diff --git a/include/HEJ/Event.hh b/include/HEJ/Event.hh
index 7d828d8..ebafcad 100644
--- a/include/HEJ/Event.hh
+++ b/include/HEJ/Event.hh
@@ -1,351 +1,369 @@
 /** \file
  *  \brief Declares the Event class and helpers
  *
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #pragma once
 
 #include <array>
 #include <memory>
 #include <string>
 #include <unordered_map>
 #include <vector>
 
 #include "boost/iterator/filter_iterator.hpp"
 
 #include "fastjet/ClusterSequence.hh"
 
 #include "HEJ/event_types.hh"
 #include "HEJ/Parameters.hh"
 #include "HEJ/Particle.hh"
 #include "HEJ/RNG.hh"
 
 namespace LHEF {
   class HEPEUP;
   class HEPRUP;
 }
 
 namespace fastjet {
   class JetDefinition;
 }
 
 namespace HEJ {
 
   struct UnclusteredEvent;
 
   /** @brief An event with clustered jets
     *
     * This is the main HEJ 2 event class.
     * It contains kinematic information including jet clustering,
     * parameter (e.g. scale) settings and the event weight.
     */
   class Event {
   public:
     class EventData;
 
     //! Iterator over partons
     using ConstPartonIterator = boost::filter_iterator<
       bool (*)(Particle const &),
       std::vector<Particle>::const_iterator
       >;
     //! Reverse Iterator over partons
     using ConstReversePartonIterator = std::reverse_iterator<
                                                 ConstPartonIterator>;
     //! No default Constructor
     Event() = delete;
     //! Event Constructor adding jet clustering to an unclustered event
     //! @deprecated UnclusteredEvent will be replaced by EventData in HEJ 2.2.0
     [[deprecated("UnclusteredEvent will be replaced by EventData")]]
     Event(
       UnclusteredEvent const & ev,
       fastjet::JetDefinition const & jet_def, double min_jet_pt
     );
 
     //! @name Particle Access
     //! @{
 
     //! Incoming particles
     std::array<Particle, 2> const &  incoming() const{
       return incoming_;
     }
     //! Outgoing particles
     std::vector<Particle> const &  outgoing() const{
       return outgoing_;
     }
     //! Iterator to the first outgoing parton
     ConstPartonIterator begin_partons() const;
     //! Iterator to the first outgoing parton
     ConstPartonIterator cbegin_partons() const;
 
     //! Iterator to the end of the outgoing partons
     ConstPartonIterator end_partons() const;
     //! Iterator to the end of the outgoing partons
     ConstPartonIterator cend_partons() const;
 
     //! Reverse Iterator to the first outgoing parton
     ConstReversePartonIterator rbegin_partons() const;
     //! Reverse Iterator to the first outgoing parton
     ConstReversePartonIterator crbegin_partons() const;
     //! Reverse Iterator to the first outgoing parton
     ConstReversePartonIterator rend_partons() const;
     //! Reverse Iterator to the first outgoing parton
     ConstReversePartonIterator crend_partons() const;
 
     //! Particle decays
     /**
      *  The key in the returned map corresponds to the index in the
      *  vector returned by outgoing()
      */
     std::unordered_map<size_t, std::vector<Particle>> const &  decays() const{
       return decays_;
     }
     //! The jets formed by the outgoing partons, sorted in rapidity
     std::vector<fastjet::PseudoJet> const & jets() const{
       return jets_;
     }
     //! @}
 
     //! @name Weight variations
     //! @{
 
     //! All chosen parameter, i.e. scale choices (const version)
     Parameters<EventParameters> const & parameters() const{
       return parameters_;
     }
     //! All chosen parameter, i.e. scale choices
     Parameters<EventParameters> & parameters(){
       return parameters_;
     }
 
     //! Central parameter choice (const version)
     EventParameters const & central() const{
       return parameters_.central;
     }
     //! Central parameter choice
     EventParameters & central(){
       return parameters_.central;
     }
 
     //! Parameter (scale) variations (const version)
     std::vector<EventParameters> const & variations() const{
       return parameters_.variations;
     }
     //! Parameter (scale) variations
     std::vector<EventParameters> & variations(){
       return parameters_.variations;
     }
 
     //! Parameter (scale) variation (const version)
     /**
      *  @param i   Index of the requested variation
      */
     EventParameters const & variations(size_t i) const{
       return parameters_.variations.at(i);
     }
     //! Parameter (scale) variation
     /**
      *  @param i   Index of the requested variation
      */
     EventParameters & variations(size_t i){
       return parameters_.variations.at(i);
     }
     //! @}
 
     //! Indices of the jets the outgoing partons belong to
     /**
      *  @param jets   Jets to be tested
      *  @returns      A vector containing, for each outgoing parton,
      *                the index in the vector of jets the considered parton
      *                belongs to. If the parton is not inside any of the
      *                passed jets, the corresponding index is set to -1.
      */
     std::vector<int> particle_jet_indices(
         std::vector<fastjet::PseudoJet> const & jets
     ) const {
       return cs_.particle_jet_indices(jets);
     }
     //! particle_jet_indices() of the Event jets()
     std::vector<int> particle_jet_indices() const {
       return particle_jet_indices(jets());
     }
 
     //! Jet definition used for clustering
     fastjet::JetDefinition const & jet_def() const{
       return cs_.jet_def();
     }
 
     //! Minimum jet transverse momentum
     double min_jet_pt() const{
       return min_jet_pt_;
     }
 
     //! Event type
     event_type::EventType type() const{
       return type_;
     }
 
     //! Give colours to each particle
     /**
      * @returns true if new colours are generated, i.e. same as is_resummable()
      * @details Colour ordering is done according to leading colour in the MRK
      *          limit, see \cite Andersen:2011zd. This only affects \ref
      *          is_resummable() "HEJ" configurations, all other \ref event_type
      *          "EventTypes" will be ignored.
      * @note    This overwrites all previously set colours.
      */
     bool generate_colours(HEJ::RNG &);
 
     //! Check that current colours are leading in the high energy limit
     /**
      * @details Checks that the colour configuration can be split up in
      *          multiple, rapidity ordered, non-overlapping ladders. Such
      *          configurations are leading in the MRK limit, see
      *          \cite Andersen:2011zd
      *
      * @note This is _not_ to be confused with \ref is_resummable(), however
      *       for all resummable states it is possible to create a leading colour
      *       configuration, see generate_colours()
      */
     bool is_leading_colour() const;
 
     /**
      * @brief Check if given event could have been produced by HEJ
      * @details A HEJ state has to fulfil:
      *          1. type() has to be \ref is_resummable() "resummable"
      *          2. Soft radiation in the tagging jets contributes at most to
      *             `max_ext_soft_pt_fraction` of the total jet \f$ p_\perp \f$
      *
      * @note This is true for any resummed stated produced by the
      *       EventReweighter or any \ref is_resummable() "resummable" Leading
      *       Order state.
      *
      * @param max_ext_soft_pt_fraction Maximum transverse momentum fraction from
      *                                 soft radiation in extremal jets
      * @param min_extparton_pt         Absolute minimal \f$ p_\perp \f$,
      *                                 \b deprecated use max_ext_soft_pt_fraction
      *                                 instead
      * @return True if this state could have been produced by HEJ
      */
     bool valid_hej_state(
       double max_ext_soft_pt_fraction, double min_extparton_pt = 0.) const;
 
   private:
     //! \internal
     //! @brief Construct Event explicitly from input.
     /** This is only intended to be called from EventData.
      *
      * \warning The input is taken _as is_, sorting and classification has to be
      *          done externally, i.e. by EventData
      */
     Event(
       std::array<Particle, 2> && incoming,
       std::vector<Particle> && outgoing,
       std::unordered_map<size_t, std::vector<Particle>> && decays,
       Parameters<EventParameters> && parameters,
       fastjet::JetDefinition const & jet_def,
       double const min_jet_pt
     );
 
+    //! Iterator over partons (non-const)
+    using PartonIterator = boost::filter_iterator<
+      bool (*)(Particle const &),
+      std::vector<Particle>::iterator
+      >;
+    //! Reverse Iterator over partons (non-const)
+    using ReversePartonIterator = std::reverse_iterator<PartonIterator>;
+
+    //! Iterator to the first outgoing parton (non-const)
+    PartonIterator begin_partons();
+    //! Iterator to the end of the outgoing partons (non-const)
+    PartonIterator end_partons();
+
+    //! Reverse Iterator to the first outgoing parton (non-const)
+    ReversePartonIterator rbegin_partons();
+    //! Reverse Iterator to the first outgoing parton (non-const)
+    ReversePartonIterator rend_partons();
+
     std::array<Particle, 2> incoming_;
     std::vector<Particle> outgoing_;
     std::unordered_map<size_t, std::vector<Particle>> decays_;
     std::vector<fastjet::PseudoJet> jets_;
     Parameters<EventParameters> parameters_;
     fastjet::ClusterSequence cs_;
     double min_jet_pt_;
     event_type::EventType type_;
   }; // end class Event
 
   //! Class to store general Event setup, i.e. Phase space and weights
   class Event::EventData {
   public:
     //! Default Constructor
     EventData() = default;
     //! Constructor from LesHouches event information
     EventData(LHEF::HEPEUP const & hepeup);
     //! Constructor with all values given
     EventData(
       std::array<Particle, 2> incoming,
       std::vector<Particle> outgoing,
       std::unordered_map<size_t, std::vector<Particle>> decays,
       Parameters<EventParameters> parameters
     ):
       incoming(std::move(incoming)), outgoing(std::move(outgoing)),
       decays(std::move(decays)), parameters(std::move(parameters))
     {}
 
     //! Generate an Event from the stored EventData.
     /**
      * @details          Do jet clustering and classification.
      *                   Use this to generate an Event.
      *
      * @note             Calling this function destroys EventData
      *
      * @param jet_def    Jet definition
      * @param min_jet_pt minimal \f$p_T\f$ for each jet
      *
      * @returns          Full clustered and classified event.
      */
     Event cluster(
       fastjet::JetDefinition const & jet_def, double const min_jet_pt);
 
     //! Alias for cluster()
     Event operator()(
       fastjet::JetDefinition const & jet_def, double const min_jet_pt){
       return cluster(jet_def, min_jet_pt);
     }
 
     //! Sort particles in rapidity
     void sort();
 
     //! Reconstruct intermediate particles from final-state leptons
     /**
      *  Final-state leptons are created from virtual photons, W, or Z bosons.
      *  This function tries to reconstruct such intermediate bosons if they
      *  are not part of the event record.
      */
     void reconstruct_intermediate();
 
     //! Incoming particles
     std::array<Particle, 2> incoming;
     //! Outcoing particles
     std::vector<Particle> outgoing;
     //! Particle decays in the format {outgoing index, decay products}
     std::unordered_map<size_t, std::vector<Particle>> decays;
     //! Parameters, e.g. scale or inital weight
     Parameters<EventParameters> parameters;
   }; // end class EventData
 
   //! Print Event
   std::ostream& operator<<(std::ostream & os, Event const & ev);
 
   //! Square of the partonic centre-of-mass energy \f$\hat{s}\f$
   double shat(Event const & ev);
 
   //! Convert an event to a LHEF::HEPEUP
   LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP *);
 
   // put deprecated warning at the end, so don't get the warning inside Event.hh,
   // additionally doxygen can not identify [[deprecated]] correctly
   struct [[deprecated("UnclusteredEvent will be replaced by EventData")]]
     UnclusteredEvent;
   //! An event before jet clustering
   //! @deprecated UnclusteredEvent will be replaced by EventData in HEJ 2.2.0
   struct UnclusteredEvent{
     //! Default Constructor
     UnclusteredEvent() = default;
     //! Constructor from LesHouches event information
     UnclusteredEvent(LHEF::HEPEUP const & hepeup);
 
     std::array<Particle, 2> incoming;          /**< Incoming Particles */
     std::vector<Particle> outgoing;            /**< Outgoing Particles */
     //! Particle decays in the format {outgoing index, decay products}
     std::unordered_map<size_t, std::vector<Particle>> decays;
     //! Central parameter (e.g. scale) choice
     EventParameters central;
     std::vector<EventParameters> variations;    /**< For parameter variation */
   };
 
 } // namespace HEJ
diff --git a/src/Event.cc b/src/Event.cc
index 400b2e7..9bed9d5 100644
--- a/src/Event.cc
+++ b/src/Event.cc
@@ -1,1099 +1,1137 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #include "HEJ/Event.hh"
 
 #include <algorithm>
 #include <assert.h>
 #include <iterator>
 #include <numeric>
 #include <unordered_set>
 #include <utility>
 
 #include "LHEF/LHEF.h"
 
 #include "fastjet/JetDefinition.hh"
 
 #include "HEJ/Constants.hh"
 #include "HEJ/exceptions.hh"
 #include "HEJ/PDG_codes.hh"
 
 namespace HEJ{
 
   namespace {
     constexpr int status_in = -1;
     constexpr int status_decayed = 2;
     constexpr int status_out = 1;
 
     //! true if leptonic W decay
     bool valid_W_decay( int const w_type, // sign of W
                         std::vector<Particle> const & decays
     ){
       if(decays.size() != 2) // no 1->2 decay
         return false;
       const int pidsum = decays[0].type + decays[1].type;
       if( std::abs(pidsum) != 1 || pidsum != w_type ) // correct charge
         return false;
       // leptonic decay (only check first, second follows from pidsum)
       if( w_type == 1 ) // W+
         return is_antilepton(decays[0]) || is_neutrino(decays[0]);
       // W-
       return is_lepton(decays[0]) || is_antineutrino(decays[0]);
     }
 
     /// @name helper functions to determine event type
     //@{
 
     /**
      * \brief check if final state valid for HEJ
      *
      * check if there is at most one photon, W, H, Z in the final state
      * and all the rest are quarks or gluons
      */
     bool final_state_ok(Event const & ev){
       std::vector<Particle> const & outgoing = ev.outgoing();
       if(ev.decays().size() > 1) // at most one decay
         return false;
       bool has_AWZH_boson = false;
       for( size_t i=0; i<outgoing.size(); ++i ){
         auto const & out{ outgoing[i] };
         if(is_AWZH_boson(out.type)){
           // at most one boson
           if(has_AWZH_boson) return false;
           has_AWZH_boson = true;
 
           // valid decay for W
           if(std::abs(out.type) == ParticleID::Wp){
             // exactly 1 decay of W
             if( ev.decays().size() != 1 || ev.decays().cbegin()->first != i )
               return false;
             if( !valid_W_decay(out.type>0?+1:-1, ev.decays().cbegin()->second) )
               return false;
           }
         }
         else if(! is_parton(out.type)) return false;
       }
       return true;
     }
 
     /**
      * returns all EventTypes implemented in HEJ
      */
     size_t implemented_types(std::vector<Particle> const & bosons){
       using namespace event_type;
       if(bosons.empty()) return FKL | unob | unof | qqxexb | qqxexf | qqxmid;
       if(bosons.size()>1) return non_resummable; // multi boson
       switch (bosons[0].type) {
         case ParticleID::Wp:
         case ParticleID::Wm:
           return FKL | unob | unof | qqxexb | qqxexf | qqxmid;
         case ParticleID::h:
           return FKL | unob | unof;
         default:
           return non_resummable;
       }
     }
 
     /**
      * \brief function which determines if type change is consistent with Wp emission.
      * @param in                      incoming Particle id
      * @param out                     outgoing Particle id
      * @param qqx                     Current both incoming/both outgoing?
      *
      * \see is_Wm_Change
      */
     bool is_Wp_Change(ParticleID in, ParticleID out, bool qqx){
       if(!qqx && (in==-1 || in== 2 || in==-3 || in== 4)) return out== (in-1);
       if( qqx && (in== 1 || in==-2 || in== 3 || in==-4)) return out==-(in+1);
       return false;
     }
 
     /**
      * \brief function which determines if type change is consistent with Wm emission.
      * @param in                      incoming Particle id
      * @param out                     outgoing Particle id
      * @param qqx                     Current both incoming/both outgoing?
      *
      * Ensures that change type of quark line is possible by a flavour changing
      * Wm emission. Allows checking of qqx currents also.
      */
     bool is_Wm_Change(ParticleID in, ParticleID out, bool qqx){
       if(!qqx && (in== 1 || in==-2 || in== 3 || in==-4)) return out== (in+1);
       if( qqx && (in==-1 || in== 2 || in==-3 || in== 4)) return out==-(in-1);
       return false;
     }
 
     /**
      * \brief checks if particle type remains same from incoming to outgoing
      * @param in                      incoming Particle
      * @param out                     outgoing Particle
      * @param qqx                     Current both incoming/outgoing?
      */
     bool no_flavour_change(ParticleID in, ParticleID out, bool qqx){
       const int qqxCurrent = qqx?-1:1;
       if(abs(in)<=6 || in==pid::gluon) return (in==out*qqxCurrent);
       else return false;
     }
 
     bool has_2_jets(Event const & event){
       return event.jets().size() >= 2;
     }
 
     /**
      * \brief check if we have a valid Impact factor
      * @param in                      incoming Particle
      * @param out                     outgoing Particle
      * @param qqx                     Current both incoming/outgoing?
      * @param W_change                returns +1 if Wp, -1 if Wm, else 0
      */
     bool is_valid_impact_factor(
       ParticleID in, ParticleID out, bool qqx, int & W_change
     ){
       if( no_flavour_change(in, out, qqx) ){
         return true;
       }
       if( is_Wp_Change(in, out, qqx) ) {
         W_change+=1;
         return true;
       }
       if( is_Wm_Change(in, out, qqx) ) {
         W_change-=1;
         return true;
       }
       return false;
     }
 
     //! Returns all possible classifications from the impact factors
     // the beginning points are changed s.t. after the the classification they
     // point to the beginning of the (potential) FKL chain
     // sets W_change: + if Wp change
     //                0 if no change
     //                - if Wm change
     // This function can be used with forward & backwards iterators
     template<class OutIterator>
     size_t possible_impact_factors(
       ParticleID incoming_id,                                   // incoming
       OutIterator   & begin_out, OutIterator   const & end_out, // outgoing
       int & W_change, std::vector<Particle> const & boson,
       bool const backward                                       // backward?
     ){
       using namespace event_type;
       assert(boson.size() < 2);
       // keep track of all states that we don't test
       size_t not_tested = qqxmid;
       if(backward)
         not_tested |= unof | qqxexf;
       else
         not_tested |= unob | qqxexb;
 
       // Is this LL current?
       if( is_valid_impact_factor(incoming_id, begin_out->type, false, W_change) ){
         ++begin_out;
         return not_tested | FKL;
       }
 
       // or NLL current?
       // -> needs two partons in two different jets
       if( std::distance(begin_out, end_out)>=2
       ){
         // Is this unordered emisson?
         if( incoming_id!=pid::gluon && begin_out->type==pid::gluon ){
           if( is_valid_impact_factor(
                 incoming_id, (begin_out+1)->type, false, W_change )
           ){
             // veto Higgs inside uno
             assert((begin_out+1)<end_out);
             if( !boson.empty() && boson.front().type == ParticleID::h
             ){
               if(  (backward && boson.front().rapidity() < (begin_out+1)->rapidity())
                 ||(!backward && boson.front().rapidity() > (begin_out+1)->rapidity()))
               return non_resummable;
             }
             begin_out+=2;
             return not_tested | (backward?unob:unof);
           }
         }
         // Is this QQbar?
         else if( incoming_id==pid::gluon ){
           if( is_valid_impact_factor(
                 begin_out->type, (begin_out+1)->type, true, W_change )
           ){
             // veto Higgs inside qqx
             assert((begin_out+1)<end_out);
             if( !boson.empty() && boson.front().type == ParticleID::h
             ){
               if(  (backward && boson.front().rapidity() < (begin_out+1)->rapidity())
                 ||(!backward && boson.front().rapidity() > (begin_out+1)->rapidity()))
               return non_resummable;
             }
             begin_out+=2;
             return not_tested | (backward?qqxexb:qqxexf);
           }
         }
       }
       return non_resummable;
     }
 
     //! Returns all possible classifications from central emissions
     // the beginning points are changed s.t. after the the classification they
     // point to the end of the emission chain
     // sets W_change: + if Wp change
     //               0 if no change
     //               - if Wm change
     template<class OutIterator>
     size_t possible_central(
       OutIterator & begin_out, OutIterator const & end_out,
       int & W_change, std::vector<Particle> const & boson
     ){
       using namespace event_type;
       assert(boson.size() < 2);
       // if we already passed the central chain,
       // then it is not a valid all-order state
       if(std::distance(begin_out, end_out) < 0) return non_resummable;
       // keep track of all states that we don't test
       size_t possible = unob | unof
                           | qqxexb | qqxexf;
 
       // Find the first non-gluon/non-FKL
       while( (begin_out->type==pid::gluon) && (begin_out<end_out) ){
         ++begin_out;
       }
       // end of chain -> FKL
       if( begin_out==end_out ){
         return possible | FKL;
       }
 
       // is this a qqbar-pair?
       // needs two partons in two separate jets
       if( is_valid_impact_factor(
             begin_out->type, (begin_out+1)->type, true, W_change )
       ){
         // veto Higgs inside qqx
         if( !boson.empty() && boson.front().type == ParticleID::h
             && boson.front().rapidity() > begin_out->rapidity()
             && boson.front().rapidity() < (begin_out+1)->rapidity()
         ){
           return non_resummable;
         }
         begin_out+=2;
         // remaining chain should be pure gluon/FKL
         for(; begin_out<end_out; ++begin_out){
           if(begin_out->type != pid::gluon) return non_resummable;
         }
         return possible | qqxmid;
       }
       return non_resummable;
     }
 
     /**
      * \brief Checks for all event types
      * @param ev          Event
      * @returns           Event Type
      *
      */
     event_type::EventType classify(Event const & ev){
       using namespace event_type;
       if(! has_2_jets(ev))
         return no_2_jets;
       // currently we can't handle multiple boson states in the ME. So they are
       // considered "bad_final_state" even though the "classify" could work with
       // them.
       if(! final_state_ok(ev))
         return bad_final_state;
 
       // initialise variables
       auto const & in = ev.incoming();
       auto const & out = filter_partons(ev.outgoing());
 
       assert(std::distance(begin(in), end(in)) == 2);
       assert(out.size() >= 2);
       assert(std::distance(begin(out), end(out)) >= 2);
       assert(std::is_sorted(begin(out), end(out), rapidity_less{}));
 
       auto const boson{ filter_AWZH_bosons(ev.outgoing()) };
       // we only allow one boson through final_state_ok
       assert(boson.size()<=1);
 
       // keep track of potential W couplings, at the end the sum should be 0
       int remaining_Wp = 0;
       int remaining_Wm = 0;
       if(!boson.empty() && abs(boson.front().type) == ParticleID::Wp ){
         if(boson.front().type>0) ++remaining_Wp;
         else ++remaining_Wm;
       }
       int W_change = 0;
 
       // range for current checks
       auto begin_out{out.cbegin()};
       auto end_out{out.crbegin()};
 
       size_t final_type = ~(no_2_jets | bad_final_state);
 
       // check forward impact factor
       final_type &= possible_impact_factors(
         in.front().type,
         begin_out, end_out.base(),
         W_change, boson, true );
       if( final_type == non_resummable )
         return non_resummable;
       if(W_change>0) remaining_Wp-=W_change;
       else if(W_change<0) remaining_Wm+=W_change;
       W_change = 0;
 
       // check backward impact factor
       final_type &= possible_impact_factors(
         in.back().type,
         end_out, std::make_reverse_iterator(begin_out),
         W_change, boson, false );
       if( final_type == non_resummable )
         return non_resummable;
       if(W_change>0) remaining_Wp-=W_change;
       else if(W_change<0) remaining_Wm+=W_change;
       W_change = 0;
 
       // check central emissions
       final_type &= possible_central(
         begin_out, end_out.base(), W_change, boson );
       if( final_type == non_resummable )
         return non_resummable;
       if(W_change>0) remaining_Wp-=W_change;
       else if(W_change<0) remaining_Wm+=W_change;
 
       // Check whether the right number of Ws are present
       if( remaining_Wp != 0 || remaining_Wm != 0 ) return non_resummable;
 
       // result has to be unique
       if( (final_type & (final_type-1)) != 0) return non_resummable;
 
       // check that each sub processes is implemented
       // (has to be done at the end)
       if( (final_type & ~implemented_types(boson)) != 0 )
         return non_resummable;
 
       return static_cast<EventType>(final_type);
     }
     //@}
 
     Particle extract_particle(LHEF::HEPEUP const & hepeup, size_t i){
       const ParticleID id = static_cast<ParticleID>(hepeup.IDUP[i]);
       const fastjet::PseudoJet momentum{
         hepeup.PUP[i][0], hepeup.PUP[i][1],
         hepeup.PUP[i][2], hepeup.PUP[i][3]
       };
       if(is_parton(id))
         return Particle{ id, std::move(momentum), hepeup.ICOLUP[i] };
       return Particle{ id, std::move(momentum), {} };
     }
 
     bool is_decay_product(std::pair<int, int> const & mothers){
       if(mothers.first == 0) return false;
       return mothers.second == 0 || mothers.first == mothers.second;
     }
 
   } // namespace anonymous
 
   Event::EventData::EventData(LHEF::HEPEUP const & hepeup){
     parameters.central = EventParameters{
       hepeup.scales.mur, hepeup.scales.muf, hepeup.XWGTUP
     };
     size_t in_idx = 0;
     for (int i = 0; i < hepeup.NUP; ++i) {
       // skip decay products
       // we will add them later on, but we have to ensure that
       // the decayed particle is added before
       if(is_decay_product(hepeup.MOTHUP[i])) continue;
 
       auto particle = extract_particle(hepeup, i);
       // needed to identify mother particles for decay products
       particle.p.set_user_index(i+1);
 
       if(hepeup.ISTUP[i] == status_in){
         if(in_idx > incoming.size()) {
           throw std::invalid_argument{
             "Event has too many incoming particles"
           };
         }
         incoming[in_idx++] = std::move(particle);
       }
       else outgoing.emplace_back(std::move(particle));
     }
 
     // add decay products
     for (int i = 0; i < hepeup.NUP; ++i) {
       if(!is_decay_product(hepeup.MOTHUP[i])) continue;
       const int mother_id = hepeup.MOTHUP[i].first;
       const auto mother = std::find_if(
           begin(outgoing), end(outgoing),
           [mother_id](Particle const & particle){
             return particle.p.user_index() == mother_id;
           }
       );
       if(mother == end(outgoing)){
         throw std::invalid_argument{"invalid decay product parent"};
       }
       const int mother_idx = std::distance(begin(outgoing), mother);
       assert(mother_idx >= 0);
       decays[mother_idx].emplace_back(extract_particle(hepeup, i));
     }
   }
 
   Event::Event(
     UnclusteredEvent const & ev,
     fastjet::JetDefinition const & jet_def, double const min_jet_pt
   ):
     Event( Event::EventData{
       ev.incoming, ev.outgoing, ev.decays,
       Parameters<EventParameters>{ev.central, ev.variations}
     }.cluster(jet_def, min_jet_pt) )
   {}
 
   //! @TODO remove in HEJ 2.2.0
   UnclusteredEvent::UnclusteredEvent(LHEF::HEPEUP const & hepeup){
       Event::EventData const evData{hepeup};
       incoming = evData.incoming;
       outgoing = evData.outgoing;
       decays = evData.decays;
       central = evData.parameters.central;
       variations = evData.parameters.variations;
   }
 
   void Event::EventData::sort(){
     // sort particles
     std::sort(
         begin(incoming), end(incoming),
         [](Particle o1, Particle o2){return o1.p.pz()<o2.p.pz();}
     );
 
     auto old_outgoing = std::move(outgoing);
     std::vector<size_t> idx(old_outgoing.size());
     std::iota(idx.begin(), idx.end(), 0);
     std::sort(idx.begin(), idx.end(), [&old_outgoing](size_t i, size_t j){
       return old_outgoing[i].rapidity() < old_outgoing[j].rapidity();
     });
     outgoing.clear();
     outgoing.reserve(old_outgoing.size());
     for(size_t i: idx) {
       outgoing.emplace_back(std::move(old_outgoing[i]));
     }
 
     // find decays again
     if(!decays.empty()){
       auto old_decays = std::move(decays);
       decays.clear();
       for(size_t i=0; i<idx.size(); ++i) {
         auto decay = old_decays.find(idx[i]);
         if(decay != old_decays.end())
           decays.emplace(i, std::move(decay->second));
       }
       assert(old_decays.size() == decays.size());
     }
   }
 
   namespace {
     Particle reconstruct_boson(std::vector<Particle> const & leptons) {
       Particle decayed_boson;
       decayed_boson.p = leptons[0].p + leptons[1].p;
       const int pidsum = leptons[0].type + leptons[1].type;
       if(pidsum == +1) {
         assert(is_antilepton(leptons[0]));
         if(is_antineutrino(leptons[0])) {
           throw not_implemented{"lepton-flavour violating final state"};
         }
         assert(is_neutrino(leptons[1]));
         // charged antilepton + neutrino means we had a W+
         decayed_boson.type = pid::Wp;
       }
       else if(pidsum == -1) {
         assert(is_antilepton(leptons[0]));
         if(is_neutrino(leptons[1])) {
           throw not_implemented{"lepton-flavour violating final state"};
         }
         assert(is_antineutrino(leptons[0]));
         // charged lepton + antineutrino means we had a W-
         decayed_boson.type = pid::Wm;
       }
       else {
         throw not_implemented{
           "final state with leptons "
             + name(leptons[0].type)
             + " and "
             + name(leptons[1].type)
         };
       }
       return decayed_boson;
     }
   }
 
   void Event::EventData::reconstruct_intermediate() {
     const auto begin_leptons = std::partition(
         begin(outgoing), end(outgoing),
         [](Particle const & p) {return !is_anylepton(p);}
     );
     if(begin_leptons == end(outgoing)) return;
     assert(is_anylepton(*begin_leptons));
     std::vector<Particle> leptons(begin_leptons, end(outgoing));
     outgoing.erase(begin_leptons, end(outgoing));
     if(leptons.size() != 2) {
       throw not_implemented{"Final states with one or more than two leptons"};
     }
     std::sort(
         begin(leptons), end(leptons),
         [](Particle const & p0, Particle const & p1) {
           return p0.type < p1.type;
         }
     );
     outgoing.emplace_back(reconstruct_boson(leptons));
     decays.emplace(outgoing.size()-1, std::move(leptons));
   }
 
   Event Event::EventData::cluster(
       fastjet::JetDefinition const & jet_def, double const min_jet_pt
   ){
     sort();
     Event ev{ std::move(incoming), std::move(outgoing), std::move(decays),
       std::move(parameters),
       jet_def, min_jet_pt
     };
     assert(std::is_sorted(begin(ev.outgoing_), end(ev.outgoing_),
       rapidity_less{}));
     ev.type_ = classify(ev);
     return ev;
   }
 
   Event::Event(
       std::array<Particle, 2> && incoming,
       std::vector<Particle> && outgoing,
       std::unordered_map<size_t, std::vector<Particle>> && decays,
       Parameters<EventParameters> && parameters,
       fastjet::JetDefinition const & jet_def,
       double const min_jet_pt
     ): incoming_{std::move(incoming)},
        outgoing_{std::move(outgoing)},
        decays_{std::move(decays)},
        parameters_{std::move(parameters)},
        cs_{ to_PseudoJet( filter_partons(outgoing_) ), jet_def },
        min_jet_pt_{min_jet_pt}
     {
       jets_ = sorted_by_rapidity(cs_.inclusive_jets(min_jet_pt_));
     }
 
   namespace {
     //! check that Particles have a reasonable colour
     bool correct_colour(Particle const & part){
       ParticleID id{ part.type };
       if(!is_parton(id))
         return !part.colour;
 
       if(!part.colour)
         return false;
 
       Colour const & col{ *part.colour };
       if(is_quark(id))
         return col.first != 0 && col.second == 0;
       if(is_antiquark(id))
         return col.first == 0 && col.second != 0;
       assert(id==ParticleID::gluon);
       return col.first != 0 && col.second != 0 && col.first != col.second;
     }
 
     //! Connect parton to a colour line & update the line
     //! returns false if connection not possible
     bool can_connect(Particle const & part, Colour & line_colour){
       if( line_colour.first == part.colour->second ){
         line_colour.first = part.colour->first;
         return true;
       }
       if( line_colour.second == part.colour->first ){
         line_colour.second = part.colour->second;
         return true;
       }
       return false;
 
     }
   }
 
   bool Event::is_leading_colour() const {
     if( !correct_colour(incoming()[0]) || !correct_colour(incoming()[1]) )
       return false;
 
     Colour line_colour = *incoming()[0].colour;
     std::swap(line_colour.first, line_colour.second);
 
-    for(auto it_part = outgoing().cbegin(); it_part<outgoing().cend(); ++it_part){
-      // reasonable colour
-      if(!correct_colour(*it_part))
-        return false;
-      if(!is_parton(*it_part)) // skip colour neutral particles
-        continue;
+    // reasonable colour
+    if(!std::all_of(outgoing().cbegin(), outgoing().cend(), correct_colour))
+      return false;
+
+    for(auto it_part = cbegin_partons(); it_part!=cend_partons(); ++it_part){
 
       // if possible connect to line (t-channel)
       if( !can_connect(*it_part, line_colour) ){
         // else try u-channel
         switch (type()) {
         case event_type::FKL:
           return false;
         case event_type::unob:
         case event_type::qqxexb: {
           // u-channel only allowed at impact factor
-          if(std::distance(outgoing().cbegin(), it_part)==0
-            && can_connect(*(it_part+1), line_colour)
-            && can_connect(*it_part, line_colour)
-          ){
-            ++it_part;
-            break;
+          if(std::distance(cbegin_partons(), it_part)==0){
+            auto it_next = it_part;
+            ++it_next;
+            if( can_connect(*it_next, line_colour)
+                && can_connect(*it_part, line_colour)
+            ){
+              it_part=it_next;
+              break;
+            }
           }
           return false;
         }
         case event_type::unof:
         case event_type::qqxexf: {
           // u-channel only allowed at impact factor
-          if(std::distance(it_part, outgoing().cend())==2
-            && can_connect(*(it_part+1), line_colour)
-            && can_connect(*it_part, line_colour)
-          ){
-            ++it_part;
-            break;
+          if(std::distance(it_part, cend_partons())==2){
+            auto it_next = it_part;
+            ++it_next;
+            if( can_connect(*it_next, line_colour)
+                && can_connect(*it_part, line_colour)
+            ){
+              it_part=it_next;
+              break;
+            }
           }
           return false;
         }
         case event_type::qqxmid:{
           // u-channel only allowed at qqx/qxq pair
-          if( std::distance(outgoing_.begin(), it_part)>0
-              && std::distance(it_part, outgoing_.end())>2
-              && ( ( (is_quark(*it_part) && is_antiquark(*(it_part+1)) )
-                || (is_antiquark(*it_part) && is_quark(*(it_part+1))) )
-              )
-              && can_connect(*(it_part+1), line_colour)
-              && can_connect(*it_part, line_colour)
+          if( std::distance(cbegin_partons(), it_part)>0
+              && std::distance(it_part, cend_partons())>2
           ){
-            ++it_part;
-            break;
+            auto it_next = it_part;
+            ++it_next;
+            if( ( (is_quark(*it_part) && is_antiquark(*it_next))
+                  || (is_antiquark(*it_part) && is_quark(*it_next)) )
+                && can_connect(*it_next, line_colour)
+                && can_connect(*it_part, line_colour)
+            ){
+              it_part=it_next;
+              break;
+            }
           }
           return false;
         }
         default:
           throw std::logic_error{"unreachable"};
         }
       }
 
       // no colour singlet exchange/disconnected diagram
       if(line_colour.first == line_colour.second)
         return false;
     }
 
     return (incoming()[1].colour->first == line_colour.first)
         && (incoming()[1].colour->second == line_colour.second);
   }
 
   namespace {
     //! connect incoming Particle to colour flow
     void connect_incoming(Particle & in, int & colour, int & anti_colour){
       in.colour = std::make_pair(anti_colour, colour);
       // gluon
       if(in.type == pid::gluon)
         return;
       if(in.type > 0){
         // quark
         assert(is_quark(in));
         in.colour->second = 0;
         colour*=-1;
         return;
       }
       // anti-quark
       assert(is_antiquark(in));
       in.colour->first = 0;
       anti_colour*=-1;
       return;
     }
 
     //! connect outgoing Particle to colour flow
     void connect_outgoing(
         Particle & part, int & colour, int & anti_colour, RNG & ran
     ){
       assert(colour>0 || anti_colour>0);
       if(part.type == ParticleID::gluon){
         // gluon
         if(colour>0 && anti_colour>0){
           // on g line => connect to colour OR anti-colour (random)
           if(ran.flat() < 0.5){
             part.colour = std::make_pair(colour+2,colour);
             colour+=2;
           } else {
             part.colour = std::make_pair(anti_colour, anti_colour+2);
             anti_colour+=2;
           }
         } else if(colour > 0){
           // on q line => connect to available colour
             part.colour = std::make_pair(colour+2, colour);
             colour+=2;
         } else {
           assert(colour<0 && anti_colour>0);
           // on qx line => connect to available anti-colour
           part.colour = std::make_pair(anti_colour, anti_colour+2);
           anti_colour+=2;
         }
       } else if(is_quark(part)) {
         // quark
         assert(anti_colour>0);
         if(colour>0){
           // on g line => connect and remove anti-colour
           part.colour = std::make_pair(anti_colour, 0);
           anti_colour+=2;
           anti_colour*=-1;
         } else {
           // on qx line => new colour
           colour*=-1;
           part.colour = std::make_pair(colour, 0);
         }
       } else if(is_antiquark(part)) {
         // anti-quark
         assert(colour>0);
         if(anti_colour>0){
           // on g line => connect and remove colour
           part.colour = std::make_pair(0, colour);
           colour+=2;
           colour*=-1;
         } else {
           // on q line => new anti-colour
           anti_colour*=-1;
           part.colour = std::make_pair(0, anti_colour);
         }
       } else { // not a parton
         assert(!is_parton(part));
         part.colour = {};
       }
     }
 
     //! connect to t- or u-channel colour flow
     template<class OutIterator>
     void connect_utchannel(
         OutIterator & it_part, int & colour, int & anti_colour, RNG & ran
     ){
+      OutIterator it_first = it_part++;
       if(ran.flat()<.5) {// t-channel
+        connect_outgoing(*it_first, colour, anti_colour, ran);
         connect_outgoing(*it_part, colour, anti_colour, ran);
-        connect_outgoing(*(it_part+1), colour, anti_colour, ran);
       }
       else { // u-channel
-        connect_outgoing(*(it_part+1), colour, anti_colour, ran);
         connect_outgoing(*it_part, colour, anti_colour, ran);
+        connect_outgoing(*it_first, colour, anti_colour, ran);
       }
-      ++it_part;
     }
   }
 
   bool Event::generate_colours(RNG & ran){
     // generate only for HEJ events
     if(!event_type::is_resummable(type()))
       return false;
     assert(std::is_sorted(
       begin(outgoing()), end(outgoing()), rapidity_less{}));
     assert(incoming()[0].pz() < incoming()[1].pz());
 
     // positive (anti-)colour -> can connect
     // negative (anti-)colour -> not available/used up by (anti-)quark
     int colour = COLOUR_OFFSET;
     int anti_colour = colour+1;
     // initialise first
     connect_incoming(incoming_[0], colour, anti_colour);
 
-    for(auto it_part = outgoing_.begin(); it_part<outgoing_.end(); ++it_part){
+    // reset outgoing colours
+    std::for_each(outgoing_.begin(), outgoing_.end(),
+      [](Particle & part){ part.colour = {};});
+
+    for(auto it_part = begin_partons(); it_part!=end_partons(); ++it_part){
         switch (type()) {
         // subleading can connect to t- or u-channel
         case event_type::unob:
         case event_type::qqxexb: {
-          if( std::distance(outgoing_.begin(), it_part)==0)
+          if( std::distance(begin_partons(), it_part)==0)
             connect_utchannel(it_part, colour, anti_colour, ran);
           else
             connect_outgoing(*it_part, colour, anti_colour, ran);
           break;
         }
         case event_type::unof:
         case event_type::qqxexf: {
-          if( std::distance(it_part, outgoing_.end())==2)
+          if( std::distance(it_part, end_partons())==2)
             connect_utchannel(it_part, colour, anti_colour, ran);
           else
             connect_outgoing(*it_part, colour, anti_colour, ran);
           break;
         }
         case event_type::qqxmid:{
-          if( std::distance(outgoing_.begin(), it_part)>0
-              && std::distance(it_part, outgoing_.end())>2
-              && ( (is_quark(*it_part) && is_antiquark(*(it_part+1)))
-                || (is_antiquark(*it_part) && is_quark(*(it_part+1))) )
+          auto it_next = it_part;
+          ++it_next;
+          if( std::distance(begin_partons(), it_part)>0
+              && std::distance(it_part, end_partons())>2
+              && ( (is_quark(*it_part) && is_antiquark(*it_next))
+                || (is_antiquark(*it_part) && is_quark(*it_next)) )
           )
             connect_utchannel(it_part, colour, anti_colour, ran);
           else
             connect_outgoing(*it_part, colour, anti_colour, ran);
           break;
         }
         default: // rest has to be t-channel
           connect_outgoing(*it_part, colour, anti_colour, ran);
         }
     }
     // Connect last
     connect_incoming(incoming_[1], anti_colour, colour);
     assert(is_leading_colour());
     return true;
   } // generate_colours
 
   namespace {
     bool valid_parton(
       std::vector<fastjet::PseudoJet> const & jets,
       Particle const & parton, int const idx,
       double const max_ext_soft_pt_fraction, double const min_extparton_pt
     ){
       // TODO code overlap with PhaseSpacePoint::pass_extremal_cuts
       if(min_extparton_pt > parton.pt()) return false;
       if(idx<0) return false;
       assert(static_cast<int>(jets.size())>=idx);
       auto const & jet{ jets[idx] };
       if( (parton.p - jet).pt()/jet.pt() > max_ext_soft_pt_fraction)
         return false;
       return true;
     }
   }
 
   // this should work with multiple types
   bool Event::valid_hej_state(double const max_frac,
                               double const min_pt
   ) const {
     using namespace event_type;
     if(!is_resummable(type()))
       return false;
 
     auto const & jet_idx{ particle_jet_indices() };
     auto idx_begin{ jet_idx.cbegin() };
     auto idx_end{  jet_idx.crbegin() };
 
     auto part_begin{ cbegin_partons() };
     auto part_end{  crbegin_partons() };
 
     // always seperate extremal jets
     if( !valid_parton(jets(), *part_begin, *idx_begin, max_frac, min_pt) )
       return false;
     ++part_begin;
     ++idx_begin;
     if( !valid_parton(jets(), *part_end,   *idx_end,   max_frac, min_pt) )
       return false;
     ++part_end;
     ++idx_end;
 
     // unob -> second parton in own jet
     if( type() & (unob | qqxexb) ){
       if( !valid_parton(jets(), *part_begin, *idx_begin, max_frac, min_pt) )
         return false;
       ++part_begin;
       ++idx_begin;
     }
 
     if( type() & (unof | qqxexf) ){
       if( !valid_parton(jets(), *part_end,   *idx_end,   max_frac, min_pt) )
         return false;
       ++part_end;
       ++idx_end;
     }
 
     if( type() & qqxmid ){
       // find qqx pair
       auto begin_qqx{ std::find_if( part_begin, part_end.base(),
         [](Particle const & part) -> bool {
           return part.type != ParticleID::gluon;
         }
       )};
       assert(begin_qqx != part_end.base());
       long int qqx_pos{ std::distance(part_begin, begin_qqx) };
       assert(qqx_pos >= 0);
       idx_begin+=qqx_pos;
       if( !( valid_parton(jets(),*begin_qqx,    *idx_begin,    max_frac,min_pt)
           && valid_parton(jets(),*(++begin_qqx),*(++idx_begin),max_frac,min_pt)
       ))
         return false;
     }
     return true;
   }
 
   Event::ConstPartonIterator Event::begin_partons() const {
     return cbegin_partons();
   }
   Event::ConstPartonIterator Event::cbegin_partons() const {
     return boost::make_filter_iterator(
         static_cast<bool (*)(Particle const &)>(is_parton),
         cbegin(outgoing()),
         cend(outgoing())
     );
   }
 
   Event::ConstPartonIterator Event::end_partons() const {
     return cend_partons();
   }
   Event::ConstPartonIterator Event::cend_partons() const {
     return boost::make_filter_iterator(
         static_cast<bool (*)(Particle const &)>(is_parton),
         cend(outgoing()),
         cend(outgoing())
     );
   }
 
   Event::ConstReversePartonIterator Event::rbegin_partons() const {
     return crbegin_partons();
   }
   Event::ConstReversePartonIterator Event::crbegin_partons() const {
     return std::reverse_iterator<ConstPartonIterator>( cend_partons() );
   }
 
   Event::ConstReversePartonIterator Event::rend_partons() const {
     return crend_partons();
   }
   Event::ConstReversePartonIterator Event::crend_partons() const {
     return std::reverse_iterator<ConstPartonIterator>( cbegin_partons() );
   }
 
+  Event::PartonIterator Event::begin_partons() {
+    return boost::make_filter_iterator(
+        static_cast<bool (*)(Particle const &)>(is_parton),
+        begin(outgoing_),
+        end(outgoing_)
+    );
+  }
+
+  Event::PartonIterator Event::end_partons() {
+    return boost::make_filter_iterator(
+        static_cast<bool (*)(Particle const &)>(is_parton),
+        end(outgoing_),
+        end(outgoing_)
+    );
+  }
+
+  Event::ReversePartonIterator Event::rbegin_partons() {
+    return std::reverse_iterator<PartonIterator>( end_partons() );
+  }
+
+  Event::ReversePartonIterator Event::rend_partons() {
+    return std::reverse_iterator<PartonIterator>( begin_partons() );
+  }
+
   namespace {
     void print_momentum(std::ostream & os, fastjet::PseudoJet const & part){
     const std::streamsize orig_prec = os.precision();
       os <<std::scientific<<std::setprecision(6) << "["
         <<std::setw(13)<<std::right<< part.px() << ", "
         <<std::setw(13)<<std::right<< part.py() << ", "
         <<std::setw(13)<<std::right<< part.pz() << ", "
         <<std::setw(13)<<std::right<< part.E() << "]"<< std::fixed;
       os.precision(orig_prec);
     }
 
     void print_colour(std::ostream & os, optional<Colour> const & col){
       if(!col)
         os << "(no color)"; // American spelling for better alignment
       else
         os << "(" <<std::setw(3)<<std::right<< col->first
            << ", " <<std::setw(3)<<std::right<< col->second << ")";
     }
   }
 
   std::ostream& operator<<(std::ostream & os, Event const & ev){
     const std::streamsize orig_prec = os.precision();
     os <<std::setprecision(4)<<std::fixed;
     os << "########## " << event_type::name(ev.type()) << " ##########" << std::endl;
     os << "Incoming particles:\n";
     for(auto const & in: ev.incoming()){
       os <<std::setw(3)<< in.type << ": ";
       print_colour(os, in.colour);
       os << " ";
       print_momentum(os, in.p);
       os << std::endl;
     }
     os << "\nOutgoing particles: " << ev.outgoing().size() << "\n";
     for(auto const & out: ev.outgoing()){
       os <<std::setw(3)<< out.type << ": ";
       print_colour(os, out.colour);
       os << " ";
       print_momentum(os, out.p);
       os << " => rapidity="
         <<std::setw(7)<<std::right<< out.rapidity() << std::endl;
     }
     os << "\nForming Jets: " << ev.jets().size() << "\n";
     for(auto const & jet: ev.jets()){
       print_momentum(os, jet);
       os << " => rapidity="
         <<std::setw(7)<<std::right<< jet.rapidity() << std::endl;
     }
     if(ev.decays().size() > 0 ){
       os << "\nDecays: " << ev.decays().size() << "\n";
       for(auto const & decay: ev.decays()){
         os <<std::setw(3)<< ev.outgoing()[decay.first].type
           << " (" << decay.first << ") to:\n";
         for(auto const & out: decay.second){
           os <<"  "<<std::setw(3)<< out.type << ": ";
           print_momentum(os, out.p);
           os << " => rapidity="
             <<std::setw(7)<<std::right<< out.rapidity() << std::endl;
         }
       }
 
     }
     os << std::defaultfloat;
     os.precision(orig_prec);
     return os;
   }
 
   double shat(Event const & ev){
     return (ev.incoming()[0].p + ev.incoming()[1].p).m2();
   }
 
   LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP * heprup){
     LHEF::HEPEUP result;
     result.heprup = heprup;
     result.weights = {{event.central().weight, nullptr}};
     for(auto const & var: event.variations()){
       result.weights.emplace_back(var.weight, nullptr);
     }
     size_t num_particles = event.incoming().size() + event.outgoing().size();
     for(auto const & decay: event.decays()) num_particles += decay.second.size();
     result.NUP = num_particles;
     // the following entries are pretty much meaningless
     result.IDPRUP = event.type();  // event type
     result.AQEDUP = 1./128.;  // alpha_EW
     //result.AQCDUP = 0.118 // alpha_QCD
     // end meaningless part
     result.XWGTUP = event.central().weight;
     result.SCALUP = event.central().muf;
     result.scales.muf = event.central().muf;
     result.scales.mur = event.central().mur;
     result.scales.SCALUP = event.central().muf;
     result.pdfinfo.p1 = event.incoming().front().type;
     result.pdfinfo.p2 = event.incoming().back().type;
     result.pdfinfo.scale = event.central().muf;
 
     result.IDUP.reserve(num_particles);   // PID
     result.ISTUP.reserve(num_particles);  // status (in, out, decay)
     result.PUP.reserve(num_particles);    // momentum
     result.MOTHUP.reserve(num_particles); // index mother particle
     result.ICOLUP.reserve(num_particles); // colour
     // incoming
     std::array<Particle, 2> incoming{ event.incoming() };
     // First incoming should be positive pz according to LHE standard
     // (or at least most (everyone?) do it this way, and Pythia assumes it)
     if(incoming[0].pz() < incoming[1].pz())
       std::swap(incoming[0], incoming[1]);
     for(Particle const & in: incoming){
       result.IDUP.emplace_back(in.type);
       result.ISTUP.emplace_back(status_in);
       result.PUP.push_back({in.p[0], in.p[1], in.p[2], in.p[3], in.p.m()});
       result.MOTHUP.emplace_back(0, 0);
       assert(in.colour);
       result.ICOLUP.emplace_back(*in.colour);
     }
     // outgoing
     for(size_t i = 0; i < event.outgoing().size(); ++i){
       Particle const & out = event.outgoing()[i];
       result.IDUP.emplace_back(out.type);
       const int status = event.decays().count(i)?status_decayed:status_out;
       result.ISTUP.emplace_back(status);
       result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
       result.MOTHUP.emplace_back(1, 2);
       if(out.colour)
         result.ICOLUP.emplace_back(*out.colour);
       else{
         result.ICOLUP.emplace_back(std::make_pair(0,0));
       }
     }
     // decays
     for(auto const & decay: event.decays()){
       for(auto const & out: decay.second){
         result.IDUP.emplace_back(out.type);
         result.ISTUP.emplace_back(status_out);
         result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
         const size_t mother_idx = 1 + event.incoming().size() + decay.first;
         result.MOTHUP.emplace_back(mother_idx, mother_idx);
         result.ICOLUP.emplace_back(0,0);
       }
     }
 
     assert(result.ICOLUP.size() == num_particles);
     static constexpr double unknown_spin = 9.;     //per Les Houches accord
     result.VTIMUP = std::vector<double>(num_particles, unknown_spin);
     result.SPINUP = result.VTIMUP;
     return result;
   }
 
 }
diff --git a/t/test_colours2.cc b/t/test_colours2.cc
index a06301e..e590a4f 100644
--- a/t/test_colours2.cc
+++ b/t/test_colours2.cc
@@ -1,200 +1,236 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2020
  *  \copyright GPLv2 or later
  */
 #include <array>
 #include <stdlib.h>
 #include <string>
 #include <vector>
 
 #include "HEJ/Event.hh"
 #include "HEJ/Constants.hh"
 
 #include "hej_test.hh"
 
 namespace {
   const fastjet::JetDefinition jet_def{fastjet::JetAlgorithm::antikt_algorithm, 0.4};
   const double min_jet_pt{30.};
 
   struct colour_flow {
     std::array<std::string,2> incoming;
     std::vector<std::string> outgoing;
     std::string colour;
 
     HEJ::Event to_event(){
       using namespace HEJ;
-      ASSERT(colour.front()=='a' && colour.back()=='a'); // only closed loops
-
       auto event = parse_configuration(incoming, outgoing);
+      if(colour.size()==0)
+        return event.cluster(jet_def,min_jet_pt);
+
+      ASSERT(colour.front()=='a' && colour.back()=='a'); // only closed loops
       event.sort();
 
       // fill colours with dummy value
       for(auto & p: event.incoming)
         p.colour = Colour{-1, -1};
       for(auto & p: event.outgoing)
         p.colour = Colour{-1, -1};
 
       int current_colour = COLOUR_OFFSET;
       int backup_colour = current_colour;
       Particle* last_part = &event.incoming.front();
       // loop connections
       for(auto const & entry: colour){
         if(entry == '_'){ // '_' -> skip connection
           backup_colour = current_colour;
           current_colour = 0;
           continue;
         }
         auto & part = get_particle(event, entry);
         part.colour->first = last_part->colour->second = current_colour;
 
         current_colour = ++backup_colour;
         last_part = &part;
       }
 
       for(auto & in: event.incoming)
         std::swap(in.colour->first, in.colour->second);
       // reset untouched colours
       for(auto & out: event.outgoing)
         if(out.colour->first == -1 &&  out.colour->second ==-1)
           out.colour = {};
 
       shuffle_particles(event);
       return event.cluster(jet_def,min_jet_pt);
     }
   private:
     HEJ::Particle & get_particle(
         HEJ::Event::EventData & event, char const name
     ){
       if(name == 'a')
         return event.incoming[0];
       if(name == 'b')
         return event.incoming[1];
       size_t idx = name-'0';
       ASSERT(idx<event.outgoing.size());
       return event.outgoing[idx];
     }
   };
 
   const colour_flow FKL_ggg{{"g","g"},{"g","g","g"},{}};
   const colour_flow FKL_qgq{{"1","2"},{"1","g","2"},{}};
   const colour_flow FKL_qxgqx{{"-1","-2"},{"-1","g","-2"},{}};
   const colour_flow FKL_qhgq{{"1","2"},{"1","h","g","2"},{}};
+
   const colour_flow uno_gqgq{{"1","2"},{"g","1","g","2"},{}};
   const colour_flow uno_qgqg{{"1","2"},{"1","g","2","g"},{}};
+  const colour_flow uno_Wgqq{{"2","2"},{"W+","g","1","2"},{}};
+  const colour_flow uno_gWqq{{"2","2"},{"g","W+","1","2"},{}};
+  const colour_flow uno_gqWq{{"2","2"},{"g","1","W+","2"},{}};
+  const colour_flow uno_qWqg{{"2","2"},{"1","W+","2","g"},{}};
+  const colour_flow uno_qqWg{{"2","2"},{"1","2","W+","g"},{}};
+  const colour_flow uno_qqgW{{"2","2"},{"1","2","g","W+"},{}};
+
   const colour_flow qqx_qxqgq{{"g","2"},{"-1","1","g","2"},{}};
   const colour_flow qqx_qgqqx{{"1","g"},{"1","g","2","-2"},{}};
   const colour_flow qqx_qgqxq{{"1","g"},{"1","g","-2","2"},{}};
+  const colour_flow qqx_Wqxqq{{"g","2"},{"W+","-2","1","2"},{}};
+  const colour_flow qqx_qxWqq{{"g","2"},{"-2","W+","1","2"},{}};
+  const colour_flow qqx_qxqWq{{"g","2"},{"-2","1","W+","2"},{}};
+  const colour_flow qqx_qWqqx{{"2","g"},{"1","W+","2","-2"},{}};
+  const colour_flow qqx_qqWqx{{"2","g"},{"1","2","W+","-2"},{}};
+  const colour_flow qqx_qqqxW{{"2","g"},{"1","2","-2","W+"},{}};
+
   const colour_flow qqx_gqqxq{{"g","2"},{"g","3","-3","2"},{}};
   const colour_flow qqx_qqxqg{{"1","g"},{"1","-3","3","g"},{}};
   const colour_flow qqx_qqxqqx{{"1","-1"},{"1","-1","1","-1"},{}};
+  const colour_flow qqx_qWqxqqx{{"2","-1"},{"1","W+","-1","1","-1"},{}};
+  const colour_flow qqx_qqxWqqx{{"2","-1"},{"1","-1","W+","1","-1"},{}};
+  const colour_flow qqx_qqxqWqx{{"2","-1"},{"1","-1","1","W+","-1"},{}};
 
   void verify_colour(colour_flow configuration, std::string line,
       bool const expectation = true
   ){
     configuration.colour = std::move(line);
     auto const event = configuration.to_event();
     if(event.is_leading_colour() != expectation){
       std::cerr << "Expected "<< (expectation?"":"non-") <<"leading colour\n"
         << event
         << "\nwith connection: " << configuration.colour << "\n";
       throw std::logic_error("Colour verification failed");
     }
   }
 
   void all_colours_possible(
       colour_flow momenta, std::vector<std::string> allowed
   ){
-    std::vector<HEJ::Event> possible_connections;
+    std::vector<HEJ::Event> possible;
     for(auto & line: allowed){
       momenta.colour = std::move(line);
-      possible_connections.push_back(momenta.to_event());
-      if(!possible_connections.back().is_leading_colour()){
+      possible.push_back(momenta.to_event());
+      if(!possible.back().is_leading_colour()){
         std::cerr << "Expected leading colour\n"
-          << possible_connections.back()
+          << possible.back()
           << "\nwith connection: " << momenta.colour << "\n";
         throw std::logic_error("Colour verification failed");
       }
     }
 
   }
 }
 
 int main() {
   // FKL
   all_colours_possible(FKL_ggg,   {"a012ba","a01b2a","a02b1a","a0b21a",
                                    "a12b0a","a1b20a","a2b10a","ab210a"});
   all_colours_possible(FKL_qgq,   {"a12_b0_a", "a2_b10_a"});
   all_colours_possible(FKL_qxgqx, {"a_01b_2a", "a_0b_21a"});
   all_colours_possible(FKL_qhgq,  {"a23_b0_a", "a3_b20_a"});
   // uno
   all_colours_possible(uno_gqgq, {"a023_b1_a","a03_b21_a",
                                   "a23_b01_a","a3_b201_a"}); // u-channel
   all_colours_possible(uno_qgqg, {"a12_b30_a","a2_b310_a",
                                   "a132_b0_a","a32_b10_a"}); // u-channel
+  all_colours_possible(uno_Wgqq, {"a13_b2_a","a3_b12_a"});
+  all_colours_possible(uno_gWqq, {"a03_b2_a","a3_b02_a"});
+  all_colours_possible(uno_gqWq, {"a03_b1_a","a3_b01_a"});
+  all_colours_possible(uno_qWqg, {"a2_b30_a","a32_b0_a"});
+  all_colours_possible(uno_qqWg, {"a1_b30_a","a31_b0_a"});
+  all_colours_possible(uno_qqgW, {"a1_b20_a","a21_b0_a"});
+
   // extremal qqx
   all_colours_possible(qqx_qgqqx, {"a12_3b0_a","a2_3b10_a",
                                    "a1b2_30_a","ab2_310_a"}); // u-channel
   all_colours_possible(qqx_qgqxq, {"a1b3_20_a", "ab3_210_a",
                                    "a13_2b0_a","a3_2b10_a"}); // u-channel
   all_colours_possible(qqx_qxqgq, {"a23_b1_0a","a3_b21_0a",
                                   "a1_023_ba","a1_03_b2a"}); // u-channel
+  all_colours_possible(qqx_Wqxqq, {"a3_b2_1a","a2_13_ba"});
+  all_colours_possible(qqx_qxWqq, {"a3_b2_0a","a2_03_ba"});
+  all_colours_possible(qqx_qxqWq, {"a3_b1_0a","a1_03_ba"});
+  all_colours_possible(qqx_qWqqx, {"a2_3b0_a","ab2_30_a"});
+  all_colours_possible(qqx_qqWqx, {"a1_3b0_a","ab1_30_a"});
+  all_colours_possible(qqx_qqqxW, {"a1_2b0_a","ab1_20_a"});
+
   // central qqx
   all_colours_possible(qqx_gqqxq, {"a01_23_ba","a1_23_b0a",
                                    "a03_b1_2a","a3_b1_20a"}); // u-channel
   all_colours_possible(qqx_qqxqg, {"a3b2_10_a","ab32_10_a",
                                    "a2_13b0_a","a2_1b30_a"}); // u-channel
-  all_colours_possible(qqx_qqxqqx, {"ab_32_10_a",
-                                    "a2_1b_30_a"}); // u-channel
+  all_colours_possible(qqx_qqxqqx, {"ab_32_10_a","a2_1b_30_a"});
+  all_colours_possible(qqx_qWqxqqx, {"ab_43_20_a","a3_2b_40_a"});
+  all_colours_possible(qqx_qqxWqqx, {"ab_43_10_a","a3_1b_40_a"});
+  all_colours_possible(qqx_qqxqWqx, {"ab_42_10_a","a2_1b_40_a"});
 
   // forbidden
   // crossed FKL
   verify_colour(FKL_ggg, "a021ba",false);
   verify_colour(FKL_ggg, "a0b12a",false);
   verify_colour(FKL_ggg, "a10b2a",false);
   verify_colour(FKL_ggg, "a1b02a",false);
   verify_colour(FKL_ggg, "a20b1a",false);
   verify_colour(FKL_ggg, "a21b0a",false);
   verify_colour(FKL_ggg, "a2b01a",false);
   verify_colour(FKL_ggg, "ab120a",false);
   // quark with anti-colour
   verify_colour(FKL_qgq, "a_01b_2a",false);
   verify_colour(FKL_qgq, "a_0b_21a",false);
   verify_colour(FKL_qxgqx, "a12_b0_a",false);
   verify_colour(FKL_qxgqx, "a2_b10_a",false);
   // higgs with colour
   verify_colour(FKL_qhgq, "a123_b0_a",false);
   verify_colour(FKL_qhgq, "a3_1_b20_a",false);
   verify_colour(FKL_qhgq, "a3_11_b20_a",false);
   // not-connected
   verify_colour(FKL_ggg, "a012a",false);
   verify_colour(FKL_ggg, "a012aa",false);
   verify_colour(FKL_ggg, "a01ba",false);
   verify_colour(FKL_ggg, "a0b2a",false);
   verify_colour(FKL_ggg, "a_01b2a",false);
   verify_colour(FKL_ggg, "a01_b2a",false);
   verify_colour(FKL_ggg, "a0b_12a",false);
   verify_colour(FKL_ggg, "a012b_a",false);
   verify_colour(uno_gqgq, "a_1023_ba",false);
   // uno
   verify_colour(uno_gqgq, "a203_b1_a",false);
   verify_colour(uno_qgqg, "a312_b0_a",false);
   // extremal qqx
   verify_colour(qqx_qgqqx, "a10_3b2_a",false);
   verify_colour(qqx_qgqqx, "a2_31b0_a",false);
   verify_colour(qqx_qgqqx, "a2_31b0_a",false);
   verify_colour(qqx_qgqxq, "ab13_20_a",false);
   verify_colour(qqx_qxqgq, "a3_b1_02a",false);
   verify_colour(qqx_qxqgq, "a21_b3_0a",false);
   // central qqx
   verify_colour(qqx_gqqxq, "a1_203_ba",false);
   verify_colour(qqx_gqqxq, "a3_21_b0a",false);
   verify_colour(qqx_qqxqg, "ab2_130_a",false);
   verify_colour(qqx_qqxqg, "a3b0_12_a",false);
   verify_colour(qqx_qqxqqx, "a0_1b_32_a",false);
   verify_colour(qqx_qqxqqx, "a0_3b_12_a",false);
   verify_colour(qqx_qqxqqx, "a2_3b_10_a",false);
   verify_colour(qqx_qqxqqx, "ab_12_30_a",false);
 
   return EXIT_SUCCESS;
 }