diff --git a/include/HEJ/Constants.hh b/include/HEJ/Constants.hh index be79bae..0bcd2ac 100644 --- a/include/HEJ/Constants.hh +++ b/include/HEJ/Constants.hh @@ -1,39 +1,33 @@ /** \file * \brief Header file defining all global constants used for HEJ * * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019 * \copyright GPLv2 or later */ #pragma once namespace HEJ{ /// @name QCD parameters //@{ constexpr double N_C = 3.; //!< number of Colours constexpr double C_A = N_C; //!< \f$C_A\f$ constexpr double C_F = (N_C*N_C - 1.)/(2.*N_C); //!< \f$C_F\f$ constexpr double t_f = 0.5; //!< \f$t_f\f$ constexpr double n_f = 5.; //!< number light flavours constexpr double beta0 = 11./3.*C_A - 4./3.*t_f*n_f; //!< \f$\beta_0\f$ //@} -/// @name QFT parameters -//@{ - constexpr double MW = 80.419; //!< The W mass in GeV/c^2 - constexpr double GammaW = 2.0476; //!< the W width in GeV/c^2 - - //@} /// @name Generation Parameters //@{ //! @brief Default scale for virtual correction //! \f$\lambda\f$ cf. eq. (20) in \cite Andersen:2011hs constexpr double CLAMBDA = 0.2; constexpr double CMINPT = 0.2; //!< minimal \f$p_t\f$ of all partons //@} /// @name Conventional Parameters //@{ //! Value of first colour for colour dressing, according to LHE convention //! \cite Boos:2001cv constexpr int COLOUR_OFFSET = 501; //@} } diff --git a/include/HEJ/MatrixElement.hh b/include/HEJ/MatrixElement.hh index 7f9e372..e62ae7e 100644 --- a/include/HEJ/MatrixElement.hh +++ b/include/HEJ/MatrixElement.hh @@ -1,187 +1,187 @@ /** \file * \brief Contains the MatrixElement Class * * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019 * \copyright GPLv2 or later */ #pragma once #include <functional> #include <vector> #include "fastjet/PseudoJet.hh" -#include "HEJ/PDG_codes.hh" -#include "HEJ/Parameters.hh" #include "HEJ/config.hh" +#include "HEJ/Parameters.hh" +#include "HEJ/PDG_codes.hh" namespace CLHEP { class HepLorentzVector; } namespace HEJ{ class Event; class Particle; //! Class to calculate the squares of matrix elements class MatrixElement{ public: /** \brief MatrixElement Constructor * @param alpha_s Function taking the renormalisation scale * and returning the strong coupling constant * @param conf General matrix element settings */ MatrixElement( std::function<double (double)> alpha_s, MatrixElementConfig conf ); /** * \brief squares of regulated HEJ matrix elements * @param event The event for which to calculate matrix elements * @returns The squares of HEJ matrix elements including virtual corrections * * This function returns one value for the central parameter choice * and one additional value for each entry in \ref Event.variations(). * See eq. (22) in \cite Andersen:2011hs for the definition of the squared * matrix element. * * \internal Relation to standard HEJ Met2: MatrixElement = Met2*shat^2/(pdfta*pdftb) */ Weights operator()(Event const & event) const; //! Squares of HEJ tree-level matrix elements /** * @param event The event for which to calculate matrix elements * @returns The squares of HEJ matrix elements without virtual corrections * * cf. eq. (22) in \cite Andersen:2011hs */ Weights tree(Event const & event) const; /** * \brief Virtual corrections to matrix element squares * @param event The event for which to calculate matrix elements * @returns The virtual corrections to the squares of the matrix elements * * The all order virtual corrections to LL in the MRK limit is * given by replacing 1/t in the scattering amplitude according to the * lipatov ansatz. * * cf. second-to-last line of eq. (22) in \cite Andersen:2011hs * note that indices are off by one, i.e. out[0].p corresponds to p_1 */ Weights virtual_corrections(Event const & event) const; /** * \brief Scale-dependent part of tree-level matrix element squares * @param event The event for which to calculate matrix elements * @returns The scale-dependent part of the squares of the * tree-level matrix elements * * The tree-level matrix elements factorises into a renormalisation-scale * dependent part, given by the strong coupling to some power, and a * scale-independent remainder. This function only returns the former parts * for the central scale choice and all \ref Event.variations(). * * @see tree, tree_kin */ Weights tree_param(Event const & event) const; /** * \brief Kinematic part of tree-level matrix element squares * @param event The event for which to calculate matrix elements * @returns The kinematic part of the squares of the * tree-level matrix elements * * The tree-level matrix elements factorises into a renormalisation-scale * dependent part, given by the strong coupling to some power, and a * scale-independent remainder. This function only returns the latter part. * Since it does not depend on the parameter variations, only a single value * is returned. * * @see tree, tree_param */ double tree_kin(Event const & event) const; private: double tree_param( Event const & event, double mur ) const; double virtual_corrections_W( Event const & event, double mur, Particle const & WBoson ) const; double virtual_corrections( Event const & event, double mur ) const; //! \internal cf. last line of eq. (22) in \cite Andersen:2011hs double omega0( double alpha_s, double mur, fastjet::PseudoJet const & q_j ) const; double tree_kin_jets( Event const & ev ) const; double tree_kin_W( Event const & ev ) const; double tree_kin_Higgs( Event const & ev ) const; double tree_kin_Higgs_first( Event const & ev ) const; double tree_kin_Higgs_last( Event const & ev ) const; /** * \internal * \brief Higgs inbetween extremal partons. * * Note that in the case of unordered emission, the Higgs is *always* * treated as if in between the extremal (FKL) partons, even if its * rapidity is outside the extremal parton rapidities */ double tree_kin_Higgs_between( Event const & ev ) const; double tree_param_partons( double alpha_s, double mur, std::vector<Particle> const & partons ) const; std::vector<int> in_extremal_jet_indices( std::vector<fastjet::PseudoJet> const & partons ) const; std::vector<Particle> tag_extremal_jet_partons( Event const & ev ) const; double MH2_forwardH( CLHEP::HepLorentzVector const & p1out, CLHEP::HepLorentzVector const & p1in, pid::ParticleID type2, CLHEP::HepLorentzVector const & p2out, CLHEP::HepLorentzVector const & p2in, CLHEP::HepLorentzVector const & pH, double t1, double t2 ) const; std::function<double (double)> alpha_s_; MatrixElementConfig param_; }; } diff --git a/include/HEJ/Wjets.hh b/include/HEJ/Wjets.hh index 9ad9d78..fedf84a 100644 --- a/include/HEJ/Wjets.hh +++ b/include/HEJ/Wjets.hh @@ -1,409 +1,458 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019 * \copyright GPLv2 or later */ /** \file * \brief Functions computing the square of current contractions in W+Jets. * * This file contains all the W+Jet specific components to compute * the current contractions for valid HEJ processes, to form a full * W+Jets ME, currently one would have to use functions from the * jets.hh header also. We can calculate all subleading processes for * W+Jets. * * @TODO add a namespace */ #pragma once #include <vector> #include <CLHEP/Vector/LorentzVector.h> typedef CLHEP::HepLorentzVector HLV; +namespace HEJ{ + class ParticleProperties; +} + //! Square of qQ->qenuQ W+Jets Scattering Current /** * @param p1out Momentum of final state quark * @param plbar Momentum of final state anti-lepton * @param pl Momentum of final state lepton * @param p1in Momentum of initial state quark * @param p2out Momentum of final state quark * @param p2in Momentum of intial state quark + * @param wpro Mass and width of the W boson * @returns Square of the current contractions for qQ->qenuQ Scattering * * This returns the square of the current contractions in qQ->qenuQ scattering * with an emission of a W Boson. */ -double ME_W_qQ (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in); +double ME_W_qQ (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in, + HEJ::ParticleProperties const & wprop); //! Square of qbarQ->qbarenuQ W+Jets Scattering Current /** * @param p1out Momentum of final state anti-quark * @param plbar Momentum of final state anti-lepton * @param pl Momentum of final state lepton * @param p1in Momentum of initial state anti-quark * @param p2out Momentum of final state quark * @param p2in Momentum of intial state quark + * @param wpro Mass and width of the W boson * @returns Square of the current contractions for qbarQ->qbarenuQ Scattering * * This returns the square of the current contractions in qbarQ->qbarenuQ * scattering with an emission of a W Boson. */ -double ME_W_qbarQ (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in); +double ME_W_qbarQ (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in, + HEJ::ParticleProperties const & wprop); //! Square of qQbar->qenuQbar W+Jets Scattering Current /** * @param p1out Momentum of final state quark * @param plbar Momentum of final state anti-lepton * @param pl Momentum of final state lepton * @param p1in Momentum of initial state quark * @param p2out Momentum of final state anti-quark * @param p2in Momentum of intial state anti-quark + * @param wpro Mass and width of the W boson * @returns Square of the current contractions for qQbar->qenuQbar Scattering * * This returns the square of the current contractions in qQbar->qenuQbar * scattering with an emission of a W Boson. */ -double ME_W_qQbar (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in); +double ME_W_qQbar (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in, + HEJ::ParticleProperties const & wprop); //! Square of qbarQbar->qbarenuQbar W+Jets Scattering Current /** * @param p1out Momentum of final state anti-quark * @param plbar Momentum of final state anti-lepton * @param pl Momentum of final state lepton * @param p1in Momentum of initial state anti-quark * @param p2out Momentum of final state anti-quark * @param p2in Momentum of intial state anti-quark + * @param wpro Mass and width of the W boson * @returns Square of the current contractions for qbarQbar->qbarenuQbar Scattering * * This returns the square of the current contractions in qbarQbar->qbarenuQbar * scattering with an emission of a W Boson. */ -double ME_W_qbarQbar (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in); +double ME_W_qbarQbar (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in, + HEJ::ParticleProperties const & wprop); //! Square of qg->qenug W+Jets Scattering Current /** * @param p1out Momentum of final state quark * @param plbar Momentum of final state anti-lepton * @param pl Momentum of final state lepton * @param p1in Momentum of initial state quark * @param p2out Momentum of final state gluon * @param p2in Momentum of intial state gluon + * @param wpro Mass and width of the W boson * @returns Square of the current contractions for qg->qenug Scattering * * This returns the square of the current contractions in qg->qenug scattering * with an emission of a W Boson. */ -double ME_W_qg (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in); +double ME_W_qg (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in, + HEJ::ParticleProperties const & wprop); //! Square of qbarg->qbarenug W+Jets Scattering Current /** * @param p1out Momentum of final state anti-quark * @param plbar Momentum of final state anti-lepton * @param pl Momentum of final state lepton * @param p1in Momentum of initial state anti-quark * @param p2out Momentum of final state gluon * @param p2in Momentum of intial state gluon + * @param wpro Mass and width of the W boson * @returns Square of the current contractions for qbarg->qbarenug Scattering * * This returns the square of the current contractions in qbarg->qbarenug * scattering with an emission of a W Boson. */ -double ME_W_qbarg (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in); +double ME_W_qbarg (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in, + HEJ::ParticleProperties const & wprop); //! qQg Wjets Unordered backwards opposite leg to W /** * @param p1out Momentum of final state quark a * @param p1in Momentum of initial state quark a * @param p2out Momentum of final state quark b * @param p2in Momentum of intial state quark b * @param pg Momentum of final state unordered gluon * @param plbar Momentum of final state anti-lepton * @param pl Momentum of final state lepton + * @param wpro Mass and width of the W boson * @returns Square of the current contractions for qQ->qQg Scattering * * This returns the square of the current contractions in qQg->qQg scattering * with an emission of a W Boson. */ -double ME_W_unob_qQ (HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg, - HLV plbar, HLV pl); +double ME_W_unob_qQ (HLV p1out, HLV p1in, HLV p2out, HLV p2in,HLV pg, + HLV plbar, HLV pl, HEJ::ParticleProperties const & wprop); //! qbarQg Wjets Unordered backwards opposite leg to W /** * @param p1out Momentum of final state anti-quark a * @param p1in Momentum of initial state anti-quark a * @param p2out Momentum of final state quark b * @param p2in Momentum of intial state quark b * @param pg Momentum of final state unordered gluon * @param plbar Momentum of final state anti-lepton * @param pl Momentum of final state lepton + * @param wpro Mass and width of the W boson * @returns Square of the current contractions for qbarQ->qbarQg Scattering * * This returns the square of the current contractions in qbarQg->qbarQg * scattering with an emission of a W Boson. */ double ME_W_unob_qbarQ (HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg, - HLV plbar, HLV pl); + HLV plbar, HLV pl, + HEJ::ParticleProperties const & wprop); //! qQbarg Wjets Unordered backwards opposite leg to W /** * @param p1out Momentum of final state quark a * @param p1in Momentum of initial state quark a * @param p2out Momentum of final state anti-quark b * @param p2in Momentum of intial state anti-quark b * @param pg Momentum of final state unordered gluon * @param plbar Momentum of final state anti-lepton * @param pl Momentum of final state lepton + * @param wpro Mass and width of the W boson * @returns Square of the current contractions for qQbar->qQbarg Scattering * * This returns the square of the current contractions in qQbarg->qQbarg * scattering with an emission of a W Boson. */ double ME_W_unob_qQbar (HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg, - HLV plbar, HLV pl); + HLV plbar, HLV pl, + HEJ::ParticleProperties const & wprop); //! qbarQbarg Wjets Unordered backwards opposite leg to W /** * @param p1out Momentum of final state anti-quark a * @param p1in Momentum of initial state anti-quark a * @param p2out Momentum of final state anti-quark b * @param p2in Momentum of intial state anti-quark b * @param pg Momentum of final state unordered gluon * @param plbar Momentum of final state anti-lepton * @param pl Momentum of final state lepton + * @param wpro Mass and width of the W boson * @returns Square of the current contractions for qbarQbar->qbarQbarg Scattering * * This returns the square of the current contractions in qbarQbarg->qbarQbarg * scattering with an emission of a W Boson. */ double ME_W_unob_qbarQbar (HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg, - HLV plbar, HLV pl); + HLV plbar, HLV pl, + HEJ::ParticleProperties const & wprop); //! W+uno same leg /** * @param p1out Momentum of final state quark a * @param p1in Momentum of initial state quark a * @param p2out Momentum of final state quark b * @param p2in Momentum of intial state quark b * @param pg Momentum of final state unordered gluon * @param plbar Momentum of final state anti-lepton * @param pl Momentum of final state lepton + * @param wpro Mass and width of the W boson * @returns Square of the current contractions for qQ->qQg Scattering * * This returns the square of the current contractions in gqQ->gqQ scattering * with an emission of a W Boson. */ double ME_Wuno_qQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg, - HLV plbar, HLV pl); + HLV plbar, HLV pl, HEJ::ParticleProperties const & wprop); //! W+uno same leg. quark anti-quark /** * @param p1out Momentum of final state quark a * @param p1in Momentum of initial state quark a * @param p2out Momentum of final state anti-quark b * @param p2in Momentum of intial state anti-quark b * @param pg Momentum of final state unordered gluon * @param plbar Momentum of final state anti-lepton * @param pl Momentum of final state lepton + * @param wpro Mass and width of the W boson * @returns Square of the current contractions for qQbar->gqQbar Scattering * * This returns the square of the current contractions in gqQbar->gqQbar * scattering with an emission of a W Boson. (Unordered Same Leg) */ double ME_Wuno_qQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg, - HLV plbar, HLV pl); + HLV plbar, HLV pl, HEJ::ParticleProperties const & wprop); //! W+uno same leg. quark gluon /** * @param p1out Momentum of final state quark a * @param p1in Momentum of initial state quark a * @param p2out Momentum of final state gluon b * @param p2in Momentum of intial state gluon b * @param pg Momentum of final state unordered gluon * @param plbar Momentum of final state anti-lepton * @param pl Momentum of final state lepton + * @param wpro Mass and width of the W boson * @returns Square of the current contractions for qg->gqg Scattering * * This returns the square of the current contractions in qg->gqg scattering * with an emission of a W Boson. */ double ME_Wuno_qg(HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg, - HLV plbar, HLV pl); + HLV plbar, HLV pl, + HEJ::ParticleProperties const & wprop); //! W+uno same leg. anti-quark quark /** * @param p1out Momentum of final state anti-quark a * @param p1in Momentum of initial state anti-quark a * @param p2out Momentum of final state quark b * @param p2in Momentum of intial state quark b * @param pg Momentum of final state unordered gluon * @param plbar Momentum of final state anti-lepton * @param pl Momentum of final state lepton + * @param wpro Mass and width of the W boson * @returns Square of the current contractions for qbarQ->gqbarQ Scattering * * This returns the square of the current contractions in qbarQ->gqbarQ * scattering with an emission of a W Boson. */ double ME_Wuno_qbarQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg, - HLV plbar, HLV pl); + HLV plbar, HLV pl, HEJ::ParticleProperties const & wprop); //! W+uno same leg. anti-quark anti-quark /** * @param p1out Momentum of final state anti-quark a * @param p1in Momentum of initial state anti-quark a * @param p2out Momentum of final state anti-quark b * @param p2in Momentum of intial state anti-quark b * @param pg Momentum of final state unordered gluon * @param plbar Momentum of final state anti-lepton * @param pl Momentum of final state lepton + * @param wpro Mass and width of the W boson * @returns Square of the current contractions for qbarQbar->gqbarQbar Scattering * * This returns the square of the current contractions in gqbarQbar->qbarQbar * scattering with an emission of a W Boson. */ -double ME_Wuno_qbarQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg, - HLV plbar, HLV pl); +double ME_Wuno_qbarQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in,HLV pg, + HLV plbar, HLV pl, + HEJ::ParticleProperties const & wprop); //! W+uno same leg. anti-quark gluon /** * @param p1out Momentum of final state anti-quark a * @param p1in Momentum of initial state anti-quark a * @param p2out Momentum of final state gluon b * @param p2in Momentum of intial state gluon b * @param pg Momentum of final state unordered gluon * @param plbar Momentum of final state anti-lepton * @param pl Momentum of final state lepton + * @param wpro Mass and width of the W boson * @returns Square of the current contractions for ->gqbarg Scattering * * This returns the square of the current contractions in qbarg->gqbarg * scattering with an emission of a W Boson. */ double ME_Wuno_qbarg(HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg, - HLV plbar, HLV pl); + HLV plbar, HLV pl, HEJ::ParticleProperties const & wprop); //! W+Extremal qqx. qxqQ /** * @param pgin Momentum of initial state gluon * @param pqout Momentum of final state quark a * @param plbar Momentum of final state anti-lepton * @param pl Momentum of final state lepton * @param pqbarout Momentum of final state anti-quark a * @param p2out Momentum of initial state anti-quark b * @param p2in Momentum of final state gluon b + * @param wpro Mass and width of the W boson * @returns Square of the current contractions for ->qbarqQ Scattering * * Calculates the square of the current contractions with extremal qqbar pair * production. This is calculated through the use of crossing symmetry. */ -double ME_WExqqx_qbarqQ(HLV pgin, HLV pqout,HLV plbar,HLV pl, HLV pqbarout, HLV p2out, HLV p2in); +double ME_WExqqx_qbarqQ(HLV pgin, HLV pqout,HLV plbar,HLV pl, HLV pqbarout, + HLV p2out, HLV p2in, + HEJ::ParticleProperties const & wprop); //! W+Extremal qqx. qqxQ /** * @param pgin Momentum of initial state gluon * @param pqout Momentum of final state quark a * @param plbar Momentum of final state anti-lepton * @param pl Momentum of final state lepton * @param pqbarout Momentum of final state anti-quark a * @param p2out Momentum of initial state anti-quark b * @param p2in Momentum of final state gluon b + * @param wpro Mass and width of the W boson * @returns Square of the current contractions for ->qqbarQ Scattering * * Calculates the square of the current contractions with extremal qqbar pair * production. This is calculated through the use of crossing symmetry. */ -double ME_WExqqx_qqbarQ(HLV pgin, HLV pqout,HLV plbar,HLV pl, HLV pqbarout, HLV p2out, HLV p2in); +double ME_WExqqx_qqbarQ(HLV pgin, HLV pqout,HLV plbar,HLV pl, HLV pqbarout, + HLV p2out, HLV p2in, + HEJ::ParticleProperties const & wprop); //! W+Extremal qqx. gg->qxqg /** * @param pgin Momentum of initial state gluon * @param pqout Momentum of final state quark a * @param plbar Momentum of final state anti-lepton * @param pl Momentum of final state lepton * @param pqbarout Momentum of final state anti-quark a * @param p2out Momentum of initial state gluon b * @param p2in Momentum of final state gluon b + * @param wpro Mass and width of the W boson * @returns Square of the current contractions for gg->qbarqg Scattering * * Calculates the square of the current contractions with extremal qqbar pair * production. This is calculated through the use of crossing symmetry. */ -double ME_WExqqx_qbarqg(HLV pgin, HLV pqout,HLV plbar,HLV pl, HLV pqbarout, HLV p2out, HLV p2in); +double ME_WExqqx_qbarqg(HLV pgin, HLV pqout,HLV plbar,HLV pl, HLV pqbarout, + HLV p2out, HLV p2in, + HEJ::ParticleProperties const & wprop); //! W+Extremal qqx. gg->qqxg /** * @param pgin Momentum of initial state gluon * @param pqout Momentum of final state quark a * @param plbar Momentum of final state anti-lepton * @param pl Momentum of final state lepton * @param pqbarout Momentum of final state anti-quark a * @param p2out Momentum of initial state gluon a * @param p2in Momentum of final state gluon b + * @param wpro Mass and width of the W boson * @returns Square of the current contractions for gg->qqbarg Scattering * * Calculates the square of the current contractions with extremal qqbar pair * production. This is calculated through the use of crossing symmetry. */ -double ME_WExqqx_qqbarg(HLV pgin, HLV pqbarout,HLV plbar,HLV pl, HLV pqout, HLV p2out, HLV p2in); +double ME_WExqqx_qqbarg(HLV pgin, HLV pqbarout,HLV plbar,HLV pl, HLV pqout, + HLV p2out, HLV p2in, + HEJ::ParticleProperties const & wprop); //! W+Extremal qqx. gg->qqxg. qqx on forwards leg, W emission backwards leg. /** * @param pa Momentum of initial state (anti-)quark * @param pb Momentum of initial state gluon * @param p1 Momentum of final state (anti-)quark (after W emission) * @param p2 Momentum of final state anti-quark * @param p3 Momentum of final state quark * @param plbar Momentum of final state anti-lepton * @param pl Momentum of final state lepton * @param aqlinepa Is opposite extremal leg to qqx a quark or antiquark line + * @param wpro Mass and width of the W boson * @returns Square of the current contractions for gq->qqbarqW Scattering * * Calculates the square of the current contractions with extremal qqbar pair * production. This is calculated via current contraction of existing currents. * Assumes qqx split from forwards leg, W emission from backwards leg. * Switch input (pa<->pb, p1<->pn) if calculating forwards qqx. */ -double ME_W_Exqqx_QQq(HLV pa, HLV pb, HLV p1, HLV p2, HLV p3,HLV plbar,HLV pl, bool aqlinepa); +double ME_W_Exqqx_QQq(HLV pa, HLV pb, HLV p1, HLV p2, HLV p3,HLV plbar, HLV pl, + bool aqlinepa, HEJ::ParticleProperties const & wprop); //! W+Jets qqxCentral. qqx W emission. /** * @param pa Momentum of initial state particle a * @param pb Momentum of initial state particle b * @param pl Momentum of final state lepton * @param plbar Momentum of final state anti-lepton * @param partons Vector of outgoing parton momenta * @param aqlinepa True= pa is anti-quark * @param aqlinepb True= pb is anti-quark * @param qqxmarker Ordering of the qqbar pair produced (qqx vs qxq) * @param nabove Number of lipatov vertices "above" qqbar pair * @param nbelow Number of lipatov vertices "below" qqbar pair + * @param wpro Mass and width of the W boson * @returns Square of the current contractions for qq>qQQbarWq Scattering * * Calculates the square of the current contractions with extremal qqbar pair * production. This is calculated through the use of crossing symmetry. */ double ME_WCenqqx_qq(HLV pa, HLV pb,HLV pl,HLV plbar, std::vector<HLV> partons, - bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove); + bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove, + HEJ::ParticleProperties const & wprop); //! W+Jets qqxCentral. W emission from backwards leg. /** * @param ka Momentum of initial state particle a * @param kb Momentum of initial state particle b * @param pl Momentum of final state lepton * @param plbar Momentum of final state anti-lepton * @param partons outgoing parton momenta * @param aqlinepa True= pa is anti-quark * @param aqlinepb True= pb is anti-quark * @param qqxmarker Ordering of the qqbar pair produced (qqx vs qxq) * @param nabove Number of lipatov vertices "above" qqbar pair * @param nbelow Number of lipatov vertices "below" qqbar pair * @param forwards Swap to emission off front leg TODO:remove so args can be const + * @param wpro Mass and width of the W boson * @returns Square of the current contractions for qq>qQQbarWq Scattering * * Calculates the square of the current contractions with extremal qqbar pair * production. This is calculated through the use of crossing symmetry. */ double ME_W_Cenqqx_qq(HLV ka, HLV kb,HLV pl,HLV plbar, std::vector<HLV> partons, bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove, - int nbelow, bool forwards); + int nbelow, bool forwards, + HEJ::ParticleProperties const & wprop); diff --git a/src/MatrixElement.cc b/src/MatrixElement.cc index addb071..dad1f93 100644 --- a/src/MatrixElement.cc +++ b/src/MatrixElement.cc @@ -1,1506 +1,1512 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019 * \copyright GPLv2 or later */ #include "HEJ/MatrixElement.hh" #include <algorithm> #include <assert.h> #include <limits> #include <math.h> #include <stddef.h> #include <unordered_map> #include <utility> #include "CLHEP/Vector/LorentzVector.h" #include "HEJ/Constants.hh" #include "HEJ/Wjets.hh" #include "HEJ/Hjets.hh" #include "HEJ/jets.hh" #include "HEJ/PDG_codes.hh" #include "HEJ/event_types.hh" #include "HEJ/Event.hh" #include "HEJ/exceptions.hh" #include "HEJ/Particle.hh" #include "HEJ/utility.hh" namespace HEJ{ double MatrixElement::omega0( double alpha_s, double mur, fastjet::PseudoJet const & q_j ) const { const double lambda = param_.regulator_lambda; const double result = - alpha_s*N_C/M_PI*log(q_j.perp2()/(lambda*lambda)); if(! param_.log_correction) return result; // use alpha_s(sqrt(q_j*lambda)), evolved to mur return ( 1. + alpha_s/(4.*M_PI)*beta0*log(mur*mur/(q_j.perp()*lambda)) )*result; } Weights MatrixElement::operator()(Event const & event) const { return tree(event)*virtual_corrections(event); } Weights MatrixElement::tree(Event const & event) const { return tree_param(event)*tree_kin(event); } Weights MatrixElement::tree_param(Event const & event) const { if(! is_resummable(event.type())) { return Weights{0., std::vector<double>(event.variations().size(), 0.)}; } Weights result; // only compute once for each renormalisation scale std::unordered_map<double, double> known; result.central = tree_param(event, event.central().mur); known.emplace(event.central().mur, result.central); for(auto const & var: event.variations()) { const auto ME_it = known.find(var.mur); if(ME_it == end(known)) { const double wt = tree_param(event, var.mur); result.variations.emplace_back(wt); known.emplace(var.mur, wt); } else { result.variations.emplace_back(ME_it->second); } } return result; } Weights MatrixElement::virtual_corrections(Event const & event) const { if(! is_resummable(event.type())) { return Weights{0., std::vector<double>(event.variations().size(), 0.)}; } Weights result; // only compute once for each renormalisation scale std::unordered_map<double, double> known; result.central = virtual_corrections(event, event.central().mur); known.emplace(event.central().mur, result.central); for(auto const & var: event.variations()) { const auto ME_it = known.find(var.mur); if(ME_it == end(known)) { const double wt = virtual_corrections(event, var.mur); result.variations.emplace_back(wt); known.emplace(var.mur, wt); } else { result.variations.emplace_back(ME_it->second); } } return result; } double MatrixElement::virtual_corrections_W( Event const & event, double mur, Particle const & WBoson ) const{ auto const & in = event.incoming(); const auto partons = filter_partons(event.outgoing()); fastjet::PseudoJet const & pa = in.front().p; #ifndef NDEBUG fastjet::PseudoJet const & pb = in.back().p; double const norm = (in.front().p + in.back().p).E(); #endif assert(std::is_sorted(partons.begin(), partons.end(), rapidity_less{})); assert(partons.size() >= 2); assert(pa.pz() < pb.pz()); fastjet::PseudoJet q = pa - partons[0].p; size_t first_idx = 0; size_t last_idx = partons.size() - 1; bool wc = true; bool wqq = false; // With extremal qqx or unordered gluon outside the extremal // partons then it is not part of the FKL ladder and does not // contribute to the virtual corrections. W emitted from the // most backward leg must be taken into account in t-channel if (event.type() == event_type::FKL) { if (in[0].type != partons[0].type ){ q -= WBoson.p; wc = false; } } else if (event.type() == event_type::unob) { q -= partons[1].p; ++first_idx; if (in[0].type != partons[1].type ){ q -= WBoson.p; wc = false; } } else if (event.type() == event_type::qqxexb) { q -= partons[1].p; ++first_idx; if (abs(partons[0].type) != abs(partons[1].type)){ q -= WBoson.p; wc = false; } } if(event.type() == event_type::unof || event.type() == event_type::qqxexf){ --last_idx; } size_t first_idx_qqx = last_idx; size_t last_idx_qqx = last_idx; //if qqxMid event, virtual correction do not occur between //qqx pair. if(event.type() == event_type::qqxmid){ const auto backquark = std::find_if( begin(partons) + 1, end(partons) - 1 , [](Particle const & s){ return (s.type != pid::gluon); } ); if(backquark == end(partons) || (backquark+1)->type==pid::gluon) return 0; if(abs(backquark->type) != abs((backquark+1)->type)) { wqq=true; wc=false; } last_idx = std::distance(begin(partons), backquark); first_idx_qqx = last_idx+1; } double exponent = 0; const double alpha_s = alpha_s_(mur); for(size_t j = first_idx; j < last_idx; ++j){ exponent += omega0(alpha_s, mur, q)*( partons[j+1].rapidity() - partons[j].rapidity() ); q -=partons[j+1].p; } // End Loop one if (last_idx != first_idx_qqx) q -= partons[last_idx+1].p; if (wqq) q -= WBoson.p; for(size_t j = first_idx_qqx; j < last_idx_qqx; ++j){ exponent += omega0(alpha_s, mur, q)*( partons[j+1].rapidity() - partons[j].rapidity() ); q -= partons[j+1].p; } if (wc) q -= WBoson.p; assert( nearby(q, -1*pb, norm) || is_AWZH_boson(partons.back().type) || event.type() == event_type::unof || event.type() == event_type::qqxexf ); return exp(exponent); } double MatrixElement::virtual_corrections( Event const & event, double mur ) const{ auto const & in = event.incoming(); auto const & out = event.outgoing(); fastjet::PseudoJet const & pa = in.front().p; #ifndef NDEBUG fastjet::PseudoJet const & pb = in.back().p; double const norm = (in.front().p + in.back().p).E(); #endif const auto AWZH_boson = std::find_if( begin(out), end(out), [](Particle const & p){ return is_AWZH_boson(p); } ); if(AWZH_boson != end(out) && abs(AWZH_boson->type) == pid::Wp){ return virtual_corrections_W(event, mur, *AWZH_boson); } assert(std::is_sorted(out.begin(), out.end(), rapidity_less{})); assert(out.size() >= 2); assert(pa.pz() < pb.pz()); fastjet::PseudoJet q = pa - out[0].p; size_t first_idx = 0; size_t last_idx = out.size() - 1; // if there is a Higgs boson, extremal qqx or unordered gluon // outside the extremal partons then it is not part of the FKL // ladder and does not contribute to the virtual corrections if((out.front().type == pid::Higgs) || event.type() == event_type::unob || event.type() == event_type::qqxexb){ q -= out[1].p; ++first_idx; } if((out.back().type == pid::Higgs) || event.type() == event_type::unof || event.type() == event_type::qqxexf){ --last_idx; } size_t first_idx_qqx = last_idx; size_t last_idx_qqx = last_idx; //if qqxMid event, virtual correction do not occur between //qqx pair. if(event.type() == event_type::qqxmid){ const auto backquark = std::find_if( begin(out) + 1, end(out) - 1 , [](Particle const & s){ return (s.type != pid::gluon && is_parton(s.type)); } ); if(backquark == end(out) || (backquark+1)->type==pid::gluon) return 0; last_idx = std::distance(begin(out), backquark); first_idx_qqx = last_idx+1; } double exponent = 0; const double alpha_s = alpha_s_(mur); for(size_t j = first_idx; j < last_idx; ++j){ exponent += omega0(alpha_s, mur, q)*( out[j+1].rapidity() - out[j].rapidity() ); q -= out[j+1].p; } if (last_idx != first_idx_qqx) q -= out[last_idx+1].p; for(size_t j = first_idx_qqx; j < last_idx_qqx; ++j){ exponent += omega0(alpha_s, mur, q)*( out[j+1].rapidity() - out[j].rapidity() ); q -= out[j+1].p; } assert( nearby(q, -1*pb, norm) || out.back().type == pid::Higgs || event.type() == event_type::unof || event.type() == event_type::qqxexf ); return exp(exponent); } -} // namespace HEJ namespace { //! Lipatov vertex for partons emitted into extremal jets double C2Lipatov( CLHEP::HepLorentzVector const & qav, CLHEP::HepLorentzVector const & qbv, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & p2 ){ CLHEP::HepLorentzVector temptrans=-(qav+qbv); CLHEP::HepLorentzVector p5=qav-qbv; CLHEP::HepLorentzVector CL=temptrans + p1*(qav.m2()/p5.dot(p1) + 2.*p5.dot(p2)/p1.dot(p2)) - p2*(qbv.m2()/p5.dot(p2) + 2.*p5.dot(p1)/p1.dot(p2)); return -CL.dot(CL); } //! Lipatov vertex with soft subtraction for partons emitted into extremal jets double C2Lipatovots( CLHEP::HepLorentzVector const & qav, CLHEP::HepLorentzVector const & qbv, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & p2, double lambda ) { double kperp=(qav-qbv).perp(); if (kperp>lambda) return C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2()); double Cls=(C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2())); return Cls-4./(kperp*kperp); } //! Lipatov vertex double C2Lipatov( // B CLHEP::HepLorentzVector const & qav, CLHEP::HepLorentzVector const & qbv, CLHEP::HepLorentzVector const & pim, CLHEP::HepLorentzVector const & pip, CLHEP::HepLorentzVector const & pom, CLHEP::HepLorentzVector const & pop ){ CLHEP::HepLorentzVector temptrans=-(qav+qbv); CLHEP::HepLorentzVector p5=qav-qbv; CLHEP::HepLorentzVector CL=temptrans + qav.m2()*(1./p5.dot(pip)*pip + 1./p5.dot(pop)*pop)/2. - qbv.m2()*(1./p5.dot(pim)*pim + 1./p5.dot(pom)*pom)/2. + ( pip*(p5.dot(pim)/pip.dot(pim) + p5.dot(pom)/pip.dot(pom)) + pop*(p5.dot(pim)/pop.dot(pim) + p5.dot(pom)/pop.dot(pom)) - pim*(p5.dot(pip)/pip.dot(pim) + p5.dot(pop)/pop.dot(pim)) - pom*(p5.dot(pip)/pip.dot(pom) + p5.dot(pop)/pop.dot(pom)) )/2.; return -CL.dot(CL); } //! Lipatov vertex with soft subtraction double C2Lipatovots( CLHEP::HepLorentzVector const & qav, CLHEP::HepLorentzVector const & qbv, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & p2, double lambda ) { double kperp=(qav-qbv).perp(); if (kperp>lambda) return C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2()); double Cls=(C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2())); double temp=Cls-4./(kperp*kperp); return temp; } /** Matrix element squared for tree-level current-current scattering * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pg Unordered gluon momentum * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @returns ME Squared for Tree-Level Current-Current Scattering * * @note The unof contribution can be calculated by reversing the argument ordering. */ double ME_uno_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pg, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa ){ assert(aptype!=21); // aptype cannot be gluon if (bptype==21) { if (aptype > 0) return ME_unob_qg(pg,p1,pa,pn,pb); else return ME_unob_qbarg(pg,p1,pa,pn,pb); } else if (bptype<0) { // ----- || ----- if (aptype > 0) return ME_unob_qQbar(pg,p1,pa,pn,pb); else return ME_unob_qbarQbar(pg,p1,pa,pn,pb); } else { //bptype == quark if (aptype > 0) return ME_unob_qQ(pg,p1,pa,pn,pb); else return ME_unob_qbarQ(pg,p1,pa,pn,pb); } } /** Matrix element squared for tree-level current-current scattering * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @returns ME Squared for Tree-Level Current-Current Scattering */ double ME_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa ){ if (aptype==21&&bptype==21) { return ME_gg(pn,pb,p1,pa); } else if (aptype==21&&bptype!=21) { if (bptype > 0) return ME_qg(pn,pb,p1,pa); else return ME_qbarg(pn,pb,p1,pa); } else if (bptype==21&&aptype!=21) { // ----- || ----- if (aptype > 0) return ME_qg(p1,pa,pn,pb); else return ME_qbarg(p1,pa,pn,pb); } else { // they are both quark if (bptype>0) { if (aptype>0) return ME_qQ(pn,pb,p1,pa); else return ME_qQbar(pn,pb,p1,pa); } else { if (aptype>0) return ME_qQbar(p1,pa,pn,pb); else return ME_qbarQbar(pn,pb,p1,pa); } } throw std::logic_error("unknown particle types"); } /** Matrix element squared for tree-level current-current scattering With W+Jets * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param wc Boolean. True->W Emitted from b. Else; emitted from leg a * @returns ME Squared for Tree-Level Current-Current Scattering */ double ME_W_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, - bool const wc + bool const wc, ParticleProperties const & Wprop ){ // We know it cannot be gg incoming. assert(!(aptype==21 && bptype==21)); if (aptype==21&&bptype!=21) { if (bptype > 0) - return ME_W_qg(pn,plbar,pl,pb,p1,pa); + return ME_W_qg(pn,plbar,pl,pb,p1,pa,Wprop); else - return ME_W_qbarg(pn,plbar,pl,pb,p1,pa); + return ME_W_qbarg(pn,plbar,pl,pb,p1,pa,Wprop); } else if (bptype==21&&aptype!=21) { // ----- || ----- if (aptype > 0) - return ME_W_qg(p1,plbar,pl,pa,pn,pb); + return ME_W_qg(p1,plbar,pl,pa,pn,pb,Wprop); else - return ME_W_qbarg(p1,plbar,pl,pa,pn,pb); + return ME_W_qbarg(p1,plbar,pl,pa,pn,pb,Wprop); } else { // they are both quark if (wc==true){ // emission off b, (first argument pbout) if (bptype>0) { if (aptype>0) - return ME_W_qQ(pn,plbar,pl,pb,p1,pa); + return ME_W_qQ(pn,plbar,pl,pb,p1,pa,Wprop); else - return ME_W_qQbar(pn,plbar,pl,pb,p1,pa); + return ME_W_qQbar(pn,plbar,pl,pb,p1,pa,Wprop); } else { if (aptype>0) - return ME_W_qbarQ(pn,plbar,pl,pb,p1,pa); + return ME_W_qbarQ(pn,plbar,pl,pb,p1,pa,Wprop); else - return ME_W_qbarQbar(pn,plbar,pl,pb,p1,pa); + return ME_W_qbarQbar(pn,plbar,pl,pb,p1,pa,Wprop); } } else{ // emission off a, (first argument paout) if (aptype > 0) { if (bptype > 0) - return ME_W_qQ(p1,plbar,pl,pa,pn,pb); + return ME_W_qQ(p1,plbar,pl,pa,pn,pb,Wprop); else - return ME_W_qQbar(p1,plbar,pl,pa,pn,pb); + return ME_W_qQbar(p1,plbar,pl,pa,pn,pb,Wprop); } else { // a is anti-quark if (bptype > 0) - return ME_W_qbarQ(p1,plbar,pl,pa,pn,pb); + return ME_W_qbarQ(p1,plbar,pl,pa,pn,pb,Wprop); else - return ME_W_qbarQbar(p1,plbar,pl,pa,pn,pb); + return ME_W_qbarQbar(p1,plbar,pl,pa,pn,pb,Wprop); } } } throw std::logic_error("unknown particle types"); } /** Matrix element squared for backwards uno tree-level current-current * scattering With W+Jets * * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param pg Unordered gluon momentum * @param wc Boolean. True->W Emitted from b. Else; emitted from leg a * @returns ME Squared for unob Tree-Level Current-Current Scattering * * @note The unof contribution can be calculated by reversing the argument ordering. */ double ME_W_uno_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pg, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, - bool const wc + bool const wc, ParticleProperties const & Wprop ){ // we know they are not both gluons if (bptype == 21 && aptype != 21) { // b gluon => W emission off a if (aptype > 0) - return ME_Wuno_qg(p1,pa,pn,pb,pg,plbar,pl); + return ME_Wuno_qg(p1,pa,pn,pb,pg,plbar,pl,Wprop); else - return ME_Wuno_qbarg(p1,pa,pn,pb,pg,plbar,pl); + return ME_Wuno_qbarg(p1,pa,pn,pb,pg,plbar,pl,Wprop); } else { // they are both quark if (wc) {// emission off b, i.e. b is first current if (bptype>0){ if (aptype>0) - return ME_W_unob_qQ(p1,pa,pn,pb,pg,plbar,pl); + return ME_W_unob_qQ(p1,pa,pn,pb,pg,plbar,pl,Wprop); else - return ME_W_unob_qQbar(p1,pa,pn,pb,pg,plbar,pl); + return ME_W_unob_qQbar(p1,pa,pn,pb,pg,plbar,pl,Wprop); } else{ if (aptype>0) - return ME_W_unob_qbarQ(p1,pa,pn,pb,pg,plbar,pl); + return ME_W_unob_qbarQ(p1,pa,pn,pb,pg,plbar,pl,Wprop); else - return ME_W_unob_qbarQbar(p1,pa,pn,pb,pg,plbar,pl); + return ME_W_unob_qbarQbar(p1,pa,pn,pb,pg,plbar,pl,Wprop); } } else {// wc == false, emission off a, i.e. a is first current if (aptype > 0) { if (bptype > 0) //qq - return ME_Wuno_qQ(p1,pa,pn,pb,pg,plbar,pl); + return ME_Wuno_qQ(p1,pa,pn,pb,pg,plbar,pl,Wprop); else //qqbar - return ME_Wuno_qQbar(p1,pa,pn,pb,pg,plbar,pl); + return ME_Wuno_qQbar(p1,pa,pn,pb,pg,plbar,pl,Wprop); } else { // a is anti-quark if (bptype > 0) //qbarq - return ME_Wuno_qbarQ(p1,pa,pn,pb,pg,plbar,pl); + return ME_Wuno_qbarQ(p1,pa,pn,pb,pg,plbar,pl,Wprop); else //qbarqbar - return ME_Wuno_qbarQbar(p1,pa,pn,pb,pg,plbar,pl); + return ME_Wuno_qbarQbar(p1,pa,pn,pb,pg,plbar,pl,Wprop); } } } throw std::logic_error("unknown particle types"); } /** \brief Matrix element squared for backward qqx tree-level current-current * scattering With W+Jets * * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pa Initial state a Momentum * @param pb Initial state b Momentum * @param pq Final state q Momentum * @param pqbar Final state qbar Momentum * @param pn Final state n Momentum * @param plbar Final state anti-lepton momentum * @param pl Final state lepton momentum * @param wc Boolean. True->W Emitted from b. Else; emitted from leg a * @returns ME Squared for qqxb Tree-Level Current-Current Scattering * * @note calculate forwards qqx contribution by reversing argument ordering. */ double ME_W_qqx_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & pq, CLHEP::HepLorentzVector const & pqbar, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, - bool const swap_q_qx, bool const wc + bool const swap_q_qx, bool const wc, + ParticleProperties const & Wprop ){ // CAM factors for the qqx amps, and qqbar ordering (default, qbar extremal) // const bool swap_q_qx= pqbar.rapidity() > pq.rapidity(); const double CFbackward = K_g( (swap_q_qx)?pq:pqbar ,pa)/HEJ::C_F; // With qqbar we could have 2 incoming gluons and W Emission if (aptype==21&&bptype==21) {//a gluon, b gluon gg->qqbarWg // This will be a wqqx emission as there is no other possible W Emission Site. if (swap_q_qx) - return ME_WExqqx_qqbarg(pa, pqbar, plbar, pl, pq, pn, pb)*CFbackward; + return ME_WExqqx_qqbarg(pa, pqbar, plbar, pl, pq, pn, pb, Wprop)*CFbackward; else - return ME_WExqqx_qbarqg(pa, pq, plbar, pl, pqbar, pn, pb)*CFbackward; + return ME_WExqqx_qbarqg(pa, pq, plbar, pl, pqbar, pn, pb, Wprop)*CFbackward; } else if (aptype==21&&bptype!=21 ) {//a gluon => W emission off b leg or qqx if (!wc){ // W Emitted from backwards qqx if (swap_q_qx) - return ME_WExqqx_qqbarQ(pa, pqbar, plbar, pl, pq, pn, pb)*CFbackward; + return ME_WExqqx_qqbarQ(pa, pqbar, plbar, pl, pq, pn, pb, Wprop)*CFbackward; else - return ME_WExqqx_qbarqQ(pa, pq, plbar, pl, pqbar, pn, pb)*CFbackward; + return ME_WExqqx_qbarqQ(pa, pq, plbar, pl, pqbar, pn, pb, Wprop)*CFbackward; } else { // W Must be emitted from forwards leg. if (swap_q_qx) - return ME_W_Exqqx_QQq(pb, pa, pn, pqbar, pq, plbar, pl, bptype<0)*CFbackward; + return ME_W_Exqqx_QQq(pb, pa, pn, pqbar, pq, plbar, pl, bptype<0, Wprop)*CFbackward; else - return ME_W_Exqqx_QQq(pb, pa, pn, pq, pqbar, plbar, pl, bptype<0)*CFbackward; + return ME_W_Exqqx_QQq(pb, pa, pn, pq, pqbar, plbar, pl, bptype<0, Wprop)*CFbackward; } } throw std::logic_error("Incompatible incoming particle types with qqxb"); } /* \brief Matrix element squared for central qqx tree-level current-current * scattering With W+Jets * * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param nabove Number of gluons emitted before central qqxpair * @param nbelow Number of gluons emitted after central qqxpair * @param pa Initial state a Momentum * @param pb Initial state b Momentum\ * @param pq Final state qbar Momentum * @param pqbar Final state q Momentum * @param partons Vector of all outgoing partons * @param plbar Final state anti-lepton momentum * @param pl Final state lepton momentum * @param wqq Boolean. True siginfies W boson is emitted from Central qqx * @param wc Boolean. wc=true signifies w boson emitted from leg b; if wqq=false. * @returns ME Squared for qqxmid Tree-Level Current-Current Scattering */ double ME_W_qqxmid_current( int aptype, int bptype, int nabove, int nbelow, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & pq, CLHEP::HepLorentzVector const & pqbar, std::vector<HLV> const & partons, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, - bool const wqq, bool const wc + bool const wqq, bool const wc, + ParticleProperties const & Wprop ){ // CAM factors for the qqx amps, and qqbar ordering (default, pq backwards) const bool swap_q_qx=pqbar.rapidity() < pq.rapidity(); double wt=1.; if (aptype==21) wt*=K_g(partons.front(),pa)/HEJ::C_F; if (bptype==21) wt*=K_g(partons.back(),pb)/HEJ::C_F; if(wqq) return wt*ME_WCenqqx_qq(pa, pb, pl, plbar, partons,(bptype<0),(aptype<0), - swap_q_qx, nabove); + swap_q_qx, nabove, Wprop); return wt*ME_W_Cenqqx_qq(pa, pb, pl, plbar, partons, (bptype<0), (aptype<0), - swap_q_qx, nabove, nbelow, wc); + swap_q_qx, nabove, nbelow, wc, Wprop); } /** \brief Matrix element squared for tree-level current-current scattering with Higgs * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param qH t-channel momentum before Higgs * @param qHp1 t-channel momentum after Higgs * @returns ME Squared for Tree-Level Current-Current Scattering with Higgs */ double ME_Higgs_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs double mt, bool include_bottom, double mb, double vev ){ if (aptype==21&&bptype==21) // gg initial state return ME_H_gg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev); else if (aptype==21&&bptype!=21) { if (bptype > 0) return ME_H_qg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4./9.; else return ME_H_qbarg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4./9.; } else if (bptype==21&&aptype!=21) { if (aptype > 0) return ME_H_qg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev)*4./9.; else return ME_H_qbarg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev)*4./9.; } else { // they are both quark if (bptype>0) { if (aptype>0) return ME_H_qQ(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4.*4./(9.*9.); else return ME_H_qQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4.*4./(9.*9.); } else { if (aptype>0) return ME_H_qQbar(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev)*4.*4./(9.*9.); else return ME_H_qbarQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4.*4./(9.*9.); } } throw std::logic_error("unknown particle types"); } /** \brief Current matrix element squared with Higgs and unordered backward emission * @param aptype Particle A PDG ID * @param bptype Particle B PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param pg Unordered back Particle Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param qH t-channel momentum before Higgs * @param qHp1 t-channel momentum after Higgs * @returns ME Squared with Higgs and unordered backward emission * * @note This function assumes unordered gluon backwards from pa-p1 current. * For unof, reverse call order */ double ME_Higgs_current_uno( int aptype, int bptype, CLHEP::HepLorentzVector const & pg, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs double mt, bool include_bottom, double mb, double vev ){ if (bptype==21&&aptype!=21) { if (aptype > 0) return ME_H_unob_gQ(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev); else return ME_H_unob_gQbar(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev); } else { // they are both quark if (aptype>0) { if (bptype>0) return ME_H_unob_qQ(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev); else return ME_H_unob_qbarQ(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev); } else { if (bptype>0) return ME_H_unob_qQbar(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev); else return ME_H_unob_qbarQbar(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev); } } throw std::logic_error("unknown particle types"); } CLHEP::HepLorentzVector to_HepLorentzVector(HEJ::Particle const & particle){ return {particle.p.px(), particle.p.py(), particle.p.pz(), particle.p.E()}; } void validate(HEJ::MatrixElementConfig const & config) { #ifndef HEJ_BUILD_WITH_QCDLOOP if(!config.Higgs_coupling.use_impact_factors) { throw std::invalid_argument{ "Invalid Higgs coupling settings.\n" "HEJ without QCDloop support can only use impact factors.\n" "Set use_impact_factors to true or recompile HEJ.\n" }; } #endif if(config.Higgs_coupling.use_impact_factors && config.Higgs_coupling.mt != std::numeric_limits<double>::infinity()) { throw std::invalid_argument{ "Conflicting settings: " "impact factors may only be used in the infinite top mass limit" }; } } } // namespace anonymous -namespace HEJ{ MatrixElement::MatrixElement( std::function<double (double)> alpha_s, MatrixElementConfig conf ): alpha_s_{std::move(alpha_s)}, param_{std::move(conf)} { validate(param_); } double MatrixElement::tree_kin( Event const & ev ) const { if(! is_resummable(ev.type())) return 0.; auto AWZH_boson = std::find_if( begin(ev.outgoing()), end(ev.outgoing()), [](Particle const & p){return is_AWZH_boson(p);} ); if(AWZH_boson == end(ev.outgoing())) return tree_kin_jets(ev); switch(AWZH_boson->type){ case pid::Higgs: return tree_kin_Higgs(ev); case pid::Wp: case pid::Wm: return tree_kin_W(ev); // TODO case pid::photon: case pid::Z: default: throw not_implemented("Emission of boson of unsupported type"); } } namespace{ constexpr int extremal_jet_idx = 1; constexpr int no_extremal_jet_idx = 0; bool treat_as_extremal(Particle const & parton){ return parton.p.user_index() == extremal_jet_idx; } template<class InputIterator> double FKL_ladder_weight( InputIterator begin_gluon, InputIterator end_gluon, CLHEP::HepLorentzVector const & q0, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pn, double lambda ){ double wt = 1; auto qi = q0; for(auto gluon_it = begin_gluon; gluon_it != end_gluon; ++gluon_it){ assert(gluon_it->type == pid::gluon); const auto g = to_HepLorentzVector(*gluon_it); const auto qip1 = qi - g; if(treat_as_extremal(*gluon_it)){ wt *= C2Lipatovots(qip1, qi, pa, pb, lambda)*C_A; } else{ wt *= C2Lipatovots(qip1, qi, pa, pb, p1, pn, lambda)*C_A; } qi = qip1; } return wt; } } // namespace anonymous std::vector<Particle> MatrixElement::tag_extremal_jet_partons( Event const & ev ) const{ auto out_partons = filter_partons(ev.outgoing()); if(out_partons.size() == ev.jets().size()){ // no additional emissions in extremal jets, don't need to tag anything for(auto & parton: out_partons){ parton.p.set_user_index(no_extremal_jet_idx); } return out_partons; } const auto & jets = ev.jets(); assert(jets.size() >= 2); auto most_backward = begin(jets); auto most_forward = end(jets) - 1; // skip jets caused by unordered emission or qqx if(ev.type() == event_type::unob || ev.type() == event_type::qqxexb){ assert(jets.size() >= 3); ++most_backward; } else if(ev.type() == event_type::unof || ev.type() == event_type::qqxexf){ assert(jets.size() >= 3); --most_forward; } const auto extremal_jet_indices = ev.particle_jet_indices( {*most_backward, *most_forward} ); assert(extremal_jet_indices.size() == out_partons.size()); for(size_t i = 0; i < out_partons.size(); ++i){ assert(HEJ::is_parton(out_partons[i])); const int idx = (extremal_jet_indices[i]>=0)? extremal_jet_idx: no_extremal_jet_idx; out_partons[i].p.set_user_index(idx); } return out_partons; } namespace { template<class InIter, class partIter> double tree_kin_jets_uno(InIter BeginIn, InIter EndIn, partIter BeginPart, partIter EndPart, double lambda){ const auto pa = to_HepLorentzVector(*BeginIn); const auto pb = to_HepLorentzVector(*(EndIn-1)); const auto pg = to_HepLorentzVector(*BeginPart); const auto p1 = to_HepLorentzVector(*(BeginPart+1)); const auto pn = to_HepLorentzVector(*(EndPart-1)); const double current_factor = ME_uno_current( (BeginIn)->type, (EndIn-1)->type, pg, pn, pb, p1, pa )/(4.*(N_C*N_C - 1.)); const double ladder_factor = FKL_ladder_weight( (BeginPart+2), (EndPart-1), pa-p1-pg, pa, pb, p1, pn, lambda ); return current_factor*ladder_factor; } } double MatrixElement::tree_kin_jets(Event const & ev) const { auto const & incoming = ev.incoming(); const auto partons = tag_extremal_jet_partons(ev); if (ev.type()==HEJ::event_type::FKL){ const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); const auto p1 = to_HepLorentzVector(partons.front()); const auto pn = to_HepLorentzVector(partons.back()); return ME_current( incoming[0].type, incoming[1].type, pn, pb, p1, pa )/(4.*(N_C*N_C - 1.))*FKL_ladder_weight( begin(partons) + 1, end(partons) - 1, pa - p1, pa, pb, p1, pn, param_.regulator_lambda ); } else if (ev.type()==HEJ::event_type::unordered_backward){ return tree_kin_jets_uno(incoming.begin(), incoming.end(), partons.begin(), partons.end(), param_.regulator_lambda); } else if (ev.type()==HEJ::event_type::unordered_forward){ return tree_kin_jets_uno(incoming.rbegin(), incoming.rend(), partons.rbegin(), partons.rend(), param_.regulator_lambda); } else { throw std::logic_error("Can only reweight FKL or uno processes in Pure Jets"); } } namespace{ double tree_kin_W_FKL( int aptype, int bptype, HLV pa, HLV pb, std::vector<Particle> const & partons, HLV plbar, HLV pl, - double lambda + double lambda, ParticleProperties const & Wprop ){ auto p1 = to_HepLorentzVector(partons[0]); auto pn = to_HepLorentzVector(partons[partons.size() - 1]); const auto begin_ladder = cbegin(partons) + 1; const auto end_ladder = cend(partons) - 1; bool wc = aptype==partons[0].type; //leg b emits w auto q0 = pa - p1; if(!wc) q0 -= pl + plbar; const double current_factor = ME_W_current( aptype, bptype, pn, pb, - p1, pa, plbar, pl, wc + p1, pa, plbar, pl, wc, Wprop ); const double ladder_factor = FKL_ladder_weight( begin_ladder, end_ladder, q0, pa, pb, p1, pn, lambda ); return current_factor*ladder_factor; } template<class InIter, class partIter> double tree_kin_W_uno(InIter BeginIn, partIter BeginPart, partIter EndPart, const HLV & plbar, const HLV & pl, - double lambda){ + double lambda, ParticleProperties const & Wprop){ const auto pa = to_HepLorentzVector(*BeginIn); const auto pb = to_HepLorentzVector(*(BeginIn+1)); const auto pg = to_HepLorentzVector(*BeginPart); const auto p1 = to_HepLorentzVector(*(BeginPart+1)); const auto pn = to_HepLorentzVector(*(EndPart-1)); bool wc = (BeginIn)->type==(BeginPart+1)->type; //leg b emits w auto q0 = pa - p1 - pg; if(!wc) q0 -= pl + plbar; const double current_factor = ME_W_uno_current( (BeginIn)->type, (BeginIn+1)->type, pn, pb, - p1, pa, pg, plbar, pl, wc + p1, pa, pg, plbar, pl, wc, Wprop ); const double ladder_factor = FKL_ladder_weight( BeginPart+2, EndPart-1, q0, pa, pb, p1, pn, lambda ); return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } template<class InIter, class partIter> double tree_kin_W_qqx(InIter BeginIn, partIter BeginPart, partIter EndPart, const HLV & plbar, const HLV & pl, - double lambda){ + double lambda, ParticleProperties const & Wprop){ const bool swap_q_qx=is_quark(*BeginPart); const auto pa = to_HepLorentzVector(*BeginIn); const auto pb = to_HepLorentzVector(*(BeginIn+1)); const auto pq = to_HepLorentzVector(*(BeginPart+(swap_q_qx?0:1))); const auto pqbar = to_HepLorentzVector(*(BeginPart+(swap_q_qx?1:0))); const auto p1 = to_HepLorentzVector(*(BeginPart)); const auto pn = to_HepLorentzVector(*(EndPart-1)); const bool wc = (BeginIn+1)->type!=(EndPart-1)->type; //leg b emits w auto q0 = pa - pq - pqbar; if(!wc) q0 -= pl + plbar; const double current_factor = ME_W_qqx_current( (BeginIn)->type, (BeginIn+1)->type, pa, pb, - pq, pqbar, pn, plbar, pl, swap_q_qx, wc + pq, pqbar, pn, plbar, pl, swap_q_qx, wc, Wprop ); const double ladder_factor = FKL_ladder_weight( BeginPart+2, EndPart-1, q0, pa, pb, p1, pn, lambda ); return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } double tree_kin_W_qqxmid( int aptype, int bptype, HLV pa, HLV pb, std::vector<Particle> const & partons, HLV plbar, HLV pl, - double lambda + double lambda, ParticleProperties const & Wprop ){ HLV pq,pqbar; const auto backmidquark = std::find_if( begin(partons)+1, end(partons)-1, [](Particle const & s){ return s.type != pid::gluon; } ); assert(backmidquark!=end(partons)-1); if (is_quark(backmidquark->type)){ pq = to_HepLorentzVector(*backmidquark); pqbar = to_HepLorentzVector(*(backmidquark+1)); } else { pqbar = to_HepLorentzVector(*backmidquark); pq = to_HepLorentzVector(*(backmidquark+1)); } auto p1 = to_HepLorentzVector(partons[0]); auto pn = to_HepLorentzVector(partons[partons.size() - 1]); auto q0 = pa - p1; // t-channel momentum after qqx auto qqxt = q0; bool wc, wqq; if (backmidquark->type == -(backmidquark+1)->type){ // Central qqx does not emit wqq=false; if (aptype==partons[0].type) { wc = true; } else{ wc = false; q0-=pl+plbar; } } else{ wqq = true; wc = false; qqxt-=pl+plbar; } const auto begin_ladder = cbegin(partons) + 1; const auto end_ladder_1 = (backmidquark); const auto begin_ladder_2 = (backmidquark+2); const auto end_ladder = cend(partons) - 1; for(auto parton_it = begin_ladder; parton_it < begin_ladder_2; ++parton_it){ qqxt -= to_HepLorentzVector(*parton_it); } int nabove = std::distance(begin_ladder, backmidquark); int nbelow = std::distance(begin_ladder_2, end_ladder); std::vector<HLV> partonsHLV; partonsHLV.reserve(partons.size()); for (size_t i = 0; i != partons.size(); ++i) { partonsHLV.push_back(to_HepLorentzVector(partons[i])); } const double current_factor = ME_W_qqxmid_current( aptype, bptype, nabove, nbelow, pa, pb, - pq, pqbar, partonsHLV, plbar, pl, wqq, wc + pq, pqbar, partonsHLV, plbar, pl, wqq, wc, Wprop ); const double ladder_factor = FKL_ladder_weight( begin_ladder, end_ladder_1, q0, pa, pb, p1, pn, lambda )*FKL_ladder_weight( begin_ladder_2, end_ladder, qqxt, pa, pb, p1, pn, lambda ); return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } } // namespace anonymous double MatrixElement::tree_kin_W(Event const & ev) const { using namespace event_type; auto const & incoming(ev.incoming()); auto const & decays(ev.decays()); HLV plbar, pl; for (auto& x: decays) { if (x.second.at(0).type < 0){ plbar = to_HepLorentzVector(x.second.at(0)); pl = to_HepLorentzVector(x.second.at(1)); } else{ pl = to_HepLorentzVector(x.second.at(0)); plbar = to_HepLorentzVector(x.second.at(1)); } } const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); const auto partons = tag_extremal_jet_partons(ev); if(ev.type() == FKL){ return tree_kin_W_FKL(incoming[0].type, incoming[1].type, pa, pb, partons, plbar, pl, - param_.regulator_lambda); + param_.regulator_lambda, + param_.ew_parameters.Wprop()); } if(ev.type() == unordered_backward){ return tree_kin_W_uno(cbegin(incoming), cbegin(partons), cend(partons), plbar, pl, - param_.regulator_lambda); + param_.regulator_lambda, + param_.ew_parameters.Wprop()); } if(ev.type() == unordered_forward){ return tree_kin_W_uno(crbegin(incoming), crbegin(partons), crend(partons), plbar, pl, - param_.regulator_lambda); + param_.regulator_lambda, + param_.ew_parameters.Wprop()); } if(ev.type() == extremal_qqxb){ return tree_kin_W_qqx(cbegin(incoming), cbegin(partons), cend(partons), plbar, pl, - param_.regulator_lambda); + param_.regulator_lambda, + param_.ew_parameters.Wprop()); } if(ev.type() == extremal_qqxf){ return tree_kin_W_qqx(crbegin(incoming), crbegin(partons), crend(partons), plbar, pl, - param_.regulator_lambda); + param_.regulator_lambda, + param_.ew_parameters.Wprop()); } assert(ev.type() == central_qqx); return tree_kin_W_qqxmid(incoming[0].type, incoming[1].type, pa, pb, partons, plbar, pl, - param_.regulator_lambda); + param_.regulator_lambda, + param_.ew_parameters.Wprop()); } double MatrixElement::tree_kin_Higgs(Event const & ev) const { if(is_uno(ev.type())){ return tree_kin_Higgs_between(ev); } if(ev.outgoing().front().type == pid::Higgs){ return tree_kin_Higgs_first(ev); } if(ev.outgoing().back().type == pid::Higgs){ return tree_kin_Higgs_last(ev); } return tree_kin_Higgs_between(ev); } namespace { // Colour acceleration multipliers, for gluons see eq. (7) in arXiv:0910.5113 #ifdef HEJ_BUILD_WITH_QCDLOOP // TODO: code duplication with jets.cc double K_g(double p1minus, double paminus) { return 1./2.*(p1minus/paminus + paminus/p1minus)*(C_A - 1./C_A) + 1./C_A; } double K_g( CLHEP::HepLorentzVector const & pout, CLHEP::HepLorentzVector const & pin ) { if(pin.z() > 0) return K_g(pout.plus(), pin.plus()); return K_g(pout.minus(), pin.minus()); } double K( ParticleID type, CLHEP::HepLorentzVector const & pout, CLHEP::HepLorentzVector const & pin ) { if(type == ParticleID::gluon) return K_g(pout, pin); return C_F; } #endif // Colour factor in strict MRK limit double K_MRK(ParticleID type) { return (type == ParticleID::gluon)?C_A:C_F; } } double MatrixElement::MH2_forwardH( CLHEP::HepLorentzVector const & p1out, CLHEP::HepLorentzVector const & p1in, ParticleID type2, CLHEP::HepLorentzVector const & p2out, CLHEP::HepLorentzVector const & p2in, CLHEP::HepLorentzVector const & pH, double t1, double t2 ) const{ ignore(p2out, p2in); const double shat = p1in.invariantMass2(p2in); const double vev = param_.ew_parameters.vev(); // gluon case #ifdef HEJ_BUILD_WITH_QCDLOOP if(!param_.Higgs_coupling.use_impact_factors){ return K(type2, p2out, p2in)*C_A*1./(16*M_PI*M_PI)*t1/t2*ME_Houtside_gq( p1out, p1in, p2out, p2in, pH, param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb, vev )/(4*(N_C*N_C - 1)); } #endif return K_MRK(type2)/C_A*9./2.*shat*shat*( C2gHgp(p1in,p1out,pH,vev) + C2gHgm(p1in,p1out,pH,vev) )/(t1*t2); } double MatrixElement::tree_kin_Higgs_first(Event const & ev) const { auto const & incoming = ev.incoming(); auto const & outgoing = ev.outgoing(); assert(outgoing.front().type == pid::Higgs); if(outgoing[1].type != pid::gluon) { assert(incoming.front().type == outgoing[1].type); return tree_kin_Higgs_between(ev); } const auto pH = to_HepLorentzVector(outgoing.front()); const auto partons = tag_extremal_jet_partons( ev ); const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); const auto p1 = to_HepLorentzVector(partons.front()); const auto pn = to_HepLorentzVector(partons.back()); const auto q0 = pa - p1 - pH; const double t1 = q0.m2(); const double t2 = (pn - pb).m2(); return MH2_forwardH( p1, pa, incoming[1].type, pn, pb, pH, t1, t2 )*FKL_ladder_weight( begin(partons) + 1, end(partons) - 1, q0, pa, pb, p1, pn, param_.regulator_lambda ); } double MatrixElement::tree_kin_Higgs_last(Event const & ev) const { auto const & incoming = ev.incoming(); auto const & outgoing = ev.outgoing(); assert(outgoing.back().type == pid::Higgs); if(outgoing[outgoing.size()-2].type != pid::gluon) { assert(incoming.back().type == outgoing[outgoing.size()-2].type); return tree_kin_Higgs_between(ev); } const auto pH = to_HepLorentzVector(outgoing.back()); const auto partons = tag_extremal_jet_partons( ev ); const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); auto p1 = to_HepLorentzVector(partons.front()); const auto pn = to_HepLorentzVector(partons.back()); auto q0 = pa - p1; const double t1 = q0.m2(); const double t2 = (pn + pH - pb).m2(); return MH2_forwardH( pn, pb, incoming[0].type, p1, pa, pH, t2, t1 )*FKL_ladder_weight( begin(partons) + 1, end(partons) - 1, q0, pa, pb, p1, pn, param_.regulator_lambda ); } namespace { template<class InIter, class partIter> double tree_kin_Higgs_uno(InIter BeginIn, InIter EndIn, partIter BeginPart, partIter EndPart, const HLV & qH, const HLV & qHp1, double mt, bool inc_bot, double mb, double vev){ const auto pa = to_HepLorentzVector(*BeginIn); const auto pb = to_HepLorentzVector(*(EndIn-1)); const auto pg = to_HepLorentzVector(*BeginPart); const auto p1 = to_HepLorentzVector(*(BeginPart+1)); const auto pn = to_HepLorentzVector(*(EndPart-1)); return ME_Higgs_current_uno( (BeginIn)->type, (EndIn-1)->type, pg, pn, pb, p1, pa, qH, qHp1, mt, inc_bot, mb, vev ); } } double MatrixElement::tree_kin_Higgs_between(Event const & ev) const { using namespace event_type; auto const & incoming = ev.incoming(); auto const & outgoing = ev.outgoing(); const auto the_Higgs = std::find_if( begin(outgoing), end(outgoing), [](Particle const & s){ return s.type == pid::Higgs; } ); assert(the_Higgs != end(outgoing)); const auto pH = to_HepLorentzVector(*the_Higgs); const auto partons = tag_extremal_jet_partons(ev); const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); auto p1 = to_HepLorentzVector( partons[(ev.type() == unob)?1:0] ); auto pn = to_HepLorentzVector( partons[partons.size() - ((ev.type() == unof)?2:1)] ); auto first_after_Higgs = begin(partons) + (the_Higgs-begin(outgoing)); assert( (first_after_Higgs == end(partons) && ( (ev.type() == unob) || partons.back().type != pid::gluon )) || first_after_Higgs->rapidity() >= the_Higgs->rapidity() ); assert( (first_after_Higgs == begin(partons) && ( (ev.type() == unof) || partons.front().type != pid::gluon )) || (first_after_Higgs-1)->rapidity() <= the_Higgs->rapidity() ); // always treat the Higgs as if it were in between the extremal FKL partons if(first_after_Higgs == begin(partons)) ++first_after_Higgs; else if(first_after_Higgs == end(partons)) --first_after_Higgs; // t-channel momentum before Higgs auto qH = pa; for(auto parton_it = begin(partons); parton_it != first_after_Higgs; ++parton_it){ qH -= to_HepLorentzVector(*parton_it); } auto q0 = pa - p1; auto begin_ladder = begin(partons) + 1; auto end_ladder = end(partons) - 1; double current_factor; if(ev.type() == FKL){ current_factor = ME_Higgs_current( incoming[0].type, incoming[1].type, pn, pb, p1, pa, qH, qH - pH, param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb, param_.ew_parameters.vev() ); } else if(ev.type() == unob){ current_factor = HEJ::C_A*HEJ::C_A/2*tree_kin_Higgs_uno( begin(incoming), end(incoming), begin(partons), end(partons), qH, qH-pH, param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb, param_.ew_parameters.vev() ); const auto p_unob = to_HepLorentzVector(partons.front()); q0 -= p_unob; p1 += p_unob; ++begin_ladder; } else if(ev.type() == unof){ current_factor = HEJ::C_A*HEJ::C_A/2*tree_kin_Higgs_uno( rbegin(incoming), rend(incoming), rbegin(partons), rend(partons), qH-pH, qH, param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb, param_.ew_parameters.vev() ); pn += to_HepLorentzVector(partons.back()); --end_ladder; } else{ throw std::logic_error("Can only reweight FKL or uno processes in H+Jets"); } const double ladder_factor = FKL_ladder_weight( begin_ladder, first_after_Higgs, q0, pa, pb, p1, pn, param_.regulator_lambda )*FKL_ladder_weight( first_after_Higgs, end_ladder, qH - pH, pa, pb, p1, pn, param_.regulator_lambda ); return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } namespace { double get_AWZH_coupling(Event const & ev, double alpha_s, double alpha_w) { const auto AWZH_boson = std::find_if( begin(ev.outgoing()), end(ev.outgoing()), [](auto const & p){return is_AWZH_boson(p);} ); if(AWZH_boson == end(ev.outgoing())) return 1.; switch(AWZH_boson->type){ case pid::Higgs: return alpha_s*alpha_s; case pid::Wp: case pid::Wm: return alpha_w*alpha_w; // TODO case pid::photon: case pid::Z: default: throw not_implemented("Emission of boson of unsupported type"); } } } double MatrixElement::tree_param(Event const & ev, double mur) const { assert(is_resummable(ev.type())); const auto begin_partons = ev.begin_partons(); const auto end_partons = ev.end_partons(); const auto num_partons = std::distance(begin_partons, end_partons); const double alpha_s = alpha_s_(mur); const double gs2 = 4.*M_PI*alpha_s; double res = std::pow(gs2, num_partons); if(param_.log_correction){ // use alpha_s(q_perp), evolved to mur assert(num_partons >= 2); const auto first_emission = std::next(begin_partons); const auto last_emission = std::prev(end_partons); for(auto parton = first_emission; parton != last_emission; ++parton){ res *= 1. + alpha_s/(2.*M_PI)*beta0*log(mur/parton->perp()); } } return get_AWZH_coupling(ev, alpha_s, param_.ew_parameters.alpha_w())*res; } } // namespace HEJ diff --git a/src/Wjets.cc b/src/Wjets.cc index ce810f8..5490f4d 100644 --- a/src/Wjets.cc +++ b/src/Wjets.cc @@ -1,1087 +1,1136 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019 * \copyright GPLv2 or later */ -#include "HEJ/jets.hh" #include "HEJ/Wjets.hh" -#include "HEJ/Tensor.hh" -#include "HEJ/Constants.hh" #include <array> - #include <iostream> +#include "HEJ/Constants.hh" +#include "HEJ/EWConstants.hh" +#include "HEJ/jets.hh" +#include "HEJ/Tensor.hh" + using HEJ::Tensor; using HEJ::init_sigma_index; using HEJ::metric; using HEJ::rank3_current; using HEJ::rank5_current; using HEJ::eps; using HEJ::to_tensor; using HEJ::Helicity; using HEJ::angle; using HEJ::square; using HEJ::flip; +using HEJ::ParticleProperties; namespace helicity = HEJ::helicity; namespace { // Helper Functions // FKL W Helper Functions - double WProp (const HLV & plbar, const HLV & pl){ - COM propW = COM(0.,-1.)/( (pl+plbar).m2() - HEJ::MW*HEJ::MW + COM(0.,1.)*HEJ::MW*HEJ::GammaW); + double WProp (const HLV & plbar, const HLV & pl, ParticleProperties const & wprop){ + COM propW = COM(0.,-1.)/( (pl+plbar).m2() - wprop.mass*wprop.mass + + COM(0.,1.)*wprop.mass*wprop.width); double PropFactor=(propW*conj(propW)).real(); return PropFactor; } namespace { // FKL current including W emission off negative helicities // See eq. (87) {eq:jW-} in developer manual // Note that the terms are rearranged Tensor<1> jW_minus( HLV const & pa, HLV const & p1, HLV const & plbar, HLV const & pl ){ using HEJ::helicity::minus; const double tWin = (pa-pl-plbar).m2(); const double tWout = (p1+pl+plbar).m2(); // C++ arithmetic operators are evaluated left-to-right, // so the following first computes complex scalar coefficients, // which then multiply a current, reducing the number // of multiplications return 2.*( + angle(p1, pl)*square(p1, plbar)/tWout + square(pa, plbar)*angle(pa, pl)/tWin )*HEJ::current(p1, pa, helicity::minus) + 2.*angle(p1, pl)*square(pl, plbar)/tWout *HEJ::current(pl, pa, helicity::minus) + 2.*square(pa, plbar)*angle(pl, plbar)/tWin *HEJ::current(p1, plbar, helicity::minus); } } // FKL current including W emission // see eqs. (87), (88) {eq:jW-}, {eq:jW+} in developer manual Tensor<1> jW( HLV const & pa, HLV const & p1, HLV const & plbar, HLV const & pl, Helicity h ){ if(h == helicity::minus) { return jW_minus(pa, p1, plbar, pl); } return jW_minus(pa, p1, pl, plbar).complex_conj(); } /** * @brief W+Jets Unordered Contribution Helper Functions * @returns result of equation (4.1.28) in Helen's Thesis (p.100) */ double jM2Wuno(HLV pg, HLV p1,HLV plbar, HLV pl, HLV pa, Helicity h1, - HLV p2, HLV pb, Helicity h2, Helicity pol - ){ + HLV p2, HLV pb, Helicity h2, Helicity pol, + ParticleProperties const & wprop + ){ //@TODO Simplify the below (less Tensor class?) init_sigma_index(); HLV pW = pl+plbar; HLV q1g=pa-pW-p1-pg; HLV q1 = pa-p1-pW; HLV q2 = p2-pb; const double taW = (pa-pW).m2(); const double taW1 = (pa-pW-p1).m2(); const double tb2 = (pb-p2).m2(); const double tb2g = (pb-p2-pg).m2(); const double s1W = (p1+pW).m2(); const double s1gW = (p1+pW+pg).m2(); const double s1g = (p1+pg).m2(); const double tag = (pa-pg).m2(); const double taWg = (pa-pW-pg).m2(); //use p1 as ref vec in pol tensor Tensor<1> epsg = eps(pg,p2,pol); Tensor<1> epsW = HEJ::current(pl,plbar,helicity::minus); Tensor<1> j2b = HEJ::current(p2,pb,h2); Tensor<1> Tq1q2 = to_tensor((q1+q2)/taW1 + (pb/pb.dot(pg) +p2/p2.dot(pg)) * tb2/(2*tb2g)); Tensor<3> J31a = rank3_current(p1, pa, h1); Tensor<2> J2_qaW =J31a.contract((pa-pW)/taW, 2); Tensor<2> J2_p1W =J31a.contract((p1+pW)/s1W, 2); Tensor<3> L1a = outer(Tq1q2, J2_qaW); Tensor<3> L1b = outer(Tq1q2, J2_p1W); Tensor<3> L2a = outer(-pg-q1,J2_qaW)/taW1; Tensor<3> L2b = outer(-pg-q1, J2_p1W)/taW1; Tensor<3> L3 = outer(metric(), J2_qaW.contract(pg-q2,1)+J2_p1W.contract(pg-q2,2))/taW1; Tensor<3> L(0.); Tensor<5> J51a = rank5_current(p1, pa, h1); Tensor<4> J_qaW = J51a.contract((pa-pW),4); Tensor<4> J_qag = J51a.contract(pa-pg,4); Tensor<4> J_p1gW = J51a.contract(p1+pg+pW,4); Tensor<3> U1a = J_qaW.contract(p1+pg,2); Tensor<3> U1b = J_p1gW.contract(p1+pg,2); Tensor<3> U1c = J_p1gW.contract(p1+pW,2); Tensor<3> U1(0.); Tensor<3> U2a = J_qaW.contract(pa-pg-pW,2); Tensor<3> U2b = J_qag.contract(pa-pg-pW,2); Tensor<3> U2c = J_qag.contract(p1+pW,2); Tensor<3> U2(0.); for(int nu=0; nu<4;nu++){ for(int mu=0;mu<4;mu++){ for(int rho=0;rho<4;rho++){ L(nu, mu, rho) = L1a(nu,mu,rho) + L1b(nu,rho,mu) + L2a(mu,nu,rho) + L2b(mu,rho,nu) + L3(mu,nu,rho); U1(nu, mu, rho) = U1a(nu, mu, rho) / (s1g*taW) + U1b(nu,rho,mu) / (s1g*s1gW) + U1c(rho,nu,mu) / (s1W*s1gW); U2(nu,mu,rho) = U2a(mu,nu,rho) / (taWg*taW) + U2b(mu,rho,nu) / (taWg*tag) + U2c(rho,mu,nu) / (s1W*tag); } } } COM X = ((((U1-L).contract(epsW,3)).contract(j2b,2)).contract(epsg,1)); COM Y = ((((U2+L).contract(epsW,3)).contract(j2b,2)).contract(epsg,1)); double amp = HEJ::C_A*HEJ::C_F*HEJ::C_F/2.*(norm(X)+norm(Y)) - HEJ::C_F/2.*(X*conj(Y)).real(); double t1 = q1g.m2(); double t2 = q2.m2(); - double WPropfact = WProp(plbar, pl); - //Divide by WProp - amp*=WPropfact; + amp*=WProp(plbar, pl, wprop); //Divide by t-channels amp/=(t1*t2); return amp; } // Relevant Wqqx Helper Functions. //g->qxqlxl (Calculates gluon to qqx Current. See JV_\mu in WSubleading Notes) Tensor <1> gtqqxW(HLV pq,HLV pqbar,HLV pl,HLV plbar){ //@TODO Simplify the calculation below (Less Tensor class use?) double s2AB=(pl+plbar+pq).m2(); double s3AB=(pl+plbar+pqbar).m2(); // Define llx current. Tensor<1> ABCur = HEJ::current(pl, plbar, helicity::minus); //blank 3 Gamma Current Tensor<3> JV23 = rank3_current(pq,pqbar,helicity::minus); // Components of g->qqW before W Contraction Tensor<2> JV1 = JV23.contract((pq + pl + plbar),2)/(s2AB); Tensor<2> JV2 = JV23.contract((pqbar + pl + plbar),2)/(s3AB); // g->qqW Current. Note Minus between terms due to momentum flow. // Also note: (-I)^2 from W vert. (I) from Quark prop. Tensor<1> JVCur = (JV1.contract(ABCur,1) - JV2.contract(ABCur,2))*COM(0.,-1.); return JVCur; } // Helper Functions Calculate the Crossed Contribution Tensor <2> MCrossW(HLV pa, HLV, HLV, HLV, HLV pq, HLV pqbar, HLV pl, HLV plbar, std::vector<HLV> partons, int nabove ){ //@TODO Simplify the calculation below Maybe combine with MCross? // Useful propagator factors double s2AB=(pl+plbar+pq).m2(); double s3AB=(pl+plbar+pqbar).m2(); HLV q1, q3; q1=pa; for(int i=0; i<nabove+1;i++){ q1=q1-partons.at(i); } q3 = q1 - pq - pqbar - pl - plbar; double tcro1=(q3+pq).m2(); double tcro2=(q1-pqbar).m2(); // Define llx current. Tensor<1> ABCur = HEJ::current(pl, plbar,helicity::minus); //Blank 5 gamma Current Tensor<5> J523 = rank5_current(pq,pqbar,helicity::minus); // 4 gamma currents (with 1 contraction already). Tensor<4> J_q3q = J523.contract((q3 + pq),2); Tensor<4> J_2AB = J523.contract((pq + pl + plbar),2); // Components of Crossed Vertex Contribution Tensor<3> Xcro1 = J_q3q.contract((pqbar + pl + plbar),3); Tensor<3> Xcro2 = J_q3q.contract((q1 - pqbar),3); Tensor<3> Xcro3 = J_2AB.contract((q1 - pqbar),3); // Term Denominators Taken Care of at this stage Tensor<2> Xcro1Cont = Xcro1.contract(ABCur,3)/(tcro1*s3AB); Tensor<2> Xcro2Cont = Xcro2.contract(ABCur,2)/(tcro1*tcro2); Tensor<2> Xcro3Cont = Xcro3.contract(ABCur,1)/(s2AB*tcro2); //Initialise the Crossed Vertex Object Tensor<2> Xcro(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xcro(mu,nu) = -(-Xcro1Cont(nu,mu)+Xcro2Cont(nu,mu)+Xcro3Cont(nu,mu)); } } return Xcro; } // Helper Functions Calculate the Uncrossed Contribution Tensor <2> MUncrossW(HLV pa, HLV, HLV, HLV, HLV pq, HLV pqbar, HLV pl, HLV plbar, std::vector<HLV> partons, int nabove ){ //@TODO Simplify the calculation below Maybe combine with MUncross? double s2AB=(pl+plbar+pq).m2(); double s3AB=(pl+plbar+pqbar).m2(); HLV q1, q3; q1=pa; for(int i=0; i<nabove+1;i++){ q1=q1-partons.at(i); } q3 = q1 - pl - plbar - pq - pqbar; double tunc1 = (q1-pq).m2(); double tunc2 = (q3+pqbar).m2(); // Define llx current. Tensor<1> ABCur = HEJ::current(pl, plbar, helicity::minus); //Blank 5 gamma Current Tensor<5> J523 = rank5_current(pq,pqbar,helicity::minus); // 4 gamma currents (with 1 contraction already). Tensor<4> J_2AB = J523.contract((pq + pl + plbar),2); Tensor<4> J_q1q = J523.contract((q1 - pq),2); // 2 Contractions taken care of. Tensor<3> Xunc1 = J_2AB.contract((q3 + pqbar),3); Tensor<3> Xunc2 = J_q1q.contract((q3 + pqbar),3); Tensor<3> Xunc3 = J_q1q.contract((pqbar + pl + plbar),3); // Term Denominators Taken Care of at this stage Tensor<2> Xunc1Cont = Xunc1.contract(ABCur,1)/(s2AB*tunc2); Tensor<2> Xunc2Cont = Xunc2.contract(ABCur,2)/(tunc1*tunc2); Tensor<2> Xunc3Cont = Xunc3.contract(ABCur,3)/(tunc1*s3AB); //Initialise the Uncrossed Vertex Object Tensor<2> Xunc(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xunc(mu,nu) = -(- Xunc1Cont(mu,nu)+Xunc2Cont(mu,nu) +Xunc3Cont(mu,nu)); } } return Xunc; } // Helper Functions Calculate the g->qqxW (Eikonal) Contributions Tensor <2> MSymW(HLV pa, HLV p1, HLV pb, HLV p4, HLV pq, HLV pqbar, HLV pl,HLV plbar, std::vector<HLV> partons, int nabove ){ //@TODO Simplify the calculation below Maybe combine with MSym? double sa2=(pa+pq).m2(); double s12=(p1+pq).m2(); double sa3=(pa+pqbar).m2(); double s13=(p1+pqbar).m2(); double saA=(pa+pl).m2(); double s1A=(p1+pl).m2(); double saB=(pa+plbar).m2(); double s1B=(p1+plbar).m2(); double sb2=(pb+pq).m2(); double s42=(p4+pq).m2(); double sb3=(pb+pqbar).m2(); double s43=(p4+pqbar).m2(); double sbA=(pb+pl).m2(); double s4A=(p4+pl).m2(); double sbB=(pb+plbar).m2(); double s4B=(p4+plbar).m2(); double s23AB=(pl+plbar+pq+pqbar).m2(); HLV q1,q3; q1=pa; for(int i=0;i<nabove+1;i++){ q1-=partons.at(i); } q3=q1-pq-pqbar-plbar-pl; double t1 = (q1).m2(); double t3 = (q3).m2(); // g->qqW Current (Factors of sqrt2 dealt with in this function.) Tensor<1> JV = gtqqxW(pq,pqbar,pl,plbar); // 1a gluon emisson Contribution Tensor<3> X1a = outer(metric(), p1*(t1/(s12+s13+s1A+s1B)) + pa*(t1/(sa2+sa3+saA+saB)) ); Tensor<2> X1aCont = X1a.contract(JV,3); //4b gluon emission Contribution Tensor<3> X4b = outer(metric(), p4*(t3/(s42+s43+s4A+s4B)) + pb*(t3/(sb2+sb3+sbA+sbB)) ); Tensor<2> X4bCont = X4b.contract(JV,3); //Set up each term of 3G diagram. Tensor<3> X3g1 = outer(q1+pq+pqbar+pl+plbar, metric()); Tensor<3> X3g2 = outer(q3-pq-pqbar-pl-plbar, metric()); Tensor<3> X3g3 = outer(q1+q3, metric()); // Note the contraction of indices changes term by term Tensor<2> X3g1Cont = X3g1.contract(JV,3); Tensor<2> X3g2Cont = X3g2.contract(JV,2); Tensor<2> X3g3Cont = X3g3.contract(JV,1); // XSym is an amalgamation of x1a, X4b and X3g. // Makes sense from a colour factor point of view. Tensor<2>Xsym(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xsym(mu,nu) = (X3g1Cont(nu,mu) + X3g2Cont(mu,nu) - X3g3Cont(nu,mu)) + (X1aCont(mu,nu) - X4bCont(mu,nu)); } } return Xsym/s23AB; } Tensor <2> MCross(HLV pa, HLV pq, HLV pqbar, std::vector<HLV> partons, Helicity hq, int nabove ){ //@TODO Simplify the calculation below Maybe combine with MCrossW? HLV q1; q1=pa; for(int i=0;i<nabove+1;i++){ q1-=partons.at(i); } double t2=(q1-pqbar).m2(); //Blank 3 gamma Current Tensor<3> J323 = rank3_current(pq,pqbar,hq); // 2 gamma current (with 1 contraction already). Tensor<2> XCroCont = J323.contract((q1-pqbar),2)/(t2); //Initialise the Crossed Vertex Tensor<2> Xcro(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xcro(mu,nu) = XCroCont(nu,mu); } } return Xcro; } // Helper Functions Calculate the Uncrossed Contribution Tensor <2> MUncross(HLV pa, HLV pq,HLV pqbar, std::vector<HLV> partons, Helicity hq, int nabove ){ //@TODO Simplify the calculation below Maybe combine with MUncrossW? HLV q1; q1=pa; for(int i=0;i<nabove+1;i++){ q1-=partons.at(i); } double t2 = (q1-pq).m2(); //Blank 3 gamma Current Tensor<3> J323 = rank3_current(pq,pqbar,hq); // 2 gamma currents (with 1 contraction already). Tensor<2> XUncCont = J323.contract((q1-pq),2)/t2; //Initialise the Uncrossed Vertex Tensor<2> Xunc(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xunc(mu,nu) = -XUncCont(mu,nu); } } return Xunc; } // Helper Functions Calculate the Eikonal Contributions Tensor <2> MSym(HLV pa, HLV p1, HLV pb, HLV p4, HLV pq, HLV pqbar, std::vector<HLV> partons, Helicity hq, int nabove ){ //@TODO Simplify the calculation below Maybe combine with MsymW? HLV q1, q3; q1=pa; for(int i=0;i<nabove+1;i++){ q1-=partons.at(i); } q3 = q1-pq-pqbar; double t1 = (q1).m2(); double t3 = (q3).m2(); double s23 = (pq+pqbar).m2(); double sa2 = (pa+pq).m2(); double sa3 = (pa+pqbar).m2(); double s12 = (p1+pq).m2(); double s13 = (p1+pqbar).m2(); double sb2 = (pb+pq).m2(); double sb3 = (pb+pqbar).m2(); double s42 = (p4+pq).m2(); double s43 = (p4+pqbar).m2(); Tensor<1> qqxCur = HEJ::current(pq, pqbar, hq); // // 1a gluon emisson Contribution Tensor<3> X1a = outer(metric(), p1*(t1/(s12+s13))+ pa*(t1/(sa2+sa3))); Tensor<2> X1aCont = X1a.contract(qqxCur,3); // //4b gluon emission Contribution Tensor<3> X4b = outer(metric(), p4*(t3/(s42+s43)) + pb*(t3/(sb2+sb3))); Tensor<2> X4bCont = X4b.contract(qqxCur,3); // New Formulation Corresponding to New Analytics Tensor<3> X3g1 = outer(q1+pq+pqbar, metric()); Tensor<3> X3g2 = outer(q3-pq-pqbar, metric()); Tensor<3> X3g3 = outer(q1+q3, metric()); // Note the contraction of indices changes term by term Tensor<2> X3g1Cont = X3g1.contract(qqxCur,3); Tensor<2> X3g2Cont = X3g2.contract(qqxCur,2); Tensor<2> X3g3Cont = X3g3.contract(qqxCur,1); Tensor<2>Xsym(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xsym(mu, nu) = COM(0,1) * ( (X3g1Cont(nu,mu) + X3g2Cont(mu,nu) - X3g3Cont(nu,mu)) + (X1aCont(mu,nu) - X4bCont(mu,nu)) ); } } return Xsym/s23; } //! W+Jets FKL Contributions /** * @brief W+Jets FKL Contributions, function to handle all incoming types. * @param p1out Outgoing Particle 1. (W emission) * @param plbar Outgoing election momenta * @param pl Outgoing neutrino momenta * @param p1in Incoming Particle 1. (W emission) * @param p2out Outgoing Particle 2 * @param p2in Incoming Particle 2 * @param aqlineb Bool. Is Backwards quark line an anti-quark line? * @param aqlinef Bool. Is Forwards quark line an anti-quark line? * * Calculates j_W ^\mu j_\mu. * Handles all possible incoming states. */ double jW_j( HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in, - bool aqlineb, bool /* aqlinef */ + bool aqlineb, bool /* aqlinef */, + ParticleProperties const & wprop ){ using helicity::minus; using helicity::plus; const HLV q1=p1in-p1out-plbar-pl; const HLV q2=-(p2in-p2out); - const double WPropfact = WProp(plbar, pl); + const double WPropfact = WProp(plbar, pl, wprop); const auto j_W = COM{0,-1}*jW(p1in, p1out, plbar, pl, aqlineb?plus:minus); double Msqr = 0.; for(const auto h: {plus, minus}) { const auto j = HEJ::current(p2out, p2in, h); Msqr += abs2(j_W.contract(j, 1)); } // Division by colour and Helicity average (Nc2-1)(4) // Multiply by Cf^2 return HEJ::C_F*HEJ::C_F*WPropfact*Msqr/(q1.m2()*q2.m2()*(HEJ::N_C*HEJ::N_C - 1)*4); } } // Anonymous Namespace -double ME_W_qQ (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in){ - return jW_j(p1out, plbar, pl, p1in, p2out, p2in, false, false); +double ME_W_qQ (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in, + ParticleProperties const & wprop +){ + return jW_j(p1out, plbar, pl, p1in, p2out, p2in, false, false, wprop); } -double ME_W_qQbar (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in){ - return jW_j(p1out, plbar, pl, p1in, p2out, p2in, false, true); +double ME_W_qQbar (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in, + ParticleProperties const & wprop +){ + return jW_j(p1out, plbar, pl, p1in, p2out, p2in, false, true, wprop); } -double ME_W_qbarQ (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in){ - return jW_j(p1out, plbar, pl, p1in, p2out, p2in, true, false); +double ME_W_qbarQ (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in, + ParticleProperties const & wprop +){ + return jW_j(p1out, plbar, pl, p1in, p2out, p2in, true, false, wprop); } -double ME_W_qbarQbar (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in){ - return jW_j(p1out, plbar, pl, p1in, p2out, p2in, true, true); +double ME_W_qbarQbar (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in, + ParticleProperties const & wprop +){ + return jW_j(p1out, plbar, pl, p1in, p2out, p2in, true, true, wprop); } -double ME_W_qg (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in){ - return jW_j(p1out, plbar, pl, p1in, p2out, p2in, false, false)*K_g(p2out, p2in)/HEJ::C_F; +double ME_W_qg (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in, + ParticleProperties const & wprop +){ + return jW_j(p1out, plbar, pl, p1in, p2out, p2in, false, false, wprop) + *K_g(p2out, p2in)/HEJ::C_F; } -double ME_W_qbarg (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in){ - return jW_j(p1out, plbar, pl, p1in, p2out, p2in, true, false)*K_g(p2out, p2in)/HEJ::C_F; +double ME_W_qbarg (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in, + ParticleProperties const & wprop +){ + return jW_j(p1out, plbar, pl, p1in, p2out, p2in, true, false, wprop) + *K_g(p2out, p2in)/HEJ::C_F; } namespace{ /** * @brief W+Jets Unordered Contributions, function to handle all incoming types. * @param p1out Outgoing Particle 1. (W emission) * @param plbar Outgoing election momenta * @param pl Outgoing neutrino momenta * @param p1in Incoming Particle 1. (W emission) * @param p2out Outgoing Particle 2 (Quark, unordered emission this side.) * @param p2in Incoming Particle 2 (Quark, unordered emission this side.) * @param pg Unordered Gluon momenta * @param aqlineb Bool. Is Backwards quark line an anti-quark line? * @param aqlinef Bool. Is Forwards quark line an anti-quark line? * * Calculates j_W ^\mu j_{uno}_\mu. Ie, unordered with W emission opposite side. * Handles all possible incoming states. */ double jW_juno(HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, - HLV p2in, HLV pg, bool aqlineb, bool aqlinef){ + HLV p2in, HLV pg, bool aqlineb, bool aqlinef, + ParticleProperties const & wprop + ){ using helicity::minus; using helicity::plus; const HLV q1=p1in-p1out-plbar-pl; const HLV q2=-(p2in-p2out-pg); const HLV q3=-(p2in-p2out); const Helicity fhel = aqlinef?plus:minus; const auto j_W = jW(p1in, p1out, plbar, pl, aqlineb?plus:minus); const auto mj2p = HEJ::current(p2out, p2in, flip(fhel)); const auto mj2m = HEJ::current(p2out, p2in, fhel); const auto jgbp = HEJ::current(pg, p2in, flip(fhel)); const auto jgbm = HEJ::current(pg, p2in, fhel); const auto j2gp = HEJ::current(p2out, pg, flip(fhel)); const auto j2gm = HEJ::current(p2out, pg, fhel); // Dot products of these which occur again and again COM MWmp=j_W.dot(mj2p); // And now for the Higgs ones COM MWmm=j_W.dot(mj2m); const auto qsum = to_tensor(q2+q3); const auto p1o = to_tensor(p1out); const auto p1i = to_tensor(p1in); const auto p2o = to_tensor(p2out); const auto p2i = to_tensor(p2in); const auto Lmm=( (-1.)*qsum*(MWmm) + (-2.*COM{j_W.dot(pg)})*mj2m + 2.*COM{mj2m.dot(pg)}*j_W + ( p1o/pg.dot(p1out) + p1i/pg.dot(p1in) )*( q2.m2()*MWmm/2. ) )/q3.m2(); const auto Lmp=( (-1.)*qsum*(MWmp) + (-2.*COM{j_W.dot(pg)})*mj2p + 2.*COM{mj2p.dot(pg)}*j_W + ( p1o/pg.dot(p1out) + p1i/pg.dot(p1in) )*( q2.m2()*MWmp/2. ) )/q3.m2(); const auto U1mm=(COM{jgbm.dot(j_W)}*j2gm+2.*p2o*MWmm)/(p2out+pg).m2(); const auto U1mp=(COM{jgbp.dot(j_W)}*j2gp+2.*p2o*MWmp)/(p2out+pg).m2(); const auto U2mm=((-1.)*COM{j2gm.dot(j_W)}*jgbm+2.*p2i*MWmm)/(p2in-pg).m2(); const auto U2mp=((-1.)*COM{j2gp.dot(j_W)}*jgbp+2.*p2i*MWmp)/(p2in-pg).m2(); double amm,amp; amm=HEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*HEJ::C_F*HEJ::C_F/3.*abs2(U1mm+U2mm); amp=HEJ::C_F*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*HEJ::C_F*HEJ::C_F/3.*abs2(U1mp+U2mp); double ampsq=-(amm+amp); //Divide by WProp - ampsq*=WProp(plbar, pl); + ampsq*=WProp(plbar, pl, wprop); return ampsq/((16)*(q2.m2()*q1.m2())); } } double ME_W_unob_qQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in, - HLV pg, HLV plbar, HLV pl + HLV pg, HLV plbar, HLV pl, + ParticleProperties const & wprop ){ - return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, false, false); + return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, false, false, wprop); } double ME_W_unob_qQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in, - HLV pg, HLV plbar, HLV pl + HLV pg, HLV plbar, HLV pl, + ParticleProperties const & wprop ){ - return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, false, true); + return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, false, true, wprop); } double ME_W_unob_qbarQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in, - HLV pg, HLV plbar, HLV pl + HLV pg, HLV plbar, HLV pl, + ParticleProperties const & wprop ){ - return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, true, false); + return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, true, false, wprop); } double ME_W_unob_qbarQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in, - HLV pg, HLV plbar, HLV pl + HLV pg, HLV plbar, HLV pl, + ParticleProperties const & wprop ){ - return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, true, true); + return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, true, true, wprop); } namespace{ /** * @brief W+Jets Unordered Contributions, function to handle all incoming types. * @param pg Unordered Gluon momenta * @param p1out Outgoing Particle 1. (Quark - W and Uno emission) * @param plbar Outgoing election momenta * @param pl Outgoing neutrino momenta * @param p1in Incoming Particle 1. (Quark - W and Uno emission) * @param p2out Outgoing Particle 2 * @param p2in Incoming Particle 2 * @param aqlineb Bool. Is Backwards quark line an anti-quark line? * * Calculates j_W_{uno} ^\mu j_\mu. Ie, unordered with W emission same side. * Handles all possible incoming states. Note this handles both forward and back- * -ward Wuno emission. For forward, ensure p1out is the uno and W emission parton. * @TODO: Include separate wrapper functions for forward and backward to clean up * ME_W_unof_current in `MatrixElement.cc`. */ double jWuno_j(HLV pg, HLV p1out, HLV plbar, HLV pl, HLV p1in, - HLV p2out, HLV p2in, bool aqlineb + HLV p2out, HLV p2in, bool aqlineb, + ParticleProperties const & wprop ){ //Calculate different Helicity choices const Helicity h = aqlineb?helicity::plus:helicity::minus; - double ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,h,p2out,p2in,helicity::plus,helicity::plus); - double ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,h,p2out,p2in,helicity::plus,helicity::minus); - double ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,h,p2out,p2in,helicity::minus,helicity::plus); - double ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,h,p2out,p2in,helicity::minus,helicity::minus); + double ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,h,p2out,p2in, + helicity::plus,helicity::plus, wprop); + double ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,h,p2out,p2in, + helicity::plus,helicity::minus, wprop); + double ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,h,p2out,p2in, + helicity::minus,helicity::plus, wprop); + double ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,h,p2out,p2in, + helicity::minus,helicity::minus, wprop); //Helicity sum and average over initial states return (ME2mpp + ME2mpm + ME2mmp + ME2mmm)/(4.*HEJ::C_A*HEJ::C_A); } } double ME_Wuno_qQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in, - HLV pg, HLV plbar, HLV pl + HLV pg, HLV plbar, HLV pl, ParticleProperties const & wprop ){ - return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, false); + return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, false, wprop); } double ME_Wuno_qQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in, - HLV pg, HLV plbar, HLV pl + HLV pg, HLV plbar, HLV pl, + ParticleProperties const & wprop ){ - return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, false); + return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, false, wprop); } double ME_Wuno_qbarQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in, - HLV pg, HLV plbar, HLV pl + HLV pg, HLV plbar, HLV pl, + ParticleProperties const & wprop ){ - return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, true); + return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, true, wprop); } double ME_Wuno_qbarQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in, - HLV pg, HLV plbar, HLV pl + HLV pg, HLV plbar, HLV pl, + ParticleProperties const & wprop ){ - return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, true); + return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, true, wprop); } double ME_Wuno_qg(HLV p1out, HLV p1in, HLV p2out, HLV p2in, - HLV pg, HLV plbar, HLV pl + HLV pg, HLV plbar, HLV pl, ParticleProperties const & wprop ){ - return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, false)*K_g(p2out, p2in)/HEJ::C_F; + return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, false, wprop) + *K_g(p2out, p2in)/HEJ::C_F; } double ME_Wuno_qbarg(HLV p1out, HLV p1in, HLV p2out, HLV p2in, - HLV pg, HLV plbar, HLV pl + HLV pg, HLV plbar, HLV pl, + ParticleProperties const & wprop ){ - return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, true)*K_g(p2out, p2in)/HEJ::C_F; + return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, true, wprop) + *K_g(p2out, p2in)/HEJ::C_F; } /** * @brief W+Jets Extremal qqx Contributions, function to handle all incoming types. * @param pgin Incoming gluon which will split into qqx. * @param pqout Quark of extremal qqx outgoing (W-Emission). * @param plbar Outgoing anti-lepton momenta * @param pl Outgoing lepton momenta * @param pqbarout Anti-quark of extremal qqx pair. (W-Emission) * @param pout Outgoing Particle 2 (end of FKL chain) * @param p2in Incoming Particle 2 * @param aqlinef Bool. Is Forwards quark line an anti-quark line? * * Calculates j_W_{qqx} ^\mu j_\mu. Ie, Ex-QQX with W emission same side. * Handles all possible incoming states. Calculated via crossing symmetry from jWuno_j. */ double jWqqx_j(HLV pgin, HLV pqout, HLV plbar, HLV pl, - HLV pqbarout, HLV p2out, HLV p2in, bool aqlinef){ + HLV pqbarout, HLV p2out, HLV p2in, bool aqlinef, + ParticleProperties const & wprop +){ //Calculate Different Helicity Configurations. const Helicity h = aqlinef?helicity::plus:helicity::minus; - double ME2mpp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in,helicity::plus,helicity::plus); - double ME2mpm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in,helicity::plus,helicity::minus); - double ME2mmp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in,helicity::minus,helicity::plus); - double ME2mmm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in,helicity::minus,helicity::minus); + double ME2mpp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in, + helicity::plus,helicity::plus, wprop); + double ME2mpm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in, + helicity::plus,helicity::minus, wprop); + double ME2mmp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in, + helicity::minus,helicity::plus, wprop); + double ME2mmm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in, + helicity::minus,helicity::minus, wprop); //Helicity sum and average over initial states. double ME2 = (ME2mpp + ME2mpm + ME2mmp + ME2mmm)/(4.*HEJ::C_A*HEJ::C_A); //Correct colour averaging after crossing: ME2*=(3.0/8.0); return ME2; } double ME_WExqqx_qbarqQ(HLV pgin, HLV pqout, HLV plbar, HLV pl, - HLV pqbarout, HLV p2out, HLV p2in){ - return jWqqx_j(pgin, pqout, plbar, pl, pqbarout, p2out, p2in, false); + HLV pqbarout, HLV p2out, HLV p2in, + ParticleProperties const & wprop +){ + return jWqqx_j(pgin, pqout, plbar, pl, pqbarout, p2out, p2in, false, wprop); } double ME_WExqqx_qqbarQ(HLV pgin, HLV pqbarout, HLV plbar, HLV pl, - HLV pqout, HLV p2out, HLV p2in){ - return jWqqx_j(pgin, pqbarout, plbar, pl, pqout, p2out, p2in, true); + HLV pqout, HLV p2out, HLV p2in, + ParticleProperties const & wprop +){ + return jWqqx_j(pgin, pqbarout, plbar, pl, pqout, p2out, p2in, true, wprop); } double ME_WExqqx_qbarqg(HLV pgin, HLV pqout, HLV plbar, HLV pl, - HLV pqbarout, HLV p2out, HLV p2in){ - return jWqqx_j(pgin, pqout, plbar, pl, pqbarout, p2out, p2in, false)*K_g(p2out,p2in)/HEJ::C_F; + HLV pqbarout, HLV p2out, HLV p2in, + ParticleProperties const & wprop +){ + return jWqqx_j(pgin, pqout, plbar, pl, pqbarout, p2out, p2in, false, wprop) + *K_g(p2out,p2in)/HEJ::C_F; } double ME_WExqqx_qqbarg(HLV pgin, HLV pqbarout, HLV plbar, HLV pl, - HLV pqout, HLV p2out, HLV p2in){ - return jWqqx_j(pgin, pqbarout, plbar, pl, pqout, p2out, p2in, true)*K_g(p2out,p2in)/HEJ::C_F; + HLV pqout, HLV p2out, HLV p2in, + ParticleProperties const & wprop +){ + return jWqqx_j(pgin, pqbarout, plbar, pl, pqout, p2out, p2in, true, wprop) + *K_g(p2out,p2in)/HEJ::C_F; } namespace { //Function to calculate Term 1 in Equation 3.23 in James Cockburn's Thesis. Tensor<1> qggm1(HLV pb, HLV p2, HLV p3, Helicity hel2, Helicity helg, HLV refmom){ //@TODO Simplify the calculation below. (Less Tensor class use?) double t1 = (p3-pb)*(p3-pb); // Gauge choice in polarisation tensor. (see JC's Thesis) Tensor<1> epsg = eps(pb, refmom, helg); Tensor<3> qqCurBlank = rank3_current(p2,p3,hel2); Tensor<2> qqCur = qqCurBlank.contract(p3-pb,2); Tensor<1> gqqCur = qqCur.contract(epsg,2)/t1; return gqqCur*(-1); } //Function to calculate Term 2 in Equation 3.23 in James Cockburn's Thesis. Tensor<1> qggm2(HLV pb, HLV p2, HLV p3, Helicity hel2, Helicity helg, HLV refmom){ //@TODO Simplify the calculation below (Less Tensor class use?) double t1 = (p2-pb)*(p2-pb); // Gauge choice in polarisation tensor. (see JC's Thesis) Tensor<1> epsg = eps(pb,refmom, helg); Tensor<3> qqCurBlank = rank3_current(p2,p3,hel2); Tensor<2> qqCur = qqCurBlank.contract(p2-pb,2); Tensor<1> gqqCur = qqCur.contract(epsg,1)/t1; return gqqCur; } //Function to calculate Term 3 in Equation 3.23 in James Cockburn's Thesis. Tensor<1> qggm3(HLV pb, HLV p2, HLV p3, Helicity hel2, Helicity helg, HLV refmom){ //@TODO Simplify the calculation below (Less Tensor class use?) double s23 = (p2+p3)*(p2+p3); // Gauge choice in polarisation tensor. (see JC's Thesis) Tensor<1> epsg = eps(pb, refmom, helg); Tensor<3> qqCurBlank1 = outer(p2+p3, metric())/s23; Tensor<3> qqCurBlank2 = outer(pb, metric())/s23; Tensor<1> Cur23 = HEJ::current(p2, p3,hel2); Tensor<2> qqCur1 = qqCurBlank1.contract(Cur23,3); Tensor<2> qqCur2 = qqCurBlank2.contract(Cur23,3); Tensor<2> qqCur3 = qqCurBlank2.contract(Cur23,1); Tensor<1> gqqCur = (qqCur1.contract(epsg,1) - qqCur2.contract(epsg,2) + qqCur3.contract(epsg,1))*2*COM(0,1); return gqqCur; } } // no wqq emission double ME_W_Exqqx_QQq(HLV pa, HLV pb, HLV p1, HLV p2, - HLV p3,HLV plbar, HLV pl, bool aqlinepa + HLV p3,HLV plbar, HLV pl, bool aqlinepa, + ParticleProperties const & wprop ){ using helicity::minus; using helicity::plus; init_sigma_index(); // 2 independent helicity choices (complex conjugation related). Tensor<1> TMmmm1 = qggm1(pb,p2,p3,minus,minus, pa); Tensor<1> TMmmm2 = qggm2(pb,p2,p3,minus,minus, pa); Tensor<1> TMmmm3 = qggm3(pb,p2,p3,minus,minus, pa); Tensor<1> TMpmm1 = qggm1(pb,p2,p3,minus,plus, pa); Tensor<1> TMpmm2 = qggm2(pb,p2,p3,minus,plus, pa); Tensor<1> TMpmm3 = qggm3(pb,p2,p3,minus,plus, pa); // Build the external quark line W Emmision Tensor<1> cur1a = jW(pa,p1,plbar,pl, aqlinepa?plus:minus); //Contract with the qqxCurrent. COM Mmmm1 = TMmmm1.contract(cur1a,1); COM Mmmm2 = TMmmm2.contract(cur1a,1); COM Mmmm3 = TMmmm3.contract(cur1a,1); COM Mpmm1 = TMpmm1.contract(cur1a,1); COM Mpmm2 = TMpmm2.contract(cur1a,1); COM Mpmm3 = TMpmm3.contract(cur1a,1); //Colour factors: COM cm1m1,cm2m2,cm3m3,cm1m2,cm1m3,cm2m3; cm1m1=8./3.; cm2m2=8./3.; cm3m3=6.; cm1m2 =-1./3.; cm1m3 = -3.*COM(0.,1.); cm2m3 = 3.*COM(0.,1.); //Sqaure and sum for each helicity config: double Mmmm = real( cm1m1*pow(abs(Mmmm1),2) + cm2m2*pow(abs(Mmmm2),2) + cm3m3*pow(abs(Mmmm3),2) + 2.*real(cm1m2*Mmmm1*conj(Mmmm2)) + 2.*real(cm1m3*Mmmm1*conj(Mmmm3)) + 2.*real(cm2m3*Mmmm2*conj(Mmmm3)) ); double Mpmm = real( cm1m1*pow(abs(Mpmm1),2) + cm2m2*pow(abs(Mpmm2),2) + cm3m3*pow(abs(Mpmm3),2) + 2.*real(cm1m2*Mpmm1*conj(Mpmm2)) + 2.*real(cm1m3*Mpmm1*conj(Mpmm3)) + 2.*real(cm2m3*Mpmm2*conj(Mpmm3)) ); // Divide by WProp - double WPropfact = WProp(plbar, pl); - + const double WPropfact = WProp(plbar, pl, wprop); return (2*WPropfact*(Mmmm+Mpmm)/24./4.)/(pa-p1-pl-plbar).m2()/(p2+p3-pb).m2(); } // W+Jets qqxCentral double ME_WCenqqx_qq(HLV pa, HLV pb,HLV pl, HLV plbar, std::vector<HLV> partons, - bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove + bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove, + ParticleProperties const & wprop ){ init_sigma_index(); HLV pq, pqbar, p1, p4; if (qqxmarker){ pqbar = partons[nabove+1]; pq = partons[nabove+2];} else{ pq = partons[nabove+1]; pqbar = partons[nabove+2];} p1 = partons.front(); p4 = partons.back(); Tensor<1> T1am, T4bm, T1ap, T4bp; if(!(aqlinepa)){ T1ap = HEJ::current(p1, pa, helicity::plus); T1am = HEJ::current(p1, pa, helicity::minus);} else if(aqlinepa){ T1ap = HEJ::current(pa, p1, helicity::plus); T1am = HEJ::current(pa, p1, helicity::minus);} if(!(aqlinepb)){ T4bp = HEJ::current(p4, pb, helicity::plus); T4bm = HEJ::current(p4, pb, helicity::minus);} else if(aqlinepb){ T4bp = HEJ::current(pb, p4, helicity::plus); T4bm = HEJ::current(pb, p4, helicity::minus);} // Calculate the 3 separate contributions to the effective vertex Tensor<2> Xunc = MUncrossW(pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove); Tensor<2> Xcro = MCrossW( pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove); Tensor<2> Xsym = MSymW( pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove); // 4 Different Helicity Choices (Differs from Pure Jet Case, where there is // also the choice in qqbar helicity. // (- - hel choice) COM M_mmUnc = (((Xunc).contract(T1am,1)).contract(T4bm,1)); COM M_mmCro = (((Xcro).contract(T1am,1)).contract(T4bm,1)); COM M_mmSym = (((Xsym).contract(T1am,1)).contract(T4bm,1)); // (- + hel choice) COM M_mpUnc = (((Xunc).contract(T1am,1)).contract(T4bp,1)); COM M_mpCro = (((Xcro).contract(T1am,1)).contract(T4bp,1)); COM M_mpSym = (((Xsym).contract(T1am,1)).contract(T4bp,1)); // (+ - hel choice) COM M_pmUnc = (((Xunc).contract(T1ap,1)).contract(T4bm,1)); COM M_pmCro = (((Xcro).contract(T1ap,1)).contract(T4bm,1)); COM M_pmSym = (((Xsym).contract(T1ap,1)).contract(T4bm,1)); // (+ + hel choice) COM M_ppUnc = (((Xunc).contract(T1ap,1)).contract(T4bp,1)); COM M_ppCro = (((Xcro).contract(T1ap,1)).contract(T4bp,1)); COM M_ppSym = (((Xsym).contract(T1ap,1)).contract(T4bp,1)); //Colour factors: COM cmsms,cmumu,cmcmc,cmsmu,cmsmc,cmumc; cmsms=3.; cmumu=4./3.; cmcmc=4./3.; cmsmu =3./2.*COM(0.,1.); cmsmc = -3./2.*COM(0.,1.); cmumc = -1./6.; // Work Out Interference in each case of helicity: double amp_mm = real(cmsms*pow(abs(M_mmSym),2) +cmumu*pow(abs(M_mmUnc),2) +cmcmc*pow(abs(M_mmCro),2) +2.*real(cmsmu*M_mmSym*conj(M_mmUnc)) +2.*real(cmsmc*M_mmSym*conj(M_mmCro)) +2.*real(cmumc*M_mmUnc*conj(M_mmCro))); double amp_mp = real(cmsms*pow(abs(M_mpSym),2) +cmumu*pow(abs(M_mpUnc),2) +cmcmc*pow(abs(M_mpCro),2) +2.*real(cmsmu*M_mpSym*conj(M_mpUnc)) +2.*real(cmsmc*M_mpSym*conj(M_mpCro)) +2.*real(cmumc*M_mpUnc*conj(M_mpCro))); double amp_pm = real(cmsms*pow(abs(M_pmSym),2) +cmumu*pow(abs(M_pmUnc),2) +cmcmc*pow(abs(M_pmCro),2) +2.*real(cmsmu*M_pmSym*conj(M_pmUnc)) +2.*real(cmsmc*M_pmSym*conj(M_pmCro)) +2.*real(cmumc*M_pmUnc*conj(M_pmCro))); double amp_pp = real(cmsms*pow(abs(M_ppSym),2) +cmumu*pow(abs(M_ppUnc),2) +cmcmc*pow(abs(M_ppCro),2) +2.*real(cmsmu*M_ppSym*conj(M_ppUnc)) +2.*real(cmsmc*M_ppSym*conj(M_ppCro)) +2.*real(cmumc*M_ppUnc*conj(M_ppCro))); double amp=((amp_mm+amp_mp+amp_pm+amp_pp)/(9.*4.)); HLV q1,q3; q1=pa; for(int i=0;i<nabove+1;i++){ q1-=partons.at(i); } q3 = q1 - pq - pqbar - pl - plbar; double t1 = (q1).m2(); double t3 = (q3).m2(); //Divide by t-channels amp/=(t1*t1*t3*t3); //Divide by WProp - double WPropfact = WProp(plbar, pl); - amp*=WPropfact; + amp*=WProp(plbar, pl, wprop); return amp; } // no wqq emission double ME_W_Cenqqx_qq(HLV pa, HLV pb,HLV pl,HLV plbar, std::vector<HLV> partons, bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove, - int nbelow, bool forwards + int nbelow, bool forwards, ParticleProperties const & wprop ){ using helicity::minus; using helicity::plus; init_sigma_index(); if (!forwards){ //If Emission from Leg a instead, flip process. std::swap(pa, pb); std::reverse(partons.begin(),partons.end()); std::swap(aqlinepa, aqlinepb); qqxmarker = !qqxmarker; std::swap(nabove,nbelow); } HLV pq, pqbar, p1,p4; if (qqxmarker){ pqbar = partons[nabove+1]; pq = partons[nabove+2];} else{ pq = partons[nabove+1]; pqbar = partons[nabove+2];} p1 = partons.front(); p4 = partons.back(); Tensor<1> T1am(0.), T1ap(0.); if(!(aqlinepa)){ T1ap = HEJ::current(p1, pa, plus); T1am = HEJ::current(p1, pa, minus);} else if(aqlinepa){ T1ap = HEJ::current(pa, p1, plus); T1am = HEJ::current(pa, p1, minus);} Tensor <1> T4bm = jW(pb, p4, plbar, pl, aqlinepb?plus:minus); // Calculate the 3 separate contributions to the effective vertex Tensor<2> Xunc_m = MUncross(pa, pq, pqbar,partons, minus, nabove); Tensor<2> Xcro_m = MCross( pa, pq, pqbar,partons, minus, nabove); Tensor<2> Xsym_m = MSym( pa, p1, pb, p4, pq, pqbar, partons, minus, nabove); Tensor<2> Xunc_p = MUncross(pa, pq, pqbar,partons, plus, nabove); Tensor<2> Xcro_p = MCross( pa, pq, pqbar,partons, plus, nabove); Tensor<2> Xsym_p = MSym( pa, p1, pb, p4, pq, pqbar, partons, plus, nabove); // (- - hel choice) COM M_mmUnc = (((Xunc_m).contract(T1am,1)).contract(T4bm,1)); COM M_mmCro = (((Xcro_m).contract(T1am,1)).contract(T4bm,1)); COM M_mmSym = (((Xsym_m).contract(T1am,1)).contract(T4bm,1)); // (- + hel choice) COM M_mpUnc = (((Xunc_p).contract(T1am,1)).contract(T4bm,1)); COM M_mpCro = (((Xcro_p).contract(T1am,1)).contract(T4bm,1)); COM M_mpSym = (((Xsym_p).contract(T1am,1)).contract(T4bm,1)); // (+ - hel choice) COM M_pmUnc = (((Xunc_m).contract(T1ap,1)).contract(T4bm,1)); COM M_pmCro = (((Xcro_m).contract(T1ap,1)).contract(T4bm,1)); COM M_pmSym = (((Xsym_m).contract(T1ap,1)).contract(T4bm,1)); // (+ + hel choice) COM M_ppUnc = (((Xunc_p).contract(T1ap,1)).contract(T4bm,1)); COM M_ppCro = (((Xcro_p).contract(T1ap,1)).contract(T4bm,1)); COM M_ppSym = (((Xsym_p).contract(T1ap,1)).contract(T4bm,1)); //Colour factors: COM cmsms,cmumu,cmcmc,cmsmu,cmsmc,cmumc; cmsms=3.; cmumu=4./3.; cmcmc=4./3.; cmsmu =3./2.*COM(0.,1.); cmsmc = -3./2.*COM(0.,1.); cmumc = -1./6.; // Work Out Interference in each case of helicity: double amp_mm = real(cmsms*pow(abs(M_mmSym),2) +cmumu*pow(abs(M_mmUnc),2) +cmcmc*pow(abs(M_mmCro),2) +2.*real(cmsmu*M_mmSym*conj(M_mmUnc)) +2.*real(cmsmc*M_mmSym*conj(M_mmCro)) +2.*real(cmumc*M_mmUnc*conj(M_mmCro))); double amp_mp = real(cmsms*pow(abs(M_mpSym),2) +cmumu*pow(abs(M_mpUnc),2) +cmcmc*pow(abs(M_mpCro),2) +2.*real(cmsmu*M_mpSym*conj(M_mpUnc)) +2.*real(cmsmc*M_mpSym*conj(M_mpCro)) +2.*real(cmumc*M_mpUnc*conj(M_mpCro))); double amp_pm = real(cmsms*pow(abs(M_pmSym),2) +cmumu*pow(abs(M_pmUnc),2) +cmcmc*pow(abs(M_pmCro),2) +2.*real(cmsmu*M_pmSym*conj(M_pmUnc)) +2.*real(cmsmc*M_pmSym*conj(M_pmCro)) +2.*real(cmumc*M_pmUnc*conj(M_pmCro))); double amp_pp = real(cmsms*pow(abs(M_ppSym),2) +cmumu*pow(abs(M_ppUnc),2) +cmcmc*pow(abs(M_ppCro),2) +2.*real(cmsmu*M_ppSym*conj(M_ppUnc)) +2.*real(cmsmc*M_ppSym*conj(M_ppCro)) +2.*real(cmumc*M_ppUnc*conj(M_ppCro))); double amp=((amp_mm+amp_mp+amp_pm+amp_pp)/(9.*4.)); HLV q1,q3; q1=pa; for(int i=0;i<nabove+1;i++){ q1-=partons.at(i); } q3 = q1 - pq - pqbar; double t1 = (q1).m2(); double t3 = (q3).m2(); //Divide by t-channels amp/=(t1*t1*t3*t3); //Divide by WProp - double WPropfact = WProp(plbar, pl); - amp*=WPropfact; + amp*=WProp(plbar, pl, wprop); return amp; }