diff --git a/include/HEJ/Constants.hh b/include/HEJ/Constants.hh
index be79bae..0bcd2ac 100644
--- a/include/HEJ/Constants.hh
+++ b/include/HEJ/Constants.hh
@@ -1,39 +1,33 @@
 /** \file
  *  \brief Header file defining all global constants used for HEJ
  *
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #pragma once
 
 namespace HEJ{
 /// @name QCD parameters
 //@{
   constexpr double N_C = 3.;    //!< number of Colours
   constexpr double C_A = N_C;    //!< \f$C_A\f$
   constexpr double C_F = (N_C*N_C - 1.)/(2.*N_C); //!< \f$C_F\f$
   constexpr double t_f = 0.5; //!< \f$t_f\f$
   constexpr double n_f = 5.;    //!< number light flavours
   constexpr double beta0 = 11./3.*C_A - 4./3.*t_f*n_f;  //!< \f$\beta_0\f$
 //@}
-/// @name QFT parameters
-//@{
-  constexpr double MW = 80.419; //!< The W mass in GeV/c^2
-  constexpr double GammaW = 2.0476; //!< the W width in GeV/c^2
-
-  //@}
 /// @name Generation Parameters
 //@{
   //! @brief Default scale for virtual correction
   //! \f$\lambda\f$ cf. eq. (20) in \cite Andersen:2011hs
   constexpr double CLAMBDA = 0.2;
   constexpr double CMINPT = 0.2;  //!< minimal \f$p_t\f$ of all partons
 //@}
 /// @name Conventional Parameters
 //@{
   //! Value of first colour for colour dressing, according to LHE convention
   //! \cite Boos:2001cv
   constexpr int COLOUR_OFFSET = 501;
 //@}
 }
diff --git a/include/HEJ/MatrixElement.hh b/include/HEJ/MatrixElement.hh
index 7f9e372..e62ae7e 100644
--- a/include/HEJ/MatrixElement.hh
+++ b/include/HEJ/MatrixElement.hh
@@ -1,187 +1,187 @@
 /** \file
  *  \brief Contains the MatrixElement Class
  *
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #pragma once
 
 #include <functional>
 #include <vector>
 
 #include "fastjet/PseudoJet.hh"
 
-#include "HEJ/PDG_codes.hh"
-#include "HEJ/Parameters.hh"
 #include "HEJ/config.hh"
+#include "HEJ/Parameters.hh"
+#include "HEJ/PDG_codes.hh"
 
 namespace CLHEP {
   class HepLorentzVector;
 }
 
 namespace HEJ{
   class Event;
   class Particle;
 
   //! Class to calculate the squares of matrix elements
   class MatrixElement{
   public:
     /** \brief MatrixElement Constructor
      * @param alpha_s        Function taking the renormalisation scale
      *                       and returning the strong coupling constant
      * @param conf           General matrix element settings
      */
     MatrixElement(
         std::function<double (double)> alpha_s,
         MatrixElementConfig conf
     );
 
   /**
    * \brief squares of regulated HEJ matrix elements
    * @param event          The event for which to calculate matrix elements
    * @returns              The squares of HEJ matrix elements including virtual corrections
    *
    * This function returns one value for the central parameter choice
    * and one additional value for each entry in \ref Event.variations().
    * See eq. (22) in \cite Andersen:2011hs for the definition of the squared
    * matrix element.
    *
    * \internal Relation to standard HEJ Met2: MatrixElement = Met2*shat^2/(pdfta*pdftb)
    */
     Weights operator()(Event const & event) const;
 
   //! Squares of HEJ tree-level matrix elements
   /**
    * @param event          The event for which to calculate matrix elements
    * @returns              The squares of HEJ matrix elements without virtual corrections
    *
    * cf. eq. (22) in \cite Andersen:2011hs
    */
     Weights tree(Event const & event) const;
 
    /**
     * \brief Virtual corrections to matrix element squares
     * @param event         The event for which to calculate matrix elements
     * @returns             The virtual corrections to the squares of the matrix elements
     *
     * The all order virtual corrections to LL in the MRK limit is
     * given by replacing 1/t in the scattering amplitude according to the
     * lipatov ansatz.
     *
     * cf. second-to-last line of eq. (22) in \cite Andersen:2011hs
     * note that indices are off by one, i.e. out[0].p corresponds to p_1
     */
     Weights virtual_corrections(Event const & event) const;
 
    /**
     * \brief Scale-dependent part of tree-level matrix element squares
     * @param event         The event for which to calculate matrix elements
     * @returns             The scale-dependent part of the squares of the
     *                      tree-level matrix elements
     *
     * The tree-level matrix elements factorises into a renormalisation-scale
     * dependent part, given by the strong coupling to some power, and a
     * scale-independent remainder. This function only returns the former parts
     * for the central scale choice and all \ref Event.variations().
     *
     * @see tree, tree_kin
     */
     Weights tree_param(Event const & event) const;
 
    /**
     * \brief Kinematic part of tree-level matrix element squares
     * @param event         The event for which to calculate matrix elements
     * @returns             The kinematic part of the squares of the
     *                      tree-level matrix elements
     *
     * The tree-level matrix elements factorises into a renormalisation-scale
     * dependent part, given by the strong coupling to some power, and a
     * scale-independent remainder. This function only returns the latter part.
     * Since it does not depend on the parameter variations, only a single value
     * is returned.
     *
     * @see tree, tree_param
     */
     double tree_kin(Event const & event) const;
 
   private:
 
     double tree_param(
         Event const & event,
         double mur
     ) const;
 
     double virtual_corrections_W(
         Event const & event,
         double mur,
         Particle const & WBoson
     ) const;
     double virtual_corrections(
         Event const & event,
         double mur
     ) const;
 
     //! \internal cf. last line of eq. (22) in \cite Andersen:2011hs
     double omega0(
         double alpha_s, double mur,
         fastjet::PseudoJet const & q_j
     ) const;
 
     double tree_kin_jets(
         Event const & ev
     ) const;
     double tree_kin_W(
         Event const & ev
     ) const;
     double tree_kin_Higgs(
         Event const & ev
     ) const;
     double tree_kin_Higgs_first(
         Event const & ev
     ) const;
     double tree_kin_Higgs_last(
         Event const & ev
     ) const;
 
     /**
      * \internal
      * \brief Higgs inbetween extremal partons.
      *
      * Note that in the case of unordered emission, the Higgs is *always*
      * treated as if in between the extremal (FKL) partons, even if its
      * rapidity is outside the extremal parton rapidities
      */
     double tree_kin_Higgs_between(
         Event const & ev
     ) const;
 
     double tree_param_partons(
         double alpha_s, double mur,
         std::vector<Particle> const & partons
     ) const;
 
     std::vector<int> in_extremal_jet_indices(
         std::vector<fastjet::PseudoJet> const & partons
     ) const;
 
     std::vector<Particle> tag_extremal_jet_partons(
         Event const & ev
     ) const;
 
     double MH2_forwardH(
         CLHEP::HepLorentzVector const & p1out,
         CLHEP::HepLorentzVector const & p1in,
         pid::ParticleID type2,
         CLHEP::HepLorentzVector const & p2out,
         CLHEP::HepLorentzVector const & p2in,
         CLHEP::HepLorentzVector const & pH,
         double t1, double t2
     ) const;
 
     std::function<double (double)> alpha_s_;
 
     MatrixElementConfig param_;
   };
 
 }
diff --git a/include/HEJ/Wjets.hh b/include/HEJ/Wjets.hh
index 9ad9d78..fedf84a 100644
--- a/include/HEJ/Wjets.hh
+++ b/include/HEJ/Wjets.hh
@@ -1,409 +1,458 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 /** \file
  *  \brief Functions computing the square of current contractions in W+Jets.
  *
  *  This file contains all the W+Jet specific components to compute
  *  the current contractions for valid HEJ processes, to form a full
  *  W+Jets ME, currently one would have to use functions from the
  *  jets.hh header also. We can calculate all subleading processes for
  *  W+Jets.
  *
  *  @TODO add a namespace
  */
 
 #pragma once
 
 #include <vector>
 
 #include <CLHEP/Vector/LorentzVector.h>
 
 typedef CLHEP::HepLorentzVector HLV;
 
+namespace HEJ{
+   class ParticleProperties;
+}
+
 //! Square of qQ->qenuQ W+Jets Scattering Current
 /**
  *  @param p1out     Momentum of final state quark
  *  @param plbar     Momentum of final state anti-lepton
  *  @param pl        Momentum of final state lepton
  *  @param p1in      Momentum of initial state quark
  *  @param p2out     Momentum of final state quark
  *  @param p2in      Momentum of intial state quark
+ *  @param wpro      Mass and width of the W boson
  *  @returns         Square of the current contractions for qQ->qenuQ Scattering
  *
  *  This returns the square of the current contractions in qQ->qenuQ scattering
  *  with an emission of a W Boson.
  */
-double ME_W_qQ (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in);
+double ME_W_qQ (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in,
+                     HEJ::ParticleProperties const & wprop);
 
 //! Square of qbarQ->qbarenuQ W+Jets Scattering Current
 /**
  *  @param p1out     Momentum of final state anti-quark
  *  @param plbar     Momentum of final state anti-lepton
  *  @param pl        Momentum of final state lepton
  *  @param p1in      Momentum of initial state anti-quark
  *  @param p2out     Momentum of final state quark
  *  @param p2in      Momentum of intial state quark
+ *  @param wpro      Mass and width of the W boson
  *  @returns         Square of the current contractions for qbarQ->qbarenuQ Scattering
  *
  *  This returns the square of the current contractions in qbarQ->qbarenuQ
  *  scattering with an emission of a W Boson.
  */
-double ME_W_qbarQ (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in);
+double ME_W_qbarQ (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in,
+                     HEJ::ParticleProperties const & wprop);
 
 //! Square of qQbar->qenuQbar W+Jets Scattering Current
 /**
  *  @param p1out     Momentum of final state quark
  *  @param plbar     Momentum of final state anti-lepton
  *  @param pl        Momentum of final state lepton
  *  @param p1in      Momentum of initial state quark
  *  @param p2out     Momentum of final state anti-quark
  *  @param p2in      Momentum of intial state anti-quark
+ *  @param wpro      Mass and width of the W boson
  *  @returns         Square of the current contractions for qQbar->qenuQbar Scattering
  *
  *  This returns the square of the current contractions in qQbar->qenuQbar
  *  scattering with an emission of a W Boson.
  */
-double ME_W_qQbar (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in);
+double ME_W_qQbar (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in,
+                     HEJ::ParticleProperties const & wprop);
 
 //! Square of qbarQbar->qbarenuQbar W+Jets Scattering Current
 /**
  *  @param p1out     Momentum of final state anti-quark
  *  @param plbar     Momentum of final state anti-lepton
  *  @param pl        Momentum of final state lepton
  *  @param p1in      Momentum of initial state anti-quark
  *  @param p2out     Momentum of final state anti-quark
  *  @param p2in      Momentum of intial state anti-quark
+ *  @param wpro      Mass and width of the W boson
  *  @returns         Square of the current contractions for qbarQbar->qbarenuQbar Scattering
  *
  *  This returns the square of the current contractions in qbarQbar->qbarenuQbar
  *  scattering with an emission of a W Boson.
  */
-double ME_W_qbarQbar (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in);
+double ME_W_qbarQbar (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in,
+                     HEJ::ParticleProperties const & wprop);
 
 //! Square of qg->qenug W+Jets Scattering Current
 /**
  *  @param p1out     Momentum of final state quark
  *  @param plbar     Momentum of final state anti-lepton
  *  @param pl        Momentum of final state lepton
  *  @param p1in      Momentum of initial state quark
  *  @param p2out     Momentum of final state gluon
  *  @param p2in      Momentum of intial state gluon
+ *  @param wpro      Mass and width of the W boson
  *  @returns         Square of the current contractions for qg->qenug Scattering
  *
  *  This returns the square of the current contractions in qg->qenug scattering
  *  with an emission of a W Boson.
  */
-double ME_W_qg (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in);
+double ME_W_qg (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in,
+                     HEJ::ParticleProperties const & wprop);
 
 //! Square of qbarg->qbarenug W+Jets Scattering Current
 /**
  *  @param p1out     Momentum of final state anti-quark
  *  @param plbar     Momentum of final state anti-lepton
  *  @param pl        Momentum of final state lepton
  *  @param p1in      Momentum of initial state anti-quark
  *  @param p2out     Momentum of final state gluon
  *  @param p2in      Momentum of intial state gluon
+ *  @param wpro      Mass and width of the W boson
  *  @returns         Square of the current contractions for qbarg->qbarenug Scattering
  *
  *  This returns the square of the current contractions in qbarg->qbarenug
  *  scattering with an emission of a W Boson.
  */
-double ME_W_qbarg (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in);
+double ME_W_qbarg (HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in,
+                     HEJ::ParticleProperties const & wprop);
 
 //! qQg Wjets Unordered backwards opposite leg to W
 /**
  *  @param p1out     Momentum of final state quark a
  *  @param p1in      Momentum of initial state quark a
  *  @param p2out     Momentum of final state quark b
  *  @param p2in      Momentum of intial state quark b
  *  @param pg        Momentum of final state unordered gluon
  *  @param plbar     Momentum of final state anti-lepton
  *  @param pl        Momentum of final state lepton
+ *  @param wpro      Mass and width of the W boson
  *  @returns         Square of the current contractions for qQ->qQg Scattering
  *
  *  This returns the square of the current contractions in qQg->qQg scattering
  *  with an emission of a W Boson.
  */
-double ME_W_unob_qQ (HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg,
-                     HLV plbar, HLV pl);
+double ME_W_unob_qQ (HLV p1out, HLV p1in, HLV p2out, HLV p2in,HLV pg,
+                     HLV plbar, HLV pl, HEJ::ParticleProperties const & wprop);
 
 //! qbarQg Wjets Unordered backwards opposite leg to W
 /**
  *  @param p1out     Momentum of final state anti-quark a
  *  @param p1in      Momentum of initial state anti-quark a
  *  @param p2out     Momentum of final state quark b
  *  @param p2in      Momentum of intial state quark b
  *  @param pg        Momentum of final state unordered gluon
  *  @param plbar     Momentum of final state anti-lepton
  *  @param pl        Momentum of final state lepton
+ *  @param wpro      Mass and width of the W boson
  *  @returns         Square of the current contractions for qbarQ->qbarQg Scattering
  *
  *  This returns the square of the current contractions in qbarQg->qbarQg
  *  scattering with an emission of a W Boson.
  */
 double ME_W_unob_qbarQ (HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg,
-                        HLV plbar, HLV pl);
+                        HLV plbar, HLV pl,
+                        HEJ::ParticleProperties const & wprop);
 
 //! qQbarg Wjets Unordered backwards opposite leg to W
 /**
  *  @param p1out     Momentum of final state quark a
  *  @param p1in      Momentum of initial state quark a
  *  @param p2out     Momentum of final state anti-quark b
  *  @param p2in      Momentum of intial state anti-quark b
  *  @param pg        Momentum of final state unordered gluon
  *  @param plbar     Momentum of final state anti-lepton
  *  @param pl        Momentum of final state lepton
+ *  @param wpro      Mass and width of the W boson
  *  @returns         Square of the current contractions for qQbar->qQbarg Scattering
  *
  *  This returns the square of the current contractions in qQbarg->qQbarg
  *  scattering with an emission of a W Boson.
  */
 double ME_W_unob_qQbar (HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg,
-                        HLV plbar, HLV pl);
+                        HLV plbar, HLV pl,
+                        HEJ::ParticleProperties const & wprop);
 
 //! qbarQbarg Wjets Unordered backwards opposite leg to W
 /**
  *  @param p1out     Momentum of final state anti-quark a
  *  @param p1in      Momentum of initial state anti-quark a
  *  @param p2out     Momentum of final state anti-quark b
  *  @param p2in      Momentum of intial state anti-quark b
  *  @param pg        Momentum of final state unordered gluon
  *  @param plbar     Momentum of final state anti-lepton
  *  @param pl        Momentum of final state lepton
+ *  @param wpro      Mass and width of the W boson
  *  @returns         Square of the current contractions for qbarQbar->qbarQbarg Scattering
  *
  *  This returns the square of the current contractions in qbarQbarg->qbarQbarg
  *  scattering with an emission of a W Boson.
  */
 double ME_W_unob_qbarQbar (HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg,
-                           HLV plbar, HLV pl);
+                           HLV plbar, HLV pl,
+                           HEJ::ParticleProperties const & wprop);
 
 //! W+uno same leg
 /**
  *  @param p1out     Momentum of final state quark a
  *  @param p1in      Momentum of initial state quark a
  *  @param p2out     Momentum of final state quark b
  *  @param p2in      Momentum of intial state quark b
  *  @param pg        Momentum of final state unordered gluon
  *  @param plbar     Momentum of final state anti-lepton
  *  @param pl        Momentum of final state lepton
+ *  @param wpro      Mass and width of the W boson
  *  @returns         Square of the current contractions for qQ->qQg Scattering
  *
  *  This returns the square of the current contractions in gqQ->gqQ scattering
  *  with an emission of a W Boson.
  */
 double ME_Wuno_qQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg,
-                  HLV plbar, HLV pl);
+                  HLV plbar, HLV pl, HEJ::ParticleProperties const & wprop);
 
 //! W+uno same leg. quark anti-quark
 /**
  *  @param p1out     Momentum of final state quark a
  *  @param p1in      Momentum of initial state quark a
  *  @param p2out     Momentum of final state anti-quark b
  *  @param p2in      Momentum of intial state anti-quark b
  *  @param pg        Momentum of final state unordered gluon
  *  @param plbar     Momentum of final state anti-lepton
  *  @param pl        Momentum of final state lepton
+ *  @param wpro      Mass and width of the W boson
  *  @returns         Square of the current contractions for qQbar->gqQbar Scattering
  *
  *  This returns the square of the current contractions in gqQbar->gqQbar
  *  scattering with an emission of a W Boson. (Unordered Same Leg)
  */
 double ME_Wuno_qQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg,
-                     HLV plbar, HLV pl);
+                     HLV plbar, HLV pl, HEJ::ParticleProperties const & wprop);
 
 //! W+uno same leg. quark gluon
 /**
  *  @param p1out     Momentum of final state quark a
  *  @param p1in      Momentum of initial state quark a
  *  @param p2out     Momentum of final state gluon b
  *  @param p2in      Momentum of intial state gluon b
  *  @param pg        Momentum of final state unordered gluon
  *  @param plbar     Momentum of final state anti-lepton
  *  @param pl        Momentum of final state lepton
+ *  @param wpro      Mass and width of the W boson
  *  @returns         Square of the current contractions for qg->gqg Scattering
  *
  *  This returns the square of the current contractions in qg->gqg scattering
  *  with an emission of a W Boson.
  */
 double ME_Wuno_qg(HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg,
-                  HLV plbar, HLV pl);
+                  HLV plbar, HLV pl,
+                  HEJ::ParticleProperties const & wprop);
 
 //! W+uno same leg. anti-quark quark
 /**
  *  @param p1out     Momentum of final state anti-quark a
  *  @param p1in      Momentum of initial state anti-quark a
  *  @param p2out     Momentum of final state quark b
  *  @param p2in      Momentum of intial state quark b
  *  @param pg        Momentum of final state unordered gluon
  *  @param plbar     Momentum of final state anti-lepton
  *  @param pl        Momentum of final state lepton
+ *  @param wpro      Mass and width of the W boson
  *  @returns         Square of the current contractions for qbarQ->gqbarQ Scattering
  *
  *  This returns the square of the current contractions in qbarQ->gqbarQ
  *  scattering with an emission of a W Boson.
  */
 double ME_Wuno_qbarQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg,
-                     HLV plbar, HLV pl);
+                     HLV plbar, HLV pl, HEJ::ParticleProperties const & wprop);
 
 //! W+uno same leg. anti-quark anti-quark
 /**
  *  @param p1out     Momentum of final state anti-quark a
  *  @param p1in      Momentum of initial state anti-quark a
  *  @param p2out     Momentum of final state anti-quark b
  *  @param p2in      Momentum of intial state anti-quark b
  *  @param pg        Momentum of final state unordered gluon
  *  @param plbar     Momentum of final state anti-lepton
  *  @param pl        Momentum of final state lepton
+ *  @param wpro      Mass and width of the W boson
  *  @returns         Square of the current contractions for qbarQbar->gqbarQbar Scattering
  *
  *  This returns the square of the current contractions in gqbarQbar->qbarQbar
  *  scattering with an emission of a W Boson.
  */
-double ME_Wuno_qbarQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg,
-                        HLV plbar, HLV pl);
+double ME_Wuno_qbarQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in,HLV pg,
+                        HLV plbar, HLV pl,
+                        HEJ::ParticleProperties const & wprop);
 
 //! W+uno same leg. anti-quark gluon
 /**
  *  @param p1out     Momentum of final state anti-quark a
  *  @param p1in      Momentum of initial state anti-quark a
  *  @param p2out     Momentum of final state gluon b
  *  @param p2in      Momentum of intial state gluon b
  *  @param pg        Momentum of final state unordered gluon
  *  @param plbar     Momentum of final state anti-lepton
  *  @param pl        Momentum of final state lepton
+ *  @param wpro      Mass and width of the W boson
  *  @returns         Square of the current contractions for ->gqbarg Scattering
  *
  *  This returns the square of the current contractions in qbarg->gqbarg
  *  scattering with an emission of a W Boson.
  */
 double ME_Wuno_qbarg(HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg,
-                     HLV plbar, HLV pl);
+                     HLV plbar, HLV pl, HEJ::ParticleProperties const & wprop);
 
 //! W+Extremal qqx. qxqQ
 /**
  *  @param pgin      Momentum of initial state gluon
  *  @param pqout     Momentum of final state quark a
  *  @param plbar     Momentum of final state anti-lepton
  *  @param pl        Momentum of final state lepton
  *  @param pqbarout  Momentum of final state anti-quark a
  *  @param p2out     Momentum of initial state anti-quark b
  *  @param p2in      Momentum of final state gluon b
+ *  @param wpro      Mass and width of the W boson
  *  @returns         Square of the current contractions for ->qbarqQ Scattering
  *
  *  Calculates the square of the current contractions with extremal qqbar pair
  *  production. This is calculated through the use of crossing symmetry.
  */
-double ME_WExqqx_qbarqQ(HLV pgin, HLV pqout,HLV plbar,HLV pl, HLV pqbarout, HLV p2out, HLV p2in);
+double ME_WExqqx_qbarqQ(HLV pgin, HLV pqout,HLV plbar,HLV pl, HLV pqbarout,
+                        HLV p2out, HLV p2in,
+                        HEJ::ParticleProperties const & wprop);
 
 //! W+Extremal qqx. qqxQ
 /**
  *  @param pgin      Momentum of initial state gluon
  *  @param pqout     Momentum of final state quark a
  *  @param plbar     Momentum of final state anti-lepton
  *  @param pl        Momentum of final state lepton
  *  @param pqbarout  Momentum of final state anti-quark a
  *  @param p2out     Momentum of initial state anti-quark b
  *  @param p2in      Momentum of final state gluon b
+ *  @param wpro      Mass and width of the W boson
  *  @returns         Square of the current contractions for ->qqbarQ Scattering
  *
  *  Calculates the square of the current contractions with extremal qqbar pair
  *  production. This is calculated through the use of crossing symmetry.
  */
-double ME_WExqqx_qqbarQ(HLV pgin, HLV pqout,HLV plbar,HLV pl, HLV pqbarout, HLV p2out, HLV p2in);
+double ME_WExqqx_qqbarQ(HLV pgin, HLV pqout,HLV plbar,HLV pl, HLV pqbarout,
+                        HLV p2out, HLV p2in,
+                        HEJ::ParticleProperties const & wprop);
 
 //! W+Extremal qqx. gg->qxqg
 /**
  *  @param pgin      Momentum of initial state gluon
  *  @param pqout     Momentum of final state quark a
  *  @param plbar     Momentum of final state anti-lepton
  *  @param pl        Momentum of final state lepton
  *  @param pqbarout  Momentum of final state anti-quark a
  *  @param p2out     Momentum of initial state gluon b
  *  @param p2in      Momentum of final state gluon b
+ *  @param wpro      Mass and width of the W boson
  *  @returns         Square of the current contractions for gg->qbarqg Scattering
  *
  *  Calculates the square of the current contractions with extremal qqbar pair
  *  production. This is calculated through the use of crossing symmetry.
  */
-double ME_WExqqx_qbarqg(HLV pgin, HLV pqout,HLV plbar,HLV pl, HLV pqbarout, HLV p2out, HLV p2in);
+double ME_WExqqx_qbarqg(HLV pgin, HLV pqout,HLV plbar,HLV pl, HLV pqbarout,
+                        HLV p2out, HLV p2in,
+                        HEJ::ParticleProperties const & wprop);
 
 //! W+Extremal qqx. gg->qqxg
 /**
  *  @param pgin      Momentum of initial state gluon
  *  @param pqout     Momentum of final state quark a
  *  @param plbar     Momentum of final state anti-lepton
  *  @param pl        Momentum of final state lepton
  *  @param pqbarout  Momentum of final state anti-quark a
  *  @param p2out     Momentum of initial state gluon a
  *  @param p2in      Momentum of final state gluon b
+ *  @param wpro      Mass and width of the W boson
  *  @returns         Square of the current contractions for gg->qqbarg Scattering
  *
  *  Calculates the square of the current contractions with extremal qqbar pair
  *  production. This is calculated through the use of crossing symmetry.
  */
-double ME_WExqqx_qqbarg(HLV pgin, HLV pqbarout,HLV plbar,HLV pl, HLV pqout, HLV p2out, HLV p2in);
+double ME_WExqqx_qqbarg(HLV pgin, HLV pqbarout,HLV plbar,HLV pl, HLV pqout,
+                        HLV p2out, HLV p2in,
+                        HEJ::ParticleProperties const & wprop);
 
 //! W+Extremal qqx. gg->qqxg. qqx on forwards leg, W emission backwards leg.
 /**
  *  @param pa        Momentum of initial state (anti-)quark
  *  @param pb        Momentum of initial state gluon
  *  @param p1        Momentum of final state (anti-)quark (after W emission)
  *  @param p2        Momentum of final state anti-quark
  *  @param p3        Momentum of final state quark
  *  @param plbar     Momentum of final state anti-lepton
  *  @param pl        Momentum of final state lepton
  *  @param aqlinepa  Is opposite extremal leg to qqx a quark or antiquark line
+ *  @param wpro      Mass and width of the W boson
  *  @returns         Square of the current contractions for gq->qqbarqW Scattering
  *
  *  Calculates the square of the current contractions with extremal qqbar pair
  *  production. This is calculated via current contraction of existing currents.
  *  Assumes qqx split from forwards leg, W emission from backwards leg.
  *  Switch input (pa<->pb, p1<->pn) if calculating forwards qqx.
  */
-double ME_W_Exqqx_QQq(HLV pa, HLV pb, HLV p1,  HLV p2, HLV p3,HLV plbar,HLV pl, bool aqlinepa);
+double ME_W_Exqqx_QQq(HLV pa, HLV pb, HLV p1,  HLV p2, HLV p3,HLV plbar, HLV pl,
+                     bool aqlinepa, HEJ::ParticleProperties const & wprop);
 
 //! W+Jets qqxCentral. qqx W emission.
 /**
  *  @param pa                Momentum of initial state particle a
  *  @param pb                Momentum of initial state particle b
  *  @param pl                Momentum of final state lepton
  *  @param plbar             Momentum of final state anti-lepton
  *  @param partons           Vector of outgoing parton momenta
  *  @param aqlinepa          True= pa is anti-quark
  *  @param aqlinepb          True= pb is anti-quark
  *  @param qqxmarker         Ordering of the qqbar pair produced (qqx vs qxq)
  *  @param nabove            Number of lipatov vertices "above" qqbar pair
  *  @param nbelow            Number of lipatov vertices "below" qqbar pair
+ *  @param wpro              Mass and width of the W boson
  *  @returns                 Square of the current contractions for qq>qQQbarWq Scattering
  *
  *  Calculates the square of the current contractions with extremal qqbar pair
  *  production. This is calculated through the use of crossing symmetry.
  */
 double ME_WCenqqx_qq(HLV pa, HLV pb,HLV pl,HLV plbar, std::vector<HLV> partons,
-                    bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove);
+                    bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove,
+                    HEJ::ParticleProperties const & wprop);
 
 //! W+Jets qqxCentral. W emission from backwards leg.
 /**
  *  @param ka                Momentum of initial state particle a
  *  @param kb                Momentum of initial state particle b
  *  @param pl                Momentum of final state lepton
  *  @param plbar             Momentum of final state anti-lepton
  *  @param partons           outgoing parton momenta
  *  @param aqlinepa          True= pa is anti-quark
  *  @param aqlinepb          True= pb is anti-quark
  *  @param qqxmarker         Ordering of the qqbar pair produced (qqx vs qxq)
  *  @param nabove            Number of lipatov vertices "above" qqbar pair
  *  @param nbelow            Number of lipatov vertices "below" qqbar pair
  *  @param forwards          Swap to emission off front leg TODO:remove so args can be const
+ *  @param wpro              Mass and width of the W boson
  *  @returns                 Square of the current contractions for qq>qQQbarWq Scattering
  *
  *  Calculates the square of the current contractions with extremal qqbar pair
  *  production. This is calculated through the use of crossing symmetry.
  */
 double ME_W_Cenqqx_qq(HLV ka, HLV kb,HLV pl,HLV plbar, std::vector<HLV> partons,
                      bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove,
-                     int nbelow, bool forwards);
+                     int nbelow, bool forwards,
+                     HEJ::ParticleProperties const & wprop);
diff --git a/src/MatrixElement.cc b/src/MatrixElement.cc
index addb071..dad1f93 100644
--- a/src/MatrixElement.cc
+++ b/src/MatrixElement.cc
@@ -1,1506 +1,1512 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #include "HEJ/MatrixElement.hh"
 
 #include <algorithm>
 #include <assert.h>
 #include <limits>
 #include <math.h>
 #include <stddef.h>
 #include <unordered_map>
 #include <utility>
 
 #include "CLHEP/Vector/LorentzVector.h"
 
 #include "HEJ/Constants.hh"
 #include "HEJ/Wjets.hh"
 #include "HEJ/Hjets.hh"
 #include "HEJ/jets.hh"
 #include "HEJ/PDG_codes.hh"
 #include "HEJ/event_types.hh"
 #include "HEJ/Event.hh"
 #include "HEJ/exceptions.hh"
 #include "HEJ/Particle.hh"
 #include "HEJ/utility.hh"
 
 namespace HEJ{
   double MatrixElement::omega0(
       double alpha_s, double mur,
       fastjet::PseudoJet const & q_j
   ) const {
     const double lambda = param_.regulator_lambda;
     const double result = - alpha_s*N_C/M_PI*log(q_j.perp2()/(lambda*lambda));
     if(! param_.log_correction) return result;
     // use alpha_s(sqrt(q_j*lambda)), evolved to mur
     return (
         1. + alpha_s/(4.*M_PI)*beta0*log(mur*mur/(q_j.perp()*lambda))
     )*result;
   }
 
   Weights MatrixElement::operator()(Event const & event) const {
     return tree(event)*virtual_corrections(event);
   }
 
   Weights MatrixElement::tree(Event const & event) const {
     return tree_param(event)*tree_kin(event);
   }
 
   Weights MatrixElement::tree_param(Event const & event) const {
     if(! is_resummable(event.type())) {
       return Weights{0., std::vector<double>(event.variations().size(), 0.)};
     }
     Weights result;
     // only compute once for each renormalisation scale
     std::unordered_map<double, double> known;
     result.central = tree_param(event, event.central().mur);
     known.emplace(event.central().mur, result.central);
     for(auto const & var: event.variations()) {
       const auto ME_it = known.find(var.mur);
       if(ME_it == end(known)) {
         const double wt = tree_param(event, var.mur);
         result.variations.emplace_back(wt);
         known.emplace(var.mur, wt);
       }
       else {
         result.variations.emplace_back(ME_it->second);
       }
     }
     return result;
   }
 
   Weights MatrixElement::virtual_corrections(Event const & event) const {
     if(! is_resummable(event.type())) {
       return Weights{0., std::vector<double>(event.variations().size(), 0.)};
     }
     Weights result;
     // only compute once for each renormalisation scale
     std::unordered_map<double, double> known;
     result.central = virtual_corrections(event, event.central().mur);
     known.emplace(event.central().mur, result.central);
     for(auto const & var: event.variations()) {
       const auto ME_it = known.find(var.mur);
       if(ME_it == end(known)) {
         const double wt = virtual_corrections(event, var.mur);
         result.variations.emplace_back(wt);
         known.emplace(var.mur, wt);
       }
       else {
         result.variations.emplace_back(ME_it->second);
       }
     }
     return result;
   }
 
   double MatrixElement::virtual_corrections_W(
       Event const & event,
       double mur,
       Particle const & WBoson
   ) const{
     auto const & in = event.incoming();
     const auto partons = filter_partons(event.outgoing());
     fastjet::PseudoJet const & pa = in.front().p;
 #ifndef NDEBUG
     fastjet::PseudoJet const & pb = in.back().p;
     double const norm = (in.front().p + in.back().p).E();
 #endif
 
     assert(std::is_sorted(partons.begin(), partons.end(), rapidity_less{}));
     assert(partons.size() >= 2);
     assert(pa.pz() < pb.pz());
 
     fastjet::PseudoJet q = pa - partons[0].p;
     size_t first_idx = 0;
     size_t last_idx = partons.size() - 1;
 
     bool wc = true;
     bool wqq = false;
 
     // With extremal qqx or unordered gluon outside the extremal
     // partons then it is not part of the FKL ladder and does not
     // contribute to the virtual corrections. W emitted from the
     // most backward leg must be taken into account in t-channel
     if (event.type() == event_type::FKL) {
       if (in[0].type != partons[0].type ){
         q -= WBoson.p;
         wc = false;
       }
     }
 
     else if (event.type() == event_type::unob) {
       q -= partons[1].p;
       ++first_idx;
       if (in[0].type != partons[1].type ){
         q -= WBoson.p;
         wc = false;
       }
     }
 
     else if (event.type() == event_type::qqxexb) {
       q -= partons[1].p;
       ++first_idx;
       if (abs(partons[0].type) != abs(partons[1].type)){
         q -= WBoson.p;
         wc = false;
       }
     }
 
     if(event.type() == event_type::unof
        || event.type() == event_type::qqxexf){
       --last_idx;
     }
 
     size_t first_idx_qqx = last_idx;
     size_t last_idx_qqx = last_idx;
 
     //if qqxMid event, virtual correction do not occur between
     //qqx pair.
     if(event.type() == event_type::qqxmid){
       const auto backquark = std::find_if(
         begin(partons) + 1, end(partons) - 1 ,
         [](Particle const & s){ return (s.type != pid::gluon); }
       );
       if(backquark == end(partons) || (backquark+1)->type==pid::gluon) return 0;
       if(abs(backquark->type) != abs((backquark+1)->type)) {
         wqq=true;
         wc=false;
       }
       last_idx = std::distance(begin(partons), backquark);
       first_idx_qqx = last_idx+1;
     }
     double exponent = 0;
     const double alpha_s = alpha_s_(mur);
     for(size_t j = first_idx; j < last_idx; ++j){
       exponent += omega0(alpha_s, mur, q)*(
           partons[j+1].rapidity() - partons[j].rapidity()
       );
       q -=partons[j+1].p;
     } // End Loop one
 
     if (last_idx != first_idx_qqx) q -= partons[last_idx+1].p;
     if (wqq)  q -= WBoson.p;
 
     for(size_t j = first_idx_qqx; j < last_idx_qqx; ++j){
       exponent += omega0(alpha_s, mur, q)*(
           partons[j+1].rapidity() - partons[j].rapidity()
       );
       q -= partons[j+1].p;
     }
 
     if (wc) q -= WBoson.p;
 
     assert(
         nearby(q, -1*pb, norm)
         || is_AWZH_boson(partons.back().type)
         || event.type() == event_type::unof
         || event.type() == event_type::qqxexf
     );
 
     return exp(exponent);
   }
 
   double MatrixElement::virtual_corrections(
       Event const & event,
       double mur
   ) const{
     auto const & in = event.incoming();
     auto const & out = event.outgoing();
     fastjet::PseudoJet const & pa = in.front().p;
 #ifndef NDEBUG
     fastjet::PseudoJet const & pb = in.back().p;
     double const norm = (in.front().p + in.back().p).E();
 #endif
 
     const auto AWZH_boson = std::find_if(
         begin(out), end(out),
         [](Particle const & p){ return is_AWZH_boson(p); }
     );
 
     if(AWZH_boson != end(out) && abs(AWZH_boson->type) == pid::Wp){
       return virtual_corrections_W(event, mur, *AWZH_boson);
     }
 
     assert(std::is_sorted(out.begin(), out.end(), rapidity_less{}));
     assert(out.size() >= 2);
     assert(pa.pz() < pb.pz());
 
     fastjet::PseudoJet q = pa - out[0].p;
     size_t first_idx = 0;
     size_t last_idx = out.size() - 1;
 
     // if there is a Higgs boson, extremal qqx or unordered gluon
     // outside the extremal partons then it is not part of the FKL
     // ladder and does not contribute to the virtual corrections
     if((out.front().type == pid::Higgs)
        || event.type() == event_type::unob
        || event.type() == event_type::qqxexb){
       q -= out[1].p;
       ++first_idx;
     }
     if((out.back().type == pid::Higgs)
        || event.type() == event_type::unof
        || event.type() == event_type::qqxexf){
       --last_idx;
     }
 
     size_t first_idx_qqx = last_idx;
     size_t last_idx_qqx = last_idx;
 
     //if qqxMid event, virtual correction do not occur between
     //qqx pair.
     if(event.type() == event_type::qqxmid){
       const auto backquark = std::find_if(
         begin(out) + 1, end(out) - 1 ,
         [](Particle const & s){ return (s.type != pid::gluon && is_parton(s.type)); }
       );
       if(backquark == end(out) || (backquark+1)->type==pid::gluon) return 0;
       last_idx = std::distance(begin(out), backquark);
       first_idx_qqx = last_idx+1;
     }
     double exponent = 0;
     const double alpha_s = alpha_s_(mur);
     for(size_t j = first_idx; j < last_idx; ++j){
       exponent += omega0(alpha_s, mur, q)*(
           out[j+1].rapidity() - out[j].rapidity()
       );
       q -= out[j+1].p;
     }
 
     if (last_idx != first_idx_qqx) q -= out[last_idx+1].p;
 
     for(size_t j = first_idx_qqx; j < last_idx_qqx; ++j){
       exponent += omega0(alpha_s, mur, q)*(
           out[j+1].rapidity() - out[j].rapidity()
       );
       q -= out[j+1].p;
     }
     assert(
         nearby(q, -1*pb, norm)
         || out.back().type == pid::Higgs
         || event.type() == event_type::unof
         || event.type() == event_type::qqxexf
     );
     return exp(exponent);
   }
-} // namespace HEJ
 
 namespace {
   //! Lipatov vertex for partons emitted into extremal jets
   double C2Lipatov(
       CLHEP::HepLorentzVector const & qav,
       CLHEP::HepLorentzVector const & qbv,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & p2
   ){
     CLHEP::HepLorentzVector temptrans=-(qav+qbv);
     CLHEP::HepLorentzVector p5=qav-qbv;
     CLHEP::HepLorentzVector CL=temptrans
       + p1*(qav.m2()/p5.dot(p1) + 2.*p5.dot(p2)/p1.dot(p2))
       - p2*(qbv.m2()/p5.dot(p2) + 2.*p5.dot(p1)/p1.dot(p2));
     return -CL.dot(CL);
   }
 
   //! Lipatov vertex with soft subtraction for partons emitted into extremal jets
   double C2Lipatovots(
       CLHEP::HepLorentzVector const & qav,
       CLHEP::HepLorentzVector const & qbv,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & p2,
       double lambda
   ) {
     double kperp=(qav-qbv).perp();
     if (kperp>lambda)
       return C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2());
 
     double Cls=(C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2()));
     return Cls-4./(kperp*kperp);
   }
 
   //! Lipatov vertex
   double C2Lipatov( // B
       CLHEP::HepLorentzVector const & qav,
       CLHEP::HepLorentzVector const & qbv,
       CLHEP::HepLorentzVector const & pim,
       CLHEP::HepLorentzVector const & pip,
       CLHEP::HepLorentzVector const & pom,
       CLHEP::HepLorentzVector const & pop
   ){
     CLHEP::HepLorentzVector temptrans=-(qav+qbv);
     CLHEP::HepLorentzVector p5=qav-qbv;
     CLHEP::HepLorentzVector CL=temptrans
       + qav.m2()*(1./p5.dot(pip)*pip + 1./p5.dot(pop)*pop)/2.
       - qbv.m2()*(1./p5.dot(pim)*pim + 1./p5.dot(pom)*pom)/2.
       + ( pip*(p5.dot(pim)/pip.dot(pim) + p5.dot(pom)/pip.dot(pom))
         + pop*(p5.dot(pim)/pop.dot(pim) + p5.dot(pom)/pop.dot(pom))
         - pim*(p5.dot(pip)/pip.dot(pim) + p5.dot(pop)/pop.dot(pim))
         - pom*(p5.dot(pip)/pip.dot(pom) + p5.dot(pop)/pop.dot(pom)) )/2.;
 
     return -CL.dot(CL);
   }
 
   //! Lipatov vertex with soft subtraction
   double C2Lipatovots(
       CLHEP::HepLorentzVector const & qav,
       CLHEP::HepLorentzVector const & qbv,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & p2,
       double lambda
   ) {
     double kperp=(qav-qbv).perp();
     if (kperp>lambda)
       return C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2());
 
     double Cls=(C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2()));
     double temp=Cls-4./(kperp*kperp);
     return temp;
   }
 
   /** Matrix element squared for tree-level current-current scattering
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pg              Unordered gluon momentum
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @returns               ME Squared for Tree-Level Current-Current Scattering
    *
    *  @note The unof contribution can be calculated by reversing the argument ordering.
    */
   double ME_uno_current(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & pg,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa
   ){
     assert(aptype!=21); // aptype cannot be gluon
     if (bptype==21) {
       if (aptype > 0)
         return ME_unob_qg(pg,p1,pa,pn,pb);
       else
         return ME_unob_qbarg(pg,p1,pa,pn,pb);
     }
     else if (bptype<0) { // ----- || -----
       if (aptype > 0)
         return ME_unob_qQbar(pg,p1,pa,pn,pb);
       else
         return ME_unob_qbarQbar(pg,p1,pa,pn,pb);
     }
     else { //bptype == quark
         if (aptype > 0)
           return ME_unob_qQ(pg,p1,pa,pn,pb);
         else
           return ME_unob_qbarQ(pg,p1,pa,pn,pb);
       }
   }
 
   /** Matrix element squared for tree-level current-current scattering
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @returns               ME Squared for Tree-Level Current-Current Scattering
    */
   double ME_current(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa
   ){
     if (aptype==21&&bptype==21) {
       return ME_gg(pn,pb,p1,pa);
     } else if (aptype==21&&bptype!=21) {
       if (bptype > 0)
         return ME_qg(pn,pb,p1,pa);
       else
         return ME_qbarg(pn,pb,p1,pa);
     }
     else if (bptype==21&&aptype!=21) { // ----- || -----
       if (aptype > 0)
         return ME_qg(p1,pa,pn,pb);
       else
         return ME_qbarg(p1,pa,pn,pb);
     }
     else { // they are both quark
       if (bptype>0) {
         if (aptype>0)
           return ME_qQ(pn,pb,p1,pa);
         else
           return ME_qQbar(pn,pb,p1,pa);
       }
       else {
         if (aptype>0)
           return ME_qQbar(p1,pa,pn,pb);
         else
           return ME_qbarQbar(pn,pb,p1,pa);
       }
     }
     throw std::logic_error("unknown particle types");
   }
 
   /** Matrix element squared for tree-level current-current scattering With W+Jets
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param wc              Boolean. True->W Emitted from b. Else; emitted from leg a
    *  @returns               ME Squared for Tree-Level Current-Current Scattering
    */
   double ME_W_current(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & plbar,
       CLHEP::HepLorentzVector const & pl,
-      bool const wc
+      bool const wc, ParticleProperties const & Wprop
   ){
     // We know it cannot be gg incoming.
     assert(!(aptype==21 && bptype==21));
     if (aptype==21&&bptype!=21) {
       if (bptype > 0)
-        return ME_W_qg(pn,plbar,pl,pb,p1,pa);
+        return ME_W_qg(pn,plbar,pl,pb,p1,pa,Wprop);
       else
-        return ME_W_qbarg(pn,plbar,pl,pb,p1,pa);
+        return ME_W_qbarg(pn,plbar,pl,pb,p1,pa,Wprop);
     }
     else if (bptype==21&&aptype!=21) { // ----- || -----
       if (aptype > 0)
-        return ME_W_qg(p1,plbar,pl,pa,pn,pb);
+        return ME_W_qg(p1,plbar,pl,pa,pn,pb,Wprop);
       else
-        return ME_W_qbarg(p1,plbar,pl,pa,pn,pb);
+        return ME_W_qbarg(p1,plbar,pl,pa,pn,pb,Wprop);
     }
     else { // they are both quark
       if (wc==true){ // emission off b, (first argument pbout)
         if (bptype>0) {
           if (aptype>0)
-            return ME_W_qQ(pn,plbar,pl,pb,p1,pa);
+            return ME_W_qQ(pn,plbar,pl,pb,p1,pa,Wprop);
           else
-            return ME_W_qQbar(pn,plbar,pl,pb,p1,pa);
+            return ME_W_qQbar(pn,plbar,pl,pb,p1,pa,Wprop);
         }
         else {
           if (aptype>0)
-            return ME_W_qbarQ(pn,plbar,pl,pb,p1,pa);
+            return ME_W_qbarQ(pn,plbar,pl,pb,p1,pa,Wprop);
           else
-            return ME_W_qbarQbar(pn,plbar,pl,pb,p1,pa);
+            return ME_W_qbarQbar(pn,plbar,pl,pb,p1,pa,Wprop);
         }
       }
       else{ // emission off a, (first argument paout)
         if (aptype > 0) {
           if (bptype > 0)
-            return ME_W_qQ(p1,plbar,pl,pa,pn,pb);
+            return ME_W_qQ(p1,plbar,pl,pa,pn,pb,Wprop);
           else
-            return ME_W_qQbar(p1,plbar,pl,pa,pn,pb);
+            return ME_W_qQbar(p1,plbar,pl,pa,pn,pb,Wprop);
         }
         else {  // a is anti-quark
           if (bptype > 0)
-            return ME_W_qbarQ(p1,plbar,pl,pa,pn,pb);
+            return ME_W_qbarQ(p1,plbar,pl,pa,pn,pb,Wprop);
           else
-            return ME_W_qbarQbar(p1,plbar,pl,pa,pn,pb);
+            return ME_W_qbarQbar(p1,plbar,pl,pa,pn,pb,Wprop);
         }
 
       }
     }
     throw std::logic_error("unknown particle types");
   }
 
   /** Matrix element squared for backwards uno tree-level current-current
    *  scattering With W+Jets
    *
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param pg              Unordered gluon momentum
    *  @param wc              Boolean. True->W Emitted from b. Else; emitted from leg a
    *  @returns               ME Squared for unob Tree-Level Current-Current Scattering
    *
    *  @note The unof contribution can be calculated by reversing the argument ordering.
    */
   double ME_W_uno_current(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & pg,
       CLHEP::HepLorentzVector const & plbar,
       CLHEP::HepLorentzVector const & pl,
-      bool const wc
+      bool const wc, ParticleProperties const & Wprop
   ){
     // we know they are not both gluons
     if (bptype == 21 && aptype != 21) { // b gluon => W emission off a
       if (aptype > 0)
-        return ME_Wuno_qg(p1,pa,pn,pb,pg,plbar,pl);
+        return ME_Wuno_qg(p1,pa,pn,pb,pg,plbar,pl,Wprop);
       else
-        return ME_Wuno_qbarg(p1,pa,pn,pb,pg,plbar,pl);
+        return ME_Wuno_qbarg(p1,pa,pn,pb,pg,plbar,pl,Wprop);
     }
 
     else { // they are both quark
       if (wc) {// emission off b, i.e. b is first current
         if (bptype>0){
           if (aptype>0)
-            return ME_W_unob_qQ(p1,pa,pn,pb,pg,plbar,pl);
+            return ME_W_unob_qQ(p1,pa,pn,pb,pg,plbar,pl,Wprop);
           else
-            return ME_W_unob_qQbar(p1,pa,pn,pb,pg,plbar,pl);
+            return ME_W_unob_qQbar(p1,pa,pn,pb,pg,plbar,pl,Wprop);
         }
         else{
           if (aptype>0)
-            return ME_W_unob_qbarQ(p1,pa,pn,pb,pg,plbar,pl);
+            return ME_W_unob_qbarQ(p1,pa,pn,pb,pg,plbar,pl,Wprop);
           else
-            return ME_W_unob_qbarQbar(p1,pa,pn,pb,pg,plbar,pl);
+            return ME_W_unob_qbarQbar(p1,pa,pn,pb,pg,plbar,pl,Wprop);
         }
       }
       else {// wc == false, emission off a, i.e. a is first current
         if (aptype > 0) {
           if (bptype > 0) //qq
-            return ME_Wuno_qQ(p1,pa,pn,pb,pg,plbar,pl);
+            return ME_Wuno_qQ(p1,pa,pn,pb,pg,plbar,pl,Wprop);
           else //qqbar
-            return ME_Wuno_qQbar(p1,pa,pn,pb,pg,plbar,pl);
+            return ME_Wuno_qQbar(p1,pa,pn,pb,pg,plbar,pl,Wprop);
         }
         else {  // a is anti-quark
           if (bptype > 0) //qbarq
-            return ME_Wuno_qbarQ(p1,pa,pn,pb,pg,plbar,pl);
+            return ME_Wuno_qbarQ(p1,pa,pn,pb,pg,plbar,pl,Wprop);
           else //qbarqbar
-            return ME_Wuno_qbarQbar(p1,pa,pn,pb,pg,plbar,pl);
+            return ME_Wuno_qbarQbar(p1,pa,pn,pb,pg,plbar,pl,Wprop);
         }
       }
     }
     throw std::logic_error("unknown particle types");
   }
 
   /** \brief Matrix element squared for backward qqx tree-level current-current
    *         scattering With W+Jets
    *
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pa              Initial state a Momentum
    *  @param pb              Initial state b Momentum
    *  @param pq              Final state q Momentum
    *  @param pqbar           Final state qbar Momentum
    *  @param pn              Final state n Momentum
    *  @param plbar           Final state anti-lepton momentum
    *  @param pl              Final state lepton momentum
    *  @param wc              Boolean. True->W Emitted from b. Else; emitted from leg a
    *  @returns               ME Squared for qqxb Tree-Level Current-Current Scattering
    *
    *  @note calculate forwards qqx contribution by reversing argument ordering.
    */
   double ME_W_qqx_current(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & pq,
       CLHEP::HepLorentzVector const & pqbar,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & plbar,
       CLHEP::HepLorentzVector const & pl,
-      bool const swap_q_qx, bool const wc
+      bool const swap_q_qx, bool const wc,
+      ParticleProperties const & Wprop
   ){
     // CAM factors for the qqx amps, and qqbar ordering (default, qbar extremal)
     // const bool swap_q_qx= pqbar.rapidity() > pq.rapidity();
     const double CFbackward = K_g( (swap_q_qx)?pq:pqbar ,pa)/HEJ::C_F;
 
     // With qqbar we could have 2 incoming gluons and W Emission
     if (aptype==21&&bptype==21) {//a gluon, b gluon gg->qqbarWg
       // This will be a wqqx emission as there is no other possible W Emission Site.
       if (swap_q_qx)
-        return ME_WExqqx_qqbarg(pa, pqbar, plbar, pl, pq, pn, pb)*CFbackward;
+        return ME_WExqqx_qqbarg(pa, pqbar, plbar, pl, pq, pn, pb, Wprop)*CFbackward;
       else
-        return ME_WExqqx_qbarqg(pa, pq, plbar, pl, pqbar, pn, pb)*CFbackward;
+        return ME_WExqqx_qbarqg(pa, pq, plbar, pl, pqbar, pn, pb, Wprop)*CFbackward;
     }
     else if (aptype==21&&bptype!=21 ) {//a gluon => W emission off b leg or qqx
       if (!wc){ // W Emitted from backwards qqx
         if (swap_q_qx)
-          return ME_WExqqx_qqbarQ(pa, pqbar, plbar, pl, pq, pn, pb)*CFbackward;
+          return ME_WExqqx_qqbarQ(pa, pqbar, plbar, pl, pq, pn, pb, Wprop)*CFbackward;
         else
-          return ME_WExqqx_qbarqQ(pa, pq, plbar, pl, pqbar, pn, pb)*CFbackward;
+          return ME_WExqqx_qbarqQ(pa, pq, plbar, pl, pqbar, pn, pb, Wprop)*CFbackward;
       }
       else {   // W Must be emitted from forwards leg.
         if (swap_q_qx)
-          return ME_W_Exqqx_QQq(pb, pa, pn, pqbar, pq, plbar, pl, bptype<0)*CFbackward;
+          return ME_W_Exqqx_QQq(pb, pa, pn, pqbar, pq, plbar, pl, bptype<0, Wprop)*CFbackward;
         else
-          return ME_W_Exqqx_QQq(pb, pa, pn, pq, pqbar, plbar, pl, bptype<0)*CFbackward;
+          return ME_W_Exqqx_QQq(pb, pa, pn, pq, pqbar, plbar, pl, bptype<0, Wprop)*CFbackward;
       }
     }
     throw std::logic_error("Incompatible incoming particle types with qqxb");
   }
 
   /*  \brief Matrix element squared for central qqx tree-level current-current
    *         scattering With W+Jets
    *
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param nabove          Number of gluons emitted before central qqxpair
    *  @param nbelow          Number of gluons emitted after central qqxpair
    *  @param pa              Initial state a Momentum
    *  @param pb              Initial state b Momentum\
    *  @param pq              Final state qbar Momentum
    *  @param pqbar           Final state q Momentum
    *  @param partons         Vector of all outgoing partons
    *  @param plbar           Final state anti-lepton momentum
    *  @param pl              Final state lepton momentum
    *  @param wqq             Boolean. True siginfies W boson is emitted from Central qqx
    *  @param wc              Boolean. wc=true signifies w boson emitted from leg b; if wqq=false.
    *  @returns               ME Squared for qqxmid Tree-Level Current-Current Scattering
    */
   double ME_W_qqxmid_current(
       int aptype, int bptype,
       int nabove, int nbelow,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & pq,
       CLHEP::HepLorentzVector const & pqbar,
       std::vector<HLV> const & partons,
       CLHEP::HepLorentzVector const & plbar,
       CLHEP::HepLorentzVector const & pl,
-      bool const wqq, bool const wc
+      bool const wqq, bool const wc,
+      ParticleProperties const & Wprop
   ){
     // CAM factors for the qqx amps, and qqbar ordering (default, pq backwards)
     const bool swap_q_qx=pqbar.rapidity() < pq.rapidity();
     double wt=1.;
 
     if (aptype==21)  wt*=K_g(partons.front(),pa)/HEJ::C_F;
     if (bptype==21)  wt*=K_g(partons.back(),pb)/HEJ::C_F;
 
     if(wqq)
       return wt*ME_WCenqqx_qq(pa, pb, pl, plbar, partons,(bptype<0),(aptype<0),
-                              swap_q_qx, nabove);
+                              swap_q_qx, nabove, Wprop);
     return wt*ME_W_Cenqqx_qq(pa, pb, pl, plbar, partons, (bptype<0), (aptype<0),
-                             swap_q_qx, nabove, nbelow, wc);
+                             swap_q_qx, nabove, nbelow, wc, Wprop);
   }
 
   /** \brief Matrix element squared for tree-level current-current scattering with Higgs
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param qH              t-channel momentum before Higgs
    *  @param qHp1            t-channel momentum after Higgs
    *  @returns               ME Squared for Tree-Level Current-Current Scattering with Higgs
    */
   double ME_Higgs_current(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & qH,  // t-channel momentum before Higgs
       CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
       double mt, bool include_bottom, double mb, double vev
   ){
     if (aptype==21&&bptype==21) // gg initial state
       return ME_H_gg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev);
     else if (aptype==21&&bptype!=21) {
       if (bptype > 0)
         return ME_H_qg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4./9.;
       else
         return ME_H_qbarg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4./9.;
     }
     else if (bptype==21&&aptype!=21) {
       if (aptype > 0)
         return ME_H_qg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev)*4./9.;
       else
         return ME_H_qbarg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev)*4./9.;
     }
     else { // they are both quark
       if (bptype>0) {
         if (aptype>0)
           return ME_H_qQ(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4.*4./(9.*9.);
         else
           return ME_H_qQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4.*4./(9.*9.);
       }
       else {
         if (aptype>0)
           return ME_H_qQbar(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev)*4.*4./(9.*9.);
         else
           return ME_H_qbarQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4.*4./(9.*9.);
       }
     }
     throw std::logic_error("unknown particle types");
   }
 
   /** \brief Current matrix element squared with Higgs and unordered backward emission
    *  @param aptype          Particle A PDG ID
    *  @param bptype          Particle B PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param pg              Unordered back Particle Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param qH              t-channel momentum before Higgs
    *  @param qHp1            t-channel momentum after Higgs
    *  @returns               ME Squared with Higgs and unordered backward emission
    *
    *  @note This function assumes unordered gluon backwards from pa-p1 current.
    *        For unof, reverse call order
    */
   double ME_Higgs_current_uno(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & pg,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & qH,  // t-channel momentum before Higgs
       CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
       double mt, bool include_bottom, double mb, double vev
   ){
     if (bptype==21&&aptype!=21) {
       if (aptype > 0)
         return ME_H_unob_gQ(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev);
       else
         return ME_H_unob_gQbar(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev);
     }
     else { // they are both quark
       if (aptype>0) {
         if (bptype>0)
           return ME_H_unob_qQ(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev);
         else
           return ME_H_unob_qbarQ(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev);
       }
       else {
         if (bptype>0)
           return ME_H_unob_qQbar(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev);
         else
           return ME_H_unob_qbarQbar(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev);
       }
     }
     throw std::logic_error("unknown particle types");
   }
 
   CLHEP::HepLorentzVector to_HepLorentzVector(HEJ::Particle const & particle){
     return {particle.p.px(), particle.p.py(), particle.p.pz(), particle.p.E()};
   }
 
   void validate(HEJ::MatrixElementConfig const & config) {
 #ifndef HEJ_BUILD_WITH_QCDLOOP
     if(!config.Higgs_coupling.use_impact_factors) {
       throw std::invalid_argument{
         "Invalid Higgs coupling settings.\n"
         "HEJ without QCDloop support can only use impact factors.\n"
         "Set use_impact_factors to true or recompile HEJ.\n"
        };
     }
 #endif
     if(config.Higgs_coupling.use_impact_factors
       && config.Higgs_coupling.mt != std::numeric_limits<double>::infinity()) {
       throw std::invalid_argument{
         "Conflicting settings: "
           "impact factors may only be used in the infinite top mass limit"
       };
     }
   }
 } // namespace anonymous
 
-namespace HEJ{
   MatrixElement::MatrixElement(
       std::function<double (double)> alpha_s,
       MatrixElementConfig conf
   ):
     alpha_s_{std::move(alpha_s)},
     param_{std::move(conf)}
   {
     validate(param_);
   }
 
   double MatrixElement::tree_kin(
       Event const & ev
   ) const {
     if(! is_resummable(ev.type())) return 0.;
 
     auto AWZH_boson = std::find_if(
         begin(ev.outgoing()), end(ev.outgoing()),
         [](Particle const & p){return is_AWZH_boson(p);}
     );
 
     if(AWZH_boson == end(ev.outgoing()))
       return tree_kin_jets(ev);
 
     switch(AWZH_boson->type){
     case pid::Higgs:
       return tree_kin_Higgs(ev);
     case pid::Wp:
     case pid::Wm:
       return tree_kin_W(ev);
     // TODO
     case pid::photon:
     case pid::Z:
     default:
       throw not_implemented("Emission of boson of unsupported type");
     }
   }
 
   namespace{
     constexpr int extremal_jet_idx = 1;
     constexpr int no_extremal_jet_idx = 0;
 
     bool treat_as_extremal(Particle const & parton){
       return parton.p.user_index() == extremal_jet_idx;
     }
 
     template<class InputIterator>
       double FKL_ladder_weight(
           InputIterator begin_gluon, InputIterator end_gluon,
           CLHEP::HepLorentzVector const & q0,
           CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb,
           CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pn,
           double lambda
       ){
       double wt = 1;
       auto qi = q0;
       for(auto gluon_it = begin_gluon; gluon_it != end_gluon; ++gluon_it){
         assert(gluon_it->type == pid::gluon);
         const auto g = to_HepLorentzVector(*gluon_it);
         const auto qip1 = qi - g;
 
         if(treat_as_extremal(*gluon_it)){
           wt *= C2Lipatovots(qip1, qi, pa, pb, lambda)*C_A;
         } else{
           wt *= C2Lipatovots(qip1, qi, pa, pb, p1, pn, lambda)*C_A;
         }
 
         qi = qip1;
       }
       return wt;
     }
 
   }  // namespace anonymous
 
   std::vector<Particle> MatrixElement::tag_extremal_jet_partons(
       Event const & ev
   ) const{
     auto out_partons = filter_partons(ev.outgoing());
     if(out_partons.size() == ev.jets().size()){
       // no additional emissions in extremal jets, don't need to tag anything
       for(auto & parton: out_partons){
         parton.p.set_user_index(no_extremal_jet_idx);
       }
       return out_partons;
     }
     const auto & jets = ev.jets();
     assert(jets.size() >= 2);
     auto most_backward = begin(jets);
     auto most_forward = end(jets) - 1;
     // skip jets caused by unordered emission or qqx
     if(ev.type() == event_type::unob || ev.type() == event_type::qqxexb){
       assert(jets.size() >= 3);
       ++most_backward;
     }
     else if(ev.type() == event_type::unof || ev.type() == event_type::qqxexf){
       assert(jets.size() >= 3);
       --most_forward;
     }
     const auto extremal_jet_indices = ev.particle_jet_indices(
         {*most_backward, *most_forward}
     );
     assert(extremal_jet_indices.size() == out_partons.size());
     for(size_t i = 0; i < out_partons.size(); ++i){
       assert(HEJ::is_parton(out_partons[i]));
       const int idx = (extremal_jet_indices[i]>=0)?
         extremal_jet_idx:
         no_extremal_jet_idx;
       out_partons[i].p.set_user_index(idx);
     }
     return out_partons;
   }
 
   namespace {
     template<class InIter, class partIter>
     double tree_kin_jets_uno(InIter BeginIn, InIter EndIn, partIter BeginPart,
                              partIter EndPart, double lambda){
 
       const auto pa = to_HepLorentzVector(*BeginIn);
       const auto pb = to_HepLorentzVector(*(EndIn-1));
 
       const auto pg = to_HepLorentzVector(*BeginPart);
       const auto p1 = to_HepLorentzVector(*(BeginPart+1));
       const auto pn = to_HepLorentzVector(*(EndPart-1));
 
       const double current_factor = ME_uno_current(
         (BeginIn)->type, (EndIn-1)->type, pg, pn, pb, p1, pa
         )/(4.*(N_C*N_C - 1.));
       const double ladder_factor = FKL_ladder_weight(
           (BeginPart+2), (EndPart-1),
           pa-p1-pg, pa, pb, p1, pn, lambda
           );
 
       return current_factor*ladder_factor;
     }
   }
 
   double MatrixElement::tree_kin_jets(Event const & ev) const {
     auto const & incoming = ev.incoming();
     const auto partons = tag_extremal_jet_partons(ev);
 
     if (ev.type()==HEJ::event_type::FKL){
       const auto pa = to_HepLorentzVector(incoming[0]);
       const auto pb = to_HepLorentzVector(incoming[1]);
 
       const auto p1 = to_HepLorentzVector(partons.front());
       const auto pn = to_HepLorentzVector(partons.back());
       return ME_current(
         incoming[0].type, incoming[1].type,
         pn, pb, p1, pa
         )/(4.*(N_C*N_C - 1.))*FKL_ladder_weight(
           begin(partons) + 1, end(partons) - 1,
           pa - p1, pa, pb, p1, pn,
           param_.regulator_lambda
         );
     }
     else if (ev.type()==HEJ::event_type::unordered_backward){
       return tree_kin_jets_uno(incoming.begin(), incoming.end(),
                                  partons.begin(), partons.end(),
                                  param_.regulator_lambda);
     }
     else if (ev.type()==HEJ::event_type::unordered_forward){
       return tree_kin_jets_uno(incoming.rbegin(), incoming.rend(),
                                partons.rbegin(), partons.rend(),
                                param_.regulator_lambda);
     }
     else {
       throw std::logic_error("Can only reweight FKL or uno processes in Pure Jets");
     }
   }
 
   namespace{
     double tree_kin_W_FKL(
         int aptype, int bptype, HLV pa, HLV pb,
         std::vector<Particle> const & partons,
         HLV plbar, HLV pl,
-        double lambda
+        double lambda, ParticleProperties const & Wprop
     ){
       auto p1 = to_HepLorentzVector(partons[0]);
       auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
 
       const auto begin_ladder = cbegin(partons) + 1;
       const auto end_ladder = cend(partons) - 1;
 
       bool wc = aptype==partons[0].type; //leg b emits w
       auto q0 = pa - p1;
       if(!wc)
         q0 -= pl + plbar;
 
       const double current_factor = ME_W_current(
           aptype, bptype, pn, pb,
-          p1, pa, plbar, pl, wc
+          p1, pa, plbar, pl, wc, Wprop
       );
 
       const double ladder_factor = FKL_ladder_weight(
           begin_ladder, end_ladder,
           q0, pa, pb, p1, pn,
           lambda
       );
       return current_factor*ladder_factor;
     }
 
 
     template<class InIter, class partIter>
     double tree_kin_W_uno(InIter BeginIn, partIter BeginPart,
                           partIter EndPart, const HLV & plbar, const HLV & pl,
-                          double lambda){
+                          double lambda, ParticleProperties const & Wprop){
       const auto pa = to_HepLorentzVector(*BeginIn);
       const auto pb = to_HepLorentzVector(*(BeginIn+1));
 
       const auto pg = to_HepLorentzVector(*BeginPart);
       const auto p1 = to_HepLorentzVector(*(BeginPart+1));
       const auto pn = to_HepLorentzVector(*(EndPart-1));
 
       bool wc = (BeginIn)->type==(BeginPart+1)->type; //leg b emits w
       auto q0 = pa - p1 - pg;
       if(!wc)
         q0 -= pl + plbar;
 
       const double current_factor = ME_W_uno_current(
           (BeginIn)->type, (BeginIn+1)->type, pn, pb,
-          p1, pa, pg, plbar, pl, wc
+          p1, pa, pg, plbar, pl, wc, Wprop
       );
 
       const double ladder_factor = FKL_ladder_weight(
           BeginPart+2, EndPart-1,
           q0, pa, pb, p1, pn,
           lambda
       );
       return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
     }
 
     template<class InIter, class partIter>
     double tree_kin_W_qqx(InIter BeginIn, partIter BeginPart,
                           partIter EndPart, const HLV & plbar, const HLV & pl,
-                          double lambda){
+                          double lambda, ParticleProperties const & Wprop){
       const bool swap_q_qx=is_quark(*BeginPart);
       const auto pa = to_HepLorentzVector(*BeginIn);
       const auto pb = to_HepLorentzVector(*(BeginIn+1));
       const auto pq = to_HepLorentzVector(*(BeginPart+(swap_q_qx?0:1)));
       const auto pqbar = to_HepLorentzVector(*(BeginPart+(swap_q_qx?1:0)));
       const auto p1 = to_HepLorentzVector(*(BeginPart));
       const auto pn = to_HepLorentzVector(*(EndPart-1));
 
       const bool wc = (BeginIn+1)->type!=(EndPart-1)->type; //leg b emits w
       auto q0 = pa - pq - pqbar;
       if(!wc)
         q0 -= pl + plbar;
 
       const double current_factor = ME_W_qqx_current(
         (BeginIn)->type, (BeginIn+1)->type, pa, pb,
-        pq, pqbar, pn, plbar, pl, swap_q_qx, wc
+        pq, pqbar, pn, plbar, pl, swap_q_qx, wc, Wprop
       );
 
       const double ladder_factor = FKL_ladder_weight(
           BeginPart+2, EndPart-1,
           q0, pa, pb, p1, pn,
           lambda
       );
       return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
     }
 
     double tree_kin_W_qqxmid(
         int aptype, int bptype, HLV pa, HLV pb,
         std::vector<Particle> const & partons,
         HLV plbar, HLV pl,
-        double lambda
+        double lambda, ParticleProperties const & Wprop
     ){
      HLV pq,pqbar;
       const auto backmidquark = std::find_if(
           begin(partons)+1, end(partons)-1,
           [](Particle const & s){ return s.type != pid::gluon; }
       );
 
       assert(backmidquark!=end(partons)-1);
 
       if (is_quark(backmidquark->type)){
         pq = to_HepLorentzVector(*backmidquark);
         pqbar = to_HepLorentzVector(*(backmidquark+1));
       }
       else {
         pqbar = to_HepLorentzVector(*backmidquark);
         pq = to_HepLorentzVector(*(backmidquark+1));
       }
 
       auto p1 = to_HepLorentzVector(partons[0]);
       auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
 
       auto q0 = pa - p1;
       // t-channel momentum after qqx
       auto qqxt = q0;
 
       bool wc, wqq;
       if (backmidquark->type == -(backmidquark+1)->type){ // Central qqx does not emit
         wqq=false;
         if (aptype==partons[0].type) {
           wc = true;
         }
         else{
           wc = false;
           q0-=pl+plbar;
         }
       }
       else{
         wqq = true;
         wc  = false;
         qqxt-=pl+plbar;
       }
 
       const auto begin_ladder = cbegin(partons) + 1;
       const auto end_ladder_1 = (backmidquark);
       const auto begin_ladder_2 = (backmidquark+2);
       const auto end_ladder = cend(partons) - 1;
       for(auto parton_it = begin_ladder; parton_it < begin_ladder_2; ++parton_it){
         qqxt -= to_HepLorentzVector(*parton_it);
       }
 
       int nabove = std::distance(begin_ladder, backmidquark);
       int nbelow = std::distance(begin_ladder_2, end_ladder);
 
       std::vector<HLV> partonsHLV;
       partonsHLV.reserve(partons.size());
       for (size_t i = 0; i != partons.size(); ++i) {
         partonsHLV.push_back(to_HepLorentzVector(partons[i]));
       }
 
       const double current_factor = ME_W_qqxmid_current(
           aptype, bptype, nabove, nbelow, pa, pb,
-          pq, pqbar, partonsHLV, plbar, pl, wqq, wc
+          pq, pqbar, partonsHLV, plbar, pl, wqq, wc, Wprop
       );
 
       const double ladder_factor = FKL_ladder_weight(
           begin_ladder, end_ladder_1,
           q0, pa, pb, p1, pn,
           lambda
       )*FKL_ladder_weight(
           begin_ladder_2, end_ladder,
           qqxt, pa, pb, p1, pn,
           lambda
         );
       return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
     }
   } // namespace anonymous
 
   double MatrixElement::tree_kin_W(Event const & ev) const {
     using namespace event_type;
     auto const & incoming(ev.incoming());
     auto const & decays(ev.decays());
     HLV plbar, pl;
     for (auto& x: decays) {
       if (x.second.at(0).type < 0){
         plbar = to_HepLorentzVector(x.second.at(0));
         pl = to_HepLorentzVector(x.second.at(1));
       }
       else{
         pl = to_HepLorentzVector(x.second.at(0));
         plbar = to_HepLorentzVector(x.second.at(1));
       }
     }
     const auto pa = to_HepLorentzVector(incoming[0]);
     const auto pb = to_HepLorentzVector(incoming[1]);
 
     const auto partons = tag_extremal_jet_partons(ev);
 
     if(ev.type() == FKL){
       return tree_kin_W_FKL(incoming[0].type, incoming[1].type,
                             pa, pb, partons, plbar, pl,
-                            param_.regulator_lambda);
+                            param_.regulator_lambda,
+                            param_.ew_parameters.Wprop());
     }
     if(ev.type() == unordered_backward){
       return tree_kin_W_uno(cbegin(incoming), cbegin(partons),
                             cend(partons), plbar, pl,
-                            param_.regulator_lambda);
+                            param_.regulator_lambda,
+                            param_.ew_parameters.Wprop());
     }
     if(ev.type() == unordered_forward){
       return tree_kin_W_uno(crbegin(incoming), crbegin(partons),
                             crend(partons), plbar, pl,
-                            param_.regulator_lambda);
+                            param_.regulator_lambda,
+                            param_.ew_parameters.Wprop());
     }
     if(ev.type() == extremal_qqxb){
       return tree_kin_W_qqx(cbegin(incoming), cbegin(partons),
                             cend(partons), plbar, pl,
-                            param_.regulator_lambda);
+                            param_.regulator_lambda,
+                            param_.ew_parameters.Wprop());
     }
     if(ev.type() == extremal_qqxf){
       return tree_kin_W_qqx(crbegin(incoming), crbegin(partons),
                             crend(partons), plbar, pl,
-                            param_.regulator_lambda);
+                            param_.regulator_lambda,
+                            param_.ew_parameters.Wprop());
     }
     assert(ev.type() == central_qqx);
     return tree_kin_W_qqxmid(incoming[0].type, incoming[1].type,
                              pa, pb, partons, plbar, pl,
-                             param_.regulator_lambda);
+                             param_.regulator_lambda,
+                             param_.ew_parameters.Wprop());
   }
 
   double MatrixElement::tree_kin_Higgs(Event const & ev) const {
     if(is_uno(ev.type())){
       return tree_kin_Higgs_between(ev);
     }
     if(ev.outgoing().front().type == pid::Higgs){
       return tree_kin_Higgs_first(ev);
     }
     if(ev.outgoing().back().type == pid::Higgs){
       return tree_kin_Higgs_last(ev);
     }
     return tree_kin_Higgs_between(ev);
   }
 
   namespace {
     // Colour acceleration multipliers, for gluons see eq. (7) in arXiv:0910.5113
 #ifdef HEJ_BUILD_WITH_QCDLOOP
     // TODO: code duplication with jets.cc
     double K_g(double p1minus, double paminus) {
       return 1./2.*(p1minus/paminus + paminus/p1minus)*(C_A - 1./C_A) + 1./C_A;
     }
     double K_g(
         CLHEP::HepLorentzVector const & pout,
         CLHEP::HepLorentzVector const & pin
     ) {
       if(pin.z() > 0) return K_g(pout.plus(), pin.plus());
       return K_g(pout.minus(), pin.minus());
     }
     double K(
         ParticleID type,
         CLHEP::HepLorentzVector const & pout,
         CLHEP::HepLorentzVector const & pin
     ) {
       if(type == ParticleID::gluon) return K_g(pout, pin);
       return C_F;
     }
 #endif
     // Colour factor in strict MRK limit
     double K_MRK(ParticleID type) {
       return (type == ParticleID::gluon)?C_A:C_F;
     }
   }
 
   double MatrixElement::MH2_forwardH(
       CLHEP::HepLorentzVector const & p1out,
       CLHEP::HepLorentzVector const & p1in,
       ParticleID type2,
       CLHEP::HepLorentzVector const & p2out,
       CLHEP::HepLorentzVector const & p2in,
       CLHEP::HepLorentzVector const & pH,
       double t1, double t2
   ) const{
     ignore(p2out, p2in);
     const double shat = p1in.invariantMass2(p2in);
     const double vev = param_.ew_parameters.vev();
     // gluon case
 #ifdef HEJ_BUILD_WITH_QCDLOOP
     if(!param_.Higgs_coupling.use_impact_factors){
       return K(type2, p2out, p2in)*C_A*1./(16*M_PI*M_PI)*t1/t2*ME_Houtside_gq(
           p1out, p1in, p2out, p2in, pH,
           param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom,
           param_.Higgs_coupling.mb, vev
       )/(4*(N_C*N_C - 1));
     }
 #endif
     return K_MRK(type2)/C_A*9./2.*shat*shat*(
         C2gHgp(p1in,p1out,pH,vev) + C2gHgm(p1in,p1out,pH,vev)
     )/(t1*t2);
   }
 
   double MatrixElement::tree_kin_Higgs_first(Event const & ev) const {
     auto const & incoming = ev.incoming();
     auto const & outgoing = ev.outgoing();
     assert(outgoing.front().type == pid::Higgs);
     if(outgoing[1].type != pid::gluon) {
       assert(incoming.front().type == outgoing[1].type);
       return tree_kin_Higgs_between(ev);
     }
     const auto pH = to_HepLorentzVector(outgoing.front());
     const auto partons = tag_extremal_jet_partons(
         ev
     );
 
     const auto pa = to_HepLorentzVector(incoming[0]);
     const auto pb = to_HepLorentzVector(incoming[1]);
 
     const auto p1 = to_HepLorentzVector(partons.front());
     const auto pn = to_HepLorentzVector(partons.back());
 
     const auto q0 = pa - p1 - pH;
 
     const double t1 = q0.m2();
     const double t2 = (pn - pb).m2();
 
     return MH2_forwardH(
         p1, pa, incoming[1].type, pn, pb, pH,
         t1, t2
     )*FKL_ladder_weight(
         begin(partons) + 1, end(partons) - 1,
         q0, pa, pb, p1, pn,
         param_.regulator_lambda
     );
   }
 
   double MatrixElement::tree_kin_Higgs_last(Event const & ev) const {
     auto const & incoming = ev.incoming();
     auto const & outgoing = ev.outgoing();
     assert(outgoing.back().type == pid::Higgs);
     if(outgoing[outgoing.size()-2].type != pid::gluon) {
       assert(incoming.back().type == outgoing[outgoing.size()-2].type);
       return tree_kin_Higgs_between(ev);
     }
     const auto pH = to_HepLorentzVector(outgoing.back());
     const auto partons = tag_extremal_jet_partons(
         ev
     );
 
     const auto pa = to_HepLorentzVector(incoming[0]);
     const auto pb = to_HepLorentzVector(incoming[1]);
 
     auto p1 = to_HepLorentzVector(partons.front());
     const auto pn = to_HepLorentzVector(partons.back());
 
     auto q0 = pa - p1;
 
     const double t1 = q0.m2();
     const double t2 = (pn + pH - pb).m2();
 
     return MH2_forwardH(
         pn, pb, incoming[0].type, p1, pa, pH,
         t2, t1
     )*FKL_ladder_weight(
         begin(partons) + 1, end(partons) - 1,
         q0, pa, pb, p1, pn,
         param_.regulator_lambda
     );
   }
 
   namespace {
     template<class InIter, class partIter>
     double tree_kin_Higgs_uno(InIter BeginIn, InIter EndIn, partIter BeginPart,
                               partIter EndPart, const HLV & qH, const HLV & qHp1,
                               double mt, bool inc_bot, double mb, double vev){
 
       const auto pa = to_HepLorentzVector(*BeginIn);
       const auto pb = to_HepLorentzVector(*(EndIn-1));
 
       const auto pg = to_HepLorentzVector(*BeginPart);
       const auto p1 = to_HepLorentzVector(*(BeginPart+1));
       const auto pn = to_HepLorentzVector(*(EndPart-1));
 
       return ME_Higgs_current_uno(
         (BeginIn)->type, (EndIn-1)->type, pg, pn, pb, p1, pa,
         qH, qHp1, mt, inc_bot, mb, vev
         );
     }
   }
 
 
   double MatrixElement::tree_kin_Higgs_between(Event const & ev) const {
     using namespace event_type;
     auto const & incoming = ev.incoming();
     auto const & outgoing = ev.outgoing();
 
     const auto the_Higgs = std::find_if(
         begin(outgoing), end(outgoing),
         [](Particle const & s){ return s.type == pid::Higgs; }
     );
     assert(the_Higgs != end(outgoing));
     const auto pH = to_HepLorentzVector(*the_Higgs);
     const auto partons = tag_extremal_jet_partons(ev);
 
     const auto pa = to_HepLorentzVector(incoming[0]);
     const auto pb = to_HepLorentzVector(incoming[1]);
 
     auto p1 = to_HepLorentzVector(
         partons[(ev.type() == unob)?1:0]
     );
     auto pn = to_HepLorentzVector(
         partons[partons.size() - ((ev.type() == unof)?2:1)]
     );
 
     auto first_after_Higgs = begin(partons) + (the_Higgs-begin(outgoing));
     assert(
         (first_after_Higgs == end(partons) && (
             (ev.type() == unob)
             || partons.back().type != pid::gluon
         ))
         || first_after_Higgs->rapidity() >= the_Higgs->rapidity()
     );
     assert(
         (first_after_Higgs == begin(partons) && (
             (ev.type() == unof)
             || partons.front().type != pid::gluon
         ))
         || (first_after_Higgs-1)->rapidity() <= the_Higgs->rapidity()
     );
     // always treat the Higgs as if it were in between the extremal FKL partons
     if(first_after_Higgs == begin(partons)) ++first_after_Higgs;
     else if(first_after_Higgs == end(partons)) --first_after_Higgs;
 
     // t-channel momentum before Higgs
     auto qH = pa;
     for(auto parton_it = begin(partons); parton_it != first_after_Higgs; ++parton_it){
       qH -= to_HepLorentzVector(*parton_it);
     }
 
     auto q0 = pa - p1;
     auto begin_ladder = begin(partons) + 1;
     auto end_ladder = end(partons) - 1;
 
     double current_factor;
     if(ev.type() == FKL){
       current_factor = ME_Higgs_current(
           incoming[0].type, incoming[1].type,
           pn, pb, p1, pa, qH, qH - pH,
           param_.Higgs_coupling.mt,
           param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb,
           param_.ew_parameters.vev()
       );
     }
     else if(ev.type() == unob){
       current_factor = HEJ::C_A*HEJ::C_A/2*tree_kin_Higgs_uno(
         begin(incoming), end(incoming), begin(partons),
         end(partons), qH, qH-pH, param_.Higgs_coupling.mt,
         param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb,
         param_.ew_parameters.vev()
         );
       const auto p_unob = to_HepLorentzVector(partons.front());
       q0 -= p_unob;
       p1 += p_unob;
       ++begin_ladder;
     }
     else if(ev.type() == unof){
       current_factor = HEJ::C_A*HEJ::C_A/2*tree_kin_Higgs_uno(
         rbegin(incoming), rend(incoming), rbegin(partons),
         rend(partons), qH-pH, qH, param_.Higgs_coupling.mt,
         param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb,
         param_.ew_parameters.vev()
         );
       pn += to_HepLorentzVector(partons.back());
       --end_ladder;
     }
     else{
       throw std::logic_error("Can only reweight FKL or uno processes in H+Jets");
     }
 
     const double ladder_factor = FKL_ladder_weight(
         begin_ladder, first_after_Higgs,
         q0, pa, pb, p1, pn,
         param_.regulator_lambda
     )*FKL_ladder_weight(
         first_after_Higgs, end_ladder,
         qH - pH, pa, pb, p1, pn,
         param_.regulator_lambda
     );
     return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
   }
 
   namespace {
     double get_AWZH_coupling(Event const & ev, double alpha_s, double alpha_w) {
       const auto AWZH_boson = std::find_if(
           begin(ev.outgoing()), end(ev.outgoing()),
           [](auto const & p){return is_AWZH_boson(p);}
       );
       if(AWZH_boson == end(ev.outgoing())) return 1.;
       switch(AWZH_boson->type){
       case pid::Higgs:
         return alpha_s*alpha_s;
       case pid::Wp:
       case pid::Wm:
         return alpha_w*alpha_w;
         // TODO
       case pid::photon:
       case pid::Z:
       default:
         throw not_implemented("Emission of boson of unsupported type");
       }
     }
   }
 
   double MatrixElement::tree_param(Event const & ev, double mur) const {
     assert(is_resummable(ev.type()));
 
     const auto begin_partons = ev.begin_partons();
     const auto end_partons = ev.end_partons();
     const auto num_partons = std::distance(begin_partons, end_partons);
     const double alpha_s = alpha_s_(mur);
     const double gs2 = 4.*M_PI*alpha_s;
     double res = std::pow(gs2, num_partons);
     if(param_.log_correction){
       // use alpha_s(q_perp), evolved to mur
       assert(num_partons >= 2);
       const auto first_emission = std::next(begin_partons);
       const auto last_emission = std::prev(end_partons);
       for(auto parton = first_emission; parton != last_emission; ++parton){
         res *= 1. + alpha_s/(2.*M_PI)*beta0*log(mur/parton->perp());
       }
     }
     return get_AWZH_coupling(ev, alpha_s, param_.ew_parameters.alpha_w())*res;
   }
 
 } // namespace HEJ
diff --git a/src/Wjets.cc b/src/Wjets.cc
index ce810f8..5490f4d 100644
--- a/src/Wjets.cc
+++ b/src/Wjets.cc
@@ -1,1087 +1,1136 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
-#include "HEJ/jets.hh"
 #include "HEJ/Wjets.hh"
-#include "HEJ/Tensor.hh"
-#include "HEJ/Constants.hh"
 
 #include <array>
-
 #include <iostream>
 
+#include "HEJ/Constants.hh"
+#include "HEJ/EWConstants.hh"
+#include "HEJ/jets.hh"
+#include "HEJ/Tensor.hh"
+
 using HEJ::Tensor;
 using HEJ::init_sigma_index;
 using HEJ::metric;
 using HEJ::rank3_current;
 using HEJ::rank5_current;
 using HEJ::eps;
 using HEJ::to_tensor;
 using HEJ::Helicity;
 using HEJ::angle;
 using HEJ::square;
 using HEJ::flip;
+using HEJ::ParticleProperties;
 
 namespace helicity = HEJ::helicity;
 
 namespace { // Helper Functions
   // FKL W Helper Functions
-  double WProp (const HLV & plbar, const HLV & pl){
-    COM propW = COM(0.,-1.)/( (pl+plbar).m2() - HEJ::MW*HEJ::MW + COM(0.,1.)*HEJ::MW*HEJ::GammaW);
+  double WProp (const HLV & plbar, const HLV & pl, ParticleProperties const & wprop){
+    COM propW = COM(0.,-1.)/( (pl+plbar).m2() - wprop.mass*wprop.mass
+                            + COM(0.,1.)*wprop.mass*wprop.width);
     double PropFactor=(propW*conj(propW)).real();
     return PropFactor;
   }
 
   namespace {
     // FKL current including W emission off negative helicities
     // See eq. (87) {eq:jW-} in developer manual
     // Note that the terms are rearranged
     Tensor<1> jW_minus(
         HLV const & pa, HLV const & p1,
         HLV const & plbar, HLV const & pl
     ){
       using HEJ::helicity::minus;
 
       const double tWin = (pa-pl-plbar).m2();
       const double tWout = (p1+pl+plbar).m2();
 
       // C++ arithmetic operators are evaluated left-to-right,
       // so the following first computes complex scalar coefficients,
       // which then multiply a current, reducing the number
       // of multiplications
       return 2.*(
           + angle(p1, pl)*square(p1, plbar)/tWout
           + square(pa, plbar)*angle(pa, pl)/tWin
       )*HEJ::current(p1, pa, helicity::minus)
         + 2.*angle(p1, pl)*square(pl, plbar)/tWout
             *HEJ::current(pl, pa, helicity::minus)
         + 2.*square(pa, plbar)*angle(pl, plbar)/tWin
             *HEJ::current(p1, plbar, helicity::minus);
     }
   }
 
   // FKL current including W emission
   // see eqs. (87), (88) {eq:jW-}, {eq:jW+} in developer manual
   Tensor<1> jW(
       HLV const & pa, HLV const & p1,
       HLV const & plbar, HLV const & pl,
       Helicity h
   ){
     if(h == helicity::minus) {
       return jW_minus(pa, p1, plbar, pl);
     }
     return jW_minus(pa, p1, pl, plbar).complex_conj();
   }
 
   /**
    * @brief         W+Jets Unordered Contribution Helper Functions
    * @returns       result of equation (4.1.28) in Helen's Thesis (p.100)
    */
   double jM2Wuno(HLV pg, HLV p1,HLV plbar, HLV pl, HLV pa, Helicity h1,
-                 HLV p2, HLV pb, Helicity h2, Helicity pol
-    ){
+                 HLV p2, HLV pb, Helicity h2, Helicity pol,
+                 ParticleProperties const & wprop
+  ){
     //@TODO Simplify the below (less Tensor class?)
     init_sigma_index();
 
     HLV pW = pl+plbar;
     HLV q1g=pa-pW-p1-pg;
     HLV q1 = pa-p1-pW;
     HLV q2 = p2-pb;
 
     const double taW  = (pa-pW).m2();
     const double taW1 = (pa-pW-p1).m2();
     const double tb2  = (pb-p2).m2();
     const double tb2g = (pb-p2-pg).m2();
     const double s1W  = (p1+pW).m2();
     const double s1gW = (p1+pW+pg).m2();
     const double s1g  = (p1+pg).m2();
     const double tag  = (pa-pg).m2();
     const double taWg = (pa-pW-pg).m2();
 
     //use p1 as ref vec in pol tensor
     Tensor<1> epsg = eps(pg,p2,pol);
     Tensor<1> epsW = HEJ::current(pl,plbar,helicity::minus);
     Tensor<1> j2b = HEJ::current(p2,pb,h2);
 
     Tensor<1> Tq1q2 = to_tensor((q1+q2)/taW1 + (pb/pb.dot(pg)
                                       +p2/p2.dot(pg)) * tb2/(2*tb2g));
 
     Tensor<3> J31a = rank3_current(p1, pa, h1);
     Tensor<2> J2_qaW =J31a.contract((pa-pW)/taW, 2);
     Tensor<2> J2_p1W =J31a.contract((p1+pW)/s1W, 2);
     Tensor<3> L1a = outer(Tq1q2, J2_qaW);
     Tensor<3> L1b = outer(Tq1q2, J2_p1W);
     Tensor<3> L2a = outer(-pg-q1,J2_qaW)/taW1;
     Tensor<3> L2b = outer(-pg-q1, J2_p1W)/taW1;
     Tensor<3> L3 = outer(metric(), J2_qaW.contract(pg-q2,1)+J2_p1W.contract(pg-q2,2))/taW1;
     Tensor<3> L(0.);
 
     Tensor<5> J51a = rank5_current(p1, pa, h1);
 
     Tensor<4> J_qaW = J51a.contract((pa-pW),4);
     Tensor<4> J_qag = J51a.contract(pa-pg,4);
     Tensor<4> J_p1gW = J51a.contract(p1+pg+pW,4);
 
     Tensor<3> U1a = J_qaW.contract(p1+pg,2);
     Tensor<3> U1b = J_p1gW.contract(p1+pg,2);
     Tensor<3> U1c = J_p1gW.contract(p1+pW,2);
     Tensor<3> U1(0.);
 
     Tensor<3> U2a = J_qaW.contract(pa-pg-pW,2);
     Tensor<3> U2b = J_qag.contract(pa-pg-pW,2);
     Tensor<3> U2c = J_qag.contract(p1+pW,2);
     Tensor<3> U2(0.);
 
     for(int nu=0; nu<4;nu++){
       for(int mu=0;mu<4;mu++){
         for(int rho=0;rho<4;rho++){
           L(nu, mu, rho) =  L1a(nu,mu,rho) + L1b(nu,rho,mu)
             + L2a(mu,nu,rho) + L2b(mu,rho,nu) + L3(mu,nu,rho);
           U1(nu, mu, rho) = U1a(nu, mu, rho) / (s1g*taW)
             + U1b(nu,rho,mu) / (s1g*s1gW) + U1c(rho,nu,mu) / (s1W*s1gW);
           U2(nu,mu,rho) = U2a(mu,nu,rho) / (taWg*taW)
             + U2b(mu,rho,nu) / (taWg*tag) + U2c(rho,mu,nu) / (s1W*tag);
         }
       }
     }
 
     COM X = ((((U1-L).contract(epsW,3)).contract(j2b,2)).contract(epsg,1));
     COM Y = ((((U2+L).contract(epsW,3)).contract(j2b,2)).contract(epsg,1));
 
     double amp = HEJ::C_A*HEJ::C_F*HEJ::C_F/2.*(norm(X)+norm(Y)) - HEJ::C_F/2.*(X*conj(Y)).real();
 
     double t1 = q1g.m2();
     double t2 = q2.m2();
 
-    double WPropfact = WProp(plbar, pl);
-
     //Divide by WProp
-    amp*=WPropfact;
+    amp*=WProp(plbar, pl, wprop);
 
     //Divide by t-channels
     amp/=(t1*t2);
 
     return amp;
   }
 
   // Relevant Wqqx Helper Functions.
   //g->qxqlxl (Calculates gluon to qqx Current. See JV_\mu in WSubleading Notes)
   Tensor <1> gtqqxW(HLV pq,HLV pqbar,HLV pl,HLV plbar){
     //@TODO Simplify the calculation below (Less Tensor class use?)
     double s2AB=(pl+plbar+pq).m2();
     double s3AB=(pl+plbar+pqbar).m2();
 
     // Define llx current.
     Tensor<1> ABCur = HEJ::current(pl, plbar, helicity::minus);
 
     //blank 3 Gamma Current
     Tensor<3> JV23 = rank3_current(pq,pqbar,helicity::minus);
 
     // Components of g->qqW before W Contraction
     Tensor<2> JV1 = JV23.contract((pq + pl + plbar),2)/(s2AB);
     Tensor<2> JV2 = JV23.contract((pqbar + pl + plbar),2)/(s3AB);
 
     // g->qqW Current. Note Minus between terms due to momentum flow.
     // Also note: (-I)^2 from W vert. (I) from Quark prop.
     Tensor<1> JVCur = (JV1.contract(ABCur,1) - JV2.contract(ABCur,2))*COM(0.,-1.);
 
     return JVCur;
   }
 
   // Helper Functions Calculate the Crossed Contribution
   Tensor <2> MCrossW(HLV pa, HLV, HLV, HLV, HLV pq, HLV pqbar, HLV pl,
                      HLV plbar, std::vector<HLV> partons, int nabove
     ){
     //@TODO Simplify the calculation below Maybe combine with MCross?
     // Useful propagator factors
     double s2AB=(pl+plbar+pq).m2();
     double s3AB=(pl+plbar+pqbar).m2();
 
     HLV q1, q3;
     q1=pa;
     for(int i=0; i<nabove+1;i++){
       q1=q1-partons.at(i);
     }
     q3 = q1 - pq - pqbar - pl - plbar;
 
     double tcro1=(q3+pq).m2();
     double tcro2=(q1-pqbar).m2();
 
     // Define llx current.
     Tensor<1> ABCur = HEJ::current(pl, plbar,helicity::minus);
 
     //Blank 5 gamma Current
     Tensor<5> J523 = rank5_current(pq,pqbar,helicity::minus);
 
     // 4 gamma currents (with 1 contraction already).
     Tensor<4> J_q3q = J523.contract((q3 + pq),2);
     Tensor<4> J_2AB = J523.contract((pq + pl + plbar),2);
 
     // Components of Crossed Vertex Contribution
     Tensor<3> Xcro1 = J_q3q.contract((pqbar + pl + plbar),3);
     Tensor<3> Xcro2 = J_q3q.contract((q1 - pqbar),3);
     Tensor<3> Xcro3 = J_2AB.contract((q1 - pqbar),3);
 
     // Term Denominators Taken Care of at this stage
     Tensor<2> Xcro1Cont = Xcro1.contract(ABCur,3)/(tcro1*s3AB);
     Tensor<2> Xcro2Cont = Xcro2.contract(ABCur,2)/(tcro1*tcro2);
     Tensor<2> Xcro3Cont = Xcro3.contract(ABCur,1)/(s2AB*tcro2);
 
     //Initialise the Crossed Vertex Object
     Tensor<2> Xcro(0.);
 
     for(int mu=0; mu<4;mu++){
       for(int nu=0;nu<4;nu++){
         Xcro(mu,nu) = -(-Xcro1Cont(nu,mu)+Xcro2Cont(nu,mu)+Xcro3Cont(nu,mu));
       }
     }
 
     return Xcro;
   }
 
   // Helper Functions Calculate the Uncrossed Contribution
   Tensor <2> MUncrossW(HLV pa, HLV, HLV, HLV, HLV pq, HLV pqbar,
                        HLV pl, HLV plbar, std::vector<HLV> partons, int nabove
     ){
     //@TODO Simplify the calculation below Maybe combine with MUncross?
     double s2AB=(pl+plbar+pq).m2();
     double s3AB=(pl+plbar+pqbar).m2();
 
     HLV q1, q3;
     q1=pa;
     for(int i=0; i<nabove+1;i++){
       q1=q1-partons.at(i);
     }
     q3 = q1 - pl - plbar - pq - pqbar;
     double tunc1 = (q1-pq).m2();
     double tunc2 = (q3+pqbar).m2();
 
     // Define llx current.
     Tensor<1> ABCur = HEJ::current(pl, plbar, helicity::minus);
 
     //Blank 5 gamma Current
     Tensor<5> J523 = rank5_current(pq,pqbar,helicity::minus);
 
     // 4 gamma currents (with 1 contraction already).
     Tensor<4> J_2AB = J523.contract((pq + pl + plbar),2);
     Tensor<4> J_q1q = J523.contract((q1 - pq),2);
 
     // 2 Contractions taken care of.
     Tensor<3> Xunc1 = J_2AB.contract((q3 + pqbar),3);
     Tensor<3> Xunc2 = J_q1q.contract((q3 + pqbar),3);
     Tensor<3> Xunc3 = J_q1q.contract((pqbar + pl + plbar),3);
 
     // Term Denominators Taken Care of at this stage
     Tensor<2> Xunc1Cont = Xunc1.contract(ABCur,1)/(s2AB*tunc2);
     Tensor<2> Xunc2Cont = Xunc2.contract(ABCur,2)/(tunc1*tunc2);
     Tensor<2> Xunc3Cont = Xunc3.contract(ABCur,3)/(tunc1*s3AB);
 
     //Initialise the Uncrossed Vertex Object
     Tensor<2> Xunc(0.);
 
     for(int mu=0; mu<4;mu++){
       for(int nu=0;nu<4;nu++){
         Xunc(mu,nu) = -(- Xunc1Cont(mu,nu)+Xunc2Cont(mu,nu) +Xunc3Cont(mu,nu));
       }
     }
 
     return Xunc;
   }
 
   // Helper Functions Calculate the g->qqxW (Eikonal) Contributions
   Tensor <2> MSymW(HLV pa, HLV p1, HLV pb, HLV p4, HLV pq, HLV pqbar,
                    HLV pl,HLV plbar, std::vector<HLV> partons, int nabove
     ){
     //@TODO Simplify the calculation below Maybe combine with MSym?
     double sa2=(pa+pq).m2();
     double s12=(p1+pq).m2();
     double sa3=(pa+pqbar).m2();
     double s13=(p1+pqbar).m2();
     double saA=(pa+pl).m2();
     double s1A=(p1+pl).m2();
     double saB=(pa+plbar).m2();
     double s1B=(p1+plbar).m2();
     double sb2=(pb+pq).m2();
     double s42=(p4+pq).m2();
     double sb3=(pb+pqbar).m2();
     double s43=(p4+pqbar).m2();
     double sbA=(pb+pl).m2();
     double s4A=(p4+pl).m2();
     double sbB=(pb+plbar).m2();
     double s4B=(p4+plbar).m2();
     double s23AB=(pl+plbar+pq+pqbar).m2();
 
     HLV q1,q3;
     q1=pa;
     for(int i=0;i<nabove+1;i++){
       q1-=partons.at(i);
     }
     q3=q1-pq-pqbar-plbar-pl;
     double t1 = (q1).m2();
     double t3 = (q3).m2();
 
     // g->qqW Current (Factors of sqrt2 dealt with in this function.)
     Tensor<1> JV = gtqqxW(pq,pqbar,pl,plbar);
 
     // 1a gluon emisson Contribution
     Tensor<3> X1a = outer(metric(), p1*(t1/(s12+s13+s1A+s1B))
                           + pa*(t1/(sa2+sa3+saA+saB)) );
     Tensor<2> X1aCont = X1a.contract(JV,3);
 
     //4b gluon emission Contribution
     Tensor<3> X4b = outer(metric(), p4*(t3/(s42+s43+s4A+s4B))
                           + pb*(t3/(sb2+sb3+sbA+sbB)) );
     Tensor<2> X4bCont = X4b.contract(JV,3);
 
     //Set up each term of 3G diagram.
     Tensor<3> X3g1 = outer(q1+pq+pqbar+pl+plbar, metric());
     Tensor<3> X3g2 = outer(q3-pq-pqbar-pl-plbar, metric());
     Tensor<3> X3g3 = outer(q1+q3, metric());
 
     // Note the contraction of indices changes term by term
     Tensor<2> X3g1Cont = X3g1.contract(JV,3);
     Tensor<2> X3g2Cont = X3g2.contract(JV,2);
     Tensor<2> X3g3Cont = X3g3.contract(JV,1);
 
     // XSym is an amalgamation of x1a, X4b and X3g.
     // Makes sense from a colour factor point of view.
     Tensor<2>Xsym(0.);
 
     for(int mu=0; mu<4;mu++){
       for(int nu=0;nu<4;nu++){
         Xsym(mu,nu) = (X3g1Cont(nu,mu) + X3g2Cont(mu,nu) - X3g3Cont(nu,mu))
           + (X1aCont(mu,nu) - X4bCont(mu,nu));
       }
     }
     return Xsym/s23AB;
   }
 
   Tensor <2> MCross(HLV pa, HLV pq, HLV pqbar, std::vector<HLV> partons,
                     Helicity hq, int nabove
     ){
     //@TODO Simplify the calculation below Maybe combine with MCrossW?
     HLV q1;
     q1=pa;
     for(int i=0;i<nabove+1;i++){
       q1-=partons.at(i);
     }
 
     double t2=(q1-pqbar).m2();
 
     //Blank 3 gamma Current
     Tensor<3> J323 = rank3_current(pq,pqbar,hq);
 
     // 2 gamma current (with 1 contraction already).
     Tensor<2> XCroCont = J323.contract((q1-pqbar),2)/(t2);
 
     //Initialise the Crossed Vertex
     Tensor<2> Xcro(0.);
 
     for(int mu=0; mu<4;mu++){
       for(int nu=0;nu<4;nu++){
         Xcro(mu,nu) = XCroCont(nu,mu);
       }
     }
 
     return Xcro;
   }
 
   // Helper Functions Calculate the Uncrossed Contribution
   Tensor <2> MUncross(HLV pa, HLV pq,HLV pqbar, std::vector<HLV> partons,
                       Helicity hq, int nabove
     ){
     //@TODO Simplify the calculation below Maybe combine with MUncrossW?
     HLV q1;
     q1=pa;
     for(int i=0;i<nabove+1;i++){
       q1-=partons.at(i);
     }
     double t2 = (q1-pq).m2();
 
     //Blank 3 gamma Current
     Tensor<3> J323 = rank3_current(pq,pqbar,hq);
 
     // 2 gamma currents (with 1 contraction already).
     Tensor<2> XUncCont = J323.contract((q1-pq),2)/t2;
 
     //Initialise the Uncrossed Vertex
     Tensor<2> Xunc(0.);
 
     for(int mu=0; mu<4;mu++){
       for(int nu=0;nu<4;nu++){
         Xunc(mu,nu) = -XUncCont(mu,nu);
       }
     }
 
     return Xunc;
   }
 
   // Helper Functions Calculate the Eikonal Contributions
   Tensor <2> MSym(HLV pa, HLV p1, HLV pb, HLV p4, HLV pq, HLV pqbar,
                   std::vector<HLV> partons, Helicity hq, int nabove
     ){
     //@TODO Simplify the calculation below Maybe combine with MsymW?
     HLV q1, q3;
     q1=pa;
     for(int i=0;i<nabove+1;i++){
       q1-=partons.at(i);
     }
     q3 = q1-pq-pqbar;
     double t1 = (q1).m2();
     double t3 = (q3).m2();
 
     double s23 = (pq+pqbar).m2();
     double sa2 = (pa+pq).m2();
     double sa3 = (pa+pqbar).m2();
     double s12 = (p1+pq).m2();
     double s13 = (p1+pqbar).m2();
     double sb2 = (pb+pq).m2();
     double sb3 = (pb+pqbar).m2();
     double s42 = (p4+pq).m2();
     double s43 = (p4+pqbar).m2();
 
     Tensor<1> qqxCur = HEJ::current(pq, pqbar, hq);
 
     // // 1a gluon emisson Contribution
     Tensor<3> X1a = outer(metric(), p1*(t1/(s12+s13))+ pa*(t1/(sa2+sa3)));
     Tensor<2> X1aCont = X1a.contract(qqxCur,3);
 
     // //4b gluon emission Contribution
     Tensor<3> X4b = outer(metric(), p4*(t3/(s42+s43)) + pb*(t3/(sb2+sb3)));
     Tensor<2> X4bCont = X4b.contract(qqxCur,3);
 
     // New Formulation Corresponding to New Analytics
     Tensor<3> X3g1 = outer(q1+pq+pqbar, metric());
     Tensor<3> X3g2 = outer(q3-pq-pqbar, metric());
     Tensor<3> X3g3 = outer(q1+q3, metric());
 
     // Note the contraction of indices changes term by term
     Tensor<2> X3g1Cont = X3g1.contract(qqxCur,3);
     Tensor<2> X3g2Cont = X3g2.contract(qqxCur,2);
     Tensor<2> X3g3Cont = X3g3.contract(qqxCur,1);
 
     Tensor<2>Xsym(0.);
 
     for(int mu=0; mu<4;mu++){
       for(int nu=0;nu<4;nu++){
         Xsym(mu, nu) = COM(0,1) * ( (X3g1Cont(nu,mu) + X3g2Cont(mu,nu)
                                      - X3g3Cont(nu,mu)) + (X1aCont(mu,nu) - X4bCont(mu,nu)) );
       }
     }
     return Xsym/s23;
   }
 
 //! W+Jets FKL Contributions
 /**
  * @brief W+Jets FKL Contributions, function to handle all incoming types.
  * @param p1out             Outgoing Particle 1. (W emission)
  * @param plbar             Outgoing election momenta
  * @param pl                Outgoing neutrino momenta
  * @param p1in              Incoming Particle 1. (W emission)
  * @param p2out             Outgoing Particle 2
  * @param p2in              Incoming Particle 2
  * @param aqlineb           Bool. Is Backwards quark line an anti-quark line?
  * @param aqlinef           Bool. Is Forwards quark line an anti-quark line?
  *
  * Calculates j_W ^\mu    j_\mu.
  * Handles all possible incoming states.
  */
   double jW_j( HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in,
-               bool aqlineb, bool /* aqlinef */
+               bool aqlineb, bool /* aqlinef */,
+               ParticleProperties const & wprop
     ){
     using helicity::minus;
     using helicity::plus;
     const HLV q1=p1in-p1out-plbar-pl;
     const HLV q2=-(p2in-p2out);
 
-    const double WPropfact = WProp(plbar, pl);
+    const double WPropfact = WProp(plbar, pl, wprop);
 
     const auto j_W = COM{0,-1}*jW(p1in, p1out, plbar, pl, aqlineb?plus:minus);
     double Msqr = 0.;
     for(const auto h: {plus, minus}) {
       const auto j = HEJ::current(p2out, p2in, h);
       Msqr += abs2(j_W.contract(j, 1));
     }
     // Division by colour and Helicity average (Nc2-1)(4)
     // Multiply by Cf^2
     return HEJ::C_F*HEJ::C_F*WPropfact*Msqr/(q1.m2()*q2.m2()*(HEJ::N_C*HEJ::N_C - 1)*4);
   }
 } // Anonymous Namespace
 
-double ME_W_qQ (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in){
-  return jW_j(p1out, plbar, pl, p1in, p2out, p2in, false, false);
+double ME_W_qQ (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in,
+   ParticleProperties const & wprop
+){
+  return jW_j(p1out, plbar, pl, p1in, p2out, p2in, false, false, wprop);
 }
 
-double ME_W_qQbar (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in){
-  return jW_j(p1out, plbar, pl, p1in, p2out, p2in, false, true);
+double ME_W_qQbar (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in,
+   ParticleProperties const & wprop
+){
+  return jW_j(p1out, plbar, pl, p1in, p2out, p2in, false, true, wprop);
 }
 
-double ME_W_qbarQ (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in){
-  return jW_j(p1out, plbar, pl, p1in, p2out, p2in, true, false);
+double ME_W_qbarQ (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in,
+   ParticleProperties const & wprop
+){
+  return jW_j(p1out, plbar, pl, p1in, p2out, p2in, true, false, wprop);
 }
 
-double ME_W_qbarQbar (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in){
-  return jW_j(p1out, plbar, pl, p1in, p2out, p2in, true, true);
+double ME_W_qbarQbar (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in,
+   ParticleProperties const & wprop
+){
+  return jW_j(p1out, plbar, pl, p1in, p2out, p2in, true, true, wprop);
 }
 
-double ME_W_qg (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in){
-  return jW_j(p1out, plbar, pl, p1in, p2out, p2in, false, false)*K_g(p2out, p2in)/HEJ::C_F;
+double ME_W_qg (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in,
+   ParticleProperties const & wprop
+){
+  return jW_j(p1out, plbar, pl, p1in, p2out, p2in, false, false, wprop)
+          *K_g(p2out, p2in)/HEJ::C_F;
 }
 
-double ME_W_qbarg (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in){
-  return jW_j(p1out, plbar, pl, p1in, p2out, p2in, true, false)*K_g(p2out, p2in)/HEJ::C_F;
+double ME_W_qbarg (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in,
+   ParticleProperties const & wprop
+){
+  return jW_j(p1out, plbar, pl, p1in, p2out, p2in, true, false, wprop)
+          *K_g(p2out, p2in)/HEJ::C_F;
 }
 
 namespace{
   /**
    * @brief W+Jets Unordered Contributions, function to handle all incoming types.
    * @param p1out             Outgoing Particle 1. (W emission)
    * @param plbar             Outgoing election momenta
    * @param pl                Outgoing neutrino momenta
    * @param p1in              Incoming Particle 1. (W emission)
    * @param p2out             Outgoing Particle 2 (Quark, unordered emission this side.)
    * @param p2in              Incoming Particle 2 (Quark, unordered emission this side.)
    * @param pg                Unordered Gluon momenta
    * @param aqlineb           Bool. Is Backwards quark line an anti-quark line?
    * @param aqlinef           Bool. Is Forwards quark line an anti-quark line?
    *
    * Calculates j_W ^\mu    j_{uno}_\mu. Ie, unordered with W emission opposite side.
    * Handles all possible incoming states.
    */
   double jW_juno(HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out,
-                 HLV p2in, HLV pg, bool aqlineb, bool aqlinef){
+                 HLV p2in, HLV pg, bool aqlineb, bool aqlinef,
+                 ParticleProperties const & wprop
+  ){
     using helicity::minus;
     using helicity::plus;
     const HLV q1=p1in-p1out-plbar-pl;
     const HLV q2=-(p2in-p2out-pg);
     const HLV q3=-(p2in-p2out);
     const Helicity fhel = aqlinef?plus:minus;
 
     const auto j_W = jW(p1in, p1out, plbar, pl, aqlineb?plus:minus);
     const auto mj2p = HEJ::current(p2out, p2in, flip(fhel));
     const auto mj2m = HEJ::current(p2out, p2in, fhel);
 
     const auto jgbp = HEJ::current(pg, p2in, flip(fhel));
     const auto jgbm = HEJ::current(pg, p2in, fhel);
 
     const auto j2gp = HEJ::current(p2out, pg, flip(fhel));
     const auto j2gm = HEJ::current(p2out, pg, fhel);
 
     // Dot products of these which occur again and again
     COM MWmp=j_W.dot(mj2p);  // And now for the Higgs ones
     COM MWmm=j_W.dot(mj2m);
 
     const auto qsum = to_tensor(q2+q3);
 
     const auto p1o = to_tensor(p1out);
     const auto p1i = to_tensor(p1in);
     const auto p2o = to_tensor(p2out);
     const auto p2i = to_tensor(p2in);
 
     const auto Lmm=( (-1.)*qsum*(MWmm) + (-2.*COM{j_W.dot(pg)})*mj2m + 2.*COM{mj2m.dot(pg)}*j_W
                      + ( p1o/pg.dot(p1out) + p1i/pg.dot(p1in) )*( q2.m2()*MWmm/2. ) )/q3.m2();
     const auto Lmp=( (-1.)*qsum*(MWmp) + (-2.*COM{j_W.dot(pg)})*mj2p + 2.*COM{mj2p.dot(pg)}*j_W
                      + ( p1o/pg.dot(p1out) + p1i/pg.dot(p1in) )*( q2.m2()*MWmp/2. ) )/q3.m2();
 
     const auto U1mm=(COM{jgbm.dot(j_W)}*j2gm+2.*p2o*MWmm)/(p2out+pg).m2();
     const auto U1mp=(COM{jgbp.dot(j_W)}*j2gp+2.*p2o*MWmp)/(p2out+pg).m2();
 
     const auto U2mm=((-1.)*COM{j2gm.dot(j_W)}*jgbm+2.*p2i*MWmm)/(p2in-pg).m2();
     const auto U2mp=((-1.)*COM{j2gp.dot(j_W)}*jgbp+2.*p2i*MWmp)/(p2in-pg).m2();
 
     double amm,amp;
 
     amm=HEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*HEJ::C_F*HEJ::C_F/3.*abs2(U1mm+U2mm);
     amp=HEJ::C_F*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*HEJ::C_F*HEJ::C_F/3.*abs2(U1mp+U2mp);
 
     double ampsq=-(amm+amp);
     //Divide by WProp
-    ampsq*=WProp(plbar, pl);
+    ampsq*=WProp(plbar, pl, wprop);
 
     return ampsq/((16)*(q2.m2()*q1.m2()));
   }
 }
 double ME_W_unob_qQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
-                    HLV pg, HLV plbar, HLV pl
+                    HLV pg, HLV plbar, HLV pl,
+                    ParticleProperties const & wprop
 ){
-  return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, false, false);
+  return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, false, false, wprop);
 }
 
 double ME_W_unob_qQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
-                       HLV pg, HLV plbar, HLV pl
+                       HLV pg, HLV plbar, HLV pl,
+                       ParticleProperties const & wprop
 ){
-  return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, false, true);
+  return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, false, true, wprop);
 }
 
 double ME_W_unob_qbarQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
-                       HLV pg, HLV plbar, HLV pl
+                       HLV pg, HLV plbar, HLV pl,
+                       ParticleProperties const & wprop
 ){
-  return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, true, false);
+  return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, true, false, wprop);
 }
 
 double ME_W_unob_qbarQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
-                          HLV pg, HLV plbar, HLV pl
+                          HLV pg, HLV plbar, HLV pl,
+                          ParticleProperties const & wprop
 ){
-  return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, true, true);
+  return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, true, true, wprop);
 }
 
 namespace{
 /**
  * @brief W+Jets Unordered Contributions, function to handle all incoming types.
  * @param pg                Unordered Gluon momenta
  * @param p1out             Outgoing Particle 1. (Quark - W and Uno emission)
  * @param plbar             Outgoing election momenta
  * @param pl                Outgoing neutrino momenta
  * @param p1in              Incoming Particle 1. (Quark - W and Uno emission)
  * @param p2out             Outgoing Particle 2
  * @param p2in              Incoming Particle 2
  * @param aqlineb           Bool. Is Backwards quark line an anti-quark line?
  *
  * Calculates j_W_{uno} ^\mu    j_\mu. Ie, unordered with W emission same side.
  * Handles all possible incoming states. Note this handles both forward and back-
  * -ward Wuno emission. For forward, ensure p1out is the uno and W emission parton.
  * @TODO: Include separate wrapper functions for forward and backward to clean up
  *        ME_W_unof_current in `MatrixElement.cc`.
  */
   double jWuno_j(HLV pg, HLV p1out, HLV plbar, HLV pl, HLV p1in,
-                 HLV p2out, HLV p2in, bool aqlineb
+                 HLV p2out, HLV p2in, bool aqlineb,
+                 ParticleProperties const & wprop
     ){
     //Calculate different Helicity choices
     const Helicity h = aqlineb?helicity::plus:helicity::minus;
-    double ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,h,p2out,p2in,helicity::plus,helicity::plus);
-    double ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,h,p2out,p2in,helicity::plus,helicity::minus);
-    double ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,h,p2out,p2in,helicity::minus,helicity::plus);
-    double ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,h,p2out,p2in,helicity::minus,helicity::minus);
+    double ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,h,p2out,p2in,
+                            helicity::plus,helicity::plus, wprop);
+    double ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,h,p2out,p2in,
+                            helicity::plus,helicity::minus, wprop);
+    double ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,h,p2out,p2in,
+                            helicity::minus,helicity::plus, wprop);
+    double ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,h,p2out,p2in,
+                            helicity::minus,helicity::minus, wprop);
 
     //Helicity sum and average over initial states
     return (ME2mpp + ME2mpm + ME2mmp + ME2mmm)/(4.*HEJ::C_A*HEJ::C_A);
   }
 }
 double ME_Wuno_qQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
-                  HLV pg, HLV plbar, HLV pl
+                  HLV pg, HLV plbar, HLV pl, ParticleProperties const & wprop
 ){
-  return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, false);
+  return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, false, wprop);
 }
 
 double ME_Wuno_qQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
-                     HLV pg, HLV plbar, HLV pl
+                     HLV pg, HLV plbar, HLV pl,
+                     ParticleProperties const & wprop
 ){
-  return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, false);
+  return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, false, wprop);
 }
 
 double ME_Wuno_qbarQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
-                     HLV pg, HLV plbar, HLV pl
+                     HLV pg, HLV plbar, HLV pl,
+                     ParticleProperties const & wprop
 ){
-  return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, true);
+  return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, true, wprop);
 }
 
 double ME_Wuno_qbarQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
-                        HLV pg, HLV plbar, HLV pl
+                        HLV pg, HLV plbar, HLV pl,
+                        ParticleProperties const & wprop
 ){
-  return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, true);
+  return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, true, wprop);
 }
 
 double ME_Wuno_qg(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
-                  HLV pg, HLV plbar, HLV pl
+                  HLV pg, HLV plbar, HLV pl, ParticleProperties const & wprop
 ){
-  return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, false)*K_g(p2out, p2in)/HEJ::C_F;
+  return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, false, wprop)
+          *K_g(p2out, p2in)/HEJ::C_F;
 }
 
 double ME_Wuno_qbarg(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
-                     HLV pg, HLV plbar, HLV pl
+                     HLV pg, HLV plbar, HLV pl,
+                     ParticleProperties const & wprop
 ){
-  return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, true)*K_g(p2out, p2in)/HEJ::C_F;
+  return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, true, wprop)
+          *K_g(p2out, p2in)/HEJ::C_F;
 }
 
 /**
  * @brief W+Jets Extremal qqx Contributions, function to handle all incoming types.
  * @param pgin              Incoming gluon which will split into qqx.
  * @param pqout             Quark of extremal qqx outgoing (W-Emission).
  * @param plbar             Outgoing anti-lepton momenta
  * @param pl                Outgoing lepton momenta
  * @param pqbarout          Anti-quark of extremal qqx pair. (W-Emission)
  * @param pout              Outgoing Particle 2 (end of FKL chain)
  * @param p2in              Incoming Particle 2
  * @param aqlinef           Bool. Is Forwards quark line an anti-quark line?
  *
  * Calculates j_W_{qqx} ^\mu    j_\mu. Ie, Ex-QQX with W emission same side.
  * Handles all possible incoming states. Calculated via crossing symmetry from jWuno_j.
  */
 double jWqqx_j(HLV pgin, HLV pqout, HLV plbar, HLV pl,
-               HLV pqbarout, HLV p2out, HLV p2in, bool aqlinef){
+               HLV pqbarout, HLV p2out, HLV p2in, bool aqlinef,
+               ParticleProperties const & wprop
+){
   //Calculate Different Helicity Configurations.
   const Helicity h = aqlinef?helicity::plus:helicity::minus;
-  double ME2mpp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in,helicity::plus,helicity::plus);
-  double ME2mpm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in,helicity::plus,helicity::minus);
-  double ME2mmp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in,helicity::minus,helicity::plus);
-  double ME2mmm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in,helicity::minus,helicity::minus);
+  double ME2mpp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in,
+                          helicity::plus,helicity::plus, wprop);
+  double ME2mpm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in,
+                          helicity::plus,helicity::minus, wprop);
+  double ME2mmp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in,
+                          helicity::minus,helicity::plus, wprop);
+  double ME2mmm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in,
+                          helicity::minus,helicity::minus, wprop);
   //Helicity sum and average over initial states.
   double ME2 = (ME2mpp + ME2mpm + ME2mmp + ME2mmm)/(4.*HEJ::C_A*HEJ::C_A);
 
   //Correct colour averaging after crossing:
   ME2*=(3.0/8.0);
 
   return ME2;
 }
 
 double ME_WExqqx_qbarqQ(HLV pgin, HLV pqout, HLV plbar, HLV pl,
-                      HLV pqbarout, HLV p2out, HLV p2in){
-  return jWqqx_j(pgin, pqout, plbar, pl, pqbarout, p2out, p2in, false);
+                      HLV pqbarout, HLV p2out, HLV p2in,
+               ParticleProperties const & wprop
+){
+  return jWqqx_j(pgin, pqout, plbar, pl, pqbarout, p2out, p2in, false, wprop);
 }
 
 double ME_WExqqx_qqbarQ(HLV pgin, HLV pqbarout, HLV plbar, HLV pl,
-                      HLV pqout, HLV p2out, HLV p2in){
-  return jWqqx_j(pgin, pqbarout, plbar, pl, pqout, p2out, p2in, true);
+                      HLV pqout, HLV p2out, HLV p2in,
+                      ParticleProperties const & wprop
+){
+  return jWqqx_j(pgin, pqbarout, plbar, pl, pqout, p2out, p2in, true, wprop);
 }
 
 double ME_WExqqx_qbarqg(HLV pgin, HLV pqout, HLV plbar, HLV pl,
-                      HLV pqbarout, HLV p2out, HLV p2in){
-  return jWqqx_j(pgin, pqout, plbar, pl, pqbarout, p2out, p2in, false)*K_g(p2out,p2in)/HEJ::C_F;
+                      HLV pqbarout, HLV p2out, HLV p2in,
+                      ParticleProperties const & wprop
+){
+  return jWqqx_j(pgin, pqout, plbar, pl, pqbarout, p2out, p2in, false, wprop)
+          *K_g(p2out,p2in)/HEJ::C_F;
 }
 
 double ME_WExqqx_qqbarg(HLV pgin, HLV pqbarout, HLV plbar, HLV pl,
-                      HLV pqout, HLV p2out, HLV p2in){
-  return jWqqx_j(pgin, pqbarout, plbar, pl, pqout, p2out, p2in, true)*K_g(p2out,p2in)/HEJ::C_F;
+                      HLV pqout, HLV p2out, HLV p2in,
+                      ParticleProperties const & wprop
+){
+  return jWqqx_j(pgin, pqbarout, plbar, pl, pqout, p2out, p2in, true, wprop)
+          *K_g(p2out,p2in)/HEJ::C_F;
 }
 
 namespace {
 //Function to calculate Term 1 in Equation 3.23 in James Cockburn's Thesis.
   Tensor<1> qggm1(HLV pb, HLV p2, HLV p3, Helicity hel2, Helicity helg, HLV refmom){
     //@TODO Simplify the calculation below. (Less Tensor class use?)
     double t1 = (p3-pb)*(p3-pb);
     // Gauge choice in polarisation tensor. (see JC's Thesis)
     Tensor<1> epsg = eps(pb, refmom, helg);
     Tensor<3> qqCurBlank = rank3_current(p2,p3,hel2);
     Tensor<2> qqCur = qqCurBlank.contract(p3-pb,2);
     Tensor<1> gqqCur = qqCur.contract(epsg,2)/t1;
 
     return gqqCur*(-1);
   }
 
 //Function to calculate Term 2 in Equation 3.23 in James Cockburn's Thesis.
   Tensor<1> qggm2(HLV pb, HLV p2, HLV p3, Helicity hel2, Helicity helg, HLV refmom){
     //@TODO Simplify the calculation below (Less Tensor class use?)
     double t1 = (p2-pb)*(p2-pb);
     // Gauge choice in polarisation tensor. (see JC's Thesis)
     Tensor<1> epsg = eps(pb,refmom, helg);
     Tensor<3> qqCurBlank = rank3_current(p2,p3,hel2);
     Tensor<2> qqCur = qqCurBlank.contract(p2-pb,2);
     Tensor<1> gqqCur = qqCur.contract(epsg,1)/t1;
 
     return gqqCur;
   }
 
 //Function to calculate Term 3 in Equation 3.23 in James Cockburn's Thesis.
   Tensor<1> qggm3(HLV pb, HLV p2, HLV p3, Helicity hel2, Helicity helg, HLV refmom){
     //@TODO Simplify the calculation below (Less Tensor class use?)
     double s23 = (p2+p3)*(p2+p3);
     // Gauge choice in polarisation tensor. (see JC's Thesis)
     Tensor<1> epsg = eps(pb, refmom, helg);
     Tensor<3> qqCurBlank1 = outer(p2+p3, metric())/s23;
     Tensor<3> qqCurBlank2 = outer(pb, metric())/s23;
     Tensor<1> Cur23 = HEJ::current(p2, p3,hel2);
 
     Tensor<2> qqCur1 = qqCurBlank1.contract(Cur23,3);
     Tensor<2> qqCur2 = qqCurBlank2.contract(Cur23,3);
     Tensor<2> qqCur3 = qqCurBlank2.contract(Cur23,1);
 
     Tensor<1> gqqCur = (qqCur1.contract(epsg,1)
                           - qqCur2.contract(epsg,2)
                           + qqCur3.contract(epsg,1))*2*COM(0,1);
     return gqqCur;
   }
 }
 
 // no wqq emission
 double ME_W_Exqqx_QQq(HLV pa, HLV pb, HLV p1,  HLV p2,
-                       HLV p3,HLV plbar, HLV pl, bool aqlinepa
+                      HLV p3,HLV plbar, HLV pl, bool aqlinepa,
+                      ParticleProperties const & wprop
 ){
   using helicity::minus;
   using helicity::plus;
   init_sigma_index();
 
   // 2 independent helicity choices (complex conjugation related).
   Tensor<1> TMmmm1 = qggm1(pb,p2,p3,minus,minus, pa);
   Tensor<1> TMmmm2 = qggm2(pb,p2,p3,minus,minus, pa);
   Tensor<1> TMmmm3 = qggm3(pb,p2,p3,minus,minus, pa);
   Tensor<1> TMpmm1 = qggm1(pb,p2,p3,minus,plus, pa);
   Tensor<1> TMpmm2 = qggm2(pb,p2,p3,minus,plus, pa);
   Tensor<1> TMpmm3 = qggm3(pb,p2,p3,minus,plus, pa);
 
   // Build the external quark line W Emmision
   Tensor<1> cur1a = jW(pa,p1,plbar,pl, aqlinepa?plus:minus);
 
   //Contract with the qqxCurrent.
   COM Mmmm1 = TMmmm1.contract(cur1a,1);
   COM Mmmm2 = TMmmm2.contract(cur1a,1);
   COM Mmmm3 = TMmmm3.contract(cur1a,1);
   COM Mpmm1 = TMpmm1.contract(cur1a,1);
   COM Mpmm2 = TMpmm2.contract(cur1a,1);
   COM Mpmm3 = TMpmm3.contract(cur1a,1);
 
   //Colour factors:
   COM cm1m1,cm2m2,cm3m3,cm1m2,cm1m3,cm2m3;
   cm1m1=8./3.;
   cm2m2=8./3.;
   cm3m3=6.;
   cm1m2 =-1./3.;
   cm1m3 = -3.*COM(0.,1.);
   cm2m3 = 3.*COM(0.,1.);
 
   //Sqaure and sum for each helicity config:
   double Mmmm = real( cm1m1*pow(abs(Mmmm1),2) + cm2m2*pow(abs(Mmmm2),2)
                     + cm3m3*pow(abs(Mmmm3),2) + 2.*real(cm1m2*Mmmm1*conj(Mmmm2))
                     + 2.*real(cm1m3*Mmmm1*conj(Mmmm3))
                     + 2.*real(cm2m3*Mmmm2*conj(Mmmm3)) );
   double Mpmm = real( cm1m1*pow(abs(Mpmm1),2) + cm2m2*pow(abs(Mpmm2),2)
                     + cm3m3*pow(abs(Mpmm3),2) + 2.*real(cm1m2*Mpmm1*conj(Mpmm2))
                     + 2.*real(cm1m3*Mpmm1*conj(Mpmm3))
                     + 2.*real(cm2m3*Mpmm2*conj(Mpmm3)) );
 
   // Divide by WProp
-  double WPropfact = WProp(plbar, pl);
-
+  const double WPropfact = WProp(plbar, pl, wprop);
   return (2*WPropfact*(Mmmm+Mpmm)/24./4.)/(pa-p1-pl-plbar).m2()/(p2+p3-pb).m2();
 }
 
 // W+Jets qqxCentral
 double ME_WCenqqx_qq(HLV pa, HLV pb,HLV pl, HLV plbar, std::vector<HLV> partons,
-                    bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove
+                    bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove,
+                    ParticleProperties const & wprop
 ){
   init_sigma_index();
 
   HLV pq, pqbar, p1, p4;
   if (qqxmarker){
     pqbar = partons[nabove+1];
     pq = partons[nabove+2];}
   else{
     pq = partons[nabove+1];
     pqbar = partons[nabove+2];}
 
   p1 = partons.front();
   p4 = partons.back();
 
   Tensor<1> T1am, T4bm, T1ap, T4bp;
   if(!(aqlinepa)){
     T1ap = HEJ::current(p1, pa, helicity::plus);
     T1am = HEJ::current(p1, pa, helicity::minus);}
   else if(aqlinepa){
     T1ap = HEJ::current(pa, p1, helicity::plus);
     T1am = HEJ::current(pa, p1, helicity::minus);}
   if(!(aqlinepb)){
     T4bp = HEJ::current(p4, pb, helicity::plus);
     T4bm = HEJ::current(p4, pb, helicity::minus);}
   else if(aqlinepb){
     T4bp = HEJ::current(pb, p4, helicity::plus);
     T4bm = HEJ::current(pb, p4, helicity::minus);}
 
   // Calculate the 3 separate contributions to the effective vertex
   Tensor<2> Xunc = MUncrossW(pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove);
   Tensor<2> Xcro = MCrossW(  pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove);
   Tensor<2> Xsym = MSymW(    pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove);
 
   // 4 Different Helicity Choices (Differs from Pure Jet Case, where there is
   // also the choice in qqbar helicity.
   // (- - hel choice)
   COM M_mmUnc = (((Xunc).contract(T1am,1)).contract(T4bm,1));
   COM M_mmCro = (((Xcro).contract(T1am,1)).contract(T4bm,1));
   COM M_mmSym = (((Xsym).contract(T1am,1)).contract(T4bm,1));
   // (- + hel choice)
   COM M_mpUnc = (((Xunc).contract(T1am,1)).contract(T4bp,1));
   COM M_mpCro = (((Xcro).contract(T1am,1)).contract(T4bp,1));
   COM M_mpSym = (((Xsym).contract(T1am,1)).contract(T4bp,1));
   // (+ - hel choice)
   COM M_pmUnc = (((Xunc).contract(T1ap,1)).contract(T4bm,1));
   COM M_pmCro = (((Xcro).contract(T1ap,1)).contract(T4bm,1));
   COM M_pmSym = (((Xsym).contract(T1ap,1)).contract(T4bm,1));
   // (+ + hel choice)
   COM M_ppUnc = (((Xunc).contract(T1ap,1)).contract(T4bp,1));
   COM M_ppCro = (((Xcro).contract(T1ap,1)).contract(T4bp,1));
   COM M_ppSym = (((Xsym).contract(T1ap,1)).contract(T4bp,1));
 
   //Colour factors:
   COM cmsms,cmumu,cmcmc,cmsmu,cmsmc,cmumc;
   cmsms=3.;
   cmumu=4./3.;
   cmcmc=4./3.;
   cmsmu =3./2.*COM(0.,1.);
   cmsmc = -3./2.*COM(0.,1.);
   cmumc = -1./6.;
 
   // Work Out Interference in each case of helicity:
   double amp_mm = real(cmsms*pow(abs(M_mmSym),2)
              +cmumu*pow(abs(M_mmUnc),2)
              +cmcmc*pow(abs(M_mmCro),2)
              +2.*real(cmsmu*M_mmSym*conj(M_mmUnc))
              +2.*real(cmsmc*M_mmSym*conj(M_mmCro))
              +2.*real(cmumc*M_mmUnc*conj(M_mmCro)));
 
   double amp_mp = real(cmsms*pow(abs(M_mpSym),2)
              +cmumu*pow(abs(M_mpUnc),2)
              +cmcmc*pow(abs(M_mpCro),2)
              +2.*real(cmsmu*M_mpSym*conj(M_mpUnc))
              +2.*real(cmsmc*M_mpSym*conj(M_mpCro))
              +2.*real(cmumc*M_mpUnc*conj(M_mpCro)));
 
   double amp_pm = real(cmsms*pow(abs(M_pmSym),2)
              +cmumu*pow(abs(M_pmUnc),2)
              +cmcmc*pow(abs(M_pmCro),2)
              +2.*real(cmsmu*M_pmSym*conj(M_pmUnc))
              +2.*real(cmsmc*M_pmSym*conj(M_pmCro))
              +2.*real(cmumc*M_pmUnc*conj(M_pmCro)));
 
   double amp_pp = real(cmsms*pow(abs(M_ppSym),2)
              +cmumu*pow(abs(M_ppUnc),2)
              +cmcmc*pow(abs(M_ppCro),2)
              +2.*real(cmsmu*M_ppSym*conj(M_ppUnc))
              +2.*real(cmsmc*M_ppSym*conj(M_ppCro))
              +2.*real(cmumc*M_ppUnc*conj(M_ppCro)));
 
   double amp=((amp_mm+amp_mp+amp_pm+amp_pp)/(9.*4.));
 
   HLV q1,q3;
   q1=pa;
   for(int i=0;i<nabove+1;i++){
     q1-=partons.at(i);
   }
   q3 = q1 - pq - pqbar - pl - plbar;
 
   double t1 = (q1).m2();
   double t3 = (q3).m2();
 
   //Divide by t-channels
   amp/=(t1*t1*t3*t3);
 
   //Divide by WProp
-  double WPropfact = WProp(plbar, pl);
-  amp*=WPropfact;
+  amp*=WProp(plbar, pl, wprop);
 
   return amp;
 }
 
 // no wqq emission
 double ME_W_Cenqqx_qq(HLV pa, HLV pb,HLV pl,HLV plbar, std::vector<HLV> partons,
                       bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove,
-                      int nbelow, bool forwards
+                      int nbelow, bool forwards, ParticleProperties const & wprop
 ){
   using helicity::minus;
   using helicity::plus;
 
   init_sigma_index();
 
   if (!forwards){ //If Emission from Leg a instead, flip process.
     std::swap(pa, pb);
     std::reverse(partons.begin(),partons.end());
     std::swap(aqlinepa, aqlinepb);
     qqxmarker = !qqxmarker;
     std::swap(nabove,nbelow);
   }
 
   HLV pq, pqbar, p1,p4;
   if (qqxmarker){
     pqbar = partons[nabove+1];
     pq = partons[nabove+2];}
   else{
     pq = partons[nabove+1];
     pqbar = partons[nabove+2];}
 
   p1 = partons.front();
   p4 = partons.back();
 
   Tensor<1> T1am(0.), T1ap(0.);
   if(!(aqlinepa)){
     T1ap = HEJ::current(p1, pa, plus);
     T1am = HEJ::current(p1, pa, minus);}
   else if(aqlinepa){
     T1ap = HEJ::current(pa, p1, plus);
     T1am = HEJ::current(pa, p1, minus);}
 
   Tensor <1> T4bm = jW(pb, p4, plbar, pl, aqlinepb?plus:minus);
 
   // Calculate the 3 separate contributions to the effective vertex
   Tensor<2> Xunc_m = MUncross(pa, pq, pqbar,partons, minus, nabove);
   Tensor<2> Xcro_m = MCross(  pa, pq, pqbar,partons, minus, nabove);
   Tensor<2> Xsym_m = MSym(    pa, p1, pb, p4, pq, pqbar, partons, minus, nabove);
 
   Tensor<2> Xunc_p = MUncross(pa, pq, pqbar,partons, plus, nabove);
   Tensor<2> Xcro_p = MCross(  pa, pq, pqbar,partons, plus, nabove);
   Tensor<2> Xsym_p = MSym(    pa, p1, pb, p4, pq, pqbar, partons, plus, nabove);
 
   // (- - hel choice)
   COM M_mmUnc = (((Xunc_m).contract(T1am,1)).contract(T4bm,1));
   COM M_mmCro = (((Xcro_m).contract(T1am,1)).contract(T4bm,1));
   COM M_mmSym = (((Xsym_m).contract(T1am,1)).contract(T4bm,1));
   // (- + hel choice)
   COM M_mpUnc = (((Xunc_p).contract(T1am,1)).contract(T4bm,1));
   COM M_mpCro = (((Xcro_p).contract(T1am,1)).contract(T4bm,1));
   COM M_mpSym = (((Xsym_p).contract(T1am,1)).contract(T4bm,1));
   // (+ - hel choice)
   COM M_pmUnc = (((Xunc_m).contract(T1ap,1)).contract(T4bm,1));
   COM M_pmCro = (((Xcro_m).contract(T1ap,1)).contract(T4bm,1));
   COM M_pmSym = (((Xsym_m).contract(T1ap,1)).contract(T4bm,1));
   // (+ + hel choice)
   COM M_ppUnc = (((Xunc_p).contract(T1ap,1)).contract(T4bm,1));
   COM M_ppCro = (((Xcro_p).contract(T1ap,1)).contract(T4bm,1));
   COM M_ppSym = (((Xsym_p).contract(T1ap,1)).contract(T4bm,1));
 
   //Colour factors:
   COM cmsms,cmumu,cmcmc,cmsmu,cmsmc,cmumc;
   cmsms=3.;
   cmumu=4./3.;
   cmcmc=4./3.;
   cmsmu =3./2.*COM(0.,1.);
   cmsmc = -3./2.*COM(0.,1.);
   cmumc = -1./6.;
 
   // Work Out Interference in each case of helicity:
   double amp_mm = real(cmsms*pow(abs(M_mmSym),2)
              +cmumu*pow(abs(M_mmUnc),2)
              +cmcmc*pow(abs(M_mmCro),2)
              +2.*real(cmsmu*M_mmSym*conj(M_mmUnc))
              +2.*real(cmsmc*M_mmSym*conj(M_mmCro))
              +2.*real(cmumc*M_mmUnc*conj(M_mmCro)));
 
   double amp_mp = real(cmsms*pow(abs(M_mpSym),2)
              +cmumu*pow(abs(M_mpUnc),2)
              +cmcmc*pow(abs(M_mpCro),2)
              +2.*real(cmsmu*M_mpSym*conj(M_mpUnc))
              +2.*real(cmsmc*M_mpSym*conj(M_mpCro))
              +2.*real(cmumc*M_mpUnc*conj(M_mpCro)));
 
   double amp_pm = real(cmsms*pow(abs(M_pmSym),2)
              +cmumu*pow(abs(M_pmUnc),2)
              +cmcmc*pow(abs(M_pmCro),2)
              +2.*real(cmsmu*M_pmSym*conj(M_pmUnc))
              +2.*real(cmsmc*M_pmSym*conj(M_pmCro))
              +2.*real(cmumc*M_pmUnc*conj(M_pmCro)));
 
   double amp_pp = real(cmsms*pow(abs(M_ppSym),2)
              +cmumu*pow(abs(M_ppUnc),2)
              +cmcmc*pow(abs(M_ppCro),2)
              +2.*real(cmsmu*M_ppSym*conj(M_ppUnc))
              +2.*real(cmsmc*M_ppSym*conj(M_ppCro))
              +2.*real(cmumc*M_ppUnc*conj(M_ppCro)));
 
   double amp=((amp_mm+amp_mp+amp_pm+amp_pp)/(9.*4.));
 
   HLV q1,q3;
   q1=pa;
   for(int i=0;i<nabove+1;i++){
     q1-=partons.at(i);
   }
   q3 = q1 - pq - pqbar;
 
   double t1 = (q1).m2();
   double t3 = (q3).m2();
 
   //Divide by t-channels
   amp/=(t1*t1*t3*t3);
 
   //Divide by WProp
-  double WPropfact = WProp(plbar, pl);
-  amp*=WPropfact;
+  amp*=WProp(plbar, pl, wprop);
 
   return amp;
 }