diff --git a/src/MatrixElement.cc b/src/MatrixElement.cc
index 86c4539..a1d09d7 100644
--- a/src/MatrixElement.cc
+++ b/src/MatrixElement.cc
@@ -1,994 +1,994 @@
 #include "RHEJ/MatrixElement.hh"
 
 #include <CLHEP/Random/Randomize.h>
 #include <CLHEP/Random/RanluxEngine.h>
 
 #include "RHEJ/Constants.hh"
 #include "RHEJ/currents.hh"
 #include "RHEJ/PDG_codes.hh"
 #include "RHEJ/uno.hh"
 #include "RHEJ/qqx.hh"
 #include "RHEJ/utility.hh"
 
 namespace RHEJ{
   //cf. last line of eq. (22) in \ref Andersen:2011hs
   double MatrixElement::omega0(
       double alpha_s, double mur,
       fastjet::PseudoJet const & q_j, double lambda
   ) const {
     const double result = - alpha_s*N_C/M_PI*log(q_j.perp2()/(lambda*lambda));
     if(! param_.log_correction) return result;
     // use alpha_s(sqrt(q_j*lambda)), evolved to mur
     return (
         1. + alpha_s/(4.*M_PI)*beta0*log(mur*mur/(q_j.perp()*lambda))
     )*result;
   }
 
   double MatrixElement::virtual_corrections(
       double mur,
       std::array<Particle, 2> const & in,
       std::vector<Particle> const & out
   ) const{
     fastjet::PseudoJet const & pa = in.front().p;
 #ifndef NDEBUG
     fastjet::PseudoJet const & pb = in.back().p;
     double const norm = (in.front().p + in.back().p).E();
 #endif
 
     assert(std::is_sorted(out.begin(), out.end(), rapidity_less{}));
     assert(out.size() >= 2);
     assert(pa.pz() < pb.pz());
 
     fastjet::PseudoJet q = pa - out[0].p;
     size_t first_idx = 0;
     size_t last_idx = out.size() - 1;
     // if there is a Higgs or unordered gluon outside the extremal partons
     // then it is not part of the FKL ladder and does not contribute
     // to the virtual corrections
     if(out.front().type == pid::Higgs || has_unob_gluon(in, out)){
       q -= out[1].p;
       ++first_idx;
     }
     if(out.back().type == pid::Higgs || has_unof_gluon(in, out)){
       --last_idx;
     }
 
     double exponent = 0;
     const double alpha_s = alpha_s_(mur);
     for(size_t j = first_idx; j < last_idx; ++j){
       exponent += omega0(alpha_s, mur, q, CLAMBDA)*(
           out[j+1].rapidity() - out[j].rapidity()
       );
       q -= out[j+1].p;
     }
     assert(
         nearby(q, -1*pb, norm)
         || out.back().type == pid::Higgs
         || has_unof_gluon(in, out)
     );
     return exp(exponent);
   }
 } // namespace RHEJ
 
 namespace {
   //! Lipatov vertex for partons emitted into extremal jets
   double C2Lipatov(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv,
     CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2)
   {
     CLHEP::HepLorentzVector temptrans=-(qav+qbv);
     CLHEP::HepLorentzVector p5=qav-qbv;
     CLHEP::HepLorentzVector CL=temptrans
       + p1*(qav.m2()/p5.dot(p1) + 2.*p5.dot(p2)/p1.dot(p2))
       - p2*(qbv.m2()/p5.dot(p2) + 2.*p5.dot(p1)/p1.dot(p2));
 
     // cout << "#Fadin qa : "<<qav<<endl;
     // cout << "#Fadin qb : "<<qbv<<endl;
     // cout << "#Fadin p1 : "<<p1<<endl;
     // cout << "#Fadin p2 : "<<p2<<endl;
     // cout << "#Fadin p5 : "<<p5<<endl;
     // cout << "#Fadin Gauge Check : "<< CL.dot(p5)<<endl;
     // cout << "#Fadin C2L : "<< -CL.dot(CL)<<" "<<-CL.dot(CL)/(qav.m2()*qbv.m2())/(4./p5.perp2())<<endl;
 
     // TODO can this dead test go?
     // if (-CL.dot(CL)<0.)
       //   if (fabs(CL.dot(p5))>fabs(CL.dot(CL))) // not sufficient!
     //   return 0.;
     // else
     return -CL.dot(CL);
   }
 
   //! Lipatov vertex with soft subtraction for partons emitted into extremal jets
   double C2Lipatovots(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv,
     CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2)
   {
     double kperp=(qav-qbv).perp();
     if (kperp>RHEJ::CLAMBDA)
       return C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2());
     else {
       double Cls=(C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2()));
       return Cls-4./(kperp*kperp);
     }
   }
 
   //! Lipatov vertex
   double C2Lipatov(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv,
     CLHEP::HepLorentzVector pim, CLHEP::HepLorentzVector pip,
     CLHEP::HepLorentzVector pom, CLHEP::HepLorentzVector pop) // B
   {
     CLHEP::HepLorentzVector temptrans=-(qav+qbv);
     CLHEP::HepLorentzVector p5=qav-qbv;
     CLHEP::HepLorentzVector CL=temptrans
       + qav.m2()*(1./p5.dot(pip)*pip + 1./p5.dot(pop)*pop)/2.
       - qbv.m2()*(1./p5.dot(pim)*pim + 1./p5.dot(pom)*pom)/2.
       + ( pip*(p5.dot(pim)/pip.dot(pim) + p5.dot(pom)/pip.dot(pom))
         + pop*(p5.dot(pim)/pop.dot(pim) + p5.dot(pom)/pop.dot(pom))
         - pim*(p5.dot(pip)/pip.dot(pim) + p5.dot(pop)/pop.dot(pim))
         - pom*(p5.dot(pip)/pip.dot(pom) + p5.dot(pop)/pop.dot(pom)) )/2.;
 
     return -CL.dot(CL);
   }
 
   //! Lipatov vertex with soft subtraction
   double C2Lipatovots(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv,
     CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb,
     CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2)
   {
     double kperp=(qav-qbv).perp();
     if (kperp>RHEJ::CLAMBDA)
       return C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2());
     else {
       double Cls=(C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2()));
       double temp=Cls-4./(kperp*kperp);
       return temp;
     }
   }
 
   /** Matrix element squared for tree-level current-current scattering
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @returns               ME Squared for Tree-Level Current-Current Scattering
    */
   double ME_current(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa
   ){
     if (aptype==21&&bptype==21) {
       return jM2gg(pn,pb,p1,pa);
     } else if (aptype==21&&bptype!=21) {
       if (bptype > 0)
         return jM2qg(pn,pb,p1,pa);
       else
         return jM2qbarg(pn,pb,p1,pa);
     }
     else if (bptype==21&&aptype!=21) { // ----- || -----
       if (aptype > 0)
         return jM2qg(p1,pa,pn,pb);
       else
         return jM2qbarg(p1,pa,pn,pb);
     }
     else { // they are both quark
       if (bptype>0) {
         if (aptype>0)
           return jM2qQ(pn,pb,p1,pa);
         else
           return jM2qQbar(pn,pb,p1,pa);
       }
       else {
         if (aptype>0)
           return jM2qQbar(p1,pa,pn,pb);
         else
           return jM2qbarQbar(pn,pb,p1,pa);
       }
     }
     throw std::logic_error("unknown particle types");
   }
 
   /** Matrix element squared for tree-level current-current scattering With W+Jets
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @returns               ME Squared for Tree-Level Current-Current Scattering
    */
   double ME_W_current(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & plbar,
       CLHEP::HepLorentzVector const & pl
   ){
     if (aptype==21&&bptype==21) {
       throw std::logic_error("gg incoming in W+jets, qqx not yet implemented");
     } else if (aptype==21&&bptype!=21) {
       if (bptype > 0)
         return jMWqg(pn,pl,plbar,pb,p1,pa);
       else
         return jMWqbarg(pn,pl,plbar,pb,p1,pa);
     }
     else if (bptype==21&&aptype!=21) { // ----- || -----
       if (aptype > 0)
         return jMWqg(p1,pl,plbar,pa,pn,pb);
       else
         return jMWqbarg(p1,pl,plbar,pa,pn,pb);
     }
     else { // they are both quark
       if (bptype>0) {
         if (aptype>0)
           return jMWqQ(pn,pl,plbar,pb,p1,pa);
         else
           return jMWqQbar(pn,pl,plbar,pb,p1,pa);
       }
       else {
         if (aptype>0)
           return jMWqQbar(p1,pl,plbar,pa,pn,pb);
         else
           return jMWqbarQbar(pn,pl,plbar,pb,p1,pa);
       }
     }
     throw std::logic_error("unknown particle types");
   }
 
 
   /** \brief Matrix element squared for tree-level current-current scattering with Higgs
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param qH              t-channel momentum before Higgs
    *  @param qHp1            t-channel momentum after Higgs
    *  @returns               ME Squared for Tree-Level Current-Current Scattering with Higgs
    */
   double ME_Higgs_current(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & qH,  // t-channel momentum before Higgs
       CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
       double mt, bool include_bottom, double mb
   ){
     if (aptype==21&&bptype==21) // gg initial state
       return MH2gg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
     else if (aptype==21&&bptype!=21) {
       if (bptype > 0)
         return MH2qg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4./9.;
       else
         return MH2qbarg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4./9.;
     }
     else if (bptype==21&&aptype!=21) {
       if (aptype > 0)
         return MH2qg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4./9.;
       else
         return MH2qbarg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4./9.;
     }
     else { // they are both quark
       if (bptype>0) {
         if (aptype>0)
           return MH2qQ(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.);
         else
           return MH2qQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.);
       }
       else {
         if (aptype>0)
           return MH2qQbar(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4.*4./(9.*9.);
         else
           return MH2qbarQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.);
       }
     }
     throw std::logic_error("unknown particle types");
   }
 
   /** \brief  Current matrix element squared with Higgs and unordered forward emission
    *  @param aptype          Particle A PDG ID
    *  @param bptype          Particle B PDG ID
    *  @param punof           Unordered Particle Momentum
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param qH              t-channel momentum before Higgs
    *  @param qHp1            t-channel momentum after Higgs
    *  @returns               ME Squared with Higgs and unordered forward emission
    */
   double ME_Higgs_current_unof(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & punof,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & qH,  // t-channel momentum before Higgs
       CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
       double mt, bool include_bottom, double mb
   ){
     if (aptype==21&&bptype!=21) {
       if (bptype > 0)
         return jM2unogqHg(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
       else
         return jM2unogqbarHg(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
     }
     else { // they are both quark
       if (bptype>0) {
         if (aptype>0)
           return jM2unogqHQ(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
         else
           return jM2unogqHQbar(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
       }
       else {
         if (aptype>0)
           return jM2unogqbarHQ(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
         else
           return jM2unogqbarHQbar(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
       }
     }
     throw std::logic_error("unknown particle types");
   }
 
   /** \brief Current matrix element squared with Higgs and unordered backward emission
    *  @param aptype          Particle A PDG ID
    *  @param bptype          Particle B PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param punob           Unordered back Particle Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param qH              t-channel momentum before Higgs
    *  @param qHp1            t-channel momentum after Higgs
    *  @returns               ME Squared with Higgs and unordered backward emission
    */
   double ME_Higgs_current_unob(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & punob,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & qH,  // t-channel momentum before Higgs
       CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
       double mt, bool include_bottom, double mb
   ){
     if (bptype==21&&aptype!=21) {
       if (aptype > 0)
         return jM2unobgHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
       else
         return jM2unobgHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
     }
     else { // they are both quark
       if (aptype>0) {
         if (bptype>0)
           return jM2unobqHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
         else
           return jM2unobqbarHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
       }
       else {
         if (bptype>0)
           return jM2unobqHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
         else
           return jM2unobqbarHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
       }
     }
     throw std::logic_error("unknown particle types");
   }
 
   CLHEP::HepLorentzVector to_HepLorentzVector(RHEJ::Particle const & particle){
     return {particle.p.px(), particle.p.py(), particle.p.pz(), particle.p.E()};
   }
 
   void validate(RHEJ::MatrixElementConfig const & config) {
 #ifndef RHEJ_BUILD_WITH_QCDLOOP
     if(!config.Higgs_coupling.use_impact_factors) {
       throw std::invalid_argument{
         "Invalid Higgs coupling settings.\n"
         "HEJ without QCDloop support can only use impact factors.\n"
         "Set use_impact_factors to true or recompile HEJ.\n"
        };
     }
 #endif
     if(config.Higgs_coupling.use_impact_factors
       && config.Higgs_coupling.mt != std::numeric_limits<double>::infinity()) {
       throw std::invalid_argument{
         "Conflicting settings: "
           "impact factors may only be used in the infinite top mass limit"
       };
     }
   }
 } // namespace anonymous
 
 namespace RHEJ{
   MatrixElement::MatrixElement(
       std::function<double (double)> alpha_s,
       MatrixElementConfig conf
   ):
     alpha_s_{std::move(alpha_s)},
     param_{std::move(conf)}
   {
     validate(param_);
   }
 
   double MatrixElement::operator()(
       double mur,
       std::array<Particle, 2> const & incoming,
       std::vector<Particle> const & outgoing,
       std::unordered_map<int, std::vector<Particle>> const & decays,
       bool check_momenta
   ) const {
     return tree(
         mur,
         incoming, outgoing, decays,
         check_momenta
     )*virtual_corrections(
         mur,
         incoming, outgoing
     );
   }
 
   double MatrixElement::tree_kin(
       std::array<Particle, 2> const & incoming,
       std::vector<Particle> const & outgoing,
       std::unordered_map<int, std::vector<Particle>> const & decays,
       bool check_momenta
   ) const {
     assert(
         std::is_sorted(
             incoming.begin(), incoming.end(),
             [](Particle o1, Particle o2){return o1.p.pz()<o2.p.pz();}
         )
     );
     assert(std::is_sorted(outgoing.begin(), outgoing.end(), rapidity_less{}));
 
     auto AWZH_boson = std::find_if(
         begin(outgoing), end(outgoing),
         [](Particle const & p){return is_AWZH_boson(p);}
     );
 
     if(AWZH_boson == end(outgoing)){
       return tree_kin_jets(incoming, outgoing, check_momenta);
     }
 
     switch(AWZH_boson->type){
     case pid::Higgs: {
       return tree_kin_Higgs(incoming, outgoing, check_momenta);
     }
     // TODO
     case pid::Wp: {
       return tree_kin_W(incoming, outgoing, decays, true, check_momenta);
     }
     case pid::Wm: {
       return tree_kin_W(incoming, outgoing, decays, false, check_momenta);
     }
     case pid::photon:
     case pid::Z:
     default:
       throw std::logic_error("Emission of boson of unsupported type.");
     }
   }
 
   namespace{
     constexpr int extremal_jet_idx = 1;
     constexpr int no_extremal_jet_idx = 0;
 
     bool treat_as_extremal(Particle const & parton){
       return parton.p.user_index() == extremal_jet_idx;
     }
 
     template<class InputIterator>
       double FKL_ladder_weight(
           InputIterator begin_gluon, InputIterator end_gluon,
           CLHEP::HepLorentzVector const & q0,
           CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb,
           CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pn
       ){
       double wt = 1;
       auto qi = q0;
       for(auto gluon_it = begin_gluon; gluon_it != end_gluon; ++gluon_it){
         assert(gluon_it->type == pid::gluon);
         const auto g = to_HepLorentzVector(*gluon_it);
         const auto qip1 = qi - g;
 
         if(treat_as_extremal(*gluon_it)){
           wt *= C2Lipatovots(qip1, qi, pa, pb)*C_A;
         } else{
           wt *= C2Lipatovots(qip1, qi, pa, pb, p1, pn)*C_A;
         }
 
         qi = qip1;
       }
       return wt;
     }
 
   }  // namespace anonymous
 
   std::vector<Particle> MatrixElement::tag_extremal_jet_partons(
       std::array<Particle, 2> const & incoming,
       std::vector<Particle> out_partons, bool check_momenta
   ) const{
     if(!check_momenta){
       for(auto & parton: out_partons){
         parton.p.set_user_index(no_extremal_jet_idx);
       }
       return out_partons;
     }
     fastjet::ClusterSequence cs(to_PseudoJet(out_partons), param_.jet_param.def);
     const auto jets = sorted_by_rapidity(cs.inclusive_jets(param_.jet_param.min_pt));
     assert(jets.size() >= 2);
     auto most_backward = begin(jets);
     auto most_forward = end(jets) - 1;
     // skip jets caused by unordered emission
     if(has_unob_gluon(incoming, out_partons)){
       assert(jets.size() >= 3);
       ++most_backward;
     }
     else if(has_unof_gluon(incoming, out_partons)){
       assert(jets.size() >= 3);
       --most_forward;
     }
     const auto extremal_jet_indices = cs.particle_jet_indices(
         {*most_backward, *most_forward}
     );
     assert(extremal_jet_indices.size() == out_partons.size());
     for(size_t i = 0; i < out_partons.size(); ++i){
       assert(RHEJ::is_parton(out_partons[i]));
       const int idx = (extremal_jet_indices[i]>=0)?
         extremal_jet_idx:
         no_extremal_jet_idx;
       out_partons[i].p.set_user_index(idx);
     }
     return out_partons;
   }
 
   double MatrixElement::tree_kin_jets(
       std::array<Particle, 2> const & incoming,
       std::vector<Particle> partons,
       bool check_momenta
   ) const {
     partons = tag_extremal_jet_partons(incoming, partons, check_momenta);
     if(has_unob_gluon(incoming, partons) || has_unof_gluon(incoming, partons)){
       throw std::logic_error("unordered emission not implemented for pure jets");
     }
 
     const auto pa = to_HepLorentzVector(incoming[0]);
     const auto pb = to_HepLorentzVector(incoming[1]);
 
     const auto p1 = to_HepLorentzVector(partons.front());
     const auto pn = to_HepLorentzVector(partons.back());
 
     return ME_current(
         incoming[0].type, incoming[1].type,
         pn, pb, p1, pa
     )/(4*(N_C*N_C - 1))*FKL_ladder_weight(
         begin(partons) + 1, end(partons) - 1,
         pa - p1, pa, pb, p1, pn
     );
   }
 
   double MatrixElement::tree_kin_W(
       std::array<Particle, 2> const & incoming,
       std::vector<Particle> const & outgoing,
       std::unordered_map<int, std::vector<Particle>> const & decays,
       bool WPlus,
       bool check_momenta
   ) const {
     if(has_unob_gluon(incoming, outgoing)){
       throw std::logic_error("unordered emission not yet implemented for W+jets");
       //return tree_kin_W_unob(incoming, outgoing, check_momenta);
     }
     else if(has_unof_gluon(incoming, outgoing)){
       throw std::logic_error("unordered emission not yet implemented for W+jets");
       // return tree_kin_W_unof(incoming, outgoing, check_momenta);
     }
     else if(has_Ex_qqx(incoming, outgoing)){
       throw std::logic_error("Extremal qqx not yet implemented for W+jets");
       // return tree_kin_W_Exqqx(incoming, outgoing, check_momenta);
     }
     else if(has_mid_qqx(outgoing)){
       throw std::logic_error("Central qqx not yet implemented for W+jets");
       // return tree_kin_W_qqxCentral(incoming, outgoing, check_momenta);
     }
     else{
       return tree_kin_W_FKL(incoming, outgoing, decays, WPlus, check_momenta);
     }
   }
 
   double MatrixElement::tree_kin_W_FKL(
         std::array<Particle, 2> const & incoming,
         std::vector<Particle> const & outgoing,
         std::unordered_map<int, std::vector<Particle>> const & decays,
         bool WPlus,
         bool check_momenta
   ) const {
 
     const auto the_W = std::find_if(
         begin(outgoing), end(outgoing),
         [](Particle const & s){ return abs(s.type) == pid::Wp; }
     );
 
     HLV plbar, pl;
 
     for (auto& x: decays) {
       if (x.second.at(0).type < 0){
         plbar = to_HepLorentzVector(x.second.at(0));
         pl = to_HepLorentzVector(x.second.at(1));
       }
       else{
         pl = to_HepLorentzVector(x.second.at(0));
         plbar = to_HepLorentzVector(x.second.at(1));
       }
     }
 
     const auto pW = to_HepLorentzVector(*the_W);
     std::vector<Particle> partons(begin(outgoing), the_W);
     partons.insert(end(partons), the_W + 1, end(outgoing));
     partons = tag_extremal_jet_partons(incoming, partons, check_momenta);
 
     const auto pa = to_HepLorentzVector(incoming[0]);
     const auto pb = to_HepLorentzVector(incoming[1]);
 
     auto p1 = to_HepLorentzVector(partons[0]);
     auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
 
     auto first_after_W = begin(partons) + (the_W-begin(outgoing));
 
     if(first_after_W == begin(partons)) ++first_after_W;
     else if(first_after_W == end(partons)) --first_after_W;
 
     // t-channel momentum before W
     auto qW = pa;
     for(auto parton_it = begin(partons); parton_it != first_after_W; ++parton_it){
       qW -= to_HepLorentzVector(*parton_it);
     }
 
     auto q0 = pa - p1;
     auto begin_ladder = begin(partons) + 1;
     auto end_ladder = end(partons) - 1;
 
     double current_factor;
     if (WPlus){
       current_factor = ME_W_current(
           incoming[0].type, incoming[1].type,
           pn, pb, p1, pa, pl, plbar
       );
     }
     else{
       current_factor = ME_W_current(
           incoming[0].type, incoming[1].type,
           pn, pb, p1, pa, plbar, pl
       );
 }
 
     const double ladder_factor = FKL_ladder_weight(
         begin_ladder, first_after_W,
         q0, pa, pb, p1, pn
     )*FKL_ladder_weight(
         begin_ladder, end_ladder,
         pa - p1, pa, pb, p1, pn
     );
     return current_factor*9./8.*ladder_factor;
   }
 
 
   double MatrixElement::tree_kin_Higgs(
       std::array<Particle, 2> const & incoming,
       std::vector<Particle> const & outgoing,
       bool check_momenta
   ) const {
     if(has_uno_gluon(incoming, outgoing)){
       return tree_kin_Higgs_between(incoming, outgoing, check_momenta);
     }
     if(outgoing.front().type == pid::Higgs){
       return tree_kin_Higgs_first(incoming, outgoing, check_momenta);
     }
     if(outgoing.back().type == pid::Higgs){
       return tree_kin_Higgs_last(incoming, outgoing, check_momenta);
     }
     return tree_kin_Higgs_between(incoming, outgoing, check_momenta);
   }
 
   namespace {
     // Colour acceleration multipliers, for gluons see eq. (7) in arXiv:0910.5113
     // TODO: code duplication with currents.cc
     double K_g(double p1minus, double paminus) {
-      return 1./2.*(p1minus/paminus + paminus/p1minus)*(C_A - 1/C_A) + 1/C_A;
+      return 1./2.*(p1minus/paminus + paminus/p1minus)*(C_A - 1./C_A) + 1./C_A;
     }
     double K_g(
         CLHEP::HepLorentzVector const & pout,
         CLHEP::HepLorentzVector const & pin
     ) {
       if(pin.z() > 0) return K_g(pout.plus(), pin.plus());
       return K_g(pout.minus(), pin.minus());
     }
     double K(
         ParticleID type,
         CLHEP::HepLorentzVector const & pout,
         CLHEP::HepLorentzVector const & pin
     ) {
       if(type == ParticleID::gluon) return K_g(pout, pin);
       return C_F;
     }
     // Colour factor in strict MRK limit
     double K_MRK(ParticleID type) {
       return (type == ParticleID::gluon)?C_A:C_F;
     }
   }
 
   double MatrixElement::MH2_forwardH(
       CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in,
       ParticleID type2,
       CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in,
       CLHEP::HepLorentzVector pH,
       double t1, double t2
   ) const{
     ignore(p2out, p2in);
     const double shat = p1in.invariantMass2(p2in);
     // gluon case
 #ifdef RHEJ_BUILD_WITH_QCDLOOP
     if(!param_.Higgs_coupling.use_impact_factors){
       return K(type2, p2out, p2in)*C_A*1./(16*M_PI*M_PI)*t1/t2*MH2gq_outsideH(
           p1out, p1in, p2out, p2in, pH,
           param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom,
           param_.Higgs_coupling.mb
       )/(4*(N_C*N_C - 1));
     }
 #endif
     return K_MRK(type2)/C_A*9./2.*shat*shat*(
         C2gHgp(p1in,p1out,pH) + C2gHgm(p1in,p1out,pH)
     )/(t1*t2);
   }
 
   double MatrixElement::tree_kin_Higgs_first(
       std::array<Particle, 2> const & incoming,
       std::vector<Particle> const & outgoing,
       bool check_momenta
   ) const {
     assert(outgoing.front().type == pid::Higgs);
     if(outgoing[1].type != pid::gluon) {
       assert(incoming.front().type == outgoing[1].type);
       return tree_kin_Higgs_between(incoming, outgoing, check_momenta);
     }
     const auto pH = to_HepLorentzVector(outgoing.front());
     const auto partons = tag_extremal_jet_partons(
         incoming,
         std::vector<Particle>(begin(outgoing) + 1, end(outgoing)),
         check_momenta
     );
 
     const auto pa = to_HepLorentzVector(incoming[0]);
     const auto pb = to_HepLorentzVector(incoming[1]);
 
     const auto p1 = to_HepLorentzVector(partons.front());
     const auto pn = to_HepLorentzVector(partons.back());
 
     const auto q0 = pa - p1 - pH;
 
     const double t1 = q0.m2();
     const double t2 = (pn - pb).m2();
 
     return MH2_forwardH(
         p1, pa, incoming[1].type, pn, pb, pH,
         t1, t2
     )*FKL_ladder_weight(
         begin(partons) + 1, end(partons) - 1,
         q0, pa, pb, p1, pn
     );
   }
 
   double MatrixElement::tree_kin_Higgs_last(
       std::array<Particle, 2> const & incoming,
       std::vector<Particle> const & outgoing,
       bool check_momenta
   ) const {
     assert(outgoing.back().type == pid::Higgs);
     if(outgoing[outgoing.size()-2].type != pid::gluon) {
       assert(incoming.back().type == outgoing[outgoing.size()-2].type);
       return tree_kin_Higgs_between(incoming, outgoing, check_momenta);
     }
     const auto pH = to_HepLorentzVector(outgoing.back());
     const auto partons = tag_extremal_jet_partons(
         incoming,
         std::vector<Particle>(begin(outgoing), end(outgoing) - 1),
         check_momenta
     );
 
     const auto pa = to_HepLorentzVector(incoming[0]);
     const auto pb = to_HepLorentzVector(incoming[1]);
 
     auto p1 = to_HepLorentzVector(partons.front());
     const auto pn = to_HepLorentzVector(partons.back());
 
     auto q0 = pa - p1;
 
     const double t1 = q0.m2();
     const double t2 = (pn + pH - pb).m2();
 
     return MH2_forwardH(
         pn, pb, incoming[0].type, p1, pa, pH,
         t2, t1
     )*FKL_ladder_weight(
         begin(partons) + 1, end(partons) - 1,
         q0, pa, pb, p1, pn
     );
   }
 
 
   double MatrixElement::tree_kin_Higgs_between(
       std::array<Particle, 2> const & incoming,
       std::vector<Particle> const & outgoing,
       bool check_momenta
   ) const {
     const auto the_Higgs = std::find_if(
         begin(outgoing), end(outgoing),
         [](Particle const & s){ return s.type == pid::Higgs; }
     );
     assert(the_Higgs != end(outgoing));
     const auto pH = to_HepLorentzVector(*the_Higgs);
     std::vector<Particle> partons(begin(outgoing), the_Higgs);
     partons.insert(end(partons), the_Higgs + 1, end(outgoing));
     partons = tag_extremal_jet_partons(incoming, partons, check_momenta);
 
     const auto pa = to_HepLorentzVector(incoming[0]);
     const auto pb = to_HepLorentzVector(incoming[1]);
 
     auto p1 = to_HepLorentzVector(
         partons[has_unob_gluon(incoming, outgoing)?1:0]
     );
     auto pn = to_HepLorentzVector(
         partons[partons.size() - (has_unof_gluon(incoming, outgoing)?2:1)]
     );
 
     auto first_after_Higgs = begin(partons) + (the_Higgs-begin(outgoing));
     assert(
         (first_after_Higgs == end(partons) && (
             has_unob_gluon(incoming, outgoing)
             || partons.back().type != pid::gluon
         ))
         || first_after_Higgs->rapidity() >= the_Higgs->rapidity()
     );
     assert(
         (first_after_Higgs == begin(partons) && (
             has_unof_gluon(incoming, outgoing)
             || partons.front().type != pid::gluon
         ))
         || (first_after_Higgs-1)->rapidity() <= the_Higgs->rapidity()
     );
     // always treat the Higgs as if it were in between the extremal FKL partons
     if(first_after_Higgs == begin(partons)) ++first_after_Higgs;
     else if(first_after_Higgs == end(partons)) --first_after_Higgs;
 
     // t-channel momentum before Higgs
     auto qH = pa;
     for(auto parton_it = begin(partons); parton_it != first_after_Higgs; ++parton_it){
       qH -= to_HepLorentzVector(*parton_it);
     }
 
     auto q0 = pa - p1;
     auto begin_ladder = begin(partons) + 1;
     auto end_ladder = end(partons) - 1;
 
     double current_factor;
     if(has_unob_gluon(incoming, outgoing)){
       current_factor = C_A*C_A/2.*ME_Higgs_current_unob( // 1/2 = "K_uno"
           incoming[0].type, incoming[1].type,
           pn, pb, to_HepLorentzVector(partons.front()), p1, pa, qH, qH - pH,
           param_.Higgs_coupling.mt,
           param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb
       );
       const auto p_unob = to_HepLorentzVector(partons.front());
       q0 -= p_unob;
       p1 += p_unob;
       ++begin_ladder;
     }
     else if(has_unof_gluon(incoming, outgoing)){
       current_factor = C_A*C_A/2.*ME_Higgs_current_unof( // 1/2 = "K_uno"
           incoming[0].type, incoming[1].type,
            to_HepLorentzVector(partons.back()), pn, pb, p1, pa, qH, qH - pH,
           param_.Higgs_coupling.mt,
           param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb
       );
       pn += to_HepLorentzVector(partons.back());
       --end_ladder;
     }
     else{
       current_factor = ME_Higgs_current(
           incoming[0].type, incoming[1].type,
           pn, pb, p1, pa, qH, qH - pH,
           param_.Higgs_coupling.mt,
           param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb
       );
     }
 
     const double ladder_factor = FKL_ladder_weight(
         begin_ladder, first_after_Higgs,
         q0, pa, pb, p1, pn
     )*FKL_ladder_weight(
         first_after_Higgs, end_ladder,
         qH - pH, pa, pb, p1, pn
     );
     return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
   }
 
   double MatrixElement::tree_param_partons(
       double alpha_s, double mur,
       std::vector<Particle> const & partons
   ) const{
     const double gs2 = 4.*M_PI*alpha_s;
     double wt = std::pow(gs2, partons.size());
     if(param_.log_correction){
       // use alpha_s(q_perp), evolved to mur
       assert(partons.size() >= 2);
       for(size_t i = 1; i < partons.size()-1; ++i){
         wt *= 1 + alpha_s/(2*M_PI)*beta0*log(mur/partons[i].p.perp());
       }
     }
     return wt;
   }
 
   double MatrixElement::tree_param(
       double mur,
       std::array<Particle, 2> const & incoming,
       std::vector<Particle> const & outgoing
   ) const{
     const double alpha_s = alpha_s_(mur);
     auto AWZH_boson = std::find_if(
         begin(outgoing), end(outgoing),
         [](auto const & p){return is_AWZH_boson(p);}
     );
     double AWZH_coupling = 1.;
     if(AWZH_boson != end(outgoing)){
       switch(AWZH_boson->type){
       case pid::Higgs: {
         AWZH_coupling = alpha_s*alpha_s;
         break;
       }
       // TODO
       case pid::Wp:{
         AWZH_coupling = alpha_w*alpha_w/2;
         break;
       }
       case pid::Wm:{
         AWZH_coupling = alpha_w*alpha_w/2;
         break;
       }
       case pid::photon:
       case pid::Z:
       default:
         throw std::logic_error("Emission of boson of unsupported type");
       }
     }
     if(has_unob_gluon(incoming, outgoing)){
       return AWZH_coupling*4*M_PI*alpha_s*tree_param_partons(
           alpha_s, mur, filter_partons({begin(outgoing) + 1, end(outgoing)})
       );
     }
     if(has_unof_gluon(incoming, outgoing)){
       return AWZH_coupling*4*M_PI*alpha_s*tree_param_partons(
           alpha_s, mur, filter_partons({begin(outgoing), end(outgoing) - 1})
       );
     }
     return AWZH_coupling*tree_param_partons(alpha_s, mur, filter_partons(outgoing));
   }
 
   double MatrixElement::tree(
       double mur,
       std::array<Particle, 2> const & incoming,
       std::vector<Particle> const & outgoing,
       std::unordered_map<int, std::vector<Particle>> const & decays,
       bool check_momenta
   ) const {
     return tree_param(mur, incoming, outgoing)*tree_kin(
                 incoming, outgoing, decays, check_momenta
     );
   }
 } // namespace RHEJ
diff --git a/src/currents.cc b/src/currents.cc
index c6377b3..9abcce8 100644
--- a/src/currents.cc
+++ b/src/currents.cc
@@ -1,3694 +1,3694 @@
 //////////////////////////////////////////////////
 //////////////////////////////////////////////////
 // This source code is Copyright (2012) of      //
 //  Jeppe R. Andersen and Jennifer M. Smillie   //
 // and is distributed under the                 //
 // Gnu Public License version 2                 //
 // http://www.gnu.org/licenses/gpl-2.0.html     //
 // You are allowed to distribute and alter the  //
 // source under the conditions of the GPLv2     //
 // as long as this copyright notice             //
 // is unaltered and distributed with the source //
 // Any use should comply with the               //
 //             MCNET GUIDELINES                 //
 //    for Event Generator Authors and Users     //
 // as distributed with this source code         //
 //////////////////////////////////////////////////
 //////////////////////////////////////////////////
 #include "RHEJ/currents.hh"
 //#include "ZJets/Flags.h"
 #include "RHEJ/Constants.hh"
 #include "RHEJ/utility.hh"
 #include "RHEJ/PDG_codes.hh"
 
 const COM looprwfactor = (COM(0.,1.)*M_PI*M_PI)/pow((2.*M_PI),4);
 //const double HVE = 246.21845810181637;
 
 #ifdef RHEJ_BUILD_WITH_QCDLOOP
 #include "qcdloop/qcdloop.h"
 #endif
 
 #include <iostream>
 
 namespace {
   // Loop integrals
   #ifdef RHEJ_BUILD_WITH_QCDLOOP
 
   COM B0DD(CLHEP::HepLorentzVector q, double mq)
   {
     static std::vector<std::complex<double>> result(3);
     static auto ql_B0 = [](){
       ql::Bubble<std::complex<double>,double,double> ql_B0;
       ql_B0.setCacheSize(100);
       return ql_B0;
     }();
     static std::vector<double> masses(2);
     static std::vector<double> momenta(1);
     for(auto & m: masses) m = mq*mq;
     momenta.front() = q.m2();
     ql_B0.integral(result, 1, masses, momenta);
     return result[0];
   }
   COM C0DD(CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mq)
   {
     static std::vector<std::complex<double>> result(3);
     static auto ql_C0 = [](){
       ql::Triangle<std::complex<double>,double,double> ql_C0;
       ql_C0.setCacheSize(100);
       return ql_C0;
     }();
     static std::vector<double> masses(3);
     static std::vector<double> momenta(3);
     for(auto & m: masses) m = mq*mq;
     momenta[0] = q1.m2();
     momenta[1] = q2.m2();
     momenta[2] = (q1+q2).m2();
     ql_C0.integral(result, 1, masses, momenta);
     return result[0];
   }
   COM D0DD(CLHEP::HepLorentzVector q1,CLHEP::HepLorentzVector q2, CLHEP::HepLorentzVector q3, double mq)
   {
     static std::vector<std::complex<double>> result(3);
     static auto ql_D0 = [](){
       ql::Box<std::complex<double>,double,double> ql_D0;
       ql_D0.setCacheSize(100);
       return ql_D0;
     }();
     static std::vector<double> masses(4);
     static std::vector<double> momenta(6);
     for(auto & m: masses) m = mq*mq;
     momenta[0] = q1.m2();
     momenta[1] = q2.m2();
     momenta[2] = q3.m2();
     momenta[3] = (q1+q2+q3).m2();
     momenta[4] = (q1+q2).m2();
     momenta[5] = (q2+q3).m2();
     ql_D0.integral(result, 1, masses, momenta);
     return result[0];
   }
 
   COM A1(CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt)
   // As given in Eq. (B.2) of VDD
   {
     double q12,q22,Q2;
     CLHEP::HepLorentzVector Q;
     double Delta3,mt2;
     COM ans(COM(0.,0.));
 
     q12=q1.m2();
     q22=q2.m2();
     Q=-q1-q2; // Define all momenta ingoing as in appendix of VDD
     Q2=Q.m2();
     // std::cout<<"Higgs mass? : "<<sqrt(Q2)<<std::endl;
 
     Delta3=q12*q12+q22*q22+Q2*Q2-2*q12*q22-2*q12*Q2-2*q22*Q2;
     if (mt < 0.)
       std::cerr<<"Problem in A1! mt = "<<mt<<std::endl;
     mt2=mt*mt;
 
     ans=looprwfactor*COM(0,-1)*C0DD(q1,q2,mt)*(4.*mt2/Delta3*(Q2-q12-q22)-1.-4.*q12*q22/Delta3-12.*q12*q22*Q2/Delta3/Delta3*(q12+q22-Q2));
     ans=ans-looprwfactor*COM(0,-1)*(B0DD(q2,mt)-B0DD(Q,mt))*(2.*q22/Delta3+12.*q12*q22/Delta3/Delta3*(q22-q12+Q2));
     ans=ans-looprwfactor*COM(0,-1)*(B0DD(q1,mt)-B0DD(Q,mt))*(2.*q12/Delta3+12.*q12*q22/Delta3/Delta3*(q12-q22+Q2));
     ans=ans-2./Delta3/16/M_PI/M_PI*(q12+q22-Q2);
 
     //cout << "q12, q22= "<<q12<<" "<<q22<<" "<<endl;
 
     return ans;
 
   }
 
 
   COM A2(CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt)
   // As given in Eq. (B.2) of VDD, but with high energy limit
   // of invariants taken.
   {
     double q12,q22,Q2;
     CLHEP::HepLorentzVector Q;
     double Delta3,mt2;
     COM ans(COM(0.,0.));
 
     if (mt < 0.)
       std::cerr<<"Problem in A2! mt = "<<mt<<std::endl;
     mt2=mt*mt;
 
     q12=q1.m2();
     q22=q2.m2();
     Q=-q1-q2; // Define all momenta ingoing as in appendix of VDD
     Q2=Q.m2();
     // std::cout<<"Higgs mass Square? : "<<Q2<<std::endl;
 
     Delta3=q12*q12+q22*q22+Q2*Q2-2*q12*q22-2*q12*Q2-2*q22*Q2;
     ans=looprwfactor*COM(0,-1)*C0DD(q1,q2,mt)*(2.*mt2+1./2.*(q12+q22-Q2)+2.*q12*q22*Q2/Delta3);
     ans=ans+looprwfactor*COM(0,-1)*(B0DD(q2,mt)-B0DD(Q,mt))*q22*(q22-q12-Q2)/Delta3;
     ans=ans+looprwfactor*COM(0,-1)*(B0DD(q1,mt)-B0DD(Q,mt))*q12*(q12-q22-Q2)/Delta3+1./16/M_PI/M_PI;
 
     return ans;
   }
 
 #else // no QCDloop
 
   COM A1(CLHEP::HepLorentzVector, CLHEP::HepLorentzVector, double) {
     throw std::logic_error{"A1 called without QCDloop support"};
   }
 
   COM A2(CLHEP::HepLorentzVector, CLHEP::HepLorentzVector, double) {
     throw std::logic_error{"A2 called without QCDloop support"};
   }
 
 #endif
 
   void to_current(const CLHEP::HepLorentzVector & q, current & ret){
     ret[0]=q.e();
     ret[1]=q.x();
     ret[2]=q.y();
     ret[3]=q.z();
   }
 
   constexpr double C_A = 3.;
   constexpr double C_F = 4./3.;
   using ParticleID = RHEJ::pid::ParticleID;
 
   // Colour acceleration multiplier for gluons see eq. (7) in arXiv:0910.5113
   // TODO: this is not a current and should be moved somewhere else
   double K_g(double p1minus, double paminus) {
-    return 1./2.*(p1minus/paminus + paminus/p1minus)*(C_A - 1/C_A) + 1/C_A;
+    return 1./2.*(p1minus/paminus + paminus/p1minus)*(C_A - 1./C_A) + 1./C_A;
   }
   double K_g(
       CLHEP::HepLorentzVector const & pout,
       CLHEP::HepLorentzVector const & pin
   ) {
     if(pin.z() > 0) return K_g(pout.plus(), pin.plus());
     return K_g(pout.minus(), pin.minus());
   }
 
 } // namespace anonymous
 
 
 CCurrent CCurrent::operator+(const CCurrent& other)
 {
     COM result_c0=c0 + other.c0;
     COM result_c1=c1 + other.c1;
     COM result_c2=c2 + other.c2;
     COM result_c3=c3 + other.c3;
 
     return CCurrent(result_c0,result_c1,result_c2,result_c3);
 }
 
 CCurrent CCurrent::operator-(const CCurrent& other)
 {
     COM result_c0=c0 - other.c0;
     COM result_c1=c1 - other.c1;
     COM result_c2=c2 - other.c2;
     COM result_c3=c3 - other.c3;
 
     return CCurrent(result_c0,result_c1,result_c2,result_c3);
 }
 
 CCurrent CCurrent::operator*(const double x)
 {
     COM result_c0=x*CCurrent::c0;
     COM result_c1=x*CCurrent::c1;
     COM result_c2=x*CCurrent::c2;
     COM result_c3=x*CCurrent::c3;
 
     return CCurrent(result_c0,result_c1,result_c2,result_c3);
 }
 
 CCurrent CCurrent::operator/(const double x)
 {
     COM result_c0=CCurrent::c0/x;
     COM result_c1=CCurrent::c1/x;
     COM result_c2=CCurrent::c2/x;
     COM result_c3=CCurrent::c3/x;
 
     return CCurrent(result_c0,result_c1,result_c2,result_c3);
 }
 
 CCurrent CCurrent::operator*(const COM x)
 {
     COM result_c0=x*CCurrent::c0;
     COM result_c1=x*CCurrent::c1;
     COM result_c2=x*CCurrent::c2;
     COM result_c3=x*CCurrent::c3;
 
     return CCurrent(result_c0,result_c1,result_c2,result_c3);
 }
 
 CCurrent CCurrent::operator/(const COM x)
 {
     COM result_c0=(CCurrent::c0)/x;
     COM result_c1=(CCurrent::c1)/x;
     COM result_c2=(CCurrent::c2)/x;
     COM result_c3=(CCurrent::c3)/x;
 
     return CCurrent(result_c0,result_c1,result_c2,result_c3);
 }
 
 std::ostream& operator <<(std::ostream& os, const CCurrent& cur)
 {
     os << "("<<cur.c0<< " ; "<<cur.c1<<" , "<<cur.c2<<" , "<<cur.c3<<")";
     return os;
 }
 
 CCurrent operator * ( double x, CCurrent& m)
 {
     return m*x;
 }
 
 CCurrent operator * ( COM x, CCurrent& m)
 {
     return m*x;
 }
 
 CCurrent operator / ( double x, CCurrent& m)
 {
     return m/x;
 }
 
 CCurrent operator / ( COM x, CCurrent& m)
 {
     return m/x;
 }
 
 COM CCurrent::dot(CLHEP::HepLorentzVector p1)
 {
     //  Current goes (E,px,py,pz)
     //  std::cout<<"current = ("<<c0<<","<<c1<<","<<c2<<","<<c3<<")\n";
     //  Vector goes (px,py,pz,E)
     //  std::cout<<"vector = ("<<p1[0]<<","<<p1[1]<<","<<p1[2]<<","<<p1[3]<<")\n";
     return p1[3]*c0-p1[0]*c1-p1[1]*c2-p1[2]*c3;
 }
 
 COM CCurrent::dot(CCurrent p1)
 {
     return p1.c0*c0-p1.c1*c1-p1.c2*c2-p1.c3*c3;
 }
 
 
 
 void j (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pin, bool helin,current &cur) {
 
   cur[0]=0.;
   cur[1]=0.;
   cur[2]=0.;
   cur[3]=0.;
 
   double sqpop=sqrt(pout.plus());
   double sqpom=sqrt(pout.minus());
   COM poperp=pout.x()+COM(0,1)*pout.y();
 
   if (helout!=helin) {
     std::cerr<< "void j : Non-matching helicities at line " << __LINE__ << std::endl;
   } else if (helout==false) { // negative helicity
     if (pin.plus()>pin.minus()) { // if forward
       double sqpip=sqrt(pin.plus());
       cur[0]=sqpop*sqpip;
       cur[1]=sqpom*sqpip*poperp/abs(poperp);
       cur[2]=-COM(0,1)*cur[1];
       cur[3]=cur[0];
     } else { // if backward
       double sqpim=sqrt(pin.minus());
       cur[0]=-sqpom*sqpim*poperp/abs(poperp);
       cur[1]=-sqpim*sqpop;
       cur[2]=COM(0,1)*cur[1];
       cur[3]=-cur[0];
     }
   } else { // positive helicity
     if (pin.plus()>pin.minus()) { // if forward
       double sqpip=sqrt(pin.plus());
       cur[0]=sqpop*sqpip;
       cur[1]=sqpom*sqpip*conj(poperp)/abs(poperp);
       cur[2]=COM(0,1)*cur[1];
       cur[3]=cur[0];
     } else { // if backward
       double sqpim=sqrt(pin.minus());
       cur[0]=-sqpom*sqpim*conj(poperp)/abs(poperp);
       cur[1]=-sqpim*sqpop;
       cur[2]=-COM(0,1)*cur[1];
       cur[3]=-cur[0];
     }
   }
 }
 
 CCurrent j (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pin, bool helin)
 {
     COM cur[4];
 
     cur[0]=0.;
     cur[1]=0.;
     cur[2]=0.;
     cur[3]=0.;
 
     double sqpop=sqrt(pout.plus());
     double sqpom=sqrt(pout.minus());
     COM poperp=pout.x()+COM(0,1)*pout.y();
 
     if (helout!=helin) {
         std::cerr<< "void j : Non-matching helicities\n";
     } else if (helout==false) { // negative helicity
         if (pin.plus()>pin.minus()) { // if forward
             double sqpip=sqrt(pin.plus());
             cur[0]=sqpop*sqpip;
             cur[1]=sqpom*sqpip*poperp/abs(poperp);
             cur[2]=-COM(0,1)*cur[1];
             cur[3]=cur[0];
         } else { // if backward
             double sqpim=sqrt(pin.minus());
             cur[0]=-sqpom*sqpim*poperp/abs(poperp);
             cur[1]=-sqpim*sqpop;
             cur[2]=COM(0,1)*cur[1];
             cur[3]=-cur[0];
         }
     } else { // positive helicity
         if (pin.plus()>pin.minus()) { // if forward
             double sqpip=sqrt(pin.plus());
             cur[0]=sqpop*sqpip;
             cur[1]=sqpom*sqpip*conj(poperp)/abs(poperp);
             cur[2]=COM(0,1)*cur[1];
             cur[3]=cur[0];
         } else { // if backward
             double sqpim=sqrt(pin.minus());
             cur[0]=-sqpom*sqpim*conj(poperp)/abs(poperp);
             cur[1]=-sqpim*sqpop;
             cur[2]=-COM(0,1)*cur[1];
             cur[3]=-cur[0];
         }
     }
     CCurrent temp(cur[0],cur[1],cur[2],cur[3]);
     return temp;
 }
 
 CCurrent jio (CLHEP::HepLorentzVector pin, bool helin, CLHEP::HepLorentzVector pout, bool helout)
 {
     COM cur[4];
 
     cur[0]=0.;
     cur[1]=0.;
     cur[2]=0.;
     cur[3]=0.;
 
     double sqpop=sqrt(pout.plus());
     double sqpom=sqrt(pout.minus());
     COM poperp=pout.x()+COM(0,1)*pout.y();
 
     if (helout!=helin) {
         std::cerr<< "void j : Non-matching helicities\n";
     } else if (helout==false) { // negative helicity
         if (pin.plus()>pin.minus()) { // if forward
             double sqpip=sqrt(pin.plus());
             cur[0]=sqpop*sqpip;
             cur[1]=sqpom*sqpip*conj(poperp)/abs(poperp);
             cur[2]=COM(0,1)*cur[1];
             cur[3]=cur[0];
         } else { // if backward
             double sqpim=sqrt(pin.minus());
             cur[0]=-sqpom*sqpim*conj(poperp)/abs(poperp);
             cur[1]=-sqpim*sqpop;
             cur[2]=-COM(0,1)*cur[1];
             cur[3]=-cur[0];
         }
     } else { // positive helicity
         if (pin.plus()>pin.minus()) { // if forward
             double sqpip=sqrt(pin.plus());
             cur[0]=sqpop*sqpip;
             cur[1]=sqpom*sqpip*poperp/abs(poperp);
             cur[2]=-COM(0,1)*cur[1];
             cur[3]=cur[0];
         } else { // if backward
             double sqpim=sqrt(pin.minus());
             cur[0]=-sqpom*sqpim*poperp/abs(poperp);
             cur[1]=-sqpim*sqpop;
             cur[2]=COM(0,1)*cur[1];
             cur[3]=-cur[0];
         }
     }
     CCurrent temp(cur[0],cur[1],cur[2],cur[3]);
     return temp;
 }
 
 
 // Current for <incoming state | mu | outgoing state>
 void jio(HLV pin, bool helin, HLV pout, bool helout, current &cur) {
 
   cur[0] = 0.0;
   cur[1] = 0.0;
   cur[2] = 0.0;
   cur[3] = 0.0;
   if(helin!=helout){
     std::cout<<__LINE__<<" "<<__FILE__<<std::endl;
   }
   double sqpop  = sqrt(pout.plus());
   double sqpom  = sqrt(pout.minus());
   COM    poperp = pout.x() + COM(0, 1) * pout.y();
 
   if (helout == false) {
 
     if (pin.plus() > pin.minus()) { // if forward
       double sqpip=sqrt(pin.plus());
       cur[0] = sqpop * sqpip;
       cur[1] = sqpom * sqpip * conj(poperp) / abs(poperp);
       cur[2] = COM(0,1) * cur[1];
       cur[3] = cur[0];
     }
     else {
       double sqpim = sqrt(pin.minus());
       cur[0] = -sqpom * sqpim * conj(poperp) / abs(poperp);
       cur[1] = -sqpim * sqpop;
       cur[2] = -COM(0,1) * cur[1];
       cur[3] = -cur[0];
     }
   }
 
   else {
     if (pin.plus() > pin.minus()) { // if forward
       double sqpip = sqrt(pin.plus());
       cur[0] = sqpop * sqpip;
       cur[1] = sqpom * sqpip*poperp/abs(poperp);
       cur[2] = -COM(0,1)*cur[1];
       cur[3] = cur[0];
     }
     else {
       double sqpim = sqrt(pin.minus());
       cur[0] = -sqpom * sqpim * poperp/abs(poperp);
       cur[1] = -sqpim * sqpop;
       cur[2] = COM(0,1)*cur[1];
       cur[3] = -cur[0];
     }
   }
 }
 
 
 // Current for <outgoing state | mu | outgoing state>
 void joo(HLV pi, bool heli, HLV pj, bool helj, current &cur) {
 
   // Zero our current
   cur[0] = 0.0;
   cur[1] = 0.0;
   cur[2] = 0.0;
   cur[3] = 0.0;
   if(helj){
     std::cout<<__LINE__<<" "<<__FILE__<<std::endl;
   }
   // If positive helicity swap momenta
   if (heli == true) {
     HLV dummy;
     dummy = pi;
     pi = pj;
     pj = dummy;
   }
 
   double sqpjp = sqrt(pj.plus());
   double sqpjm = sqrt(pj.minus());
   double sqpip = sqrt(pi.plus());
   double sqpim = sqrt(pi.minus());
 
   COM piperp = pi.x() + COM(0,1) * pi.y();
   COM pjperp = pj.x() + COM(0,1) * pj.y();
   COM phasei = piperp / abs(piperp);
   COM phasej = pjperp / abs(pjperp);
 
   cur[0] = sqpim * sqpjm * phasei * conj(phasej) + sqpip * sqpjp;
   cur[1] = sqpim * sqpjp * phasei + sqpip * sqpjm * conj(phasej);
   cur[2] = -COM(0, 1) * (sqpim * sqpjp * phasei - sqpip * sqpjm * conj(phasej));
   cur[3] = -sqpim * sqpjm * phasei * conj(phasej) + sqpip * sqpjp;
 }
 
 CCurrent joo (CLHEP::HepLorentzVector pi, bool heli, CLHEP::HepLorentzVector pj, bool helj)
 {
     COM cur[4];
 
     if (heli!=helj) {
         std::cerr<< "void j : Non-matching helicities\n";
     } else if (heli==true) { // negative helicity
         CLHEP::HepLorentzVector dummy;
         dummy=pi;
         pi=pj;
         pj=dummy;
     }
     double sqpjp=sqrt(pj.plus());
     double sqpjm=sqrt(pj.minus());
     double sqpip=sqrt(pi.plus());
     double sqpim=sqrt(pi.minus());
     COM piperp=pi.x()+COM(0,1)*pi.y();
     COM pjperp=pj.x()+COM(0,1)*pj.y();
     COM phasei=piperp/abs(piperp);
     COM phasej=pjperp/abs(pjperp);
 
     cur[0]=sqpim*sqpjm*phasei*conj(phasej)+sqpip*sqpjp;
     cur[1]=sqpim*sqpjp*phasei+sqpip*sqpjm*conj(phasej);
     cur[2]=-COM(0,1)*(sqpim*sqpjp*phasei-sqpip*sqpjm*conj(phasej));
     cur[3]=-sqpim*sqpjm*phasei*conj(phasej)+sqpip*sqpjp;
 
     CCurrent temp(cur[0],cur[1],cur[2],cur[3]);
     return temp;
 }
 
 
 // Current Functions
 // Current for <outgoing state | mu | incoming state>
 void joi(HLV pout, bool helout, HLV pin, bool helin, current &cur) {
 
   cur[0] = 0.0;
   cur[1] = 0.0;
   cur[2] = 0.0;
   cur[3] = 0.0;
   if(helin){
     std::cout<<__LINE__<<" "<<__FILE__<<std::endl;
   }
   double sqpop  = sqrt(pout.plus());
   double sqpom  = sqrt(pout.minus());
   COM    poperp = pout.x() + COM(0, 1) * pout.y();
 
   if (helout == false) {
 
     if (pin.plus() > pin.minus()) { // if forward
       double sqpip=sqrt(pin.plus());
       cur[0] = sqpop * sqpip;
       cur[1] = sqpom * sqpip * poperp/abs(poperp);
       cur[2] = -COM(0,1)*cur[1];
       cur[3] = cur[0];
     }
     else {
       double sqpim = sqrt(pin.minus());
       cur[0] = -sqpom*sqpim*poperp/abs(poperp);
       cur[1] = -sqpim*sqpop;
       cur[2] = COM(0,1)*cur[1];
       cur[3] = -cur[0];
     }
   }
   else {
     if (pin.plus() > pin.minus()) { // if forward
       double sqpip = sqrt(pin.plus());
       cur[0] = sqpop * sqpip;
       cur[1] = sqpom * sqpip*conj(poperp)/abs(poperp);
       cur[2] = COM(0,1)*cur[1];
       cur[3] = cur[0];
     }
     else {
       double sqpim = sqrt(pin.minus());
       cur[0] = -sqpom * sqpim * conj(poperp)/abs(poperp);
       cur[1] = -sqpim * sqpop;
       cur[2] = -COM(0,1)*cur[1];
       cur[3] = -cur[0];
     }
   }
 }
 
 namespace {
   /// @TODO unused function
   // double jM2 (CLHEP::HepLorentzVector p1out, bool hel1out, CLHEP::HepLorentzVector p1in, bool hel1in, CLHEP::HepLorentzVector p2out, bool hel2out, CLHEP::HepLorentzVector p2in, bool hel2in)
   // {
   //   CLHEP::HepLorentzVector q1=p1in-p1out;
   //   CLHEP::HepLorentzVector q2=-(p2in-p2out);
   //   current C1,C2;
   //   j (p1out,hel1out,p1in,hel1in, C1);
   //   j (p2out,hel2out,p2in,hel2in, C2);
 
   //   std::cout << "# From Currents, C1 : ("<<C1[0]<<","<<C1[1]<<","<<C1[2]<<","<<C1[3]<<"\n";
   //   std::cout << "# From Currents, C2 : ("<<C2[0]<<","<<C2[1]<<","<<C2[2]<<","<<C2[3]<<"\n";
 
   //   COM M=cdot(C1,C2);
 
   //   return (M*conj(M)).real()/(q1.m2()*q2.m2());
   // }
 
   void jW (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pe, bool hele, CLHEP::HepLorentzVector pnu, bool helnu, CLHEP::HepLorentzVector pin, bool helin, current cur)
   {
     // NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is anti-lepton(5)
     // Need to swap e and nu for events with W- --> e- nubar!
     if (helin==helout && hele==helnu) {
       CLHEP::HepLorentzVector qa=pout+pe+pnu;
       CLHEP::HepLorentzVector qb=pin-pe-pnu;
       double ta(qa.m2()),tb(qb.m2());
 
       current t65,vout,vin,temp2,temp3,temp5;
       joo(pnu,helnu,pe,hele,t65);
       vout[0]=pout.e();
       vout[1]=pout.x();
       vout[2]=pout.y();
       vout[3]=pout.z();
       vin[0]=pin.e();
       vin[1]=pin.x();
       vin[2]=pin.y();
       vin[3]=pin.z();
 
       COM brac615=cdot(t65,vout);
       COM brac645=cdot(t65,vin);
 
       // prod1565 and prod6465 are zero for Ws (not Zs)!!
       // noalias(temp)=prod(trans(CurrentOutOut(pout,helout,pnu,helout)),metric);
       joo(pout,helout,pnu,helout,temp2);
       // noalias(temp2)=prod(temp,ctemp);
       COM prod1665=cdot(temp2,t65);
       // noalias(temp)=prod(trans(Current(pe,helin,pin,helin)),metric);
       // noalias(temp2)=prod(temp,ctemp);
       j(pe,helin,pin,helin,temp3);
       COM prod5465=cdot(temp3,t65);
       // noalias(temp)=prod(trans(Current(pnu,helin,pin,helin)),metric);
       // noalias(temp2)=prod(temp,ctemp);
 
       joo(pout,helout,pe,helout,temp2);
       j(pnu,helnu,pin,helin,temp3);
       j(pout,helout,pin,helin,temp5);
 
       current term1,term2,term3,sum;
       cmult(2.*brac615/ta+2.*brac645/tb,temp5,term1);
       cmult(prod1665/ta,temp3,term2);
       cmult(-prod5465/tb,temp2,term3);
 
      //    cur=((2.*brac615*Current(pout,helout,pin,helin)+prod1565*Current(pe,helin,pin,helin)+prod1665*Current(pnu,helin,pin,helin))/ta + (2.*brac645*Current(pout,helout,pin,helin)-prod5465*CurrentOutOut(pout,helout,pe,helout)-prod6465*CurrentOutOut(pout,helout,pnu,helout))/tb);
       //    cur=((2.*brac615*temp5+prod1565*temp3+prod1665*temp4)/ta + (2.*brac645*temp5-prod5465*temp1-prod6465*temp2)/tb);
       cadd(term1,term2,term3,sum);
       //    std::cout<<"sum: ("<<sum[0]<<","<<sum[1]<<","<<sum[2]<<","<<sum[3]<<")\n";
       cur[0]=sum[0];
       cur[1]=sum[1];
       cur[2]=sum[2];
       cur[3]=sum[3];
     }
   }
 
   void jWbar (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pe, bool hele, CLHEP::HepLorentzVector pnu, bool helnu, CLHEP::HepLorentzVector pin, bool helin, current cur)
   {
     // NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is anti-lepton(5)
     // Need to swap e and nu for events with W- --> e- nubar!
     if (helin==helout && hele==helnu) {
       CLHEP::HepLorentzVector qa=pout+pe+pnu;
       CLHEP::HepLorentzVector qb=pin-pe-pnu;
       double ta(qa.m2()),tb(qb.m2());
 
       current t65,vout,vin,temp2,temp3,temp5;
       joo(pnu,helnu,pe,hele,t65);
       vout[0]=pout.e();
       vout[1]=pout.x();
       vout[2]=pout.y();
       vout[3]=pout.z();
       vin[0]=pin.e();
       vin[1]=pin.x();
       vin[2]=pin.y();
       vin[3]=pin.z();
 
       COM brac615=cdot(t65,vout);
       COM brac645=cdot(t65,vin);
 
       // prod1565 and prod6465 are zero for Ws (not Zs)!!
       joo(pe,helout,pout,helout,temp2);  //  temp2 is <5|alpha|1>
       COM prod5165=cdot(temp2,t65);
       jio(pin,helin,pnu,helin,temp3);      // temp3 is <4|alpha|6>
       COM prod4665=cdot(temp3,t65);
 
       joo(pnu,helout,pout,helout,temp2);  // temp2 is now <6|mu|1>
       jio(pin,helin,pe,helin,temp3);        // temp3 is now <4|mu|5>
       jio(pin,helin,pout,helout,temp5);     //  temp5 is <4|mu|1>
 
       current term1,term2,term3,sum;
       cmult(-2.*brac615/ta-2.*brac645/tb,temp5,term1);
       cmult(-prod5165/ta,temp3,term2);
       cmult(prod4665/tb,temp2,term3);
 
      //    cur=((2.*brac615*Current(pout,helout,pin,helin)+prod1565*Current(pe,helin,pin,helin)+prod1665*Current(pnu,helin,pin,helin))/ta + (2.*brac645*Current(pout,helout,pin,helin)-prod5465*CurrentOutOut(pout,helout,pe,helout)-prod6465*CurrentOutOut(pout,helout,pnu,helout))/tb);
       //    cur=((2.*brac615*temp5+prod1565*temp3+prod1665*temp4)/ta + (2.*brac645*temp5-prod5465*temp1-prod6465*temp2)/tb);
       cadd(term1,term2,term3,sum);
       //    std::cout<<"term1: ("<<temp5[0]<<"  "<<temp5[1]<<"  "<<temp5[2]<<"  "<<temp5[3]<<")"<<std::endl;
       //    std::cout<<"sum: ("<<sum[0]<<","<<sum[1]<<","<<sum[2]<<","<<sum[3]<<")\n";
       cur[0]=sum[0];
       cur[1]=sum[1];
       cur[2]=sum[2];
       cur[3]=sum[3];
     }
   }
 } // namespace anonymous
 
 double jMWqQ (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
 // Calculates the square of the current contractions for qQ->qenuQ scattering
 // p1: quark (with W emittance)
 // p2: Quark
 {
   current mj1m,mj2p,mj2m;
   CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
   CLHEP::HepLorentzVector q2=-(p2in-p2out);
 
   jW(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
   j(p2out,true,p2in,true,mj2p);
   j(p2out,false,p2in,false,mj2m);
 
   // std::cout<<"jMW1: ("<<mj1m[0]<<","<<mj1m[1]<<","<<mj1m[2]<<","<<mj1m[3]<<")\n";
   // std::cout<<"jMW2: ("<<mj2p[0]<<","<<mj2p[1]<<","<<mj2p[2]<<","<<mj2p[3]<<")\n";
   // std::cout<<"jMW3: ("<<mj2m[0]<<","<<mj2m[1]<<","<<mj2m[2]<<","<<mj2m[3]<<")\n";
 
   // mj1m.mj2p
 
   COM Mmp=cdot(mj1m,mj2p);
 
   // mj1m.mj2m
   COM Mmm=cdot(mj1m,mj2m);
 
   // sum of spinor strings ||^2
   double a2Mmp=abs2(Mmp);
   double a2Mmm=abs2(Mmm);
 
 //   // Leave division by colour and Helicity avg until Tree files
   // Leave multi. of couplings to later
   // Multiply by Cf^2
   return (4./3.)*(4./3.)*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2());
 
 }
 
 double jMWqQbar (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
 // Calculates the square of the current contractions for qQ->qenuQ scattering
 // p1: quark (with W emittance)
 // p2: Quark
 {
   current mj1m,mj2p,mj2m;
   CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
   CLHEP::HepLorentzVector q2=-(p2in-p2out);
 
   jW(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
   jio(p2in,true,p2out,true,mj2p);
   jio(p2in,false,p2out,false,mj2m);
 
   // std::cout<<"jMW1: ("<<mj1m[0]<<","<<mj1m[1]<<","<<mj1m[2]<<","<<mj1m[3]<<")\n";
   // std::cout<<"jMW2: ("<<mj2p[0]<<","<<mj2p[1]<<","<<mj2p[2]<<","<<mj2p[3]<<")\n";
   // std::cout<<"jMW3: ("<<mj2m[0]<<","<<mj2m[1]<<","<<mj2m[2]<<","<<mj2m[3]<<")\n";
 
   // mj1m.mj2p
 
   COM Mmp=cdot(mj1m,mj2p);
 
   // mj1m.mj2m
   COM Mmm=cdot(mj1m,mj2m);
 
   // sum of spinor strings ||^2
   double a2Mmp=abs2(Mmp);
   double a2Mmm=abs2(Mmm);
 
 //   // Leave division by colour and Helicity avg until Tree files
   // Leave multi. of couplings to later
   // Multiply by Cf^2
   return (4./3.)*(4./3.)*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2());
 
 }
 
 double jMWqbarQ (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
 // Calculates the square of the current contractions for qQ->qenuQ scattering
 // p1: quark (with W emittance)
 // p2: Quark
 {
   current mj1m,mj2p,mj2m;
   CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
   CLHEP::HepLorentzVector q2=-(p2in-p2out);
 
   jWbar(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
   j(p2out,true,p2in,true,mj2p);
   j(p2out,false,p2in,false,mj2m);
 
   // std::cout<<"jMW1: ("<<mj1m[0]<<","<<mj1m[1]<<","<<mj1m[2]<<","<<mj1m[3]<<")\n";
   // std::cout<<"jMW2: ("<<mj2p[0]<<","<<mj2p[1]<<","<<mj2p[2]<<","<<mj2p[3]<<")\n";
   // std::cout<<"jMW3: ("<<mj2m[0]<<","<<mj2m[1]<<","<<mj2m[2]<<","<<mj2m[3]<<")\n";
 
   // mj1m.mj2p
 
   COM Mmp=cdot(mj1m,mj2p);
 
   // mj1m.mj2m
   COM Mmm=cdot(mj1m,mj2m);
 
   // sum of spinor strings ||^2
   double a2Mmp=abs2(Mmp);
   double a2Mmm=abs2(Mmm);
 
 //   // Leave division by colour and Helicity avg until Tree files
   // Leave multi. of couplings to later
   // Multiply by Cf^2
   return (4./3.)*(4./3.)*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2());
 
 }
 
 double jMWqbarQbar (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
 // Calculates the square of the current contractions for qQ->qenuQ scattering
 // p1: quark (with W emittance)
 // p2: Quark
 {
   current mj1m,mj2p,mj2m;
   CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
   CLHEP::HepLorentzVector q2=-(p2in-p2out);
 
   jWbar(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
   jio(p2in,true,p2out,true,mj2p);
   jio(p2in,false,p2out,false,mj2m);
 
   // std::cout<<"jMW1: ("<<mj1m[0]<<","<<mj1m[1]<<","<<mj1m[2]<<","<<mj1m[3]<<")\n";
   // std::cout<<"jMW2: ("<<mj2p[0]<<","<<mj2p[1]<<","<<mj2p[2]<<","<<mj2p[3]<<")\n";
   // std::cout<<"jMW3: ("<<mj2m[0]<<","<<mj2m[1]<<","<<mj2m[2]<<","<<mj2m[3]<<")\n";
 
   // mj1m.mj2p
 
   COM Mmp=cdot(mj1m,mj2p);
 
   // mj1m.mj2m
   COM Mmm=cdot(mj1m,mj2m);
 
   // sum of spinor strings ||^2
   double a2Mmp=abs2(Mmp);
   double a2Mmm=abs2(Mmm);
 
 //   // Leave division by colour and Helicity avg until Tree files
   // Leave multi. of couplings to later
   // Multiply by Cf^2
   return (4./3.)*(4./3.)*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2());
 
 }
 
 double jMWqg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
 // Calculates the square of the current contractions for qg->qenug scattering
 // p1: quark
 // p2: gluon
 {
   CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
   CLHEP::HepLorentzVector q2=-(p2in-p2out);
   current mj1m,mj2p,mj2m;
 
   jW(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
 
   j(p2out,true,p2in,true,mj2p);
   j(p2out,false,p2in,false,mj2m);
 
   // mj1m.mj2p
 
   COM Mmp=cdot(mj1m,mj2p);
 
   // mj1m.mj2m
   COM Mmm=cdot(mj1m,mj2m);
 
   const double K = K_g(p2out, p2in);
 
   // sum of spinor strings ||^2
   double a2Mmp=abs2(Mmp);
   double a2Mmm=abs2(Mmm);
   double sst = K/C_A*(a2Mmp+a2Mmm);
   // double sstsave=sst;
 
 //   // Leave division by colour and Helicity avg until Tree files
   // Leave multi. of couplings to later
   // Multiply by Cf*Ca=4
   return 4.*sst/(q1.m2()*q2.m2());
 
 }
 
 double jMWqbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
 // Calculates the square of the current contractions for qg->qenug scattering
 // p1: quark
 // p2: gluon
 {
   CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
   CLHEP::HepLorentzVector q2=-(p2in-p2out);
   current mj1m,mj2p,mj2m;
 
   jWbar(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
 
   j(p2out,true,p2in,true,mj2p);
   j(p2out,false,p2in,false,mj2m);
 
   // mj1m.mj2p
 
   COM Mmp=cdot(mj1m,mj2p);
 
   // mj1m.mj2m
   COM Mmm=cdot(mj1m,mj2m);
 
   const double K = K_g(p2out, p2in);
 
   // sum of spinor strings ||^2
   double a2Mmp=abs2(Mmp);
   double a2Mmm=abs2(Mmm);
   double sst = K/C_A*(a2Mmp+a2Mmm);
   // double sstsave=sst;
 
 //   // Leave division by colour and Helicity avg until Tree files
   // Leave multi. of couplings to later
   // Multiply by Cf*Ca=4
   return 4.*sst/(q1.m2()*q2.m2());
 
 }
 
 double jM2qQ (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
 {
   //  std::cerr<<"Current: "<<p1out<<"  "<<p1in<<"  "<<p2out<<"  "<<p2in<<std::endl;
 
   CLHEP::HepLorentzVector q1=p1in-p1out;
   CLHEP::HepLorentzVector q2=-(p2in-p2out);
   //  std::cerr<<"Current:  "<<q1.m2()<<"  "<<q2.m2()<<std::endl;
   current mj1m,mj1p,mj2m,mj2p;
   j(p1out,true,p1in,true,mj1p);
   j(p1out,false,p1in,false,mj1m);
   j(p2out,true,p2in,true,mj2p);
   j(p2out,false,p2in,false,mj2m);
 
   COM Mmp=cdot(mj1m,mj2p);
   COM Mmm=cdot(mj1m,mj2m);
   COM Mpp=cdot(mj1p,mj2p);
   COM Mpm=cdot(mj1p,mj2m);
 
   double sst=abs2(Mmm)+abs2(Mmp)+abs2(Mpp)+abs2(Mpm);
 
   // Multiply by Cf^2
   return RHEJ::C_F*RHEJ::C_F*(sst)/(q1.m2()*q2.m2());
 }
 
 double jM2qQbar (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
 {
   CLHEP::HepLorentzVector q1=p1in-p1out;
   CLHEP::HepLorentzVector q2=-(p2in-p2out);
   current mj1m,mj1p,mj2m,mj2p;
   j(p1out,true,p1in,true,mj1p);
   j(p1out,false,p1in,false,mj1m);
   jio(p2in,true,p2out,true,mj2p);
   jio(p2in,false,p2out,false,mj2m);
 
   COM Mmp=cdot(mj1m,mj2p);
   COM Mmm=cdot(mj1m,mj2m);
   COM Mpp=cdot(mj1p,mj2p);
   COM Mpm=cdot(mj1p,mj2m);
 
   double sumsq=abs2(Mmm)+abs2(Mmp)+abs2(Mpp)+abs2(Mpm);
 
   // Multiply by Cf^2
   return (4./3.)*(4./3.)*(sumsq)/(q1.m2()*q2.m2());
 }
 
 double jM2qbarQbar (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
 {
   CLHEP::HepLorentzVector q1=p1in-p1out;
   CLHEP::HepLorentzVector q2=-(p2in-p2out);
   current mj1m,mj1p,mj2m,mj2p;
   jio(p1in,true,p1out,true,mj1p);
   jio(p1in,false,p1out,false,mj1m);
   jio(p2in,true,p2out,true,mj2p);
   jio(p2in,false,p2out,false,mj2m);
 
   COM Mmp=cdot(mj1m,mj2p);
   COM Mmm=cdot(mj1m,mj2m);
   COM Mpp=cdot(mj1p,mj2p);
   COM Mpm=cdot(mj1p,mj2m);
 
   double sumsq=abs2(Mmm)+abs2(Mmp)+abs2(Mpp)+abs2(Mpm);
 
   // Multiply by Cf^2
   return (4./3.)*(4./3.)*(sumsq)/(q1.m2()*q2.m2());
 }
 
 double jM2qg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
 // Calculates the square of the current contractions for qg scattering
 // p1: quark
 // p2: gluon
 {
   CLHEP::HepLorentzVector q1=p1in-p1out;
   CLHEP::HepLorentzVector q2=-(p2in-p2out);
 
   current mj1m,mj1p,mj2m,mj2p;
   j(p1out,true,p1in,true,mj1p);
   j(p1out,false,p1in,false,mj1m);
   j(p2out,true,p2in,true,mj2p);
   j(p2out,false,p2in,false,mj2m);
 
   COM Mmp=cdot(mj1m,mj2p);
   COM Mmm=cdot(mj1m,mj2m);
   COM Mpp=cdot(mj1p,mj2p);
   COM Mpm=cdot(mj1p,mj2m);
 
   const double K = K_g(p2out, p2in);
 
   // sum of spinor strings ||^2
   double a2Mmp=abs2(Mmp);
   double a2Mmm=abs2(Mmm);
   double a2Mpp=abs2(Mpp);
   double a2Mpm=abs2(Mpm);
   double sst = K/C_A*(a2Mpp+a2Mpm+a2Mmp+a2Mmm);
   // double sstsave=sst;
 
    // std::cout <<"ratio: "<<sst/sstsave<<std::endl;
   // Cf*Ca=4
   return 4.*sst/(q1.m2()*q2.m2());
 
 }
 
 double jM2qbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
 // Calculates the square of the current contractions for qg scattering
 // p1: quark
 // p2: gluon
 {
   CLHEP::HepLorentzVector q1=p1in-p1out;
   CLHEP::HepLorentzVector q2=-(p2in-p2out);
 
   current mj1m,mj1p,mj2m,mj2p;
   jio(p1in,true,p1out,true,mj1p);
   jio(p1in,false,p1out,false,mj1m);
   j(p2out,true,p2in,true,mj2p);
   j(p2out,false,p2in,false,mj2m);
 
   COM Mmp=cdot(mj1m,mj2p);
   COM Mmm=cdot(mj1m,mj2m);
   COM Mpp=cdot(mj1p,mj2p);
   COM Mpm=cdot(mj1p,mj2m);
 
   const double K = K_g(p2out, p2in);
 
   // sum of spinor strings ||^2
   double a2Mmp=abs2(Mmp);
   double a2Mmm=abs2(Mmm);
   double a2Mpp=abs2(Mpp);
   double a2Mpm=abs2(Mpm);
   double sst = K/C_A*(a2Mpp+a2Mpm+a2Mmp+a2Mmm);
   // double sstsave=sst;
 
    // std::cout <<"ratio: "<<sst/sstsave<<std::endl;
   // Cf*Ca=4
   return 4.*sst/(q1.m2()*q2.m2());
 
 }
 
 double jM2gg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
 // Calculates the square of the current contractions for gg scattering
 // p1: gluon
 // p2: gluon
 {
   CLHEP::HepLorentzVector q1=p1in-p1out;
   CLHEP::HepLorentzVector q2=-(p2in-p2out);
 
   current mj1m,mj1p,mj2m,mj2p;
   j(p1out,true,p1in,true,mj1p);
   j(p1out,false,p1in,false,mj1m);
   j(p2out,true,p2in,true,mj2p);
   j(p2out,false,p2in,false,mj2m);
 
   COM Mmp=cdot(mj1m,mj2p);
   COM Mmm=cdot(mj1m,mj2m);
   COM Mpp=cdot(mj1p,mj2p);
   COM Mpm=cdot(mj1p,mj2m);
 
   const double K_g1 = K_g(p1out, p1in);
   const double K_g2 = K_g(p2out, p2in);
 
   // sum of spinor strings ||^2
   double a2Mmp=abs2(Mmp);
   double a2Mmm=abs2(Mmm);
   double a2Mpp=abs2(Mpp);
   double a2Mpm=abs2(Mpm);
   double sst = K_g1/C_A*K_g2/C_A*(a2Mpp+a2Mpm+a2Mmp+a2Mmm);
   // double sstsave=sst;
    // std::cout <<"ratio: "<<sst/sstsave<<std::endl;
   // Ca*Ca=9
   return 9.*sst/(q1.m2()*q2.m2());
 
 }
 
 namespace {
   /// @TODO what was this intended to do?
   // double MH2helper(current C1, current C2, current q1, current q2)
   // {
   //   COM M;
   //   COM temp1,temp2;
   //   // First the C1.q2 * C2.q1 - part
   //   temp1=cdot(C1,q2);
   //   temp2=cdot(C2,q1);
   //   M=temp1*temp2;
 
   //   // Then the C1.C2 * q1.q2
   //   temp1=cdot(C1,C2);
   //   temp2=cdot(q1,q2);
   //   M-=temp1*temp2;
 
   //   return (M*conj(M)).real();
   // }
 
   /**
    * @brief Higgs vertex contracted with current @param C1 and @param C2
    */
   COM cHdot(const current & C1, const current & C2, const current & q1,
             const current & q2, double mt, bool incBot, double mb)
   {
     if (mt == infinity) {
       return (cdot(C1,C2)*cdot(q1,q2)-cdot(C1,q2)*cdot(C2,q1))/(6*M_PI*v);
     }
     else {
       CLHEP::HepLorentzVector vq1,vq2;
       vq1.set(q1[1].real(),q1[2].real(),q1[3].real(),q1[0].real());
       vq2.set(q2[1].real(),q2[2].real(),q2[3].real(),q2[0].real());
       // first minus sign obtained because of q1-difference to VDD
       // std::cout<<"A1 : " << A1(-vq1,vq2)<<std::endl;
       // std::cout<<"A2 : " << A2(-vq1,vq2)<<std::endl;
       if(!(incBot))
         // Factor is because 4 mt^2 g^2/v A1 -> 16 pi mt^2/v alphas,
         // and we divide by a factor 4 at the amp sqaured level later
         // which I absorb here (i.e. I divide by 2)
         /// @TODO move factor 1/2 from S to |ME|^2 => consistent with general notation
         return 8.*M_PI*mt*mt/v*(-cdot(C1,q2)*cdot(C2,q1)*A1(-vq1,vq2,mt)-cdot(C1,C2)*A2(-vq1,vq2,mt));
       else
         return 8.*M_PI*mt*mt/v*(-cdot(C1,q2)*cdot(C2,q1)*A1(-vq1,vq2,mt)-cdot(C1,C2)*A2(-vq1,vq2,mt))
              + 8.*M_PI*mb*mb/v*(-cdot(C1,q2)*cdot(C2,q1)*A1(-vq1,vq2,mb)-cdot(C1,C2)*A2(-vq1,vq2,mb));
     }
   }
 } // namespace anonymous
 
 double MH2qQ (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in,
               CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in,
               CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2,
               double mt, bool incBot, double mb)
 {
 //   CLHEP::HepLorentzVector q1=p1in-p1out;
 //   CLHEP::HepLorentzVector q2=-(p2in-p2out);
   current j1p,j1m,j2p,j2m, q1v, q2v;
 
   j (p1out,true,p1in,true,j1p);
   j (p1out,false,p1in,false,j1m);
 
   j (p2out,true,p2in,true,j2p);
   j (p2out,false,p2in,false,j2m);
 
   to_current(q1, q1v);
   to_current(q2, q2v);
 
   COM Mmp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb);
   COM Mmm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb);
   COM Mpp=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb);
   COM Mpm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb);
 
   double sst=abs2(Mmp)+abs2(Mmm)+abs2(Mpp)+abs2(Mpm);
   // return (4./3.)*(4./3.)*sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
   return sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
 }
 
 double MH2qQbar (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb)
 {
 //   CLHEP::HepLorentzVector q1=p1in-p1out;
 //   CLHEP::HepLorentzVector q2=-(p2in-p2out);
   current j1p,j1m,j2p,j2m,q1v,q2v;
 
   j (p1out,true,p1in,true,j1p);
   j (p1out,false,p1in,false,j1m);
 
   jio (p2in,true,p2out,true,j2p);
   jio (p2in,false,p2out,false,j2m);
 
   to_current(q1, q1v);
   to_current(q2, q2v);
 
   COM Mmp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb);
   COM Mmm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb);
   COM Mpp=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb);
   COM Mpm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb);
 
   double sst=abs2(Mmp)+abs2(Mmm)+abs2(Mpp)+abs2(Mpm);
   // return (4./3.)*(4./3.)*sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
   return sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
 }
 
 double MH2qbarQ (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb)
 {
 //   CLHEP::HepLorentzVector q1=p1in-p1out;
 //   CLHEP::HepLorentzVector q2=-(p2in-p2out);
   current j1p,j1m,j2p,j2m,q1v,q2v;
 
   jio (p1in,true,p1out,true,j1p);
   jio (p1in,false,p1out,false,j1m);
 
   j (p2out,true,p2in,true,j2p);
   j (p2out,false,p2in,false,j2m);
 
   to_current(q1, q1v);
   to_current(q2, q2v);
 
   COM Mmp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb);
   COM Mmm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb);
   COM Mpp=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb);
   COM Mpm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb);
 
   double sst=abs2(Mmp)+abs2(Mmm)+abs2(Mpp)+abs2(Mpm);
   // return (4./3.)*(4./3.)*sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
   return sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
 }
 
 double MH2qbarQbar (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb)
 {
 //   CLHEP::HepLorentzVector q1=p1in-p1out;
 //   CLHEP::HepLorentzVector q2=-(p2in-p2out);
   current j1p,j1m,j2p,j2m,q1v,q2v;
 
   jio (p1in,true,p1out,true,j1p);
   jio (p1in,false,p1out,false,j1m);
 
   jio (p2in,true,p2out,true,j2p);
   jio (p2in,false,p2out,false,j2m);
 
   to_current(q1, q1v);
   to_current(q2, q2v);
 
   COM Mmp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb);
   COM Mmm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb);
   COM Mpp=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb);
   COM Mpm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb);
 
   double sst=abs2(Mmp)+abs2(Mmm)+abs2(Mpp)+abs2(Mpm);
   // return (4./3.)*(4./3.)*sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
   return sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
 }
 
 double MH2qg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb)
 // q~p1 g~p2 (i.e. ALWAYS p1 for quark, p2 for gluon)
 // should be called with q1 meant to be contracted with p2 in first part of vertex
 // (i.e. if g is backward, q1 is forward)
 {
   current j1p,j1m,j2p,j2m,q1v,q2v;
 
   j (p1out,true,p1in,true,j1p);
   j (p1out,false,p1in,false,j1m);
 
   j (p2out,true,p2in,true,j2p);
   j (p2out,false,p2in,false,j2m);
 
   to_current(q1, q1v);
   to_current(q2, q2v);
 
   // First, calculate the non-flipping amplitudes:
 
   COM Mpp=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb);
   COM Mpm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb);
   COM Mmp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb);
   COM Mmm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb);
 
   //cout << "Bits in MH2qg: " << Mpp << " " << Mpm << " " << Mmp << " " << Mmm << endl;
 
   const double K = K_g(p2out, p2in);
 
   double sst=K/C_A*(abs2(Mmp)+abs2(Mmm)+abs2(Mpp)+abs2(Mpm));
 
   // Cf*Ca=4
   // return 4.*sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
   return sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
 }
 
 double MH2qbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb)
 // qbar~p1 g~p2 (i.e. ALWAYS p1 for anti-quark, p2 for gluon)
 // should be called with q1 meant to be contracted with p2 in first part of vertex
 // (i.e. if g is backward, q1 is forward)
 {
   current j1p,j1m,j2p,j2m,q1v,q2v;
 
   jio (p1in,true,p1out,true,j1p);
   jio (p1in,false,p1out,false,j1m);
 
   j (p2out,true,p2in,true,j2p);
   j (p2out,false,p2in,false,j2m);
 
   to_current(q1, q1v);
   to_current(q2, q2v);
 
   // First, calculate the non-flipping amplitudes:
 
   COM amp,amm,apm,app;
   app=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb);
   apm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb);
   amp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb);
   amm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb);
 
   double MH2sum = abs2(app)+abs2(amm)+abs2(apm)+abs2(amp);
 
   const double K = K_g(p2out, p2in);
   MH2sum*=K/C_A;
 
   // Cf*Ca=4
   // return 4.*MH2sum/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
   return MH2sum/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
 }
 
 double MH2gg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb)
 // g~p1 g~p2
 // should be called with q1 meant to be contracted with p2 in first part of vertex
 // (i.e. if g is backward, q1 is forward)
 {
   current j1p,j1m,j2p,j2m,q1v,q2v;
 
   j (p1out,true,p1in,true,j1p);
   j (p1out,false,p1in,false,j1m);
 
   j (p2out,true,p2in,true,j2p);
   j (p2out,false,p2in,false,j2m);
 
   to_current(q1, q1v);
   to_current(q2, q2v);
 
   // First, calculate the non-flipping amplitudes:
 
   COM amp,amm,apm,app;
   app=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb);
   apm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb);
   amp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb);
   amm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb);
 
   double MH2sum = abs2(app)+abs2(amm)+abs2(apm)+abs2(amp);
 
   const double K_g1 = K_g(p1out, p1in);
   const double K_g2 = K_g(p2out, p2in);
 
   MH2sum*=K_g1/C_A*K_g2/C_A;
 
   // Ca*Ca=9
   // return 9.*MH2sum/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
   return MH2sum/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
 }
 
 // // Z's stuff
 // void jZ(HLV pin, HLV pout, HLV pem, HLV pep, bool HelPartons, bool HelLeptons, current cur) {
 
 //  // Init current to zero
 //  cur[0] = 0.0;
 //  cur[1] = 0.0;
 //  cur[2] = 0.0;
 //  cur[3] = 0.0;
 
 //  // Temporary variables
 //  COM temp;
 //  current Term_1, Term_2, Term_3, Term_4, J_temp, TempCur1, TempCur2;
 
 //  // Momentum of virtual gluons aroun weak boson emission site
 //  HLV qa = pout + pep + pem;
 //  HLV qb = pin  - pep - pem;
 
 //  double ta = qa.m2();
 //  double tb = qb.m2();
 
 //  // Out-Out currents:
 //  current Em_Ep, Out_Em, Out_Ep;
 
 //  // Other currents:
 //  current Out_In, Em_In, Ep_In;
 
 //  joi(pout, HelPartons, pin, HelPartons, Out_In);
 //  joi(pem,  HelLeptons, pin, HelPartons, Em_In);
 //  joi(pep,  HelLeptons, pin, HelPartons, Ep_In);
 
 //  joo(pem,  HelLeptons, pep, HelLeptons, Em_Ep);
 //  joo(pout, HelPartons, pem, HelLeptons, Out_Em);
 //  joo(pout, HelPartons, pep, HelLeptons, Out_Ep);
 
 //  if (HelLeptons == HelPartons) {
 
 //    temp = 2.0 * cdot(pout, Em_Ep);
 //    cmult(temp / ta, Out_In, Term_1);
 
 //    temp = cdot(Out_Em, Em_Ep);
 //    cmult(temp / ta , Em_In, Term_2);
 
 //    temp = 2.0 * cdot(pin, Em_Ep);
 //    cmult(temp / tb, Out_In, Term_3);
 
 //    temp = -cdot(Ep_In, Em_Ep);
 //    cmult(temp / tb, Out_Ep, Term_4);
 
 //    cadd(Term_1, Term_2, Term_3, Term_4, J_temp);
 
 //    cur[0] = J_temp[0];
 //    cur[1] = J_temp[1];
 //    cur[2] = J_temp[2];
 //    cur[3] = J_temp[3];
 //  }
 
 //  else {
 //    if (HelPartons == true) {
 //      temp = 2.0 * cdot(pout, Em_Ep);
 //      cmult(temp / ta, Out_In, Term_1);
 
 //      joo(pout, true, pep, true, TempCur1);
 //      joi(pep,  true, pin, true, TempCur2);
 
 //      temp = cdot(TempCur1, Em_Ep);
 //      cmult(temp / ta , TempCur2, Term_2);
 
 //      temp = 2.0 * cdot(pin, Em_Ep);
 //      cmult(temp / tb, Out_In, Term_3);
 
 //      joo(pout, true, pem, true, TempCur1);
 //      joi(pem,  true, pin, true, TempCur2);
 
 //      temp = -cdot(TempCur2, Em_Ep);
 //      cmult(temp / tb, TempCur1, Term_4);
 
 //      cadd(Term_1, Term_2, Term_3, Term_4, J_temp);
 
 //      cur[0] = J_temp[0];
 //      cur[1] = J_temp[1];
 //      cur[2] = J_temp[2];
 //      cur[3] = J_temp[3];
 //    }
 
 //    else {
 //      temp = 2.0 * cdot(pout, Em_Ep);
 //      cmult(temp / ta, Out_In, Term_1);
 
 //      joo(pout, false, pep, false, TempCur1);
 //      joi(pep,  false, pin, false, TempCur2);
 
 //      temp = cdot(TempCur1, Em_Ep);
 //      cmult(temp / ta, TempCur2, Term_2);
 
 //      temp = 2.0 * cdot(pin, Em_Ep);
 //      cmult(temp / tb, Out_In, Term_3);
 
 //      joo(pout, false, pem, false, TempCur1);
 //      joi(pem,  false, pin, false, TempCur2);
 
 //      temp = -cdot(TempCur2, Em_Ep);
 //      cmult(temp / tb, TempCur1, Term_4);
 
 //      cadd(Term_1, Term_2, Term_3, Term_4, J_temp);
 
 //      cur[0] = J_temp[0];
 //      cur[1] = J_temp[1];
 //      cur[2] = J_temp[2];
 //      cur[3] = J_temp[3];
 //    }
 
 //  }
 // }
 
 // void jZbar(HLV pin, HLV pout, HLV pem, HLV pep, bool HelPartons, bool HelLeptons, current cur) {
 
 //  // Init current to zero
 //  cur[0] = 0.0;
 //  cur[1] = 0.0;
 //  cur[2] = 0.0;
 //  cur[3] = 0.0;
 
 //  // Temporary variables
 //  COM temp;
 //  current Term_1, Term_2, Term_3, Term_4, J_temp, TempCur1, TempCur2;
 
 //  // Transfered 4-momenta
 //  HLV qa = pout + pep + pem;
 //  HLV qb = pin  - pep - pem;
 
 //  // The square of the transfered 4-momenta
 //  double ta = qa.m2();
 //  double tb = qb.m2();
 
 //  // Out-Out currents:
 //  current Em_Ep, Em_Out, Ep_Out;
 
 //  // In-Out currents:
 //  current In_Out, In_Em, In_Ep;
 
 //  // Safe to use the currents since helicity structure is ok
 //  if (HelPartons == HelLeptons) {
 //    jio(pin, HelPartons, pout, HelPartons, In_Out);
 //    joo(pem, HelLeptons, pep,  HelLeptons, Em_Ep);
 //    jio(pin, HelPartons, pem,  HelLeptons, In_Em);
 //    jio(pin, HelPartons, pep,  HelLeptons, In_Ep);
 //    joo(pem, HelLeptons, pout, HelPartons, Em_Out);
 //    joo(pep, HelLeptons, pout, HelPartons, Ep_Out);
 //  }
 
 //  else {
 //    jio(pin, HelPartons, pout, HelPartons, In_Out);
 //    joo(pem, HelLeptons, pep,  HelLeptons, Em_Ep);
 
 //    In_Em[0] = 0.0;
 //    In_Em[1] = 0.0;
 //    In_Em[2] = 0.0;
 //    In_Em[3] = 0.0;
 
 //    In_Ep[0] = 0.0;
 //    In_Ep[1] = 0.0;
 //    In_Ep[2] = 0.0;
 //    In_Ep[3] = 0.0;
 
 //    Em_Out[0] = 0.0;
 //    Em_Out[1] = 0.0;
 //    Em_Out[2] = 0.0;
 //    Em_Out[3] = 0.0;
 
 //    Ep_Out[0] = 0.0;
 //    Ep_Out[1] = 0.0;
 //    Ep_Out[2] = 0.0;
 //    Ep_Out[3] = 0.0;
 //  }
 
 //  if (HelLeptons == HelPartons) {
 
 //    temp = 2.0 * cdot(pout, Em_Ep);
 //    cmult(temp / ta, In_Out, Term_1);
 
 //    temp = cdot(Ep_Out, Em_Ep);
 //    cmult(temp / ta, In_Ep, Term_2);
 
 //    temp = 2.0 * cdot(pin, Em_Ep);
 //    cmult(temp / tb, In_Out, Term_3);
 
 //    temp = - cdot(In_Em, Em_Ep);
 //    cmult(temp / tb, Em_Out, Term_4);
 
 //    cadd(Term_1, Term_2, Term_3, Term_4, J_temp);
 
 //    cur[0] = J_temp[0];
 //    cur[1] = J_temp[1];
 //    cur[2] = J_temp[2];
 //    cur[3] = J_temp[3];
 //  }
 
 //  else {
 //    if (HelPartons == true) {
 
 //      temp = 2.0 * cdot(pout, Em_Ep);
 //      cmult(temp / ta, In_Out, Term_1);
 
 //      joo(pem, true, pout, true, TempCur1);
 //      jio(pin, true, pem,  true, TempCur2);
 
 //      temp = cdot(TempCur1, Em_Ep);
 //      cmult(temp / ta , TempCur2, Term_2);
 
 //      temp = 2.0 * cdot(pin, Em_Ep);
 //      cmult(temp / tb, In_Out, Term_3);
 
 //      joo(pep, true, pout, true, TempCur1);
 //      jio(pin, true, pep,  true, TempCur2);
 
 //      temp = - cdot(TempCur2, Em_Ep);
 //      cmult(temp / tb, TempCur1, Term_4);
 
 //      cadd(Term_1, Term_2, Term_3, Term_4, J_temp);
 
 //      cur[0] = J_temp[0];
 //      cur[1] = J_temp[1];
 //      cur[2] = J_temp[2];
 //      cur[3] = J_temp[3];
 //    }
 
 //    else {
 
 //      temp = 2.0 * cdot(pout, Em_Ep);
 //      cmult(temp / ta, In_Out, Term_1);
 
 //      joo(pem, false, pout, false, TempCur1);
 //      jio(pin, false, pem,  false, TempCur2);
 
 //      temp = cdot(TempCur1, Em_Ep);
 //      cmult(temp / ta , TempCur2, Term_2);
 
 //      temp = 2.0 * cdot(pin, Em_Ep);
 //      cmult(temp / tb, In_Out, Term_3);
 
 //      joo(pep, false, pout, false, TempCur1);
 //      jio(pin, false, pep,  false, TempCur2);
 
 //      temp = - cdot(TempCur2, Em_Ep);
 //      cmult(temp / tb, TempCur1, Term_4);
 
 //      cadd(Term_1, Term_2, Term_3, Term_4, J_temp);
 
 //      cur[0] = J_temp[0];
 //      cur[1] = J_temp[1];
 //      cur[2] = J_temp[2];
 //      cur[3] = J_temp[3];
 //    }
 //  }
 // }
 
 // // Progagators
 // COM PZ(double s) {
 
 //  double MZ, GammaZ;
 
 //  MZ       = 9.118800e+01;  // Mass of the mediating gauge boson
 //  GammaZ   = 2.441404e+00;  // Z peak width
 
 //  // Return Z Prop value
 //  return 1.0 / (s - MZ * MZ + COM(0.0, 1.0) * GammaZ * MZ);
 // }
 
 // COM PG(double s) {
 //  return 1.0 / s;
 // }
 
 // // Non-gluonic with pa emitting
 // std::vector <double> jMZqQ (HLV pa, HLV pb, HLV p1, HLV p2, HLV pep, HLV pem, std::vector <double> VProducts, std::vector < std::vector <double> > Virtuals, int aptype, int bptype, bool UseVirtuals, bool BottomLineEmit) {
 
 //  std::vector <double> ScaledWeights;
 
 //  double Sum;
 
 //  // Propagator factors
 //  COM PZs = PZ((pep + pem).m2());
 //  COM PGs = PG((pep + pem).m2());
 
 
 //  // Emitting current initialisation
 //  current j1pptop, j1pmtop; // Emission from top line
 //  current j1ppbot, j1pmbot; // Emission from bottom line
 
 //  // Non-emitting current initialisation
 //  current j2ptop, j2mtop;   // Emission from top line
 //  current j2pbot, j2mbot;   // Emission from bottom line
 
 //  // Currents for top emission
 //  // Upper current calculations
 //  // if a is a quark
 //  if (aptype > 0) {
 //    jZ(pa, p1, pem, pep, true,  true,  j1pptop);
 //    jZ(pa, p1, pem, pep, true,  false, j1pmtop);
 //  }
 //  // if a is an antiquark
 //  else {
 //    jZbar(pa, p1, pem, pep, true,  true,  j1pptop);
 //    jZbar(pa, p1, pem, pep, true,  false, j1pmtop);
 //  }
 
 //  // Lower current calculations
 //  // if b is a quark
 //  if (bptype > 0) {
 //    joi(p2, true,  pb, true,  j2ptop);
 //    joi(p2, false, pb, false, j2mtop);
 //  }
 //  // if b is an antiquark
 //  else {
 //    jio(pb, true,  p2, true,  j2ptop);
 //    jio(pb, false, p2, false, j2mtop);
 //  }
 
 //  // Currents for bottom emission
 //  // Lower current calculations
 //  if (bptype > 0) {
 //    jZ(pb, p2, pem, pep, true,  true,  j1ppbot);
 //    jZ(pb, p2, pem, pep, true,  false, j1pmbot);
 //  }
 //  else {
 //    jZbar(pb, p2, pem, pep, true,  true,  j1ppbot);
 //    jZbar(pb, p2, pem, pep, true,  false, j1pmbot);
 //  }
 
 //  // Upper current calculations
 //  if (aptype > 0) {
 //    joi(p1, true,  pa, true,  j2pbot);
 //    joi(p1, false, pa, false, j2mbot);
 //  }
 //  else {
 //    jio(pa, true,  p1, true,  j2pbot);
 //    jio(pa, false, p1, false, j2mbot);
 //  }
 
 //  COM Coeff[2][8];
 
 //  if (!Interference) {
 
 //    double ZCharge_a_P = Zq(aptype, true);
 //    double ZCharge_a_M = Zq(aptype, false);
 //    double ZCharge_b_P = Zq(bptype, true);
 //    double ZCharge_b_M = Zq(bptype, false);
 
 //    if (BottomLineEmit) {
 //      // Emission from top-line quark (pa/p1 line)
 //      Coeff[0][0] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) *      cdot(j1pptop, j2ptop);
 //      Coeff[0][1] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) *      cdot(j1pptop, j2mtop);
 //      Coeff[0][2] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) *      cdot(j1pmtop, j2ptop);
 //      Coeff[0][3] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) *      cdot(j1pmtop, j2mtop);
 //      Coeff[0][4] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2ptop));
 //      Coeff[0][5] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2mtop));
 //      Coeff[0][6] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2ptop));
 //      Coeff[0][7] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2mtop));
 //    }
 
 //    else {
 //      // Emission from bottom-line quark (pb/p2 line)
 //      Coeff[1][0] = (ZCharge_b_P * Zep * PZs * RWeak + Gq(bptype) * PGs) *      cdot(j1ppbot, j2pbot);
 //      Coeff[1][7] = (ZCharge_b_P * Zep * PZs * RWeak + Gq(bptype) * PGs) *      cdot(j1ppbot, j2mbot);
 //      Coeff[1][2] = (ZCharge_b_P * Zem * PZs * RWeak + Gq(bptype) * PGs) *      cdot(j1pmbot, j2pbot);
 //      Coeff[1][5] = (ZCharge_b_P * Zem * PZs * RWeak + Gq(bptype) * PGs) *      cdot(j1pmbot, j2mbot);
 //      Coeff[1][4] = (ZCharge_b_M * Zem * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1ppbot, j2pbot));
 //      Coeff[1][3] = (ZCharge_b_M * Zem * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1ppbot, j2mbot));
 //      Coeff[1][6] = (ZCharge_b_M * Zep * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1pmbot, j2pbot));
 //      Coeff[1][1] = (ZCharge_b_M * Zep * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1pmbot, j2mbot));
 //    }
 //  }
 
 //  // Else calculate all the possiblities
 //  else {
 
 //    double ZCharge_a_P = Zq(aptype, true);
 //    double ZCharge_a_M = Zq(aptype, false);
 //    double ZCharge_b_P = Zq(bptype, true);
 //    double ZCharge_b_M = Zq(bptype, false);
 
 //    // Emission from top-line quark (pa/p1 line)
 //    Coeff[0][0] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) *      cdot(j1pptop, j2ptop);
 //    Coeff[0][1] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) *      cdot(j1pptop, j2mtop);
 //    Coeff[0][2] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) *      cdot(j1pmtop, j2ptop);
 //    Coeff[0][3] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) *      cdot(j1pmtop, j2mtop);
 //    Coeff[0][4] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2ptop));
 //    Coeff[0][5] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2mtop));
 //    Coeff[0][6] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2ptop));
 //    Coeff[0][7] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2mtop));
 
 //    // Emission from bottom-line quark (pb/p2 line)
 //    Coeff[1][0] = (ZCharge_b_P * Zep * PZs * RWeak + Gq(bptype) * PGs) *      cdot(j1ppbot, j2pbot);
 //    Coeff[1][7] = (ZCharge_b_P * Zep * PZs * RWeak + Gq(bptype) * PGs) *      cdot(j1ppbot, j2mbot);
 //    Coeff[1][2] = (ZCharge_b_P * Zem * PZs * RWeak + Gq(bptype) * PGs) *      cdot(j1pmbot, j2pbot);
 //    Coeff[1][5] = (ZCharge_b_P * Zem * PZs * RWeak + Gq(bptype) * PGs) *      cdot(j1pmbot, j2mbot);
 //    Coeff[1][4] = (ZCharge_b_M * Zem * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1ppbot, j2pbot));
 //    Coeff[1][3] = (ZCharge_b_M * Zem * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1ppbot, j2mbot));
 //    Coeff[1][6] = (ZCharge_b_M * Zep * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1pmbot, j2pbot));
 //    Coeff[1][1] = (ZCharge_b_M * Zep * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1pmbot, j2mbot));
 //  }
 
 //  // Find the numbers of scales
 //  int ScaleCount;
 //  #if calcscaleunc
 //    ScaleCount = 20;
 //  #else
 //    ScaleCount = 1;
 //  #endif
 
 //  // For each scale...
 //  for (int j = 0; j < ScaleCount; j++) {
 
 //    Sum = 0.0;
 
 //    // If we want to compare back to the W's code only emit from one quark and only couple to left handed particles
 //    // virtuals arent here since they are calculated and included in weight() call.
 //    if (!Interference) {
 
 //      if (BottomLineEmit) for (int i = 0; i < 8; i++) Sum += abs2(Coeff[1][i]) * VProducts.at(1);
 //      else                for (int i = 0; i < 8; i++) Sum += abs2(Coeff[0][i]) * VProducts.at(0);
 //    }
 
 //    // Else work out the full interference
 //    else {
 
 //      // For the full calculation...
 //      if (UseVirtuals) {
 //        for (int i = 0; i < 8; i++) {
 //          Sum += abs2(Coeff[0][i])  * VProducts.at(0) * Virtuals.at(j).at(0)
 //               + abs2(Coeff[1][i])  * VProducts.at(1) * Virtuals.at(j).at(1)
 //                     + 2.0 * real(Coeff[0][i] * conj(Coeff[1][i])) * VProducts.at(2) * Virtuals.at(j).at(2);
 //        }
 //      }
 
 //      // For the tree level calculation...
 //      else {
 //        for (int i = 0; i < 8; i++) {
 //          Sum += abs2(Coeff[0][i])  * VProducts.at(0)
 //               + abs2(Coeff[1][i])  * VProducts.at(1)
 //        + 2.0 * real(Coeff[0][i] * conj(Coeff[1][i])) * VProducts.at(2);
 //        }
 //      }
 //    }
 
 //    // Add this to the vector to be returned with the other factors of C_A and the helicity sum/average factors.
 //    ScaledWeights.push_back(Sum / 18.0);
 //  }
 
 //  // Return all the scale values
 //  return ScaledWeights;
 // }
 
 // // Semi-gluonic with pa emitting
 // std::vector <double> jMZqg (HLV pa, HLV pb, HLV p1, HLV p2, HLV pep, HLV pem, std::vector <double> VProducts, std::vector < std::vector <double> > Virtuals, int aptype, int bptype, bool UseVirtuals, bool BottomLineEmit) {
 
 //  COM Coeff[8];
 
 //  double Sum;
 
 //  std::vector <double> ScaledWeights;
 
 //  COM PZs = PZ((pep + pem).m2());
 //  COM PGs = PG((pep + pem).m2());
 
 //  // Emitting current initialisation - Emission from top line
 //  current j1pptop, j1pmtop;
 
 //  // Non-emitting current initialisation - Emission from top line
 //  current j2ptop, j2mtop;
 
 //  // Currents for top emission
 //  // Upper current calculations
 //  if (aptype > 0) {
 //    jZ   (pa, p1, pem, pep, true,  true,  j1pptop);
 //    jZ   (pa, p1, pem, pep, true,  false, j1pmtop);
 //  }
 //  else {
 //    jZbar(pa, p1, pem, pep, true,  true,  j1pptop);
 //    jZbar(pa, p1, pem, pep, true,  false, j1pmtop);
 //  }
 
 //  // Lower current calculations
 //  joi(p2, true,  pb, true,  j2ptop);
 //  joi(p2, false, pb, false, j2mtop);
 
 //  // Calculate all the possiblities
 //  double ZCharge_a_P = Zq(aptype, true);
 //  double ZCharge_a_M = Zq(aptype, false);
 
 //  // Emission from top-line quark (pa/p1 line)
 //  Coeff[0] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) *      cdot(j1pptop, j2ptop);
 //  Coeff[1] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) *      cdot(j1pptop, j2mtop);
 //  Coeff[2] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) *      cdot(j1pmtop, j2ptop);
 //  Coeff[3] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) *      cdot(j1pmtop, j2mtop);
 //  Coeff[4] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2ptop));
 //  Coeff[5] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2mtop));
 //  Coeff[6] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2ptop));
 //  Coeff[7] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2mtop));
 
 //  // Calculate gluon colour accelerated factor
 //  double CAMFactor, z;
 
 //  // If b is a forward moving gluon define z (C.F. multiple jets papers)
 //  if (pb.pz() > 0) z = p2.plus()  / pb.plus();
 //  else             z = p2.minus() / pb.minus();
 
 //  CAMFactor = (1.0 - 1.0 / 9.0) / 2.0 * (z + 1.0 / z) + 1.0 / 9.0;
 
 //  // Find the numbers of scales
 //  int ScaleCount;
 //  #if calcscaleunc
 //    ScaleCount = 20;
 //  #else
 //    ScaleCount = 1;
 //  #endif
 
 //  // For each scale...
 //  for (int j = 0; j < ScaleCount; j++) {
 
 //    Sum = 0.0;
 
 //    // If we dont want the interference
 //    if (!Interference) for (int i = 0; i < 8; i++) Sum += abs2(Coeff[i]) * VProducts.at(0);
 
 //    // Else work out the full interference
 //    else {
 //      if (UseVirtuals) {
 //        for (int i = 0; i < 8; i++) Sum += abs2(Coeff[i]) * VProducts.at(0) * Virtuals.at(j).at(0);
 //      }
 //      else {
 //        for (int i = 0; i < 8; i++) Sum += abs2(Coeff[i]) * VProducts.at(0);
 //      }
 //    }
 
 //    // Add this to the vector to be returned with the other factors of C_A, the colour accelerated factor and the helicity sum/average factors.: (4/3)*3/32
 //    ScaledWeights.push_back(CAMFactor * Sum / 8.0);
 //  }
 
 //  return ScaledWeights;
 // }
 
 // // Electroweak Charge Functions
 // double Zq (int PID, bool Helcitiy) {
 
 //  double temp;
 
 //  // Positive Spin
 //  if (Helcitiy == true) {
 //    if (PID ==   1 || PID ==  3 || PID ==  5) temp = (+ 1.0 * stw2 / 3.0) / ctw;
 //    if (PID ==   2 || PID ==  4)              temp = (- 2.0 * stw2 / 3.0) / ctw;
 //    if (PID ==  -1 || PID == -3 || PID == -5) temp = (- 1.0 * stw2 / 3.0) / ctw;
 //    if (PID ==  -2 || PID == -4)              temp = (+ 2.0 * stw2 / 3.0) / ctw;
 
 //    // If electron or positron
 //    if (PID ==  7 || PID == -7) temp = Zep;
 //  }
 
 //  // Negative Spin
 //  else {
 //    if (PID ==  1 || PID ==  3 || PID ==  5) temp = (-0.5 + 1.0 * stw2 / 3.0) / ctw;
 //    if (PID ==  2 || PID ==  4)              temp = ( 0.5 - 2.0 * stw2 / 3.0) / ctw;
 //    if (PID == -1 || PID == -3 || PID == -5) temp = ( 0.5 - 1.0 * stw2 / 3.0) / ctw;
 //    if (PID == -2 || PID == -4)              temp = (-0.5 + 2.0 * stw2 / 3.0) / ctw;
 
 //    // If electron or positron
 //    if (PID ==  7 || PID == -7) temp = Zem;
 
 //  }
 
 //  return temp;
 // }
 
 // double Gq (int PID) {
 
 //  if (!VirtualPhoton) return 0.0;
 
 //  if (PID == -1) return  1.0 * ee / 3.0;
 //  if (PID == -2) return -2.0 * ee / 3.0;
 //  if (PID == -3) return  1.0 * ee / 3.0;
 //  if (PID == -4) return -2.0 * ee / 3.0;
 //  if (PID == -5) return  1.0 * ee / 3.0;
 //  if (PID ==  1) return -1.0 * ee / 3.0;
 //  if (PID ==  2) return  2.0 * ee / 3.0;
 //  if (PID ==  3) return -1.0 * ee / 3.0;
 //  if (PID ==  4) return  2.0 * ee / 3.0;
 //  if (PID ==  5) return -1.0 * ee / 3.0;
 
 //  std::cout << "ERROR! No Electroweak Charge Found at line " << __LINE__ << "..." << std::endl;
 //  return 0.0;
 // }
 
 
 namespace {
 
   //@{
   /// @brief Higgs vertex contracted with one current
 
   CCurrent jH (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pin,
               bool helin, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2,
               double mt, bool incBot, double mb)
   {
 
       CCurrent j2 = j(pout,helout,pin,helin);
       CCurrent jq2(q2.e(),q2.px(),q2.py(),q2.pz());
 
       if(mt == infinity)
         return ((q1.dot(q2))*j2 - j2.dot(q1)*jq2)/(3*M_PI*v);
       else
       {
         if(incBot)
           return (-16.*M_PI*mb*mb/v*j2.dot(q1)*jq2*A1(-q1,q2,mb)-16.*M_PI*mb*mb/v*j2*A2(-q1,q2,mb))
                + (-16.*M_PI*mt*mt/v*j2.dot(q1)*jq2*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j2*A2(-q1,q2,mt));
         else
           return (-16.*M_PI*mt*mt/v*j2.dot(q1)*jq2*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j2*A2(-q1,q2,mt));
       }
   }
 
   CCurrent jioH (CLHEP::HepLorentzVector pin, bool helin, CLHEP::HepLorentzVector pout,
                 bool helout, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2,
                 double mt, bool incBot, double mb)
   {
 
       CCurrent j2 = jio(pin,helin,pout,helout);
       CCurrent jq2(q2.e(),q2.px(),q2.py(),q2.pz());
 
       if(mt == infinity)
         return ((q1.dot(q2))*j2 - j2.dot(q1)*jq2)/(3*M_PI*v);
       else
       {
         if(incBot)
           return (-16.*M_PI*mb*mb/v*j2.dot(q1)*jq2*A1(-q1,q2,mb)-16.*M_PI*mb*mb/v*j2*A2(-q1,q2,mb))
                + (-16.*M_PI*mt*mt/v*j2.dot(q1)*jq2*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j2*A2(-q1,q2,mt));
         else
           return (-16.*M_PI*mt*mt/v*j2.dot(q1)*jq2*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j2*A2(-q1,q2,mt));
       }
   }
 
   CCurrent jHtop (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pin,
                   bool helin, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2,
                   double mt, bool incBot, double mb)
   {
 
       CCurrent j1 = j(pout,helout,pin,helin);
       CCurrent jq1(q1.e(),q1.px(),q1.py(),q1.pz());
 
       if(mt == infinity)
         return ((q1.dot(q2))*j1 - j1.dot(q2)*jq1)/(3*M_PI*v);
       else
       {
         if(incBot)
           return (-16.*M_PI*mb*mb/v*j1.dot(q2)*jq1*A1(-q1,q2,mb)-16.*M_PI*mb*mb/v*j1*A2(-q1,q2,mb))
                + (-16.*M_PI*mt*mt/v*j1.dot(q2)*jq1*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j1*A2(-q1,q2,mt));
         else
           return (-16.*M_PI*mt*mt/v*j1.dot(q2)*jq1*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j1*A2(-q1,q2,mt));
       }
   }
 
 
   CCurrent jioHtop (CLHEP::HepLorentzVector pin, bool helin, CLHEP::HepLorentzVector pout,
                     bool helout, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2,
                     double mt, bool incBot, double mb)
   {
 
       CCurrent j1 = jio(pin,helin,pout,helout);
       CCurrent jq1(q1.e(),q1.px(),q1.py(),q1.pz());
 
       if(mt == infinity)
         return ((q1.dot(q2))*j1 - j1.dot(q2)*jq1)/(3*M_PI*v);
       else
       {
         if(incBot)
           return (-16.*M_PI*mb*mb/v*j1.dot(q2)*jq1*A1(-q1,q2,mb)-16.*M_PI*mb*mb/v*j1*A2(-q1,q2,mb))
                + (-16.*M_PI*mt*mt/v*j1.dot(q2)*jq1*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j1*A2(-q1,q2,mt));
         else
           return (-16.*M_PI*mt*mt/v*j1.dot(q2)*jq1*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j1*A2(-q1,q2,mt));
       }
   }
   //@}
 } // namespace anonymous
 
 double jM2unogqHQ (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
 {
     //  This construction is taking rapidity order: pg > p1out >> p2out
     //  std::cerr<<"This Uno Current: "<<p1out<<"  "<<p1in<<"  "<<p2out<<"  "<<p2in<<"  "<<pg<<std::endl;
 
     CLHEP::HepLorentzVector q1=p1in-p1out;  // Top End
     CLHEP::HepLorentzVector q2=-(p2in-p2out);   // Bottom End
     CLHEP::HepLorentzVector qg=p1in-p1out-pg;  // Extra bit post-gluon
 
     //  std::cerr<<"Current:  "<<q1.m2()<<"  "<<q2.m2()<<std::endl;
     CCurrent mj1m,mj1p,mj2m,mj2p,mjH2m,mjH2p;
     mj1p=j(p1out,true,p1in,true);
     mj1m=j(p1out,false,p1in,false);
     mjH2p=jH(p2out,true,p2in,true,qH1,qH2, mt, incBot, mb);
     mjH2m=jH(p2out,false,p2in,false,qH1,qH2, mt, incBot, mb);
 
     // Dot products of these which occur again and again
     COM MHmp=mj1m.dot(mjH2p);  // And now for the Higgs ones
     COM MHmm=mj1m.dot(mjH2m);
     COM MHpp=mj1p.dot(mjH2p);
     COM MHpm=mj1p.dot(mjH2m);
 
     //  std::cout<< p1out.rapidity() << "  " << p2out.rapidity()<< "  " << qH1 << "  " << qH2 << "\n" <<MHmm << "  " << MHmp << "  "  << MHpm << "  " << MHpp << std::endl;
 
     // Currents with pg
     CCurrent jgam,jgap,j2gm,j2gp;
     j2gp=joo(p1out,true,pg,true);
     j2gm=joo(p1out,false,pg,false);
     jgap=j(pg,true,p1in,true);
     jgam=j(pg,false,p1in,false);
 
     CCurrent qsum(q1+qg);
 
     CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
     CCurrent p1o(p1out);
     CCurrent p1i(p1in);
 
     Lmm=(qsum*(MHmm) + (-2.*mjH2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmm/2.))/q1.m2();
     Lmp=(qsum*(MHmp) + (-2.*mjH2p.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmp/2.))/q1.m2();
     Lpm=(qsum*(MHpm) + (-2.*mjH2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpm/2.))/q1.m2();
     Lpp=(qsum*(MHpp) + (-2.*mjH2p.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpp/2.))/q1.m2();
 
     U1mm=(jgam.dot(mjH2m)*j2gm+2.*p1o*MHmm)/(p1out+pg).m2();
     U1mp=(jgam.dot(mjH2p)*j2gm+2.*p1o*MHmp)/(p1out+pg).m2();
     U1pm=(jgap.dot(mjH2m)*j2gp+2.*p1o*MHpm)/(p1out+pg).m2();
     U1pp=(jgap.dot(mjH2p)*j2gp+2.*p1o*MHpp)/(p1out+pg).m2();
     U2mm=((-1.)*j2gm.dot(mjH2m)*jgam+2.*p1i*MHmm)/(p1in-pg).m2();
     U2mp=((-1.)*j2gm.dot(mjH2p)*jgam+2.*p1i*MHmp)/(p1in-pg).m2();
     U2pm=((-1.)*j2gp.dot(mjH2m)*jgap+2.*p1i*MHpm)/(p1in-pg).m2();
     U2pp=((-1.)*j2gp.dot(mjH2p)*jgap+2.*p1i*MHpp)/(p1in-pg).m2();
 
     const double cf=RHEJ::C_F;
     double amm,amp,apm,app;
 
     amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
     amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
     apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
     app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
     double ampsq=-(amm+amp+apm+app)/(q2.m2()*qH2.m2());
 
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
 
     // Now add the t-channels for the Higgs
     double th=qH1.m2()*qg.m2();
     ampsq/=th;
     ampsq/=16.;
     ampsq*=RHEJ::C_F*RHEJ::C_F/RHEJ::C_A/RHEJ::C_A;  // Factor of (Cf/Ca) for each quark to match MH2qQ.
     //Higgs coupling is included in Hjets.C
 
     return ampsq;
 }
 
 double jM2unogqbarHQ (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
 {
     //  This construction is taking rapidity order: pg > p1out >> p2out
     //  std::cerr<<"This Uno Current: "<<p1out<<"  "<<p1in<<"  "<<p2out<<"  "<<p2in<<"  "<<pg<<std::endl;
 
     CLHEP::HepLorentzVector q1=p1in-p1out;  // Top End
     CLHEP::HepLorentzVector q2=-(p2in-p2out);   // Bottom End
     CLHEP::HepLorentzVector qg=p1in-p1out-pg;  // Extra bit post-gluon
 
     //  std::cerr<<"Current:  "<<q1.m2()<<"  "<<q2.m2()<<std::endl;
     CCurrent mj1m,mj1p,mj2m,mj2p,mjH2m,mjH2p;
     mj1p=jio(p1in,true,p1out,true);
     mj1m=jio(p1in,false,p1out,false);
     mjH2p=jH(p2out,true,p2in,true,qH1,qH2, mt, incBot, mb);
     mjH2m=jH(p2out,false,p2in,false,qH1,qH2, mt, incBot, mb);
 
     // Dot products of these which occur again and again
     COM MHmp=mj1m.dot(mjH2p);  // And now for the Higgs ones
     COM MHmm=mj1m.dot(mjH2m);
     COM MHpp=mj1p.dot(mjH2p);
     COM MHpm=mj1p.dot(mjH2m);
 
     // Currents with pg
     CCurrent jgam,jgap,j2gm,j2gp;
     j2gp=joo(pg,true,p1out,true);
     j2gm=joo(pg,false,p1out,false);
     jgap=jio(p1in,true,pg,true);
     jgam=jio(p1in,false,pg,false);
 
     CCurrent qsum(q1+qg);
 
     CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
     CCurrent p1o(p1out);
     CCurrent p1i(p1in);
 
     Lmm=(qsum*(MHmm) + (-2.*mjH2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmm/2.))/q1.m2();
     Lmp=(qsum*(MHmp) + (-2.*mjH2p.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmp/2.))/q1.m2();
     Lpm=(qsum*(MHpm) + (-2.*mjH2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpm/2.))/q1.m2();
     Lpp=(qsum*(MHpp) + (-2.*mjH2p.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpp/2.))/q1.m2();
 
     U1mm=(jgam.dot(mjH2m)*j2gm+2.*p1o*MHmm)/(p1out+pg).m2();
     U1mp=(jgam.dot(mjH2p)*j2gm+2.*p1o*MHmp)/(p1out+pg).m2();
     U1pm=(jgap.dot(mjH2m)*j2gp+2.*p1o*MHpm)/(p1out+pg).m2();
     U1pp=(jgap.dot(mjH2p)*j2gp+2.*p1o*MHpp)/(p1out+pg).m2();
     U2mm=((-1.)*j2gm.dot(mjH2m)*jgam+2.*p1i*MHmm)/(p1in-pg).m2();
     U2mp=((-1.)*j2gm.dot(mjH2p)*jgam+2.*p1i*MHmp)/(p1in-pg).m2();
     U2pm=((-1.)*j2gp.dot(mjH2m)*jgap+2.*p1i*MHpm)/(p1in-pg).m2();
     U2pp=((-1.)*j2gp.dot(mjH2p)*jgap+2.*p1i*MHpp)/(p1in-pg).m2();
 
     const double cf=RHEJ::C_F;
     double amm,amp,apm,app;
 
     amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
     amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
     apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
     app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
     double ampsq=-(amm+amp+apm+app)/(q2.m2()*qH2.m2());
 
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
 
     // Now add the t-channels for the Higgs
     double th=qH1.m2()*qg.m2();
     ampsq/=th;
     ampsq/=16.;
     ampsq*=4.*4./(9.*9.);  // Factor of (Cf/Ca) for each quark to match MH2qQ.
     //Higgs coupling is included in Hjets.C
 
     return ampsq;
 }
 
 double jM2unogqHQbar (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
 {
     //  This construction is taking rapidity order: pg > p1out >> p2out
     //  std::cerr<<"This Uno Current: "<<p1out<<"  "<<p1in<<"  "<<p2out<<"  "<<p2in<<"  "<<pg<<std::endl;
 
     CLHEP::HepLorentzVector q1=p1in-p1out;  // Top End
     CLHEP::HepLorentzVector q2=-(p2in-p2out);   // Bottom End
     CLHEP::HepLorentzVector qg=p1in-p1out-pg;  // Extra bit post-gluon
 
     //  std::cerr<<"Current:  "<<q1.m2()<<"  "<<q2.m2()<<std::endl;
     CCurrent mj1m,mj1p,mj2m,mj2p,mjH2m,mjH2p;
     mj1p=j(p1out,true,p1in,true);
     mj1m=j(p1out,false,p1in,false);
     mjH2p=jioH(p2in,true,p2out,true,qH1,qH2, mt, incBot, mb);
     mjH2m=jioH(p2in,false,p2out,false,qH1,qH2, mt, incBot, mb);
 
     // Dot products of these which occur again and again
     COM MHmp=mj1m.dot(mjH2p);  // And now for the Higgs ones
     COM MHmm=mj1m.dot(mjH2m);
     COM MHpp=mj1p.dot(mjH2p);
     COM MHpm=mj1p.dot(mjH2m);
 
     // Currents with pg
     CCurrent jgam,jgap,j2gm,j2gp;
     j2gp=joo(p1out,true,pg,true);
     j2gm=joo(p1out,false,pg,false);
     jgap=j(pg,true,p1in,true);
     jgam=j(pg,false,p1in,false);
 
     CCurrent qsum(q1+qg);
 
     CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
     CCurrent p1o(p1out);
     CCurrent p1i(p1in);
 
     Lmm=(qsum*(MHmm) + (-2.*mjH2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmm/2.))/q1.m2();
     Lmp=(qsum*(MHmp) + (-2.*mjH2p.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmp/2.))/q1.m2();
     Lpm=(qsum*(MHpm) + (-2.*mjH2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpm/2.))/q1.m2();
     Lpp=(qsum*(MHpp) + (-2.*mjH2p.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpp/2.))/q1.m2();
 
     U1mm=(jgam.dot(mjH2m)*j2gm+2.*p1o*MHmm)/(p1out+pg).m2();
     U1mp=(jgam.dot(mjH2p)*j2gm+2.*p1o*MHmp)/(p1out+pg).m2();
     U1pm=(jgap.dot(mjH2m)*j2gp+2.*p1o*MHpm)/(p1out+pg).m2();
     U1pp=(jgap.dot(mjH2p)*j2gp+2.*p1o*MHpp)/(p1out+pg).m2();
     U2mm=((-1.)*j2gm.dot(mjH2m)*jgam+2.*p1i*MHmm)/(p1in-pg).m2();
     U2mp=((-1.)*j2gm.dot(mjH2p)*jgam+2.*p1i*MHmp)/(p1in-pg).m2();
     U2pm=((-1.)*j2gp.dot(mjH2m)*jgap+2.*p1i*MHpm)/(p1in-pg).m2();
     U2pp=((-1.)*j2gp.dot(mjH2p)*jgap+2.*p1i*MHpp)/(p1in-pg).m2();
 
     const double cf=RHEJ::C_F;
     double amm,amp,apm,app;
 
     amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
     amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
     apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
     app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
     double ampsq=-(amm+amp+apm+app)/(q2.m2()*qH2.m2());
 
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
 
     // Now add the t-channels for the Higgs
     double th=qH1.m2()*qg.m2();
     ampsq/=th;
     ampsq/=16.;
     ampsq*=4.*4./(9.*9.);  // Factor of (Cf/Ca) for each quark to match MH2qQ.
     //Higgs coupling is included in Hjets.C
 
     return ampsq;
 }
 
 double jM2unogqbarHQbar (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
 {
     //  This construction is taking rapidity order: pg > p1out >> p2out
     //  std::cerr<<"This Uno Current: "<<p1out<<"  "<<p1in<<"  "<<p2out<<"  "<<p2in<<"  "<<pg<<std::endl;
 
     CLHEP::HepLorentzVector q1=p1in-p1out;  // Top End
     CLHEP::HepLorentzVector q2=-(p2in-p2out);   // Bottom End
     CLHEP::HepLorentzVector qg=p1in-p1out-pg;  // Extra bit post-gluon
 
     //  std::cerr<<"Current:  "<<q1.m2()<<"  "<<q2.m2()<<std::endl;
     CCurrent mj1m,mj1p,mj2m,mj2p,mjH2m,mjH2p;
     mj1p=jio(p1in,true,p1out,true);
     mj1m=jio(p1in,false,p1out,false);
     mjH2p=jioH(p2in,true,p2out,true,qH1,qH2, mt, incBot, mb);
     mjH2m=jioH(p2in,false,p2out,false,qH1,qH2, mt, incBot, mb);
 
     // Dot products of these which occur again and again
     COM MHmp=mj1m.dot(mjH2p);  // And now for the Higgs ones
     COM MHmm=mj1m.dot(mjH2m);
     COM MHpp=mj1p.dot(mjH2p);
     COM MHpm=mj1p.dot(mjH2m);
 
     // Currents with pg
     CCurrent jgam,jgap,j2gm,j2gp;
     j2gp=joo(pg,true,p1out,true);
     j2gm=joo(pg,false,p1out,false);
     jgap=jio(p1in,true,pg,true);
     jgam=jio(p1in,false,pg,false);
 
     CCurrent qsum(q1+qg);
 
     CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
     CCurrent p1o(p1out);
     CCurrent p1i(p1in);
 
     Lmm=(qsum*(MHmm) + (-2.*mjH2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmm/2.))/q1.m2();
     Lmp=(qsum*(MHmp) + (-2.*mjH2p.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmp/2.))/q1.m2();
     Lpm=(qsum*(MHpm) + (-2.*mjH2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpm/2.))/q1.m2();
     Lpp=(qsum*(MHpp) + (-2.*mjH2p.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpp/2.))/q1.m2();
 
     U1mm=(jgam.dot(mjH2m)*j2gm+2.*p1o*MHmm)/(p1out+pg).m2();
     U1mp=(jgam.dot(mjH2p)*j2gm+2.*p1o*MHmp)/(p1out+pg).m2();
     U1pm=(jgap.dot(mjH2m)*j2gp+2.*p1o*MHpm)/(p1out+pg).m2();
     U1pp=(jgap.dot(mjH2p)*j2gp+2.*p1o*MHpp)/(p1out+pg).m2();
     U2mm=((-1.)*j2gm.dot(mjH2m)*jgam+2.*p1i*MHmm)/(p1in-pg).m2();
     U2mp=((-1.)*j2gm.dot(mjH2p)*jgam+2.*p1i*MHmp)/(p1in-pg).m2();
     U2pm=((-1.)*j2gp.dot(mjH2m)*jgap+2.*p1i*MHpm)/(p1in-pg).m2();
     U2pp=((-1.)*j2gp.dot(mjH2p)*jgap+2.*p1i*MHpp)/(p1in-pg).m2();
 
     const double cf=RHEJ::C_F;
     double amm,amp,apm,app;
 
     amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
     amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
     apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
     app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
     double ampsq=-(amm+amp+apm+app)/(q2.m2()*qH2.m2());
 
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
 
     // Now add the t-channels for the Higgs
     double th=qH1.m2()*qg.m2();
     ampsq/=th;
     ampsq/=16.;
     //Higgs coupling is included in Hjets.C
     ampsq*=4.*4./(9.*9.);  // Factor of (Cf/Ca) for each quark to match MH2qQ.
 
     return ampsq;
 }
 
 double jM2unogqHg (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
 {
     //  This construction is taking rapidity order: pg > p1out >> p2out
     //  std::cerr<<"This Uno Current: "<<p1out<<"  "<<p1in<<"  "<<p2out<<"  "<<p2in<<"  "<<pg<<std::endl;
 
     CLHEP::HepLorentzVector q1=p1in-p1out;  // Top End
     CLHEP::HepLorentzVector q2=-(p2in-p2out);   // Bottom End
     CLHEP::HepLorentzVector qg=p1in-p1out-pg;  // Extra bit post-gluon
 
     CCurrent mj1m,mj1p,mj2m,mj2p,mjH2m,mjH2p;
     mj1p=j(p1out,true,p1in,true);
     mj1m=j(p1out,false,p1in,false);
     mjH2p=jH(p2out,true,p2in,true,qH1,qH2, mt, incBot, mb);
     mjH2m=jH(p2out,false,p2in,false,qH1,qH2, mt, incBot, mb);
 
     // Dot products of these which occur again and again
     COM MHmp=mj1m.dot(mjH2p);  // And now for the Higgs ones
     COM MHmm=mj1m.dot(mjH2m);
     COM MHpp=mj1p.dot(mjH2p);
     COM MHpm=mj1p.dot(mjH2m);
 
     // Currents with pg
     CCurrent jgam,jgap,j2gm,j2gp;
     j2gp=joo(p1out,true,pg,true);
     j2gm=joo(p1out,false,pg,false);
     jgap=j(pg,true,p1in,true);
     jgam=j(pg,false,p1in,false);
 
     CCurrent qsum(q1+qg);
 
     CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
     CCurrent p1o(p1out);
     CCurrent p1i(p1in);
 
     Lmm=(qsum*(MHmm) + (-2.*mjH2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmm/2.))/q1.m2();
     Lmp=(qsum*(MHmp) + (-2.*mjH2p.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmp/2.))/q1.m2();
     Lpm=(qsum*(MHpm) + (-2.*mjH2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpm/2.))/q1.m2();
     Lpp=(qsum*(MHpp) + (-2.*mjH2p.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpp/2.))/q1.m2();
 
     U1mm=(jgam.dot(mjH2m)*j2gm+2.*p1o*MHmm)/(p1out+pg).m2();
     U1mp=(jgam.dot(mjH2p)*j2gm+2.*p1o*MHmp)/(p1out+pg).m2();
     U1pm=(jgap.dot(mjH2m)*j2gp+2.*p1o*MHpm)/(p1out+pg).m2();
     U1pp=(jgap.dot(mjH2p)*j2gp+2.*p1o*MHpp)/(p1out+pg).m2();
     U2mm=((-1.)*j2gm.dot(mjH2m)*jgam+2.*p1i*MHmm)/(p1in-pg).m2();
     U2mp=((-1.)*j2gm.dot(mjH2p)*jgam+2.*p1i*MHmp)/(p1in-pg).m2();
     U2pm=((-1.)*j2gp.dot(mjH2m)*jgap+2.*p1i*MHpm)/(p1in-pg).m2();
     U2pp=((-1.)*j2gp.dot(mjH2p)*jgap+2.*p1i*MHpp)/(p1in-pg).m2();
 
     const double cf=RHEJ::C_F;
     double amm,amp,apm,app;
 
     amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
     amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
     apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
     app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
     double ampsq=-(amm+amp+apm+app)/(q2.m2()*qH2.m2());
 
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
 
     // Now add the t-channels for the Higgs
     double th=qH1.m2()*qg.m2();
     ampsq/=th;
     ampsq/=16.;
     ampsq*=4./9.*4./9.;  // Factor of (Cf/Ca) for each quark to match MH2qQ.
     // here we need 2 to match with the normalization
     // gq is 9./4. times the qQ
     //Higgs coupling is included in Hjets.C
 
     const double K = K_g(p2out, p2in);
 
     return ampsq*K/C_A*9./4.; //ca/cf = 9/4
 }
 
 double jM2unogqbarHg (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
 {
     //  This construction is taking rapidity order: pg > p1out >> p2out
     //  std::cerr<<"This Uno Current: "<<p1out<<"  "<<p1in<<"  "<<p2out<<"  "<<p2in<<"  "<<pg<<std::endl;
 
     CLHEP::HepLorentzVector q1=p1in-p1out;  // Top End
     CLHEP::HepLorentzVector q2=-(p2in-p2out);   // Bottom End
     CLHEP::HepLorentzVector qg=p1in-p1out-pg;  // Extra bit post-gluon
 
     CCurrent mj1m,mj1p,mj2m,mj2p,mjH2m,mjH2p;
     mj1p=jio(p1in,true,p1out,true);
     mj1m=jio(p1in,false,p1out,false);
     mjH2p=jH(p2out,true,p2in,true,qH1,qH2, mt, incBot, mb);
     mjH2m=jH(p2out,false,p2in,false,qH1,qH2, mt, incBot, mb);
 
     // Dot products of these which occur again and again
     COM MHmp=mj1m.dot(mjH2p);  // And now for the Higgs ones
     COM MHmm=mj1m.dot(mjH2m);
     COM MHpp=mj1p.dot(mjH2p);
     COM MHpm=mj1p.dot(mjH2m);
 
     // Currents with pg
     CCurrent jgam,jgap,j2gm,j2gp;
     j2gp=joo(pg,true,p1out,true);
     j2gm=joo(pg,false,p1out,false);
     jgap=jio(p1in,true,pg,true);
     jgam=jio(p1in,false,pg,false);
 
     CCurrent qsum(q1+qg);
 
     CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
     CCurrent p1o(p1out);
     CCurrent p1i(p1in);
 
     Lmm=(qsum*(MHmm) + (-2.*mjH2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmm/2.))/q1.m2();
     Lmp=(qsum*(MHmp) + (-2.*mjH2p.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmp/2.))/q1.m2();
     Lpm=(qsum*(MHpm) + (-2.*mjH2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpm/2.))/q1.m2();
     Lpp=(qsum*(MHpp) + (-2.*mjH2p.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpp/2.))/q1.m2();
 
     U1mm=(jgam.dot(mjH2m)*j2gm+2.*p1o*MHmm)/(p1out+pg).m2();
     U1mp=(jgam.dot(mjH2p)*j2gm+2.*p1o*MHmp)/(p1out+pg).m2();
     U1pm=(jgap.dot(mjH2m)*j2gp+2.*p1o*MHpm)/(p1out+pg).m2();
     U1pp=(jgap.dot(mjH2p)*j2gp+2.*p1o*MHpp)/(p1out+pg).m2();
     U2mm=((-1.)*j2gm.dot(mjH2m)*jgam+2.*p1i*MHmm)/(p1in-pg).m2();
     U2mp=((-1.)*j2gm.dot(mjH2p)*jgam+2.*p1i*MHmp)/(p1in-pg).m2();
     U2pm=((-1.)*j2gp.dot(mjH2m)*jgap+2.*p1i*MHpm)/(p1in-pg).m2();
     U2pp=((-1.)*j2gp.dot(mjH2p)*jgap+2.*p1i*MHpp)/(p1in-pg).m2();
 
     const double cf=RHEJ::C_F;
     double amm,amp,apm,app;
 
     amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
     amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
     apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
     app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
     double ampsq=-(amm+amp+apm+app)/(q2.m2()*qH2.m2());
 
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
 
     // Now add the t-channels for the Higgs
     double th=qH1.m2()*qg.m2();
     ampsq/=th;
     ampsq/=16.;
     ampsq*=4./9.*4./9.;  // Factor of (Cf/Ca) for each quark to match MH2qQ.
     // here we need 2 to match with the normalization
     // gq is 9./4. times the qQ
     //Higgs coupling is included in Hjets.C
 
     const double K = K_g(p2out, p2in);
 
     return ampsq*K/C_F;
 }
 
 double jM2unobqHQg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
 {
     // std::cout << "####################\n";
     // std::cout << "# p1in : "<<p1in<< " "<<p1in.plus()<<" "<<p1in.minus()<<std::endl;
     // std::cout << "# p2in : "<<p2in<< " "<<p2in.plus()<<" "<<p2in.minus()<<std::endl;
     // std::cout << "# p1out : "<<p1out<< " "<<p1out.rapidity()<<std::endl;
     // std::cout << "# (qH1-qH2) : "<<(qH1-qH2)<< " "<<(qH1-qH2).rapidity()<<std::endl;
     // std::cout << "# pg : "<<pg<< " "<<pg.rapidity()<<std::endl;
     // std::cout << "# p2out : "<<p2out<< " "<<p2out.rapidity()<<std::endl;
     // std::cout << "####################\n";
 
     CLHEP::HepLorentzVector q1=p1in-p1out;  // Top End
     CLHEP::HepLorentzVector q2=-(p2in-p2out-pg);  // Extra bit pre-gluon
     CLHEP::HepLorentzVector q3=-(p2in-p2out);   // Bottom End
 
     //  std::cerr<<"Current:  "<<q1.m2()<<"  "<<q2.m2()<<std::endl;
     CCurrent mjH1m,mjH1p,mj2m,mj2p;
     mjH1p=jHtop(p1out,true,p1in,true,qH1,qH2, mt, incBot, mb);
     mjH1m=jHtop(p1out,false,p1in,false,qH1,qH2, mt, incBot, mb);
     mj2p=j(p2out,true,p2in,true);
     mj2m=j(p2out,false,p2in,false);
 
     // Dot products of these which occur again and again
     COM MHmp=mjH1m.dot(mj2p);  // And now for the Higgs ones
     COM MHmm=mjH1m.dot(mj2m);
     COM MHpp=mjH1p.dot(mj2p);
     COM MHpm=mjH1p.dot(mj2m);
 
     // Currents with pg
     CCurrent jgbm,jgbp,j2gm,j2gp;
     j2gp=joo(p2out,true,pg,true);
     j2gm=joo(p2out,false,pg,false);
     jgbp=j(pg,true,p2in,true);
     jgbm=j(pg,false,p2in,false);
 
     CCurrent qsum(q2+q3);
 
     CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
     CCurrent p2o(p2out);
     CCurrent p2i(p2in);
 
     CCurrent pplus((p1in+p1out)/2.);
     CCurrent pminus((p2in+p2out)/2.);
 
     // COM test=pminus.dot(p1in);
 
     Lmm=((-1.)*qsum*(MHmm) + (-2.*mjH1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1m
         + (p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmm/2.))/q3.m2();
     Lmp=((-1.)*qsum*(MHmp) + (-2.*mjH1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1m
         +(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmp/2.))/q3.m2();
     Lpm=((-1.)*qsum*(MHpm) + (-2.*mjH1p.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1p
         +(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpm/2.))/q3.m2();
     Lpp=((-1.)*qsum*(MHpp) + (-2.*mjH1p.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1p
         +(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpp/2.))/q3.m2();
     U1mm=(jgbm.dot(mjH1m)*j2gm+2.*p2o*MHmm)/(p2out+pg).m2();
     U1mp=(jgbp.dot(mjH1m)*j2gp+2.*p2o*MHmp)/(p2out+pg).m2();
     U1pm=(jgbm.dot(mjH1p)*j2gm+2.*p2o*MHpm)/(p2out+pg).m2();
     U1pp=(jgbp.dot(mjH1p)*j2gp+2.*p2o*MHpp)/(p2out+pg).m2();
     U2mm=((-1.)*j2gm.dot(mjH1m)*jgbm+2.*p2i*MHmm)/(p2in-pg).m2();
     U2mp=((-1.)*j2gp.dot(mjH1m)*jgbp+2.*p2i*MHmp)/(p2in-pg).m2();
     U2pm=((-1.)*j2gm.dot(mjH1p)*jgbm+2.*p2i*MHpm)/(p2in-pg).m2();
     U2pp=((-1.)*j2gp.dot(mjH1p)*jgbp+2.*p2i*MHpp)/(p2in-pg).m2();
 
     const double cf=RHEJ::C_F;
     double amm,amp,apm,app;
 
     amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
     amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
     apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
     app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
     // 1/3. = 1/C_A ?
     double ampsq=-(amm+amp+apm+app)/(q1.m2()*qH1.m2());
 
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
 
     // Now add the t-channels for the Higgs
     const double th=qH2.m2()*q2.m2();
     ampsq/=th;
     ampsq/=16.;
     ampsq*=RHEJ::C_F*RHEJ::C_F/(RHEJ::C_A*RHEJ::C_A);  // Factor of (Cf/Ca) for each quark to match MH2qQ.
 
     return ampsq;
 }
 
 
 
 double jM2unobqbarHQg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
 {
 
     CLHEP::HepLorentzVector q1=p1in-p1out;  // Top End
     CLHEP::HepLorentzVector q2=-(p2in-p2out-pg);  // Extra bit pre-gluon
     CLHEP::HepLorentzVector q3=-(p2in-p2out);   // Bottom End
 
     //  std::cerr<<"Current:  "<<q1.m2()<<"  "<<q2.m2()<<std::endl;
     CCurrent mjH1m,mjH1p,mj2m,mj2p;
     mjH1p=jioHtop(p1in,true,p1out,true,qH1,qH2, mt, incBot, mb);
     mjH1m=jioHtop(p1in,false,p1out,false,qH1,qH2, mt, incBot, mb);
     mj2p=j(p2out,true,p2in,true);
     mj2m=j(p2out,false,p2in,false);
 
     // Dot products of these which occur again and again
     COM MHmp=mjH1m.dot(mj2p);  // And now for the Higgs ones
     COM MHmm=mjH1m.dot(mj2m);
     COM MHpp=mjH1p.dot(mj2p);
     COM MHpm=mjH1p.dot(mj2m);
 
 
     // Currents with pg
     CCurrent jgbm,jgbp,j2gm,j2gp;
     j2gp=joo(p2out,true,pg,true);
     j2gm=joo(p2out,false,pg,false);
     jgbp=j(pg,true,p2in,true);
     jgbm=j(pg,false,p2in,false);
 
     CCurrent qsum(q2+q3);
 
     CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
     CCurrent p2o(p2out);
     CCurrent p2i(p2in);
 
     CCurrent pplus((p1in+p1out)/2.);
     CCurrent pminus((p2in+p2out)/2.);
 
     // COM test=pminus.dot(p1in);
 
 
     Lmm=((-1.)*qsum*(MHmm) + (-2.*mjH1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmm/2.))/q3.m2();
     Lmp=((-1.)*qsum*(MHmp) + (-2.*mjH1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmp/2.))/q3.m2();
     Lpm=((-1.)*qsum*(MHpm) + (-2.*mjH1p.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpm/2.))/q3.m2();
     Lpp=((-1.)*qsum*(MHpp) + (-2.*mjH1p.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpp/2.))/q3.m2();
     U1mm=(jgbm.dot(mjH1m)*j2gm+2.*p2o*MHmm)/(p2out+pg).m2();
     U1mp=(jgbp.dot(mjH1m)*j2gp+2.*p2o*MHmp)/(p2out+pg).m2();
     U1pm=(jgbm.dot(mjH1p)*j2gm+2.*p2o*MHpm)/(p2out+pg).m2();
     U1pp=(jgbp.dot(mjH1p)*j2gp+2.*p2o*MHpp)/(p2out+pg).m2();
     U2mm=((-1.)*j2gm.dot(mjH1m)*jgbm+2.*p2i*MHmm)/(p2in-pg).m2();
     U2mp=((-1.)*j2gp.dot(mjH1m)*jgbp+2.*p2i*MHmp)/(p2in-pg).m2();
     U2pm=((-1.)*j2gm.dot(mjH1p)*jgbm+2.*p2i*MHpm)/(p2in-pg).m2();
     U2pp=((-1.)*j2gp.dot(mjH1p)*jgbp+2.*p2i*MHpp)/(p2in-pg).m2();
 
     const double cf=RHEJ::C_F;
     double amm,amp,apm,app;
 
     amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
     amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
     apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
     app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
     double ampsq=-(amm+amp+apm+app)/(q1.m2()*qH1.m2());
 
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
 
     // Now add the t-channels for the Higgs
     double th=qH2.m2()*q2.m2();
     ampsq/=th;
     ampsq/=16.;
     ampsq*=4.*4./(9.*9.);  // Factor of (Cf/Ca) for each quark to match MH2qQ.
     //Higgs coupling is included in Hjets.C
 
     return ampsq;
 }
 
 
 
 double jM2unobqHQbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
 {
 
     CLHEP::HepLorentzVector q1=p1in-p1out;  // Top End
     CLHEP::HepLorentzVector q2=-(p2in-p2out-pg);  // Extra bit pre-gluon
     CLHEP::HepLorentzVector q3=-(p2in-p2out);   // Bottom End
 
     //  std::cerr<<"Current:  "<<q1.m2()<<"  "<<q2.m2()<<std::endl;
     CCurrent mjH1m,mjH1p,mj2m,mj2p;
     mjH1p=jHtop(p1out,true,p1in,true,qH1,qH2,mt, incBot, mb);
     mjH1m=jHtop(p1out,false,p1in,false,qH1,qH2,mt, incBot, mb);
     mj2p=jio(p2in,true,p2out,true);
     mj2m=jio(p2in,false,p2out,false);
 
     // Dot products of these which occur again and again
     COM MHmp=mjH1m.dot(mj2p);  // And now for the Higgs ones
     COM MHmm=mjH1m.dot(mj2m);
     COM MHpp=mjH1p.dot(mj2p);
     COM MHpm=mjH1p.dot(mj2m);
 
 
     // Currents with pg
     CCurrent jgbm,jgbp,j2gm,j2gp;
     j2gp=joo(pg,true,p2out,true);
     j2gm=joo(pg,false,p2out,false);
     jgbp=jio(p2in,true,pg,true);
     jgbm=jio(p2in,false,pg,false);
 
     CCurrent qsum(q2+q3);
 
     CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
     CCurrent p2o(p2out);
     CCurrent p2i(p2in);
 
     CCurrent pplus((p1in+p1out)/2.);
     CCurrent pminus((p2in+p2out)/2.);
 
     // COM test=pminus.dot(p1in);
 
 
     Lmm=((-1.)*qsum*(MHmm) + (-2.*mjH1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmm/2.))/q3.m2();
     Lmp=((-1.)*qsum*(MHmp) + (-2.*mjH1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmp/2.))/q3.m2();
     Lpm=((-1.)*qsum*(MHpm) + (-2.*mjH1p.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpm/2.))/q3.m2();
     Lpp=((-1.)*qsum*(MHpp) + (-2.*mjH1p.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpp/2.))/q3.m2();
     U1mm=(jgbm.dot(mjH1m)*j2gm+2.*p2o*MHmm)/(p2out+pg).m2();
     U1mp=(jgbp.dot(mjH1m)*j2gp+2.*p2o*MHmp)/(p2out+pg).m2();
     U1pm=(jgbm.dot(mjH1p)*j2gm+2.*p2o*MHpm)/(p2out+pg).m2();
     U1pp=(jgbp.dot(mjH1p)*j2gp+2.*p2o*MHpp)/(p2out+pg).m2();
     U2mm=((-1.)*j2gm.dot(mjH1m)*jgbm+2.*p2i*MHmm)/(p2in-pg).m2();
     U2mp=((-1.)*j2gp.dot(mjH1m)*jgbp+2.*p2i*MHmp)/(p2in-pg).m2();
     U2pm=((-1.)*j2gm.dot(mjH1p)*jgbm+2.*p2i*MHpm)/(p2in-pg).m2();
     U2pp=((-1.)*j2gp.dot(mjH1p)*jgbp+2.*p2i*MHpp)/(p2in-pg).m2();
 
     const double cf=RHEJ::C_F;
     double amm,amp,apm,app;
 
     amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
     amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
     apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
     app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
     double ampsq=-(amm+amp+apm+app)/(q1.m2()*qH1.m2());
 
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
 
     // Now add the t-channels for the Higgs
     double th=qH2.m2()*q2.m2();
     ampsq/=th;
     ampsq/=16.;
     ampsq*=4.*4./(9.*9.);  // Factor of (Cf/Ca) for each quark to match MH2qQ.
     //Higgs coupling is included in Hjets.C
 
     return ampsq;
 }
 
 
 
 double jM2unobqbarHQbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
 {
 
     CLHEP::HepLorentzVector q1=p1in-p1out;  // Top End
     CLHEP::HepLorentzVector q2=-(p2in-p2out-pg);  // Extra bit pre-gluon
     CLHEP::HepLorentzVector q3=-(p2in-p2out);   // Bottom End
 
     //  std::cerr<<"Current:  "<<q1.m2()<<"  "<<q2.m2()<<std::endl;
     CCurrent mjH1m,mjH1p,mj2m,mj2p;
     mjH1p=jioHtop(p1in,true,p1out,true,qH1,qH2,mt, incBot, mb);
     mjH1m=jioHtop(p1in,false,p1out,false,qH1,qH2,mt, incBot, mb);
     mj2p=jio(p2in,true,p2out,true);
     mj2m=jio(p2in,false,p2out,false);
 
     // Dot products of these which occur again and again
     COM MHmp=mjH1m.dot(mj2p);  // And now for the Higgs ones
     COM MHmm=mjH1m.dot(mj2m);
     COM MHpp=mjH1p.dot(mj2p);
     COM MHpm=mjH1p.dot(mj2m);
 
 
     // Currents with pg
     CCurrent jgbm,jgbp,j2gm,j2gp;
     j2gp=joo(pg,true,p2out,true);
     j2gm=joo(pg,false,p2out,false);
     jgbp=jio(p2in,true,pg,true);
     jgbm=jio(p2in,false,pg,false);
 
     CCurrent qsum(q2+q3);
 
     CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
     CCurrent p2o(p2out);
     CCurrent p2i(p2in);
 
     CCurrent pplus((p1in+p1out)/2.);
     CCurrent pminus((p2in+p2out)/2.);
 
     // COM test=pminus.dot(p1in);
 
 
     Lmm=((-1.)*qsum*(MHmm) + (-2.*mjH1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmm/2.))/q3.m2();
     Lmp=((-1.)*qsum*(MHmp) + (-2.*mjH1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmp/2.))/q3.m2();
     Lpm=((-1.)*qsum*(MHpm) + (-2.*mjH1p.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpm/2.))/q3.m2();
     Lpp=((-1.)*qsum*(MHpp) + (-2.*mjH1p.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpp/2.))/q3.m2();
     U1mm=(jgbm.dot(mjH1m)*j2gm+2.*p2o*MHmm)/(p2out+pg).m2();
     U1mp=(jgbp.dot(mjH1m)*j2gp+2.*p2o*MHmp)/(p2out+pg).m2();
     U1pm=(jgbm.dot(mjH1p)*j2gm+2.*p2o*MHpm)/(p2out+pg).m2();
     U1pp=(jgbp.dot(mjH1p)*j2gp+2.*p2o*MHpp)/(p2out+pg).m2();
     U2mm=((-1.)*j2gm.dot(mjH1m)*jgbm+2.*p2i*MHmm)/(p2in-pg).m2();
     U2mp=((-1.)*j2gp.dot(mjH1m)*jgbp+2.*p2i*MHmp)/(p2in-pg).m2();
     U2pm=((-1.)*j2gm.dot(mjH1p)*jgbm+2.*p2i*MHpm)/(p2in-pg).m2();
     U2pp=((-1.)*j2gp.dot(mjH1p)*jgbp+2.*p2i*MHpp)/(p2in-pg).m2();
 
     const double cf=RHEJ::C_F;
     double amm,amp,apm,app;
 
     amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
     amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
     apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
     app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
     double ampsq=-(amm+amp+apm+app)/(q1.m2()*qH1.m2());
 
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
 
     // Now add the t-channels for the Higgs
     double th=qH2.m2()*q2.m2();
     ampsq/=th;
     ampsq/=16.;
     ampsq*=4.*4./(9.*9.);  // Factor of (Cf/Ca) for each quark to match MH2qQ.
     //Higgs coupling is included in Hjets.C
 
 
 
     return ampsq;
 }
 
 double jM2unobgHQg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
 {
     // std::cout << "####################\n";
     // std::cout << "# p1in : "<<p1in<< " "<<p1in.plus()<<" "<<p1in.minus()<<std::endl;
     // std::cout << "# p2in : "<<p2in<< " "<<p2in.plus()<<" "<<p2in.minus()<<std::endl;
     // std::cout << "# p1out : "<<p1out<< " "<<p1out.rapidity()<<std::endl;
     // std::cout << "# (qH1-qH2) : "<<(qH1-qH2)<< " "<<(qH1-qH2).rapidity()<<std::endl;
     // std::cout << "# pg : "<<pg<< " "<<pg.rapidity()<<std::endl;
     // std::cout << "# p2out : "<<p2out<< " "<<p2out.rapidity()<<std::endl;
     // std::cout << "####################\n";
 
     CLHEP::HepLorentzVector q1=p1in-p1out;  // Top End
     CLHEP::HepLorentzVector q2=-(p2in-p2out-pg);  // Extra bit pre-gluon
     CLHEP::HepLorentzVector q3=-(p2in-p2out);   // Bottom End
 
     //  std::cerr<<"Current:  "<<q1.m2()<<"  "<<q2.m2()<<std::endl;
     CCurrent mjH1m,mjH1p,mj2m,mj2p;
     mjH1p=jHtop(p1out,true,p1in,true,qH1,qH2,mt, incBot, mb);
     mjH1m=jHtop(p1out,false,p1in,false,qH1,qH2,mt, incBot, mb);
     mj2p=j(p2out,true,p2in,true);
     mj2m=j(p2out,false,p2in,false);
 
     // Dot products of these which occur again and again
     COM MHmp=mjH1m.dot(mj2p);  // And now for the Higgs ones
     COM MHmm=mjH1m.dot(mj2m);
     COM MHpp=mjH1p.dot(mj2p);
     COM MHpm=mjH1p.dot(mj2m);
 
     // Currents with pg
     CCurrent jgbm,jgbp,j2gm,j2gp;
     j2gp=joo(p2out,true,pg,true);
     j2gm=joo(p2out,false,pg,false);
     jgbp=j(pg,true,p2in,true);
     jgbm=j(pg,false,p2in,false);
 
     CCurrent qsum(q2+q3);
 
     CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
     CCurrent p2o(p2out);
     CCurrent p2i(p2in);
 
     CCurrent pplus((p1in+p1out)/2.);
     CCurrent pminus((p2in+p2out)/2.);
 
     // COM test=pminus.dot(p1in);
 
     Lmm=((-1.)*qsum*(MHmm) + (-2.*mjH1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmm/2.))/q3.m2();
     Lmp=((-1.)*qsum*(MHmp) + (-2.*mjH1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmp/2.))/q3.m2();
     Lpm=((-1.)*qsum*(MHpm) + (-2.*mjH1p.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpm/2.))/q3.m2();
     Lpp=((-1.)*qsum*(MHpp) + (-2.*mjH1p.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpp/2.))/q3.m2();
     U1mm=(jgbm.dot(mjH1m)*j2gm+2.*p2o*MHmm)/(p2out+pg).m2();
     U1mp=(jgbp.dot(mjH1m)*j2gp+2.*p2o*MHmp)/(p2out+pg).m2();
     U1pm=(jgbm.dot(mjH1p)*j2gm+2.*p2o*MHpm)/(p2out+pg).m2();
     U1pp=(jgbp.dot(mjH1p)*j2gp+2.*p2o*MHpp)/(p2out+pg).m2();
     U2mm=((-1.)*j2gm.dot(mjH1m)*jgbm+2.*p2i*MHmm)/(p2in-pg).m2();
     U2mp=((-1.)*j2gp.dot(mjH1m)*jgbp+2.*p2i*MHmp)/(p2in-pg).m2();
     U2pm=((-1.)*j2gm.dot(mjH1p)*jgbm+2.*p2i*MHpm)/(p2in-pg).m2();
     U2pp=((-1.)*j2gp.dot(mjH1p)*jgbp+2.*p2i*MHpp)/(p2in-pg).m2();
 
     const double cf=RHEJ::C_F;
     double amm,amp,apm,app;
 
     amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
     amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
     apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
     app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
     double ampsq=-(amm+amp+apm+app)/(q1.m2()*qH1.m2());
 
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
 
     // Now add the t-channels for the Higgs
     double th=qH2.m2()*q2.m2();
     ampsq/=th;
     ampsq/=16.;
     ampsq*=4./9.*4./9.;  // Factor of (Cf/Ca) for each quark to match MH2qQ.
     // need twice to match the normalization
     //Higgs coupling is included in Hjets.C
 
     const double K = K_g(p1out, p1in);
 
     return ampsq*K/C_F;
 }
 
 
 
 double jM2unobgHQbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
 {
 
     CLHEP::HepLorentzVector q1=p1in-p1out;  // Top End
     CLHEP::HepLorentzVector q2=-(p2in-p2out-pg);  // Extra bit pre-gluon
     CLHEP::HepLorentzVector q3=-(p2in-p2out);   // Bottom End
 
     //  std::cerr<<"Current:  "<<q1.m2()<<"  "<<q2.m2()<<std::endl;
     CCurrent mjH1m,mjH1p,mj2m,mj2p;
     mjH1p=jHtop(p1out,true,p1in,true,qH1,qH2,mt, incBot, mb);
     mjH1m=jHtop(p1out,false,p1in,false,qH1,qH2,mt, incBot, mb);
     mj2p=jio(p2in,true,p2out,true);
     mj2m=jio(p2in,false,p2out,false);
 
     // Dot products of these which occur again and again
     COM MHmp=mjH1m.dot(mj2p);  // And now for the Higgs ones
     COM MHmm=mjH1m.dot(mj2m);
     COM MHpp=mjH1p.dot(mj2p);
     COM MHpm=mjH1p.dot(mj2m);
 
 
     // Currents with pg
     CCurrent jgbm,jgbp,j2gm,j2gp;
     j2gp=joo(pg,true,p2out,true);
     j2gm=joo(pg,false,p2out,false);
     jgbp=jio(p2in,true,pg,true);
     jgbm=jio(p2in,false,pg,false);
 
     CCurrent qsum(q2+q3);
 
     CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
     CCurrent p2o(p2out);
     CCurrent p2i(p2in);
 
     CCurrent pplus((p1in+p1out)/2.);
     CCurrent pminus((p2in+p2out)/2.);
 
     // COM test=pminus.dot(p1in);
 
 
     Lmm=((-1.)*qsum*(MHmm) + (-2.*mjH1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmm/2.))/q3.m2();
     Lmp=((-1.)*qsum*(MHmp) + (-2.*mjH1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmp/2.))/q3.m2();
     Lpm=((-1.)*qsum*(MHpm) + (-2.*mjH1p.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpm/2.))/q3.m2();
     Lpp=((-1.)*qsum*(MHpp) + (-2.*mjH1p.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpp/2.))/q3.m2();
     U1mm=(jgbm.dot(mjH1m)*j2gm+2.*p2o*MHmm)/(p2out+pg).m2();
     U1mp=(jgbp.dot(mjH1m)*j2gp+2.*p2o*MHmp)/(p2out+pg).m2();
     U1pm=(jgbm.dot(mjH1p)*j2gm+2.*p2o*MHpm)/(p2out+pg).m2();
     U1pp=(jgbp.dot(mjH1p)*j2gp+2.*p2o*MHpp)/(p2out+pg).m2();
     U2mm=((-1.)*j2gm.dot(mjH1m)*jgbm+2.*p2i*MHmm)/(p2in-pg).m2();
     U2mp=((-1.)*j2gp.dot(mjH1m)*jgbp+2.*p2i*MHmp)/(p2in-pg).m2();
     U2pm=((-1.)*j2gm.dot(mjH1p)*jgbm+2.*p2i*MHpm)/(p2in-pg).m2();
     U2pp=((-1.)*j2gp.dot(mjH1p)*jgbp+2.*p2i*MHpp)/(p2in-pg).m2();
 
     const double cf=RHEJ::C_F;
     double amm,amp,apm,app;
 
     amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
     amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
     apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
     app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
     double ampsq=-(amm+amp+apm+app)/(q1.m2()*qH1.m2());
 
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
   // if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
   //   std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << "  " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
 
     // Now add the t-channels for the Higgs
     double th=qH2.m2()*q2.m2();
     ampsq/=th;
     ampsq/=16.;
     ampsq*=4./9.*4./9.;  // Factor of (Cf/Ca) for each quark to match MH2qQ.
     //Higgs coupling is included in Hjets.C
 
     const double K = K_g(p1out, p1in);
 
     return ampsq*K/C_F; //ca/cf = 9/4
 
 }
 
 // Begin finite mass stuff
 #ifdef RHEJ_BUILD_WITH_QCDLOOP
 namespace {
 
 
   // All the stuff needed for the box functions in qg->qgH now...
 
   //COM E1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
   COM E1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
   {
     //CLHEP::HepLorentzVector q2=k3+k4;
     CLHEP::HepLorentzVector q2=-(k1+k2+kh);
     double Delta, Sigma, S1, S2, s12, s34;
     S1 = 2.*k1.dot(q2);
     S2 = 2.*k2.dot(q2);
     s12 = 2.*k1.dot(k2);
     //s34 = 2.*k3.dot(k4);
     s34 = q2.m2();
     Delta = s12*s34 - S1*S2;
     Sigma = 4.*s12*s34 - pow(S1+S2,2);
 
     return looprwfactor*(-s12*D0DD(k2, k1, q2, mq)*(1 - 8.*mq*mq/s12 + S2/(2.*s12) +
           S2*(s12 - 8.*mq*mq)*(s34 + S1)/(2.*s12*Delta) +
           2.*(s34 + S1)*(s34 + S1)/Delta +
           S2*pow((s34 + S1),3)/Delta/Delta) - ((s12 + S2)*C0DD(k2,
             k1 + q2, mq) -
           s12*C0DD(k1, k2, mq) + (S1 - S2)*C0DD(k1 + k2, q2, mq) -
           S1*C0DD(k1, q2,
             mq))*(S2*(s12 - 4.*mq*mq)/(2.*s12*Delta) +
           2.*(s34 + S1)/Delta +
           S2*pow((s34 + S1),2)/Delta/Delta) + (C0DD(k1, q2, mq) -
           C0DD(k1 + k2, q2, mq))*(1. - 4.*mq*mq/s12) -
        C0DD(k1 + k2, q2, mq)*2.*s34/
          S1 - (B0DD(k1 + q2, mq) -
           B0DD(k1 + k2 + q2, mq))*2.*s34*(s34 +
            S1)/(S1*Delta) + (B0DD(q2, mq) -
           B0DD(k1 + k2 + q2, mq) +
           s12*C0DD(k1 + k2, q2,
             mq))*(2.*s34*(s34 +
              S1)*(S1 - S2)/(Delta*Sigma) +
           2.*s34*(s34 + S1)/(S1*Delta)) + (B0DD(k1 + k2, mq) -
           B0DD(k1 + k2 + q2,
            mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*2.*(s34 +
           S1)*(2.*s12*s34 -
            S2*(S1 + S2))/(Delta*Sigma));
   }
   //COM F1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
   COM F1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
   {
     //CLHEP::HepLorentzVector q2=k3+k4;
     CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
     double Delta, Sigma, S1, S2, s12, s34;
     S1 = 2.*k1.dot(q2);
     S2 = 2.*k2.dot(q2);
     s12 = 2.*k1.dot(k2);
     //s34 = 2.*k3.dot(k4);
     s34 = q2.m2();
     Delta = s12*s34 - S1*S2;
     Sigma = 4.*s12*s34 - pow(S1+S2,2);
 
     return looprwfactor*(-S2*D0DD(k1, k2, q2,
          mq)*(0.5 - (s12 - 8.*mq*mq)*(s34 + S2)/(2.*Delta) -
           s12*pow((s34 + S2),3)/Delta/Delta) + ((s12 + S1)*C0DD(k1,
             k2 + q2, mq) -
           s12*C0DD(k1, k2, mq) - (S1 - S2)*C0DD(k1 + k2, q2, mq) -
           S2*C0DD(k2, q2,
             mq))*(S2*(s12 - 4.*mq*mq)/(2.*s12*Delta) +
           S2*pow((s34 + S2),2)/Delta/Delta) - (C0DD(k1 + k2, q2, mq) - C0DD(k1, k2 + q2, mq))*(1. - 4.*mq*mq/s12) -
        C0DD(k1, k2 + q2, mq) + (B0DD(k2 + q2, mq) -
           B0DD(k1 + k2 + q2,
            mq))*2.*pow((s34 + S2),2)/((s12 + S1)*Delta) - (B0DD(
            q2, mq) - B0DD(k1 + k2 + q2, mq) +
           s12*C0DD(k1 + k2, q2, mq))*2.*s34*(s34 +
           S2)*(S2 - S1)/(Delta*Sigma) + (B0DD(
            k1 + k2, mq) -
           B0DD(k1 + k2 + q2,
            mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*2.*(s34 +
           S2)*(2.*s12*s34 -
            S2*(S1 + S2))/(Delta*Sigma));
   }
   //COM G1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
   COM G1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
   {
     //CLHEP::HepLorentzVector q2=k3+k4;
     CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
     double Delta, S1, S2, s12, s34;
     S1 = 2.*k1.dot(q2);
     S2 = 2.*k2.dot(q2);
     s12 = 2.*k1.dot(k2);
     //s34 = 2.*k3.dot(k4);
     s34 = q2.m2();
     Delta = s12*s34 - S1*S2;
 
     return looprwfactor*(S2*D0DD(k1, q2, k2,
          mq)*(Delta/s12/s12 - 4.*mq*mq/s12) -
        S2*((s12 + S1)*C0DD(k1, k2 + q2, mq) -
           S1*C0DD(k1, q2, mq))*(1./
            s12/s12 - (s12 - 4.*mq*mq)/(2.*s12*Delta)) -
        S2*((s12 + S2)*C0DD(k1 + q2, k2, mq) -
           S2*C0DD(k2, q2, mq))*(1./
            s12/s12 + (s12 - 4.*mq*mq)/(2.*s12*Delta)) -
        C0DD(k1, q2, mq) - (C0DD(k1, k2 + q2, mq) -
           C0DD(k1, q2, mq))*4.*mq*mq/
          s12 + (B0DD(k1 + q2, mq) - B0DD(k1 + k2 + q2, mq))*2./
          s12 + (B0DD(k1 + q2, mq) -
           B0DD(q2, mq))*2.*s34/(s12*S1) + (B0DD(k2 + q2, mq) -
           B0DD(k1 + k2 + q2, mq))*2.*(s34 + S2)/(s12*(s12 + S1)));
   }
   //COM E4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
   COM E4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
   {
     //CLHEP::HepLorentzVector q2=k3+k4;
     CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
     double Delta, Sigma, S1, S2, s12, s34;
     S1 = 2.*k1.dot(q2);
     S2 = 2.*k2.dot(q2);
     s12 = 2.*k1.dot(k2);
     //s34 = 2.*k3.dot(k4);
     s34 = q2.m2();
     Delta = s12*s34 - S1*S2;
     Sigma = 4.*s12*s34 - pow(S1+S2,2);
 
     return looprwfactor* (-s12*D0DD(k2, k1, q2,
          mq)*(0.5 - (S1 - 8.*mq*mq)*(s34 + S1)/(2.*Delta) -
           s12*pow((s34 + S1),3)/Delta/Delta) + ((s12 + S2)*C0DD(k2,
             k1 + q2, mq) -
           s12*C0DD(k1, k2, mq) + (S1 - S2)*C0DD(k1 + k2, q2, mq) -
           S1*C0DD(k1, q2, mq))*((S1 - 4.*mq*mq)/(2.*Delta) +
            s12*pow((s34 + S1),2)/Delta/Delta) -
        C0DD(k1 + k2, q2, mq) + (B0DD(k1 + q2, mq) -
           B0DD(k1 + k2 + q2, mq))*(2.*s34/Delta +
           2.*s12*(s34 + S1)/((s12 + S2)*Delta)) - (B0DD(
            q2, mq) - B0DD(k1 + k2 + q2, mq) +
           s12*C0DD(k1 + k2, q2,
             mq))*((2.*s34*(2.*s12*s34 - S2*(S1 + S2) +
               s12*(S1 -
                  S2)))/(Delta*Sigma)) + (B0DD(k1 + k2, mq) -
           B0DD(k1 + k2 + q2, mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*((2.*s12*(2.*s12*s34 - S1*(S1 + S2) +
               s34*(S2 - S1)))/(Delta*Sigma)));
   }
   //COM F4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
   COM F4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
   {
     //CLHEP::HepLorentzVector q2=k3+k4;
     CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
     double Delta, Sigma, S1, S2, s12, s34;
     S1 = 2.*k1.dot(q2);
     S2 = 2.*k2.dot(q2);
     s12 = 2.*k1.dot(k2);
     //s34 = 2.*k3.dot(k4);
     s34 = q2.m2();
     Delta = s12*s34 - S1*S2;
     Sigma = 4.*s12*s34 - pow(S1+S2,2);
 
     return looprwfactor* (-s12*D0DD(k1, k2, q2,
          mq)*(0.5 + (S1 - 8.*mq*mq)*(s34 + S2)/(2.*Delta) +
           s12*pow((s34 + S2),3)/Delta/Delta) - ((s12 + S1)*C0DD(k1,
             k2 + q2, mq) -
           s12*C0DD(k1, k2, mq) - (S1 - S2)*C0DD(k1 + k2, q2, mq) -
           S2*C0DD(k2, q2, mq))*((S1 - 4.*mq*mq)/(2.*Delta) +
            s12*pow((s34 + S2),2)/Delta/Delta) -
        C0DD(k1 + k2, q2, mq) - (B0DD(k2 + q2, mq) -
           B0DD(k1 + k2 + q2, mq))*2.*(s34 +
            S2)/Delta + (B0DD(q2, mq) -
           B0DD(k1 + k2 + q2, mq) +
           s12*C0DD(k1 + k2, q2, mq))*2.*s34*(2.*s12*s34 -
            S1*(S1 + S2) +
            s12*(S2 - S1))/(Delta*Sigma) - (B0DD(k1 + k2, mq) -
           B0DD(k1 + k2 + q2, mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*(2.*s12*(2.*s12*s34 - S2*(S1 + S2) +
              s34*(S1 - S2))/(Delta*Sigma)));
   }
   //COM G4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
   COM G4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
   {
     //CLHEP::HepLorentzVector q2=k3+k4;
     CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
     double Delta, S1, S2, s12, s34;
     S1 = 2.*k1.dot(q2);
     S2 = 2.*k2.dot(q2);
     s12 = 2.*k1.dot(k2);
     //s34 = 2.*k3.dot(k4);
     s34 = q2.m2();
     Delta = s12*s34 - S1*S2;
 
     return looprwfactor* (-D0DD(k1, q2, k2,
           mq)*(Delta/s12 + (s12 + S1)/2. -
           4.*mq*mq) + ((s12 + S1)*C0DD(k1, k2 + q2, mq) -
           S1*C0DD(k1, q2, mq))*(1./
            s12 - (S1 - 4.*mq*mq)/(2.*Delta)) + ((s12 + S2)*C0DD(
             k1 + q2, k2, mq) -
           S2*C0DD(k2, q2, mq))*(1./
            s12 + (S1 - 4.*mq*mq)/(2.*Delta)) + (B0DD(
            k1 + k2 + q2, mq) -
           B0DD(k1 + q2, mq))*2./(s12 + S2));
   }
   //COM E10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
   COM E10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
   {
     //CLHEP::HepLorentzVector q2=k3+k4;
     CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
     double Delta, Sigma, S1, S2, s12, s34;
     S1 = 2.*k1.dot(q2);
     S2 = 2.*k2.dot(q2);
     s12 = 2.*k1.dot(k2);
     //s34 = 2.*k3.dot(k4);
     s34 = q2.m2();
     Delta = s12*s34 - S1*S2;
     Sigma = 4.*s12*s34 - pow(S1+S2,2);
 
     return looprwfactor*(-s12*D0DD(k2, k1, q2, mq)*((s34 + S1)/Delta +
            12.*mq*mq*S1*(s34 + S1)/Delta/Delta -
            4.*s12*S1*pow((s34 + S1),3)/Delta/Delta/Delta) - ((s12 + S2)*C0DD(k2, k1 + q2, mq) -
            s12*C0DD(k1, k2, mq) + (S1 - S2)*C0DD(k1 + k2, q2, mq) -
             S1*C0DD(k1, q2, mq))*(1./Delta +
            4.*mq*mq*S1/Delta/Delta -
            4.*s12*S1*pow((s34 + S1),2)/Delta/Delta/Delta) +
         C0DD(k1 + k2, q2, mq)*(4.*s12*s34*(S1 - S2)/(Delta*Sigma) -
            4.*(s12 -
               2.*mq*mq)*(2.*s12*s34 -
                S1*(S1 + S2))/(Delta*Sigma)) + (B0DD(k1 + q2, mq) -
            B0DD(k1 + k2 + q2, mq))*(4.*(s34 + S1)/((s12 + S2)*Delta) +
            8.*S1*(s34 + S1)/Delta/Delta) + (B0DD(q2, mq) -
            B0DD(k1 + k2 + q2, mq) +
            s12*C0DD(k1 + k2, q2, mq))*(12.*s34*(2.*s12 + S1 +
               S2)*(2.*s12*s34 -
                S1*(S1 + S2))/(Delta*Sigma*Sigma) -
            4.*s34*(4.*s12 + 3.*S1 +
                S2)/(Delta*Sigma) +
            8.*s12*s34*(s34*(s12 + S2) -
                S1*(s34 +
                   S1))/(Delta*Delta*Sigma)) + (B0DD(k1 + k2, mq) -
            B0DD(k1 + k2 + q2, mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2,
              mq))*(12.*s12*(2.*s34 + S1 +
               S2)*(2.*s12*s34 -
                S1*(S1 + S2))/(Delta*Sigma*Sigma) +
            8.*s12*S1*(s34*(s12 + S2) -
                S1*(s34 +
                   S1))/(Delta*Delta*Sigma))) + (COM(0.,1.)/(4.*M_PI*M_PI))*((2.*s12*s34 -
           S1*(S1 + S2))/(Delta*Sigma));
   }
 
   //COM F10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
   COM F10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
   {
     //CLHEP::HepLorentzVector q2=k3+k4;
     CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
     double Delta, Sigma, S1, S2, s12, s34;
     S1 = 2.*k1.dot(q2);
     S2 = 2.*k2.dot(q2);
     s12 = 2.*k1.dot(k2);
     //s34 = 2.*k3.dot(k4);
     s34 = q2.m2();
     Delta = s12*s34 - S1*S2;
     Sigma = 4.*s12*s34 - pow(S1+S2,2);
 
     return looprwfactor* (s12*D0DD(k1, k2, q2,
           mq)*((s34 + S2)/Delta - 4.*mq*mq/Delta +
            12.*mq*mq*s34*(s12 + S1)/Delta/Delta -
            4.*s12*pow((s34 + S2),2)/Delta/Delta -
            4.*s12*S1*pow((s34 + S2),3)/Delta/Delta/Delta) + ((s12 + S1)*C0DD(k1, k2 + q2, mq) -
            s12*C0DD(k1, k2, mq) - (S1 - S2)*C0DD(k1 + k2, q2, mq) -
             S2*C0DD(k2, q2, mq))*(1./Delta +
            4.*mq*mq*S1/Delta/Delta -
            4.*s12*(s34 + S2)/Delta/Delta -
            4.*s12*S1*pow((s34 + S2),2)/Delta/Delta/Delta) -
         C0DD(k1 + k2, q2, mq)*(4.*s12*s34/(S2*Delta) +
            4.*s12*s34*(S2 - S1)/(Delta*Sigma) +
            4.*(s12 -
               2.*mq*mq)*(2.*s12*s34 -
                S1*(S1 + S2))/(Delta*Sigma)) - (B0DD(
             k2 + q2, mq) -
            B0DD(k1 + k2 + q2, mq))*(4.*s34/(S2*Delta) +
            8.*s34*(s12 + S1)/Delta/Delta) - (B0DD(q2, mq) -
            B0DD(k1 + k2 + q2, mq) +
            s12*C0DD(k1 + k2, q2,
              mq))*(-12*s34*(2*s12 + S1 +
               S2)*(2.*s12*s34 -
                S1*(S1 + S2))/(Delta*Sigma*Sigma) -
            4.*s12*s34*s34/(S2*Delta*Delta) +
            4.*s34*S1/(Delta*Sigma) -
            4.*s34*(s12*s34*(2.*s12 + S2) -
                S1*S1*(2.*s12 +
                   S1))/(Delta*Delta*Sigma)) - (B0DD(k1 + k2, mq) -
            B0DD(k1 + k2 + q2, mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*(-12.*s12*(2.*s34 + S1 +
               S2)*(2.*s12*s34 -
                S1*(S1 + S2))/(Delta*Sigma*Sigma) +
            8.*s12*(2.*s34 + S1)/(Delta*Sigma) -
            8.*s12*s34*(2.*s12*s34 - S1*(S1 + S2) +
                s12*(S2 -
                   S1))/(Delta*Delta*Sigma))) + (COM(0.,1.)/(4.*M_PI*M_PI))*((2.*s12*s34 -
           S1*(S1 + S2))/(Delta*Sigma));
 
   }
 
   //COM G10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
   COM G10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
   {
     //CLHEP::HepLorentzVector q2=k3+k4;
     CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
     double Delta, S1, S2, s12, s34;
     S1 = 2.*k1.dot(q2);
     S2 = 2.*k2.dot(q2);
     s12 = 2.*k1.dot(k2);
     //s34 = 2.*k3.dot(k4);
     s34 = q2.m2();
     Delta = s12*s34 - S1*S2;
 
     return looprwfactor* (-D0DD(k1, q2, k2, mq)*(1. +
           4.*S1*mq*mq/Delta) + ((s12 + S1)*C0DD(k1,
             k2 + q2, mq) -
           S1*C0DD(k1, q2, mq))*(1./Delta +
           4.*S1*mq*mq/Delta/Delta) - ((s12 + S2)*C0DD(k1 + q2,
             k2, mq) - S2*C0DD(k2, q2, mq))*(1./Delta +
           4.*S1*mq*mq/Delta/Delta) + (B0DD(k1 + k2 + q2, mq) -
           B0DD(k1 + q2, mq))*4.*(s34 +
            S1)/(Delta*(s12 + S2)) + (B0DD(q2, mq) -
           B0DD(k2 + q2, mq))*4.*s34/(Delta*S2));
   }
 
   //COM H1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
   COM H1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
   {
     //return E1(k1,k2,k3,k4,mq)+F1(k1,k2,k3,k4,mq)+G1(k1,k2,k3,k4,mq);
     return E1(k1,k2,kh,mq)+F1(k1,k2,kh,mq)+G1(k1,k2,kh,mq);
   }
   //COM H4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
   COM H4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
   {
     //return E4(k1,k2,k3,k4,mq)+F4(k1,k2,k3,k4,mq)+G4(k1,k2,k3,k4,mq);
     return E4(k1,k2,kh,mq)+F4(k1,k2,kh,mq)+G4(k1,k2,kh,mq);
   }
   //COM H10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
   COM H10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
   {
     //return E10(k1,k2,k3,k4,mq)+F10(k1,k2,k3,k4,mq)+G10(k1,k2,k3,k4,mq);
     return E10(k1,k2,kh,mq)+F10(k1,k2,kh,mq)+G10(k1,k2,kh,mq);
   }
   //COM H2(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
   COM H2(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
   {
     //return -1.*H1(k2,k1,k3,k4,mq);
     return -1.*H1(k2,k1,kh,mq);
   }
   //COM H5(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
   COM H5(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
   {
     //return -1.*H4(k2,k1,k3,k4,mq);
     return -1.*H4(k2,k1,kh,mq);
   }
   //COM H12(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
   COM H12(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
   {
     //return -1.*H10(k2,k1,k3,k4,mq);
     return -1.*H10(k2,k1,kh,mq);
   }
 
   // FL and FT functions
   COM FL(CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mq)
   {
     CLHEP::HepLorentzVector Q = q1 + q2;
     double detQ2 = q1.m2()*q2.m2() - q1.dot(q2)*q1.dot(q2);
     return -1./(2.*detQ2)*((2.-
            3.*q1.m2()*q2.dot(Q)/detQ2)*(B0DD(q1, mq) -
            B0DD(Q, mq)) + (2. -
            3.*q2.m2()*q1.dot(Q)/detQ2)*(B0DD(q2, mq) -
            B0DD(Q, mq)) - (4.*mq*mq + q1.m2() + q2.m2() +
            Q.m2() - 3.*q1.m2()*q2.m2()*Q.m2()/detQ2)*C0DD(
           q1, q2, mq) - 2.);
   }
   COM FT(CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mq)
   {
     CLHEP::HepLorentzVector Q = q1 + q2;
     double detQ2 = q1.m2()*q2.m2() - q1.dot(q2)*q1.dot(q2);
     return -1./(2.*detQ2)*(Q.m2()*(B0DD(q1, mq) + B0DD(q2, mq) - 2.*B0DD(Q, mq) -
             2.*q1.dot(q2)*C0DD(q1, q2, mq)) + (q1.m2() -
             q2.m2()) *(B0DD(q1, mq) - B0DD(q2, mq))) -
       q1.dot(q2)*FL(q1, q2, mq);
   }
 
   CLHEP::HepLorentzVector ParityFlip(CLHEP::HepLorentzVector p)
   {
     CLHEP::HepLorentzVector flippedVector;
     flippedVector.setE(p.e());
     flippedVector.setX(-p.x());
     flippedVector.setY(-p.y());
     flippedVector.setZ(-p.z());
     return flippedVector;
   }
   /// @brief HC amp for qg->qgH with finite top (i.e. j^{++}_H)
   void g_gH_HC(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector p1,
     CLHEP::HepLorentzVector pH, double mq, current &retAns)
   {
     current cura1,pacur,p1cur,pHcur,conjeps1,conjepsH1,epsa,epsHa,epsHapart1,
       epsHapart2,conjepsH1part1,conjepsH1part2;
     COM ang1a,sqa1;
 
     const double F = 4.*mq*mq/v;
     // Easier to have the whole thing as current object so I can use cdot functionality.
     // Means I need to write pa,p1 as current objects
     to_current(pa, pacur);
     to_current(p1,p1cur);
     to_current(pH,pHcur);
     bool gluonforward = true;
     if(pa.z() < 0)
       gluonforward = false;
     //HEJ gauge
     jio(pa,false,p1,false,cura1);
 
     if(gluonforward){
       // sqrt(2pa_-/p1_-)*p1_perp/abs(p1_perp)
       ang1a = sqrt(pa.plus()*p1.minus())*(p1.x()+COM(0.,1.)*p1.y())/p1.perp();
       // sqrt(2pa_-/p1_-)*p1_perp*/abs(p1_perp)
       sqa1 = sqrt(pa.plus()*p1.minus())*(p1.x()-COM(0.,1.)*p1.y())/p1.perp();
     } else {
       ang1a = sqrt(pa.minus()*p1.plus());
       sqa1 = sqrt(pa.minus()*p1.plus());
     }
 
 
     const double prop = (pa-p1-pH).m2();
 
     cmult(-1./sqrt(2)/ang1a,cura1,conjeps1);
     cmult(1./sqrt(2)/sqa1,cura1,epsa);
 
     const COM Fta = FT(-pa,pa-pH,mq)/(pa-pH).m2();
     const COM Ft1 = FT(-p1-pH,p1,mq)/(p1+pH).m2();
 
     const COM h4 = H4(p1,-pa,pH,mq);
     const COM h5 = H5(p1,-pa,pH,mq);
     const COM h10 = H10(p1,-pa,pH,mq);
     const COM h12 = H12(p1,-pa,pH,mq);
 
 
     cmult(Fta*pa.dot(pH), epsa, epsHapart1);
     cmult(-1.*Fta*cdot(pHcur,epsa), pacur, epsHapart2);
     cmult(Ft1*cdot(pHcur,conjeps1), p1cur, conjepsH1part1);
     cmult(-Ft1*p1.dot(pH), conjeps1, conjepsH1part2);
     cadd(epsHapart1, epsHapart2, epsHa);
     cadd(conjepsH1part1, conjepsH1part2, conjepsH1);
     const COM aH1 = cdot(pHcur, cura1);
 
     current T1,T2,T3,T4,T5,T6,T7,T8,T9,T10;
 
     if(gluonforward){
       cmult(sqrt(2.)*sqrt(p1.plus()/pa.plus())*prop/sqa1, conjepsH1, T1);
       cmult(-sqrt(2.)*sqrt(pa.plus()/p1.plus())*prop/ang1a, epsHa, T2);
     }
     else{
       cmult(-sqrt(2.)*sqrt(p1.minus()/pa.minus())
           *((p1.x()-COM(0.,1.)*p1.y())/p1.perp())*prop/sqa1, conjepsH1, T1);
       cmult(sqrt(2.)*sqrt(pa.minus()/p1.minus())
           *((p1.x()-COM(0.,1.)*p1.y())/p1.perp())*prop/ang1a, epsHa, T2);
     }
 
     cmult(sqrt(2.)/ang1a*aH1, epsHa, T3);
     cmult(sqrt(2.)/sqa1*aH1, conjepsH1, T4);
 
     cmult(-sqrt(2.)*Fta*pa.dot(p1)*aH1/sqa1, conjeps1, T5);
     cmult(-sqrt(2.)*Ft1*pa.dot(p1)*aH1/ang1a, epsa, T6);
 
     cmult(-aH1/sqrt(2.)/sqa1*h4*8.*COM(0.,1.)*M_PI*M_PI, conjeps1, T7);
     cmult(aH1/sqrt(2.)/ang1a*h5*8.*COM(0.,1.)*M_PI*M_PI, epsa, T8);
     cmult(aH1*aH1/2./ang1a/sqa1*h10*8.*COM(0.,1.)*M_PI*M_PI, pacur, T9);
     cmult(-aH1*aH1/2./ang1a/sqa1*h12*8.*COM(0.,1.)*M_PI*M_PI, p1cur, T10);
 
     current ans;
     for(int i=0;i<4;i++)
     {
         ans[i] = T1[i]+T2[i]+T3[i]+T4[i]+T5[i]+T6[i]+T7[i]+T8[i]+T9[i]+T10[i];
     }
 
     retAns[0] = F/prop*ans[0];
     retAns[1] = F/prop*ans[1];
     retAns[2] = F/prop*ans[2];
     retAns[3] = F/prop*ans[3];
   }
 
   /// @brief HNC amp for qg->qgH with finite top (i.e. j^{+-}_H)
   void g_gH_HNC(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector pH, double mq, current &retAns)
   {
     const double F = 4.*mq*mq/v;
     COM ang1a,sqa1;
     current conjepsH1,epsHa,p1cur,pacur,pHcur,conjeps1,epsa,paplusp1cur,
       p1minuspacur,cur1a,cura1,epsHapart1,epsHapart2,conjepsH1part1,
       conjepsH1part2;
     // Find here if pa, meaning the gluon, is forward or backward
     bool gluonforward = true;
     if(pa.z() < 0)
       gluonforward = false;
 
     jio(pa,true,p1,true,cura1);
     j(p1,true,pa,true,cur1a);
 
     to_current(pa,pacur);
     to_current(p1,p1cur);
     to_current(pH,pHcur);
     to_current(pa+p1,paplusp1cur);
     to_current(p1-pa,p1minuspacur);
     const COM aH1 = cdot(pHcur,cura1);
     const COM oneHa = std::conj(aH1); // = cdot(pHcur,cur1a)
 
     if(gluonforward){
       // sqrt(2pa_-/p1_-)*p1_perp/abs(p1_perp)
       ang1a = sqrt(pa.plus()*p1.minus())*(p1.x()+COM(0.,1.)*p1.y())/p1.perp();
       // sqrt(2pa_-/p1_-)*p1_perp*/abs(p1_perp)
       sqa1 = sqrt(pa.plus()*p1.minus())*(p1.x()-COM(0.,1.)*p1.y())/p1.perp();
       }
     else {
       ang1a = sqrt(pa.minus()*p1.plus());
       sqa1 = sqrt(pa.minus()*p1.plus());
     }
 
     const double prop = (pa-p1-pH).m2();
 
     cmult(1./sqrt(2)/sqa1, cur1a, epsa);
     cmult(-1./sqrt(2)/sqa1, cura1, conjeps1);
     const COM phase = cdot(conjeps1, epsa);
     const COM Fta = FT(-pa,pa-pH,mq)/(pa-pH).m2();
     const COM Ft1 = FT(-p1-pH,p1,mq)/(p1+pH).m2();
     const COM Falpha = FT(p1-pa,pa-p1-pH,mq);
     const COM Fbeta = FL(p1-pa,pa-p1-pH,mq);
 
     const COM h1 = H1(p1,-pa, pH, mq);
     const COM h2 = H2(p1,-pa, pH, mq);
     const COM h4 = H4(p1,-pa, pH, mq);
     const COM h5 = H5(p1,-pa, pH, mq);
     const COM h10 = H10(p1,-pa, pH, mq);
     const COM h12 = H12(p1,-pa, pH, mq);
 
     cmult(Fta*pa.dot(pH), epsa, epsHapart1);
     cmult(-1.*Fta*cdot(pHcur,epsa), pacur, epsHapart2);
     cmult(Ft1*cdot(pHcur,conjeps1), p1cur, conjepsH1part1);
     cmult(-Ft1*p1.dot(pH), conjeps1, conjepsH1part2);
     cadd(epsHapart1, epsHapart2, epsHa);
     cadd(conjepsH1part1, conjepsH1part2, conjepsH1);
 
     current T1,T2,T3,T4,T5a,T5b,T6,T7,T8a,T8b,T9,T10,T11a,
       T11b,T12a,T12b,T13;
 
     if(gluonforward){
       cmult(sqrt(2.)*sqrt(p1.plus()/pa.plus())*prop/sqa1, conjepsH1, T1);
       cmult(-sqrt(2.)*sqrt(pa.plus()/p1.plus())*prop/sqa1, epsHa, T2);
     }
     else{
       cmult(-sqrt(2.)*sqrt(p1.minus()/pa.minus())*((p1.x()-COM(0.,1.)*p1.y())/p1.perp())
           *prop/sqa1, conjepsH1, T1);
       cmult(sqrt(2.)*sqrt(pa.minus()/p1.minus())*((p1.x()+COM(0.,1.)*p1.y())/p1.perp())
           *prop/sqa1, epsHa, T2);
     }
 
     const COM boxdiagFact = 8.*COM(0.,1.)*M_PI*M_PI;
 
     cmult(aH1*sqrt(2.)/sqa1, epsHa, T3);
     cmult(oneHa*sqrt(2.)/sqa1, conjepsH1, T4);
     cmult(-2.*phase*Fta*pa.dot(pH), p1cur, T5a);
     cmult(2.*phase*Ft1*p1.dot(pH), pacur, T5b);
     cmult(-sqrt(2.)*Fta*p1.dot(pa)*oneHa/sqa1, conjeps1, T6);
     cmult(-sqrt(2.)*Ft1*pa.dot(p1)*aH1/sqa1, epsa, T7);
 
     cmult(-boxdiagFact*phase*h2, pacur, T8a);
     cmult(boxdiagFact*phase*h1, p1cur, T8b);
     cmult(boxdiagFact*aH1/sqrt(2.)/sqa1*h5, epsa, T9);
     cmult(-boxdiagFact*oneHa/sqrt(2.)/sqa1*h4, conjeps1, T10);
     cmult(boxdiagFact*aH1*oneHa/2./sqa1/sqa1*h10, pacur, T11a);
     cmult(-boxdiagFact*aH1*oneHa/2./sqa1/sqa1*h12, p1cur, T11b);
 
     cmult(-phase/(pa-p1).m2()*Falpha*(p1-pa).dot(pa-p1-pH), paplusp1cur, T12a);
     cmult(phase/(pa-p1).m2()*Falpha*(pa+p1).dot(pa-p1-pH), p1minuspacur, T12b);
     cmult(-phase*Fbeta*(pa-p1-pH).m2(), paplusp1cur, T13);
 
     current ans;
     for(int i=0;i<4;i++)
     {
       ans[i] = T1[i]+T2[i]+T3[i]+T4[i]+T5a[i]+T5b[i]+T6[i]+T7[i]+T8a[i]+T8b[i]+T9[i]+T10[i]+T11a[i]+T11b[i]+T12a[i]+T12b[i]+T13[i];
     }
 
     retAns[0] = F/prop*ans[0];
     retAns[1] = F/prop*ans[1];
     retAns[2] = F/prop*ans[2];
     retAns[3] = F/prop*ans[3];
   }
 
 } // namespace anonymous
 // JDC - new amplitude with Higgs emitted close to gluon with full mt effects. Keep usual HEJ-style function call
 double MH2gq_outsideH(CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector pH, double mq, bool includeBottom, double mq2)
 {
 
   current cur2bplus,cur2bminus, cur2bplusFlip, cur2bminusFlip;
   current retAns,retAnsb;
   j(p2out,true,p2in,true,cur2bplus);
   j(p2out,false,p2in,false,cur2bminus);
   j(ParityFlip(p2out),true,ParityFlip(p2in),true,cur2bplusFlip);
   j(ParityFlip(p2out),false,ParityFlip(p2in),false,cur2bminusFlip);
 
   COM app1,app2,apm1,apm2;
   COM app3, app4, apm3, apm4;
 
   if(!includeBottom)
   {
     g_gH_HC(p1in,p1out,pH,mq,retAns);
     app1=cdot(retAns,cur2bplus);
     app2=cdot(retAns,cur2bminus);
 
     g_gH_HC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq,retAns);
     app3=cdot(retAns,cur2bplusFlip);
     app4=cdot(retAns,cur2bminusFlip);
 
     // And non-conserving bits
     g_gH_HNC(p1in,p1out,pH,mq,retAns);
     apm1=cdot(retAns,cur2bplus);
     apm2=cdot(retAns,cur2bminus);
 
     g_gH_HNC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq,retAns);
     apm3=cdot(retAns,cur2bplusFlip);
     apm4=cdot(retAns,cur2bminusFlip);
   } else {
     g_gH_HC(p1in,p1out,pH,mq,retAns);
     g_gH_HC(p1in,p1out,pH,mq2,retAnsb);
     app1=cdot(retAns,cur2bplus) + cdot(retAnsb,cur2bplus);
     app2=cdot(retAns,cur2bminus) + cdot(retAnsb,cur2bminus);
 
     g_gH_HC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq,retAns);
     g_gH_HC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq2,retAnsb);
     app3=cdot(retAns,cur2bplusFlip) + cdot(retAnsb,cur2bplusFlip);
     app4=cdot(retAns,cur2bminusFlip) + cdot(retAnsb,cur2bminusFlip);
 
     // And non-conserving bits
     g_gH_HNC(p1in,p1out,pH,mq,retAns);
     g_gH_HNC(p1in,p1out,pH,mq2,retAnsb);
     apm1=cdot(retAns,cur2bplus) + cdot(retAnsb,cur2bplus);
     apm2=cdot(retAns,cur2bminus) + cdot(retAnsb,cur2bminus);
 
     g_gH_HNC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq,retAns);
     g_gH_HNC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq2,retAnsb);
     apm3=cdot(retAns,cur2bplusFlip) + cdot(retAnsb,cur2bplusFlip);
     apm4=cdot(retAns,cur2bminusFlip) + cdot(retAnsb,cur2bminusFlip);
   }
 
   return abs2(app1) + abs2(app2) + abs2(app3) + abs2(app4) + abs2(apm1)
     + abs2(apm2) + abs2(apm3) + abs2(apm4);
 }
 #endif // RHEJ_BUILD_WITH_QCDLOOP
 
 double C2gHgm(CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector pH)
 {
   static double A=1./(3.*M_PI*v);
   // Implements Eq. (4.22) in hep-ph/0301013 with modifications to incoming plus momenta
   double s12,p1p,p2p;
   COM p1perp,p3perp,phperp;
   // Determine first whether this is the case p1p\sim php>>p3p og the opposite
   s12=p1.invariantMass2(-p2);
   if (p2.pz()>0.) { // case considered in hep-ph/0301013
     p1p=p1.plus();
     p2p=p2.plus();
   } else { // opposite case
     p1p=p1.minus();
     p2p=p2.minus();
   }
   p1perp=p1.px()+COM(0,1)*p1.py();
   phperp=pH.px()+COM(0,1)*pH.py();
   p3perp=-(p1perp+phperp);
 
   COM temp=COM(0,1)*A/(2.*s12)*(p2p/p1p*conj(p1perp)*p3perp+p1p/p2p*p1perp*conj(p3perp));
   temp=temp*conj(temp);
   return temp.real();
 }
 
 double C2gHgp(CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector pH)
 {
   static double A=1./(3.*M_PI*v);
   // Implements Eq. (4.23) in hep-ph/0301013
   double s12,php,p1p,phm;
   COM p1perp,p3perp,phperp;
   // Determine first whether this is the case p1p\sim php>>p3p og the opposite
   s12=p1.invariantMass2(-p2);
   if (p2.pz()>0.) { // case considered in hep-ph/0301013
     php=pH.plus();
     phm=pH.minus();
     p1p=p1.plus();
   } else { // opposite case
     php=pH.minus();
     phm=pH.plus();
     p1p=p1.minus();
   }
   p1perp=p1.px()+COM(0,1)*p1.py();
   phperp=pH.px()+COM(0,1)*pH.py();
   p3perp=-(p1perp+phperp);
 
   COM temp=-COM(0,1)*A/(2.*s12)*(conj(p1perp*p3perp)*pow(php/p1p,2)/(1.+php/p1p)+s12*(pow(conj(phperp),2)/(pow(abs(phperp),2)+p1p*phm)-pow(conj(p3perp)+(1.+php/p1p)*conj(p1perp),2)/((1.+php/p1p)*(pH.m2()+2.*p1.dot(pH)))));
   temp=temp*conj(temp);
   return temp.real();
 }
 
 double C2qHqm(CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector pH)
 {
   static double A=1./(3.*M_PI*v);
   // Implements Eq. (4.22) in hep-ph/0301013
   double s12,p2p,p1p;
   COM p1perp,p3perp,phperp;
   // Determine first whether this is the case p1p\sim php>>p3p og the opposite
   s12=p1.invariantMass2(-p2);
   if (p2.pz()>0.) { // case considered in hep-ph/0301013
     p2p=p2.plus();
     p1p=p1.plus();
   } else { // opposite case
     p2p=p2.minus();
     p1p=p1.minus();
   }
   p1perp=p1.px()+COM(0,1)*p1.py();
   phperp=pH.px()+COM(0,1)*pH.py();
   p3perp=-(p1perp+phperp);
 
   COM temp=A/(2.*s12)*(sqrt(p2p/p1p)*p3perp*conj(p1perp)+sqrt(p1p/p2p)*p1perp*conj(p3perp));
   temp=temp*conj(temp);
   return temp.real();
 }
diff --git a/t/ME_data/ME_h_mt.dat b/t/ME_data/ME_h_mt.dat
index 349d686..4fe4ab4 100644
--- a/t/ME_data/ME_h_mt.dat
+++ b/t/ME_data/ME_h_mt.dat
@@ -1,807 +1,807 @@
 3.999227056e-08
 4.193300057e-05
 3.89321526e-05
 0.0168082963
 4.057962883e-06
 4.063245819e-07
 6.411897603e-07
 7.822040516e-07
 6.064514954e-07
-2.338845036e-05
+2.323729555e-05
 4.738208766e-05
 1.624045121e-06
-0.0005243567971
+0.0005240707418
 1.536443326e-05
 9.5908372e-06
 0.0339113482
 8.152325116e-07
 608.615459
 5.962078524e-06
-0.01352350209
+0.01351013722
 1.931630897
 0.0005720381031
 0.0008001259943
 3.300880891e-05
-0.0007712160505
+0.0007251310095
 0.0007037298905
 0.03792377651
-1.079417185e-06
+1.031859624e-06
 2.011798913
 8.842231663e-08
 0.0463578742
 0.1064067277
 9.357584012e-07
-0.007615558468
+0.007493578139
 0.02272391876
 3.606711294e-05
 6.725111513e-07
 0.005897687516
 7.581255699e-05
 0.005354681787
 0.0006088947447
 0.0083356406
 0.003352568463
-3.95296533e-05
+3.873123108e-05
 0.0001515363281
 0.005531947882
-0.0388505972
+0.0388405017
 2.312735565e-07
 5.479259483e-05
 8.480458133
-0.0001863702054
-7.349046553e-06
+0.0001862666068
+7.083344246e-06
 5.091269317e-06
-0.0001452556797
-0.2136081233
+0.0001436528651
+0.2111893651
 0.0238989834
 4.446354691
-0.0002720132705
+0.0002706534845
 1.267033388
 0.005050109129
-2.848397879e-06
-0.07116846744
+2.768647989e-06
+0.06976587113
 0.00280707581
-7.10418958
+7.013718037
 7.216599144e-08
 4.779195357e-06
-1.924410023e-05
+1.89454273e-05
 1.522656761e-05
 1.116772322e-06
 0.0009539322219
 9.279967349e-07
 2.28564472
 0.001331277201
 0.001585734932
 26972.25526
-1.2516302e-06
+1.207626582e-06
 0.0006894623725
 1.065245235e-07
 0.01968534835
 1.951627129e-06
 4.401131811e-05
 0.02561966521
 49705.99132
 5.383396351e-06
 1.07104069e-06
 2.808652999e-06
 0.0001066898908
 0.0002239236027
 7.851273644e-08
 0.002704063747
-0.0005842786082
+0.0005822864495
 0.07550986067
-0.001335627914
-6.766626128e-05
+0.001330057569
+6.413753514e-05
 0.1149401044
 0.183403668
 0.000113873958
-1.844065382e-05
-0.02689433062
+1.831402184e-05
+0.02660643026
 0.001076022562
 5.066109523e-06
-0.1097193795
+0.10939624
 9.253312815e-05
-92.12237679
+92.02148669
 0.01945125628
 8.958261209e-05
-3.849412514e-06
-0.0003305165961
+3.608146549e-06
+0.0003265014563
 0.0001299537598
 1.170328977e-06
 0.0001328201344
 3034.923139
 1.378838481
-0.08677679017
-36.20174579
+0.08663556522
+36.19909049
 1.785612005e-06
-1.032516793e-05
+1.018401168e-05
 0.001615788007
 1.23208212
 0.0003642605012
 2.708222463e-06
 4.719890307e-06
 0.001710230342
 0.3182780512
-0.0009491003377
-0.09165888221
+0.0009417630586
+0.09122795432
 0.2629019547
 0.02748771871
-3.179028152e-06
-0.002811209731
+3.029545829e-06
+0.002797757699
 1.89343446e-06
 1.77338727e-06
 2.291261955e-05
 1.31623411e-05
 0.02865008699
-0.0001547359261
+0.0001521683687
 5.992647136
 427898745.7
 0.0002908564713
 180.1583563
 1.149638817
-4.915348327e-06
+4.874677273e-06
 0.02938178265
 12.41064482
 0.0005867842208
 1.235864829e-06
-6.021062978e-05
+5.86484668e-05
 0.7228122449
-0.0003703954772
+0.0003638994119
 1.100546805e-07
 0.0007569561799
 3.456980613e-06
 0.001902875586
 1.766220045
 0.0006636538355
 435.7550934
 1.468265667e-05
-0.003895447939
+0.003892402317
 0.005375424637
 9.895862027e-06
 0.002634610055
 0.04246482577
 1.811370936e-05
 0.0008533026641
-1.973172924
-2.216040365e-06
+1.969024996
+2.188193623e-06
 0.0001940609469
 6.432993714e-05
 436.2325667
 8.585463564e-05
 0.003171908449
 3.1453383e-07
 0.10708771
 1.134414955e-07
 5.434578249e-06
 6.681002905e-06
-0.002957334168
-0.005022320071
+0.002902943775
+0.004943649156
 2.421882039e-05
 3.783451257e-08
 5.144794528e-06
-0.0001067748459
+0.000104411672
 13660.98467
 117.1131418
 387.5973894
-0.2286644594
+0.2272332194
 2.335478847e-06
 0.0001022288321
 0.004686932429
 0.4278874185
-0.0001089502807
+0.0001086686824
 1.985873409e-06
 2.25291051e-07
 2.945623146e-05
 0.3581923626
-8.204917967e-06
+8.047235434e-06
 0.004893941209
 0.0005325322641
 1.060152245e-07
 1.118231806e-05
 2.203633348e-06
-4.953456305e-06
+4.844095806e-06
 0.007400958058
 5.769269726e-05
 1.899358848e-06
 0.002291707993
 0.007504512648
 0.0946266303
-0.07677680285
-0.001406412108
+0.0767367567
+0.001382893492
 0.000131740617
 3.126413693e-07
 6.676941465e-07
 2.247981499e-07
 1.394670123e-07
 0.0003117083998
 0.003124792631
 3.196614452e-07
 0.0005145950558
 1.196095567
 1.715539058e-05
 2.527890627e-05
-4.198681685e-06
+4.028317881e-06
 4.483788358e-07
 3.597134253e-05
 6.514469651e-07
 0.002675227421
 0.1700338633
 0.0151159864
-2.549964327e-05
-0.00103462801
-0.0002092909388
+2.475242006e-05
+0.001032856771
+0.000205696546
 3.068873861e-06
 1176.630703
 9.378378651e-06
 7.10431401e-07
 4.541139018e-05
 3.954117424e-06
 0.003271203855
 0.01288628186
 0.01758893926
 0.0001040458517
 0.08587993013
 7.493297002e-07
 0.0303353991
 2.525780749e-07
 1.075360445e-06
 0.0005909996117
 3.980399911e-06
 67.71892274
-8.935469327e-06
+8.920686332e-06
 3.997018327e-05
-3.48516788e-06
+3.396851165e-06
 0.1177580565
 1.362864165e-07
 0.00719011227
 3.379854611e-06
 1.335802906e-08
 0.0008096413047
 8.017608649e-08
 5.475646202e-07
 9.89836826e-07
 0.0001097524935
 0.005006547178
 0.01328382633
 3.708077203e-10
 1.7738466e-09
 6.195338978e-10
 1.375292134e-08
-1.198886719e-05
+1.151374303e-05
 1.087672399e-10
 7.612820481e-06
 1.631362221e-06
 7.195255533e-08
 8.307139358e-09
 2.261143452e-08
-3.176205908e-07
+3.075268256e-07
 7.680504754e-08
 1.175875499e-07
 0.0006018013011
 1.467361257e-05
 1.350450721e-07
-4.010394331e-07
-7.773787384e-07
+3.850336065e-07
+7.767624725e-07
 0.0170653268
 0.0001792376906
 3.072166197e-06
 22266.55115
 0.06729772649
-1.156967792
+1.14678661
 7.103072447e-07
 0.0008701526857
 0.3457109502
 0.001639388444
 6.829709377e-07
 103.0220399
 1.724918219e-06
 0.006442680294
 0.0002924073612
 0.0061407479
 3.014208435e-07
-1.067129219e-05
+1.066948362e-05
 5.819752501e-07
 0.002933183567
 1.390851143e-08
 1.359009867e-06
 0.02819012119
 1.30006471e-09
 78.00480652
 3.27001628e-06
 2.84175006e-07
-4.457488422e-07
+4.405951989e-07
 0.0003605232041
 1.871558115e-06
 2.854501301e-07
 0.02600693272
 0.0004600409654
-0.001476738524
+0.001462458297
 2.488693144e-08
 2.395438283e-11
 4.248528123e-07
 1.389769895e-05
 8.049135616e-07
 2.12824677e-07
 8.405933433e-07
 2.36621812e-06
 0.06259159217
 1.831343487e-07
 2.1663617e-08
 6.323481085e-10
 1.339773875e-07
 4.883049792e-06
 1.705369167e-05
 0.0001013417062
 0.01536206656
 1.67093181
 5.039245627e-10
 1.141488157e-05
 3.188719492e-07
 3.24135522e-10
 0.0002434524475
 1.383868594e-06
 0.498790572
 9.03612161e-05
 0.02764416817
 0.01341805272
 7.529041731e-07
 0.0002257161473
 0.0003717671499
 1.858022341e-08
 5.715357136e-07
 2.477427879e-09
 0.0001517676839
 2.326424939e-11
 1.729565889e-05
 7.354412281e-09
-9.505701399e-06
+9.213659243e-06
 0.0005289104709
 0.02479967619
 6.212490017e-06
 1.714682348e-08
 7.916835703e-09
 0.00934088881
 4.083237353e-07
 0.004696390685
 6.761095529e-10
 0.003004586166
 6.030026635e-05
 8.803060787e-08
 6.957661086e-08
 9.612925872e-08
 1.628346787e-05
 5.143053469e-07
 8.784807581e-08
 1.024493405e-08
 3.137825282e-07
 42.00569276
 0.004640201019
 1.146513701e-05
-5.876691844e-08
+5.674508354e-08
 3.381428808e-06
 2.603443408e-07
-0.002350385674
+0.0023417509
 1.276808422e-05
 0.06226820245
 1.778585408e-08
 2.378758757e-07
 9.7714181e-05
 0.387678215
 4.398556239e-07
 3.0060972e-08
 3.874778496e-05
-1.0694862e-05
+1.051980557e-05
 1.402325829e-06
 4.695875643e-06
 2.383017224e-07
 2.417306793e-06
 0.0002708928034
 0.01384277314
 1.710909166e-07
 1.217157554
 177.0639344
 0.03861638077
 7.433640647e-05
 0.0002263704383
 0.002948183736
 0.008773163623
 5.353914571e-08
 360.0073872
 6.478760385e-07
 2.750359008e-07
 8.589493477e-08
 4.263303371e-07
 2.005861581e-05
 5.503740271e-08
 0.00180575553
 16.03887797
 7.922076143
 5.036869078e-12
 1.277093114e-06
 0.003373959327
 1.743675895e-05
 1.778007998e-06
 0.0002212911594
 9.259789313e-05
 8.539690283e-05
 2.423945599e-06
 0.0001233083611
-9.174270377e-09
+8.923119994e-09
 2.570708518e-07
 0.0008554774811
-0.3056275035
+0.3048484598
 0.0006441353055
 1.203219038e-07
 4.75874322e-07
 258.1003097
 2.768523645e-09
 1.270156521e-11
 1.46097374e-09
 34.87523283
 8.506779165e-05
 4.671813569e-06
 1.907838682e-05
 3.716521365e-07
 1.888947852e-08
-0.02682389012
+0.02680923327
 15.26083816
 2.873162527e-10
 1.360352114e-06
 9.527755241e-07
 0.0003084354836
 0.0009838761157
 1.302357534e-05
 0.004623681617
 0.01694286548
 9.642283586e-07
 8.499293031e-06
 8.770386824e-06
 0.001276821989
 6.668543971e-07
 5.652013261e-11
 0.238779506
 1.624068992e-07
 0.0002438443448
 0.002313588467
 7.53704251e-09
 7.248545824e-12
 0.02160343338
 6.465648118e-09
 7.430463219e-08
 0.000611761207
 2.262200983e-07
 8.810901655e-07
 1.688360234e-07
-3.452136087e-06
+3.392772149e-06
 5.480913194e-08
 0.0004601409972
 3.364979337e-10
 8.967694023e-09
 0.1345541103
 2.492529354e-06
 9.220762636e-06
 7.386130159e-06
 3.598519539
 8.045779179e-06
 4.730716431e-07
 2.192459188e-07
 2.194928052e-06
 3.130712514e-07
 1.43402212e-05
 0.0002608840076
 23.2295584
-1.820768009e-08
+1.778524358e-08
 4.161369951e-06
 0.001762466634
 4.255417524e-09
 3320585.541
 0.0009563172933
 0.03635196251
 0.5161165209
 0.004796521016
 2.31018301e-06
 0.06003700358
 0.0004342970655
 2.009638611e-08
 0.0001808310494
 0.0003251077547
-6.445298688e-07
+6.20919327e-07
 2.882854303e-08
 0.0422146142
 8.524423251e-07
 19.01825412
 0.000339795268
 1.575704657e-07
 0.0004837774983
 4.132343892e-07
 5.931203648e-09
 0.01135109493
 5.877226405e-05
 1.480445352e-08
 0.3379228367
 1.786471685e-06
 1.021098483e-07
 1.079160999e-08
-1.26575267e-08
+1.232033094e-08
 0.002978083967
 4.588139504e-06
 6.6721226e-11
 3.261090243e-06
 0.06059954782
 4.847476637e-09
 1.104977758e-06
-0.0003977585716
-0.0006607921183
+0.0003884699782
+0.0006601268859
 0.000225642662
 4.294099642e-06
 1.185934783e-07
 0.001042912926
 8.03811263e-06
 1.755333168e-10
 6.77273477e-08
 598.9038787
 1.572919365e-07
 0.04266693618
 2.739698989e-08
 0.0005135423693
 1.264426626e-10
 2.608778512e-07
 1.857091679e-06
 1.075074651e-10
 1.188966384e-07
 0.03379476153
 0.0006473640268
 3.624390296e-09
 1.237883305e-05
 1.016117525e-05
 9.687850834e-06
 0.0002738964397
 9.038889191e-09
 7.786947927e-07
 3.198680693e-05
 1.608278345e-11
 0.003353487144
 6.107229663e-08
 0.0003768704931
 0.0002005945404
 3.670401818e-11
 9.030155872e-09
 2.042723216e-08
 2.386955262e-08
 4.835084799e-09
 3.685817471e-11
 1.066443786e-07
 2.652667148e-07
 3.649486136e-11
 0.02477462094
 3.517378902e-05
 3.080027841e-09
 1.018709237e-09
 2.870228082e-10
 8.744977958e-06
 5.273214292e-09
 3.168385461e-11
 0.001556612382
-7.188695072e-07
+6.736179068e-07
 2.492191426e-09
 7.615392241e-10
 0.01004217426
 1.101368692e-06
 3.918013244e-06
 3.713827343e-09
 6.857767402e-09
 1.290966146e-09
 6.224822208e-12
 3.376319521e-06
-4.097980204e-09
+4.080482631e-09
 7.633357106e-05
 6.164135969e-05
 1.630673977e-06
 7.08423096e-09
 4.080955534e-10
 232770.6483
 0.008068531153
 8.666549381e-10
 2.246457597e-10
 3.222301462e-08
 1.395629818e-06
 2.196466632e-08
 1.592802071e-08
 4.326999161e-05
 0.0005042839931
 0.00197308444
 3.032370137e-05
 0.0005857579152
 7.171987925e-06
 6.864328965e-06
 4.00109422e-06
 0.005161817275
 2.375668536e-09
 9.778482285e-06
 1.181506681e-08
 1.503749258e-08
 3.203838424e-11
 0.3676119133
 1.281881299e-09
 0.0004415836065
-1.205682724e-07
+1.203972243e-07
 8.77428226e-07
 7.210177682e-11
 1.45886715e-06
 0.02121994342
 0.01168544154
 3.982811877e-09
 8.600471911e-09
 1.434258247e-08
 8.098070419e-10
 0.0007724068717
 2.490831815e-12
 2.21358682e-06
-0.3039319263
-1.06879986e-05
+0.302087331
+1.012854812e-05
 2.722304477e-09
 3.122833335e-06
 1.198571403e-06
 4.489385847e-09
 2.67381748e-08
 3.471377557e-09
 5.756644016e-06
 6.839839041e-05
 2.209846587e-07
 8.291924237e-08
 5.242886271e-07
 6.844201737e-11
 1.726048304e-06
 9.225948144e-07
 0.000185717301
 0.002602315394
 6.138200606e-11
 0.0001818846094
 7.733889705e-14
 1.358383639e-08
 1.07000594e-06
 4.579302999e-07
 7.849169727e-07
 2.448333585
 7.535064872e-11
 3.779457663e-06
 1.495153092e-07
 3.954406596e-09
 8.122956595e-09
 0.0001228391098
 2.269361403e-11
 0.001844497418
 0.01115645921
-2.597690032e-06
+2.540174677e-06
 4.660852875e-11
 4.199474743e-10
 4.628821128e-05
 0.0004980806998
 7.598116953e-09
 4.143456828e-13
 0.002644658829
 2.564668699e-08
 6.50580785e-08
 3.820040563e-11
 0.2398554094
 9.400695396e-08
 0.002358652784
 1.171877918e-11
 1.637975849e-09
 8.942959658e-08
 3.408065038e-10
 6.371021504e-07
 8.862071381e-07
 8.07800753e-13
 1.275141633e-07
 5.065134208e-08
 3.723768129e-05
 1.586955855e-06
 4.630822765e-08
 3.869149299e-05
 0.0002373420357
 8.091381421e-08
 2.031825403e-10
 1.493296083e-05
 2.814058365e-06
 4.293942142e-10
 1.227720708e-09
 9.668701181e-10
 5.082776865e-06
 0.001170366525
-3.153572708e-07
+3.13097726e-07
 2.929772297e-06
 3.908673483e-06
-1.837314879e-08
+1.815611522e-08
 9.22544372e-06
 0.004601199051
 1.245696104e-11
 1.623356072e-06
 0.0004075079271
 0.06223654452
 2.229639676e-12
 1.548827536e-10
 0.2098995653
 0.02739866019
 1.922659779e-12
 0.001586041269
 1.845383825
 0.8609993903
 0.09603688052
 5.904130818e-11
 9.958673683e-12
 0.05389921105
 0.0001869127049
 6.618563858e-08
 3.845467031e-07
 9.065990802e-07
 0.0003895671306
 2.782863325e-11
 0.0002689153495
 5.924260979e-06
 0.0005747447785
 4.117458599e-09
 5.117012888e-08
 3.396356612e-09
 8.109913215e-12
 4.329382871e-08
 4.881990436e-07
 1.276280038e-11
 9.120675139e-12
 7.192434752e-07
 3.913876447e-11
 1.9517939e-08
 0.11670582
 1.114874302e-06
-1.051244942e-06
+1.024310838e-06
 2.596368516e-07
 0.0001277437573
 0.0004507490086
 5.934514686e-10
 9.045316154e-06
 1.1680623e-08
 4.405302098e-07
 1.103299007e-15
 7.105364025e-08
 6.778113877e-05
 2.587602347e-06
 2.630707294e-07
 2.256922483e-10
 1.585065727e-05
-0.0001137727537
+0.0001112190986
 1.439932327e-09
 0.003315113132
 4.417287152e-05
 3.208255435e-09
 7.222413113e-10
 0.000300699488
 4.624336745e-05
 8.037199117e-10
 6.718759329e-12
 3.83547078e-05
 7.94104255e-05
 4.496517789e-05
 1.351102043e-06
 9.177810983e-10
 8.693619098e-07
 1.929511565e-06
 4.773961763e-09
 1.896551164e-08
 1.552346596e-08
 9.245502051e-06
 0.0001037407773
 6.368845512e-07
 4.041904863e-06
 1.506851808e-08
 9.717844454e-12
 2.297581007e-05
 0.0234227485
 0.00306449787
 5.437659639e-08
 0.001404494601
 1.582456182e-12
 10.74537802
 0.0006876957837
 3.080472252e-07
 4.979458387e-09
 2.191738006e-08
diff --git a/t/ME_data/ME_h_mtmb.dat b/t/ME_data/ME_h_mtmb.dat
index 8370f81..0a6185c 100644
--- a/t/ME_data/ME_h_mtmb.dat
+++ b/t/ME_data/ME_h_mtmb.dat
@@ -1,807 +1,807 @@
 4.043634525e-08
 3.947735809e-05
 3.978333671e-05
 0.01707962353
 4.133534858e-06
 4.12758231e-07
 6.527379321e-07
 7.807924441e-07
 6.213247187e-07
-2.292064051e-05
+2.277250905e-05
 4.929604661e-05
 1.648537835e-06
-0.0005321070091
+0.0005318167258
 1.551221705e-05
 9.732109994e-06
 0.03508523471
 8.385697667e-07
 608.0814044
 6.0749939e-06
-0.01383234108
+0.01381867099
 1.96358809
 0.0005777778828
 0.000827073758
 3.396653466e-05
-0.0007925662403
+0.0007452053903
 0.000712177849
 0.03945983226
-1.109333656e-06
+1.060458019e-06
 2.002990871
 9.107975513e-08
 0.04804489153
 0.1078671772
 9.503786206e-07
-0.007776569624
+0.007652010339
 0.02341176253
 3.684250185e-05
 6.861318278e-07
 0.005400516499
 7.647108683e-05
 0.005354950581
 0.0006200616798
 0.008448060377
 0.003448403835
-3.93020183e-05
+3.850819386e-05
 0.0001546133101
 0.005591549046
-0.03958941813
+0.03957913065
 2.350530066e-07
 5.66847762e-05
 8.602097332
-0.0001921261891
-7.502702823e-06
+0.000192019391
+7.231445125e-06
 5.119802912e-06
-0.0001496819684
-0.213120324
+0.0001480303122
+0.2107070894
 0.02428150541
 4.539435975
-0.0002738016111
+0.0002724328853
 1.314349378
 0.005127584311
-2.816422817e-06
-0.07344901515
+2.73756817e-06
+0.07200147354
 0.002877526755
-7.299557828
+7.206598278
 7.320533172e-08
 4.686272323e-06
-1.946859515e-05
+1.916643801e-05
 1.561186199e-05
 1.127468541e-06
 0.0009956223126
 9.322344484e-07
 2.355779109
 0.001354263217
 0.001607437479
 27300.17114
-1.282038387e-06
+1.236965707e-06
 0.0006972261753
 1.071457504e-07
 0.02005686587
 1.961498186e-06
 4.460773766e-05
 0.02601668696
 50724.57307
 5.480882962e-06
 1.076584976e-06
 2.869362531e-06
 0.0001072518549
 0.0002293795185
 8.022114184e-08
 0.002698012227
-0.0006015504033
+0.0005994993545
 0.07725070316
-0.001377279885
-6.964246376e-05
+0.001371535827
+6.601068069e-05
 0.1179283377
 0.187466976
 0.0001155356229
-1.895976068e-05
-0.02724871881
+1.882956399e-05
+0.02695702478
 0.001087874101
 5.154078743e-06
-0.1059710091
+0.1056589091
 9.484855944e-05
-94.78499143
+94.6811853
 0.02033391802
 9.092704303e-05
-3.912572591e-06
-0.0003340065858
+3.667348002e-06
+0.0003299490494
 0.0001322670062
 1.193514887e-06
 0.0001344144727
 3095.568362
 1.406347883
-0.08943984916
-35.93630323
+0.08929429021
+35.9336674
 1.82576512e-06
-1.057243426e-05
+1.042789761e-05
 0.001666287395
 1.269161514
 0.0003682229129
 2.790042514e-06
 4.841321328e-06
 0.001729869633
 0.3293946648
-0.0009589102693
-0.08469469459
+0.0009514971519
+0.08429650834
 0.2664463909
 0.02792004132
-3.241512757e-06
-0.002892655486
+3.089092321e-06
+0.002878813725
 1.908915912e-06
 1.7932868e-06
 2.342012655e-05
 1.3539045e-05
 0.02918304927
-0.0001576463616
+0.0001550305109
 6.099926061
 438766540.3
 0.0003006556126
 182.0743425
 1.166556788
-5.062168162e-06
+5.020282277e-06
 0.02991092642
 12.79082303
 0.0005990054968
 1.245221356e-06
-6.010815261e-05
+5.854864839e-05
 0.729519575
-0.0003654608813
+0.0003590513598
 1.113634813e-07
 0.0007837766949
 3.49282179e-06
 0.001938345149
 1.741954359
 0.000679566605
 447.8606334
 1.502685811e-05
-0.004001081006
+0.003997952796
 0.005572294955
 1.00407234e-05
 0.002697149585
 0.04268640856
 1.838639564e-05
 0.0008683709605
-2.022642541
-2.281686632e-06
+2.018390621
+2.25301498e-06
 0.000198987372
 6.590604109e-05
 451.0223058
 8.870879716e-05
 0.003243511862
 3.187920803e-07
 0.1107987679
 1.145759171e-07
 5.532565231e-06
 6.903234805e-06
-0.002727714074
-0.005134520243
+0.002677546784
+0.005054091796
 2.467146722e-05
 3.863236208e-08
 5.225855864e-06
-0.0001075855321
+0.0001052044158
 13702.18793
 118.8790931
 398.6816605
-0.2300421985
+0.2286023351
 2.355356756e-06
 0.0001050726086
 0.004854583584
 0.4416609149
-0.0001117424705
+0.0001114536554
 2.015137689e-06
 2.270813172e-07
 3.065037179e-05
 0.3695610208
-8.012249806e-06
+7.85826998e-06
 0.005034520677
 0.0005496323042
 1.077013565e-07
 1.134883954e-05
 2.217217266e-06
-5.058740304e-06
+4.947055385e-06
 0.007630107217
 5.870346284e-05
 1.937770986e-06
 0.002308560802
 0.00756714829
 0.09713373161
-0.07902736629
-0.001373738971
+0.07898614627
+0.001350766728
 0.0001360267898
 3.146930172e-07
 6.721239549e-07
 2.308081382e-07
 1.402445764e-07
 0.000317796034
 0.003250721897
 3.220983676e-07
 0.0005361385069
 1.1674911
 1.701754998e-05
 2.555659626e-05
-4.295773543e-06
+4.121470184e-06
 4.575225674e-07
 3.723503521e-05
 6.625793946e-07
 0.002713331741
 0.1757705927
 0.01528287892
-2.600058607e-05
-0.00104396898
-0.000215183149
+2.52386836e-05
+0.001042181749
+0.0002114875625
 3.169381656e-06
 1197.183436
 9.459688271e-06
 7.151860571e-07
 4.709453403e-05
 4.024117529e-06
 0.003399032872
 0.01326938543
 0.0181234889
 0.0001070400499
 0.08816817298
 7.557106621e-07
 0.03150507468
 2.546159018e-07
 1.083218854e-06
 0.0006029839411
 4.109536026e-06
 69.62539127
-9.190394104e-06
+9.175189357e-06
 3.976334138e-05
-3.557434726e-06
+3.467286716e-06
 0.1217200425
 1.39072939e-07
 0.007475099982
 3.40898863e-06
 1.355970335e-08
 0.0008211141398
 8.085185969e-08
 5.540708628e-07
 9.793920273e-07
 0.0001116678867
 0.005087064408
 0.01371958748
 3.747341913e-10
 1.784590611e-09
 6.285401932e-10
 1.403711889e-08
-1.234662607e-05
+1.185732376e-05
 1.099705834e-10
 7.694717507e-06
 1.645454731e-06
 7.281682073e-08
 8.437713425e-09
 2.293298229e-08
-3.274272811e-07
+3.170218661e-07
 7.748072516e-08
 1.184163566e-07
 0.0006048814428
 1.496340286e-05
 1.358047852e-07
-4.122637606e-07
-7.951549138e-07
+3.958099615e-07
+7.945245559e-07
 0.01733476065
 0.0001847336643
 3.09120607e-06
 22646.44954
 0.06825326182
-1.192340601
+1.181848143
 7.194716543e-07
 0.0008831460117
 0.3510995791
 0.001703720233
 6.923341702e-07
 104.5021475
 1.817413974e-06
 0.006274458892
 0.000298133205
 0.006212019474
 2.971106209e-07
-1.075176214e-05
+1.074993994e-05
 6.001267547e-07
 0.002926676713
 1.394485679e-08
 1.378850246e-06
 0.02873430354
 1.324231029e-09
 78.68865757
 3.323528263e-06
 2.901477846e-07
-4.493480222e-07
+4.441527661e-07
 0.0003762267637
 1.888509349e-06
 2.984779601e-07
 0.02649146415
 0.0004735978501
-0.001523297471
+0.001508567014
 2.511800946e-08
 2.406174629e-11
 4.343797764e-07
 1.413682848e-05
 8.187236684e-07
 2.137756399e-07
 8.487602643e-07
 2.382894999e-06
 0.06385257472
 1.843038529e-07
 2.200340736e-08
 6.500296312e-10
 1.369543749e-07
 5.034654856e-06
 1.729239287e-05
 0.0001029880478
 0.01584013323
 1.717937137
 5.051793703e-10
 1.169719308e-05
 3.274892339e-07
 3.257575264e-10
 0.0002494213231
 1.395452311e-06
 0.503263349
 9.183628731e-05
 0.02652180806
 0.01351083505
 7.697372696e-07
 0.0002345916253
 0.0003785854477
 1.911331681e-08
 5.741981368e-07
 2.496303102e-09
 0.0001538309849
 2.342705363e-11
 1.733704579e-05
 7.440708121e-09
-9.634074462e-06
+9.338088321e-06
 0.0005366276141
 0.02581853732
 6.351131637e-06
 1.725302693e-08
 7.963798782e-09
 0.009484858796
 4.13192111e-07
 0.004760868685
 6.868174526e-10
 0.003035550995
 6.122424548e-05
 8.912863951e-08
 7.049197773e-08
 9.784536423e-08
 1.644442743e-05
 5.17689779e-07
 8.945719428e-08
 1.043648257e-08
 3.220171418e-07
 42.8640364
 0.004721640337
 1.17318728e-05
-6.030229416e-08
+5.822763572e-08
 3.442022366e-06
 2.613636766e-07
-0.002417874611
+0.002408991899
 1.311028403e-05
 0.06454239294
 1.788371853e-08
 2.431129133e-07
 9.887586539e-05
 0.393826783
 4.435492073e-07
 3.017594495e-08
 3.944030937e-05
-1.049807075e-05
+1.032623546e-05
 1.480534305e-06
 4.80208438e-06
 2.278546025e-07
 2.431285271e-06
 0.0002795248679
 0.01414217835
 1.721740596e-07
 1.225137873
 184.4942235
 0.03969271858
 7.5889168e-05
 0.0002307099487
 0.002991500607
 0.008823843341
 5.377454625e-08
 363.5972586
 6.577363411e-07
 2.768216121e-07
 8.808374953e-08
 4.320144869e-07
 2.087813482e-05
 5.563234756e-08
 0.001828101352
 16.31099206
 8.047143214
 5.054980175e-12
 1.31165661e-06
 0.003453525346
 1.775158542e-05
 1.735750599e-06
 0.0002258034827
 9.302350911e-05
 8.722704625e-05
 2.463340497e-06
 0.0001266405389
-9.536618271e-09
+9.275548428e-09
 2.616936561e-07
 0.0008671500774
-0.3105556664
+0.3097640608
 0.0006552874753
 1.250994614e-07
 4.836707652e-07
 267.0859855
 2.784590138e-09
 1.277933942e-11
 1.625022487e-09
 35.42273613
 8.653074513e-05
 4.787553737e-06
 1.988624796e-05
 3.776413822e-07
 1.896902599e-08
-0.02770700524
+0.02769186584
 15.7257863
 2.903221186e-10
 1.383656135e-06
 9.796122701e-07
 0.000313466982
 0.001008582166
 1.326553759e-05
 0.004678660451
 0.01717544418
 9.763673978e-07
 8.769786833e-06
 8.887711201e-06
 0.001304503338
 6.699929944e-07
 5.668340919e-11
 0.2432408562
 1.65579253e-07
 0.000246842309
 0.002380529019
 7.590644517e-09
 7.382339234e-12
 0.02191318318
 6.595093824e-09
 7.59955463e-08
 0.0006241836255
 2.306006909e-07
 8.949234518e-07
 1.745865901e-07
-3.531291359e-06
+3.470566244e-06
 5.515085903e-08
 0.0004672383281
 3.41289611e-10
 9.072028681e-09
 0.1360437848
 2.516296619e-06
 9.347242718e-06
 7.560996071e-06
 3.650323724
 8.084973509e-06
 4.821049366e-07
 2.262423437e-07
 2.237305224e-06
 3.165244113e-07
 1.440989373e-05
 0.0002661269589
 24.06039199
-1.860370743e-08
+1.817208269e-08
 4.189979743e-06
 0.001821016076
 4.36609224e-09
 3372180.49
 0.0009765702499
 0.03671795044
 0.5266849257
 0.004945279364
 2.349850855e-06
 0.06096774779
 0.000440582517
 2.030747703e-08
 0.0001828061992
 0.0003290502891
-6.504778186e-07
+6.266493903e-07
 2.945465959e-08
 0.04314824277
 8.695492983e-07
 19.3255897
 0.0003433917438
 1.623604604e-07
 0.0004985403516
 4.206613628e-07
 6.048976857e-09
 0.01167821222
 5.984173029e-05
 1.495919742e-08
 0.349858651
 1.798434603e-06
 1.039820674e-07
 1.118772128e-08
-1.30086451e-08
+1.266209558e-08
 0.003069395217
 4.6681898e-06
 6.697088362e-11
 3.350850437e-06
 0.06185962328
 4.883448988e-09
 1.110833085e-06
-0.0004052046295
-0.0006808854079
+0.0003957421533
+0.0006801999472
 0.0002346905421
 4.330939823e-06
 1.219218909e-07
 0.00107853716
 8.281691391e-06
 1.767444691e-10
 6.900019008e-08
 605.6626124
 1.58440332e-07
 0.04329139184
 2.752138714e-08
 0.0005185712214
 1.286238525e-10
 2.639855477e-07
 1.869433683e-06
 1.079551089e-10
 1.229225358e-07
 0.03468655392
 0.0006584274735
 3.689112319e-09
 1.260350348e-05
 1.040877611e-05
 9.878538403e-06
 0.00027695052
 9.100037836e-09
 8.033944341e-07
 3.315013452e-05
 1.633327055e-11
 0.003414227642
 6.245172231e-08
 0.0003805246583
 0.0002060494734
 3.729836801e-11
 9.13272934e-09
 2.051216421e-08
 2.436679394e-08
 4.8855578e-09
 3.735846979e-11
 1.088675628e-07
 2.683031236e-07
 3.706588258e-11
 0.02523141233
 3.549809347e-05
 3.149827076e-09
 1.040176277e-09
 2.910870047e-10
 8.86122235e-06
 5.308664537e-09
 3.218598972e-11
 0.001577139281
-7.379705718e-07
+6.915165923e-07
 2.55834443e-09
 7.691641781e-10
 0.01021181751
 1.105572103e-06
 3.947538433e-06
 3.734235002e-09
 6.899637353e-09
 1.304337436e-09
 6.538762872e-12
 3.449997548e-06
-4.212613391e-09
+4.194626357e-09
 7.962318534e-05
 6.295652823e-05
 1.652753715e-06
 7.186541052e-09
 4.161402504e-10
 240986.4156
 0.00837085449
 8.760965452e-10
 2.273546864e-10
 3.315418794e-08
 1.416471539e-06
 2.236464809e-08
 1.633966009e-08
 4.518163364e-05
 0.0005095243003
 0.001992318371
 3.067811242e-05
 0.000600451339
 7.236523643e-06
 6.932191963e-06
 4.091606026e-06
 0.00532740987
 2.395091742e-09
 9.944229055e-06
 1.205282983e-08
 1.590006487e-08
 3.215700583e-11
 0.3737229127
 1.296635624e-09
 0.0004534080133
-1.233610704e-07
+1.231860602e-07
 8.898892246e-07
 7.255073266e-11
 1.472337758e-06
 0.02150215784
 0.01192727543
 4.01006022e-09
 8.731812041e-09
 1.44194837e-08
 8.229024075e-10
 0.0007855372767
 2.506773438e-12
 2.241537936e-06
-0.3085183925
-1.101920302e-05
+0.3066459614
+1.044241605e-05
 2.752322662e-09
 3.158084387e-06
 1.215204067e-06
 4.56919432e-09
 2.790752035e-08
 3.511291959e-09
 5.863328277e-06
 6.94327717e-05
 2.22257262e-07
 8.350918192e-08
 5.331043956e-07
 6.969438883e-11
 1.760059719e-06
 9.217915003e-07
 0.000186591209
 0.002628593815
 6.211758257e-11
 0.0001834032575
 7.768284292e-14
 1.377546165e-08
 1.091734431e-06
 4.677996963e-07
 7.943499964e-07
 2.545817678
 7.562150253e-11
 3.799329956e-06
 1.510534633e-07
 3.983823634e-09
 8.184966815e-09
 0.000124713148
 2.309165194e-11
 0.001872087514
 0.01153490791
-2.680798294e-06
+2.621442843e-06
 4.693787525e-11
 4.26518767e-10
 4.684595348e-05
 0.0005076579094
 7.644830233e-09
 4.193877203e-13
 0.002676923954
 2.654050699e-08
 6.800195443e-08
 3.888064789e-11
 0.2446884347
 9.628489292e-08
 0.002537052711
 1.189694289e-11
 1.656137485e-09
 9.040798991e-08
 3.488787289e-10
 6.557255554e-07
 9.083676565e-07
 8.150458329e-13
 1.315321346e-07
 5.098465051e-08
 3.786448639e-05
 1.600711068e-06
 4.658140964e-08
 3.906381479e-05
 0.0002389891749
 8.287668941e-08
 2.051670765e-10
 1.60134009e-05
 2.847282071e-06
 4.308493985e-10
 1.238922307e-09
 9.741854048e-10
 5.146899686e-06
 0.001209019717
-3.233996009e-07
+3.210824326e-07
 2.974261102e-06
 3.899610282e-06
-1.896885723e-08
+1.874478682e-08
 9.332118489e-06
 0.004694117038
 1.266652132e-11
 1.65446818e-06
 0.0004100868952
 0.06302457519
 2.236229887e-12
 1.584413907e-10
 0.2179964362
 0.0278380659
 1.936978481e-12
 0.001609711018
 1.892891439
 0.8712003892
 0.09866862844
 5.934210083e-11
 1.002311696e-11
 0.05494208606
 0.000190347461
 6.722151007e-08
 4.030694324e-07
 9.278979899e-07
 0.0003978128465
 2.803383506e-11
 0.0002738201279
 5.960007001e-06
 0.0005814501443
 4.157124101e-09
 5.198894043e-08
 3.465884394e-09
 8.167365756e-12
 4.450019241e-08
 4.893968894e-07
 1.288321375e-11
 9.163290302e-12
 7.451831479e-07
 3.940383302e-11
 1.996508632e-08
 0.1236118645
 1.182043812e-06
-1.081851533e-06
+1.054133253e-06
 2.618934064e-07
 0.0001307650885
 0.0004571929478
 6.07226713e-10
 9.141057675e-06
 1.18356058e-08
 4.465375632e-07
 1.107633947e-15
 7.416788486e-08
 6.870175273e-05
 2.600618361e-06
 2.647425108e-07
 2.279494937e-10
 1.611105573e-05
-0.0001167395509
+0.0001141193053
 1.474187502e-09
 0.003419123567
 4.527389745e-05
 3.271142207e-09
 7.434473088e-10
 0.0003102710133
 4.710559791e-05
 8.139484815e-10
 6.749221433e-12
 3.882836934e-05
 8.016924727e-05
 4.578651435e-05
 1.374899461e-06
 9.31258077e-10
 9.107579154e-07
 2.005597861e-06
 4.853545363e-09
 1.906194275e-08
 1.569062034e-08
 9.37420375e-06
 0.0001051157618
 6.464238034e-07
 4.092696924e-06
 1.538436694e-08
 9.760057524e-12
 2.626691189e-05
 0.02379715614
 0.00314703493
 5.484543738e-08
 0.00141690332
 1.612112513e-12
 11.09088062
 0.0007046654234
 3.111374555e-07
 5.038033967e-09
 2.21156295e-08