diff --git a/FixedOrderGen/src/PhaseSpacePoint.cc b/FixedOrderGen/src/PhaseSpacePoint.cc index 4ee90cd..ca0009a 100644 --- a/FixedOrderGen/src/PhaseSpacePoint.cc +++ b/FixedOrderGen/src/PhaseSpacePoint.cc @@ -1,461 +1,461 @@ #include "PhaseSpacePoint.hh" #include #include #include #include "HEJ/exceptions.hh" #include "HEJ/kinematics.hh" #include "HEJ/Particle.hh" #include "HEJ/utility.hh" #include "Process.hh" #include "Subleading.hh" using namespace HEJ; namespace HEJFOG{ static_assert( std::numeric_limits::has_quiet_NaN, "no quiet NaN for double" ); constexpr double NaN = std::numeric_limits::quiet_NaN(); HEJ::UnclusteredEvent to_UnclusteredEvent(PhaseSpacePoint const & psp){ HEJ::UnclusteredEvent result; result.incoming = psp.incoming(); std::sort( begin(result.incoming), end(result.incoming), [](Particle o1, Particle o2){return o1.p.pz()= 2); result.decays = psp.decays(); result.central.mur = NaN; result.central.muf = NaN; result.central.weight = psp.weight(); return result; } namespace{ bool can_swap_to_uno( HEJ::Particle const & p1, HEJ::Particle const & p2 ){ return is_parton(p1) && p1.type != HEJ::pid::gluon && p2.type == HEJ::pid::gluon; } } void PhaseSpacePoint::maybe_turn_to_uno( double chance, HEJ::RNG & ran ){ assert(outgoing_.size() >= 2); const size_t nout = outgoing_.size(); const bool can_be_uno_backward = can_swap_to_uno( outgoing_[0], outgoing_[1] ); const bool can_be_uno_forward = can_swap_to_uno( outgoing_[nout-1], outgoing_[nout-2] ); if(!can_be_uno_backward && !can_be_uno_forward) return; if(ran.flat() < chance){ weight_ /= chance; if(can_be_uno_backward && can_be_uno_forward){ if(ran.flat() < 0.5){ std::swap(outgoing_[0].type, outgoing_[1].type); } else{ std::swap(outgoing_[nout-1].type, outgoing_[nout-2].type); } weight_ *= 2.; } else if(can_be_uno_backward){ std::swap(outgoing_[0].type, outgoing_[1].type); } else{ assert(can_be_uno_forward); std::swap(outgoing_[nout-1].type, outgoing_[nout-2].type); } } else weight_ /= 1 - chance; } template fastjet::PseudoJet PhaseSpacePoint::gen_last_momentum( ParticleMomenta const & other_momenta, const double mass_square, const double y ) const { std::array pt{0.,0.}; for (auto const & p: other_momenta) { pt[0]-= p.px(); pt[1]-= p.py(); } const double mperp = sqrt(pt[0]*pt[0]+pt[1]*pt[1]+mass_square); const double pz=mperp*sinh(y); const double E=mperp*cosh(y); return {pt[0], pt[1], pz, E}; } PhaseSpacePoint::PhaseSpacePoint( Process const & proc, JetParameters const & jet_param, HEJ::PDF & pdf, double E_beam, double subl_change, unsigned int subl_channels, ParticlesPropMap const & particles_properties, HEJ::RNG & ran ) { assert(proc.njets >= 2); if(proc.boson && particles_properties.find(*(proc.boson)) == particles_properties.end()) throw HEJ::missing_option("Boson " +std::to_string(*(proc.boson))+" can't be generated: missing properties"); status_ = good; weight_ = 1; const int nout = proc.njets + (proc.boson?1:0); outgoing_.reserve(nout); const bool is_pure_jets = !proc.boson; auto partons = gen_LO_partons( proc.njets, is_pure_jets, jet_param, E_beam, ran ); for(auto&& p_out: partons) { - outgoing_.emplace_back(Particle{pid::gluon, std::move(p_out)}); + outgoing_.emplace_back(Particle{pid::gluon, std::move(p_out), {}}); } if(status_ != good) return; // create boson if(proc.boson){ const auto & boson_prop = particles_properties.at(*proc.boson); auto boson(gen_boson(*proc.boson, boson_prop.mass, boson_prop.width, ran)); const auto pos = std::upper_bound( begin(outgoing_),end(outgoing_),boson,rapidity_less{} ); outgoing_.insert(pos, std::move(boson)); if(! boson_prop.decays.empty()){ const size_t boson_idx = std::distance(begin(outgoing_), pos); decays_.emplace( boson_idx, decay_boson(outgoing_[boson_idx], boson_prop.decays, ran) ); } } // normalisation of momentum-conserving delta function weight_ *= pow(2*M_PI, 4); reconstruct_incoming(proc.incoming, pdf, E_beam, jet_param.min_pt, ran); if(status_ != good) return; // set outgoing states most_backward_FKL(outgoing_).type = incoming_[0].type; most_forward_FKL(outgoing_).type = incoming_[1].type; if(proc.njets > 2 && subl_channels & Subleading::uno) maybe_turn_to_uno(subl_change, ran); } double PhaseSpacePoint::gen_hard_pt( int np , double ptmin, double ptmax, double y, HEJ::RNG & ran ) { // heuristic parameters for pt sampling const double ptpar = ptmin + np/5.; const double arg_small_y = atan((ptmax - ptmin)/ptpar); const double y_cut = 3.; const double r1 = ran.flat(); if(y < y_cut){ const double pt = ptmin + ptpar*tan(r1*arg_small_y); const double temp = cos(r1*arg_small_y); weight_ *= pt*ptpar*arg_small_y/(temp*temp); return pt; } const double ptpar2 = ptpar/(1 + 5*(y-y_cut)); const double temp = 1. - std::exp((ptmin-ptmax)/ptpar2); const double pt = ptmin - ptpar2*std::log(1-r1*temp); weight_ *= pt*ptpar2*temp/(1-r1*temp); return pt; } double PhaseSpacePoint::gen_soft_pt(int np, double max_pt, HEJ::RNG & ran) { constexpr double ptpar = 4.; const double r = ran.flat(); const double pt = max_pt + ptpar/np*std::log(r); weight_ *= pt*ptpar/(np*r); return pt; } double PhaseSpacePoint::gen_parton_pt( int count, JetParameters const & jet_param, double max_pt, double y, HEJ::RNG & ran ) { constexpr double p_small_pt = 0.02; if(! jet_param.peak_pt) { return gen_hard_pt(count, jet_param.min_pt, max_pt, y, ran); } const double r = ran.flat(); if(r > p_small_pt) { weight_ /= 1. - p_small_pt; return gen_hard_pt(count, *jet_param.peak_pt, max_pt, y, ran); } weight_ /= p_small_pt; const double pt = gen_soft_pt(count, *jet_param.peak_pt, ran); if(pt < jet_param.min_pt) { weight_=0.0; status_ = not_enough_jets; return jet_param.min_pt; } return pt; } std::vector PhaseSpacePoint::gen_LO_partons( int np, bool is_pure_jets, JetParameters const & jet_param, double max_pt, HEJ::RNG & ran ){ if (np<2) throw std::invalid_argument{"Not enough partons in gen_LO_partons"}; weight_ /= pow(16.*pow(M_PI,3),np); weight_ /= std::tgamma(np+1); //remove rapidity ordering std::vector partons; partons.reserve(np); for(int i = 0; i < np; ++i){ const double y = -jet_param.max_y + 2*jet_param.max_y*ran.flat(); weight_ *= 2*jet_param.max_y; const bool is_last_parton = i+1 == np; if(is_pure_jets && is_last_parton) { constexpr double parton_mass_sq = 0.; partons.emplace_back(gen_last_momentum(partons, parton_mass_sq, y)); break; } const double phi = 2*M_PI*ran.flat(); weight_ *= 2.0*M_PI; const double pt = gen_parton_pt(np, jet_param, max_pt, y, ran); if(weight_ == 0.0) return {}; partons.emplace_back(fastjet::PtYPhiM(pt, y, phi)); assert(jet_param.min_pt <= partons[i].pt()); assert(partons[i].pt() <= max_pt+1e-5); } // Need to check that at LO, the number of jets = number of partons; fastjet::ClusterSequence cs(partons, jet_param.def); auto cluster_jets=cs.inclusive_jets(jet_param.min_pt); if (cluster_jets.size()!=unsigned(np)){ weight_=0.0; status_ = not_enough_jets; return {}; } std::sort(begin(partons), end(partons), rapidity_less{}); return partons; } Particle PhaseSpacePoint::gen_boson( HEJ::ParticleID bosonid, double mass, double width, HEJ::RNG & ran ){ if(bosonid != HEJ::pid::Higgs) throw HEJ::not_implemented("Production of boson "+std::to_string(bosonid) +" not implemented yet."); // Usual phase space measure weight_ /= 16.*pow(M_PI, 3); // Generate a y Gaussian distributed around 0 // TODO: magic number only for Higgs const double y = random_normal(1.6, ran); const double r1 = ran.flat(); const double sH = mass*( mass + width*tan(M_PI/2.*r1 + (r1-1.)*atan(mass/width)) ); auto p = gen_last_momentum(outgoing_, sH, y); - return Particle{bosonid, std::move(p)}; + return Particle{bosonid, std::move(p), {}}; } Particle const & PhaseSpacePoint::most_backward_FKL( std::vector const & partons ) const{ if(!HEJ::is_parton(partons[0])) return partons[1]; return partons[0]; } Particle const & PhaseSpacePoint::most_forward_FKL( std::vector const & partons ) const{ const size_t last_idx = partons.size() - 1; if(!HEJ::is_parton(partons[last_idx])) return partons[last_idx-1]; return partons[last_idx]; } Particle & PhaseSpacePoint::most_backward_FKL( std::vector & partons ) const{ if(!HEJ::is_parton(partons[0])) return partons[1]; return partons[0]; } Particle & PhaseSpacePoint::most_forward_FKL( std::vector & partons ) const{ const size_t last_idx = partons.size() - 1; if(!HEJ::is_parton(partons[last_idx])) return partons[last_idx-1]; return partons[last_idx]; } void PhaseSpacePoint::reconstruct_incoming( std::array const & ids, HEJ::PDF & pdf, double E_beam, double uf, HEJ::RNG & ran ){ std::tie(incoming_[0].p, incoming_[1].p) = incoming_momenta(outgoing_); // calculate xa, xb const double sqrts=2*E_beam; const double xa=(incoming_[0].p.e()-incoming_[0].p.pz())/sqrts; const double xb=(incoming_[1].p.e()+incoming_[1].p.pz())/sqrts; // abort if phase space point is outside of collider energy reach if (xa>1. || xb>1.){ weight_=0; status_ = too_much_energy; return; } // pick pdfs /** @TODO: * ufa, ufb don't correspond to our final scale choice. * The HEJ scale generators currently expect a full event as input, * so fixing this is not completely trivial */ for(size_t i = 0; i < 2; ++i){ if(ids[i] == pid::proton || ids[i] == pid::p_bar){ incoming_[i].type = generate_incoming_id(i, i?xb:xa, uf, pdf, ran); } else { incoming_[i].type = ids[i]; } } assert(momentum_conserved(1e-7)); } namespace { /// particles are ordered, odd = anti ParticleID index_to_pid(size_t i){ if(!i) return pid::gluon; return static_cast(i%2?(i+1)/2:-i/2); } } HEJ::ParticleID PhaseSpacePoint::generate_incoming_id( size_t const beam_idx, double const x, double const uf, HEJ::PDF & pdf, HEJ::RNG & ran ){ std::array pdf_wt; pdf_wt[0] = fabs(pdf.pdfpt(beam_idx,x,uf,pid::gluon)); double pdftot = pdf_wt[0]; for(size_t i = 1; i < pdf_wt.size(); ++i){ pdf_wt[i] = 4./9.*fabs(pdf.pdfpt(beam_idx,x,uf,index_to_pid(i))); pdftot += pdf_wt[i]; } const double r1 = pdftot * ran.flat(); double sum = 0; for(size_t i=0; i < pdf_wt.size(); ++i){ if (r1 < (sum+=pdf_wt[i])){ weight_*= pdftot/pdf_wt[i]; return index_to_pid(i); } } std::cerr << "Error in choosing incoming parton: "< const & decays, HEJ::RNG & ran ){ double br_total = 0.; for(auto const & decay: decays) br_total += decay.branching_ratio; // adjust weight // this is given by (channel branching ratio)/(chance to pick channel) // where (chance to pick channel) = // (channel branching ratio)/(total branching ratio) weight_ *= br_total; const double r1 = br_total*ran.flat(); double br_sum = 0.; for(auto const & decay: decays){ br_sum += decay.branching_ratio; if(r1 < br_sum) return decay; } throw std::logic_error{"unreachable"}; } std::vector PhaseSpacePoint::decay_boson( HEJ::Particle const & parent, std::vector const & decays, HEJ::RNG & ran ){ const auto channel = select_decay_channel(decays, ran); if(channel.products.size() != 2){ throw HEJ::not_implemented{ "only decays into two particles are implemented" }; } std::vector decay_products(channel.products.size()); for(size_t i = 0; i < channel.products.size(); ++i){ decay_products[i].type = channel.products[i]; } // choose polar and azimuth angle in parent rest frame const double E = parent.m()/2; const double theta = 2.*M_PI*ran.flat(); const double cos_phi = 2.*ran.flat()-1.; const double sin_phi = sqrt(1. - cos_phi*cos_phi); // Know 0 < phi < pi const double px = E*cos(theta)*sin_phi; const double py = E*sin(theta)*sin_phi; const double pz = E*cos_phi; decay_products[0].p.reset(px, py, pz, E); decay_products[1].p.reset(-px, -py, -pz, E); for(auto & particle: decay_products) particle.p.boost(parent.p); return decay_products; } } diff --git a/src/PhaseSpacePoint.cc b/src/PhaseSpacePoint.cc index ea70503..db08408 100644 --- a/src/PhaseSpacePoint.cc +++ b/src/PhaseSpacePoint.cc @@ -1,548 +1,548 @@ /** * \authors Jeppe Andersen, Tuomas Hapola, Marian Heil, Andreas Maier, Jennifer Smillie * \date 2019 * \copyright GPLv2 or later */ #include "HEJ/PhaseSpacePoint.hh" #include #include #include #include #include "fastjet/ClusterSequence.hh" #include "HEJ/Constants.hh" #include "HEJ/Event.hh" #include "HEJ/JetSplitter.hh" #include "HEJ/kinematics.hh" #include "HEJ/resummation_jet.hh" #include "HEJ/utility.hh" #include "HEJ/PDG_codes.hh" #include "HEJ/event_types.hh" namespace HEJ{ namespace { constexpr int max_jet_user_idx = PhaseSpacePoint::ng_max; bool is_nonjet_parton(fastjet::PseudoJet const & parton){ assert(parton.user_index() != -1); return parton.user_index() > max_jet_user_idx; } bool is_jet_parton(fastjet::PseudoJet const & parton){ assert(parton.user_index() != -1); return parton.user_index() <= max_jet_user_idx; } // user indices for partons with extremal rapidity constexpr int unob_idx = -5; constexpr int unof_idx = -4; constexpr int backward_FKL_idx = -3; constexpr int forward_FKL_idx = -2; } namespace { double estimate_ng_mean(std::vector const & Born_jets){ const double delta_y = Born_jets.back().rapidity() - Born_jets.front().rapidity(); assert(delta_y > 0); // Formula derived from fit in arXiv:1805.04446 (see Fig. 2) return 0.975052*delta_y; } } std::vector PhaseSpacePoint::cluster_jets( std::vector const & partons ) const{ fastjet::ClusterSequence cs(partons, param_.jet_param.def); return cs.inclusive_jets(param_.jet_param.min_pt); } bool PhaseSpacePoint::pass_resummation_cuts( std::vector const & jets ) const{ return cluster_jets(jets).size() == jets.size(); } int PhaseSpacePoint::sample_ng(std::vector const & Born_jets){ const double ng_mean = estimate_ng_mean(Born_jets); std::poisson_distribution dist(ng_mean); const int ng = dist(ran_.get()); assert(ng >= 0); assert(ng < ng_max); weight_ *= std::tgamma(ng + 1)*std::exp(ng_mean)*std::pow(ng_mean, -ng); return ng; } void PhaseSpacePoint::copy_AWZH_boson_from(Event const & event){ auto const & from = event.outgoing(); const auto AWZH_boson = std::find_if( begin(from), end(from), [](Particle const & p){ return is_AWZH_boson(p); } ); if(AWZH_boson == end(from)) return; auto insertion_point = std::lower_bound( begin(outgoing_), end(outgoing_), *AWZH_boson, rapidity_less{} ); outgoing_.insert(insertion_point, *AWZH_boson); // copy decay products const int idx = std::distance(begin(from), AWZH_boson); assert(idx >= 0); const auto decay_it = event.decays().find(idx); if(decay_it != end(event.decays())){ const int new_idx = std::distance(begin(outgoing_), insertion_point); assert(new_idx >= 0); assert(outgoing_[new_idx].type == AWZH_boson->type); decays_.emplace(new_idx, decay_it->second); } assert(std::is_sorted(begin(outgoing_), end(outgoing_), rapidity_less{})); } PhaseSpacePoint::PhaseSpacePoint( Event const & ev, PhaseSpacePointConfig conf, HEJ::RNG & ran ): unob_{ev.type() == event_type::unob}, unof_{ev.type() == event_type::unof}, param_{std::move(conf)}, ran_{ran} { weight_ = 1; const auto Born_jets = sorted_by_rapidity(ev.jets()); const int ng = sample_ng(Born_jets); weight_ /= std::tgamma(ng + 1); const int ng_jets = sample_ng_jets(ng, Born_jets); std::vector out_partons = gen_non_jet( ng - ng_jets, CMINPT, param_.jet_param.min_pt ); { const auto qperp = std::accumulate( begin(out_partons), end(out_partons), fastjet::PseudoJet{} ); const auto jets = reshuffle(Born_jets, qperp); if(weight_ == 0.) return; if(! pass_resummation_cuts(jets)){ weight_ = 0.; return; } std::vector jet_partons = split(jets, ng_jets); if(weight_ == 0.) return; rescale_rapidities( out_partons, most_backward_FKL(jet_partons).rapidity(), most_forward_FKL(jet_partons).rapidity() ); if(! cluster_jets(out_partons).empty()){ weight_ = 0.; return; } std::sort(begin(out_partons), end(out_partons), rapidity_less{}); assert( std::is_sorted(begin(jet_partons), end(jet_partons), rapidity_less{}) ); const auto first_jet_parton = out_partons.insert( end(out_partons), begin(jet_partons), end(jet_partons) ); std::inplace_merge( begin(out_partons), first_jet_parton, end(out_partons), rapidity_less{} ); } if(! jets_ok(Born_jets, out_partons)){ weight_ = 0.; return; } weight_ *= phase_space_normalisation(Born_jets.size(), out_partons.size()); outgoing_.reserve(out_partons.size() + 1); // one slot for possible A, W, Z, H for(auto & p: out_partons){ - outgoing_.emplace_back(Particle{pid::gluon, std::move(p)}); + outgoing_.emplace_back(Particle{pid::gluon, std::move(p), {}}); } most_backward_FKL(outgoing_).type = ev.incoming().front().type; most_forward_FKL(outgoing_).type = ev.incoming().back().type; copy_AWZH_boson_from(ev); assert(!outgoing_.empty()); reconstruct_incoming(ev.incoming()); } std::vector PhaseSpacePoint::gen_non_jet( int count, double ptmin, double ptmax ){ // heuristic parameters for pt sampling const double ptpar = 1.3 + count/5.; const double temp1 = atan((ptmax - ptmin)/ptpar); std::vector partons(count); for(size_t i = 0; i < (size_t) count; ++i){ const double r1 = ran_.get().flat(); const double pt = ptmin + ptpar*tan(r1*temp1); const double temp2 = cos(r1*temp1); const double phi = 2*M_PI*ran_.get().flat(); weight_ *= 2.0*M_PI*pt*ptpar*temp1/(temp2*temp2); // we don't know the allowed rapidity span yet, // set a random value to be rescaled later on const double y = ran_.get().flat(); partons[i].reset_PtYPhiM(pt, y, phi); // Set user index higher than any jet-parton index // in order to assert that these are not inside jets partons[i].set_user_index(i + 1 + ng_max); assert(ptmin-1e-5 <= partons[i].pt() && partons[i].pt() <= ptmax+1e-5); } assert(std::all_of(partons.cbegin(), partons.cend(), is_nonjet_parton)); return partons; } void PhaseSpacePoint::rescale_rapidities( std::vector & partons, double ymin, double ymax ){ constexpr double ep = 1e-7; for(auto & parton: partons){ assert(0 <= parton.rapidity() && parton.rapidity() <= 1); const double dy = ymax - ymin - 2*ep; const double y = ymin + ep + dy*parton.rapidity(); parton.reset_momentum_PtYPhiM(parton.pt(), y, parton.phi()); weight_ *= dy; assert(ymin <= parton.rapidity() && parton.rapidity() <= ymax); } } namespace { template auto min(T const & a, T const & b, Rest&&... r) { using std::min; return min(a, min(b, std::forward(r)...)); } } double PhaseSpacePoint::probability_in_jet( std::vector const & Born_jets ) const{ assert(std::is_sorted(begin(Born_jets), end(Born_jets), rapidity_less{})); assert(Born_jets.size() >= 2); const double dy = Born_jets.back().rapidity() - Born_jets.front().rapidity(); const double R = param_.jet_param.def.R(); const int njets = Born_jets.size(); const double p_J_y_large = (njets-1)*R*R/(2.*dy); const double p_J_y0 = njets*R/M_PI; return min(p_J_y_large, p_J_y0, 1.); } int PhaseSpacePoint::sample_ng_jets( int ng, std::vector const & Born_jets ){ const double p_J = probability_in_jet(Born_jets); std::binomial_distribution<> bin_dist(ng, p_J); const int ng_J = bin_dist(ran_.get()); weight_ *= std::pow(p_J, -ng_J)*std::pow(1 - p_J, ng_J - ng); return ng_J; } std::vector PhaseSpacePoint::reshuffle( std::vector const & Born_jets, fastjet::PseudoJet const & q ){ if(q == fastjet::PseudoJet{0, 0, 0, 0}) return Born_jets; const auto jets = resummation_jet_momenta(Born_jets, q); if(jets.empty()){ weight_ = 0; return {}; } // additional Jacobian to ensure Born integration over delta gives 1 weight_ *= resummation_jet_weight(Born_jets, q); return jets; } std::vector PhaseSpacePoint::distribute_jet_partons( int ng_jets, std::vector const & jets ){ size_t first_valid_jet = 0; size_t num_valid_jets = jets.size(); const double R_eff = 5./3.*param_.jet_param.def.R(); // if there is an unordered jet too far away from the FKL jets // then extra gluon constituents of the unordered jet would // violate the FKL rapidity ordering if(unob_ && jets[0].delta_R(jets[1]) > R_eff){ ++first_valid_jet; --num_valid_jets; } else if(unof_ && jets[jets.size()-1].delta_R(jets[jets.size()-2]) > R_eff){ --num_valid_jets; } std::vector np(jets.size(), 1); for(int i = 0; i < ng_jets; ++i){ ++np[first_valid_jet + ran_.get().flat() * num_valid_jets]; } weight_ *= std::pow(num_valid_jets, ng_jets); return np; } #ifndef NDEBUG namespace{ bool tagged_FKL_backward( std::vector const & jet_partons ){ return std::find_if( begin(jet_partons), end(jet_partons), [](fastjet::PseudoJet const & p){ return p.user_index() == backward_FKL_idx; } ) != end(jet_partons); } bool tagged_FKL_forward( std::vector const & jet_partons ){ // the most forward FKL parton is most likely near the end of jet_partons; // start search from there return std::find_if( jet_partons.rbegin(), jet_partons.rend(), [](fastjet::PseudoJet const & p){ return p.user_index() == forward_FKL_idx; } ) != jet_partons.rend(); } bool tagged_FKL_extremal( std::vector const & jet_partons ){ return tagged_FKL_backward(jet_partons) && tagged_FKL_forward(jet_partons); } } // namespace anonymous #endif std::vector PhaseSpacePoint::split( std::vector const & jets, int ng_jets ){ return split(jets, distribute_jet_partons(ng_jets, jets)); } bool PhaseSpacePoint::pass_extremal_cuts( fastjet::PseudoJet const & ext_parton, fastjet::PseudoJet const & jet ) const{ if(ext_parton.pt() < param_.min_extparton_pt) return false; return (ext_parton - jet).pt()/jet.pt() < param_.max_ext_soft_pt_fraction; } std::vector PhaseSpacePoint::split( std::vector const & jets, std::vector const & np ){ assert(! jets.empty()); assert(jets.size() == np.size()); assert(pass_resummation_cuts(jets)); const size_t most_backward_FKL_idx = 0 + unob_; const size_t most_forward_FKL_idx = jets.size() - 1 - unof_; const auto & jet = param_.jet_param; const JetSplitter jet_splitter{jet.def, jet.min_pt, ran_}; std::vector jet_partons; // randomly distribute jet gluons among jets for(size_t i = 0; i < jets.size(); ++i){ auto split_res = jet_splitter.split(jets[i], np[i]); weight_ *= split_res.weight; if(weight_ == 0) return {}; assert( std::all_of( begin(split_res.constituents), end(split_res.constituents), is_jet_parton ) ); const auto first_new_parton = jet_partons.insert( end(jet_partons), begin(split_res.constituents), end(split_res.constituents) ); // mark uno and extremal FKL emissions here so we can check // their position once all emissions are generated auto extremal = end(jet_partons); if((unob_ && i == 0) || i == most_backward_FKL_idx){ // unordered or FKL backward emission extremal = std::min_element( first_new_parton, end(jet_partons), rapidity_less{} ); extremal->set_user_index( (i == most_backward_FKL_idx)?backward_FKL_idx:unob_idx ); } else if((unof_ && i == jets.size() - 1) || i == most_forward_FKL_idx){ // unordered or FKL forward emission extremal = std::max_element( first_new_parton, end(jet_partons), rapidity_less{} ); extremal->set_user_index( (i == most_forward_FKL_idx)?forward_FKL_idx:unof_idx ); } if( extremal != end(jet_partons) && !pass_extremal_cuts(*extremal, jets[i]) ){ weight_ = 0; return {}; } } assert(tagged_FKL_extremal(jet_partons)); std::sort(begin(jet_partons), end(jet_partons), rapidity_less{}); if( !extremal_ok(jet_partons) || !split_preserved_jets(jets, jet_partons) ){ weight_ = 0.; return {}; } return jet_partons; } bool PhaseSpacePoint::extremal_ok( std::vector const & partons ) const{ assert(std::is_sorted(begin(partons), end(partons), rapidity_less{})); if(unob_ && partons.front().user_index() != unob_idx) return false; if(unof_ && partons.back().user_index() != unof_idx) return false; return most_backward_FKL(partons).user_index() == backward_FKL_idx && most_forward_FKL(partons).user_index() == forward_FKL_idx; } bool PhaseSpacePoint::split_preserved_jets( std::vector const & jets, std::vector const & jet_partons ) const{ assert(std::is_sorted(begin(jets), end(jets), rapidity_less{})); const auto split_jets = sorted_by_rapidity(cluster_jets(jet_partons)); // this can happen if two overlapping jets // are both split into more than one parton if(split_jets.size() != jets.size()) return false; for(size_t i = 0; i < split_jets.size(); ++i){ // this can happen if there are two overlapping jets // and a parton is assigned to the "wrong" jet if(!nearby_ep(jets[i].rapidity(), split_jets[i].rapidity(), 1e-2)){ return false; } } return true; } template Particle const & PhaseSpacePoint::most_backward_FKL( std::vector const & partons ) const{ return partons[0 + unob_]; } template Particle const & PhaseSpacePoint::most_forward_FKL( std::vector const & partons ) const{ const size_t idx = partons.size() - 1 - unof_; assert(idx < partons.size()); return partons[idx]; } template Particle & PhaseSpacePoint::most_backward_FKL( std::vector & partons ) const{ return partons[0 + unob_]; } template Particle & PhaseSpacePoint::most_forward_FKL( std::vector & partons ) const{ const size_t idx = partons.size() - 1 - unof_; assert(idx < partons.size()); return partons[idx]; } namespace { bool contains_idx( fastjet::PseudoJet const & jet, fastjet::PseudoJet const & parton ){ auto const & constituents = jet.constituents(); const int idx = parton.user_index(); return std::find_if( begin(constituents), end(constituents), [idx](fastjet::PseudoJet const & con){return con.user_index() == idx;} ) != end(constituents); } } /** * final jet test: * - number of jets must match Born kinematics * - no partons designated as nonjet may end up inside jets * - all other outgoing partons *must* end up inside jets * - the extremal (in rapidity) partons must be inside the extremal jets * - rapidities must be the same (by construction) */ bool PhaseSpacePoint::jets_ok( std::vector const & Born_jets, std::vector const & partons ) const{ fastjet::ClusterSequence cs(partons, param_.jet_param.def); const auto jets = sorted_by_rapidity(cs.inclusive_jets(param_.jet_param.min_pt)); if(jets.size() != Born_jets.size()) return false; int in_jet = 0; for(size_t i = 0; i < jets.size(); ++i){ assert(jets[i].has_constituents()); for(auto && parton: jets[i].constituents()){ if(is_nonjet_parton(parton)) return false; } in_jet += jets[i].constituents().size(); } const int expect_in_jet = std::count_if( partons.cbegin(), partons.cend(), is_jet_parton ); if(in_jet != expect_in_jet) return false; // note that PseudoJet::contains does not work here if(! ( contains_idx(most_backward_FKL(jets), most_backward_FKL(partons)) && contains_idx(most_forward_FKL(jets), most_forward_FKL(partons)) )) return false; if(unob_ && !contains_idx(jets.front(), partons.front())) return false; if(unof_ && !contains_idx(jets.back(), partons.back())) return false; for(size_t i = 0; i < jets.size(); ++i){ assert(nearby_ep(jets[i].rapidity(), Born_jets[i].rapidity(), 1e-2)); } return true; } void PhaseSpacePoint::reconstruct_incoming( std::array const & Born_incoming ){ std::tie(incoming_[0].p, incoming_[1].p) = incoming_momenta(outgoing_); for(size_t i = 0; i < incoming_.size(); ++i){ incoming_[i].type = Born_incoming[i].type; } assert(momentum_conserved()); } double PhaseSpacePoint::phase_space_normalisation( int num_Born_jets, int num_out_partons ) const{ return pow(16*pow(M_PI,3), num_Born_jets - num_out_partons); } bool PhaseSpacePoint::momentum_conserved() const{ fastjet::PseudoJet diff; for(auto const & in: incoming()) diff += in.p; const double norm = diff.E(); for(auto const & out: outgoing()) diff -= out.p; return nearby(diff, fastjet::PseudoJet{}, norm); } } //namespace HEJ diff --git a/t/test_descriptions.cc b/t/test_descriptions.cc index d212ad5..fbd0141 100644 --- a/t/test_descriptions.cc +++ b/t/test_descriptions.cc @@ -1,62 +1,62 @@ #include #include #include "HEJ/Event.hh" #include "HEJ/EventReweighter.hh" #include "HEJ/ScaleFunction.hh" #define ASSERT(x) if(!(x)) { \ std::cerr << "Assertion '" #x "' failed.\n"; \ return EXIT_FAILURE; \ } int main() { constexpr double mu = 125.; HEJ::ScaleFunction fun{"125", HEJ::FixedScale{mu}}; ASSERT(fun.name() == "125"); HEJ::ScaleGenerator scale_gen{ {std::move(fun)}, {0.5, 1, 2.}, 2.1 }; HEJ::UnclusteredEvent tmp; tmp.outgoing.push_back( - {HEJ::ParticleID::gluon, fastjet::PtYPhiM(50., -1., 0.3, 0.)} + {HEJ::ParticleID::gluon, fastjet::PtYPhiM(50., -1., 0.3, 0.), {}} ); tmp.outgoing.push_back( - {HEJ::ParticleID::gluon, fastjet::PtYPhiM(30., 1., -0.3, 0.)} + {HEJ::ParticleID::gluon, fastjet::PtYPhiM(30., 1., -0.3, 0.), {}} ); HEJ::Event ev{ std::move(tmp), fastjet::JetDefinition{fastjet::kt_algorithm, 0.4}, 20. }; auto rescaled = scale_gen(std::move(ev)); ASSERT(rescaled.central().description->scale_name == "125"); for(auto const & var: rescaled.variations()) { ASSERT(var.description->scale_name == "125"); } ASSERT(rescaled.central().description->mur_factor == 1.); ASSERT(rescaled.central().description->muf_factor == 1.); ASSERT(rescaled.variations(0).description->mur_factor == 1.); ASSERT(rescaled.variations(0).description->muf_factor == 1.); ASSERT(rescaled.variations(1).description->mur_factor == 0.5); ASSERT(rescaled.variations(1).description->muf_factor == 0.5); ASSERT(rescaled.variations(2).description->mur_factor == 0.5); ASSERT(rescaled.variations(2).description->muf_factor == 1.); ASSERT(rescaled.variations(3).description->mur_factor == 1.); ASSERT(rescaled.variations(3).description->muf_factor == 0.5); ASSERT(rescaled.variations(4).description->mur_factor == 1.); ASSERT(rescaled.variations(4).description->muf_factor == 2.); ASSERT(rescaled.variations(5).description->mur_factor == 2.); ASSERT(rescaled.variations(5).description->muf_factor == 1.); ASSERT(rescaled.variations(6).description->mur_factor == 2.); ASSERT(rescaled.variations(6).description->muf_factor == 2.); } diff --git a/t/test_scale_import.cc b/t/test_scale_import.cc index 7a194c3..a434885 100644 --- a/t/test_scale_import.cc +++ b/t/test_scale_import.cc @@ -1,31 +1,31 @@ #include #include #include "HEJ/YAMLreader.hh" #include "HEJ/Event.hh" int main(int argc, char** argv) { constexpr double ep = 1e-7; if (argc != 2) { throw std::logic_error{"wrong number of args"}; } const HEJ::Config config = HEJ::load_config(argv[1]); HEJ::UnclusteredEvent tmp; tmp.outgoing.push_back( - {HEJ::ParticleID::gluon, fastjet::PtYPhiM(50., -1., 0.3, 0.)} + {HEJ::ParticleID::gluon, fastjet::PtYPhiM(50., -1., 0.3, 0.), {}} ); tmp.outgoing.push_back( - {HEJ::ParticleID::gluon, fastjet::PtYPhiM(30., 1., -0.3, 0.)} + {HEJ::ParticleID::gluon, fastjet::PtYPhiM(30., 1., -0.3, 0.), {}} ); HEJ::Event ev{ std::move(tmp), fastjet::JetDefinition{fastjet::kt_algorithm, 0.4}, 20. }; const double softest_pt = config.scales.base[0](ev); if(std::abs(softest_pt-30.) > ep){ throw std::logic_error{"wrong softest pt"}; } }