diff --git a/FixedOrderGen/include/EventGenerator.hh b/FixedOrderGen/include/EventGenerator.hh index 680deec..f6b5934 100644 --- a/FixedOrderGen/include/EventGenerator.hh +++ b/FixedOrderGen/include/EventGenerator.hh @@ -1,67 +1,68 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #pragma once #include #include "HEJ/EWConstants.hh" #include "HEJ/MatrixElement.hh" #include "HEJ/optional.hh" #include "HEJ/PDF.hh" #include "HEJ/ScaleFunction.hh" #include "Beam.hh" #include "Decay.hh" #include "JetParameters.hh" #include "Process.hh" #include "Status.hh" +#include "Subleading.hh" namespace HEJ { class Event; class HiggsCouplingSettings; class RNG; } //! Namespace for HEJ Fixed Order Generator namespace HEJFOG { class EventGenerator{ public: EventGenerator( Process process, Beam beam, HEJ::ScaleGenerator scale_gen, JetParameters jets, int pdf_id, double subl_change, - unsigned int subl_channels, + Subleading subl_channels, ParticlesDecayMap particle_decays, HEJ::HiggsCouplingSettings Higgs_coupling, HEJ::EWConstants ew_parameters, std::shared_ptr ran ); HEJ::optional gen_event(); Status status() const { return status_; } private: HEJ::PDF pdf_; HEJ::MatrixElement ME_; HEJ::ScaleGenerator scale_gen_; Process process_; JetParameters jets_; Beam beam_; Status status_; double subl_change_; - unsigned int subl_channels_; + Subleading subl_channels_; ParticlesDecayMap particle_decays_; HEJ::EWConstants ew_parameters_; std::shared_ptr ran_; }; } diff --git a/FixedOrderGen/include/PhaseSpacePoint.hh b/FixedOrderGen/include/PhaseSpacePoint.hh index e88e82a..066e592 100644 --- a/FixedOrderGen/include/PhaseSpacePoint.hh +++ b/FixedOrderGen/include/PhaseSpacePoint.hh @@ -1,238 +1,239 @@ /** \file PhaseSpacePoint.hh * \brief Contains the PhaseSpacePoint Class * * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #pragma once #include #include #include #include #include #include "HEJ/Event.hh" #include "HEJ/Particle.hh" #include "HEJ/PDG_codes.hh" #include "fastjet/PseudoJet.hh" #include "Decay.hh" #include "Status.hh" +#include "Subleading.hh" namespace HEJ { class EWConstants; class PDF; class RNG; } namespace HEJFOG { class JetParameters; class Process; //! A point in resummation phase space class PhaseSpacePoint{ public: //! Default PhaseSpacePoint Constructor PhaseSpacePoint() = delete; //! PhaseSpacePoint Constructor /** * @param proc The process to generate * @param jet_properties Jet defintion & cuts * @param pdf The pdf set (used for sampling) * @param E_beam Energie of the beam * @param subl_chance Chance to turn a potentially unordered * emission into an actual one * @param subl_channels Possible subleading channels. * see HEJFOG::Subleading * @param particle_properties Properties of producted boson * * Initially, only FKL phase space points are generated. subl_chance gives * the change of turning one emissions into a subleading configuration, * i.e. either unordered or central quark/anti-quark pair. Unordered * emissions require that the most extremal emission in any direction is * a quark or anti-quark and the next emission is a gluon. Quark/anti-quark * pairs are only generated for W processes. At most one subleading * emission will be generated in this way. */ PhaseSpacePoint( Process const & proc, JetParameters const & jet_properties, HEJ::PDF & pdf, double E_beam, double subl_chance, - unsigned int subl_channels, + Subleading subl_channels, ParticlesDecayMap const & particle_decays, HEJ::EWConstants const & ew_parameters, HEJ::RNG & ran ); //! Get Weight Function /** * @returns Weight of Event */ double weight() const{ return weight_; } Status status() const{ return status_; } //! Get Incoming Function /** * @returns Incoming Particles */ std::array const & incoming() const{ return incoming_; } //! Get Outgoing Function /** * @returns Outgoing Particles */ std::vector const & outgoing() const{ return outgoing_; } std::unordered_map> const & decays() const{ return decays_; } private: friend HEJ::Event::EventData to_EventData(PhaseSpacePoint psp); /** * @internal * @brief Generate LO parton momentum * * @param count Number of partons to generate * @param is_pure_jets If true ensures momentum conservation in x and y * @param jet_param Jet properties to fulfil * @param max_pt max allowed pt for a parton (typically E_CMS) * @param ran Random Number Generator * * @returns Momentum of partons * * Ensures that each parton is in its own jet. * Generation is independent of parton flavour. Output is sorted in rapidity. */ std::vector gen_LO_partons( int count, bool is_pure_jets, JetParameters const & jet_param, double max_pt, HEJ::RNG & ran ); HEJ::Particle gen_boson( HEJ::ParticleID bosonid, double mass, double width, HEJ::RNG & ran ); template fastjet::PseudoJet gen_last_momentum( ParticleMomenta const & other_momenta, double mass_square, double y ) const; bool jets_ok( std::vector const & Born_jets, std::vector const & partons ) const; /** * @internal * @brief Generate incoming partons according to the PDF * * @param uf Scale used in the PDF */ void reconstruct_incoming( - Process const & proc, unsigned int subl_channels, + Process const & proc, Subleading subl_channels, HEJ::PDF & pdf, double E_beam, double uf, HEJ::RNG & ran ); /** * @internal * @brief Returns list of all allowed initial states partons */ std::array,2> filter_partons( - Process const & proc, unsigned int const subl_channels, + Process const & proc, Subleading subl_channels, HEJ::RNG & ran ); HEJ::ParticleID generate_incoming_id( std::size_t beam_idx, double x, double uf, HEJ::PDF & pdf, std::bitset<11> allowed_partons, HEJ::RNG & ran ); bool momentum_conserved(double ep) const; HEJ::Particle const & most_backward_FKL( std::vector const & partons ) const; HEJ::Particle const & most_forward_FKL( std::vector const & partons ) const; HEJ::Particle & most_backward_FKL(std::vector & partons) const; HEJ::Particle & most_forward_FKL(std::vector & partons) const; bool extremal_FKL_ok( std::vector const & partons ) const; double random_normal(double stddev, HEJ::RNG & ran); /** * @internal * @brief Turns a FKL configuration into a subleading one * * @param chance Change to switch to subleading configuration * @param channels Allowed channels for subleading process * @param proc Process to decide which subleading * configurations are allowed * * With a chance of "chance" the FKL configuration is either turned into * a unordered configuration or, for A/W/Z bosons, a configuration with * a central quark/anti-quark pair. */ - void maybe_turn_to_subl(double chance, unsigned int channels, + void maybe_turn_to_subl(double chance, Subleading channels, Process const & proc, HEJ::RNG & ran); void turn_to_uno(bool can_be_uno_backward, bool can_be_uno_forward, HEJ::RNG & ran); void turn_to_qqx(bool allow_strange, HEJ::RNG & ran); //! decay where we select the decay channel std::vector decay_boson( HEJ::Particle const & parent, std::vector const & decays, HEJ::RNG & ran ); //! generate decay products of a boson std::vector decay_boson( HEJ::Particle const & parent, std::vector const & decays, HEJ::RNG & ran ); /// @brief setup outgoing partons to ensure correct coupling to boson void couple_boson(HEJ::ParticleID boson, HEJ::RNG & ran); Decay select_decay_channel( std::vector const & decays, HEJ::RNG & ran ); double gen_hard_pt( int np, double ptmin, double ptmax, double y, HEJ::RNG & ran ); double gen_soft_pt(int np, double ptmax, HEJ::RNG & ran); double gen_parton_pt( int count, JetParameters const & jet_param, double ptmax, double y, HEJ::RNG & ran ); double weight_; Status status_; std::array incoming_; std::vector outgoing_; //! Particle decays in the format {outgoing index, decay products} std::unordered_map> decays_; }; //! Extract HEJ::Event::EventData from PhaseSpacePoint HEJ::Event::EventData to_EventData(PhaseSpacePoint psp); } diff --git a/FixedOrderGen/include/Subleading.hh b/FixedOrderGen/include/Subleading.hh index dd039c7..cb79ae5 100644 --- a/FixedOrderGen/include/Subleading.hh +++ b/FixedOrderGen/include/Subleading.hh @@ -1,28 +1,30 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019 * \copyright GPLv2 or later */ #pragma once +#include + namespace HEJFOG { - namespace channels{ + namespace subleading { //!< @TODO confusing name with capital Subleading /** * Bit position of different subleading channels * e.g. (unsigned int) 1 => only unordered */ - enum Subleading: unsigned { - none = 0u, - all = ~0u, - uno = 1u, + enum Channels: unsigned { + uno = 0u, unordered = uno, - qqx = 2u, - cqqx = 4u, + qqx = 1u, + cqqx = 2u, central_qqx = cqqx, - eqqx = 8u, + eqqx = 3u, extremal_qqx = eqqx, + first = uno, + last = eqqx, }; } - using Subleading = channels::Subleading; + using Subleading = std::bitset; } diff --git a/FixedOrderGen/include/config.hh b/FixedOrderGen/include/config.hh index 212f059..69c62e4 100644 --- a/FixedOrderGen/include/config.hh +++ b/FixedOrderGen/include/config.hh @@ -1,49 +1,50 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #pragma once #include #include #include #include "HEJ/Config.hh" #include "HEJ/EWConstants.hh" #include "HEJ/Fraction.hh" #include "HEJ/HiggsCouplingSettings.hh" #include "HEJ/optional.hh" #include "HEJ/output_formats.hh" #include "yaml-cpp/yaml.h" #include "Beam.hh" #include "Decay.hh" #include "JetParameters.hh" #include "Process.hh" +#include "Subleading.hh" #include "UnweightSettings.hh" namespace HEJFOG { struct Config{ Process process; std::size_t events; JetParameters jets; Beam beam; int pdf_id; HEJ::Fraction subleading_fraction; - unsigned int subleading_channels; //! < see HEJFOG::Subleading + Subleading subleading_channels; //! < see HEJFOG::Subleading ParticlesDecayMap particle_decays; std::vector analyses_parameters; HEJ::ScaleConfig scales; std::vector output; HEJ::RNGConfig rng; HEJ::HiggsCouplingSettings Higgs_coupling; HEJ::EWConstants ew_parameters; HEJ::optional unweight; }; Config load_config(std::string const & config_file); } diff --git a/FixedOrderGen/src/EventGenerator.cc b/FixedOrderGen/src/EventGenerator.cc index 84b03c7..c956a97 100644 --- a/FixedOrderGen/src/EventGenerator.cc +++ b/FixedOrderGen/src/EventGenerator.cc @@ -1,99 +1,99 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #include "EventGenerator.hh" #include #include #include "HEJ/Config.hh" #include "HEJ/Event.hh" #include "HEJ/event_types.hh" #include "HEJ/EWConstants.hh" #include "HEJ/exceptions.hh" #include "HEJ/HiggsCouplingSettings.hh" #include "Process.hh" #include "Beam.hh" #include "JetParameters.hh" #include "PhaseSpacePoint.hh" namespace HEJFOG { EventGenerator::EventGenerator( Process process, Beam beam, HEJ::ScaleGenerator scale_gen, JetParameters jets, int pdf_id, double subl_change, - unsigned int subl_channels, + Subleading subl_channels, ParticlesDecayMap particle_decays, HEJ::HiggsCouplingSettings Higgs_coupling, HEJ::EWConstants ew_parameters, std::shared_ptr ran ): pdf_{pdf_id, beam.particles[0], beam.particles[1]}, ME_{ [this](double mu){ return pdf_.Halphas(mu); }, HEJ::MatrixElementConfig{ false, std::move(Higgs_coupling), ew_parameters } }, scale_gen_{std::move(scale_gen)}, process_{std::move(process)}, jets_{std::move(jets)}, beam_{std::move(beam)}, subl_change_{subl_change}, subl_channels_{subl_channels}, particle_decays_{std::move(particle_decays)}, ew_parameters_{ew_parameters}, ran_{std::move(ran)} { } HEJ::optional EventGenerator::gen_event(){ HEJFOG::PhaseSpacePoint psp{ process_, jets_, pdf_, beam_.energy, subl_change_, subl_channels_, particle_decays_, ew_parameters_, *ran_ }; status_ = psp.status(); if(status_ != good) return {}; HEJ::Event ev = scale_gen_( HEJ::Event{ to_EventData( std::move(psp) ).cluster( jets_.def, jets_.min_pt) } ); if(!is_resummable(ev.type())) throw HEJ::not_implemented("Tried to generate a event type, " "which is not yet implemented in HEJ."); ev.generate_colours(*ran_); const double shat = HEJ::shat(ev); const double xa = (ev.incoming()[0].E()-ev.incoming()[0].pz())/(2.*beam_.energy); const double xb = (ev.incoming()[1].E()+ev.incoming()[1].pz())/(2.*beam_.energy); // evaluate matrix element ev.parameters() *= ME_.tree(ev)/(shat*shat); // and PDFs ev.central().weight *= pdf_.pdfpt(0,xa,ev.central().muf, ev.incoming()[0].type); ev.central().weight *= pdf_.pdfpt(0,xb,ev.central().muf, ev.incoming()[1].type); for(std::size_t i = 0; i < ev.variations().size(); ++i){ auto & var = ev.variations(i); var.weight *= pdf_.pdfpt(0,xa,var.muf, ev.incoming()[0].type); var.weight *= pdf_.pdfpt(0,xb,var.muf, ev.incoming()[1].type); } return ev; } } diff --git a/FixedOrderGen/src/PhaseSpacePoint.cc b/FixedOrderGen/src/PhaseSpacePoint.cc index aa5a4fd..fb2def4 100644 --- a/FixedOrderGen/src/PhaseSpacePoint.cc +++ b/FixedOrderGen/src/PhaseSpacePoint.cc @@ -1,702 +1,701 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #include "PhaseSpacePoint.hh" #include #include #include #include #include #include #include #include #include #include #include "fastjet/ClusterSequence.hh" #include "HEJ/Constants.hh" #include "HEJ/EWConstants.hh" #include "HEJ/exceptions.hh" #include "HEJ/kinematics.hh" #include "HEJ/Particle.hh" #include "HEJ/PDF.hh" #include "HEJ/RNG.hh" #include "HEJ/utility.hh" #include "JetParameters.hh" #include "Process.hh" -#include "Subleading.hh" namespace { using namespace HEJ; static_assert( std::numeric_limits::has_quiet_NaN, "no quiet NaN for double" ); constexpr double NaN = std::numeric_limits::quiet_NaN(); } // namespace anonymous namespace HEJFOG { Event::EventData to_EventData(PhaseSpacePoint psp){ //! @TODO Same function already in HEJ Event::EventData result; result.incoming = std::move(psp).incoming_; assert(result.incoming.size() == 2); result.outgoing = std::move(psp).outgoing_; // technically Event::EventData doesn't have to be sorted, // but PhaseSpacePoint should be anyway assert( std::is_sorted( begin(result.outgoing), end(result.outgoing), rapidity_less{} ) ); assert(result.outgoing.size() >= 2); result.decays = std::move(psp).decays_; result.parameters.central = {NaN, NaN, psp.weight()}; return result; } namespace { bool can_swap_to_uno( Particle const & p1, Particle const & p2 ){ return is_parton(p1) && p1.type != pid::gluon && p2.type == pid::gluon; } size_t count_gluons(std::vector::const_iterator first, std::vector::const_iterator last ){ return std::count_if(first, last, [](Particle const & p) {return p.type == pid::gluon;}); } /** assumes FKL configurations between first and last, * else there can be a quark in a non-extreme position * e.g. uno configuration gqg would pass */ bool can_change_to_qqx( std::vector::const_iterator first, std::vector::const_iterator last ){ return 1 < count_gluons(first,last); } bool is_AWZ_proccess(Process const & proc){ return proc.boson && is_AWZ_boson(*proc.boson); } bool is_up_type(Particle const & part){ return is_anyquark(part) && !(std::abs(part.type)%2); } bool is_down_type(Particle const & part){ return is_anyquark(part) && std::abs(part.type)%2; } bool can_couple_to_W(Particle const & part, pid::ParticleID const W_id){ const int W_charge = W_id>0?1:-1; return std::abs(part.type)<5 && ( (W_charge*part.type > 0 && is_up_type(part)) || (W_charge*part.type < 0 && is_down_type(part)) ); } } void PhaseSpacePoint::maybe_turn_to_subl( double chance, - unsigned int const channels, + Subleading channels, Process const & proc, RNG & ran ){ if(proc.njets <= 2) return; assert(outgoing_.size() >= 2); // decide what kind of subleading process is allowed bool allow_uno = false; bool allow_strange = true; const size_t nout = outgoing_.size(); - const bool can_be_uno_backward = (channels&Subleading::uno) + const bool can_be_uno_backward = channels[subleading::uno] && can_swap_to_uno(outgoing_[0], outgoing_[1]); - const bool can_be_uno_forward = (channels&Subleading::uno) + const bool can_be_uno_forward = channels[subleading::uno] && can_swap_to_uno(outgoing_[nout-1], outgoing_[nout-2]); allow_uno = can_be_uno_backward || can_be_uno_forward; - bool allow_qqx = (channels&Subleading::qqx) + bool allow_qqx = (channels[subleading::qqx]) && can_change_to_qqx(outgoing_.cbegin(), outgoing_.cend()); if(is_AWZ_proccess(proc)) { if(std::none_of(outgoing_.cbegin(), outgoing_.cend(), [&proc](Particle const & p){ return can_couple_to_W(p, *proc.boson);})) { // enforce qqx if A/W/Z can't couple somewhere else // this is ensured to work through filter_partons in reconstruct_incoming assert(allow_qqx); allow_uno = false; chance = 1.; // strange not allowed for W if(std::abs(*proc.boson)== pid::Wp) allow_strange = false; } } if(!allow_uno && !allow_qqx) return; if(ran.flat() < chance){ weight_ /= chance; if(allow_uno && !allow_qqx){ turn_to_uno(can_be_uno_backward, can_be_uno_forward, ran); } else if (!allow_uno && allow_qqx) { turn_to_qqx(allow_strange, ran); } else { assert( allow_uno && allow_qqx); if(ran.flat() < 0.5) turn_to_uno(can_be_uno_backward, can_be_uno_forward, ran); else turn_to_qqx(allow_strange, ran); weight_ *= 2.; } } else weight_ /= 1 - chance; } void PhaseSpacePoint::turn_to_uno( const bool can_be_uno_backward, const bool can_be_uno_forward, RNG & ran ){ if(!can_be_uno_backward && !can_be_uno_forward) return; const size_t nout = outgoing_.size(); if(can_be_uno_backward && can_be_uno_forward){ if(ran.flat() < 0.5){ std::swap(outgoing_[0].type, outgoing_[1].type); } else { std::swap(outgoing_[nout-1].type, outgoing_[nout-2].type); } weight_ *= 2.; } else if(can_be_uno_backward){ std::swap(outgoing_[0].type, outgoing_[1].type); } else { assert(can_be_uno_forward); std::swap(outgoing_[nout-1].type, outgoing_[nout-2].type); } } void PhaseSpacePoint::turn_to_qqx(const bool allow_strange, RNG & ran){ /// find first and last gluon in FKL chain auto first = std::find_if(outgoing_.begin(), outgoing_.end(), [](Particle const & p){return p.type == pid::gluon;}); std::vector FKL_gluons; for(auto p = first; p!=outgoing_.end(); ++p){ if(p->type == pid::gluon) FKL_gluons.push_back(&*p); else if(is_anyquark(*p)) break; } const size_t ng = FKL_gluons.size(); if(ng < 2) throw std::logic_error("not enough gluons to create qqx"); // select flavour of quark const double r1 = 2.*ran.flat()-1.; const double max_flavour = allow_strange?N_F:N_F-1; weight_ *= max_flavour*2; int flavour = pid::down + std::floor(std::abs(r1)*max_flavour); flavour*=r1<0.?-1:1; // select gluon for switch const size_t idx = std::floor((ng-1) * ran.flat()); weight_ *= (ng-1); FKL_gluons[idx]->type = ParticleID(flavour); FKL_gluons[idx+1]->type = ParticleID(-flavour); } template fastjet::PseudoJet PhaseSpacePoint::gen_last_momentum( ParticleMomenta const & other_momenta, const double mass_square, const double y ) const { std::array pt{0.,0.}; for (auto const & p: other_momenta) { pt[0]-= p.px(); pt[1]-= p.py(); } const double mperp = std::sqrt(pt[0]*pt[0]+pt[1]*pt[1]+mass_square); const double pz=mperp*std::sinh(y); const double E=mperp*std::cosh(y); return {pt[0], pt[1], pz, E}; } namespace { //! adds a particle to target (in correct rapidity ordering) //! @returns positon of insertion auto insert_particle(std::vector & target, Particle && particle ){ const auto pos = std::upper_bound( begin(target),end(target),particle,rapidity_less{} ); target.insert(pos, std::move(particle)); return pos; } } PhaseSpacePoint::PhaseSpacePoint( Process const & proc, JetParameters const & jet_param, PDF & pdf, double E_beam, double const subl_chance, - unsigned int const subl_channels, + Subleading const subl_channels, ParticlesDecayMap const & particle_decays, EWConstants const & ew_parameters, RNG & ran ){ assert(proc.njets >= 2); status_ = good; weight_ = 1; const int nout = proc.njets + (proc.boson?1:0) + proc.boson_decay.size(); outgoing_.reserve(nout); // generate parton momenta const bool is_pure_jets = (nout == proc.njets); auto partons = gen_LO_partons( proc.njets, is_pure_jets, jet_param, E_beam, ran ); // pre fill flavour with gluons for(auto&& p_out: partons) { outgoing_.emplace_back(Particle{pid::gluon, std::move(p_out), {}}); } if(status_ != good) return; if(proc.boson){ // decay boson auto const & boson_prop = ew_parameters.prop(*proc.boson) ; auto boson{ gen_boson(*proc.boson, boson_prop.mass, boson_prop.width, ran) }; const auto pos{insert_particle(outgoing_, std::move(boson))}; const size_t boson_idx = std::distance(begin(outgoing_), pos); auto const & boson_decay = particle_decays.find(*proc.boson); if( !proc.boson_decay.empty() ){ // decay given in proc decays_.emplace( boson_idx, decay_boson(outgoing_[boson_idx], proc.boson_decay, ran) ); } else if( boson_decay != particle_decays.end() && !boson_decay->second.empty() ){ // decay given explicitly decays_.emplace( boson_idx, decay_boson(outgoing_[boson_idx], boson_decay->second, ran) ); } } // normalisation of momentum-conserving delta function weight_ *= std::pow(2*M_PI, 4); /** @TODO * uf (jet_param.min_pt) doesn't correspond to our final scale choice. * The HEJ scale generators currently expect a full event as input, * so fixing this is not completely trivial */ reconstruct_incoming(proc, subl_channels, pdf, E_beam, jet_param.min_pt, ran); if(status_ != good) return; // set outgoing states most_backward_FKL(outgoing_).type = incoming_[0].type; most_forward_FKL(outgoing_).type = incoming_[1].type; maybe_turn_to_subl(subl_chance, subl_channels, proc, ran); if(proc.boson) couple_boson(*proc.boson, ran); } // pt generation, see eq:pt_sampling in developer manual double PhaseSpacePoint::gen_hard_pt( const int np , const double ptmin, const double ptmax, const double /* y */, RNG & ran ) { // heuristic parameter for pt sampling, see eq:pt_par in developer manual const double ptpar = ptmin + np/5.; const double arctan = std::atan((ptmax - ptmin)/ptpar); const double xpt = ran.flat(); const double pt = ptmin + ptpar*std::tan(xpt*arctan); const double cosine = std::cos(xpt*arctan); weight_ *= pt*ptpar*arctan/(cosine*cosine); return pt; } double PhaseSpacePoint::gen_soft_pt(int np, double max_pt, RNG & ran) { constexpr double ptpar = 4.; const double r = ran.flat(); const double pt = max_pt + ptpar/np*std::log(r); weight_ *= pt*ptpar/(np*r); return pt; } double PhaseSpacePoint::gen_parton_pt( int count, JetParameters const & jet_param, double max_pt, double y, RNG & ran ) { constexpr double p_small_pt = 0.02; if(! jet_param.peak_pt) { return gen_hard_pt(count, jet_param.min_pt, max_pt, y, ran); } const double r = ran.flat(); if(r > p_small_pt) { weight_ /= 1. - p_small_pt; return gen_hard_pt(count, *jet_param.peak_pt, max_pt, y, ran); } weight_ /= p_small_pt; const double pt = gen_soft_pt(count, *jet_param.peak_pt, ran); if(pt < jet_param.min_pt) { weight_=0.0; status_ = not_enough_jets; return jet_param.min_pt; } return pt; } std::vector PhaseSpacePoint::gen_LO_partons( int np, bool is_pure_jets, JetParameters const & jet_param, double max_pt, RNG & ran ){ if (np<2) throw std::invalid_argument{"Not enough partons in gen_LO_partons"}; weight_ /= std::pow(16.*std::pow(M_PI,3),np); weight_ /= std::tgamma(np+1); //remove rapidity ordering std::vector partons; partons.reserve(np); for(int i = 0; i < np; ++i){ const double y = -jet_param.max_y + 2*jet_param.max_y*ran.flat(); weight_ *= 2*jet_param.max_y; const bool is_last_parton = i+1 == np; if(is_pure_jets && is_last_parton) { constexpr double parton_mass_sq = 0.; partons.emplace_back(gen_last_momentum(partons, parton_mass_sq, y)); break; } const double phi = 2*M_PI*ran.flat(); weight_ *= 2.0*M_PI; const double pt = gen_parton_pt(np, jet_param, max_pt, y, ran); if(weight_ == 0.0) return {}; partons.emplace_back(fastjet::PtYPhiM(pt, y, phi)); assert(jet_param.min_pt <= partons[i].pt()); assert(partons[i].pt() <= max_pt+1e-5); } // Need to check that at LO, the number of jets = number of partons; fastjet::ClusterSequence cs(partons, jet_param.def); auto cluster_jets=cs.inclusive_jets(jet_param.min_pt); if (cluster_jets.size()!=unsigned(np)){ weight_=0.0; status_ = not_enough_jets; return {}; } std::sort(begin(partons), end(partons), rapidity_less{}); return partons; } Particle PhaseSpacePoint::gen_boson( ParticleID bosonid, double mass, double width, RNG & ran ){ // Usual phase space measure weight_ /= 16.*std::pow(M_PI, 3); // Generate a y Gaussian distributed around 0 /// @TODO check magic numbers for different boson Higgs /// @TODO better sampling for W const double stddev_y = 1.6; const double y = random_normal(stddev_y, ran); const double r1 = ran.flat(); const double s_boson = mass*( mass + width*std::tan(M_PI/2.*r1 + (r1-1.)*std::atan(mass/width)) ); // off-shell s_boson sampling, compensates for Breit-Wigner /// @TODO use a flag instead if(std::abs(bosonid) == pid::Wp){ weight_/=M_PI*M_PI*16.; //Corrects B-W factors, see git issue 132 weight_*= mass*width*( M_PI+2.*std::atan(mass/width) ) / ( 1. + std::cos( M_PI*r1 + 2.*(r1-1.)*std::atan(mass/width) ) ); } auto p = gen_last_momentum(outgoing_, s_boson, y); return Particle{bosonid, std::move(p), {}}; } Particle const & PhaseSpacePoint::most_backward_FKL( std::vector const & partons ) const{ if(!is_parton(partons[0])) return partons[1]; return partons[0]; } Particle const & PhaseSpacePoint::most_forward_FKL( std::vector const & partons ) const{ const size_t last_idx = partons.size() - 1; if(!is_parton(partons[last_idx])) return partons[last_idx-1]; return partons[last_idx]; } Particle & PhaseSpacePoint::most_backward_FKL( std::vector & partons ) const{ if(!is_parton(partons[0])) return partons[1]; return partons[0]; } Particle & PhaseSpacePoint::most_forward_FKL( std::vector & partons ) const{ const size_t last_idx = partons.size() - 1; if(!is_parton(partons[last_idx])) return partons[last_idx-1]; return partons[last_idx]; } namespace { /// partons are ordered: even = anti, 0 = gluon ParticleID index_to_pid(size_t i){ if(!i) return pid::gluon; return static_cast( i%2 ? (i+1)/2 : -i/2 ); } /// partons are ordered: even = anti, 0 = gluon size_t pid_to_index(ParticleID id){ if(id==pid::gluon) return 0; return id>0 ? id*2-1 : std::abs(id)*2; } std::bitset<11> init_allowed(ParticleID const id){ if(std::abs(id) == pid::proton) return ~0; std::bitset<11> out{0}; if(is_parton(id)) out[pid_to_index(id)] = 1; return out; } /// decides which "index" (see index_to_pid) are allowed for process std::bitset<11> allowed_quarks(ParticleID const boson){ std::bitset<11> allowed = ~0; if(std::abs(boson) == pid::Wp){ // special case W: // Wp: anti-down or up-type quark, no b/t // Wm: down or anti-up-type quark, no b/t allowed = boson>0? 0b00011001101 :0b00100110011; } return allowed; } } /** * checks which partons are allowed as initial state: * 1. only allow what is given in the Runcard (p -> all) * 2. A/W/Z require something to couple to * a) no qqx => no incoming gluon * b) 2j => no incoming gluon * c) 3j => can couple OR is gluon => 2 gluons become qqx later */ std::array,2> PhaseSpacePoint::filter_partons( - Process const & proc, unsigned int const subl_channels, RNG & ran + Process const & proc, Subleading const subl_channels, RNG & ran ){ std::array,2> allowed_partons{ init_allowed(proc.incoming[0]), init_allowed(proc.incoming[1]) }; - bool const allow_qqx = subl_channels&Subleading::qqx; + bool const allow_qqx = subl_channels[subleading::qqx]; // special case A/W/Z if(is_AWZ_proccess(proc) && ((proc.njets < 4) || !allow_qqx)){ // all possible incoming states auto allowed = allowed_quarks(*proc.boson); if(proc.njets == 2 || !allow_qqx) allowed[0]=0; // possible states per leg std::array,2> const maybe_partons{ allowed_partons[0]&allowed, allowed_partons[1]&allowed}; if(maybe_partons[0].any() && maybe_partons[1].any()){ // two options to get allowed initial state => choose one at random const size_t idx = ran.flat() < 0.5; allowed_partons[idx] = maybe_partons[idx]; // else choose the possible } else if(maybe_partons[0].any()) { allowed_partons[0] = maybe_partons[0]; } else if(maybe_partons[1].any()) { allowed_partons[1] = maybe_partons[1]; } else{ throw std::invalid_argument{"Incoming state not allowed."}; } } return allowed_partons; } void PhaseSpacePoint::reconstruct_incoming( - Process const & proc, unsigned int const subl_channels, + Process const & proc, Subleading const subl_channels, PDF & pdf, double E_beam, double uf, RNG & ran ){ std::tie(incoming_[0].p, incoming_[1].p) = incoming_momenta(outgoing_); // calculate xa, xb const double sqrts=2*E_beam; const double xa=(incoming_[0].E()-incoming_[0].pz())/sqrts; const double xb=(incoming_[1].E()+incoming_[1].pz())/sqrts; // abort if phase space point is outside of collider energy reach if (xa>1. || xb>1.){ weight_=0; status_ = too_much_energy; return; } auto const & ids = proc.incoming; std::array,2> allowed_partons = filter_partons(proc, subl_channels, ran); for(size_t i = 0; i < 2; ++i){ if(ids[i] == pid::proton || ids[i] == pid::p_bar){ // pick ids according to pdfs incoming_[i].type = generate_incoming_id(i, i?xb:xa, uf, pdf, allowed_partons[i], ran); } else { assert(allowed_partons[i][pid_to_index(ids[i])]); incoming_[i].type = ids[i]; } } assert(momentum_conserved(1e-7)); } ParticleID PhaseSpacePoint::generate_incoming_id( size_t const beam_idx, double const x, double const uf, PDF & pdf, std::bitset<11> allowed_partons, RNG & ran ){ std::array pdf_wt; pdf_wt[0] = allowed_partons[0]? std::fabs(pdf.pdfpt(beam_idx,x,uf,pid::gluon)):0.; double pdftot = pdf_wt[0]; for(size_t i = 1; i < pdf_wt.size(); ++i){ pdf_wt[i] = allowed_partons[i]? 4./9.*std::fabs(pdf.pdfpt(beam_idx,x,uf,index_to_pid(i))):0; pdftot += pdf_wt[i]; } const double r1 = pdftot * ran.flat(); double sum = 0; for(size_t i=0; i < pdf_wt.size(); ++i){ if (r1 < (sum+=pdf_wt[i])){ weight_*= pdftot/pdf_wt[i]; return index_to_pid(i); } } std::cerr << "Error in choosing incoming parton: "< allowed_parts; for(auto & part: outgoing_){ // Wp -> up OR anti-down, Wm -> anti-up OR down, no bottom if ( can_couple_to_W(part, boson) ) allowed_parts.push_back(&part); } if(allowed_parts.size() == 0){ throw std::logic_error{"Found no parton for coupling with boson"}; } // select one and flip it size_t idx = 0; if(allowed_parts.size() > 1){ /// @TODO more efficient sampling /// old code: probability[i] = exp(parton[i].y - W.y) idx = std::floor(ran.flat()*allowed_parts.size()); weight_ *= allowed_parts.size(); } const int W_charge = boson>0?1:-1; allowed_parts[idx]->type = static_cast( allowed_parts[idx]->type - W_charge ); } double PhaseSpacePoint::random_normal( double stddev, RNG & ran ){ const double r1 = ran.flat(); const double r2 = ran.flat(); const double lninvr1 = -std::log(r1); const double result = stddev*std::sqrt(2.*lninvr1)*std::cos(2.*M_PI*r2); weight_ *= exp(result*result/(2*stddev*stddev))*std::sqrt(2.*M_PI)*stddev; return result; } bool PhaseSpacePoint::momentum_conserved(double ep) const{ fastjet::PseudoJet diff; for(auto const & in: incoming()) diff += in.p; for(auto const & out: outgoing()) diff -= out.p; return nearby_ep(diff, fastjet::PseudoJet{}, ep); } Decay PhaseSpacePoint::select_decay_channel( std::vector const & decays, RNG & ran ){ double br_total = 0.; for(auto const & decay: decays) br_total += decay.branching_ratio; // adjust weight // this is given by (channel branching ratio)/(chance to pick channel) // where (chance to pick channel) = // (channel branching ratio)/(total branching ratio) weight_ *= br_total; if(decays.size()==1) return decays.front(); const double r1 = br_total*ran.flat(); double br_sum = 0.; for(auto const & decay: decays){ br_sum += decay.branching_ratio; if(r1 < br_sum) return decay; } throw std::logic_error{"unreachable"}; } std::vector PhaseSpacePoint::decay_boson( Particle const & parent, std::vector const & decays, RNG & ran ){ const auto channel = select_decay_channel(decays, ran); return decay_boson(parent, channel.products, ran); } std::vector PhaseSpacePoint::decay_boson( Particle const & parent, std::vector const & decays, RNG & ran ){ if(decays.size() != 2){ throw not_implemented{ "only decays into two particles are implemented" }; } std::vector decay_products(decays.size()); for(size_t i = 0; i < decays.size(); ++i){ decay_products[i].type = decays[i]; } // choose polar and azimuth angle in parent rest frame const double E = parent.m()/2; const double theta = 2.*M_PI*ran.flat(); const double cos_phi = 2.*ran.flat()-1.; // Jacobian Factors for W in line 418 const double sin_phi = std::sqrt(1. - cos_phi*cos_phi); // Know 0 < phi < pi const double px = E*std::cos(theta)*sin_phi; const double py = E*std::sin(theta)*sin_phi; const double pz = E*cos_phi; decay_products[0].p.reset(px, py, pz, E); decay_products[1].p.reset(-px, -py, -pz, E); for(auto & particle: decay_products) particle.p.boost(parent.p); return decay_products; } } diff --git a/FixedOrderGen/src/config.cc b/FixedOrderGen/src/config.cc index c36a42f..2d5be60 100644 --- a/FixedOrderGen/src/config.cc +++ b/FixedOrderGen/src/config.cc @@ -1,443 +1,442 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #include "config.hh" #include #include #include #include #include #include #include #include "HEJ/exceptions.hh" #include "HEJ/PDG_codes.hh" #include "HEJ/YAMLreader.hh" -#include "Subleading.hh" - namespace HEJFOG { using HEJ::set_from_yaml; using HEJ::set_from_yaml_if_defined; using HEJ::pid::ParticleID; namespace { //! Get YAML tree of supported options /** * The configuration file is checked against this tree of options * in assert_all_options_known. */ YAML::Node const & get_supported_options(){ const static YAML::Node supported = [](){ YAML::Node supported; static const auto opts = { "process", "events", "subleading fraction","subleading channels", "scales", "scale factors", "max scale ratio", "pdf", "vev", "event output", "analyses", "analysis", "import scales" }; // add subnodes to "supported" - the assigned value is irrelevant for(auto && opt: opts) supported[opt] = ""; for(auto && jet_opt: {"min pt", "peak pt", "algorithm", "R", "max rapidity"}){ supported["jets"][jet_opt] = ""; } for(auto && particle_type: {"Higgs", "W", "Z"}){ for(auto && particle_opt: {"mass", "width"}){ supported["particle properties"][particle_type][particle_opt] = ""; } } for(auto && particle_type: {"Higgs", "Wp", "W+", "Wm", "W-", "Z"}){ for(auto && particle_opt: {"into", "branching ratio"}){ supported["decays"][particle_type][particle_opt] = ""; } } for(auto && opt: {"mt", "use impact factors", "include bottom", "mb"}){ supported["Higgs coupling"][opt] = ""; } for(auto && beam_opt: {"energy", "particles"}){ supported["beam"][beam_opt] = ""; } for(auto && unweight_opt: {"sample size", "max deviation"}){ supported["unweight"][unweight_opt] = ""; } for(auto && opt: {"name", "seed"}){ supported["random generator"][opt] = ""; } return supported; }(); return supported; } JetParameters get_jet_parameters( YAML::Node const & node, std::string const & entry ){ const auto p = HEJ::get_jet_parameters(node, entry); JetParameters result; result.def = p.def; result.min_pt = p.min_pt; set_from_yaml(result.max_y, node, entry, "max rapidity"); set_from_yaml_if_defined(result.peak_pt, node, entry, "peak pt"); if(result.peak_pt && *result.peak_pt <= result.min_pt) throw std::invalid_argument{ "Value of option 'peak pt' has to be larger than 'min pt'." }; return result; } Beam get_Beam( YAML::Node const & node, std::string const & entry ){ Beam beam; std::vector particles; set_from_yaml(beam.energy, node, entry, "energy"); set_from_yaml_if_defined(particles, node, entry, "particles"); if(! particles.empty()){ for(HEJ::ParticleID particle: particles){ if(particle != HEJ::pid::p && particle != HEJ::pid::p_bar){ throw std::invalid_argument{ "Unsupported value in option " + entry + ": particles:" " only proton ('p') and antiproton ('p_bar') beams are supported" }; } } if(particles.size() != 2){ throw std::invalid_argument{"Not exactly two beam particles"}; } beam.particles.front() = particles.front(); beam.particles.back() = particles.back(); } return beam; } std::vector split( std::string const & str, std::string const & delims ){ std::vector result; for(size_t begin, end = 0; end != str.npos;){ begin = str.find_first_not_of(delims, end); if(begin == str.npos) break; end = str.find_first_of(delims, begin + 1); result.emplace_back(str.substr(begin, end - begin)); } return result; } std::invalid_argument invalid_incoming(std::string const & what){ return std::invalid_argument{ "Incoming particle type " + what + " not supported," " incoming particles have to be 'p', 'p_bar' or partons" }; } std::invalid_argument invalid_outgoing(std::string const & what){ return std::invalid_argument{ "Outgoing particle type " + what + " not supported," " outgoing particles have to be 'j', 'photon', 'H', 'Wm', 'Wp', 'e-', 'e+', 'nu_e', 'nu_e_bar'" }; } HEJ::ParticleID reconstruct_boson_id( std::vector const & ids ){ assert(ids.size()==2); const int pidsum = ids[0] + ids[1]; if(pidsum == +1) { assert(HEJ::is_antilepton(ids[0])); if(HEJ::is_antineutrino(ids[0])) { throw HEJ::not_implemented{"lepton-flavour violating final state"}; } assert(HEJ::is_neutrino(ids[1])); // charged antilepton + neutrino means we had a W+ return HEJ::pid::Wp; } if(pidsum == -1) { assert(HEJ::is_antilepton(ids[0])); if(HEJ::is_neutrino(ids[1])) { throw HEJ::not_implemented{"lepton-flavour violating final state"}; } assert(HEJ::is_antineutrino(ids[0])); // charged lepton + antineutrino means we had a W- return HEJ::pid::Wm; } throw HEJ::not_implemented{ "final state with leptons "+name(ids[0])+" and "+name(ids[1]) +" not supported" }; } Process get_process( YAML::Node const & node, std::string const & entry ){ Process result; std::string process_string; set_from_yaml(process_string, node, entry); assert(! process_string.empty()); const auto particles = split(process_string, " \n\t\v=>"); if(particles.size() < 3){ throw std::invalid_argument{ "Bad format in option process: '" + process_string + "', expected format is 'in1 in2 => out1 ...'" }; } result.incoming.front() = HEJ::to_ParticleID(particles[0]); result.incoming.back() = HEJ::to_ParticleID(particles[1]); for(size_t i = 0; i < result.incoming.size(); ++i){ const HEJ::ParticleID in = result.incoming[i]; if( in != HEJ::pid::proton && in != HEJ::pid::p_bar && !HEJ::is_parton(in) ){ throw invalid_incoming(particles[i]); } } result.njets = 0; for(size_t i = result.incoming.size(); i < particles.size(); ++i){ assert(! particles[i].empty()); if(particles[i] == "j") ++result.njets; else if(std::isdigit(particles[i].front()) && particles[i].back() == 'j') result.njets += std::stoi(particles[i]); else{ const auto pid = HEJ::to_ParticleID(particles[i]); if(pid==HEJ::pid::Higgs || pid==HEJ::pid::Wp || pid==HEJ::pid::Wm){ if(result.boson) throw std::invalid_argument{ "More than one outgoing boson is not supported" }; if(!result.boson_decay.empty()) throw std::invalid_argument{ "Production of a boson together with a lepton is not supported" }; result.boson = pid; } else if (HEJ::is_anylepton(pid)){ // Do not accept more leptons, if two leptons are already mentioned if( result.boson_decay.size()>=2 ) throw std::invalid_argument{"Too many leptons provided"}; if(result.boson) throw std::invalid_argument{ "Production of a lepton together with a boson is not supported" }; result.boson_decay.emplace_back(pid); } else { throw invalid_outgoing(particles[i]); } } } if(result.njets < 2){ throw std::invalid_argument{ "Process has to include at least two jets ('j')" }; } if(!result.boson_decay.empty()){ std::sort(begin(result.boson_decay),end(result.boson_decay)); assert(!result.boson); result.boson = reconstruct_boson_id(result.boson_decay); } return result; } HEJFOG::Subleading to_subleading_channel(YAML::Node const & yaml){ std::string name; - using namespace HEJFOG::channels; + using namespace HEJFOG::subleading; + Subleading channel; set_from_yaml(name, yaml); if(name == "none") - return none; + return channel; if(name == "all") - return all; + return channel.set(); if(name == "unordered" || name == "uno") - return uno; + return channel.set(uno); if(name == "qqx") - return qqx; + return channel.set(qqx); if(name == "cqqx") - return cqqx; + return channel.set(cqqx); if(name == "eqqx") - return eqqx; + return channel.set(eqqx); throw HEJ::unknown_option("Unknown subleading channel '"+name+"'"); } - unsigned int get_subleading_channels(YAML::Node const & node){ + Subleading get_subleading_channels(YAML::Node const & node){ using YAML::NodeType; - using namespace HEJFOG::channels; + using namespace HEJFOG::subleading; // all channels allowed by default - if(!node) return all; + if(!node) return ~0u; switch(node.Type()){ case NodeType::Undefined: - return all; + return ~0u; case NodeType::Null: - return none; + return 0u; case NodeType::Scalar: return to_subleading_channel(node); case NodeType::Map: throw HEJ::invalid_type{"map is not a valid option for subleading channels"}; case NodeType::Sequence: - unsigned int channels = HEJFOG::Subleading::none; + Subleading channels; for(auto && channel_node: node){ channels |= get_subleading_channels(channel_node); } return channels; } throw std::logic_error{"unreachable"}; } Decay get_decay(YAML::Node const & node, std::string const & entry, std::string const & boson ){ Decay decay; set_from_yaml(decay.products, node, entry, boson, "into"); decay.branching_ratio=1; set_from_yaml_if_defined(decay.branching_ratio, node, entry, boson, "branching ratio"); return decay; } std::vector get_decays(YAML::Node const & node, std::string const & entry, std::string const & boson ){ using YAML::NodeType; if(!node[entry][boson]) return {}; switch(node[entry][boson].Type()){ case NodeType::Null: case NodeType::Undefined: return {}; case NodeType::Scalar: throw HEJ::invalid_type{"value is not a list of decays"}; case NodeType::Map: return {get_decay(node, entry, boson)}; case NodeType::Sequence: std::vector result; for(auto && decay_str: node[entry][boson]){ result.emplace_back(get_decay(decay_str, entry, boson)); } return result; } throw std::logic_error{"unreachable"}; } ParticlesDecayMap get_all_decays(YAML::Node const & node, std::string const & entry ){ if(!node[entry]) return {}; if(!node[entry].IsMap()) throw HEJ::invalid_type{entry + " have to be a map"}; ParticlesDecayMap result; for(auto const & sub_node: node[entry]) { const auto boson = sub_node.first.as(); const auto id = HEJ::to_ParticleID(boson); result.emplace(id, get_decays(node, entry, boson)); } return result; } HEJ::ParticleProperties get_particle_properties( YAML::Node const & node, std::string const & entry, std::string const & boson ){ HEJ::ParticleProperties result; set_from_yaml(result.mass, node, entry, boson, "mass"); set_from_yaml(result.width, node, entry, boson, "width"); return result; } HEJ::EWConstants get_ew_parameters(YAML::Node const & node){ HEJ::EWConstants result; double vev; set_from_yaml(vev, node, "vev"); result.set_vevWZH(vev, get_particle_properties(node, "particle properties", "W"), get_particle_properties(node, "particle properties", "Z"), get_particle_properties(node, "particle properties", "Higgs") ); return result; } UnweightSettings get_unweight( YAML::Node const & node, std::string const & entry ){ UnweightSettings result; set_from_yaml(result.sample_size, node, entry, "sample size"); if(result.sample_size <= 0){ throw std::invalid_argument{ "negative sample size " + std::to_string(result.sample_size) }; } set_from_yaml(result.max_dev, node, entry, "max deviation"); return result; } Config to_Config(YAML::Node const & yaml){ try{ HEJ::assert_all_options_known(yaml, get_supported_options()); } catch(HEJ::unknown_option const & ex){ throw HEJ::unknown_option{std::string{"Unknown option '"} + ex.what() + "'"}; } Config config; config.process = get_process(yaml, "process"); set_from_yaml(config.events, yaml, "events"); config.jets = get_jet_parameters(yaml, "jets"); config.beam = get_Beam(yaml, "beam"); for(size_t i = 0; i < config.process.incoming.size(); ++i){ auto const & in = config.process.incoming[i]; using namespace HEJ::pid; if( (in == p || in == p_bar) && in != config.beam.particles[i]){ throw std::invalid_argument{ "Particle type of beam " + std::to_string(i+1) + " incompatible" + " with type of incoming particle " + std::to_string(i+1) }; } } set_from_yaml(config.pdf_id, yaml, "pdf"); set_from_yaml(config.subleading_fraction, yaml, "subleading fraction"); if(config.subleading_fraction == 0) - config.subleading_channels = Subleading::none; + config.subleading_channels.reset(); else config.subleading_channels = get_subleading_channels(yaml["subleading channels"]); config.ew_parameters = get_ew_parameters(yaml); config.particle_decays = get_all_decays(yaml, "decays"); if(config.process.boson // check that Ws always decay && std::abs(*config.process.boson) == HEJ::ParticleID::Wp && config.process.boson_decay.empty() ){ auto const & decay = config.particle_decays.find(*config.process.boson); if(decay == config.particle_decays.end() || decay->second.empty()) throw std::invalid_argument{ "Decay for "+name(*config.process.boson)+" is required"}; } set_from_yaml_if_defined(config.analyses_parameters, yaml, "analyses"); if(yaml["analysis"]){ std::cerr << "WARNING: Configuration entry 'analysis' is deprecated. " " Use 'analyses' instead.\n"; YAML::Node ana; set_from_yaml(ana, yaml, "analysis"); if(!ana.IsNull()){ config.analyses_parameters.push_back(ana); } } config.scales = HEJ::to_ScaleConfig(yaml); set_from_yaml_if_defined(config.output, yaml, "event output"); config.rng = HEJ::to_RNGConfig(yaml, "random generator"); config.Higgs_coupling = HEJ::get_Higgs_coupling(yaml, "Higgs coupling"); if(yaml["unweight"]) config.unweight = get_unweight(yaml, "unweight"); return config; } } // namespace anonymous Config load_config(std::string const & config_file){ try{ return to_Config(YAML::LoadFile(config_file)); } catch(...){ std::cerr << "Error reading " << config_file << ":\n "; throw; } } } diff --git a/FixedOrderGen/t/W_2j_classify.cc b/FixedOrderGen/t/W_2j_classify.cc index 622e288..a9a8ddd 100644 --- a/FixedOrderGen/t/W_2j_classify.cc +++ b/FixedOrderGen/t/W_2j_classify.cc @@ -1,168 +1,168 @@ /** * \brief check that the PSP generates only "valid" W + 2 jets events * * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #ifdef NDEBUG #undef NDEBUG #endif #include #include #include #include #include "fastjet/JetDefinition.hh" #include "HEJ/EWConstants.hh" #include "HEJ/exceptions.hh" #include "HEJ/Mixmax.hh" #include "HEJ/Particle.hh" #include "HEJ/PDF.hh" #include "HEJ/PDG_codes.hh" #include "Decay.hh" #include "JetParameters.hh" #include "PhaseSpacePoint.hh" #include "Process.hh" #include "Status.hh" #include "Subleading.hh" namespace { using namespace HEJFOG; using namespace HEJ; void print_psp(PhaseSpacePoint const & psp){ std::cerr << "Process:\n" << psp.incoming()[0].type << " + "<< psp.incoming()[1].type << " -> "; for(auto const & out: psp.outgoing()){ std::cerr << out.type << " "; } std::cerr << "\n"; } void bail_out(PhaseSpacePoint const & psp, std::string msg){ print_psp(psp); throw std::logic_error{msg}; } bool is_up_type(Particle const & part){ return HEJ::is_anyquark(part) && !(std::abs(part.type)%2); } bool is_down_type(Particle const & part){ return HEJ::is_anyquark(part) && std::abs(part.type)%2; } bool check_W2j(PhaseSpacePoint const & psp, ParticleID const W_type){ bool found_quark = false; bool found_anti = false; std::vector out_partons; std::vector Wp; for(auto const & p: psp.outgoing()){ if(p.type == W_type) Wp.push_back(p); else if(is_parton(p)) out_partons.push_back(p); else bail_out(psp, "Found particle with is not " +std::to_string(int(W_type))+" or parton"); } if(Wp.size() != 1 || out_partons.size() != 2){ bail_out(psp, "Found wrong number of outgoing partons"); } for(std::size_t j=0; j<2; ++j){ auto const & in = psp.incoming()[j]; auto const & out = out_partons[j]; if(is_quark(in) || is_antiquark(in)) { found_quark = true; if(in.type != out.type) { // switch in quark type -> Wp couples to it if(found_anti){ // already found qq for coupling to W bail_out(psp, "Found second up/down pair"); } else if(std::abs(in.type)>4 || std::abs(out.type)>4){ bail_out(psp, "Found bottom/top pair"); } found_anti = true; if( is_up_type(in)) { // "up" in if(W_type > 0){ // -> only allowed u -> Wp + d if(in.type < 0 || is_up_type(out) || out.type < 0) bail_out(psp, "u -/> Wp + d"); } else { // -> only allowed ux -> Wm + dx if(in.type > 0 || is_up_type(out) || out.type > 0) bail_out(psp, "ux -/> Wm + dx"); } } else { // "down" in if(W_type > 0){ // -> only allowed dx -> Wp + ux if(in.type > 0 || is_down_type(out) || out.type > 0) bail_out(psp, "dx -/> Wp + ux"); } else { // -> only allowed d -> Wm + u if(in.type < 0 || is_down_type(out) || out.type < 0) bail_out(psp, "d -/> Wm + u"); } } } } } if(!found_quark) { bail_out(psp, "Found no initial quarks"); } else if(!found_anti){ bail_out(psp, "Found no up/down pair"); } return true; } } int main(){ constexpr std::size_t n_psp_base = 1337; const JetParameters jet_para{ fastjet::JetDefinition(fastjet::JetAlgorithm::antikt_algorithm, 0.4), 30, 5, 30}; PDF pdf(11000, pid::proton, pid::proton); constexpr double E_cms = 13000.; constexpr double subl_change = 0.5; - constexpr auto subl_channels = Subleading::all; + const Subleading subl_channels(~0l); const ParticlesDecayMap boson_decays{ {pid::Wp, {Decay{ {pid::e_bar, pid::nu_e}, 1.} }}, {pid::Wm, {Decay{ {pid::e, pid::nu_e_bar}, 1.} }} }; const EWConstants ew_constants{246.2196508, ParticleProperties{80.385, 2.085}, ParticleProperties{91.187, 2.495}, ParticleProperties{125, 0.004165} }; HEJ::Mixmax ran{}; // Wp2j Process proc {{pid::proton,pid::proton}, 2, pid::Wp, {}}; std::size_t n_psp = n_psp_base; for( std::size_t i = 0; i try again ++n_psp; } } std::cout << "Wp+2j: Took " << n_psp << " to generate " << n_psp_base << " successfully PSP (" << 1.*n_psp/n_psp_base << " trials/PSP)" << std::endl; // Wm2j proc = Process{{pid::proton,pid::proton}, 2, pid::Wm, {}}; n_psp = n_psp_base; for( std::size_t i = 0; i try again ++n_psp; } } std::cout << "Wm+2j: Took " << n_psp << " to generate " << n_psp_base << " successfully PSP (" << 1.*n_psp/n_psp_base << " trials/PSP)" << std::endl; std::cout << "All processes passed." << std::endl; return EXIT_SUCCESS; } diff --git a/FixedOrderGen/t/W_nj_classify.cc b/FixedOrderGen/t/W_nj_classify.cc index db1609e..2a9cc91 100644 --- a/FixedOrderGen/t/W_nj_classify.cc +++ b/FixedOrderGen/t/W_nj_classify.cc @@ -1,207 +1,208 @@ /** * \brief check that the PSP generates the all W+jet subleading processes * * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #ifdef NDEBUG #undef NDEBUG #endif #include #include #include #include #include #include #include #include #include "HEJ/Event.hh" #include "HEJ/event_types.hh" #include "HEJ/EWConstants.hh" #include "HEJ/exceptions.hh" #include "HEJ/Mixmax.hh" #include "HEJ/PDF.hh" #include "HEJ/PDG_codes.hh" #include "fastjet/JetDefinition.hh" #include "Decay.hh" #include "JetParameters.hh" #include "PhaseSpacePoint.hh" #include "Process.hh" #include "Status.hh" #include "Subleading.hh" namespace { using namespace HEJFOG; using namespace HEJ; void print_psp(PhaseSpacePoint const & psp){ std::cerr << "Process:\n" << psp.incoming()[0].type << " + "<< psp.incoming()[1].type << " -> "; for(auto const & out: psp.outgoing()){ std::cerr << out.type << " "; } std::cerr << "\n"; } void bail_out(PhaseSpacePoint const & psp, std::string msg){ print_psp(psp); throw std::logic_error{msg}; } } int main(){ constexpr std::size_t n_psp_base = 10375; const JetParameters jet_para{ fastjet::JetDefinition(fastjet::JetAlgorithm::antikt_algorithm, 0.4), 30, 5, 30}; PDF pdf(11000, pid::proton, pid::proton); constexpr double E_cms = 13000.; constexpr double subl_change = 0.8; const ParticlesDecayMap boson_decays{ {pid::Wp, {Decay{ {pid::e_bar, pid::nu_e}, 1.} }}, {pid::Wm, {Decay{ {pid::e, pid::nu_e_bar}, 1.} }} }; const EWConstants ew_constants{246.2196508, ParticleProperties{80.385, 2.085}, ParticleProperties{91.187, 2.495}, ParticleProperties{125, 0.004165} }; HEJ::Mixmax ran{}; - auto subl_channels = Subleading::all; + Subleading subl_channels(~0l); std::vector allowed_types{event_type::FKL, event_type::unob, event_type::unof, event_type::qqxexb, event_type::qqxexf}; std::cout << "Wp3j" << std::endl; // Wp3j Process proc {{pid::proton,pid::proton}, 3, pid::Wp, {}}; std::size_t n_psp = n_psp_base; #if !defined(__clang__) && defined(__GNUC__) && (__GNUC__ < 6) // gcc version < 6 explicitly needs hash function for enum // see https://gcc.gnu.org/bugzilla/show_bug.cgi?id=60970 std::unordered_map> type_counter; #else std::unordered_map type_counter; #endif for( std::size_t i = 0; i try again ++n_psp; } } std::cout << "Wp+3j: Took " << n_psp << " to generate " << n_psp_base << " successfully PSP (" << 1.*n_psp/n_psp_base << " trials/PSP)" << std::endl; std::cout << "States by classification:\n"; for(auto const & entry: type_counter){ const double fraction = static_cast(entry.second)/n_psp_base; const int percent = std::round(100*fraction); std::cout << std::left << std::setw(25) << (name(entry.first) + std::string(":")) << entry.second << " (" << percent << "%)\n"; } for(auto const & t: allowed_types){ if(type_counter[t] < 0.05 * n_psp_base){ std::cerr << "Less than 5% of the events are of type " << name(t) << std::endl; return EXIT_FAILURE; } } // Wm3j - only uno proc = Process{{pid::proton,pid::proton}, 3, pid::Wm, {}}; n_psp = n_psp_base; - subl_channels = Subleading::uno; + subl_channels.reset(); + subl_channels.set(subleading::uno); allowed_types = {event_type::FKL, event_type::unob, event_type::unof}; type_counter.clear(); for( std::size_t i = 0; i try again ++n_psp; } } std::cout << "Wm+3j (only uno): Took " << n_psp << " to generate " << n_psp_base << " successfully PSP (" << 1.*n_psp/n_psp_base << " trials/PSP)" << std::endl; std::cout << "States by classification:\n"; for(auto const & entry: type_counter){ const double fraction = static_cast(entry.second)/n_psp_base; const int percent = std::round(100*fraction); std::cout << std::left << std::setw(25) << (name(entry.first) + std::string(":")) << entry.second << " (" << percent << "%)\n"; } for(auto const & t: allowed_types){ if(type_counter[t] < 0.05 * n_psp_base){ std::cerr << "Less than 5% of the events are of type " << name(t) << std::endl; return EXIT_FAILURE; } } // Wm4j proc = Process{{pid::proton,pid::proton}, 4, pid::Wm, {}}; n_psp = n_psp_base; - subl_channels = Subleading::all; + subl_channels.set(); allowed_types = {event_type::FKL, event_type::unob, event_type::unof, event_type::qqxexb, event_type::qqxexf, event_type::qqxmid}; type_counter.clear(); for( std::size_t i = 0; i try again ++n_psp; } } std::cout << "Wm+4j: Took " << n_psp << " to generate " << n_psp_base << " successfully PSP (" << 1.*n_psp/n_psp_base << " trials/PSP)" << std::endl; std::cout << "States by classification:\n"; for(auto const & entry: type_counter){ const double fraction = static_cast(entry.second)/n_psp_base; const int percent = std::round(100*fraction); std::cout << std::left << std::setw(25) << (name(entry.first) + std::string(":")) << entry.second << " (" << percent << "%)\n"; } for(auto const & t: allowed_types){ if(type_counter[t] < 0.03 * n_psp_base){ std::cerr << "Less than 3% of the events are of type " << name(t) << std::endl; return EXIT_FAILURE; } } std::cout << "All processes passed." << std::endl; return EXIT_SUCCESS; }