diff --git a/FixedOrderGen/t/W_nj_classify.cc b/FixedOrderGen/t/W_nj_classify.cc
index 906d6f7..db1609e 100644
--- a/FixedOrderGen/t/W_nj_classify.cc
+++ b/FixedOrderGen/t/W_nj_classify.cc
@@ -1,210 +1,207 @@
 /**
  *  \brief     check that the PSP generates the all W+jet subleading processes
  *
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019-2020
  *  \copyright GPLv2 or later
  */
 #ifdef NDEBUG
 #undef NDEBUG
 #endif
 
 #include <algorithm>
 #include <cmath>
 #include <cstdlib>
 #include <iomanip>
 #include <iostream>
 #include <string>
 #include <unordered_map>
 #include <vector>
 
 #include "HEJ/Event.hh"
 #include "HEJ/event_types.hh"
 #include "HEJ/EWConstants.hh"
 #include "HEJ/exceptions.hh"
 #include "HEJ/Mixmax.hh"
 #include "HEJ/PDF.hh"
 #include "HEJ/PDG_codes.hh"
 
 #include "fastjet/JetDefinition.hh"
 
 #include "Decay.hh"
 #include "JetParameters.hh"
 #include "PhaseSpacePoint.hh"
 #include "Process.hh"
 #include "Status.hh"
 #include "Subleading.hh"
 
 namespace {
   using namespace HEJFOG;
   using namespace HEJ;
 
   void print_psp(PhaseSpacePoint const & psp){
     std::cerr << "Process:\n"
       << psp.incoming()[0].type << " + "<< psp.incoming()[1].type << " -> ";
     for(auto const & out: psp.outgoing()){
       std::cerr << out.type << " ";
     }
     std::cerr << "\n";
   }
   void bail_out(PhaseSpacePoint const & psp, std::string msg){
     print_psp(psp);
     throw std::logic_error{msg};
   }
 }
 
 int main(){
   constexpr std::size_t n_psp_base = 10375;
   const JetParameters jet_para{
     fastjet::JetDefinition(fastjet::JetAlgorithm::antikt_algorithm, 0.4), 30, 5, 30};
   PDF pdf(11000, pid::proton, pid::proton);
   constexpr double E_cms = 13000.;
   constexpr double subl_change = 0.8;
   const ParticlesDecayMap boson_decays{
       {pid::Wp, {Decay{ {pid::e_bar, pid::nu_e}, 1.} }},
       {pid::Wm, {Decay{ {pid::e, pid::nu_e_bar}, 1.} }}
     };
   const EWConstants ew_constants{246.2196508,
     ParticleProperties{80.385, 2.085},
     ParticleProperties{91.187, 2.495},
     ParticleProperties{125, 0.004165}
   };
   HEJ::Mixmax ran{};
 
   auto subl_channels = Subleading::all;
   std::vector<event_type::EventType> allowed_types{event_type::FKL,
     event_type::unob, event_type::unof, event_type::qqxexb, event_type::qqxexf};
 
   std::cout << "Wp3j" << std::endl;
   // Wp3j
   Process proc {{pid::proton,pid::proton}, 3, pid::Wp, {}};
   std::size_t n_psp = n_psp_base;
 
   #if !defined(__clang__) && defined(__GNUC__) && (__GNUC__ < 6)
   // gcc version < 6 explicitly needs hash function for enum
   // see https://gcc.gnu.org/bugzilla/show_bug.cgi?id=60970
   std::unordered_map<event_type::EventType, std::size_t, std::hash<std::size_t>> type_counter;
   #else
   std::unordered_map<event_type::EventType, std::size_t> type_counter;
   #endif
 
   for( std::size_t i = 0; i<n_psp; ++i){
     const PhaseSpacePoint psp{proc,jet_para,pdf,E_cms, subl_change,subl_channels,
       boson_decays, ew_constants, ran};
     if(psp.status()==good){
       const Event ev{ to_EventData(psp).cluster(jet_para.def, jet_para.min_pt) };
       ++type_counter[ev.type()];
       if( std::find(allowed_types.cbegin(), allowed_types.cend(), ev.type())
         == allowed_types.cend()) {
-        bail_out(psp, "Found not allowed event of type "
-          +std::string(event_type::name(ev.type())));
+        bail_out(psp, "Found not allowed event of type " + name(ev.type()) );
       }
     } else { // bad process -> try again
       ++n_psp;
     }
   }
   std::cout << "Wp+3j: Took " << n_psp << " to generate "
     << n_psp_base << " successfully PSP (" << 1.*n_psp/n_psp_base << " trials/PSP)" << std::endl;
   std::cout << "States by classification:\n";
   for(auto const & entry: type_counter){
     const double fraction = static_cast<double>(entry.second)/n_psp_base;
     const int percent = std::round(100*fraction);
     std::cout << std::left << std::setw(25)
-              << (event_type::name(entry.first) + std::string(":"))
+              << (name(entry.first) + std::string(":"))
               << entry.second << " (" << percent << "%)\n";
 
   }
   for(auto const & t: allowed_types){
     if(type_counter[t] < 0.05 * n_psp_base){
-      std::cerr << "Less than 5% of the events are of type " << event_type::name(t) << std::endl;
+      std::cerr << "Less than 5% of the events are of type " << name(t) << std::endl;
       return EXIT_FAILURE;
     }
   }
 
   // Wm3j - only uno
   proc = Process{{pid::proton,pid::proton}, 3, pid::Wm, {}};
   n_psp = n_psp_base;
 
   subl_channels = Subleading::uno;
   allowed_types = {event_type::FKL, event_type::unob, event_type::unof};
   type_counter.clear();
 
   for( std::size_t i = 0; i<n_psp; ++i){
     const PhaseSpacePoint psp{proc,jet_para,pdf,E_cms, subl_change,subl_channels,
       boson_decays, ew_constants, ran};
     if(psp.status()==good){
       const Event ev{ to_EventData(psp).cluster(jet_para.def, jet_para.min_pt) };
       ++type_counter[ev.type()];
       if( std::find(allowed_types.cbegin(), allowed_types.cend(), ev.type())
         == allowed_types.cend()) {
-        bail_out(psp, "Found not allowed event of type "
-          +std::string(event_type::name(ev.type())));
+        bail_out(psp, "Found not allowed event of type " + name(ev.type()) );
       }
     } else { // bad process -> try again
       ++n_psp;
     }
   }
   std::cout << "Wm+3j (only uno): Took " << n_psp << " to generate "
     << n_psp_base << " successfully PSP (" << 1.*n_psp/n_psp_base << " trials/PSP)" << std::endl;
   std::cout << "States by classification:\n";
   for(auto const & entry: type_counter){
     const double fraction = static_cast<double>(entry.second)/n_psp_base;
     const int percent = std::round(100*fraction);
     std::cout << std::left << std::setw(25)
-              << (event_type::name(entry.first) + std::string(":"))
+              << (name(entry.first) + std::string(":"))
               << entry.second << " (" << percent << "%)\n";
 
   }
   for(auto const & t: allowed_types){
     if(type_counter[t] < 0.05 * n_psp_base){
-      std::cerr << "Less than 5% of the events are of type " << event_type::name(t) << std::endl;
+      std::cerr << "Less than 5% of the events are of type " << name(t) << std::endl;
       return EXIT_FAILURE;
     }
   }
 
   // Wm4j
   proc = Process{{pid::proton,pid::proton}, 4, pid::Wm, {}};
   n_psp = n_psp_base;
 
   subl_channels = Subleading::all;
   allowed_types = {event_type::FKL,
     event_type::unob, event_type::unof, event_type::qqxexb, event_type::qqxexf,
     event_type::qqxmid};
   type_counter.clear();
 
   for( std::size_t i = 0; i<n_psp; ++i){
     const PhaseSpacePoint psp{proc,jet_para,pdf,E_cms, subl_change,subl_channels,
       boson_decays, ew_constants, ran};
     if(psp.status()==good){
       const Event ev{ to_EventData(psp).cluster(jet_para.def, jet_para.min_pt)};
       ++type_counter[ev.type()];
       if( std::find(allowed_types.cbegin(), allowed_types.cend(), ev.type())
         == allowed_types.cend()) {
-        bail_out(psp, "Found not allowed event of type "
-          +std::string(event_type::name(ev.type())));
+        bail_out(psp, "Found not allowed event of type " + name(ev.type()) );
       }
     } else { // bad process -> try again
       ++n_psp;
     }
   }
   std::cout << "Wm+4j: Took " << n_psp << " to generate "
     << n_psp_base << " successfully PSP (" << 1.*n_psp/n_psp_base << " trials/PSP)" << std::endl;
   std::cout << "States by classification:\n";
   for(auto const & entry: type_counter){
     const double fraction = static_cast<double>(entry.second)/n_psp_base;
     const int percent = std::round(100*fraction);
     std::cout << std::left << std::setw(25)
-              << (event_type::name(entry.first) + std::string(":"))
+              << (name(entry.first) + std::string(":"))
               << entry.second << " (" << percent << "%)\n";
 
   }
   for(auto const & t: allowed_types){
     if(type_counter[t] < 0.03 * n_psp_base){
-      std::cerr << "Less than 3% of the events are of type " << event_type::name(t) << std::endl;
+      std::cerr << "Less than 3% of the events are of type " << name(t) << std::endl;
       return EXIT_FAILURE;
     }
   }
 
   std::cout << "All processes passed." << std::endl;
   return EXIT_SUCCESS;
 }
diff --git a/src/CrossSectionAccumulator.cc b/src/CrossSectionAccumulator.cc
index 4855f4b..cb3811d 100644
--- a/src/CrossSectionAccumulator.cc
+++ b/src/CrossSectionAccumulator.cc
@@ -1,67 +1,67 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019-2020
  *  \copyright GPLv2 or later
  */
 
 #include "HEJ/CrossSectionAccumulator.hh"
 
 #include <iomanip>
 #include <cmath>
 #include <string>
 #include <utility>
 
 #include "HEJ/Event.hh"
 #include "HEJ/Parameters.hh"
 
 namespace HEJ {
   void CrossSectionAccumulator::fill( double const wt, double const err,
       event_type::EventType const type
   ){
     total_.value += wt;
     total_.error += err;
     auto & entry = xs_[type];
     entry.value += wt;
     entry.error += err;
   }
 
   void CrossSectionAccumulator::fill(
     double const wt, event_type::EventType const type
   ){
     fill(wt, wt*wt, type);
   }
   void CrossSectionAccumulator::fill(Event const & ev){
     fill(ev.central().weight, ev.type());
   }
 
   void CrossSectionAccumulator::fill_correlated(
     double const sum, double const sum2, event_type::EventType const type
   ){
     fill(sum, sum*sum+sum2, type);
   }
   void CrossSectionAccumulator::fill_correlated(std::vector<Event> const & evts){
     if(evts.empty()) return;
     fill_correlated(evts.cbegin(), evts.cend());
   }
 
   std::ostream& operator<<(std::ostream& os, const CrossSectionAccumulator& xs){
     const std::streamsize orig_prec = os.precision();
     os << std::scientific << std::setprecision(3)
       << "    " << std::left << std::setw(25)
       << "Cross section: " << xs.total().value
       << " +- " << std::sqrt(xs.total().error) << " (pb)\n";
     for(auto const & xs_type: xs) {
       os << "    " << std::left << std::scientific <<std::setw(25)
-        << (event_type::name(xs_type.first) + std::string(": "));
+        << (name(xs_type.first) + std::string(": "));
       os << xs_type.second.value << " +- "
         << std::sqrt(xs_type.second.error) << " (pb) "
         << std::fixed << std::setprecision(3)
         << "[" <<std::setw(6) <<std::right
         << ((xs_type.second.value)/xs.total().value)*100 << "%]"
         << std::endl;
     }
     os << std::defaultfloat;
     os.precision(orig_prec);
     return os;
   }
 }
diff --git a/src/Event.cc b/src/Event.cc
index 9770986..f9ef5f8 100644
--- a/src/Event.cc
+++ b/src/Event.cc
@@ -1,1138 +1,1138 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019-2020
  *  \copyright GPLv2 or later
  */
 #include "HEJ/Event.hh"
 
 #include <algorithm>
 #include <cassert>
 #include <cstdlib>
 #include <iomanip>
 #include <iterator>
 #include <memory>
 #include <numeric>
 #include <ostream>
 #include <string>
 #include <utility>
 
 #include "fastjet/ClusterSequence.hh"
 #include "fastjet/JetDefinition.hh"
 #include "fastjet/PseudoJet.hh"
 
 #include "LHEF/LHEF.h"
 
 #include "HEJ/Constants.hh"
 #include "HEJ/exceptions.hh"
 #include "HEJ/optional.hh"
 #include "HEJ/PDG_codes.hh"
 #include "HEJ/RNG.hh"
 
 namespace HEJ{
 
   namespace {
     using std::size_t;
     constexpr int status_in = -1;
     constexpr int status_decayed = 2;
     constexpr int status_out = 1;
 
     //! true if leptonic W decay
     bool valid_W_decay( int const w_type, // sign of W
                         std::vector<Particle> const & decays
     ){
       if(decays.size() != 2) // no 1->2 decay
         return false;
       const int pidsum = decays[0].type + decays[1].type;
       if( std::abs(pidsum) != 1 || pidsum != w_type ) // correct charge
         return false;
       // leptonic decay (only check first, second follows from pidsum)
       if( w_type == 1 ) // W+
         return is_antilepton(decays[0]) || is_neutrino(decays[0]);
       // W-
       return is_lepton(decays[0]) || is_antineutrino(decays[0]);
     }
 
     /// @name helper functions to determine event type
     //@{
 
     /**
      * \brief check if final state valid for HEJ
      *
      * check if there is at most one photon, W, H, Z in the final state
      * and all the rest are quarks or gluons
      */
     bool final_state_ok(Event const & ev){
       std::vector<Particle> const & outgoing = ev.outgoing();
       if(ev.decays().size() > 1) // at most one decay
         return false;
       bool has_AWZH_boson = false;
       for( size_t i=0; i<outgoing.size(); ++i ){
         auto const & out{ outgoing[i] };
         if(is_AWZH_boson(out.type)){
           // at most one boson
           if(has_AWZH_boson) return false;
           has_AWZH_boson = true;
 
           // valid decay for W
           if(std::abs(out.type) == ParticleID::Wp){
             // exactly 1 decay of W
             if( ev.decays().size() != 1 || ev.decays().cbegin()->first != i )
               return false;
             if( !valid_W_decay(out.type>0?+1:-1, ev.decays().cbegin()->second) )
               return false;
           }
         }
         else if(! is_parton(out.type)) return false;
       }
       return true;
     }
 
     /**
      * returns all EventTypes implemented in HEJ
      */
     size_t implemented_types(std::vector<Particle> const & bosons){
       using namespace event_type;
       if(bosons.empty()) return FKL | unob | unof | qqxexb | qqxexf | qqxmid;
       if(bosons.size()>1) return non_resummable; // multi boson
       switch (bosons[0].type) {
         case ParticleID::Wp:
         case ParticleID::Wm:
           return FKL | unob | unof | qqxexb | qqxexf | qqxmid;
         case ParticleID::h:
           return FKL | unob | unof;
         default:
           return non_resummable;
       }
     }
 
     /**
      * \brief function which determines if type change is consistent with Wp emission.
      * @param in                      incoming Particle id
      * @param out                     outgoing Particle id
      * @param qqx                     Current both incoming/both outgoing?
      *
      * \see is_Wm_Change
      */
     bool is_Wp_Change(ParticleID in, ParticleID out, bool qqx){
       if(!qqx && (in==-1 || in== 2 || in==-3 || in== 4)) return out== (in-1);
       if( qqx && (in== 1 || in==-2 || in== 3 || in==-4)) return out==-(in+1);
       return false;
     }
 
     /**
      * \brief function which determines if type change is consistent with Wm emission.
      * @param in                      incoming Particle id
      * @param out                     outgoing Particle id
      * @param qqx                     Current both incoming/both outgoing?
      *
      * Ensures that change type of quark line is possible by a flavour changing
      * Wm emission. Allows checking of qqx currents also.
      */
     bool is_Wm_Change(ParticleID in, ParticleID out, bool qqx){
       if(!qqx && (in== 1 || in==-2 || in== 3 || in==-4)) return out== (in+1);
       if( qqx && (in==-1 || in== 2 || in==-3 || in== 4)) return out==-(in-1);
       return false;
     }
 
     /**
      * \brief checks if particle type remains same from incoming to outgoing
      * @param in                      incoming Particle
      * @param out                     outgoing Particle
      * @param qqx                     Current both incoming/outgoing?
      */
     bool no_flavour_change(ParticleID in, ParticleID out, bool qqx){
       const int qqxCurrent = qqx?-1:1;
       if(std::abs(in)<=6 || in==pid::gluon) return (in==out*qqxCurrent);
       else return false;
     }
 
     bool has_2_jets(Event const & event){
       return event.jets().size() >= 2;
     }
 
     /**
      * \brief check if we have a valid Impact factor
      * @param in                      incoming Particle
      * @param out                     outgoing Particle
      * @param qqx                     Current both incoming/outgoing?
      * @param W_change                returns +1 if Wp, -1 if Wm, else 0
      */
     bool is_valid_impact_factor(
       ParticleID in, ParticleID out, bool qqx, int & W_change
     ){
       if( no_flavour_change(in, out, qqx) ){
         return true;
       }
       if( is_Wp_Change(in, out, qqx) ) {
         W_change+=1;
         return true;
       }
       if( is_Wm_Change(in, out, qqx) ) {
         W_change-=1;
         return true;
       }
       return false;
     }
 
     //! Returns all possible classifications from the impact factors
     // the beginning points are changed s.t. after the the classification they
     // point to the beginning of the (potential) FKL chain
     // sets W_change: + if Wp change
     //                0 if no change
     //                - if Wm change
     // This function can be used with forward & backwards iterators
     template<class OutIterator>
     size_t possible_impact_factors(
       ParticleID incoming_id,                                   // incoming
       OutIterator   & begin_out, OutIterator   const & end_out, // outgoing
       int & W_change, std::vector<Particle> const & boson,
       bool const backward                                       // backward?
     ){
       using namespace event_type;
       assert(boson.size() < 2);
       // keep track of all states that we don't test
       size_t not_tested = qqxmid;
       if(backward)
         not_tested |= unof | qqxexf;
       else
         not_tested |= unob | qqxexb;
 
       // Is this LL current?
       if( is_valid_impact_factor(incoming_id, begin_out->type, false, W_change) ){
         ++begin_out;
         return not_tested | FKL;
       }
 
       // or NLL current?
       // -> needs two partons in two different jets
       if( std::distance(begin_out, end_out)>=2
       ){
         auto next = std::next(begin_out);
         // Is this unordered emisson?
         if( incoming_id!=pid::gluon && begin_out->type==pid::gluon ){
           if( is_valid_impact_factor(
                 incoming_id, next->type, false, W_change )
           ){
             // veto Higgs inside uno
             assert(next!=end_out);
             if( !boson.empty() && boson.front().type == ParticleID::h
             ){
               if(  (backward && boson.front().rapidity() < next->rapidity())
                 ||(!backward && boson.front().rapidity() > next->rapidity()))
               return non_resummable;
             }
             begin_out = std::next(next);
             return not_tested | (backward?unob:unof);
           }
         }
         // Is this QQbar?
         else if( incoming_id==pid::gluon ){
           if( is_valid_impact_factor(
                 begin_out->type, next->type, true, W_change )
           ){
             // veto Higgs inside qqx
             assert(next!=end_out);
             if( !boson.empty() && boson.front().type == ParticleID::h
             ){
               if(  (backward && boson.front().rapidity() < next->rapidity())
                 ||(!backward && boson.front().rapidity() > next->rapidity()))
               return non_resummable;
             }
             begin_out = std::next(next);
             return not_tested | (backward?qqxexb:qqxexf);
           }
         }
       }
       return non_resummable;
     }
 
     //! Returns all possible classifications from central emissions
     // the beginning points are changed s.t. after the the classification they
     // point to the end of the emission chain
     // sets W_change: + if Wp change
     //               0 if no change
     //               - if Wm change
     template<class OutIterator>
     size_t possible_central(
       OutIterator & begin_out, OutIterator const & end_out,
       int & W_change, std::vector<Particle> const & boson
     ){
       using namespace event_type;
       assert(boson.size() < 2);
       // if we already passed the central chain,
       // then it is not a valid all-order state
       if(std::distance(begin_out, end_out) < 0) return non_resummable;
       // keep track of all states that we don't test
       size_t possible = unob | unof
                           | qqxexb | qqxexf;
 
       // Find the first non-gluon/non-FKL
       while( (begin_out->type==pid::gluon) && (begin_out!=end_out) ){
         ++begin_out;
       }
       // end of chain -> FKL
       if( begin_out==end_out ){
         return possible | FKL;
       }
 
       // is this a qqbar-pair?
       // needs two partons in two separate jets
       auto next = std::next(begin_out);
       if( is_valid_impact_factor(
             begin_out->type, next->type, true, W_change )
       ){
         // veto Higgs inside qqx
         if( !boson.empty() && boson.front().type == ParticleID::h
             && boson.front().rapidity() > begin_out->rapidity()
             && boson.front().rapidity() < next->rapidity()
         ){
           return non_resummable;
         }
         begin_out = std::next(next);
         // remaining chain should be pure gluon/FKL
         for(; begin_out!=end_out; ++begin_out){
           if(begin_out->type != pid::gluon) return non_resummable;
         }
         return possible | qqxmid;
       }
       return non_resummable;
     }
 
     /**
      * \brief Checks for all event types
      * @param ev          Event
      * @returns           Event Type
      *
      */
     event_type::EventType classify(Event const & ev){
       using namespace event_type;
       if(! has_2_jets(ev))
         return no_2_jets;
       // currently we can't handle multiple boson states in the ME. So they are
       // considered "bad_final_state" even though the "classify" could work with
       // them.
       if(! final_state_ok(ev))
         return bad_final_state;
 
       // initialise variables
       auto const & in = ev.incoming();
 
       // range for current checks
       auto begin_out{ev.cbegin_partons()};
       auto end_out{ev.crbegin_partons()};
 
       assert(std::distance(begin(in), end(in)) == 2);
       assert(std::distance(begin_out, end_out.base()) >= 2);
       assert(std::is_sorted(begin_out, end_out.base(), rapidity_less{}));
 
       auto const boson{ filter_AWZH_bosons(ev.outgoing()) };
       // we only allow one boson through final_state_ok
       assert(boson.size()<=1);
 
       // keep track of potential W couplings, at the end the sum should be 0
       int remaining_Wp = 0;
       int remaining_Wm = 0;
       if(!boson.empty() && std::abs(boson.front().type) == ParticleID::Wp ){
         if(boson.front().type>0) ++remaining_Wp;
         else ++remaining_Wm;
       }
       int W_change = 0;
 
       size_t final_type = ~(no_2_jets | bad_final_state);
 
       // check forward impact factor
       final_type &= possible_impact_factors(
         in.front().type,
         begin_out, end_out.base(),
         W_change, boson, true );
       if( final_type == non_resummable )
         return non_resummable;
       if(W_change>0) remaining_Wp-=W_change;
       else if(W_change<0) remaining_Wm+=W_change;
       W_change = 0;
 
       // check backward impact factor
       final_type &= possible_impact_factors(
         in.back().type,
         end_out, std::make_reverse_iterator(begin_out),
         W_change, boson, false );
       if( final_type == non_resummable )
         return non_resummable;
       if(W_change>0) remaining_Wp-=W_change;
       else if(W_change<0) remaining_Wm+=W_change;
       W_change = 0;
 
       // check central emissions
       final_type &= possible_central(
         begin_out, end_out.base(), W_change, boson );
       if( final_type == non_resummable )
         return non_resummable;
       if(W_change>0) remaining_Wp-=W_change;
       else if(W_change<0) remaining_Wm+=W_change;
 
       // Check whether the right number of Ws are present
       if( remaining_Wp != 0 || remaining_Wm != 0 ) return non_resummable;
 
       // result has to be unique
       if( (final_type & (final_type-1)) != 0) return non_resummable;
 
       // check that each sub processes is implemented
       // (has to be done at the end)
       if( (final_type & ~implemented_types(boson)) != 0 )
         return non_resummable;
 
       return static_cast<EventType>(final_type);
     }
     //@}
 
     Particle extract_particle(LHEF::HEPEUP const & hepeup, size_t i){
       const ParticleID id = static_cast<ParticleID>(hepeup.IDUP[i]);
       const fastjet::PseudoJet momentum{
         hepeup.PUP[i][0], hepeup.PUP[i][1],
         hepeup.PUP[i][2], hepeup.PUP[i][3]
       };
       if(is_parton(id))
         return Particle{ id, std::move(momentum), hepeup.ICOLUP[i] };
       return Particle{ id, std::move(momentum), {} };
     }
 
     bool is_decay_product(std::pair<int, int> const & mothers){
       if(mothers.first == 0) return false;
       return mothers.second == 0 || mothers.first == mothers.second;
     }
 
   } // namespace anonymous
 
   Event::EventData::EventData(LHEF::HEPEUP const & hepeup){
     parameters.central = EventParameters{
       hepeup.scales.mur, hepeup.scales.muf, hepeup.XWGTUP
     };
     size_t in_idx = 0;
     for (int i = 0; i < hepeup.NUP; ++i) {
       // skip decay products
       // we will add them later on, but we have to ensure that
       // the decayed particle is added before
       if(is_decay_product(hepeup.MOTHUP[i])) continue;
 
       auto particle = extract_particle(hepeup, i);
       // needed to identify mother particles for decay products
       particle.p.set_user_index(i+1);
 
       if(hepeup.ISTUP[i] == status_in){
         if(in_idx > incoming.size()) {
           throw std::invalid_argument{
             "Event has too many incoming particles"
           };
         }
         incoming[in_idx++] = std::move(particle);
       }
       else outgoing.emplace_back(std::move(particle));
     }
 
     // add decay products
     for (int i = 0; i < hepeup.NUP; ++i) {
       if(!is_decay_product(hepeup.MOTHUP[i])) continue;
       const int mother_id = hepeup.MOTHUP[i].first;
       const auto mother = std::find_if(
           begin(outgoing), end(outgoing),
           [mother_id](Particle const & particle){
             return particle.p.user_index() == mother_id;
           }
       );
       if(mother == end(outgoing)){
         throw std::invalid_argument{"invalid decay product parent"};
       }
       const int mother_idx = std::distance(begin(outgoing), mother);
       assert(mother_idx >= 0);
       decays[mother_idx].emplace_back(extract_particle(hepeup, i));
     }
   }
 
   Event::Event(
     UnclusteredEvent const & ev,
     fastjet::JetDefinition const & jet_def, double const min_jet_pt
   ):
     Event( Event::EventData{
       ev.incoming, ev.outgoing, ev.decays,
       Parameters<EventParameters>{ev.central, ev.variations}
     }.cluster(jet_def, min_jet_pt) )
   {}
 
   //! @TODO remove in HEJ 2.2.0
   UnclusteredEvent::UnclusteredEvent(LHEF::HEPEUP const & hepeup){
       Event::EventData const evData{hepeup};
       incoming = evData.incoming;
       outgoing = evData.outgoing;
       decays = evData.decays;
       central = evData.parameters.central;
       variations = evData.parameters.variations;
   }
 
   void Event::EventData::sort(){
     // sort particles
     std::sort(
         begin(incoming), end(incoming),
         [](Particle o1, Particle o2){return o1.p.pz()<o2.p.pz();}
     );
 
     auto old_outgoing = std::move(outgoing);
     std::vector<size_t> idx(old_outgoing.size());
     std::iota(idx.begin(), idx.end(), 0);
     std::sort(idx.begin(), idx.end(), [&old_outgoing](size_t i, size_t j){
       return old_outgoing[i].rapidity() < old_outgoing[j].rapidity();
     });
     outgoing.clear();
     outgoing.reserve(old_outgoing.size());
     for(size_t i: idx) {
       outgoing.emplace_back(std::move(old_outgoing[i]));
     }
 
     // find decays again
     if(!decays.empty()){
       auto old_decays = std::move(decays);
       decays.clear();
       for(size_t i=0; i<idx.size(); ++i) {
         auto decay = old_decays.find(idx[i]);
         if(decay != old_decays.end())
           decays.emplace(i, std::move(decay->second));
       }
       assert(old_decays.size() == decays.size());
     }
   }
 
   namespace {
     Particle reconstruct_boson(std::vector<Particle> const & leptons) {
       Particle decayed_boson;
       decayed_boson.p = leptons[0].p + leptons[1].p;
       const int pidsum = leptons[0].type + leptons[1].type;
       if(pidsum == +1) {
         assert(is_antilepton(leptons[0]));
         if(is_antineutrino(leptons[0])) {
           throw not_implemented{"lepton-flavour violating final state"};
         }
         assert(is_neutrino(leptons[1]));
         // charged antilepton + neutrino means we had a W+
         decayed_boson.type = pid::Wp;
       }
       else if(pidsum == -1) {
         assert(is_antilepton(leptons[0]));
         if(is_neutrino(leptons[1])) {
           throw not_implemented{"lepton-flavour violating final state"};
         }
         assert(is_antineutrino(leptons[0]));
         // charged lepton + antineutrino means we had a W-
         decayed_boson.type = pid::Wm;
       }
       else {
         throw not_implemented{
           "final state with leptons "
             + name(leptons[0].type)
             + " and "
             + name(leptons[1].type)
         };
       }
       return decayed_boson;
     }
   }
 
   void Event::EventData::reconstruct_intermediate() {
     const auto begin_leptons = std::partition(
         begin(outgoing), end(outgoing),
         [](Particle const & p) {return !is_anylepton(p);}
     );
     if(begin_leptons == end(outgoing)) return;
     assert(is_anylepton(*begin_leptons));
     std::vector<Particle> leptons(begin_leptons, end(outgoing));
     outgoing.erase(begin_leptons, end(outgoing));
     if(leptons.size() != 2) {
       throw not_implemented{"Final states with one or more than two leptons"};
     }
     std::sort(
         begin(leptons), end(leptons),
         [](Particle const & p0, Particle const & p1) {
           return p0.type < p1.type;
         }
     );
     outgoing.emplace_back(reconstruct_boson(leptons));
     decays.emplace(outgoing.size()-1, std::move(leptons));
   }
 
   Event Event::EventData::cluster(
       fastjet::JetDefinition const & jet_def, double const min_jet_pt
   ){
     sort();
     return Event{ std::move(incoming), std::move(outgoing), std::move(decays),
       std::move(parameters),
       jet_def, min_jet_pt
     };
   }
 
   Event::Event(
       std::array<Particle, 2> && incoming,
       std::vector<Particle> && outgoing,
       std::unordered_map<size_t, std::vector<Particle>> && decays,
       Parameters<EventParameters> && parameters,
       fastjet::JetDefinition const & jet_def,
       double const min_jet_pt
     ): incoming_{std::move(incoming)},
        outgoing_{std::move(outgoing)},
        decays_{std::move(decays)},
        parameters_{std::move(parameters)},
        cs_{ to_PseudoJet( filter_partons(outgoing_) ), jet_def },
        min_jet_pt_{min_jet_pt}
     {
       jets_ = sorted_by_rapidity(cs_.inclusive_jets(min_jet_pt_));
       assert(std::is_sorted(begin(outgoing_), end(outgoing_),
         rapidity_less{}));
       type_ = classify(*this);
     }
 
   namespace {
     //! check that Particles have a reasonable colour
     bool correct_colour(Particle const & part){
       ParticleID id{ part.type };
       if(!is_parton(id))
         return !part.colour;
 
       if(!part.colour)
         return false;
 
       Colour const & col{ *part.colour };
       if(is_quark(id))
         return col.first != 0 && col.second == 0;
       if(is_antiquark(id))
         return col.first == 0 && col.second != 0;
       assert(id==ParticleID::gluon);
       return col.first != 0 && col.second != 0 && col.first != col.second;
     }
 
     //! Connect parton to t-channel colour line & update the line
     //! returns false if connection not possible
     template<class OutIterator>
     bool try_connect_t(OutIterator const & it_part, Colour & line_colour){
       if( line_colour.first == it_part->colour->second ){
         line_colour.first = it_part->colour->first;
         return true;
       }
       if( line_colour.second == it_part->colour->first ){
         line_colour.second = it_part->colour->second;
         return true;
       }
       return false;
     }
 
     //! Connect parton to u-channel colour line & update the line
     //! returns false if connection not possible
     template<class OutIterator>
     bool try_connect_u(OutIterator & it_part, Colour & line_colour){
       auto it_next = std::next(it_part);
       if( try_connect_t(it_next, line_colour)
           && try_connect_t(it_part, line_colour)
       ){
         it_part=it_next;
         return true;
       }
       return false;
     }
   } // namespace anonymous
 
   bool Event::is_leading_colour() const {
     if( !correct_colour(incoming()[0]) || !correct_colour(incoming()[1]) )
       return false;
 
     Colour line_colour = *incoming()[0].colour;
     std::swap(line_colour.first, line_colour.second);
 
     // reasonable colour
     if(!std::all_of(outgoing().cbegin(), outgoing().cend(), correct_colour))
       return false;
 
     for(auto it_part = cbegin_partons(); it_part!=cend_partons(); ++it_part){
 
       switch (type()) {
       case event_type::FKL:
         if( !try_connect_t(it_part, line_colour) )
           return false;
         break;
       case event_type::unob:
       case event_type::qqxexb: {
         if( !try_connect_t(it_part, line_colour)
             // u-channel only allowed at impact factor
             && (std::distance(cbegin_partons(), it_part)!=0
                 || !try_connect_u(it_part, line_colour)))
           return false;
         break;
       }
       case event_type::unof:
       case event_type::qqxexf: {
         if( !try_connect_t(it_part, line_colour)
             // u-channel only allowed at impact factor
             && (std::distance(it_part, cend_partons())!=2
                 || !try_connect_u(it_part, line_colour)))
           return false;
         break;
       }
       case event_type::qqxmid:{
         auto it_next = std::next(it_part);
         if( !try_connect_t(it_part, line_colour)
             // u-channel only allowed at qqx/qxq pair
             && ( (   !(is_quark(*it_part) && is_antiquark(*it_next))
                   && !(is_antiquark(*it_part) && is_quark(*it_next)))
                 || !try_connect_u(it_part, line_colour))
           )
           return false;
         break;
       }
       default:
         throw std::logic_error{"unreachable"};
       }
 
       // no colour singlet exchange/disconnected diagram
       if(line_colour.first == line_colour.second)
         return false;
     }
 
     return (incoming()[1].colour->first == line_colour.first)
         && (incoming()[1].colour->second == line_colour.second);
   }
 
   namespace {
     //! connect incoming Particle to colour flow
     void connect_incoming(Particle & in, int & colour, int & anti_colour){
       in.colour = std::make_pair(anti_colour, colour);
       // gluon
       if(in.type == pid::gluon)
         return;
       if(in.type > 0){
         // quark
         assert(is_quark(in));
         in.colour->second = 0;
         colour*=-1;
         return;
       }
       // anti-quark
       assert(is_antiquark(in));
       in.colour->first = 0;
       anti_colour*=-1;
       return;
     }
 
     //! connect outgoing Particle to t-channel colour flow
     template<class OutIterator>
     void connect_tchannel(
         OutIterator & it_part, int & colour, int & anti_colour, RNG & ran
     ){
       assert(colour>0 || anti_colour>0);
       if(it_part->type == ParticleID::gluon){
         // gluon
         if(colour>0 && anti_colour>0){
           // on g line => connect to colour OR anti-colour (random)
           if(ran.flat() < 0.5){
             it_part->colour = std::make_pair(colour+2,colour);
             colour+=2;
           } else {
             it_part->colour = std::make_pair(anti_colour, anti_colour+2);
             anti_colour+=2;
           }
         } else if(colour > 0){
           // on q line => connect to available colour
             it_part->colour = std::make_pair(colour+2, colour);
             colour+=2;
         } else {
           assert(colour<0 && anti_colour>0);
           // on qx line => connect to available anti-colour
           it_part->colour = std::make_pair(anti_colour, anti_colour+2);
           anti_colour+=2;
         }
       } else if(is_quark(*it_part)) {
         // quark
         assert(anti_colour>0);
         if(colour>0){
           // on g line => connect and remove anti-colour
           it_part->colour = std::make_pair(anti_colour, 0);
           anti_colour+=2;
           anti_colour*=-1;
         } else {
           // on qx line => new colour
           colour*=-1;
           it_part->colour = std::make_pair(colour, 0);
         }
       } else if(is_antiquark(*it_part)) {
         // anti-quark
         assert(colour>0);
         if(anti_colour>0){
           // on g line => connect and remove colour
           it_part->colour = std::make_pair(0, colour);
           colour+=2;
           colour*=-1;
         } else {
           // on q line => new anti-colour
           anti_colour*=-1;
           it_part->colour = std::make_pair(0, anti_colour);
         }
       } else { // not a parton
         assert(!is_parton(*it_part));
         it_part->colour = {};
       }
     }
 
     //! connect to t- or u-channel colour flow
     template<class OutIterator>
     void connect_utchannel(
         OutIterator & it_part, int & colour, int & anti_colour, RNG & ran
     ){
       OutIterator it_first = it_part++;
       if(ran.flat()<.5) {// t-channel
         connect_tchannel(it_first, colour, anti_colour, ran);
         connect_tchannel(it_part, colour, anti_colour, ran);
       }
       else { // u-channel
         connect_tchannel(it_part, colour, anti_colour, ran);
         connect_tchannel(it_first, colour, anti_colour, ran);
       }
     }
   } // namespace anonymous
 
   bool Event::generate_colours(RNG & ran){
     // generate only for HEJ events
     if(!event_type::is_resummable(type()))
       return false;
     assert(std::is_sorted(
       begin(outgoing()), end(outgoing()), rapidity_less{}));
     assert(incoming()[0].pz() < incoming()[1].pz());
 
     // positive (anti-)colour -> can connect
     // negative (anti-)colour -> not available/used up by (anti-)quark
     int colour = COLOUR_OFFSET;
     int anti_colour = colour+1;
     // initialise first
     connect_incoming(incoming_[0], colour, anti_colour);
 
     // reset outgoing colours
     std::for_each(outgoing_.begin(), outgoing_.end(),
       [](Particle & part){ part.colour = {};});
 
     for(auto it_part = begin_partons(); it_part!=end_partons(); ++it_part){
         switch (type()) {
         // subleading can connect to t- or u-channel
         case event_type::unob:
         case event_type::qqxexb: {
           if( std::distance(begin_partons(), it_part)==0)
             connect_utchannel(it_part, colour, anti_colour, ran);
           else
             connect_tchannel(it_part, colour, anti_colour, ran);
           break;
         }
         case event_type::unof:
         case event_type::qqxexf: {
           if( std::distance(it_part, end_partons())==2)
             connect_utchannel(it_part, colour, anti_colour, ran);
           else
             connect_tchannel(it_part, colour, anti_colour, ran);
           break;
         }
         case event_type::qqxmid:{
           auto it_next = std::next(it_part);
           if( std::distance(begin_partons(), it_part)>0
               && std::distance(it_part, end_partons())>2
               && ( (is_quark(*it_part) && is_antiquark(*it_next))
                 || (is_antiquark(*it_part) && is_quark(*it_next)) )
           )
             connect_utchannel(it_part, colour, anti_colour, ran);
           else
             connect_tchannel(it_part, colour, anti_colour, ran);
           break;
         }
         default: // rest has to be t-channel
           connect_tchannel(it_part, colour, anti_colour, ran);
         }
     }
     // Connect last
     connect_incoming(incoming_[1], anti_colour, colour);
     assert(is_leading_colour());
     return true;
   } // generate_colours
 
   namespace {
     bool valid_parton(
       std::vector<fastjet::PseudoJet> const & jets,
       Particle const & parton, int const idx,
       double const max_ext_soft_pt_fraction, double const min_extparton_pt
     ){
       // TODO code overlap with PhaseSpacePoint::pass_extremal_cuts
       if(min_extparton_pt > parton.pt()) return false;
       if(idx<0) return false;
       assert(static_cast<int>(jets.size())>=idx);
       auto const & jet{ jets[idx] };
       if( (parton.p - jet).pt()/jet.pt() > max_ext_soft_pt_fraction)
         return false;
       return true;
     }
   }
 
   // this should work with multiple types
   bool Event::valid_hej_state(double const max_frac,
                               double const min_pt
   ) const {
     using namespace event_type;
     if(!is_resummable(type()))
       return false;
 
     auto const & jet_idx{ particle_jet_indices() };
     auto idx_begin{ jet_idx.cbegin() };
     auto idx_end{  jet_idx.crbegin() };
 
     auto part_begin{ cbegin_partons() };
     auto part_end{  crbegin_partons() };
 
     // always seperate extremal jets
     if( !valid_parton(jets(), *part_begin, *idx_begin, max_frac, min_pt) )
       return false;
     ++part_begin;
     ++idx_begin;
     if( !valid_parton(jets(), *part_end,   *idx_end,   max_frac, min_pt) )
       return false;
     ++part_end;
     ++idx_end;
 
     // unob -> second parton in own jet
     if( type() & (unob | qqxexb) ){
       if( !valid_parton(jets(), *part_begin, *idx_begin, max_frac, min_pt) )
         return false;
       ++part_begin;
       ++idx_begin;
     }
 
     if( type() & (unof | qqxexf) ){
       if( !valid_parton(jets(), *part_end,   *idx_end,   max_frac, min_pt) )
         return false;
       ++part_end;
       // ++idx_end;
     }
 
     if( type() & qqxmid ){
       // find qqx pair
       auto begin_qqx{ std::find_if( part_begin, part_end.base(),
         [](Particle const & part) -> bool {
           return part.type != ParticleID::gluon;
         }
       )};
       assert(begin_qqx != part_end.base());
       long int qqx_pos{ std::distance(part_begin, begin_qqx) };
       assert(qqx_pos >= 0);
       idx_begin+=qqx_pos;
       if( !( valid_parton(jets(),*begin_qqx,    *idx_begin,    max_frac,min_pt)
           && valid_parton(jets(),*(++begin_qqx),*(++idx_begin),max_frac,min_pt)
       ))
         return false;
     }
     return true;
   }
 
   Event::ConstPartonIterator Event::begin_partons() const {
     return cbegin_partons();
   }
   Event::ConstPartonIterator Event::cbegin_partons() const {
     return boost::make_filter_iterator(
         static_cast<bool (*)(Particle const &)>(is_parton),
         cbegin(outgoing()),
         cend(outgoing())
     );
   }
 
   Event::ConstPartonIterator Event::end_partons() const {
     return cend_partons();
   }
   Event::ConstPartonIterator Event::cend_partons() const {
     return boost::make_filter_iterator(
         static_cast<bool (*)(Particle const &)>(is_parton),
         cend(outgoing()),
         cend(outgoing())
     );
   }
 
   Event::ConstReversePartonIterator Event::rbegin_partons() const {
     return crbegin_partons();
   }
   Event::ConstReversePartonIterator Event::crbegin_partons() const {
     return std::reverse_iterator<ConstPartonIterator>( cend_partons() );
   }
 
   Event::ConstReversePartonIterator Event::rend_partons() const {
     return crend_partons();
   }
   Event::ConstReversePartonIterator Event::crend_partons() const {
     return std::reverse_iterator<ConstPartonIterator>( cbegin_partons() );
   }
 
   Event::PartonIterator Event::begin_partons() {
     return boost::make_filter_iterator(
         static_cast<bool (*)(Particle const &)>(is_parton),
         begin(outgoing_),
         end(outgoing_)
     );
   }
 
   Event::PartonIterator Event::end_partons() {
     return boost::make_filter_iterator(
         static_cast<bool (*)(Particle const &)>(is_parton),
         end(outgoing_),
         end(outgoing_)
     );
   }
 
   Event::ReversePartonIterator Event::rbegin_partons() {
     return std::reverse_iterator<PartonIterator>( end_partons() );
   }
 
   Event::ReversePartonIterator Event::rend_partons() {
     return std::reverse_iterator<PartonIterator>( begin_partons() );
   }
 
   namespace {
     void print_momentum(std::ostream & os, fastjet::PseudoJet const & part){
     const std::streamsize orig_prec = os.precision();
       os <<std::scientific<<std::setprecision(6) << "["
         <<std::setw(13)<<std::right<< part.px() << ", "
         <<std::setw(13)<<std::right<< part.py() << ", "
         <<std::setw(13)<<std::right<< part.pz() << ", "
         <<std::setw(13)<<std::right<< part.E() << "]"<< std::fixed;
       os.precision(orig_prec);
     }
 
     void print_colour(std::ostream & os, optional<Colour> const & col){
       if(!col)
         os << "(no color)"; // American spelling for better alignment
       else
         os << "(" <<std::setw(3)<<std::right<< col->first
            << ", " <<std::setw(3)<<std::right<< col->second << ")";
     }
   }
 
   std::ostream& operator<<(std::ostream & os, Event const & ev){
     const std::streamsize orig_prec = os.precision();
     os <<std::setprecision(4)<<std::fixed;
-    os << "########## " << event_type::name(ev.type()) << " ##########" << std::endl;
+    os << "########## " << name(ev.type()) << " ##########" << std::endl;
     os << "Incoming particles:\n";
     for(auto const & in: ev.incoming()){
       os <<std::setw(3)<< in.type << ": ";
       print_colour(os, in.colour);
       os << " ";
       print_momentum(os, in.p);
       os << std::endl;
     }
     os << "\nOutgoing particles: " << ev.outgoing().size() << "\n";
     for(auto const & out: ev.outgoing()){
       os <<std::setw(3)<< out.type << ": ";
       print_colour(os, out.colour);
       os << " ";
       print_momentum(os, out.p);
       os << " => rapidity="
         <<std::setw(7)<<std::right<< out.rapidity() << std::endl;
     }
     os << "\nForming Jets: " << ev.jets().size() << "\n";
     for(auto const & jet: ev.jets()){
       print_momentum(os, jet);
       os << " => rapidity="
         <<std::setw(7)<<std::right<< jet.rapidity() << std::endl;
     }
     if(ev.decays().size() > 0 ){
       os << "\nDecays: " << ev.decays().size() << "\n";
       for(auto const & decay: ev.decays()){
         os <<std::setw(3)<< ev.outgoing()[decay.first].type
           << " (" << decay.first << ") to:\n";
         for(auto const & out: decay.second){
           os <<"  "<<std::setw(3)<< out.type << ": ";
           print_momentum(os, out.p);
           os << " => rapidity="
             <<std::setw(7)<<std::right<< out.rapidity() << std::endl;
         }
       }
 
     }
     os << std::defaultfloat;
     os.precision(orig_prec);
     return os;
   }
 
   double shat(Event const & ev){
     return (ev.incoming()[0].p + ev.incoming()[1].p).m2();
   }
 
   LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP * heprup){
     LHEF::HEPEUP result;
     result.heprup = heprup;
     result.weights = {{event.central().weight, nullptr}};
     for(auto const & var: event.variations()){
       result.weights.emplace_back(var.weight, nullptr);
     }
     size_t num_particles = event.incoming().size() + event.outgoing().size();
     for(auto const & decay: event.decays()) num_particles += decay.second.size();
     result.NUP = num_particles;
     // the following entries are pretty much meaningless
     result.IDPRUP = event.type();  // event type
     result.AQEDUP = 1./128.;  // alpha_EW
     //result.AQCDUP = 0.118 // alpha_QCD
     // end meaningless part
     result.XWGTUP = event.central().weight;
     result.SCALUP = event.central().muf;
     result.scales.muf = event.central().muf;
     result.scales.mur = event.central().mur;
     result.scales.SCALUP = event.central().muf;
     result.pdfinfo.p1 = event.incoming().front().type;
     result.pdfinfo.p2 = event.incoming().back().type;
     result.pdfinfo.scale = event.central().muf;
 
     result.IDUP.reserve(num_particles);   // PID
     result.ISTUP.reserve(num_particles);  // status (in, out, decay)
     result.PUP.reserve(num_particles);    // momentum
     result.MOTHUP.reserve(num_particles); // index mother particle
     result.ICOLUP.reserve(num_particles); // colour
     // incoming
     std::array<Particle, 2> incoming{ event.incoming() };
     // First incoming should be positive pz according to LHE standard
     // (or at least most (everyone?) do it this way, and Pythia assumes it)
     if(incoming[0].pz() < incoming[1].pz())
       std::swap(incoming[0], incoming[1]);
     for(Particle const & in: incoming){
       result.IDUP.emplace_back(in.type);
       result.ISTUP.emplace_back(status_in);
       result.PUP.push_back({in.p[0], in.p[1], in.p[2], in.p[3], in.p.m()});
       result.MOTHUP.emplace_back(0, 0);
       assert(in.colour);
       result.ICOLUP.emplace_back(*in.colour);
     }
     // outgoing
     for(size_t i = 0; i < event.outgoing().size(); ++i){
       Particle const & out = event.outgoing()[i];
       result.IDUP.emplace_back(out.type);
       const int status = event.decays().count(i)?status_decayed:status_out;
       result.ISTUP.emplace_back(status);
       result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
       result.MOTHUP.emplace_back(1, 2);
       if(out.colour)
         result.ICOLUP.emplace_back(*out.colour);
       else{
         result.ICOLUP.emplace_back(std::make_pair(0,0));
       }
     }
     // decays
     for(auto const & decay: event.decays()){
       for(auto const & out: decay.second){
         result.IDUP.emplace_back(out.type);
         result.ISTUP.emplace_back(status_out);
         result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
         const size_t mother_idx = 1 + event.incoming().size() + decay.first;
         result.MOTHUP.emplace_back(mother_idx, mother_idx);
         result.ICOLUP.emplace_back(0,0);
       }
     }
 
     assert(result.ICOLUP.size() == num_particles);
     static constexpr double unknown_spin = 9.;     //per Les Houches accord
     result.VTIMUP = std::vector<double>(num_particles, unknown_spin);
     result.SPINUP = result.VTIMUP;
     return result;
   }
 
 }
diff --git a/t/test_classify.cc b/t/test_classify.cc
index 2098e21..d295be8 100644
--- a/t/test_classify.cc
+++ b/t/test_classify.cc
@@ -1,499 +1,499 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019-2020
  *  \copyright GPLv2 or later
  */
 #include "hej_test.hh"
 
 #include <array>
 #include <cstdlib>
 #include <iostream>
 #include <random>
 #include <string>
 #include <vector>
 
 #include "fastjet/JetDefinition.hh"
 
 #include "HEJ/Event.hh"
 #include "HEJ/event_types.hh"
 #include "HEJ/exceptions.hh"
 #include "HEJ/PDG_codes.hh"
 
 namespace {
   const fastjet::JetDefinition jet_def{fastjet::JetAlgorithm::antikt_algorithm, 0.4};
   const double min_jet_pt{30.};
   const std::vector<std::string> all_quarks{"-4","-1","1","2","3","4"};
   const std::vector<std::string> all_partons{"g","-2","-1","1","2","3","4"};
   const std::vector<std::string> all_bosons{"h", "Wp", "Wm"};
   const std::vector<std::string> all_gZ{"photon", "Z"};
   const std::vector<std::string> all_w{"W+", "W-"};
 
   static std::mt19937_64 ran{0};
 
   bool couple_quark(std::string const & boson, std::string & quark){
     if(std::abs(HEJ::to_ParticleID(boson)) == HEJ::ParticleID::Wp){
       auto qflav{ HEJ::to_ParticleID(quark) };
       if(!HEJ::is_anyquark(qflav)) return false;
       const int W_charge = HEJ::to_ParticleID(boson)>0?1:-1;
       if(W_charge*qflav < 0 && !(std::abs(qflav)%2)) return false; // not anti-down
       if(W_charge*qflav > 0 &&  (std::abs(qflav)%2)) return false; // not up
       quark=std::to_string(qflav-W_charge);
     }
     return true;
   }
 
   bool match_expectation( HEJ::event_type::EventType expected,
     std::array<std::string,2> const & in, std::vector<std::string> const & out,
       int const overwrite_boson = 0
   ){
     HEJ::Event ev{ parse_configuration(
                       in,out,overwrite_boson ).cluster(jet_def, min_jet_pt)};
     if(ev.type() != expected){
-      std::cerr << "Expected type " << HEJ::event_type::name(expected)
-                << " but found " << HEJ::event_type::name(ev.type()) << "\n" << ev;
+      std::cerr << "Expected type " << name(expected)
+                << " but found " << name(ev.type()) << "\n" << ev;
       auto jet_idx{ ev.particle_jet_indices() };
       std::cout << "Particle Jet indices: ";
       for(int const i: jet_idx)
         std::cout << i << " ";
       std::cout << std::endl;
       return false;
     }
     return true;
   }
 
   //! test FKL configurations
   //! if implemented==false : check processes that are not in HEJ yet
   bool check_fkl( bool const implemented=true ){
     using namespace HEJ;
     auto const type{ implemented?event_type::FKL:event_type::non_resummable };
     std::vector<std::string> bosons;
     if(implemented)
       bosons = all_bosons;
     else {
       bosons = all_gZ;
     }
     for(std::string const & first: all_partons)       // all quark flavours
       for(std::string const & last: all_partons){
         for(int njet=2; njet<=6; ++njet){             // all multiplicities
           if(njet==5) continue;
           std::array<std::string,2> base_in{first,last};
           std::vector<std::string> base_out(njet, "g");
           base_out.front() = first;
           base_out.back() = last;
           if(implemented && !match_expectation(type, base_in, base_out))
             return false;
           for(auto const & boson: bosons)         // any boson
             for(int pos=0; pos<=njet; ++pos){         // at any position
               auto in{base_in};
               auto out{base_out};
               // change quark flavours for W
               const bool couple_idx = std::uniform_int_distribution<int>{0,1}(ran);
               if(!couple_quark(boson, couple_idx?out.back():out.front()))
                 continue;
               out.insert(out.begin()+pos, boson);
               if(!match_expectation(type, in, out))
                 return false;
             }
         }
       }
     return true;
   }
 
   //! test unordered configurations
   //! if implemented==false : check processes that are not in HEJ yet
   bool check_uno( bool const implemented=true ){
     using namespace HEJ;
     auto const b{ implemented?event_type::unob:event_type::non_resummable };
     auto const f{ implemented?event_type::unof:event_type::non_resummable };
     std::vector<std::string> bosons;
     if(implemented)
       bosons = all_bosons;
     else {
       bosons = all_gZ;
     }
     for(std::string const & uno: all_quarks)          // all quark flavours
       for(std::string const & fkl: all_partons){
         for(int njet=3; njet<=6; ++njet){             // all multiplicities >2
           if(njet==5) continue;
           for(int i=0; i<2; ++i){                     // forward & backwards
             std::array<std::string,2> base_in;
             std::vector<std::string> base_out(njet, "g");
             const int uno_pos = i?1:(njet-2);
             const int fkl_pos = i?(njet-1):0;
             base_in[i?0:1] = uno;
             base_in[i?1:0] = fkl;
             base_out[uno_pos] = uno;
             base_out[fkl_pos] = fkl;
             auto expectation{ i?b:f };
             if( implemented
                 && !match_expectation(expectation, base_in, base_out) )
               return false;
             for(auto const & boson: bosons){      // any boson
               // at any position (higgs only inside FKL chain)
               int start = 0;
               int end = njet;
               if(to_ParticleID(boson) == pid::higgs){
                 start = i?(uno_pos+1):fkl_pos;
                 end = i?(fkl_pos+1):uno_pos;
               }
               for(int pos=start; pos<=end; ++pos){
                 auto in{base_in};
                 auto out{base_out};
                 // change quark flavours for W
                 const bool couple_idx = std::uniform_int_distribution<int>{0,1}(ran);
                 if(!couple_quark(boson, couple_idx?out[fkl_pos]:out[uno_pos]))
                   continue;
                 out.insert(out.begin()+pos, boson);
                 if(!match_expectation(expectation, in, out))
                   return false;
               }
             }
           }
         }
       }
     return true;
   }
 
   //! test extremal qqx configurations
   //! if implemented==false : check processes that are not in HEJ yet
   bool check_extremal_qqx( bool const implemented=true ){
     using namespace HEJ;
     auto const b{ implemented?event_type::qqxexb:event_type::non_resummable };
     auto const f{ implemented?event_type::qqxexf:event_type::non_resummable };
     std::vector<std::string> bosons;
     if(implemented)
       bosons = all_w;
     else {
       bosons = all_gZ;
       bosons.push_back("h");
     }
     for(std::string const & qqx: all_quarks)          // all quark flavours
       for(std::string const & fkl: all_partons){
         std::string const qqx2{ std::to_string(HEJ::to_ParticleID(qqx)*-1) };
         for(int njet=3; njet<=6; ++njet){             // all multiplicities >2
           if(njet==5) continue;
           for(int i=0; i<2; ++i){                     // forward & backwards
             std::array<std::string,2> base_in;
             std::vector<std::string> base_out(njet, "g");
             const int qqx_pos = i?0:(njet-2);
             const int fkl_pos = i?(njet-1):0;
             base_in[i?0:1] = "g";
             base_in[i?1:0] = fkl;
             base_out[fkl_pos]   = fkl;
             base_out[qqx_pos]   = qqx;
             base_out[qqx_pos+1] = qqx2;
             auto expectation{ i?b:f };
             if( implemented
                 && !match_expectation(expectation, base_in, base_out) )
               return false;
             for(auto const & boson: bosons){ // all bosons
               // at any position (higgs only inside FKL chain)
               int start = 0;
               int end = njet;
               if(to_ParticleID(boson) == pid::higgs){
                 start = i?(qqx_pos+2):fkl_pos;
                 end = i?(fkl_pos+1):qqx_pos;
               }
               for(int pos=start; pos<=end; ++pos){
                 auto in{base_in};
                 auto out{base_out};
                 // change quark flavours for W
                 const bool couple_idx = std::uniform_int_distribution<int>{0,1}(ran);
                 if(couple_idx || !couple_quark(boson, out[fkl_pos]) ){
                   // (randomly) try couple to FKL, else fall-back to qqx
                   if(!couple_quark(boson, out[qqx_pos]))
                     couple_quark(boson, out[qqx_pos+1]);
                 }
                 out.insert(out.begin()+pos, boson);
                 if(!match_expectation(expectation, in, out))
                   return false;
               }
             }
           }
         }
         // test allowed jet configurations
         if( implemented){
           if( !( match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -3)
               && match_expectation(b,{"g",fkl},{qqx,qqx2,"g","g","g","g",fkl}, -4)
               && match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -5)
               && match_expectation(b,{"g",fkl},{qqx,qqx2,"g","g","g","g",fkl}, -5)
               && match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -6)
               && match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -7)
               && match_expectation(b,{"g",fkl},{qqx,qqx2,"g","g","g","g",fkl}, -7)
               && match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -8)
               && match_expectation(b,{"g",fkl},{qqx,qqx2,"g","g","g","g",fkl}, -8)
               && match_expectation(b,{"g",fkl},{qqx,qqx2,"g","g","g","g",fkl}, -9)
               && match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -10)
               && match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -11)
               && match_expectation(b,{"g",fkl},{qqx,qqx2,"g","g","g","g",fkl}, -11)
               && match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -12)
               && match_expectation(b,{"g",fkl},{qqx,qqx2,"g","g","g","g",fkl}, -12)
             ))
             return false;
          if (fkl == "2") {
           if( !( match_expectation(f,{"2","g"},{"1","Wp","g","g","g",qqx,qqx2}, -3)
               && match_expectation(b,{"g","2"},{qqx,qqx2,"g","Wp","g","g","1"}, -4)
               && match_expectation(f,{"2","g"},{"1","Wp","g","g","g",qqx,qqx2}, -5)
               && match_expectation(b,{"g","2"},{qqx,qqx2,"g","Wp","g","g","1"}, -5)
               && match_expectation(f,{"2","g"},{"1","g","Wp","g","g",qqx,qqx2}, -6)
               && match_expectation(f,{"2","g"},{"1","g","g","g","Wp",qqx,qqx2}, -7)
               && match_expectation(b,{"g","2"},{qqx,qqx2,"g","g","g","Wp","1"}, -7)
               && match_expectation(f,{"2","g"},{"1","Wp","g","g","g",qqx,qqx2}, -8)
               && match_expectation(b,{"g","2"},{qqx,qqx2,"Wp","g","g","g","1"}, -8)
               && match_expectation(b,{"g","2"},{qqx,qqx2,"g","Wp","g","g","1"}, -9)
               && match_expectation(f,{"2","g"},{"1","g","g","g","Wp",qqx,qqx2}, -10)
               && match_expectation(f,{"2","g"},{"1","g","g","g","Wp",qqx,qqx2}, -11)
               && match_expectation(b,{"g","2"},{qqx,qqx2,"g","g","g","Wp","1"}, -11)
               && match_expectation(f,{"2","g"},{"1","g","g","g","Wp",qqx,qqx2}, -12)
               && match_expectation(b,{"g","2"},{qqx,qqx2,"g","Wp","g","g","1"}, -12)
             ))
             return false;
          }
         }
       }
     return true;
   }
 
   //! test central qqx configurations
   //! if implemented==false : check processes that are not in HEJ yet
   bool check_central_qqx(bool const implemented=true){
     using namespace HEJ;
     auto const t{ implemented?event_type::qqxmid:event_type::non_resummable };
     std::vector<std::string> bosons;
     if(implemented)
       bosons = all_w;
     else {
       bosons = all_gZ;
       bosons.push_back("h");
     }
     for(std::string const & qqx: all_quarks)        // all quark flavours
       for(std::string const & fkl1: all_partons)
         for(std::string const & fkl2: all_partons){
           std::string const qqx2{ std::to_string(HEJ::to_ParticleID(qqx)*-1) };
           for(int njet=4; njet<=6; ++njet){                 // all multiplicities >3
             if(njet==5) continue;
             for(int qqx_pos=1; qqx_pos<njet-2; ++qqx_pos){ // any qqx position
               std::array<std::string,2> base_in;
               std::vector<std::string> base_out(njet, "g");
               base_in[0] = fkl1;
               base_in[1] = fkl2;
               base_out.front()    = fkl1;
               base_out.back()     = fkl2;
               base_out[qqx_pos]   = qqx;
               base_out[qqx_pos+1] = qqx2;
               if( implemented && !match_expectation(t, base_in, base_out) )
                 return false;
               for(auto const & boson: bosons)         // any boson
                 for(int pos=0; pos<=njet; ++pos){         // at any position
                   if( to_ParticleID(boson) == pid::higgs
                     && (pos==qqx_pos || pos==qqx_pos+1) )
                     continue;
                   auto in{base_in};
                   auto out{base_out};
                   // change quark flavours for W
                   const int couple_idx{ std::uniform_int_distribution<int>{0,2}(ran) };
                   // (randomly) try couple to FKL, else fall-back to qqx
                   if( couple_idx == 0 && couple_quark(boson, out.front()) ){}
                   else if( couple_idx == 1 && couple_quark(boson, out.back()) ){}
                   else {
                     if(!couple_quark(boson, out[qqx_pos]))
                       couple_quark(boson, out[qqx_pos+1]);
                   }
                   out.insert(out.begin()+pos, boson);
                   if(!match_expectation(t, in, out))
                     return false;
                 }
             }
           }
         }
     return true;
   }
 
   // this checks a (non excessive) list of non-resummable states
   bool check_non_resummable(){
     auto type{ HEJ::event_type::non_resummable};
     return
       // 2j - crossing lines
          match_expectation(type, {"g","2"},  {"2","g"})
       && match_expectation(type, {"-1","g"}, {"g","-1"})
       && match_expectation(type, {"1","-1"}, {"-1","1"})
       && match_expectation(type, {"g","2"},  {"2","g","h"})
       && match_expectation(type, {"1","2"},  {"2","h","1"})
       && match_expectation(type, {"1","-1"}, {"h","-1","1"})
       && match_expectation(type, {"g","2"},  {"Wp","1","g"})
       && match_expectation(type, {"1","-1"}, {"-2","Wp","1"})
       && match_expectation(type, {"4","g"},  {"g","3","Wp"})
       && match_expectation(type, {"1","-2"}, {"-1","Wm","1"})
       && match_expectation(type, {"g","3"},  {"4","g","Wm"})
       && match_expectation(type, {"1","3"},  {"Wm","4","1"})
       // 2j - qqx
       && match_expectation(type, {"g","g"},  {"1","-1"})
       && match_expectation(type, {"g","g"},  {"-2","2","h"})
       && match_expectation(type, {"g","g"},  {"-4","Wp","3"})
       && match_expectation(type, {"g","g"},  {"Wm","-1","2"})
       // 3j - crossing lines
       && match_expectation(type, {"g","4"},  {"4","g","g"})
       && match_expectation(type, {"-1","g"}, {"g","g","-1"})
       && match_expectation(type, {"1","3"},  {"3","g","1"})
       && match_expectation(type, {"-2","2"}, {"2","g","-2","h"})
       && match_expectation(type, {"-3","g"}, {"g","g","Wp","-4"})
       && match_expectation(type, {"1","-2"}, {"Wm","-1","g","1"})
       && match_expectation(type, {"-1","g"}, {"1","-1","-1"})
       // higgs inside uno
       && match_expectation(type, {"-1","g"}, {"g","h","-1","g"})
       && match_expectation(type, {"-1","1"}, {"g","h","-1","1"})
       && match_expectation(type, {"g","2"},  {"g","2","h","g"})
       && match_expectation(type, {"-1","1"}, {"-1","1","h","g"})
       // higgs outside uno
       && match_expectation(type, {"-1","g"}, {"h","g","-1","g"})
       && match_expectation(type, {"-1","1"}, {"-1","1","g","h"})
       // higgs inside qqx
       && match_expectation(type, {"g","g"}, {"-1","h","1","g","g"})
       && match_expectation(type, {"g","g"}, {"g","-1","h","1","g"})
       && match_expectation(type, {"g","g"}, {"g","g","2","h","-2"})
       // higgs outside qqx
       && match_expectation(type, {"g","g"}, {"h","-1","1","g","g"})
       && match_expectation(type, {"g","g"}, {"g","g","2","-2","h"})
       // 4j - two uno
       && match_expectation(type, {"-2","2"}, {"g","-2","2","g"})
       && match_expectation(type, {"1","3"},  {"g","1","h","3","g"})
       && match_expectation(type, {"1","2"},  {"g","1","3","Wp","g"})
       && match_expectation(type, {"1","-2"}, {"g","Wm","1","-1","g"})
       // 4j - two gluon outside
       && match_expectation(type, {"g","4"},  {"g","4","g","g"})
       && match_expectation(type, {"1","3"},  {"1","3","h","g","g"})
       && match_expectation(type, {"1","2"},  {"1","3","g","Wp","g"})
       && match_expectation(type, {"1","-2"}, {"1","Wm","-1","g","g"})
       && match_expectation(type, {"-1","g"}, {"g","g","-1","g"})
       && match_expectation(type, {"1","3"},  {"g","g","1","3","h"})
       && match_expectation(type, {"1","2"},  {"g","g","1","Wp","3"})
       && match_expectation(type, {"1","-2"}, {"Wm","g","g","1","-1"})
       // 4j - ggx+uno
       && match_expectation(type, {"g","4"},  {"1","-1","4","g"})
       && match_expectation(type, {"2","g"},  {"g","2","-3","3"})
       && match_expectation(type, {"g","4"},  {"1","-1","h","4","g"})
       && match_expectation(type, {"2","g"},  {"g","2","-3","3","h"})
       && match_expectation(type, {"g","4"},  {"Wp","1","-1","3","g"})
       && match_expectation(type, {"2","g"},  {"g","2","-4","Wp","3"})
       && match_expectation(type, {"g","4"},  {"2","Wm","-1","4","g"})
       && match_expectation(type, {"2","g"},  {"g","2","Wp","-3","4"})
       // 3j - crossing+uno
       && match_expectation(type, {"1","4"},  {"g","4","1"})
       && match_expectation(type, {"1","4"},  {"4","1","g"})
       && match_expectation(type, {"1","4"},  {"g","h","4","1"})
       && match_expectation(type, {"-1","-3"},{"Wm","g","-4","-1"})
       && match_expectation(type, {"1","4"},  {"3","1","Wp","g"})
       && match_expectation(type, {"1","4"},  {"3","1","g","h"})
       // 3j - crossing+qqx
       && match_expectation(type, {"1","g"},  {"-1","1","g","1"})
       && match_expectation(type, {"1","g"},  {"-1","1","1","g"})
       && match_expectation(type, {"g","1"},  {"1","g","1","-1"})
       && match_expectation(type, {"g","1"},  {"g","1","1","-1"})
       && match_expectation(type, {"1","g"},  {"2","-2","g","1"})
       && match_expectation(type, {"1","g"},  {"2","-2","1","g"})
       && match_expectation(type, {"g","1"},  {"1","g","-2","2"})
       && match_expectation(type, {"g","1"},  {"g","1","-2","2"})
       && match_expectation(type, {"1","g"},  {"-1","1","h","g","1"})
       && match_expectation(type, {"1","g"},  {"-1","h","1","1","g"})
       && match_expectation(type, {"g","1"},  {"1","g","1","h","-1"})
       && match_expectation(type, {"g","1"},  {"h","g","1","1","-1"})
       && match_expectation(type, {"1","g"},  {"2","-2","1","g","h"})
       && match_expectation(type, {"g","1"},  {"g","h","1","-2","2"})
       && match_expectation(type, {"1","g"},  {"Wp","3","-4","g","1"})
       && match_expectation(type, {"3","g"},  {"-2","Wm","1","3","g"})
       && match_expectation(type, {"g","1"},  {"1","g","Wm","-3","4"})
       && match_expectation(type, {"g","-3"},  {"g","-3","-1","Wp","2"})
       // 4j- gluon in qqx
       && match_expectation(type, {"g","1"},  {"1","g","-1","1"})
       && match_expectation(type, {"1","g"},  {"1","-1","g","1"})
       && match_expectation(type, {"g","1"},  {"1","g","Wm","-2","1"})
       && match_expectation(type, {"2","g"},  {"2","-2","g","Wp","1"})
       && match_expectation(type, {"g","g"},  {"Wp","3","g","-4","g"})
       && match_expectation(type, {"1","g"},  {"1","h","-1","g","1"})
       // 6j - two qqx
       && match_expectation(type, {"g","g"},  {"1","-1","g","g","1","-1"})
       && match_expectation(type, {"g","g"},  {"1","-1","g","1","-1","g"})
       && match_expectation(type, {"g","g"},  {"g","1","-1","g","1","-1"})
       && match_expectation(type, {"g","g"},  {"g","1","-1","1","-1","g"})
       && match_expectation(type, {"g","g"},  {"g","1","1","-1","-1","g"})
       && match_expectation(type, {"g","g"},  {"h","1","-1","g","g","1","-1"})
       && match_expectation(type, {"g","g"},  {"1","Wp","-2","g","1","-1","g"})
       && match_expectation(type, {"g","g"},  {"g","1","Wp","-1","g","1","-2"})
       && match_expectation(type, {"g","g"},  {"g","1","-1","Wm","2","-1","g"})
       && match_expectation(type, {"g","g"},  {"g","1","2","-1","Wm","-1","g"})
       // random stuff (can be non-physical)
       && match_expectation(type, {"g","g"},  {"1","-2","2","-1"}) // != 2 qqx
       && match_expectation(type, {"g","g"},  {"1","-2","2","g"})  // could be qqx
       && match_expectation(type, {"e+","e-"},{"1","-1"})          // bad initial state
       && match_expectation(type, {"1","e-"}, {"g","1","Wm"})      // bad initial state
       && match_expectation(type, {"h","g"},  {"g","g"})           // bad initial state
       && match_expectation(type, {"-1","g"}, {"-1","1","1"})      // bad qqx
       && match_expectation(type, {"-1","g"}, {"1","1","-1"})      // crossing in bad qqx
       && match_expectation(type, {"-1","g"}, {"-2","1","1","Wp"}) // bad qqx
       && match_expectation(type, {"1","2"},  {"1","-1","g","g","g","2"})  // bad qqx
       && match_expectation(type, {"1","2"},  {"1","-1","-2","g","g","2"}) // gluon in bad qqx
       && match_expectation(type, {"g","g"},  {"-1","2","g","g"}) // wrong back qqx
       && match_expectation(type, {"g","g"},  {"g","g","2","1"}) // wrong forward qqx
       && match_expectation(type, {"g","g"},  {"g","-2","1","g"}) // wrong central qqx
       && match_expectation(type, {"1","g"},  {"1","-2","g","g","Wp"}) // extra quark
       && match_expectation(type, {"g","1"},  {"g","g","-2","1","Wp"}) // extra quark
       && match_expectation(type, {"g","1"},  {"g","g","Wp","-2","1"}) // extra quark
       && match_expectation(type, {"g","1"},  {"g","-2","1","g","Wp"}) // extra quark
       && match_expectation(type, {"g","g"},  {"g","g","g","-2","1","-1","Wp"}) // extra quark
       && match_expectation(type, {"1","g"},  {"g","Wp","1","-2","g"}) // extra quark
       && match_expectation(type, {"g","g"},  {"1","-1","-2","g","g","g","Wp"}) // extra quark
       ;
   }
 
   // Two boson states, that are currently not implemented
   bool check_bad_FS(){
     auto type{ HEJ::event_type::bad_final_state};
     return
          match_expectation(type, {"g","g"},  {"g","h","h","g"})
       && match_expectation(type, {"g","g"},  {"h","g","h","g"})
       && match_expectation(type, {"g","-1"}, {"g","h","Wp","-2"})
       && match_expectation(type, {"-3","-1"},{"-4","g","Wp","Wp","-2"})
       && match_expectation(type, {"-4","-1"},{"-3","Wp","g","Wm","-2"})
       && match_expectation(type, {"-4","-1"},{"g","-3","Wp","Wm","-2"})
       && match_expectation(type, {"-4","-1"},{"-4","g","11","-11","-2"})
       && match_expectation(type, {"-4","-1"},{"-4","g","-13","g","-2"})
       && match_expectation(type, {"3","-2"}, {"Wp","3","Wm","g","g","g","-2"}, -13)
     ;
   }
 
   // not 2 jets
   bool check_not_2_jets(){
     auto type{ HEJ::event_type::no_2_jets};
     return
          match_expectation(type, {"g","g"},  {})
       && match_expectation(type, {"1","-1"}, {})
       && match_expectation(type, {"g","-1"}, {"-1"})
       && match_expectation(type, {"g","g"},  {"g"})
     ;
   }
 
   // not implemented processes
   bool check_not_implemented(){
     return check_fkl(false)
         && check_uno(false)
         && check_extremal_qqx(false)
         && check_central_qqx(false);
   }
 }
 
 int main() {
   // tests for "no false negatives"
   // i.e. all HEJ-configurations get classified correctly
   if(!check_fkl()) return EXIT_FAILURE;
   if(!check_uno()) return EXIT_FAILURE;
   if(!check_extremal_qqx()) return EXIT_FAILURE;
   if(!check_central_qqx()) return EXIT_FAILURE;
   // test for "no false positive"
   // i.e. non-resummable gives non-resummable
   if(!check_non_resummable()) return EXIT_FAILURE;
   if(!check_bad_FS()) return EXIT_FAILURE;
   if(!check_not_2_jets()) return EXIT_FAILURE;
   if(!check_not_implemented()) return EXIT_FAILURE;
 
   return EXIT_SUCCESS;
 }
diff --git a/t/test_classify_ref.cc b/t/test_classify_ref.cc
index 6e08432..fd11a46 100644
--- a/t/test_classify_ref.cc
+++ b/t/test_classify_ref.cc
@@ -1,78 +1,77 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019-2020
  *  \copyright GPLv2 or later
  */
 #include "hej_test.hh"
 
 #include <cstdlib>
 #include <fstream>
 #include <iostream>
 #include <string>
 
 #include <fastjet/JetDefinition.hh>
 
 #include "HEJ/event_types.hh"
 #include "HEJ/Event.hh"
 #include "HEJ/EventReader.hh"
 
 namespace {
   // this is deliberately chosen bigger than in the generation,
   // to cluster multiple partons in one jet
   constexpr double min_jet_pt = 40.;
   const fastjet::JetDefinition jet_def{fastjet::kt_algorithm, 0.6};
 }
 
 int main(int argn, char** argv) {
   if(argn != 3 && argn != 4){
     std::cerr << "Usage: " << argv[0]
       << " reference_classification input_file.lhe\n";
     return EXIT_FAILURE;
   }
   bool OUTPUT_MODE = false;
   if(argn == 4 && std::string("OUTPUT")==std::string(argv[3]))
       OUTPUT_MODE = true;
 
   std::fstream ref_file;
   if ( OUTPUT_MODE ) {
     std::cout << "_______________________USING OUTPUT MODE!_______________________" << std::endl;
     ref_file.open(argv[1], std::fstream::out);
   } else {
     ref_file.open(argv[1], std::fstream::in);
   }
 
   auto reader{ HEJ::make_reader(argv[2]) };
 
   std::size_t nevent{0};
   while(reader->read_event()){
     ++nevent;
     // We don't need to test forever, the first "few" are enough
     if(nevent>4000) break;
     HEJ::Event::EventData data{ reader->hepeup() };
     shuffle_particles(data);
     const HEJ::Event ev{
       data.cluster(
         jet_def, min_jet_pt
       )
     };
     if ( OUTPUT_MODE ) {
       ref_file << ev.type() << std::endl;
     } else {
       std::string line;
       if(!std::getline(ref_file,line)) break;
       const auto expected{static_cast<HEJ::event_type::EventType>(std::stoi(line))};
 
       if(ev.type() != expected){
-        using HEJ::event_type::name;
         std::cerr << "wrong classification of event " << nevent << ":\n" << ev
                   << "classified as " << name(ev.type())
                   << ", expected " << name(expected) << "\nJet indices: ";
         for(auto const & idx: ev.particle_jet_indices())
           std::cerr << idx << " ";
         std::cerr << "\n";
         return EXIT_FAILURE;
       }
     }
   }
   return EXIT_SUCCESS;
 }