diff --git a/Changes-API.md b/Changes-API.md index 4f1d886..d21d791 100644 --- a/Changes-API.md +++ b/Changes-API.md @@ -1,112 +1,113 @@ # Changelog for HEJ API This log lists only changes on the HEJ API. These are primarily code changes relevant for calling HEJ as an API. This file should only be read as an addition to [`Changes.md`](Changes.md), where the main features are documented. ## Version 2.1 ### 2.1.0 #### Changes to Event class * Restructured `Event` class - `Event` can now only be build from a (new) `Event::EventData` class - Removed default constructor for `Event` - `Event::EventData` replaces the old `UnclusteredEvent` struct. - `UnclusteredEvent` is now **deprecated**, and will be removed in HEJ Version 2.3.0 - Removed `Event.unclustered()` function - Added new member function `Events.parameters()`, to directly access (underlying) `Parameters` - New member functions `begin_partons`, `end_partons` (`rbegin_partons`, `rend_partons`) with aliases `cbegin_partons`, `cend_partons` (`crbegin_partons`, `crend_partons`) for constant (reversed) iterators over outgoing partons. * New function `Event::EventData.reconstruct_intermediate()` to reconstruct bosons from decays, e.g. `positron + nu_e => Wp` * Added optional Colour charges to particles (`Particle.colour`) - Colour connection in the HEJ limit can be generated via `Event.generate_colours` (automatically done in the resummation) - Colour configuration of input events can be checked with `Event.is_leading_colour` * Added function `Event.valid_hej_state` to check if event _could have_ been produced by `HEJ` according to the `soft pt regulator` cut on the jets #### New and updated functions * Renamed `EventType::nonHEJ` to `EventType::non_resummable` and `is_HEJ()` to `is_resummable()` such that run card is consistent with internal workings * Made `MatrixElement.tree_kin(...)` and `MatrixElement.tree_param(...)` public * New `EventReweighter` member function `treatment` to query the treatment with respect to resummation for the various event types. * Added auxiliary functions to obtain a `std::string` from `EventDescription` (`to_string` for human readable, and `to_simple_string` for easy parsable string) * New `get_analyses` function to read in multiple `HEJ::Analysis` at once, similar to `get_analysis` * New `get_ew_parameters` function to extract electroweak parameters from YAML configuration. #### New classes * New class `Unweighter` to do unweighting * New class `CrossSectionAccumulator` to keep track of Cross Section of the different subprocess * New template struct `Parameters` similar to old `Weights` - `Weights` are now an alias for `Parameters`. Calling `Weights` did not change - `Weights.hh` was replaced by `Parameters.hh`. The old `Weights.hh` header will be removed in HEJ Version 2.2.0 * Function to multiplication and division of `EventParameters.weight` by double - This can be combined with `Parameters`, e.g. `Parameters*Weights`, see also `Events.parameters()` - Moved `EventParameters` to `Parameters.hh` header * new class `EWConstants` replaces previously hard coded `vev` - `EWConstants` have to be set in the general `Config` and the `MatrixElementConfig` #### Input/Output * New abstract `EventReader` class, as base for reading events from files - Moved LHE file reader to `HEJ::LesHouchesReader` * New (optional) function `finish()` in abstract class `EventWriter`. `finish()` is called _after_ all events are written. * Support reading (`HDF5Reader`) and writing (`HDF5Writer`) `hdf5` files * New `BufferedEventReader` class that allows to put events back into the reader. * New `SherpaLHEReader` to read Sherpa LHE files with correct weights * `get_analysis` now requires `YAML::Node` and `LHEF::HEPRUP` as arguments * Replaced `HepMCInterface` and `HepMCWriter` by `HepMCInterfaceX` and `HepMCWriterX` respectively, with `X` being the major version of HepMC (2 or 3) - Renamed `HepMCInterfaceX::init_kinematics` to `HepMCInterfaceX::init_event` and protected it, use `HepMCInterfaceX::operator()` instead - Removed redundant `HepMCInterfaceX::add_variation` function #### Linking * Export cmake target `HEJ::HEJ` to link directly against `libHEJ` * Preprocessor flags (`HEJ_BUILD_WITH_XYZ`) for enabled/disabled dependencies are now written to `ConfigFlags.hh` * Provide links to version specific object files, e.g. `libHEJ.so -> libHEJ.so.2.1 (soname) -> libHEJ.so.2.1.0` * Removed `LHAPDF` from public interface #### Miscellaneous * Capitalisation of `Config.hh` now matches class `Config` (was `config.hh`) * Renamed `Config::max_ext_soft_pt_fraction` to `Config::soft_pt_regulator`. - `Config::max_ext_soft_pt_fraction` is now **deprecated** + The new `Config::soft_pt_regulator` parameter is optional and the old + `Config::max_ext_soft_pt_fraction` is **deprecated**. * Replaced redundant member `EventReweighterConfig::jet_param` with getter function `EventReweighter.jet_param()` (`JetParameters` are already in `PhaseSpacePointConfig`) * Avoid storing reference to the Random Number Generator inside classes - Constructors of `EventReweighter` now expect `std::shared_ptr` (was reference) - Moved reference to `HEJ::RNG` from constructor of `JetSplitter` to `JetSplitter.split` ## Version 2.0 ### 2.0.4 * Fixed wrong path of `HEJ_INCLUDE_DIR` in `hej-config.cmake` ### 2.0.0 * First release diff --git a/Changes.md b/Changes.md index b0dbbf0..6736462 100644 --- a/Changes.md +++ b/Changes.md @@ -1,142 +1,143 @@ # Changelog This is the log for changes to the HEJ program. Further changes to the HEJ API are documented in [`Changes-API.md`](Changes-API.md). If you are using HEJ as a library, please also read the changes there. ## Version 2.1 This release adds support for two new processes: * W boson with jets. * Jets with a charged lepton-antilepton pair via a virtual Z boson or photon. In addition, the complete set of first subleading processes (unordered gluon, central and extremal quark-antiquark pair) is implemented for pure jets and W + jets, see [arXiv:TODO](https://arxiv.org/abs/TODO). Unordered gluon emission is also supported for Higgs boson + jets and Z boson/photon + jets. This release include many changes to the code, which affect users of HEJ as a library (see [`Changes-API.md`](Changes-API.md)). ### 2.1.0 #### New Processes * Resummation for W bosons with jets - New subleading processes `extremal qqx` & `central qqx` for a quark and anti-quark in the final state, e.g. `g g => u d_bar Wm g` (the other subleading processes also work with W's) - `HEJFOG` can generate multiple jets together with a (off-shell) W bosons decaying into lepton & neutrino * Resummation for jets with a charged lepton-antilepton pair via a virtual Z boson or photon. Includes the `unordered` subleading process. * Resummation can now be performed on all subleading processes within pure jets also. This includes `unordered`, `extremal qqbar` and `central qqbar` processes. #### More Physics implementation * Partons now have a Colour charge - Colours are read from and written to LHE files - For reweighted events the colours are created according to leading colour in the FKL limit * Use relative fraction for soft transverse momentum in tagging jets (`soft pt - regulator`). This supersedes `min extparton pt`, which is now **deprecated** - and will be removed in future versions. - - `soft pt regulator` is a direct replacement for the now **deprecated** `max - ext soft pt fraction` + regulator`) as new (optional) parameter. + - This supersedes `min extparton pt`, which is marked **deprecated** and will + be removed in future versions. + - This is a direct replacement for the old `max ext soft pt fraction`, which + is also **deprecated**. #### Updates to Runcard * Allow multiplication and division of multiple scale functions e.g. `H_T/2*m_j1j2` * Grouped `event treatment` for subleading channels together in runcard - Rename `non-HEJ` processes to `non-resummable` * Read electro-weak constants from input - new mandatory setting `vev` to change vacuum expectation value - new mandatory settings `particle properties` to specify mass & width of bosons - `HEJFOG`: decays are now specified in `decays` setting (previously under `particle properties`) * Allow loading multiple analyses with `analyses`. The old `analysis` (with "i") is marked **deprecated**. * Optional setting to specify maximal number of Fixed Order events (`max events`, default is all) * Allow changing the regulator lambda in input (`regulator parameter`, only for advanced users) #### Changes to Input/Output * Added support to read & write `hdf5` event files suggested in [arXiv:1905.05120](https://arxiv.org/abs/1905.05120) (needs [HighFive](https://github.com/BlueBrain/HighFive)) * Support input with average weight equal to the cross section (`IDWTUP=1 or 4`) * Support unmodified Les Houches Event Files written by Sherpa with `cross section = sum(weights)/sum(trials)` * Analyses now get general run information (`LHEF::HEPRUP`) in the constructor. **This might break previously written, external analyses!** - external analyses should now be created with `make_analysis(YAML::Node const & config, LHEF::HEPRUP const & heprup)` * Support `rivet` version 3 with both `HepMC` version 2 and 3 - Multiple weights with `rivet 3` will only create one `.yoda` file (instead of one per weight/scale) * Added option to unweight only resummation events (`unweight: {type: resummation}`) * Added option for partially unweighting resummation events, similar to the fixed-order generator. * Improved unweighting algorithm. * Follow HepMC convention for particle Status codes: incoming = 11, decaying = 2, outgoing = 1 (unchanged) #### Miscellaneous * Print cross sections at end of run * Added example analysis & scale to `examples/`. Everything in `examples/` will be build when the flag `-DBUILD_EXAMPLES=TRUE` is set in `cmake`. * Dropped support for HepMC 3.0.0, either HepMC version 2 or >3.1 is required - It is now possible to write out both HepMC 2 and HepMC 3 events at the same time * Require LHADPF version 6. Dropped support for all other versions. * Use `git-lfs` for raw data in test (`make test` now requires `git-lfs`) * Currents are now generated with [`FORM`](https://github.com/vermaseren/form) - `FORM` is included as a `git submodule`, use `git submodule update --init` to download `FORM` * Create [Sphinx](http://sphinx-doc.org/) and [Doxygen](http://doxygen.org/) documentation by `make sphinx` or `make doxygen` in your `build/` folder ## Version 2.0 First release of HEJ 2. Complete code rewrite compared to HEJ 1. Improved matching to Fixed Order ([arXiv:1805.04446](https://arxiv.org/abs/1805.04446)). Implemented processes: Higgs boson with jets (FKL and unordered gluon emission, with finite quark mass loop, [arXiv:1812.08072](https://arxiv.org/abs/1812.08072)), and pure jets (only FKL). See [arXiv:1902.08430](https://arxiv.org/abs/1902.08430) ### 2.0.6 * Fixed compiling rivet when YODA headers are _outside_ of rivet directory ### 2.0.5 * Fixed event classification for input not ordered in rapidity ### 2.0.4 * Fixed wrong path of `HEJ_INCLUDE_DIR` in `hej-config.cmake` ### 2.0.3 * Fixed parsing of (numerical factor) * (base scale) in configuration * Don't change scale names, but sanitise Rivet output file names instead ### 2.0.2 * Changed scale names to `"_over_"` and `"_times_"` for proper file names (was `"/"` and `"*"` before) ### 2.0.1 * Fixed name of fixed-order generator in error message. ### 2.0.0 * First release diff --git a/config.yml b/config.yml index 755b212..8d52b20 100644 --- a/config.yml +++ b/config.yml @@ -1,129 +1,129 @@ ## Number of attempted resummation phase space points for each input event trials: 10 -## Maximum soft transverse momentum fraction in any tagging jets, e.g. -## extremal or qqx jet -soft pt regulator: 0.1 - resummation jets: # resummation jet properties min pt: 30 # minimum jet transverse momentum algorithm: antikt # jet clustering algorithm R: 0.4 # jet R parameter fixed order jets: # properties of input jets min pt: 20 # by default, algorithm and R are like for resummation jets ## Treatment of he various event classes ## the supported settings are: reweight, keep, discard ## non-resummable events cannot be reweighted event treatment: FKL: reweight unordered: keep extremal qqx: keep central qqx: keep non-resummable: keep ## Central scale choice or choices # ## multiple scales are allowed, e.g. # scales: [125, max jet pperp, H_T/2, 2*jet invariant mass, m_j1j2] scales: 91.188 ## Factors by which the central scales should be multiplied ## renormalisation and factorisation scales are varied independently # # scale factors: [0.5, 0.7071, 1, 1.41421, 2] ## Maximum ratio between renormalisation and factorisation scale # # max scale ratio: 2.0001 ## Import scale setting functions # # import scales: # lib_my_scales.so: [scale0,scale1] ## Unweighting setting ## remove to obtain weighted events # unweight: # # type of unweighting (one of 'weighted', 'resummation', 'partial') # type: partial # trials: 10000 # max deviation: 0 ## Event output files # # the supported formats are # - Les Houches (suffix .lhe) # - HepMC2 (suffix .hepmc2) # - HepMC3 (suffix .hepmc3 or .hepmc) # - HDF5 (suffix .hdf5) # ## An output file's format is deduced either automatically from the suffix ## or from an explicit specification, e.g. ## - Les Houches: outfile # event output: - HEJ.lhe # - HEJ_events.hepmc ## Analyses # # analyses: ## Rivet analysis # - rivet: MC_XS # rivet analysis name # output: HEJ # name of the yoda files, ".yoda" and scale suffix will be added ## Custom analysis # - plugin: /path/to/libmyanalysis.so # my analysis parameter: some value ## Selection of random number generator and seed ## The choices are ## - mixmax (seed is an integer) ## - ranlux64 (seed is a filename containing parameters) random generator: name: mixmax # seed: 1 ## Whether or not to include higher order logs log correction: false ## Vacuum expectation value vev: 246.2196508 ## Properties of the weak gauge bosons particle properties: Higgs: mass: 125 width: 0.004165 W: mass: 80.385 width: 2.085 Z: mass: 91.187 width: 2.495 ## Parameters for Higgs-gluon couplings ## This requires compilation with QCDloop # # Higgs coupling: # use impact factors: false # mt: 174 # include bottom: true # mb: 4.7 ## ---------------------------------------------------------------------- ## ## The following settings are only intended for advanced users. ## ## Please DO NOT SET them unless you know exactly what you are doing! ## ## ---------------------------------------------------------------------- ## # +## Maximum soft transverse momentum fraction in any tagging jets, e.g. +## extremal or qqx jet +# soft pt regulator: 0.1 +# ## Minimum transverse momentum of extremal partons ## deprecated: use "soft pt regulator" instead # min extparton pt: 30 # ## deprecated: this cot directly replaced by "soft pt regulator" # max ext soft pt fraction: 0.1 # # max events: -1 # Maximal number of fixed order Events to process # regulator parameter: 0.2 # The regulator lambda for the subtraction terms diff --git a/doc/sphinx/HEJ.rst b/doc/sphinx/HEJ.rst index 53d2683..34eba56 100644 --- a/doc/sphinx/HEJ.rst +++ b/doc/sphinx/HEJ.rst @@ -1,443 +1,443 @@ .. _`Running HEJ 2`: Running HEJ 2 ============= Quick start ----------- In order to run HEJ 2, you need a configuration file and a file containing fixed-order events. A sample configuration is given by the :file:`config.yml` file distributed together with HEJ 2. Events in the Les Houches Event File format can be generated with standard Monte Carlo generators like `MadGraph5_aMC@NLO `_ or `Sherpa `_. If HEJ 2 was compiled with `HDF5 `_ support, it can also read and write event files in the format suggested in `arXiv:1905.05120 `_. HEJ 2 assumes that the cross section is given by the sum of the event weights. Depending on the fixed-order generator it may be necessary to adjust the weights in the Les Houches Event File accordingly. The processes supported by HEJ 2 are - Pure multijet production - Production of a Higgs boson with jets - Production of a W boson with jets - Production of jets with a charged lepton-antilepton pair, via a virtual Z boson or photon where at least two jets are required in each case. For the time being, only leading-order input events are supported. After generating an event file :file:`events.lhe` adjust the parameters under the `fixed order jets`_ setting in :file:`config.yml` to the settings in the fixed-order generation. Resummation can then be added by running:: HEJ config.yml events.lhe Using the default settings, this will produce an output event file :file:`HEJ.lhe` with events including high-energy resummation. When using the `Docker image `_, HEJ can be run with .. code-block:: bash docker run -v $PWD:$PWD -w $PWD hejdock/hej HEJ config.yml events.lhe .. _`HEJ 2 settings`: Settings -------- HEJ 2 configuration files follow the `YAML `_ format. The following configuration parameters are supported: .. _`trials`: **trials** High-energy resummation is performed by generating a number of resummation phase space configurations corresponding to an input fixed-order event. This parameter specifies how many such configurations HEJ 2 should try to generate for each input event. Typical values vary between 10 and 100. -.. _`soft pt regulator`: - -**soft pt regulator** - Specifies the maximum fraction that soft radiation can contribute to the - transverse momentum of each the tagging jets, i.e. any jet that affects the - event classification, like the most forward and most backward jet or the jets - of the central qqx pair. This setting is needed to regulate an otherwise - uncancelled divergence. Values between around 0.05 and 0.1 are recommended. - .. _`fixed order jets`: **fixed order jets** This tag collects a number of settings specifying the jet definition in the event input. The settings should correspond to the ones used in the fixed-order Monte Carlo that generated the input events. .. _`fixed order jets: min pt`: **min pt** Minimum transverse momentum in GeV of fixed-order jets. .. _`fixed order jets: algorithm`: **algorithm** The algorithm used to define jets. Allowed settings are :code:`kt`, :code:`cambridge`, :code:`antikt`, :code:`cambridge for passive`. See the `FastJet `_ documentation for a description of these algorithms. .. _`fixed order jets: R`: **R** The R parameter used in the jet algorithm, roughly corresponding to the jet radius in the plane spanned by the rapidity and the azimuthal angle. .. _`resummation jets`: **resummation jets** This tag collects a number of settings specifying the jet definition in the observed, i.e. resummed events. These settings are optional, by default the same values as for the `fixed order jets`_ are assumed. .. _`resummation jets: min pt`: **min pt** Minimum transverse momentum in GeV of resummation jets. This should be between 25% and 50% larger than the minimum transverse momentum of fixed order jets set by `fixed order jets: min pt`_. .. _`resummation jets: algorithm`: **algorithm** The algorithm used to define jets. The HEJ 2 approach to resummation relies on properties of :code:`antikt` jets, so this value is strongly recommended. For a list of possible other values, see the `fixed order jets: algorithm`_ setting. .. _`resummation jets: R`: **R** The R parameter used in the jet algorithm. .. _`event treatment`: **event treatment** Specify how to treat different event types. The different event types contribute to different orders in the high-energy limit. The possible values are :code:`reweight` to enable resummation, :code:`keep` to keep the events as they are up to a possible change of renormalisation and factorisation scale, and :code:`discard` to discard these events. The following types are implemented for the different bosons: .. csv-table:: :header: , "FKL", "unordered", "extremal qqx", "central qqx" :widths: auto :align: center :stub-columns: 1 "pure jets", "Yes", "Yes", "Yes", "Yes" "Higgs + jets", "Yes", "Yes", "No", "No" "W + jets", "Yes", "Yes", "Yes", "Yes" "Z/γ + jets", "Yes", "Yes", "No", "No" Non-implemented process will always be classified as :code:`non-resummable`. The different types are: .. _`FKL`: **FKL** Specifies how to treat events respecting FKL rapidity ordering, where all but the two partons extremal in rapidity have to be gluons, e.g. :code:`u d => u g d`. These configurations are dominant in the high-energy limit. .. _`unordered`: **unordered** Specifies how to treat events with one gluon emission that does not respect FKL ordering, e.g. :code:`u d => g u d`. In the high-energy limit, such configurations are logarithmically suppressed compared to FKL configurations. .. _`extremal qqx`: **extremal qqx** Specifies how to treat events with a quark-antiquark pair as extremal partons in rapidity, e.g. :code:`g d => u u_bar d`. In the high-energy limit, such configurations are logarithmically suppressed compared to FKL configurations. .. _`central qqx`: **central qqx** Specifies how to treat events with a quark-antiquark pair central in rapidity, e.g. :code:`g g => g u u_bar g`. In the high-energy limit, such configurations are logarithmically suppressed compared to FKL configurations. .. _`non-resummable`: **non-resummable** Specifies how to treat events that do not fall into any of the above categories or that are not yet implemented. Only :code:`keep` or :code:`discard` are valid options, *not* :code:`reweight` for obvious reasons. .. _`scales`: **scales** Specifies the renormalisation and factorisation scales for the output events. This can either be a single entry or a list :code:`[scale1, scale2, ...]`. For the case of a list the first entry defines the central scale. Possible values are fixed numbers to set the scale in GeV or the following: - :code:`H_T`: The sum of the scalar transverse momenta of all final-state particles - :code:`max jet pperp`: The maximum transverse momentum of all jets - :code:`jet invariant mass`: Sum of the invariant masses of all jets - :code:`m_j1j2`: Invariant mass between the two hardest jets. Scales can be multiplied or divided by overall factors, e.g. :code:`H_T/2`. It is also possible to import scales from an external library, see :ref:`Custom scales` .. _`scale factors`: **scale factors** A list of numeric factors by which each of the `scales`_ should be multiplied. Renormalisation and factorisation scales are varied independently. For example, a list with entries :code:`[0.5, 2]` would give the four scale choices (0.5μ\ :sub:`r`, 0.5μ\ :sub:`f`); (0.5μ\ :sub:`r`, 2μ\ :sub:`f`); (2μ\ :sub:`r`, 0.5μ\ :sub:`f`); (2μ\ :sub:`r`, 2μ\ :sub:`f`) in this order. The ordering corresponds to the order of the final event weights. .. _`max scale ratio`: **max scale ratio** Specifies the maximum factor by which renormalisation and factorisation scales may difer. For a value of :code:`2` and the example given for the `scale factors`_ the scale choices (0.5μ\ :sub:`r`, 2μ\ :sub:`f`) and (2μ\ :sub:`r`, 0.5μ\ :sub:`f`) will be discarded. .. _`log correction`: **log correction** Whether to include corrections due to the evolution of the strong coupling constant in the virtual corrections. Allowed values are :code:`true` and :code:`false`. .. _`unweight`: **unweight** Settings for unweighting events. Unweighting can greatly reduce the number of resummation events, speeding up analyses and shrinking event file sizes. .. _`type`: **type** How to unweight events. The supported settings are - :code:`weighted`: Generate weighted events. Default, if nothing else specified. - :code:`resummation`: Unweight only resummation events. Each set of resummation events coming from *a single fixed order event* are unweighted separately according to the largest weight in the current chunk of events. - :code:`partial`: Unweight only resummation events with weights below a certain threshold. The weight threshold is determined automatically in a calibration run prior to the usual event generation. .. _`unweight: trials`: **trials** Maximum number of trial resummation events generated in the calibration run for partial unweighting. This option should only be set for partial unweighting. If possible, each trial is generated from a different input fixed-order event. If there are not sufficiently many input events, more than one trial event may be generated for each of them and the actual number of trial events may be smaller than requested. Increasing the number of trials generally leads to better unweighting calibration but increases the run time. Between 1000 and 10000 trials are usually sufficient. .. _`unweight: max deviation`: **max deviation** Controls the range of events to which unweighting is applied. This option should only be set for partial unweighting. A larger value means that a larger fraction of events are unweighted. Typical values are between -1 and 1. .. _`event output`: **event output** Specifies the name of a single event output file or a list of such files. The file format is either specified explicitly or derived from the suffix. For example, :code:`events.lhe` or, equivalently :code:`Les Houches: events.lhe` generates an output event file :code:`events.lhe` in the Les Houches format. The supported formats are - :code:`file.lhe` or :code:`Les Houches: file`: The Les Houches event file format. - :code:`file.hepmc2` or :code:`HepMC2: file`: HepMC format version 2. - :code:`file.hepmc3` or :code:`HepMC3: file`: HepMC format version 3. - :code:`file.hepmc` or :code:`HepMC: file`: The latest supported version of the HepMC format, currently version 3. - :code:`file.hdf5` or :code:`HDF5: file`: The HDF5-based format of `arXiv:1905.05120 `_. .. _`random generator`: **random generator** Sets parameters for random number generation. .. _`random generator: name`: **name** Which random number generator to use. Currently, :code:`mixmax` and :code:`ranlux64` are supported. Mixmax is recommended. See the `CLHEP documentation `_ for details on the generators. .. _`random generator: seed`: **seed** The seed for random generation. This should be a single number for :code:`mixmax` and the name of a state file for :code:`ranlux64`. .. _`analyses`: **analyses** Names and settings for one or more custom and Rivet event analyses. Entries containing the :code:`rivet` key are interpreted as Rivet analyses; the values corresponding to this key should be the analyses names. In addition, there is a mandatory :code:`output` key which determines the prefix for the yoda output file. For a custom analysis the :code:`plugin` sub-entry should be set to the analysis file path. All further entries are passed on to the analysis. See :ref:`Writing custom analyses` for details. .. _`vev`: **vev** Higgs vacuum expectation value in GeV. All electro-weak constants are derived from this together with the `particle properties`_. .. _`particle properties`: **particle properties** Specifies various properties of the different particles (Higgs, W or Z). All electro-weak constants are derived from these together with the :ref:`vacuum expectation value`. .. _`particle properties: particle`: **Higgs, W or Z** The particle (Higgs, |W+| or |W-|, Z) for which the following properties are defined. .. |W+| replace:: W\ :sup:`+` .. |W-| replace:: W\ :sup:`-` .. _`particle properties: particle: mass`: **mass** The mass of the particle in GeV. .. _`particle properties: particle: width`: **width** The total decay width of the particle in GeV. .. _`Higgs coupling`: **Higgs coupling** This collects a number of settings concerning the effective coupling of the Higgs boson to gluons. This is only relevant for the production process of a Higgs boson with jets and only supported if HEJ 2 was compiled with `QCDLoop `_ support. .. _`Higgs coupling: use impact factors`: **use impact factors** Whether to use impact factors for the coupling to the most forward and most backward partons. Impact factors imply the infinite top-quark mass limit. .. _`Higgs coupling: mt`: **mt** The value of the top-quark mass in GeV. If this is not specified, the limit of an infinite mass is taken. .. _`Higgs coupling: include bottom`: **include bottom** Whether to include the Higgs coupling to bottom quarks. .. _`Higgs coupling: mb`: **mb** The value of the bottom-quark mass in GeV. Only used for the Higgs coupling, external bottom-quarks are always assumed to be massless. Advanced Settings ~~~~~~~~~~~~~~~~~ All of the following settings are optional. Please **do not set** any of the following options, unless you know exactly what you are doing. The default behaviour gives the most reliable results for a wide range of observables. +.. _`soft pt regulator`: + +**soft pt regulator** + Specifies the maximum fraction that soft radiation can contribute to the + transverse momentum of each the tagging jets, i.e. any jet that affects the + event classification, like the most forward and most backward jet or the jets + of the central qqx pair. This setting is needed to regulate an otherwise + cancelled divergence. Default is 0.1 + +.. _`max ext soft pt fraction`: + +**max ext soft pt fraction** + This is the same as `soft pt regulator`_ and will be removed in future + versions. + .. _`min extparton pt`: **min extparton pt** Specifies the minimum transverse momentum in GeV of the most forward and the most backward parton. Its value should be slightly below the minimum transverse momentum of jets specified by `resummation jets: min pt`_. This setting got superseded by `soft pt regulator`_ and will be removed in future versions. -.. _`max ext soft pt fraction`: - -**max ext soft pt fraction** - This is the same as `soft pt regulator`_ and will be removed in future - versions. - .. _`max events`: **max events** Maximal number of (input) Fixed Order events. HEJ will stop after processing `max events` many events. Default considers all events. .. _`regulator parameter`: **regulator parameter** Slicing parameter to regularise the subtraction term, called :math:`\lambda` in `arxiv:1706.01002 `_. Default is 0.2 diff --git a/include/HEJ/Config.hh b/include/HEJ/Config.hh index af2fbbf..4e3acd1 100644 --- a/include/HEJ/Config.hh +++ b/include/HEJ/Config.hh @@ -1,243 +1,255 @@ /** \file * \brief HEJ 2 configuration parameters * * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #pragma once #include #include #include #include #include "fastjet/JetDefinition.hh" #include "yaml-cpp/yaml.h" #include "HEJ/Constants.hh" #include "HEJ/EWConstants.hh" #include "HEJ/Fraction.hh" #include "HEJ/HiggsCouplingSettings.hh" #include "HEJ/ScaleFunction.hh" #include "HEJ/event_types.hh" #include "HEJ/optional.hh" #include "HEJ/output_formats.hh" namespace HEJ { //! Jet parameters struct JetParameters{ fastjet::JetDefinition def; /**< Jet Definition */ double min_pt{}; /**< Minimum Jet Transverse Momentum */ }; //! Settings for scale variation struct ScaleConfig{ //! Base scale choices std::vector base; //! Factors for multiplicative scale variation std::vector factors; //! Maximum ratio between renormalisation and factorisation scale double max_ratio{}; }; //! Settings for random number generator struct RNGConfig { //! Random number generator name std::string name; //! Optional initial seed optional seed; }; //! Settings for partial unweighting struct PartialUnweightConfig { //! Number of trials for training size_t trials; //! Maximum distance in standard deviations from mean logarithmic weight double max_dev; }; /**! Possible treatments for fixed-order input events. * * The program will decide on how to treat an event based on * the value of this enumeration. */ enum class EventTreatment{ reweight, /**< Perform resummation */ keep, /**< Keep the event */ discard, /**< Discard the event */ }; //! Container to store the treatments for various event types using EventTreatMap = std::map; //! Possible setting for the event weight enum class WeightType{ weighted, //!< weighted events unweighted_resum, //!< unweighted only resummation part partially_unweighted //!< mixed weighted and unweighted }; /**! Input parameters. * * This struct handles stores all configuration parameters * needed in a HEJ 2 run. * * \internal To add a new option: * 1. Add a member to the Config struct. * 2. Inside "src/YAMLreader.cc": * - Add the option name to the "supported" Node in * get_supported_options. * - Initialise the new Config member in to_Config. * The functions set_from_yaml (for mandatory options) and * set_from_yaml_if_defined (non-mandatory) may be helpful. * 3. Add a new entry (with short description) to config.yaml * 4. Update the user documentation in "doc/Sphinx/" */ struct Config { //! %Parameters for scale variation ScaleConfig scales; //! Resummation jet properties JetParameters resummation_jets; //! Fixed-order jet properties JetParameters fixed_order_jets; //! Minimum transverse momentum for extremal partons //! \deprecated This will be removed in future versions. //! Use \ref soft_pt_regulator instead. double min_extparton_pt = 0.; //! \deprecated This is equivalent to\ref soft_pt_regulator //! and will be removed in future versions. optional> max_ext_soft_pt_fraction{}; //! @brief Maximum transverse momentum fraction from soft radiation in any //! tagging jet (e.g. extremal or qqx jet) - Fraction soft_pt_regulator{}; + Fraction soft_pt_regulator{ DEFAULT_SOFT_PT_REGULATOR }; //! The regulator lambda for the subtraction terms double regulator_lambda = CLAMBDA; //! Number of resummation configurations to generate per fixed-order event size_t trials{}; //! Maximal number of events optional max_events; //! Whether to include the logarithmic correction from \f$\alpha_s\f$ running bool log_correction{}; //! Event output files names and formats std::vector output; //! Parameters for random number generation RNGConfig rng; //! Map to decide what to do for different event types EventTreatMap treat; //! %Parameters for custom analysis //! @deprecated use analyses_parameters instead YAML::Node analysis_parameters; //! %Parameters for custom analyses std::vector analyses_parameters; //! Settings for effective Higgs-gluon coupling HiggsCouplingSettings Higgs_coupling; //! elector weak parameters EWConstants ew_parameters; //! Type of event weight e.g. (un)weighted WeightType weight_type; //! Settings for partial unweighting optional unweight_config; }; //! Configuration options for the PhaseSpacePoint class struct PhaseSpacePointConfig { + PhaseSpacePointConfig() = default; + PhaseSpacePointConfig( + JetParameters jet_param, + double min_extparton_pt = 0., + Fraction soft_pt_regulator = + Fraction{DEFAULT_SOFT_PT_REGULATOR} + ): + jet_param{jet_param}, + min_extparton_pt{min_extparton_pt}, + max_ext_soft_pt_fraction{}, + soft_pt_regulator{std::move(soft_pt_regulator)} + {} //! Properties of resummation jets JetParameters jet_param; //! Minimum transverse momentum for extremal partons //! \deprecated This will be removed in future versions. //! Use \ref soft_pt_regulator instead. - double min_extparton_pt = 0; + double min_extparton_pt = 0.; //! \deprecated This is equivalent to\ref soft_pt_regulator //! and will be removed in future versions. optional> max_ext_soft_pt_fraction{}; //! @brief Maximum transverse momentum fraction from soft radiation in any //! tagging jet (e.g. extremal or qqx jet) - Fraction soft_pt_regulator{}; + Fraction soft_pt_regulator{ DEFAULT_SOFT_PT_REGULATOR }; }; //! Configuration options for the MatrixElement class struct MatrixElementConfig { MatrixElementConfig() = default; MatrixElementConfig( bool log_correction, HiggsCouplingSettings Higgs_coupling, EWConstants ew_parameters, double regulator_lambda = CLAMBDA ): log_correction{log_correction}, Higgs_coupling{std::move(Higgs_coupling)}, ew_parameters{std::move(ew_parameters)}, regulator_lambda{regulator_lambda} {} //! Whether to include the logarithmic correction from \f$\alpha_s\f$ running bool log_correction{}; //! Settings for effective Higgs-gluon coupling HiggsCouplingSettings Higgs_coupling; //! elector weak parameters EWConstants ew_parameters; //! The regulator lambda for the subtraction terms double regulator_lambda = CLAMBDA; }; //! Configuration options for the EventReweighter class struct EventReweighterConfig { //! Settings for phase space point generation PhaseSpacePointConfig psp_config; //! Settings for matrix element calculation MatrixElementConfig ME_config; //! Access properties of resummation jets JetParameters & jet_param() { return psp_config.jet_param;} //! Access properties of resummation jets (const version) JetParameters const & jet_param() const { return psp_config.jet_param;} //! Treatment of the various event types EventTreatMap treat; }; /**! Extract PhaseSpacePointConfig from Config * * \internal We do not provide a PhaseSpacePointConfig constructor from Config * so that PhaseSpacePointConfig remains an aggregate. * This faciliates writing client code (e.g. the HEJ fixed-order generator) * that creates a PhaseSpacePointConfig *without* a Config object. * * @see to_MatrixElementConfig, to_EventReweighterConfig */ inline PhaseSpacePointConfig to_PhaseSpacePointConfig(Config const & conf) { return { conf.resummation_jets, conf.min_extparton_pt, - conf.max_ext_soft_pt_fraction, - conf.soft_pt_regulator + conf.max_ext_soft_pt_fraction?*conf.max_ext_soft_pt_fraction + :conf.soft_pt_regulator }; } /**! Extract MatrixElementConfig from Config * * @see to_PhaseSpacePointConfig, to_EventReweighterConfig */ inline MatrixElementConfig to_MatrixElementConfig(Config const & conf) { return {conf.log_correction, conf.Higgs_coupling, conf.ew_parameters, conf.regulator_lambda}; } /**! Extract EventReweighterConfig from Config * * @see to_PhaseSpacePointConfig, to_MatrixElementConfig */ inline EventReweighterConfig to_EventReweighterConfig(Config const & conf) { return { to_PhaseSpacePointConfig(conf), to_MatrixElementConfig(conf), conf.treat }; } } // namespace HEJ diff --git a/include/HEJ/Constants.hh b/include/HEJ/Constants.hh index 11516e8..245ff8c 100644 --- a/include/HEJ/Constants.hh +++ b/include/HEJ/Constants.hh @@ -1,33 +1,37 @@ /** \file * \brief Header file defining all global constants used for HEJ * * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #pragma once namespace HEJ { //! @name QCD parameters //! @{ constexpr double N_C = 3.; //!< number of Colours constexpr double C_A = N_C; //!< \f$C_A\f$ constexpr double C_F = (N_C*N_C - 1.)/(2.*N_C); //!< \f$C_F\f$ constexpr double T_F = 0.5; //!< \f$t_f\f$ constexpr double N_F = 5.; //!< number light flavours constexpr double BETA0 = 11./3.*C_A - 4./3.*T_F*N_F; //!< \f$\beta_0\f$ //! @} //! @name Generation Parameters //! @{ //! @brief Default scale for virtual correction //! \f$\lambda\f$ cf. eq. (20) in \cite Andersen:2011hs constexpr double CLAMBDA = 0.2; constexpr double CMINPT = 0.2; //!< minimal \f$p_t\f$ of all partons + //! @brief default value for the maximal pt fraction of soft radiation in any + //! tagging jets + //! This cut is needed to regulate an otherwise uncancelled divergence. + constexpr double DEFAULT_SOFT_PT_REGULATOR = 0.1; //! @} //! @name Conventional Parameters //! @{ //! Value of first colour for colour dressing, according to LHE convention //! \cite Boos:2001cv constexpr int COLOUR_OFFSET = 501; //! @} } // namespace HEJ diff --git a/include/HEJ/Event.hh b/include/HEJ/Event.hh index 01b2dbf..d9cc041 100644 --- a/include/HEJ/Event.hh +++ b/include/HEJ/Event.hh @@ -1,372 +1,374 @@ /** \file * \brief Declares the Event class and helpers * * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #pragma once #include #include #include #include #include #include #include #include "boost/iterator/filter_iterator.hpp" #include "fastjet/ClusterSequence.hh" #include "fastjet/PseudoJet.hh" +#include "HEJ/Constants.hh" +#include "HEJ/event_types.hh" #include "HEJ/Parameters.hh" #include "HEJ/Particle.hh" -#include "HEJ/event_types.hh" namespace LHEF { class HEPEUP; class HEPRUP; } namespace fastjet { class JetDefinition; } namespace HEJ { struct RNG; struct UnclusteredEvent; /** @brief An event with clustered jets * * This is the main HEJ 2 event class. * It contains kinematic information including jet clustering, * parameter (e.g. scale) settings and the event weight. */ class Event { public: class EventData; //! Iterator over partons using ConstPartonIterator = boost::filter_iterator< bool (*)(Particle const &), std::vector::const_iterator >; //! Reverse Iterator over partons using ConstReversePartonIterator = std::reverse_iterator< ConstPartonIterator>; //! No default Constructor Event() = delete; //! Event Constructor adding jet clustering to an unclustered event //! @deprecated UnclusteredEvent will be replaced by EventData in HEJ 2.2.0 [[deprecated("UnclusteredEvent will be replaced by EventData")]] Event( UnclusteredEvent const & ev, fastjet::JetDefinition const & jet_def, double min_jet_pt ); //! @name Particle Access //! @{ //! Incoming particles std::array const & incoming() const{ return incoming_; } //! Outgoing particles std::vector const & outgoing() const{ return outgoing_; } //! Iterator to the first outgoing parton ConstPartonIterator begin_partons() const; //! Iterator to the first outgoing parton ConstPartonIterator cbegin_partons() const; //! Iterator to the end of the outgoing partons ConstPartonIterator end_partons() const; //! Iterator to the end of the outgoing partons ConstPartonIterator cend_partons() const; //! Reverse Iterator to the first outgoing parton ConstReversePartonIterator rbegin_partons() const; //! Reverse Iterator to the first outgoing parton ConstReversePartonIterator crbegin_partons() const; //! Reverse Iterator to the first outgoing parton ConstReversePartonIterator rend_partons() const; //! Reverse Iterator to the first outgoing parton ConstReversePartonIterator crend_partons() const; //! Particle decays /** * The key in the returned map corresponds to the index in the * vector returned by outgoing() */ std::unordered_map> const & decays() const { return decays_; } //! The jets formed by the outgoing partons, sorted in rapidity std::vector const & jets() const{ return jets_; } //! @} //! @name Weight variations //! @{ //! All chosen parameter, i.e. scale choices (const version) Parameters const & parameters() const{ return parameters_; } //! All chosen parameter, i.e. scale choices Parameters & parameters(){ return parameters_; } //! Central parameter choice (const version) EventParameters const & central() const{ return parameters_.central; } //! Central parameter choice EventParameters & central(){ return parameters_.central; } //! Parameter (scale) variations (const version) std::vector const & variations() const{ return parameters_.variations; } //! Parameter (scale) variations std::vector & variations(){ return parameters_.variations; } //! Parameter (scale) variation (const version) /** * @param i Index of the requested variation */ EventParameters const & variations(std::size_t i) const{ return parameters_.variations.at(i); } //! Parameter (scale) variation /** * @param i Index of the requested variation */ EventParameters & variations(std::size_t i){ return parameters_.variations.at(i); } //! @} //! Indices of the jets the outgoing partons belong to /** * @param jets Jets to be tested * @returns A vector containing, for each outgoing parton, * the index in the vector of jets the considered parton * belongs to. If the parton is not inside any of the * passed jets, the corresponding index is set to -1. */ std::vector particle_jet_indices( std::vector const & jets ) const { return cs_.particle_jet_indices(jets); } //! particle_jet_indices() of the Event jets() std::vector particle_jet_indices() const { return particle_jet_indices(jets()); } //! Jet definition used for clustering fastjet::JetDefinition const & jet_def() const{ return cs_.jet_def(); } //! Minimum jet transverse momentum double min_jet_pt() const{ return min_jet_pt_; } //! Event type event_type::EventType type() const{ return type_; } //! Give colours to each particle /** * @returns true if new colours are generated, i.e. same as is_resummable() * @details Colour ordering is done according to leading colour in the MRK * limit, see \cite Andersen:2011zd. This only affects \ref * is_resummable() "HEJ" configurations, all other \ref event_type * "EventTypes" will be ignored. * @note This overwrites all previously set colours. */ bool generate_colours(RNG & /*ran*/); //! Check that current colours are leading in the high energy limit /** * @details Checks that the colour configuration can be split up in * multiple, rapidity ordered, non-overlapping ladders. Such * configurations are leading in the MRK limit, see * \cite Andersen:2011zd * * @note This is _not_ to be confused with \ref is_resummable(), however * for all resummable states it is possible to create a leading colour * configuration, see generate_colours() */ bool is_leading_colour() const; /** * @brief Check if given event could have been produced by HEJ * @details A HEJ state has to fulfil: * 1. type() has to be \ref is_resummable() "resummable" * 2. Soft radiation in the tagging jets contributes at most to - * `soft_pt_regulator` of the total jet - * \f$ p_\perp \f$ + * `soft_pt_regulator` of the total jet \f$ p_\perp \f$ * * @note This is true for any resummed stated produced by the * EventReweighter or any \ref is_resummable() "resummable" Leading * Order state. * - * @param max_frac Maximum transverse momentum fraction from soft radiation - * in tagging jets - * @param min_pt Absolute minimal \f$ p_\perp \f$, - * \b deprecated use max_frac instead + * @param soft_pt_regulator Maximum transverse momentum fraction from soft + * radiation in tagging jets + * @param min_pt Absolute minimal \f$ p_\perp \f$, + * \b deprecated use soft_pt_regulator instead * @return True if this state could have been produced by HEJ */ bool valid_hej_state( - double max_frac, double min_pt = 0.) const; + double soft_pt_regulator = DEFAULT_SOFT_PT_REGULATOR, + double min_pt = 0. + ) const; private: //! \internal //! @brief Construct Event explicitly from input. /** This is only intended to be called from EventData. * * \warning The input is taken _as is_, sorting and classification has to be * done externally, i.e. by EventData */ Event( std::array && incoming, std::vector && outgoing, std::unordered_map> && decays, Parameters && parameters, fastjet::JetDefinition const & jet_def, double min_jet_pt ); //! Iterator over partons (non-const) using PartonIterator = boost::filter_iterator< bool (*)(Particle const &), std::vector::iterator >; //! Reverse Iterator over partons (non-const) using ReversePartonIterator = std::reverse_iterator; //! Iterator to the first outgoing parton (non-const) PartonIterator begin_partons(); //! Iterator to the end of the outgoing partons (non-const) PartonIterator end_partons(); //! Reverse Iterator to the first outgoing parton (non-const) ReversePartonIterator rbegin_partons(); //! Reverse Iterator to the first outgoing parton (non-const) ReversePartonIterator rend_partons(); std::array incoming_; std::vector outgoing_; std::unordered_map> decays_; std::vector jets_; Parameters parameters_; fastjet::ClusterSequence cs_; double min_jet_pt_; event_type::EventType type_; }; // end class Event //! Class to store general Event setup, i.e. Phase space and weights class Event::EventData { public: //! Default Constructor EventData() = default; //! Constructor from LesHouches event information EventData(LHEF::HEPEUP const & hepeup); //! Constructor with all values given EventData( std::array incoming, std::vector outgoing, std::unordered_map> decays, Parameters parameters ): incoming(std::move(incoming)), outgoing(std::move(outgoing)), decays(std::move(decays)), parameters(std::move(parameters)) {} //! Generate an Event from the stored EventData. /** * @details Do jet clustering and classification. * Use this to generate an Event. * * @note Calling this function destroys EventData * * @param jet_def Jet definition * @param min_jet_pt minimal \f$p_T\f$ for each jet * * @returns Full clustered and classified event. */ Event cluster( fastjet::JetDefinition const & jet_def, double min_jet_pt); //! Alias for cluster() Event operator()( fastjet::JetDefinition const & jet_def, double const min_jet_pt){ return cluster(jet_def, min_jet_pt); } //! Sort particles in rapidity void sort(); //! Reconstruct intermediate particles from final-state leptons /** * Final-state leptons are created from virtual photons, W, or Z bosons. * This function tries to reconstruct such intermediate bosons if they * are not part of the event record. */ void reconstruct_intermediate(); //! Incoming particles std::array incoming; //! Outcoing particles std::vector outgoing; //! Particle decays in the format {outgoing index, decay products} std::unordered_map> decays; //! Parameters, e.g. scale or inital weight Parameters parameters; }; // end class EventData //! Print Event std::ostream& operator<<(std::ostream & os, Event const & ev); //! Square of the partonic centre-of-mass energy \f$\hat{s}\f$ double shat(Event const & ev); //! Convert an event to a LHEF::HEPEUP LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP * /*heprup*/); // put deprecated warning at the end, so don't get the warning inside Event.hh, // additionally doxygen can not identify [[deprecated]] correctly struct [[deprecated("UnclusteredEvent will be replaced by EventData")]] UnclusteredEvent; //! An event before jet clustering //! @deprecated UnclusteredEvent will be replaced by EventData in HEJ 2.2.0 struct UnclusteredEvent{ //! Default Constructor UnclusteredEvent() = default; //! Constructor from LesHouches event information UnclusteredEvent(LHEF::HEPEUP const & hepeup); std::array incoming; /**< Incoming Particles */ std::vector outgoing; /**< Outgoing Particles */ //! Particle decays in the format {outgoing index, decay products} std::unordered_map> decays; //! Central parameter (e.g. scale) choice EventParameters central; std::vector variations; /**< For parameter variation */ }; } // namespace HEJ diff --git a/src/Event.cc b/src/Event.cc index 9eabec5..cac0fa1 100644 --- a/src/Event.cc +++ b/src/Event.cc @@ -1,1171 +1,1175 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #include "HEJ/Event.hh" #include #include #include #include #include #include #include #include #include #include #include "fastjet/ClusterSequence.hh" #include "fastjet/JetDefinition.hh" #include "fastjet/PseudoJet.hh" #include "LHEF/LHEF.h" #include "HEJ/Constants.hh" #include "HEJ/PDG_codes.hh" #include "HEJ/RNG.hh" #include "HEJ/exceptions.hh" #include "HEJ/optional.hh" namespace HEJ { namespace { using std::size_t; //! LHE status codes namespace lhe_status { enum Status: int { in = -1, decay = 2, out = 1, }; } using LHE_Status = lhe_status::Status; //! true if leptonic W decay bool valid_W_decay( int const w_type, // sign of W std::vector const & decays ){ if(decays.size() != 2) // no 1->2 decay return false; const int pidsum = decays[0].type + decays[1].type; if( std::abs(pidsum) != 1 || pidsum != w_type ) // correct charge return false; // leptonic decay (only check first, second follows from pidsum) if( w_type == 1 ) // W+ return is_antilepton(decays[0]) || is_neutrino(decays[0]); // W- return is_lepton(decays[0]) || is_antineutrino(decays[0]); } //! true for Z decay to charged leptons bool valid_Z_decay(std::vector const & decays){ if(decays.size() != 2) // no 1->2 decay return false; const int pidsum = decays[0].type + decays[1].type; if( std::abs(pidsum) != 0 ) // correct charge return false; // leptonic decay (only check first, second follows from pidsum) return is_anylepton(decays[0]) && !is_anyneutrino(decays[0]); } /// @name helper functions to determine event type //@{ /** * \brief check if final state valid for HEJ * * check if there is at most one photon, W, H, Z in the final state * and all the rest are quarks or gluons */ bool final_state_ok(Event const & ev){ std::vector const & outgoing = ev.outgoing(); if(ev.decays().size() > 1) // at most one decay return false; bool has_AWZH_boson = false; for( size_t i=0; ifirst != i ) return false; if( !valid_W_decay(out.type>0?+1:-1, ev.decays().cbegin()->second) ) return false; } // valid decay for Z if(out.type == ParticleID::Z_photon_mix){ // exactly 1 decay if( ev.decays().size() != 1 || ev.decays().cbegin()->first != i ) return false; if( !valid_Z_decay(ev.decays().cbegin()->second) ) return false; } } else if(! is_parton(out.type)) return false; } return true; } /** * returns all EventTypes implemented in HEJ */ size_t implemented_types(std::vector const & bosons){ using namespace event_type; if(bosons.empty()) return FKL | unob | unof | qqxexb | qqxexf | qqxmid; if(bosons.size()>1) return non_resummable; // multi boson switch (bosons[0].type) { case ParticleID::Wp: case ParticleID::Wm: return FKL | unob | unof | qqxexb | qqxexf | qqxmid; case ParticleID::Z_photon_mix: return FKL | unob | unof; case ParticleID::h: return FKL | unob | unof; default: return non_resummable; } } /** * \brief function which determines if type change is consistent with Wp emission. * @param in incoming Particle id * @param out outgoing Particle id * @param qqx Current both incoming/both outgoing? * * \see is_Wm_Change */ bool is_Wp_Change(ParticleID in, ParticleID out, bool qqx){ using namespace pid; if(!qqx && (in==d_bar || in==u || in==s_bar || in==c)) return out == (in-1); if( qqx && (in==d || in==u_bar || in==s || in==c_bar)) return out == -(in+1); return false; } /** * \brief function which determines if type change is consistent with Wm emission. * @param in incoming Particle id * @param out outgoing Particle id * @param qqx Current both incoming/both outgoing? * * Ensures that change type of quark line is possible by a flavour changing * Wm emission. Allows checking of qqx currents also. */ bool is_Wm_Change(ParticleID in, ParticleID out, bool qqx){ using namespace pid; if(!qqx && (in==d || in==u_bar || in==s || in==c_bar)) return out == (in+1); if( qqx && (in==d_bar || in==u || in==s_bar || in==c)) return out == -(in-1); return false; } /** * \brief checks if particle type remains same from incoming to outgoing * @param in incoming Particle * @param out outgoing Particle * @param qqx Current both incoming/outgoing? */ bool no_flavour_change(ParticleID in, ParticleID out, bool qqx){ const int qqxCurrent = qqx?-1:1; if(std::abs(in)<=pid::top || in==pid::gluon) return (in==out*qqxCurrent); return false; } bool has_2_jets(Event const & event){ return event.jets().size() >= 2; } /** * \brief check if we have a valid Impact factor * @param in incoming Particle * @param out outgoing Particle * @param qqx Current both incoming/outgoing? * @param W_change returns +1 if Wp, -1 if Wm, else 0 */ bool is_valid_impact_factor( ParticleID in, ParticleID out, bool qqx, int & W_change ){ if( no_flavour_change(in, out, qqx) ){ return true; } if( is_Wp_Change(in, out, qqx) ) { W_change+=1; return true; } if( is_Wm_Change(in, out, qqx) ) { W_change-=1; return true; } return false; } //! Returns all possible classifications from the impact factors // the beginning points are changed s.t. after the the classification they // point to the beginning of the (potential) FKL chain // sets W_change: + if Wp change // 0 if no change // - if Wm change // This function can be used with forward & backwards iterators template size_t possible_impact_factors( ParticleID incoming_id, // incoming OutIterator & begin_out, OutIterator const & end_out, // outgoing int & W_change, std::vector const & boson, bool const backward // backward? ){ using namespace event_type; assert(boson.size() < 2); // keep track of all states that we don't test size_t not_tested = qqxmid; if(backward) not_tested |= unof | qqxexf; else not_tested |= unob | qqxexb; // Is this LL current? if( is_valid_impact_factor(incoming_id, begin_out->type, false, W_change) ){ ++begin_out; return not_tested | FKL; } // or NLL current? // -> needs two partons in two different jets if( std::distance(begin_out, end_out)>=2 ){ auto next = std::next(begin_out); // Is this unordered emisson? if( incoming_id!=pid::gluon && begin_out->type==pid::gluon ){ if( is_valid_impact_factor( incoming_id, next->type, false, W_change ) ){ // veto Higgs inside uno assert(next!=end_out); if( !boson.empty() && boson.front().type == ParticleID::h ){ if( (backward && boson.front().rapidity() < next->rapidity()) ||(!backward && boson.front().rapidity() > next->rapidity())) return non_resummable; } begin_out = std::next(next); return not_tested | (backward?unob:unof); } } // Is this QQbar? else if( incoming_id==pid::gluon ){ if( is_valid_impact_factor( begin_out->type, next->type, true, W_change ) ){ // veto Higgs inside qqx assert(next!=end_out); if( !boson.empty() && boson.front().type == ParticleID::h ){ if( (backward && boson.front().rapidity() < next->rapidity()) ||(!backward && boson.front().rapidity() > next->rapidity())) return non_resummable; } begin_out = std::next(next); return not_tested | (backward?qqxexb:qqxexf); } } } return non_resummable; } //! Returns all possible classifications from central emissions // the beginning points are changed s.t. after the the classification they // point to the end of the emission chain // sets W_change: + if Wp change // 0 if no change // - if Wm change template size_t possible_central( OutIterator & begin_out, OutIterator const & end_out, int & W_change, std::vector const & boson ){ using namespace event_type; assert(boson.size() < 2); // if we already passed the central chain, // then it is not a valid all-order state if(std::distance(begin_out, end_out) < 0) return non_resummable; // keep track of all states that we don't test size_t possible = unob | unof | qqxexb | qqxexf; // Find the first non-gluon/non-FKL while( (begin_out->type==pid::gluon) && (begin_out!=end_out) ){ ++begin_out; } // end of chain -> FKL if( begin_out==end_out ){ return possible | FKL; } // is this a qqbar-pair? // needs two partons in two separate jets auto next = std::next(begin_out); if( is_valid_impact_factor( begin_out->type, next->type, true, W_change ) ){ // veto Higgs inside qqx if( !boson.empty() && boson.front().type == ParticleID::h && boson.front().rapidity() > begin_out->rapidity() && boson.front().rapidity() < next->rapidity() ){ return non_resummable; } begin_out = std::next(next); // remaining chain should be pure gluon/FKL for(; begin_out!=end_out; ++begin_out){ if(begin_out->type != pid::gluon) return non_resummable; } return possible | qqxmid; } return non_resummable; } /** * \brief Checks for all event types * @param ev Event * @returns Event Type * */ event_type::EventType classify(Event const & ev){ using namespace event_type; if(! has_2_jets(ev)) return no_2_jets; // currently we can't handle multiple boson states in the ME. So they are // considered "bad_final_state" even though the "classify" could work with // them. if(! final_state_ok(ev)) return bad_final_state; // initialise variables auto const & in = ev.incoming(); // range for current checks auto begin_out{ev.cbegin_partons()}; auto end_out{ev.crbegin_partons()}; assert(std::distance(begin(in), end(in)) == 2); assert(std::distance(begin_out, end_out.base()) >= 2); assert(std::is_sorted(begin_out, end_out.base(), rapidity_less{})); auto const boson{ filter_AWZH_bosons(ev.outgoing()) }; // we only allow one boson through final_state_ok assert(boson.size()<=1); // keep track of potential W couplings, at the end the sum should be 0 int remaining_Wp = 0; int remaining_Wm = 0; if(!boson.empty() && std::abs(boson.front().type) == ParticleID::Wp ){ if(boson.front().type>0) ++remaining_Wp; else ++remaining_Wm; } int W_change = 0; size_t final_type = ~(no_2_jets | bad_final_state); // check forward impact factor final_type &= possible_impact_factors( in.front().type, begin_out, end_out.base(), W_change, boson, true ); if( final_type == non_resummable ) return non_resummable; if(W_change>0) remaining_Wp-=W_change; else if(W_change<0) remaining_Wm+=W_change; W_change = 0; // check backward impact factor final_type &= possible_impact_factors( in.back().type, end_out, std::make_reverse_iterator(begin_out), W_change, boson, false ); if( final_type == non_resummable ) return non_resummable; if(W_change>0) remaining_Wp-=W_change; else if(W_change<0) remaining_Wm+=W_change; W_change = 0; // check central emissions final_type &= possible_central( begin_out, end_out.base(), W_change, boson ); if( final_type == non_resummable ) return non_resummable; if(W_change>0) remaining_Wp-=W_change; else if(W_change<0) remaining_Wm+=W_change; // Check whether the right number of Ws are present if( remaining_Wp != 0 || remaining_Wm != 0 ) return non_resummable; // result has to be unique if( (final_type & (final_type-1)) != 0) return non_resummable; // check that each sub processes is implemented // (has to be done at the end) if( (final_type & ~implemented_types(boson)) != 0 ) return non_resummable; return static_cast(final_type); } //@} Particle extract_particle(LHEF::HEPEUP const & hepeup, size_t i){ auto id = static_cast(hepeup.IDUP[i]); auto colour = is_parton(id)?hepeup.ICOLUP[i]:optional(); return { id, { hepeup.PUP[i][0], hepeup.PUP[i][1], hepeup.PUP[i][2], hepeup.PUP[i][3] }, colour }; } bool is_decay_product(std::pair const & mothers){ if(mothers.first == 0) return false; return mothers.second == 0 || mothers.first == mothers.second; } } // namespace Event::EventData::EventData(LHEF::HEPEUP const & hepeup){ parameters.central = EventParameters{ hepeup.scales.mur, hepeup.scales.muf, hepeup.XWGTUP }; size_t in_idx = 0; for (int i = 0; i < hepeup.NUP; ++i) { // skip decay products // we will add them later on, but we have to ensure that // the decayed particle is added before if(is_decay_product(hepeup.MOTHUP[i])) continue; auto particle = extract_particle(hepeup, i); // needed to identify mother particles for decay products particle.p.set_user_index(i+1); if(hepeup.ISTUP[i] == LHE_Status::in){ if(in_idx > incoming.size()) { throw std::invalid_argument{ "Event has too many incoming particles" }; } incoming[in_idx++] = std::move(particle); } else outgoing.emplace_back(std::move(particle)); } // add decay products for (int i = 0; i < hepeup.NUP; ++i) { if(!is_decay_product(hepeup.MOTHUP[i])) continue; const int mother_id = hepeup.MOTHUP[i].first; const auto mother = std::find_if( begin(outgoing), end(outgoing), [mother_id](Particle const & particle){ return particle.p.user_index() == mother_id; } ); if(mother == end(outgoing)){ throw std::invalid_argument{"invalid decay product parent"}; } const int mother_idx = std::distance(begin(outgoing), mother); assert(mother_idx >= 0); decays[mother_idx].emplace_back(extract_particle(hepeup, i)); } } Event::Event( UnclusteredEvent const & ev, fastjet::JetDefinition const & jet_def, double const min_jet_pt ): Event( Event::EventData{ ev.incoming, ev.outgoing, ev.decays, Parameters{ev.central, ev.variations} }.cluster(jet_def, min_jet_pt) ) {} //! @TODO remove in HEJ 2.2.0 UnclusteredEvent::UnclusteredEvent(LHEF::HEPEUP const & hepeup){ Event::EventData const evData{hepeup}; incoming = evData.incoming; outgoing = evData.outgoing; decays = evData.decays; central = evData.parameters.central; variations = evData.parameters.variations; } void Event::EventData::sort(){ // sort particles std::sort( begin(incoming), end(incoming), [](Particle const & o1, Particle const & o2){return o1.p.pz() idx(old_outgoing.size()); std::iota(idx.begin(), idx.end(), 0); std::sort(idx.begin(), idx.end(), [&old_outgoing](size_t i, size_t j){ return old_outgoing[i].rapidity() < old_outgoing[j].rapidity(); }); outgoing.clear(); outgoing.reserve(old_outgoing.size()); for(size_t i: idx) { outgoing.emplace_back(std::move(old_outgoing[i])); } // find decays again if(!decays.empty()){ auto old_decays = std::move(decays); decays.clear(); for(size_t i=0; isecond)); } assert(old_decays.size() == decays.size()); } } namespace { Particle reconstruct_boson(std::vector const & leptons) { Particle decayed_boson; decayed_boson.p = leptons[0].p + leptons[1].p; const int pidsum = leptons[0].type + leptons[1].type; if(pidsum == +1) { assert(is_antilepton(leptons[0])); if(is_antineutrino(leptons[0])) { throw not_implemented{"lepton-flavour violating final state"}; } assert(is_neutrino(leptons[1])); // charged antilepton + neutrino means we had a W+ decayed_boson.type = pid::Wp; } else if(pidsum == -1) { assert(is_antilepton(leptons[0])); if(is_neutrino(leptons[1])) { throw not_implemented{"lepton-flavour violating final state"}; } assert(is_antineutrino(leptons[0])); // charged lepton + antineutrino means we had a W- decayed_boson.type = pid::Wm; } else if(pidsum == 0) { assert(is_anylepton(leptons[0])); if(is_anyneutrino(leptons[0])) { throw not_implemented{"final state with two neutrinos"}; } // charged lepton-antilepton pair means we had a Z/photon decayed_boson.type = pid::Z_photon_mix; } else { throw not_implemented{ "final state with leptons " + name(leptons[0].type) + " and " + name(leptons[1].type) }; } return decayed_boson; } } // namespace void Event::EventData::reconstruct_intermediate() { const auto begin_leptons = std::partition( begin(outgoing), end(outgoing), [](Particle const & p) {return !is_anylepton(p);} ); // We can only reconstruct FS with 2 leptons if(std::distance(begin_leptons, end(outgoing)) != 2) return; std::vector leptons(begin_leptons, end(outgoing)); std::sort( begin(leptons), end(leptons), [](Particle const & p0, Particle const & p1) { assert(is_anylepton(p0) && is_anylepton(p1)); return p0.type < p1.type; } ); // `reconstruct_boson` can throw, it should therefore be called before // changing `outgoing` to allow the user to recover the original EventData auto boson = reconstruct_boson(leptons); outgoing.erase(begin_leptons, end(outgoing)); outgoing.emplace_back(std::move(boson)); decays.emplace(outgoing.size()-1, std::move(leptons)); } Event Event::EventData::cluster( fastjet::JetDefinition const & jet_def, double const min_jet_pt ){ sort(); return Event{ std::move(incoming), std::move(outgoing), std::move(decays), std::move(parameters), jet_def, min_jet_pt }; } Event::Event( std::array && incoming, std::vector && outgoing, std::unordered_map> && decays, Parameters && parameters, fastjet::JetDefinition const & jet_def, double const min_jet_pt ): incoming_{std::move(incoming)}, outgoing_{std::move(outgoing)}, decays_{std::move(decays)}, parameters_{std::move(parameters)}, cs_{ to_PseudoJet( filter_partons(outgoing_) ), jet_def }, min_jet_pt_{min_jet_pt} { jets_ = sorted_by_rapidity(cs_.inclusive_jets(min_jet_pt_)); assert(std::is_sorted(begin(outgoing_), end(outgoing_), rapidity_less{})); type_ = classify(*this); } namespace { //! check that Particles have a reasonable colour bool correct_colour(Particle const & part){ ParticleID id{ part.type }; if(!is_parton(id)) return !part.colour; if(!part.colour) return false; Colour const & col{ *part.colour }; if(is_quark(id)) return col.first != 0 && col.second == 0; if(is_antiquark(id)) return col.first == 0 && col.second != 0; assert(id==ParticleID::gluon); return col.first != 0 && col.second != 0 && col.first != col.second; } //! Connect parton to t-channel colour line & update the line //! returns false if connection not possible template bool try_connect_t(OutIterator const & it_part, Colour & line_colour){ if( line_colour.first == it_part->colour->second ){ line_colour.first = it_part->colour->first; return true; } if( line_colour.second == it_part->colour->first ){ line_colour.second = it_part->colour->second; return true; } return false; } //! Connect parton to u-channel colour line & update the line //! returns false if connection not possible template bool try_connect_u(OutIterator & it_part, Colour & line_colour){ auto it_next = std::next(it_part); if( try_connect_t(it_next, line_colour) && try_connect_t(it_part, line_colour) ){ it_part=it_next; return true; } return false; } } // namespace bool Event::is_leading_colour() const { if( !correct_colour(incoming()[0]) || !correct_colour(incoming()[1]) ) return false; Colour line_colour = *incoming()[0].colour; std::swap(line_colour.first, line_colour.second); // reasonable colour if(!std::all_of(outgoing().cbegin(), outgoing().cend(), correct_colour)) return false; for(auto it_part = cbegin_partons(); it_part!=cend_partons(); ++it_part){ switch (type()) { case event_type::FKL: if( !try_connect_t(it_part, line_colour) ) return false; break; case event_type::unob: case event_type::qqxexb: { if( !try_connect_t(it_part, line_colour) // u-channel only allowed at impact factor && (std::distance(cbegin_partons(), it_part)!=0 || !try_connect_u(it_part, line_colour))) return false; break; } case event_type::unof: case event_type::qqxexf: { if( !try_connect_t(it_part, line_colour) // u-channel only allowed at impact factor && (std::distance(it_part, cend_partons())!=2 || !try_connect_u(it_part, line_colour))) return false; break; } case event_type::qqxmid:{ auto it_next = std::next(it_part); if( !try_connect_t(it_part, line_colour) // u-channel only allowed at qqx/qxq pair && ( ( !(is_quark(*it_part) && is_antiquark(*it_next)) && !(is_antiquark(*it_part) && is_quark(*it_next))) || !try_connect_u(it_part, line_colour)) ) return false; break; } default: throw std::logic_error{"unreachable"}; } // no colour singlet exchange/disconnected diagram if(line_colour.first == line_colour.second) return false; } return (incoming()[1].colour->first == line_colour.first) && (incoming()[1].colour->second == line_colour.second); } namespace { //! connect incoming Particle to colour flow void connect_incoming(Particle & in, int & colour, int & anti_colour){ in.colour = std::make_pair(anti_colour, colour); // gluon if(in.type == pid::gluon) return; if(in.type > 0){ // quark assert(is_quark(in)); in.colour->second = 0; colour*=-1; return; } // anti-quark assert(is_antiquark(in)); in.colour->first = 0; anti_colour*=-1; } //! connect outgoing Particle to t-channel colour flow template void connect_tchannel( OutIterator & it_part, int & colour, int & anti_colour, RNG & ran ){ assert(colour>0 || anti_colour>0); if(it_part->type == ParticleID::gluon){ // gluon if(colour>0 && anti_colour>0){ // on g line => connect to colour OR anti-colour (random) if(ran.flat() < 0.5){ it_part->colour = std::make_pair(colour+2,colour); colour+=2; } else { it_part->colour = std::make_pair(anti_colour, anti_colour+2); anti_colour+=2; } } else if(colour > 0){ // on q line => connect to available colour it_part->colour = std::make_pair(colour+2, colour); colour+=2; } else { assert(colour<0 && anti_colour>0); // on qx line => connect to available anti-colour it_part->colour = std::make_pair(anti_colour, anti_colour+2); anti_colour+=2; } } else if(is_quark(*it_part)) { // quark assert(anti_colour>0); if(colour>0){ // on g line => connect and remove anti-colour it_part->colour = std::make_pair(anti_colour, 0); anti_colour+=2; anti_colour*=-1; } else { // on qx line => new colour colour*=-1; it_part->colour = std::make_pair(colour, 0); } } else if(is_antiquark(*it_part)) { // anti-quark assert(colour>0); if(anti_colour>0){ // on g line => connect and remove colour it_part->colour = std::make_pair(0, colour); colour+=2; colour*=-1; } else { // on q line => new anti-colour anti_colour*=-1; it_part->colour = std::make_pair(0, anti_colour); } } else { // not a parton assert(!is_parton(*it_part)); it_part->colour = {}; } } //! connect to t- or u-channel colour flow template void connect_utchannel( OutIterator & it_part, int & colour, int & anti_colour, RNG & ran ){ OutIterator it_first = it_part++; if(ran.flat()<.5) {// t-channel connect_tchannel(it_first, colour, anti_colour, ran); connect_tchannel(it_part, colour, anti_colour, ran); } else { // u-channel connect_tchannel(it_part, colour, anti_colour, ran); connect_tchannel(it_first, colour, anti_colour, ran); } } } // namespace bool Event::generate_colours(RNG & ran){ // generate only for HEJ events if(!event_type::is_resummable(type())) return false; assert(std::is_sorted( begin(outgoing()), end(outgoing()), rapidity_less{})); assert(incoming()[0].pz() < incoming()[1].pz()); // positive (anti-)colour -> can connect // negative (anti-)colour -> not available/used up by (anti-)quark int colour = COLOUR_OFFSET; int anti_colour = colour+1; // initialise first connect_incoming(incoming_[0], colour, anti_colour); // reset outgoing colours std::for_each(outgoing_.begin(), outgoing_.end(), [](Particle & part){ part.colour = {};}); for(auto it_part = begin_partons(); it_part!=end_partons(); ++it_part){ switch (type()) { // subleading can connect to t- or u-channel case event_type::unob: case event_type::qqxexb: { if( std::distance(begin_partons(), it_part)==0) connect_utchannel(it_part, colour, anti_colour, ran); else connect_tchannel(it_part, colour, anti_colour, ran); break; } case event_type::unof: case event_type::qqxexf: { if( std::distance(it_part, end_partons())==2) connect_utchannel(it_part, colour, anti_colour, ran); else connect_tchannel(it_part, colour, anti_colour, ran); break; } case event_type::qqxmid:{ auto it_next = std::next(it_part); if( std::distance(begin_partons(), it_part)>0 && std::distance(it_part, end_partons())>2 && ( (is_quark(*it_part) && is_antiquark(*it_next)) || (is_antiquark(*it_part) && is_quark(*it_next)) ) ) connect_utchannel(it_part, colour, anti_colour, ran); else connect_tchannel(it_part, colour, anti_colour, ran); break; } default: // rest has to be t-channel connect_tchannel(it_part, colour, anti_colour, ran); } } // Connect last connect_incoming(incoming_[1], anti_colour, colour); assert(is_leading_colour()); return true; } // generate_colours namespace { bool valid_parton( std::vector const & jets, Particle const & parton, int const idx, double const soft_pt_regulator, double const min_extparton_pt ){ // TODO code overlap with PhaseSpacePoint::pass_extremal_cuts if(min_extparton_pt > parton.pt()) return false; if(idx<0) return false; assert(static_cast(jets.size())>=idx); auto const & jet{ jets[idx] }; return (parton.p - jet).pt()/jet.pt() <= soft_pt_regulator; } } // namespace // this should work with multiple types - bool Event::valid_hej_state(double const max_frac, + bool Event::valid_hej_state(double const soft_pt_regulator, double const min_pt ) const { using namespace event_type; if(!is_resummable(type())) return false; auto const & jet_idx{ particle_jet_indices() }; auto idx_begin{ jet_idx.cbegin() }; auto idx_end{ jet_idx.crbegin() }; auto part_begin{ cbegin_partons() }; auto part_end{ crbegin_partons() }; // always seperate extremal jets - if( !valid_parton(jets(), *part_begin, *idx_begin, max_frac, min_pt) ) + if( !valid_parton(jets(), *part_begin, *idx_begin, + soft_pt_regulator, min_pt) ) return false; ++part_begin; ++idx_begin; - if( !valid_parton(jets(), *part_end, *idx_end, max_frac, min_pt) ) + if( !valid_parton(jets(), *part_end, *idx_end, + soft_pt_regulator, min_pt) ) return false; ++part_end; ++idx_end; // unob -> second parton in own jet if( type() & (unob | qqxexb) ){ - if( !valid_parton(jets(), *part_begin, *idx_begin, max_frac, min_pt) ) + if( !valid_parton(jets(), *part_begin, *idx_begin, + soft_pt_regulator, min_pt) ) return false; ++part_begin; ++idx_begin; } if( type() & (unof | qqxexf) ){ - if( !valid_parton(jets(), *part_end, *idx_end, max_frac, min_pt) ) + if( !valid_parton(jets(), *part_end, *idx_end, + soft_pt_regulator, min_pt) ) return false; ++part_end; // ++idx_end; // last check, we don't need idx_end afterwards } if( type() & qqxmid ){ // find qqx pair auto begin_qqx{ std::find_if( part_begin, part_end.base(), [](Particle const & part) -> bool { return part.type != ParticleID::gluon; } )}; assert(begin_qqx != part_end.base()); long int qqx_pos{ std::distance(part_begin, begin_qqx) }; assert(qqx_pos >= 0); idx_begin+=qqx_pos; if( !( valid_parton(jets(), *begin_qqx, *idx_begin, - max_frac,min_pt) + soft_pt_regulator, min_pt) && valid_parton(jets(), *std::next(begin_qqx), *std::next(idx_begin), - max_frac,min_pt) + soft_pt_regulator, min_pt) )) return false; } return true; } Event::ConstPartonIterator Event::begin_partons() const { return cbegin_partons(); } Event::ConstPartonIterator Event::cbegin_partons() const { return {HEJ::is_parton, cbegin(outgoing()), cend(outgoing())}; } Event::ConstPartonIterator Event::end_partons() const { return cend_partons(); } Event::ConstPartonIterator Event::cend_partons() const { return {HEJ::is_parton, cend(outgoing()), cend(outgoing())}; } Event::ConstReversePartonIterator Event::rbegin_partons() const { return crbegin_partons(); } Event::ConstReversePartonIterator Event::crbegin_partons() const { return std::reverse_iterator( cend_partons() ); } Event::ConstReversePartonIterator Event::rend_partons() const { return crend_partons(); } Event::ConstReversePartonIterator Event::crend_partons() const { return std::reverse_iterator( cbegin_partons() ); } Event::PartonIterator Event::begin_partons() { return {HEJ::is_parton, begin(outgoing_), end(outgoing_)}; } Event::PartonIterator Event::end_partons() { return {HEJ::is_parton, end(outgoing_), end(outgoing_)}; } Event::ReversePartonIterator Event::rbegin_partons() { return std::reverse_iterator( end_partons() ); } Event::ReversePartonIterator Event::rend_partons() { return std::reverse_iterator( begin_partons() ); } namespace { void print_momentum(std::ostream & os, fastjet::PseudoJet const & part){ constexpr int prec = 6; const std::streamsize orig_prec = os.precision(); os < const & col){ constexpr int width = 3; if(!col) os << "(no color)"; // American spelling for better alignment else os << "(" <first << ", " <second << ")"; } } // namespace std::ostream& operator<<(std::ostream & os, Event const & ev){ constexpr int prec = 4; constexpr int wtype = 3; // width for types const std::streamsize orig_prec = os.precision(); os < rapidity=" < rapidity=" < rapidity=" < incoming{ event.incoming() }; // First incoming should be positive pz according to LHE standard // (or at least most (everyone?) do it this way, and Pythia assumes it) if(incoming[0].pz() < incoming[1].pz()) std::swap(incoming[0], incoming[1]); for(Particle const & in: incoming){ result.IDUP.emplace_back(in.type); result.ISTUP.emplace_back(LHE_Status::in); result.PUP.push_back({in.p[0], in.p[1], in.p[2], in.p[3], in.p.m()}); result.MOTHUP.emplace_back(0, 0); assert(in.colour); result.ICOLUP.emplace_back(*in.colour); } // outgoing for(size_t i = 0; i < event.outgoing().size(); ++i){ Particle const & out = event.outgoing()[i]; result.IDUP.emplace_back(out.type); const int status = event.decays().count(i) != 0u ?LHE_Status::decay :LHE_Status::out; result.ISTUP.emplace_back(status); result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()}); result.MOTHUP.emplace_back(1, 2); if(out.colour) result.ICOLUP.emplace_back(*out.colour); else{ result.ICOLUP.emplace_back(std::make_pair(0,0)); } } // decays for(auto const & decay: event.decays()){ for(auto const & out: decay.second){ result.IDUP.emplace_back(out.type); result.ISTUP.emplace_back(LHE_Status::out); result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()}); const size_t mother_idx = 1 + event.incoming().size() + decay.first; result.MOTHUP.emplace_back(mother_idx, mother_idx); result.ICOLUP.emplace_back(0,0); } } assert(result.ICOLUP.size() == num_particles); static constexpr double unknown_spin = 9.; //per Les Houches accord result.VTIMUP = std::vector(num_particles, unknown_spin); result.SPINUP = result.VTIMUP; return result; } } // namespace HEJ diff --git a/src/YAMLreader.cc b/src/YAMLreader.cc index f702591..2896389 100644 --- a/src/YAMLreader.cc +++ b/src/YAMLreader.cc @@ -1,574 +1,574 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #include "HEJ/YAMLreader.hh" #include #include #include #include #include #include #include #include #include "HEJ/ConfigFlags.hh" #include "HEJ/Constants.hh" #include "HEJ/ScaleFunction.hh" #include "HEJ/event_types.hh" #include "HEJ/output_formats.hh" namespace HEJ { class Event; namespace { //! Get YAML tree of supported options /** * The configuration file is checked against this tree of options * in assert_all_options_known. */ YAML::Node const & get_supported_options(){ const static YAML::Node supported = [](){ YAML::Node supported; static const auto opts = { "trials", "min extparton pt", "max ext soft pt fraction", "soft pt regulator", "scales", "scale factors", "max scale ratio", "import scales", "log correction", "event output", "analysis", "analyses", "vev", "regulator parameter", "max events" }; // add subnodes to "supported" - the assigned value is irrelevant for(auto && opt: opts) supported[opt] = ""; for(auto && jet_opt: {"min pt", "algorithm", "R"}){ supported["resummation jets"][jet_opt] = ""; supported["fixed order jets"][jet_opt] = ""; } for(auto && opt: {"mt", "use impact factors", "include bottom", "mb"}){ supported["Higgs coupling"][opt] = ""; } for(auto && opt: {"name", "seed"}){ supported["random generator"][opt] = ""; } for(auto && opt: {"FKL", "unordered", "extremal qqx", "central qqx", "non-resummable"}){ supported["event treatment"][opt] = ""; } for(auto && particle_type: {"Higgs", "W", "Z"}){ for(auto && particle_opt: {"mass", "width"}){ supported["particle properties"][particle_type][particle_opt] = ""; } } for(auto && opt: {"type", "trials", "max deviation"}){ supported["unweight"][opt] = ""; } return supported; }(); return supported; } fastjet::JetAlgorithm to_JetAlgorithm(std::string const & algo){ using namespace fastjet; static const std::map known = { {"kt", kt_algorithm}, {"cambridge", cambridge_algorithm}, {"antikt", antikt_algorithm}, {"cambridge for passive", cambridge_for_passive_algorithm}, {"plugin", plugin_algorithm} }; const auto res = known.find(algo); if(res == known.end()){ throw std::invalid_argument("Unknown jet algorithm \"" + algo + "\""); } return res->second; } EventTreatment to_EventTreatment(std::string const & name){ static const std::map known = { {"reweight", EventTreatment::reweight}, {"keep", EventTreatment::keep}, {"discard", EventTreatment::discard} }; const auto res = known.find(name); if(res == known.end()){ throw std::invalid_argument("Unknown event treatment \"" + name + "\""); } return res->second; } WeightType to_weight_type(std::string const & setting){ if(setting == "weighted") return WeightType::weighted; if(setting =="resummation") return WeightType::unweighted_resum; if(setting =="partial") return WeightType::partially_unweighted; throw std::invalid_argument{"Unknown weight type \"" + setting + "\""}; } } // namespace namespace detail{ void set_from_yaml(fastjet::JetAlgorithm & setting, YAML::Node const & yaml){ setting = to_JetAlgorithm(yaml.as()); } void set_from_yaml(EventTreatment & setting, YAML::Node const & yaml){ setting = to_EventTreatment(yaml.as()); } void set_from_yaml(ParticleID & setting, YAML::Node const & yaml){ setting = to_ParticleID(yaml.as()); } void set_from_yaml(WeightType & setting, YAML::Node const & yaml){ setting = to_weight_type(yaml.as()); } } // namespace detail JetParameters get_jet_parameters( YAML::Node const & node, std::string const & entry ){ assert(node); JetParameters result; fastjet::JetAlgorithm jet_algo = fastjet::antikt_algorithm; double R = NAN; set_from_yaml_if_defined(jet_algo, node, entry, "algorithm"); set_from_yaml(R, node, entry, "R"); result.def = fastjet::JetDefinition{jet_algo, R}; set_from_yaml(result.min_pt, node, entry, "min pt"); return result; } RNGConfig to_RNGConfig( YAML::Node const & node, std::string const & entry ){ assert(node); RNGConfig result; set_from_yaml(result.name, node, entry, "name"); set_from_yaml_if_defined(result.seed, node, entry, "seed"); return result; } ParticleProperties get_particle_properties( YAML::Node const & node, std::string const & entry, std::string const & boson ){ ParticleProperties result{}; set_from_yaml(result.mass, node, entry, boson, "mass"); set_from_yaml(result.width, node, entry, boson, "width"); return result; } EWConstants get_ew_parameters(YAML::Node const & node){ EWConstants result; double vev = NAN; set_from_yaml(vev, node, "vev"); result.set_vevWZH(vev, get_particle_properties(node, "particle properties", "W"), get_particle_properties(node, "particle properties", "Z"), get_particle_properties(node, "particle properties", "Higgs") ); return result; } HiggsCouplingSettings get_Higgs_coupling( YAML::Node const & node, std::string const & entry ){ assert(node); static constexpr double mt_max = 2e4; #ifndef HEJ_BUILD_WITH_QCDLOOP if(node[entry].IsDefined()){ throw std::invalid_argument{ "Higgs coupling settings require building HEJ 2 " "with QCDloop support" }; } #endif HiggsCouplingSettings settings; set_from_yaml_if_defined(settings.mt, node, entry, "mt"); set_from_yaml_if_defined(settings.mb, node, entry, "mb"); set_from_yaml_if_defined(settings.include_bottom, node, entry, "include bottom"); set_from_yaml_if_defined(settings.use_impact_factors, node, entry, "use impact factors"); if(settings.use_impact_factors){ if(settings.mt != std::numeric_limits::infinity()){ throw std::invalid_argument{ "Conflicting settings: " "impact factors may only be used in the infinite top mass limit" }; } } else{ // huge values of the top mass are numerically unstable settings.mt = std::min(settings.mt, mt_max); } return settings; } FileFormat to_FileFormat(std::string const & name){ static const std::map known = { {"Les Houches", FileFormat::Les_Houches}, {"HepMC", FileFormat::HepMC}, {"HepMC2", FileFormat::HepMC2}, {"HepMC3", FileFormat::HepMC3}, {"HDF5", FileFormat::HDF5} }; const auto res = known.find(name); if(res == known.end()){ throw std::invalid_argument("Unknown file format \"" + name + "\""); } return res->second; } std::string extract_suffix(std::string const & filename){ size_t separator = filename.rfind('.'); if(separator == std::string::npos) return {}; return filename.substr(separator + 1); } FileFormat format_from_suffix(std::string const & filename){ const std::string suffix = extract_suffix(filename); if(suffix == "lhe") return FileFormat::Les_Houches; if(suffix == "hepmc") return FileFormat::HepMC; if(suffix == "hepmc3") return FileFormat::HepMC3; if(suffix == "hepmc2") return FileFormat::HepMC2; if(suffix == "hdf5") return FileFormat::HDF5; throw std::invalid_argument{ "Can't determine format for output file \"" + filename + "\"" }; } void assert_all_options_known( YAML::Node const & conf, YAML::Node const & supported ){ if(!conf.IsMap()) return; if(!supported.IsMap()) throw invalid_type{"must not have sub-entries"}; for(auto const & entry: conf){ const auto name = entry.first.as(); if(! supported[name]) throw unknown_option{name}; /* check sub-options, e.g. 'resummation jets: min pt' * we don't check analyses sub-options * those depend on the analysis being used and should be checked there * similar for "import scales" */ if(name != "analyses" && name != "analysis" && name != "import scales"){ try{ assert_all_options_known(conf[name], supported[name]); } catch(unknown_option const & ex){ throw unknown_option{name + ": " + ex.what()}; } catch(invalid_type const & ex){ throw invalid_type{name + ": " + ex.what()}; } } } } } // namespace HEJ namespace YAML { Node convert::encode(HEJ::OutputFile const & outfile) { Node node; node[to_string(outfile.format)] = outfile.name; return node; } bool convert::decode(Node const & node, HEJ::OutputFile & out) { switch(node.Type()){ case NodeType::Map: { YAML::const_iterator it = node.begin(); out.format = HEJ::to_FileFormat(it->first.as()); out.name = it->second.as(); return true; } case NodeType::Scalar: out.name = node.as(); out.format = HEJ::format_from_suffix(out.name); return true; default: return false; } } } // namespace YAML namespace HEJ { namespace detail{ void set_from_yaml(OutputFile & setting, YAML::Node const & yaml){ setting = yaml.as(); } } namespace { void update_fixed_order_jet_parameters( JetParameters & fixed_order_jets, YAML::Node const & yaml ){ if(!yaml["fixed order jets"]) return; set_from_yaml_if_defined( fixed_order_jets.min_pt, yaml, "fixed order jets", "min pt" ); fastjet::JetAlgorithm algo = fixed_order_jets.def.jet_algorithm(); set_from_yaml_if_defined(algo, yaml, "fixed order jets", "algorithm"); double R = fixed_order_jets.def.R(); set_from_yaml_if_defined(R, yaml, "fixed order jets", "R"); fixed_order_jets.def = fastjet::JetDefinition{algo, R}; } // like std::stod, but throw if not the whole string can be converted double to_double(std::string const & str){ std::size_t pos = 0; const double result = std::stod(str, &pos); if(pos < str.size()){ throw std::invalid_argument(str + " is not a valid double value"); } return result; } using EventScale = double (*)(Event const &); void import_scale_functions( std::string const & file, std::vector const & scale_names, std::unordered_map & known ) { void * handle = dlopen(file.c_str(), RTLD_NOW); char * error = dlerror(); if(error != nullptr) throw std::runtime_error{error}; for(auto const & scale: scale_names) { void * sym = dlsym(handle, scale.c_str()); error = dlerror(); if(error != nullptr) throw std::runtime_error{error}; known.emplace(scale, reinterpret_cast(sym)); // NOLINT } } auto get_scale_map( YAML::Node const & yaml ) { std::unordered_map scale_map; scale_map.emplace("H_T", H_T); scale_map.emplace("max jet pperp", max_jet_pt); scale_map.emplace("jet invariant mass", jet_invariant_mass); scale_map.emplace("m_j1j2", m_j1j2); if(yaml["import scales"].IsDefined()) { if(! yaml["import scales"].IsMap()) { throw invalid_type{"Entry 'import scales' is not a map"}; } for(auto const & import: yaml["import scales"]) { const auto file = import.first.as(); const auto scale_names = import.second.IsSequence() ?import.second.as>() :std::vector{import.second.as()}; import_scale_functions(file, scale_names, scale_map); } } return scale_map; } // simple (as in non-composite) scale functions /** * An example for a simple scale function would be H_T, * H_T/2 is then composite (take H_T and then divide by 2) */ ScaleFunction parse_simple_ScaleFunction( std::string const & scale_fun, std::unordered_map const & known ) { assert( scale_fun.empty() || (!std::isspace(scale_fun.front()) && !std::isspace(scale_fun.back())) ); const auto it = known.find(scale_fun); if(it != end(known)) return {it->first, it->second}; try{ const double scale = to_double(scale_fun); return {scale_fun, FixedScale{scale}}; } catch(std::invalid_argument const &){} throw std::invalid_argument{"Unknown scale choice: \"" + scale_fun + "\""}; } std::string trim_front(std::string const & str){ const auto new_begin = std::find_if( begin(str), end(str), [](char c){ return std::isspace(c) == 0; } ); return std::string(new_begin, end(str)); } std::string trim_back(std::string str){ size_t pos = str.size() - 1; // use guaranteed wrap-around behaviour to check whether we have // traversed the whole string for(; pos < str.size() && std::isspace(str[pos]); --pos) {} str.resize(pos + 1); // note that pos + 1 can be 0 return str; } ScaleFunction parse_ScaleFunction( std::string const & scale_fun, std::unordered_map const & known ){ assert( scale_fun.empty() || (!std::isspace(scale_fun.front()) && !std::isspace(scale_fun.back())) ); // parse from right to left => a/b/c gives (a/b)/c const size_t delim = scale_fun.find_last_of("*/"); if(delim == std::string::npos){ return parse_simple_ScaleFunction(scale_fun, known); } const std::string first = trim_back(std::string{scale_fun, 0, delim}); const std::string second = trim_front(std::string{scale_fun, delim+1}); if(scale_fun[delim] == '/'){ return parse_ScaleFunction(first, known) / parse_ScaleFunction(second, known); } assert(scale_fun[delim] == '*'); return parse_ScaleFunction(first, known) * parse_ScaleFunction(second, known); } EventTreatMap get_event_treatment( YAML::Node const & node, std::string const & entry ){ using namespace event_type; EventTreatMap treat { {no_2_jets, EventTreatment::discard}, {bad_final_state, EventTreatment::discard}, {FKL, EventTreatment::discard}, {unob, EventTreatment::discard}, {unof, EventTreatment::discard}, {qqxexb, EventTreatment::discard}, {qqxexf, EventTreatment::discard}, {qqxmid, EventTreatment::discard}, {non_resummable, EventTreatment::discard} }; set_from_yaml(treat.at(FKL), node, entry, "FKL"); set_from_yaml(treat.at(unob), node, entry, "unordered"); treat.at(unof) = treat.at(unob); set_from_yaml(treat.at(qqxexb), node, entry, "extremal qqx"); treat.at(qqxexf) = treat.at(qqxexb); set_from_yaml(treat.at(qqxmid), node, entry, "central qqx"); set_from_yaml(treat.at(non_resummable), node, entry, "non-resummable"); if(treat[non_resummable] == EventTreatment::reweight){ throw std::invalid_argument{"Cannot reweight non-resummable events"}; } return treat; } Config to_Config(YAML::Node const & yaml){ try{ assert_all_options_known(yaml, get_supported_options()); } catch(unknown_option const & ex){ throw unknown_option{std::string{"Unknown option '"} + ex.what() + "'"}; } Config config; config.resummation_jets = get_jet_parameters(yaml, "resummation jets"); config.fixed_order_jets = config.resummation_jets; update_fixed_order_jet_parameters(config.fixed_order_jets, yaml); set_from_yaml_if_defined(config.min_extparton_pt, yaml, "min extparton pt"); if(config.min_extparton_pt!=0) std::cerr << "WARNING: \"min extparton pt\" is deprecated." - << " Please use \"soft pt regulator\" instead.\n"; + << " Please remove this entry or set \"soft pt regulator\" instead.\n"; set_from_yaml_if_defined( config.max_ext_soft_pt_fraction, yaml, "max ext soft pt fraction" ); if(config.max_ext_soft_pt_fraction){ std::cerr << "WARNING: \"max ext soft pt fraction\" is deprecated." - << " Please use \"soft pt regulator\" instead.\n"; + << " Please remove this entry or set \"soft pt regulator\" instead.\n"; config.soft_pt_regulator = *config.max_ext_soft_pt_fraction; } else { - set_from_yaml( + set_from_yaml_if_defined( config.soft_pt_regulator, yaml, "soft pt regulator" ); } // Sets the standard value, then changes this if defined config.regulator_lambda=CLAMBDA; set_from_yaml_if_defined(config.regulator_lambda, yaml, "regulator parameter"); set_from_yaml_if_defined(config.max_events, yaml, "max events"); set_from_yaml(config.trials, yaml, "trials"); config.weight_type = WeightType::weighted; set_from_yaml_if_defined(config.weight_type, yaml, "unweight", "type"); if(config.weight_type == WeightType::partially_unweighted) { config.unweight_config = PartialUnweightConfig{}; set_from_yaml( config.unweight_config->trials, yaml, "unweight", "trials" ); set_from_yaml( config.unweight_config->max_dev, yaml, "unweight", "max deviation" ); } else if(yaml["unweight"].IsDefined()) { for(auto && opt: {"trials", "max deviation"}) { if(yaml["unweight"][opt].IsDefined()) { throw std::invalid_argument{ "'unweight: " + std::string{opt} + "' " "is only supported if 'unweight: type' is set to 'partial'" }; } } } set_from_yaml(config.log_correction, yaml, "log correction"); config.treat = get_event_treatment(yaml, "event treatment"); set_from_yaml_if_defined(config.output, yaml, "event output"); config.rng = to_RNGConfig(yaml, "random generator"); set_from_yaml_if_defined(config.analyses_parameters, yaml, "analyses"); if(yaml["analysis"].IsDefined()){ std::cerr << "WARNING: Configuration entry 'analysis' is deprecated. " " Use 'analyses' instead.\n"; set_from_yaml(config.analysis_parameters, yaml, "analysis"); if(!config.analysis_parameters.IsNull()){ config.analyses_parameters.push_back(config.analysis_parameters); } } config.scales = to_ScaleConfig(yaml); config.ew_parameters = get_ew_parameters(yaml); config.Higgs_coupling = get_Higgs_coupling(yaml, "Higgs coupling"); return config; } } // namespace ScaleConfig to_ScaleConfig(YAML::Node const & yaml){ ScaleConfig config; auto scale_funs = get_scale_map(yaml); std::vector scales; set_from_yaml(scales, yaml, "scales"); config.base.reserve(scales.size()); std::transform( begin(scales), end(scales), std::back_inserter(config.base), [scale_funs](auto const & entry){ return parse_ScaleFunction(entry, scale_funs); } ); set_from_yaml_if_defined(config.factors, yaml, "scale factors"); config.max_ratio = std::numeric_limits::infinity(); set_from_yaml_if_defined(config.max_ratio, yaml, "max scale ratio"); return config; } Config load_config(std::string const & config_file){ try{ return to_Config(YAML::LoadFile(config_file)); } catch(...){ std::cerr << "Error reading " << config_file << ":\n "; throw; } } } // namespace HEJ diff --git a/t/ME_data/config_Z_ME.yml b/t/ME_data/config_Z_ME.yml index 41dba21..68919c6 100644 --- a/t/ME_data/config_Z_ME.yml +++ b/t/ME_data/config_Z_ME.yml @@ -1,39 +1,37 @@ trials: 1 -soft pt regulator: 0.1 - resummation jets: min pt: 30 algorithm: antikt R: 0.4 fixed order jets: min pt: 30 event treatment: FKL: reweight unordered: reweight extremal qqx: reweight central qqx: reweight non-resummable: discard scales: H_T/2 log correction: false vev: 246.219650794137 particle properties: Higgs: mass: 125 width: 0.004165 W: mass: 80.385 width: 2.085 Z: mass: 91.1876 width: 2.495 random generator: name: mixmax seed: 1 diff --git a/t/ME_data/config_mt.yml b/t/ME_data/config_mt.yml index 0baabe0..bf7ec12 100644 --- a/t/ME_data/config_mt.yml +++ b/t/ME_data/config_mt.yml @@ -1,44 +1,42 @@ trials: 1 -soft pt regulator: 0.1 - resummation jets: min pt: 30 algorithm: antikt R: 0.4 fixed order jets: min pt: 30 event treatment: FKL: reweight unordered: reweight extremal qqx: discard central qqx: discard non-resummable: discard scales: 125 log correction: false random generator: name: mixmax seed: 1 vev: 246.2196508 particle properties: Higgs: mass: 125 width: 0.004165 W: mass: 80.385 width: 2.085 Z: mass: 91.187 width: 2.495 Higgs coupling: use impact factors: false mt: 174 include bottom: false diff --git a/t/ME_data/config_mtinf.yml b/t/ME_data/config_mtinf.yml index bf179bd..633b85a 100644 --- a/t/ME_data/config_mtinf.yml +++ b/t/ME_data/config_mtinf.yml @@ -1,39 +1,37 @@ trials: 1 -soft pt regulator: 0.1 - resummation jets: min pt: 30 algorithm: antikt R: 0.4 fixed order jets: min pt: 30 event treatment: FKL: reweight unordered: reweight extremal qqx: discard central qqx: discard non-resummable: discard scales: 125 log correction: false vev: 246.2196508 particle properties: Higgs: mass: 125 width: 0.004165 W: mass: 80.385 width: 2.085 Z: mass: 91.187 width: 2.495 random generator: name: mixmax seed: 1 diff --git a/t/ME_data/config_mtmb.yml b/t/ME_data/config_mtmb.yml index a395f7d..5a19a50 100644 --- a/t/ME_data/config_mtmb.yml +++ b/t/ME_data/config_mtmb.yml @@ -1,45 +1,43 @@ trials: 1 -soft pt regulator: 0.1 - resummation jets: min pt: 30 algorithm: antikt R: 0.4 fixed order jets: min pt: 30 event treatment: FKL: reweight unordered: reweight extremal qqx: discard central qqx: discard non-resummable: discard scales: 125 log correction: false random generator: name: mixmax seed: 1 vev: 246.2196508 particle properties: Higgs: mass: 125 width: 0.004165 W: mass: 80.385 width: 2.085 Z: mass: 91.187 width: 2.495 Higgs coupling: use impact factors: false mt: 174 include bottom: true mb: 4.7 diff --git a/t/ME_data/config_pure.yml b/t/ME_data/config_pure.yml index e28fb6a..92fe72b 100644 --- a/t/ME_data/config_pure.yml +++ b/t/ME_data/config_pure.yml @@ -1,39 +1,37 @@ trials: 1 -soft pt regulator: 0.1 - resummation jets: min pt: 30 algorithm: antikt R: 0.4 fixed order jets: min pt: 30 event treatment: FKL: reweight unordered: reweight extremal qqx: reweight central qqx: discard non-resummable: discard scales: 125 log correction: false vev: 246.2196508 particle properties: Higgs: mass: 125 width: 0.004165 W: mass: 80.419 width: 2.0476 Z: mass: 91.187 width: 2.495 random generator: name: mixmax seed: 1 diff --git a/t/ME_data/config_w_ME.yml b/t/ME_data/config_w_ME.yml index a3216f7..425d5cb 100644 --- a/t/ME_data/config_w_ME.yml +++ b/t/ME_data/config_w_ME.yml @@ -1,39 +1,37 @@ trials: 1 -soft pt regulator: 0.1 - resummation jets: min pt: 30 algorithm: antikt R: 0.4 fixed order jets: min pt: 30 event treatment: FKL: reweight unordered: reweight extremal qqx: reweight central qqx: reweight non-resummable: discard scales: 125 log correction: false vev: 246.2196508 particle properties: Higgs: mass: 125 width: 0.004165 W: mass: 80.419 width: 2.0476 Z: mass: 91.187 width: 2.495 random generator: name: mixmax seed: 1 diff --git a/t/analysis_config.yml b/t/analysis_config.yml index 34e9bcc..99f1fa4 100644 --- a/t/analysis_config.yml +++ b/t/analysis_config.yml @@ -1,43 +1,41 @@ trials: 10 -soft pt regulator: 0.1 - resummation jets: min pt: 35 algorithm: antikt R: 0.4 fixed order jets: min pt: 30 event treatment: FKL: reweight unordered: discard extremal qqx: reweight central qqx: discard non-resummable: keep log correction: false scales: 125 random generator: name: mixmax seed: 11 vev: 246.2196508 particle properties: Higgs: mass: 125 width: 0.004165 W: mass: 80.385 width: 2.085 Z: mass: 91.187 width: 2.495 max events: 100 analyses: diff --git a/t/analysis_config_single.yml.in b/t/analysis_config_single.yml.in index 1e4d0dc..3ac7d26 100644 --- a/t/analysis_config_single.yml.in +++ b/t/analysis_config_single.yml.in @@ -1,45 +1,43 @@ trials: 10 -soft pt regulator: 0.1 - resummation jets: min pt: 35 algorithm: antikt R: 0.4 fixed order jets: min pt: 30 event treatment: FKL: reweight unordered: discard extremal qqx: reweight central qqx: discard non-resummable: keep log correction: false scales: 125 random generator: name: mixmax seed: 11 vev: 246.2196508 particle properties: Higgs: mass: 125 width: 0.004165 W: mass: 80.385 width: 2.085 Z: mass: 91.187 width: 2.495 analysis: plugin: @ANALYSIS_PATH@/lib@ANALYSIS_LIB@.so @ANALYSIS_PARAMETERS@ max events: 100 diff --git a/t/check_res.cc b/t/check_res.cc index 989af4c..33b0103 100644 --- a/t/check_res.cc +++ b/t/check_res.cc @@ -1,166 +1,164 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #include "hej_test.hh" #include #include #include #include #include #include #include #include #include "HEJ/Config.hh" #include "HEJ/CrossSectionAccumulator.hh" #include "HEJ/Event.hh" #include "HEJ/event_types.hh" #include "HEJ/EventReweighter.hh" #include "HEJ/EWConstants.hh" #include "HEJ/Fraction.hh" #include "HEJ/HiggsCouplingSettings.hh" #include "HEJ/Mixmax.hh" #include "HEJ/Parameters.hh" #include "HEJ/ScaleFunction.hh" #include "HEJ/stream.hh" #include "fastjet/JetDefinition.hh" #include "LHEF/LHEF.h" namespace HEJ { struct RNG; } namespace { const fastjet::JetDefinition JET_DEF{fastjet::kt_algorithm, 0.4}; const fastjet::JetDefinition BORN_JET_DEF{JET_DEF}; constexpr double BORN_JETPTMIN = 30; - const HEJ::Fraction SOFT_PT_REGULATOR{0.1}; constexpr double JETPTMIN = 35; constexpr bool LOG_CORR = false; constexpr std::size_t NUM_TRIES = 100; constexpr HEJ::ParticleProperties WPROP{80.385, 2.085}; constexpr HEJ::ParticleProperties ZPROP{91.187, 2.495}; constexpr HEJ::ParticleProperties HPROP{125, 0.004165}; constexpr double VEV = 246.2196508; using EventTreatment = HEJ::EventTreatment; using namespace HEJ::event_type; HEJ::EventTreatMap TREAT{ {no_2_jets, EventTreatment::discard}, {bad_final_state, EventTreatment::discard}, {non_resummable, EventTreatment::discard}, {unof, EventTreatment::discard}, {unob, EventTreatment::discard}, {qqxexb, EventTreatment::discard}, {qqxexf, EventTreatment::discard}, {qqxmid, EventTreatment::discard}, {FKL, EventTreatment::reweight} }; bool correct_colour(HEJ::Event const & ev){ if(!HEJ::event_type::is_resummable(ev.type())) return true; return ev.is_leading_colour(); } } // namespace int main(int argn, char** argv) { if(argn == 5 && std::string(argv[4]) == "unof"){ --argn; TREAT[unof] = EventTreatment::reweight; TREAT[unob] = EventTreatment::discard; TREAT[FKL] = EventTreatment::discard; } if(argn == 5 && std::string(argv[4]) == "unob"){ --argn; TREAT[unof] = EventTreatment::discard; TREAT[unob] = EventTreatment::reweight; TREAT[FKL] = EventTreatment::discard; } else if(argn == 5 && std::string(argv[4]) == "splitf"){ --argn; TREAT[qqxexb] = EventTreatment::discard; TREAT[qqxexf] = EventTreatment::reweight; TREAT[FKL] = EventTreatment::discard; } else if(argn == 5 && std::string(argv[4]) == "splitb"){ --argn; TREAT[qqxexb] = EventTreatment::reweight; TREAT[qqxexf] = EventTreatment::discard; TREAT[FKL] = EventTreatment::discard; } else if(argn == 5 && std::string(argv[4]) == "qqxmid"){ --argn; TREAT[qqxmid] = EventTreatment::reweight; TREAT[FKL] = EventTreatment::discard; } if(argn != 4){ std::cerr << "Usage: check_res eventfile xsection tolerance [uno]"; return EXIT_FAILURE; } const double xsec_ref = std::stod(argv[2]); const double tolerance = std::stod(argv[3]); HEJ::istream in{argv[1]}; LHEF::Reader reader{in}; HEJ::PhaseSpacePointConfig psp_conf; psp_conf.jet_param = HEJ::JetParameters{JET_DEF, JETPTMIN}; - psp_conf.soft_pt_regulator = SOFT_PT_REGULATOR; HEJ::MatrixElementConfig ME_conf; ME_conf.log_correction = LOG_CORR; ME_conf.Higgs_coupling = HEJ::HiggsCouplingSettings{}; ME_conf.ew_parameters.set_vevWZH(VEV, WPROP, ZPROP, HPROP); HEJ::EventReweighterConfig conf; conf.psp_config = std::move(psp_conf); conf.ME_config = std::move(ME_conf); conf.treat = TREAT; reader.readEvent(); const bool has_Higgs = std::find( begin(reader.hepeup.IDUP), end(reader.hepeup.IDUP), 25 ) != end(reader.hepeup.IDUP); const double mu = has_Higgs?125.:91.188; HEJ::ScaleGenerator scale_gen{ {{std::to_string(mu), HEJ::FixedScale{mu}}}, {}, 1. }; std::shared_ptr ran{std::make_shared()}; HEJ::EventReweighter hej{reader.heprup, std::move(scale_gen), conf, ran}; HEJ::CrossSectionAccumulator xs; do{ auto ev_data = HEJ::Event::EventData{reader.hepeup}; shuffle_particles(ev_data); ev_data.reconstruct_intermediate(); HEJ::Event ev{ ev_data.cluster( BORN_JET_DEF, BORN_JETPTMIN ) }; auto resummed_events = hej.reweight(ev, NUM_TRIES); for(auto const & res_ev: resummed_events) { ASSERT(correct_colour(res_ev)); ASSERT(std::isfinite(res_ev.central().weight)); // we fill the xs uncorrelated since we only want to test the uncertainty // of the resummation xs.fill(res_ev); } } while(reader.readEvent()); const double xsec = xs.total().value; const double xsec_err = std::sqrt(xs.total().error); const double significance = std::abs(xsec - xsec_ref) / std::sqrt( xsec_err*xsec_err + tolerance*tolerance ); std::cout << xsec_ref << " +/- " << tolerance << " ~ " << xsec << " +- " << xsec_err << " => " << significance << " sigma\n"; if(significance > 3.){ std::cerr << "Cross section is off by over 3 sigma!\n"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/t/jet_config.yml b/t/jet_config.yml index 1c69f84..8cf1aee 100644 --- a/t/jet_config.yml +++ b/t/jet_config.yml @@ -1,51 +1,49 @@ trials: 10 -soft pt regulator: 0.1 - resummation jets: min pt: 35 algorithm: antikt R: 0.4 fixed order jets: min pt: 30 event treatment: FKL: reweight unordered: keep extremal qqx: discard central qqx: keep non-resummable: keep log correction: false scales: [125, 91.188] scale factors: [0.5, 1, 2] max scale ratio: 2.0001 random generator: name: mixmax seed: 1024 vev: 246.2196508 particle properties: Higgs: mass: 125 width: 0.004165 W: mass: 80.385 width: 2.085 Z: mass: 91.187 width: 2.495 max events: 500 unweight: type: partial trials: 100 max deviation: -1 event output: - tst.lhe diff --git a/t/jet_config_with_import.yml.in b/t/jet_config_with_import.yml.in index 040b49e..490d373 100644 --- a/t/jet_config_with_import.yml.in +++ b/t/jet_config_with_import.yml.in @@ -1,44 +1,42 @@ trials: 10 -soft pt regulator: 0.1 - resummation jets: min pt: 35 algorithm: antikt R: 0.4 fixed order jets: min pt: 30 event treatment: FKL: reweight unordered: discard extremal qqx: discard central qqx: discard non-resummable: discard log correction: false scales: @SCALE_NAME@ event output: - tst.lhe random generator: name: ranlux64 vev: 246.2196508 particle properties: Higgs: mass: 125 width: 0.004165 W: mass: 80.385 width: 2.085 Z: mass: 91.187 width: 2.495 import scales: @SCALE_PATH@/lib@SCALE_LIB@.so: @SCALE_NAME@ diff --git a/t/test_psp.cc b/t/test_psp.cc index 47ae65f..11380da 100644 --- a/t/test_psp.cc +++ b/t/test_psp.cc @@ -1,74 +1,72 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #include "hej_test.hh" #include #include #include "HEJ/stream.hh" #include "HEJ/Config.hh" #include "HEJ/event_types.hh" #include "HEJ/Event.hh" #include "HEJ/PhaseSpacePoint.hh" #include "HEJ/Ranlux64.hh" #include "LHEF/LHEF.h" #include "fastjet/JetDefinition.hh" namespace { constexpr int MAX_TRIALS = 100; - const HEJ::Fraction SOFT_PT_REGULATOR{0.1}; const fastjet::JetDefinition JET_DEF{fastjet::kt_algorithm, 0.4}; constexpr double MIN_JET_PT = 50; } int main(int argn, char** argv) { if(argn != 2){ std::cerr << "Usage: " << argv[0] << " eventfile"; return EXIT_FAILURE; } HEJ::istream in{argv[1]}; LHEF::Reader reader{in}; LHEF::Writer writer{std::cerr}; writer.heprup = reader.heprup; HEJ::PhaseSpacePointConfig conf; conf.jet_param = HEJ::JetParameters{JET_DEF, MIN_JET_PT}; - conf.soft_pt_regulator = SOFT_PT_REGULATOR; HEJ::Ranlux64 ran{}; while(reader.readEvent()){ HEJ::Event::EventData ev_data{ reader.hepeup }; shuffle_particles(ev_data); const HEJ::Event ev{ ev_data( JET_DEF, MIN_JET_PT ) }; for(int trial = 0; trial < MAX_TRIALS; ++trial){ HEJ::PhaseSpacePoint psp{ev, conf, ran}; if(psp.weight() != 0){ HEJ::Event::EventData tmp_ev; tmp_ev.incoming = psp.incoming(); tmp_ev.outgoing = psp.outgoing(); tmp_ev.parameters.central = {0,0,0}; shuffle_particles(tmp_ev); HEJ::Event out_ev{ tmp_ev(JET_DEF, MIN_JET_PT) }; if(out_ev.type() != ev.type()){ using HEJ::event_type::name; std::cerr << "Wrong class of phase space point:\n" "original event of class " << name(ev.type()) << ":\n"; writer.hepeup = reader.hepeup; writer.writeEvent(); std::cerr << "Phase space point of class " << name(out_ev.type()) << ":\n"; writer.hepeup = to_HEPEUP(out_ev, &writer.heprup); writer.writeEvent(); return EXIT_FAILURE; } } } } return EXIT_SUCCESS; }