = p_x + i p_y$. The spinors for vanishing transverse momentum are obtained by replacing $\hat{p_\perp} \to -1$. Explicitly, the currents read \begin{align} \label{eq:j-_explicit} j^-_\mu(p, q) ={}& \begin{pmatrix} \sqrt{p^+\,q^+} + \sqrt{p^-\,q^-} \hat{p}_{\perp} \hat{q}_{\perp}^*\\ \sqrt{p^-\,q^+}\, \hat{p}_{\perp} + \sqrt{p^+\,q^-}\,\hat{q}_{\perp}^*\\ -i \sqrt{p^-\,q^+}\, \hat{p}_{\perp} + i \sqrt{p^+\,q^-}\, \hat{q}_{\perp}^*\\ \sqrt{p^+\,q^+} - \sqrt{p^-\,q^-}\, \hat{p}_{\perp}\, \hat{q}_{\perp}^* \end{pmatrix}\\ j^+_\mu(p, q) ={}&\big(j^-_\mu(p, q)\big)^* \end{align} If $q= p_{\text{in}}$ is the momentum of an incoming parton, we have $\hat{p}_{\text{in} \perp} = -1$ and either $p_{\text{in}}^+ = 0$ or $p_{\text{in}}^- = 0$. The current simplifies further:\todo{Helicities flipped w.r.t code} \begin{align} \label{eq:j_explicit} j^-_\mu(p_{\text{out}}, p_{\text{in}}) ={}& \begin{pmatrix} \sqrt{p_{\text{in}}^+\,p_{\text{out}}^+}\\ \sqrt{p_{\text{in}}^+\,p_{\text{out}}^-} \ \hat{p}_{\text{out}\,\perp}\\ -i\,j^-_1\\ j^-_0 \end{pmatrix} & p_{\text{in}\,z} > 0\,,\\ j^-_\mu(p_{\text{out}}, p_{\text{in}}) ={}& \begin{pmatrix} -\sqrt{p_{\text{in}}^-\,p_{\text{out}}^{-\phantom{+}}} \ \hat{p}_{\text{out}\,\perp}\\ - \sqrt{p_{\text{in}}^-\,p_{\text{out}}^+}\\ i\,j^-_1\\ -j^-_0 \end{pmatrix} & p_{\text{in}\,z} < 0\,. \end{align} \section{The fixed-order generator} \label{sec:HEJFOG} Even at leading order, standard fixed-order generators can only generate events with a limited number of final-state particles within reasonable CPU time. The purpose of the fixed-order generator is to supplement this with high-multiplicity input events according to the first two lines of eq.~\eqref{eq:resumdijetFKLmatched2} with the \HEJ approximation $\mathcal{M}_\text{LO, HEJ}^{f_1f_2\to f_1g\cdots gf_2}$ instead of the full fixed-order matrix element $\mathcal{M}_\text{LO}^{f_1f_2\to f_1g\cdots gf_2}$. Its usage is described in the user documentation \url{https://hej.web.cern.ch/HEJ/doc/current/user/HEJFOG.html}. \subsection{File structure} \label{sec:HEJFOG_structure} The code for the fixed-order generator is in the \texttt{FixedOrderGen} directory, which contains the following: \begin{description} \item[include:] Contains the C++ header files. \item[src:] Contains the C++ source files. \item[t:] Contains the source code for the automated tests. \item[CMakeLists.txt:] Configuration file for the \cmake build system. \item[configFO.yml:] Sample configuration file for the fixed-order generator. \end{description} The code is generally in the \lstinline!HEJFOG! namespace. Functions and classes \lstinline!MyClass! are usually declared in \texttt{include/MyClass.hh} and implemented in \texttt{src/MyClass.cc}. \subsection{Program flow} \label{sec:prog_flow} A single run of the fixed-order generator consists of three or four stages. First, we perform initialisation similar to HEJ 2, see section~\ref{sec:init}. Since there is a lot of overlap we frequently reuse classes and functions from HEJ 2, i.e. from the \lstinline!HEJ! namespace. The code for parsing the configuration file is in \texttt{include/config.hh} and implemented in \texttt{src/config.cc}. If partial unweighting is requested in the user settings \url{https://hej.web.cern.ch/HEJ/doc/current/user/HEJFOG.html#settings}, the initialisation is followed by a calibration phase. We use a \lstinline!EventGenerator! to produce a number of trial events. We use these to calibrate the \lstinline!Unweighter! in its constructor and produce a first batch of partially unweighted events. This also allows us to estimate our unweighting efficiency. In the next step, we continue to generate events and potentially unweight them. Once the user-defined target number of events is reached, we adjust their weights according to the number of required trials. As in HEJ 2 (see section~\ref{sec:processing}), we pass the final events to a \lstinline!HEJ::Analysis! and a \lstinline!HEJ::CombinedEventWriter!. \subsection{Event generation} \label{sec:evgen} Event generation is performed by the \lstinline!EventGenerator::gen_event! member function. We begin by generating a \lstinline!PhaseSpacePoint!. This is not to be confused with the resummation phase space points represented by \lstinline!HEJ::PhaseSpacePoint!! After jet clustering, we compute the leading-order matrix element (see section~\ref{sec:ME}) and pdf factors. The phase space point generation is performed in the \lstinline!PhaseSpacePoint! constructor. We first construct the user-defined number of $n_p$ partons (by default gluons) in \lstinline!PhaseSpacePoint::gen_LO_partons!. We use flat sampling in rapidity and azimuthal angle. For the scalar transverse momenta, we distinguish between two cases. By default, they are generated based on a random variable $x_{p_\perp}$ according to \begin{equation} \label{eq:pt_sampling} p_\perp = p_{\perp,\text{min}} + \begin{cases} p_{\perp,\text{par}} \tan\left( x_{p_\perp} \arctan\left( \frac{p_{\perp,\text{max}} - p_{\perp,\text{min}}}{p_{\perp,\text{par}}} \right) \right) & y < y_\text{cut} \\ - \tilde{p}_{\perp,\text{par}}\log\left(1 - x_{p_\perp}\left[1 - \exp\left(\frac{p_{\perp,\text{min}} - p_{\perp,\text{max}}}{\tilde{p}_{\perp,\text{par}}}\right)\right]\right) & y \geq y_\text{cut} \end{cases}\,, \end{equation} where $p_{\perp,\text{min}}$ is the minimum jet transverse momentum, $p_{\perp,\text{max}}$ is the maximum transverse parton momentum, tentatively set to the beam energy, and $y_\text{cut}$, $p_{\perp,\text{par}}$ and $\tilde{p}_{\perp,\text{par}}$ are generation parameters set to heuristically determined values of \begin{align} y_\text{cut}&=3,\\ p_{\perp,\text{par}}&=p_{\perp,\min}+\frac{n_p}{5}, \\ \tilde{p}_{\perp,\text{par}}&=\frac{p_{\perp,\text{par}}}{1 + 5(y-y_\text{cut})}. \end{align} The problem with this generation is that the transverse momenta peak at the minimum transverse momentum required for fixed-order jets. However, if we use the generated events as input for \HEJ resummation, events with such soft transverse momenta hardly contribute, see section~\ref{sec:ptj_res}. To generate efficient input for resummation, there is the user option \texttt{peak pt}, which specifies the dominant transverse momentum for resummation jets. If this option is set, most jets will be generated as above, but with $p_{\perp,\text{min}}$ set to the peak transverse momentum $p_{\perp, \text{peak}}$. In addition, there is a small chance of around $2\%$ to generate softer jets. The heuristic ansatz for the transverse momentum distribution in the ``soft'' region is \begin{equation} \label{FO_pt_soft} \frac{\partial \sigma}{\partial p_\perp} \propto e^{n_p\frac{p_\perp- p_{\perp, \text{peak}}}{\bar{p}_\perp}}\,, \end{equation} where $n_p$ is the number of partons and $\bar{p}_\perp \approx 4\,$GeV. To achieve this distribution, we use \begin{equation} \label{eq:FO_pt_soft_sampling} p_\perp = p_{\perp, \text{peak}} + \bar{p}_\perp \frac{\log x_{p_\perp}}{n_p} \end{equation} and discard the phase space point if the parton is too soft, i.e. below the threshold for fixed-order jets. After ensuring that all partons form separate jets, we generate any potential colourless emissions. We then determine the incoming momenta and flavours in \lstinline!PhaseSpacePoint::reconstruct_incoming! and adjust the outgoing flavours to ensure an FKL configuration. Finally, we may reassign outgoing flavours to generate suppressed (for example unordered) configurations. \subsection{Unweighting} \label{sec:unweight} Straightforward event generation tends to produce many events with small weights. Those events have a negligible contribution to the final observables, but can take up considerable storage space and CPU time in later processing stages. This problem can be addressed by unweighting. For naive unweighting, one would determine the maximum weight $w_\text{max}$ of all events, discard each event with weight $w$ with a probability $p=w/w_\text{max}$, and set the weights of all remaining events to $w_\text{max}$. The downside to this procedure is that it also eliminates a sizeable fraction of events with moderate weight, so that the statistical convergence deteriorates. To ameliorate this problem, we perform unweighting only for events with sufficiently small weights. This is done by the \lstinline!Unweighter! class. In the constructor we estimate the mean and width of the weight-weight distribution from a sample of events. We use these estimates to determine the maximum weight below which unweighting is performed. The actual unweighting is the done in the \lstinline!Unweighter::unweight! function. \input{currents} \appendix \section{Continuous Integration} \label{sec:gitlabCI} GitLab provides ways to directly test code via \textit{Continuous integrations}. The CI is controlled by \texttt{.gitlab-ci.yml}. For all options for the YAML file see \href{https://docs.gitlab.com/ee/ci/yaml/}{docs.gitlab.com/ee/ci/yaml/}. GitLab also provides a small tool to check that YAML syntax is correct under \lstinline!CI/CD > Pipelines > CI Lint! or \href{https://gitlab.dur.scotgrid.ac.uk/hej/HEJ/-/ci/lint}{gitlab.dur.scotgrid.ac.uk/hej/HEJ/-/ci/lint}. Currently the CI is configured to trigger a \textit{Pipeline} on each \lstinline!git push!. The corresponding \textit{GitLab runners} are configured under \lstinline!CI/CD Settings>Runners! in the GitLab UI. All runners use a \href{https://www.docker.com/}{docker} image as virtual environments\footnote{To use only Docker runners set the \lstinline!docker! tag in \texttt{.gitlab-ci.yml}.}. The specific docker images maintained separately. If you add a new dependences, please also provide a docker image for the CI. The goal to be able to test \HEJ with all possible configurations. Each pipeline contains multiple stages (see \lstinline!stages! in \texttt{.gitlab-ci.yml}) which are executed in order from top to bottom. Additionally each stage contains multiple jobs. For example the stage \textit{build} contains the jobs \lstinline!build:basic!, \lstinline!build:qcdloop!, \lstinline!build:rivet!, etc., which compile \HEJ for different environments and dependences, by using different in the Docker images. Jobs staring with an dot are ignored by the Runner, e.g. \lstinline!.HEJ_build! is only used as a template but never executed directly. Only after all jobs of the previous stage was executed without any error the next stage will start. To pass information between one stage and the next we use \lstinline!artifacts!. The runner will automatically load all artifacts form all \lstinline!dependencies! for each job\footnote{If no dependencies are defined \textit{all} artifacts from all previous jobs are downloaded. Thus please specify an empty dependence if you do not want to load any artifacts.}. For example the compiled \HEJ code from \lstinline!build:basic! gets loaded in \lstinline!test:basic! and \lstinline!FOG:build:basic!, without recompiling \HEJ again. Additionally artifacts can be downloaded from the GitLab web page, which could be handy for debugging. The actual commands are given in the \lstinline!before_script!, \lstinline!script! and \lstinline!after_script! \footnote{\lstinline!after_script! is always executed} sections, and are standard Linux shell commands (dependent on the docker image). Any failed command, i.e. returning not zero, stops the job and making the pipeline fail entirely. Most tests are just running \lstinline!make test! or are based on it. Thus, to emphasise it again, write tests for your code in \lstinline!cmake!. The CI is only intended to make automated testing in different environments easier. \bibliographystyle{JHEP} \bibliography{biblio} \end{document} diff --git a/doc/sphinx/HEJ.rst b/doc/sphinx/HEJ.rst index 83df36f..d130a0a 100644 --- a/doc/sphinx/HEJ.rst +++ b/doc/sphinx/HEJ.rst @@ -1,289 +1,302 @@ .. _`Running HEJ 2`: Running HEJ 2 ============= Quick start ----------- In order to run HEJ 2, you need a configuration file and a file containing fixed-order events. A sample configuration is given by the :file:`config.yml` file distributed together with HEJ 2. Events in the Les Houches Event File format can be generated with standard Monte Carlo generators like `MadGraph5_aMC@NLO <https://launchpad.net/mg5amcnlo>`_ or `Sherpa <https://sherpa.hepforge.org/trac/wiki>`_. HEJ 2 assumes that the cross section is given by the sum of the event weights. Depending on the fixed-order generator it may be necessary to adjust the weights in the Les Houches Event File accordingly. The processes supported by HEJ 2 are - Pure multijet production - Production of a Higgs boson with jets .. - *TODO* Production of a W boson with jets - *TODO* Production of a Z boson or photon with jets where at least two jets are required in each case. For the time being, only leading-order events are supported. After generating an event file :file:`events.lhe` adjust the parameters under the `fixed order jets`_ setting in :file:`config.yml` to the settings in the fixed-order generation. Resummation can then be added by running:: HEJ config.yml events.lhe Using the default settings, this will produce an output event file :file:`HEJ.lhe` with events including high-energy resummation. When using the `Docker image <https://hub.docker.com/r/hejdock/hej>`_, HEJ can be run with .. code-block:: bash docker run -v $PWD:$PWD -w $PWD hejdock/hej HEJ config.yml events.lhe .. _`HEJ 2 settings`: Settings -------- HEJ 2 configuration files follow the `YAML <http://yaml.org/>`_ format. The following configuration parameters are supported: .. _`trials`: **trials** High-energy resummation is performed by generating a number of resummation phase space configurations corresponding to an input fixed-order event. This parameter specifies how many such configurations HEJ 2 should try to generate for each input event. Typical values vary between 10 and 100. .. _`min extparton pt`: **min extparton pt** Specifies the minimum transverse momentum in GeV of the most forward and the most backward parton. This setting is needed to regulate an otherwise uncancelled divergence. Its value should be slightly below the minimum transverse momentum of jets specified by `resummation jets: min pt`_. See also the `max ext soft pt fraction`_ setting. .. _`max ext soft pt fraction`: **max ext soft pt fraction** Specifies the maximum fraction that soft radiation can contribute to the transverse momentum of each the most forward and the most backward jet. Values between around 0.05 and 0.1 are recommended. See also the `min extparton pt`_ setting. .. _`fixed order jets`: **fixed order jets** This tag collects a number of settings specifying the jet definition in the event input. The settings should correspond to the ones used in the fixed-order Monte Carlo that generated the input events. .. _`fixed order jets: min pt`: **min pt** Minimum transverse momentum in GeV of fixed-order jets. .. _`fixed order jets: algorithm`: **algorithm** The algorithm used to define jets. Allowed settings are :code:`kt`, :code:`cambridge`, :code:`antikt`, :code:`cambridge for passive`. See the `FastJet <http://fastjet.fr/>`_ documentation for a description of these algorithms. .. _`fixed order jets: R`: **R** The R parameter used in the jet algorithm, roughly corresponding to the jet radius in the plane spanned by the rapidity and the azimuthal angle. .. _`resummation jets`: **resummation jets** This tag collects a number of settings specifying the jet definition in the observed, i.e. resummed events. These settings are optional, by default the same values as for the `fixed order jets`_ are assumed. .. _`resummation jets: min pt`: **min pt** Minimum transverse momentum in GeV of resummation jets. This should be between 25% and 50% larger than the minimum transverse momentum of fixed order jets set by `fixed order jets: min pt`_. .. _`resummation jets: algorithm`: **algorithm** The algorithm used to define jets. The HEJ 2 approach to resummation relies on properties of :code:`antikt` jets, so this value is strongly recommended. For a list of possible other values, see the `fixed order jets: algorithm`_ setting. .. _`resummation jets: R`: **R** The R parameter used in the jet algorithm. .. _`FKL`: **FKL** Specifies how to treat events respecting FKL rapidity ordering. These configurations are dominant in the high-energy limit. The possible values are :code:`reweight` to enable resummation, :code:`keep` to keep the events as they are up to a possible change of renormalisation and factorisation scale, and :code:`discard` to discard these events. .. _`unordered`: **unordered** Specifies how to treat events with one emission that does not respect FKL ordering. In the high-energy limit, such configurations are logarithmically suppressed compared to FKL configurations. The possible values are the same as for the `FKL`_ setting, but :code:`reweight` is currently only supported for Higgs boson plus jets production. .. _`non-HEJ`: **non-HEJ** Specifies how to treat events where no resummation is possible. The allowed values are :code:`keep` to keep the events as they are up to a possible change of renormalisation and factorisation scale and :code:`discard` to discard these events. .. _`scales`: **scales** Specifies the renormalisation and factorisation scales for the output events. This can either be a single entry or a list :code:`[scale1, scale2, ...]`. For the case of a list the first entry defines the central scale. Possible values are fixed numbers to set the scale in GeV or the following: - :code:`H_T`: The sum of the scalar transverse momenta of all final-state particles - :code:`max jet pperp`: The maximum transverse momentum of all jets - :code:`jet invariant mass`: Sum of the invariant masses of all jets - :code:`m_j1j2`: Invariant mass between the two hardest jets. Scales can be multiplied or divided by an overall factor, e.g. :code:`H_T/2`. It is also possible to import scales from an external library, see :ref:`Custom scales` .. _`scale factors`: **scale factors** A list of numeric factors by which each of the `scales`_ should be multiplied. Renormalisation and factorisation scales are varied independently. For example, a list with entries :code:`[0.5, 2]` would give the four scale choices (0.5μ\ :sub:`r`, 0.5μ\ :sub:`f`); (0.5μ\ :sub:`r`, 2μ\ :sub:`f`); (2μ\ :sub:`r`, 0.5μ\ :sub:`f`); (2μ\ :sub:`r`, 2μ\ :sub:`f`) in this order. The ordering corresponds to the order of the final event weights. .. _`max scale ratio`: **max scale ratio** Specifies the maximum factor by which renormalisation and factorisation scales may difer. For a value of :code:`2` and the example given for the `scale factors`_ the scale choices (0.5μ\ :sub:`r`, 2μ\ :sub:`f`) and (2μ\ :sub:`r`, 0.5μ\ :sub:`f`) will be discarded. .. _`log correction`: **log correction** Whether to include corrections due to the evolution of the strong coupling constant in the virtual corrections. Allowed values are :code:`true` and :code:`false`. .. _`event output`: **event output** Specifies the name of a single event output file or a list of such files. The file format is either specified explicitly or derived from the suffix. For example, :code:`events.lhe` or, equivalently :code:`Les Houches: events.lhe` generates an output event file :code:`events.lhe` in the Les Houches format. The supported formats are - :code:`file.lhe` or :code:`Les Houches: file`: The Les Houches event file format. - :code:`file.hepmc` or :code:`HepMC: file`: The HepMC format. .. _`random generator`: **random generator** Sets parameters for random number generation. .. _`random generator: name`: **name** Which random number generator to use. Currently, :code:`mixmax` and :code:`ranlux64` are supported. Mixmax is recommended. See the `CLHEP documentation <http://proj-clhep.web.cern.ch/proj-clhep/index.html#docu>`_ for details on the generators. .. _`random generator: seed`: **seed** The seed for random generation. This should be a single number for :code:`mixmax` and the name of a state file for :code:`ranlux64`. .. _`analysis`: **analysis** Name and Setting for the event analyses; either a custom analysis plugin or Rivet. For the first the :code:`plugin` sub-entry should be set to the analysis file path. All further entries are passed on to the analysis. To use Rivet a list of Rivet analyses have to be given in :code:`rivet` and prefix for the yoda file has to be set through :code:`output`. See :ref:`Writing custom analyses` for details. .. _`Higgs coupling`: **Higgs coupling** This collects a number of settings concerning the effective coupling of the Higgs boson to gluons. This is only relevant for the production process of a Higgs boson with jets and only supported if HEJ 2 was compiled with `QCDLoop <https://github.com/scarrazza/qcdloop>`_ support. .. _`Higgs coupling: use impact factors`: **use impact factors** Whether to use impact factors for the coupling to the most forward and most backward partons. Impact factors imply the infinite top-quark mass limit. .. _`Higgs coupling: mt`: **mt** The value of the top-quark mass in GeV. If this is not specified, the limit of an infinite mass is taken. .. _`Higgs coupling: include bottom`: **include bottom** Whether to include the Higgs coupling to bottom quarks. .. _`Higgs coupling: mb`: **mb** The value of the bottom-quark mass in GeV. Only used for the Higgs coupling, external bottom-quarks are always assumed to be massless. + +Advanced Settings +~~~~~~~~~~~~~~~~~ + +All of the following settings are optional. Please **do not set** any of the +following options, unless you know exactly what you are doing. The default +behaviour gives the most reliable results for a wide range of observables. + +.. _`regulator parameter`: + +**regulator parameter** + Slicing parameter to regularise the subtraction term, see :math:`\lambda` + in `arxiv:1706.01002 <https://arxiv.org/abs/1706.01002>`_. Default is 0.2 diff --git a/include/HEJ/Constants.hh b/include/HEJ/Constants.hh index 0c357d9..4568911 100644 --- a/include/HEJ/Constants.hh +++ b/include/HEJ/Constants.hh @@ -1,38 +1,39 @@ /** \file * \brief Header file defining all global constants used for HEJ * * \authors Jeppe Andersen, Tuomas Hapola, Marian Heil, Andreas Maier, Jennifer Smillie * \date 2019 * \copyright GPLv2 or later */ #pragma once namespace HEJ{ /// @name QCD parameters //@{ constexpr double N_C = 3.; //!< number of Colours constexpr double C_A = N_C; //!< \f$C_A\f$ constexpr double C_F = (N_C*N_C - 1.)/(2.*N_C); //!< \f$C_F\f$ constexpr double t_f = 0.5; //!< \f$t_f\f$ constexpr double n_f = 5.; //!< number light flavours constexpr double beta0 = 11./3.*C_A - 4./3.*t_f*n_f; //!< \f$\beta_0\f$ //@} /// @name QFT parameters //@{ constexpr double vev = 246.2196508; //!< Higgs vacuum expectation value in GeV constexpr double gw = 0.653233; constexpr double MW = 80.419; // The W mass in GeV/c^2 constexpr double GammaW = 2.0476; // the W width in GeV/c^2 //@} /// @name Generation Parameters //@{ - constexpr double CLAMBDA = 0.2; //!< Scale for virtual correction, \f$\lambda\f$ cf. eq. (20) in \cite Andersen:2011hs + //! Default scale for virtual correction, \f$\lambda\f$ cf. eq. (20) in \cite Andersen:2011hs + constexpr double CLAMBDA = 0.2; constexpr double CMINPT = 0.2; //!< minimal \f$p_t\f$ of all partons //@} /// @name Conventional Parameters //@{ //! Value of first colour for colour dressing, according to LHE convention \cite Boos:2001cv constexpr int COLOUR_OFFSET = 501; //@} }