diff --git a/include/HEJ/Event.hh b/include/HEJ/Event.hh index 66e6c55..a110609 100644 --- a/include/HEJ/Event.hh +++ b/include/HEJ/Event.hh @@ -1,201 +1,203 @@ /** \file * \brief Declares the Event class and helpers * * \authors Jeppe Andersen, Tuomas Hapola, Marian Heil, Andreas Maier, Jennifer Smillie * \date 2019 * \copyright GPLv2 or later */ #pragma once #include #include #include #include #include #include "HEJ/event_types.hh" #include "HEJ/Particle.hh" +#include "HEJ/RNG.hh" #include "fastjet/ClusterSequence.hh" namespace LHEF{ class HEPEUP; class HEPRUP; } namespace fastjet{ class JetDefinition; } namespace HEJ{ - struct ParameterDescription; //! Event parameters struct EventParameters{ double mur; /**< Value of the Renormalisation Scale */ double muf; /**< Value of the Factorisation Scale */ double weight; /**< Event Weight */ //! Optional description std::shared_ptr description = nullptr; }; //! Description of event parameters struct ParameterDescription { //! Name of central scale choice (e.g. "H_T/2") std::string scale_name; //! Actual renormalisation scale divided by central scale double mur_factor; //! Actual factorisation scale divided by central scale double muf_factor; ParameterDescription() = default; ParameterDescription( std::string scale_name, double mur_factor, double muf_factor ): scale_name{scale_name}, mur_factor{mur_factor}, muf_factor{muf_factor} {}; }; //! An event before jet clustering & classification struct UnclusteredEvent{ //! Default Constructor UnclusteredEvent() = default; //! Constructor from LesHouches event information UnclusteredEvent(LHEF::HEPEUP const & hepeup); std::array incoming; /**< Incoming Particles */ std::vector outgoing; /**< Outgoing Particles */ //! Particle decays in the format {outgoing index, decay products} std::unordered_map> decays; //! Central parameter (e.g. scale) choice EventParameters central; std::vector variations; /**< For parameter variation */ - //! Generate the particle colour leading in the MRK limit, see \cite Andersen:2011zd - void generate_colour_flow(); + //! @brief Generate the particle colour leading in the MRK limit, see \cite Andersen:2011zd + //! @note This will overwrite all existing colours + void generate_colour_flow(HEJ::RNG &); + void sort(); /**< Sort Particles in rapidity **/ }; /** An event with clustered jets * * This is the main HEJ 2 event class. * It contains kinematic information including jet clustering, * parameter (e.g. scale) settings and the event weight. */ class Event{ public: //! Default Event Constructor Event() = default; //! Event Constructor adding jet clustering to an unclustered event Event( UnclusteredEvent ev, fastjet::JetDefinition const & jet_def, double min_jet_pt ); //! The jets formed by the outgoing partons std::vector jets() const; //! The corresponding event before jet clustering UnclusteredEvent const & unclustered() const { return ev_; } //! Central parameter choice EventParameters const & central() const{ return ev_.central; } //! Central parameter choice EventParameters & central(){ return ev_.central; } //! Incoming particles std::array const & incoming() const{ return ev_.incoming; } //! Outgoing particles std::vector const & outgoing() const{ return ev_.outgoing; } //! Particle decays /** * The key in the returned map corresponds to the index in the * vector returned by outgoing() */ std::unordered_map> const & decays() const{ return ev_.decays; } //! Parameter (scale) variations std::vector const & variations() const{ return ev_.variations; } //! Parameter (scale) variations std::vector & variations(){ return ev_.variations; } //! Parameter (scale) variation /** * @param i Index of the requested variation */ EventParameters const & variations(size_t i) const{ return ev_.variations[i]; } //! Parameter (scale) variation /** * @param i Index of the requested variation */ EventParameters & variations(size_t i){ return ev_.variations[i]; } //! Indices of the jets the outgoing partons belong to /** * @param jets Jets to be tested * @returns A vector containing, for each outgoing parton, * the index in the vector of jets the considered parton * belongs to. If the parton is not inside any of the * passed jets, the corresponding index is set to -1. */ std::vector particle_jet_indices( std::vector const & jets ) const{ return cs_.particle_jet_indices(jets); } //! Jet definition used for clustering fastjet::JetDefinition const & jet_def() const{ return cs_.jet_def(); } //! Minimum jet transverse momentum double min_jet_pt() const{ return min_jet_pt_; } //! Event type event_type::EventType type() const{ return type_; } private: UnclusteredEvent ev_; fastjet::ClusterSequence cs_; double min_jet_pt_; event_type::EventType type_; }; //! Square of the partonic centre-of-mass energy \f$\hat{s}\f$ double shat(Event const & ev); //! Convert an event to a LHEF::HEPEUP LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP *); } diff --git a/include/HEJ/PhaseSpacePoint.hh b/include/HEJ/PhaseSpacePoint.hh index 9d08ec3..f8b0ec9 100644 --- a/include/HEJ/PhaseSpacePoint.hh +++ b/include/HEJ/PhaseSpacePoint.hh @@ -1,154 +1,154 @@ /** \file * \brief Contains the PhaseSpacePoint Class * * \authors Jeppe Andersen, Tuomas Hapola, Marian Heil, Andreas Maier, Jennifer Smillie * \date 2019 * \copyright GPLv2 or later */ #pragma once #include #include #include #include #include "HEJ/config.hh" #include "HEJ/Particle.hh" #include "HEJ/RNG.hh" namespace HEJ{ class Event; //! A point in resummation phase space class PhaseSpacePoint{ public: //! Default PhaseSpacePoint Constructor PhaseSpacePoint() = default; //! PhaseSpacePoint Constructor /** * @param ev Clustered Jet Event * @param conf Configuration parameters * @param ran Random number generator */ PhaseSpacePoint( Event const & ev, PhaseSpacePointConfig conf, - HEJ::RNG & ran + RNG & ran ); //! Get phase space point weight double weight() const{ return weight_; } //! Access incoming particles std::array const & incoming() const{ return incoming_; } //! Access outgoing particles std::vector const & outgoing() const{ return outgoing_; } //! Particle decays /** * The key in the returned map corresponds to the index in the * vector returned by outgoing() */ std::unordered_map> const & decays() const{ return decays_; } static constexpr int ng_max = 1000; //< maximum number of extra gluons private: std::vector cluster_jets( std::vector const & partons ) const; bool pass_resummation_cuts( std::vector const & jets ) const; bool pass_extremal_cuts( fastjet::PseudoJet const & ext_parton, fastjet::PseudoJet const & jet ) const; int sample_ng(std::vector const & Born_jets); int sample_ng_jets(int ng, std::vector const & Born_jets); double probability_in_jet( std::vector const & Born_jets ) const; std::vector gen_non_jet( int ng_non_jet, double ptmin, double ptmax ); void rescale_rapidities( std::vector & partons, double ymin, double ymax ); std::vector reshuffle( std::vector const & Born_jets, fastjet::PseudoJet const & q ); bool jets_ok( std::vector const & Born_jets, std::vector const & partons ) const; void reconstruct_incoming(std::array const & Born_incoming); double phase_space_normalisation( int num_Born_jets, int num_res_partons ) const; std::vector split( std::vector const & jets, int ng_jets ); std::vector distribute_jet_partons( int ng_jets, std::vector const & jets ); std::vector split( std::vector const & jets, std::vector const & np_in_jet ); bool split_preserved_jets( std::vector const & jets, std::vector const & jet_partons ) const; template Particle const & most_backward_FKL( std::vector const & partons ) const; template Particle const & most_forward_FKL( std::vector const & partons ) const; template Particle & most_backward_FKL(std::vector & partons) const; template Particle & most_forward_FKL(std::vector & partons) const; bool extremal_ok( std::vector const & partons ) const; void copy_AWZH_boson_from(Event const & event); bool momentum_conserved() const; bool unob_, unof_; double weight_; PhaseSpacePointConfig param_; std::array incoming_; std::vector outgoing_; //! \internal Particle decays in the format {outgoing index, decay products} std::unordered_map> decays_; std::reference_wrapper ran_; }; } diff --git a/src/Event.cc b/src/Event.cc index 9f4edfd..57ee930 100644 --- a/src/Event.cc +++ b/src/Event.cc @@ -1,389 +1,397 @@ /** * \authors Jeppe Andersen, Tuomas Hapola, Marian Heil, Andreas Maier, Jennifer Smillie * \date 2019 * \copyright GPLv2 or later */ #include "HEJ/Event.hh" #include #include #include #include #include "LHEF/LHEF.h" #include "fastjet/JetDefinition.hh" #include "HEJ/exceptions.hh" #include "HEJ/PDG_codes.hh" namespace HEJ{ namespace{ constexpr int status_in = -1; constexpr int status_decayed = 2; constexpr int status_out = 1; /// @name helper functions to determine event type //@{ /** * \brief check if final state valid for HEJ * * check if there is at most one photon, W, H, Z in the final state * and all the rest are quarks or gluons */ bool final_state_ok(std::vector const & outgoing){ bool has_AWZH_boson = false; for(auto const & out: outgoing){ if(is_AWZH_boson(out.type)){ if(has_AWZH_boson) return false; has_AWZH_boson = true; } else if(! is_parton(out.type)) return false; } return true; } template Iterator remove_AWZH(Iterator begin, Iterator end){ return std::remove_if( begin, end, [](Particle const & p){return is_AWZH_boson(p);} ); } template bool valid_outgoing(Iterator begin, Iterator end){ return std::distance(begin, end) >= 2 && std::is_sorted(begin, end, rapidity_less{}) && std::count_if( begin, end, [](Particle const & s){return is_AWZH_boson(s);} ) < 2; } /// @note that this changes the outgoing range! template bool is_FKL( ConstIterator begin_incoming, ConstIterator end_incoming, Iterator begin_outgoing, Iterator end_outgoing ){ assert(std::distance(begin_incoming, end_incoming) == 2); assert(std::distance(begin_outgoing, end_outgoing) >= 2); // One photon, W, H, Z in the final state is allowed. // Remove it for remaining tests, end_outgoing = remove_AWZH(begin_outgoing, end_outgoing); // Test if this is a standard FKL configuration. return (begin_incoming->type == begin_outgoing->type) && ((end_incoming-1)->type == (end_outgoing-1)->type) && std::all_of( begin_outgoing + 1, end_outgoing - 1, [](Particle const & p){ return p.type == pid::gluon; } ); } bool is_FKL( std::array const & incoming, std::vector outgoing ){ assert(std::is_sorted(begin(incoming), end(incoming), pz_less{})); assert(valid_outgoing(begin(outgoing), end(outgoing))); return is_FKL( begin(incoming), end(incoming), begin(outgoing), end(outgoing) ); } bool has_2_jets(Event const & event){ return event.jets().size() >= 2; } /** * \brief Checks whether event is unordered backwards * @param ev Event * @returns Is Event Unordered Backwards * * - Checks there is more than 3 constuents in the final state * - Checks there is more than 3 jets * - Checks the most backwards parton is a gluon * - Checks the most forwards jet is not a gluon * - Checks the rest of the event is FKL * - Checks the second most backwards is not a different boson * - Checks the unordered gluon actually forms a jet */ bool is_unordered_backward(Event const & ev){ auto const & in = ev.incoming(); auto const & out = ev.outgoing(); assert(std::is_sorted(begin(in), end(in), pz_less{})); assert(valid_outgoing(begin(out), end(out))); if(out.size() < 3) return false; if(ev.jets().size() < 3) return false; if(in.front().type == pid::gluon) return false; if(out.front().type != pid::gluon) return false; // When skipping the unordered emission // the remainder should be a regular FKL event, // except that the (new) first outgoing particle must not be a A,W,Z,H. const auto FKL_begin = next(begin(out)); if(is_AWZH_boson(*FKL_begin)) return false; if(!is_FKL(in, {FKL_begin, end(out)})) return false; // check that the unordered gluon forms an extra jet const auto jets = sorted_by_rapidity(ev.jets()); const auto indices = ev.particle_jet_indices({jets.front()}); return indices[0] >= 0 && indices[1] == -1; } /** * \brief Checks for a forward unordered gluon emission * @param ev Event * @returns Is the event a forward unordered emission * * \see is_unordered_backward */ bool is_unordered_forward(Event const & ev){ auto const & in = ev.incoming(); auto const & out = ev.outgoing(); assert(std::is_sorted(begin(in), end(in), pz_less{})); assert(valid_outgoing(begin(out), end(out))); if(out.size() < 3) return false; if(ev.jets().size() < 3) return false; if(in.back().type == pid::gluon) return false; if(out.back().type != pid::gluon) return false; // When skipping the unordered emission // the remainder should be a regular FKL event, // except that the (new) last outgoing particle must not be a A,W,Z,H. const auto FKL_end = prev(end(out)); if(is_AWZH_boson(*prev(FKL_end))) return false; if(!is_FKL(in, {begin(out), FKL_end})) return false; // check that the unordered gluon forms an extra jet const auto jets = sorted_by_rapidity(ev.jets()); const auto indices = ev.particle_jet_indices({jets.back()}); return indices.back() >= 0 && indices[indices.size()-2] == -1; } using event_type::EventType; EventType classify(Event const & ev){ if(! final_state_ok(ev.outgoing())) return EventType::bad_final_state; if(! has_2_jets(ev)) return EventType::no_2_jets; if(is_FKL(ev.incoming(), ev.outgoing())) return EventType::FKL; if(is_unordered_backward(ev)){ return EventType::unordered_backward; } if(is_unordered_forward(ev)){ return EventType::unordered_forward; } return EventType::nonHEJ; } //@} Particle extract_particle(LHEF::HEPEUP const & hepeup, int i){ const ParticleID id = static_cast(hepeup.IDUP[i]); const fastjet::PseudoJet momentum{ hepeup.PUP[i][0], hepeup.PUP[i][1], hepeup.PUP[i][2], hepeup.PUP[i][3] }; if(is_parton(id)) return Particle{ id, std::move(momentum), hepeup.ICOLUP[i] }; return Particle{ id, std::move(momentum), {} }; } bool is_decay_product(std::pair const & mothers){ if(mothers.first == 0) return false; return mothers.second == 0 || mothers.first == mothers.second; } } // namespace anonymous UnclusteredEvent::UnclusteredEvent(LHEF::HEPEUP const & hepeup): central(EventParameters{ hepeup.scales.mur, hepeup.scales.muf, hepeup.weight() }) { size_t in_idx = 0; for (int i = 0; i < hepeup.NUP; ++i) { // skip decay products // we will add them later on, but we have to ensure that // the decayed particle is added before if(is_decay_product(hepeup.MOTHUP[i])) continue; auto particle = extract_particle(hepeup, i); // needed to identify mother particles for decay products particle.p.set_user_index(i+1); if(hepeup.ISTUP[i] == status_in){ if(in_idx > incoming.size()) { throw std::invalid_argument{ "Event has too many incoming particles" }; } incoming[in_idx++] = std::move(particle); } else outgoing.emplace_back(std::move(particle)); } // add decay products for (int i = 0; i < hepeup.NUP; ++i) { if(!is_decay_product(hepeup.MOTHUP[i])) continue; const int mother_id = hepeup.MOTHUP[i].first; const auto mother = std::find_if( begin(outgoing), end(outgoing), [mother_id](Particle const & particle){ return particle.p.user_index() == mother_id; } ); if(mother == end(outgoing)){ throw std::invalid_argument{"invalid decay product parent"}; } const int mother_idx = std::distance(begin(outgoing), mother); assert(mother_idx >= 0); decays[mother_idx].emplace_back(extract_particle(hepeup, i)); } } - void UnclusteredEvent::generate_colour_flow(){ - //TODO implement + void UnclusteredEvent::generate_colour_flow(RNG & ran){ } - Event::Event( - UnclusteredEvent ev, - fastjet::JetDefinition const & jet_def, double min_jet_pt - ): - ev_{std::move(ev)}, - cs_{to_PseudoJet(filter_partons(ev_.outgoing)), jet_def}, - min_jet_pt_{min_jet_pt} - { - // sort particles + void UnclusteredEvent::sort(){ + // sort incoming std::sort( - begin(ev_.incoming), end(ev_.incoming), + begin(incoming), end(incoming), [](Particle o1, Particle o2){return o1.p.pz() idx(old_outgoing.size()); std::iota(idx.begin(), idx.end(), 0); std::sort(idx.begin(), idx.end(), [&old_outgoing](size_t i, size_t j){ return old_outgoing[i].rapidity() < old_outgoing[j].rapidity(); }); - ev_.outgoing.clear(); - ev_.outgoing.reserve(old_outgoing.size()); + outgoing.clear(); + outgoing.reserve(old_outgoing.size()); for(size_t i: idx) { - ev_.outgoing.emplace_back(std::move(old_outgoing[i])); + outgoing.emplace_back(std::move(old_outgoing[i])); } // find decays again - if(!ev_.decays.empty()){ - auto old_decays = std::move(ev_.decays); - ev_.decays.clear(); + if(!decays.empty()){ + auto old_decays = std::move(decays); + decays.clear(); for(size_t i=0; isecond)); + decays.emplace(i, std::move(decay->second)); } - assert(old_decays.size() == ev_.decays.size()); + assert(old_decays.size() == decays.size()); } + } + + Event::Event( + UnclusteredEvent ev, + fastjet::JetDefinition const & jet_def, double min_jet_pt + ): + ev_{std::move(ev)}, + cs_{to_PseudoJet(filter_partons(ev_.outgoing)), jet_def}, + min_jet_pt_{min_jet_pt} + { + // sort particles + ev_.sort(); + // classify event type_ = classify(*this); assert(std::is_sorted(begin(outgoing()), end(outgoing()), rapidity_less{})); } std::vector Event::jets() const{ return cs_.inclusive_jets(min_jet_pt_); } double shat(Event const & ev){ return (ev.incoming()[0].p + ev.incoming()[1].p).m2(); } namespace{ // colour flow according to Les Houches standard // TODO: stub std::vector> colour_flow( std::array const & incoming, std::vector const & outgoing ){ std::vector> result( incoming.size() + outgoing.size() ); for(auto & col: result){ col = std::make_pair(-1, -1); } return result; } } LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP * heprup){ LHEF::HEPEUP result; result.heprup = heprup; result.weights = {{event.central().weight, nullptr}}; for(auto const & var: event.variations()){ result.weights.emplace_back(var.weight, nullptr); } size_t num_particles = event.incoming().size() + event.outgoing().size(); for(auto const & decay: event.decays()) num_particles += decay.second.size(); result.NUP = num_particles; // the following entries are pretty much meaningless result.IDPRUP = event.type()+1; // event ID result.AQEDUP = 1./128.; // alpha_EW //result.AQCDUP = 0.118 // alpha_QCD // end meaningless part result.XWGTUP = event.central().weight; result.SCALUP = event.central().muf; result.scales.muf = event.central().muf; result.scales.mur = event.central().mur; result.scales.SCALUP = event.central().muf; result.pdfinfo.p1 = event.incoming().front().type; result.pdfinfo.p2 = event.incoming().back().type; result.pdfinfo.scale = event.central().muf; for(Particle const & in: event.incoming()){ result.IDUP.emplace_back(in.type); result.ISTUP.emplace_back(status_in); result.PUP.push_back({in.p[0], in.p[1], in.p[2], in.p[3], in.p.m()}); result.MOTHUP.emplace_back(0, 0); } for(size_t i = 0; i < event.outgoing().size(); ++i){ Particle const & out = event.outgoing()[i]; result.IDUP.emplace_back(out.type); const int status = event.decays().count(i)?status_decayed:status_out; result.ISTUP.emplace_back(status); result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()}); result.MOTHUP.emplace_back(1, 2); } result.ICOLUP = colour_flow( event.incoming(), filter_partons(event.outgoing()) ); if(result.ICOLUP.size() < num_particles){ const size_t AWZH_boson_idx = std::find_if( begin(event.outgoing()), end(event.outgoing()), [](Particle const & s){ return is_AWZH_boson(s); } ) - begin(event.outgoing()) + event.incoming().size(); assert(AWZH_boson_idx <= result.ICOLUP.size()); result.ICOLUP.insert( begin(result.ICOLUP) + AWZH_boson_idx, std::make_pair(0,0) ); } for(auto const & decay: event.decays()){ for(auto const out: decay.second){ result.IDUP.emplace_back(out.type); result.ISTUP.emplace_back(status_out); result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()}); const size_t mother_idx = 1 + event.incoming().size() + decay.first; result.MOTHUP.emplace_back(mother_idx, mother_idx); result.ICOLUP.emplace_back(0,0); } } assert(result.ICOLUP.size() == num_particles); static constexpr double unknown_spin = 9.; //per Les Houches accord result.VTIMUP = std::vector(num_particles, unknown_spin); result.SPINUP = result.VTIMUP; return result; } }