diff --git a/FixedOrderGen/t/W_nj_classify.cc b/FixedOrderGen/t/W_nj_classify.cc index 906d6f7..db1609e 100644 --- a/FixedOrderGen/t/W_nj_classify.cc +++ b/FixedOrderGen/t/W_nj_classify.cc @@ -1,210 +1,207 @@ /** * \brief check that the PSP generates the all W+jet subleading processes * * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #ifdef NDEBUG #undef NDEBUG #endif #include <algorithm> #include <cmath> #include <cstdlib> #include <iomanip> #include <iostream> #include <string> #include <unordered_map> #include <vector> #include "HEJ/Event.hh" #include "HEJ/event_types.hh" #include "HEJ/EWConstants.hh" #include "HEJ/exceptions.hh" #include "HEJ/Mixmax.hh" #include "HEJ/PDF.hh" #include "HEJ/PDG_codes.hh" #include "fastjet/JetDefinition.hh" #include "Decay.hh" #include "JetParameters.hh" #include "PhaseSpacePoint.hh" #include "Process.hh" #include "Status.hh" #include "Subleading.hh" namespace { using namespace HEJFOG; using namespace HEJ; void print_psp(PhaseSpacePoint const & psp){ std::cerr << "Process:\n" << psp.incoming()[0].type << " + "<< psp.incoming()[1].type << " -> "; for(auto const & out: psp.outgoing()){ std::cerr << out.type << " "; } std::cerr << "\n"; } void bail_out(PhaseSpacePoint const & psp, std::string msg){ print_psp(psp); throw std::logic_error{msg}; } } int main(){ constexpr std::size_t n_psp_base = 10375; const JetParameters jet_para{ fastjet::JetDefinition(fastjet::JetAlgorithm::antikt_algorithm, 0.4), 30, 5, 30}; PDF pdf(11000, pid::proton, pid::proton); constexpr double E_cms = 13000.; constexpr double subl_change = 0.8; const ParticlesDecayMap boson_decays{ {pid::Wp, {Decay{ {pid::e_bar, pid::nu_e}, 1.} }}, {pid::Wm, {Decay{ {pid::e, pid::nu_e_bar}, 1.} }} }; const EWConstants ew_constants{246.2196508, ParticleProperties{80.385, 2.085}, ParticleProperties{91.187, 2.495}, ParticleProperties{125, 0.004165} }; HEJ::Mixmax ran{}; auto subl_channels = Subleading::all; std::vector<event_type::EventType> allowed_types{event_type::FKL, event_type::unob, event_type::unof, event_type::qqxexb, event_type::qqxexf}; std::cout << "Wp3j" << std::endl; // Wp3j Process proc {{pid::proton,pid::proton}, 3, pid::Wp, {}}; std::size_t n_psp = n_psp_base; #if !defined(__clang__) && defined(__GNUC__) && (__GNUC__ < 6) // gcc version < 6 explicitly needs hash function for enum // see https://gcc.gnu.org/bugzilla/show_bug.cgi?id=60970 std::unordered_map<event_type::EventType, std::size_t, std::hash<std::size_t>> type_counter; #else std::unordered_map<event_type::EventType, std::size_t> type_counter; #endif for( std::size_t i = 0; i<n_psp; ++i){ const PhaseSpacePoint psp{proc,jet_para,pdf,E_cms, subl_change,subl_channels, boson_decays, ew_constants, ran}; if(psp.status()==good){ const Event ev{ to_EventData(psp).cluster(jet_para.def, jet_para.min_pt) }; ++type_counter[ev.type()]; if( std::find(allowed_types.cbegin(), allowed_types.cend(), ev.type()) == allowed_types.cend()) { - bail_out(psp, "Found not allowed event of type " - +std::string(event_type::name(ev.type()))); + bail_out(psp, "Found not allowed event of type " + name(ev.type()) ); } } else { // bad process -> try again ++n_psp; } } std::cout << "Wp+3j: Took " << n_psp << " to generate " << n_psp_base << " successfully PSP (" << 1.*n_psp/n_psp_base << " trials/PSP)" << std::endl; std::cout << "States by classification:\n"; for(auto const & entry: type_counter){ const double fraction = static_cast<double>(entry.second)/n_psp_base; const int percent = std::round(100*fraction); std::cout << std::left << std::setw(25) - << (event_type::name(entry.first) + std::string(":")) + << (name(entry.first) + std::string(":")) << entry.second << " (" << percent << "%)\n"; } for(auto const & t: allowed_types){ if(type_counter[t] < 0.05 * n_psp_base){ - std::cerr << "Less than 5% of the events are of type " << event_type::name(t) << std::endl; + std::cerr << "Less than 5% of the events are of type " << name(t) << std::endl; return EXIT_FAILURE; } } // Wm3j - only uno proc = Process{{pid::proton,pid::proton}, 3, pid::Wm, {}}; n_psp = n_psp_base; subl_channels = Subleading::uno; allowed_types = {event_type::FKL, event_type::unob, event_type::unof}; type_counter.clear(); for( std::size_t i = 0; i<n_psp; ++i){ const PhaseSpacePoint psp{proc,jet_para,pdf,E_cms, subl_change,subl_channels, boson_decays, ew_constants, ran}; if(psp.status()==good){ const Event ev{ to_EventData(psp).cluster(jet_para.def, jet_para.min_pt) }; ++type_counter[ev.type()]; if( std::find(allowed_types.cbegin(), allowed_types.cend(), ev.type()) == allowed_types.cend()) { - bail_out(psp, "Found not allowed event of type " - +std::string(event_type::name(ev.type()))); + bail_out(psp, "Found not allowed event of type " + name(ev.type()) ); } } else { // bad process -> try again ++n_psp; } } std::cout << "Wm+3j (only uno): Took " << n_psp << " to generate " << n_psp_base << " successfully PSP (" << 1.*n_psp/n_psp_base << " trials/PSP)" << std::endl; std::cout << "States by classification:\n"; for(auto const & entry: type_counter){ const double fraction = static_cast<double>(entry.second)/n_psp_base; const int percent = std::round(100*fraction); std::cout << std::left << std::setw(25) - << (event_type::name(entry.first) + std::string(":")) + << (name(entry.first) + std::string(":")) << entry.second << " (" << percent << "%)\n"; } for(auto const & t: allowed_types){ if(type_counter[t] < 0.05 * n_psp_base){ - std::cerr << "Less than 5% of the events are of type " << event_type::name(t) << std::endl; + std::cerr << "Less than 5% of the events are of type " << name(t) << std::endl; return EXIT_FAILURE; } } // Wm4j proc = Process{{pid::proton,pid::proton}, 4, pid::Wm, {}}; n_psp = n_psp_base; subl_channels = Subleading::all; allowed_types = {event_type::FKL, event_type::unob, event_type::unof, event_type::qqxexb, event_type::qqxexf, event_type::qqxmid}; type_counter.clear(); for( std::size_t i = 0; i<n_psp; ++i){ const PhaseSpacePoint psp{proc,jet_para,pdf,E_cms, subl_change,subl_channels, boson_decays, ew_constants, ran}; if(psp.status()==good){ const Event ev{ to_EventData(psp).cluster(jet_para.def, jet_para.min_pt)}; ++type_counter[ev.type()]; if( std::find(allowed_types.cbegin(), allowed_types.cend(), ev.type()) == allowed_types.cend()) { - bail_out(psp, "Found not allowed event of type " - +std::string(event_type::name(ev.type()))); + bail_out(psp, "Found not allowed event of type " + name(ev.type()) ); } } else { // bad process -> try again ++n_psp; } } std::cout << "Wm+4j: Took " << n_psp << " to generate " << n_psp_base << " successfully PSP (" << 1.*n_psp/n_psp_base << " trials/PSP)" << std::endl; std::cout << "States by classification:\n"; for(auto const & entry: type_counter){ const double fraction = static_cast<double>(entry.second)/n_psp_base; const int percent = std::round(100*fraction); std::cout << std::left << std::setw(25) - << (event_type::name(entry.first) + std::string(":")) + << (name(entry.first) + std::string(":")) << entry.second << " (" << percent << "%)\n"; } for(auto const & t: allowed_types){ if(type_counter[t] < 0.03 * n_psp_base){ - std::cerr << "Less than 3% of the events are of type " << event_type::name(t) << std::endl; + std::cerr << "Less than 3% of the events are of type " << name(t) << std::endl; return EXIT_FAILURE; } } std::cout << "All processes passed." << std::endl; return EXIT_SUCCESS; } diff --git a/src/CrossSectionAccumulator.cc b/src/CrossSectionAccumulator.cc index 4855f4b..cb3811d 100644 --- a/src/CrossSectionAccumulator.cc +++ b/src/CrossSectionAccumulator.cc @@ -1,67 +1,67 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #include "HEJ/CrossSectionAccumulator.hh" #include <iomanip> #include <cmath> #include <string> #include <utility> #include "HEJ/Event.hh" #include "HEJ/Parameters.hh" namespace HEJ { void CrossSectionAccumulator::fill( double const wt, double const err, event_type::EventType const type ){ total_.value += wt; total_.error += err; auto & entry = xs_[type]; entry.value += wt; entry.error += err; } void CrossSectionAccumulator::fill( double const wt, event_type::EventType const type ){ fill(wt, wt*wt, type); } void CrossSectionAccumulator::fill(Event const & ev){ fill(ev.central().weight, ev.type()); } void CrossSectionAccumulator::fill_correlated( double const sum, double const sum2, event_type::EventType const type ){ fill(sum, sum*sum+sum2, type); } void CrossSectionAccumulator::fill_correlated(std::vector<Event> const & evts){ if(evts.empty()) return; fill_correlated(evts.cbegin(), evts.cend()); } std::ostream& operator<<(std::ostream& os, const CrossSectionAccumulator& xs){ const std::streamsize orig_prec = os.precision(); os << std::scientific << std::setprecision(3) << " " << std::left << std::setw(25) << "Cross section: " << xs.total().value << " +- " << std::sqrt(xs.total().error) << " (pb)\n"; for(auto const & xs_type: xs) { os << " " << std::left << std::scientific <<std::setw(25) - << (event_type::name(xs_type.first) + std::string(": ")); + << (name(xs_type.first) + std::string(": ")); os << xs_type.second.value << " +- " << std::sqrt(xs_type.second.error) << " (pb) " << std::fixed << std::setprecision(3) << "[" <<std::setw(6) <<std::right << ((xs_type.second.value)/xs.total().value)*100 << "%]" << std::endl; } os << std::defaultfloat; os.precision(orig_prec); return os; } } diff --git a/src/Event.cc b/src/Event.cc index 9770986..f9ef5f8 100644 --- a/src/Event.cc +++ b/src/Event.cc @@ -1,1138 +1,1138 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #include "HEJ/Event.hh" #include <algorithm> #include <cassert> #include <cstdlib> #include <iomanip> #include <iterator> #include <memory> #include <numeric> #include <ostream> #include <string> #include <utility> #include "fastjet/ClusterSequence.hh" #include "fastjet/JetDefinition.hh" #include "fastjet/PseudoJet.hh" #include "LHEF/LHEF.h" #include "HEJ/Constants.hh" #include "HEJ/exceptions.hh" #include "HEJ/optional.hh" #include "HEJ/PDG_codes.hh" #include "HEJ/RNG.hh" namespace HEJ{ namespace { using std::size_t; constexpr int status_in = -1; constexpr int status_decayed = 2; constexpr int status_out = 1; //! true if leptonic W decay bool valid_W_decay( int const w_type, // sign of W std::vector<Particle> const & decays ){ if(decays.size() != 2) // no 1->2 decay return false; const int pidsum = decays[0].type + decays[1].type; if( std::abs(pidsum) != 1 || pidsum != w_type ) // correct charge return false; // leptonic decay (only check first, second follows from pidsum) if( w_type == 1 ) // W+ return is_antilepton(decays[0]) || is_neutrino(decays[0]); // W- return is_lepton(decays[0]) || is_antineutrino(decays[0]); } /// @name helper functions to determine event type //@{ /** * \brief check if final state valid for HEJ * * check if there is at most one photon, W, H, Z in the final state * and all the rest are quarks or gluons */ bool final_state_ok(Event const & ev){ std::vector<Particle> const & outgoing = ev.outgoing(); if(ev.decays().size() > 1) // at most one decay return false; bool has_AWZH_boson = false; for( size_t i=0; i<outgoing.size(); ++i ){ auto const & out{ outgoing[i] }; if(is_AWZH_boson(out.type)){ // at most one boson if(has_AWZH_boson) return false; has_AWZH_boson = true; // valid decay for W if(std::abs(out.type) == ParticleID::Wp){ // exactly 1 decay of W if( ev.decays().size() != 1 || ev.decays().cbegin()->first != i ) return false; if( !valid_W_decay(out.type>0?+1:-1, ev.decays().cbegin()->second) ) return false; } } else if(! is_parton(out.type)) return false; } return true; } /** * returns all EventTypes implemented in HEJ */ size_t implemented_types(std::vector<Particle> const & bosons){ using namespace event_type; if(bosons.empty()) return FKL | unob | unof | qqxexb | qqxexf | qqxmid; if(bosons.size()>1) return non_resummable; // multi boson switch (bosons[0].type) { case ParticleID::Wp: case ParticleID::Wm: return FKL | unob | unof | qqxexb | qqxexf | qqxmid; case ParticleID::h: return FKL | unob | unof; default: return non_resummable; } } /** * \brief function which determines if type change is consistent with Wp emission. * @param in incoming Particle id * @param out outgoing Particle id * @param qqx Current both incoming/both outgoing? * * \see is_Wm_Change */ bool is_Wp_Change(ParticleID in, ParticleID out, bool qqx){ if(!qqx && (in==-1 || in== 2 || in==-3 || in== 4)) return out== (in-1); if( qqx && (in== 1 || in==-2 || in== 3 || in==-4)) return out==-(in+1); return false; } /** * \brief function which determines if type change is consistent with Wm emission. * @param in incoming Particle id * @param out outgoing Particle id * @param qqx Current both incoming/both outgoing? * * Ensures that change type of quark line is possible by a flavour changing * Wm emission. Allows checking of qqx currents also. */ bool is_Wm_Change(ParticleID in, ParticleID out, bool qqx){ if(!qqx && (in== 1 || in==-2 || in== 3 || in==-4)) return out== (in+1); if( qqx && (in==-1 || in== 2 || in==-3 || in== 4)) return out==-(in-1); return false; } /** * \brief checks if particle type remains same from incoming to outgoing * @param in incoming Particle * @param out outgoing Particle * @param qqx Current both incoming/outgoing? */ bool no_flavour_change(ParticleID in, ParticleID out, bool qqx){ const int qqxCurrent = qqx?-1:1; if(std::abs(in)<=6 || in==pid::gluon) return (in==out*qqxCurrent); else return false; } bool has_2_jets(Event const & event){ return event.jets().size() >= 2; } /** * \brief check if we have a valid Impact factor * @param in incoming Particle * @param out outgoing Particle * @param qqx Current both incoming/outgoing? * @param W_change returns +1 if Wp, -1 if Wm, else 0 */ bool is_valid_impact_factor( ParticleID in, ParticleID out, bool qqx, int & W_change ){ if( no_flavour_change(in, out, qqx) ){ return true; } if( is_Wp_Change(in, out, qqx) ) { W_change+=1; return true; } if( is_Wm_Change(in, out, qqx) ) { W_change-=1; return true; } return false; } //! Returns all possible classifications from the impact factors // the beginning points are changed s.t. after the the classification they // point to the beginning of the (potential) FKL chain // sets W_change: + if Wp change // 0 if no change // - if Wm change // This function can be used with forward & backwards iterators template<class OutIterator> size_t possible_impact_factors( ParticleID incoming_id, // incoming OutIterator & begin_out, OutIterator const & end_out, // outgoing int & W_change, std::vector<Particle> const & boson, bool const backward // backward? ){ using namespace event_type; assert(boson.size() < 2); // keep track of all states that we don't test size_t not_tested = qqxmid; if(backward) not_tested |= unof | qqxexf; else not_tested |= unob | qqxexb; // Is this LL current? if( is_valid_impact_factor(incoming_id, begin_out->type, false, W_change) ){ ++begin_out; return not_tested | FKL; } // or NLL current? // -> needs two partons in two different jets if( std::distance(begin_out, end_out)>=2 ){ auto next = std::next(begin_out); // Is this unordered emisson? if( incoming_id!=pid::gluon && begin_out->type==pid::gluon ){ if( is_valid_impact_factor( incoming_id, next->type, false, W_change ) ){ // veto Higgs inside uno assert(next!=end_out); if( !boson.empty() && boson.front().type == ParticleID::h ){ if( (backward && boson.front().rapidity() < next->rapidity()) ||(!backward && boson.front().rapidity() > next->rapidity())) return non_resummable; } begin_out = std::next(next); return not_tested | (backward?unob:unof); } } // Is this QQbar? else if( incoming_id==pid::gluon ){ if( is_valid_impact_factor( begin_out->type, next->type, true, W_change ) ){ // veto Higgs inside qqx assert(next!=end_out); if( !boson.empty() && boson.front().type == ParticleID::h ){ if( (backward && boson.front().rapidity() < next->rapidity()) ||(!backward && boson.front().rapidity() > next->rapidity())) return non_resummable; } begin_out = std::next(next); return not_tested | (backward?qqxexb:qqxexf); } } } return non_resummable; } //! Returns all possible classifications from central emissions // the beginning points are changed s.t. after the the classification they // point to the end of the emission chain // sets W_change: + if Wp change // 0 if no change // - if Wm change template<class OutIterator> size_t possible_central( OutIterator & begin_out, OutIterator const & end_out, int & W_change, std::vector<Particle> const & boson ){ using namespace event_type; assert(boson.size() < 2); // if we already passed the central chain, // then it is not a valid all-order state if(std::distance(begin_out, end_out) < 0) return non_resummable; // keep track of all states that we don't test size_t possible = unob | unof | qqxexb | qqxexf; // Find the first non-gluon/non-FKL while( (begin_out->type==pid::gluon) && (begin_out!=end_out) ){ ++begin_out; } // end of chain -> FKL if( begin_out==end_out ){ return possible | FKL; } // is this a qqbar-pair? // needs two partons in two separate jets auto next = std::next(begin_out); if( is_valid_impact_factor( begin_out->type, next->type, true, W_change ) ){ // veto Higgs inside qqx if( !boson.empty() && boson.front().type == ParticleID::h && boson.front().rapidity() > begin_out->rapidity() && boson.front().rapidity() < next->rapidity() ){ return non_resummable; } begin_out = std::next(next); // remaining chain should be pure gluon/FKL for(; begin_out!=end_out; ++begin_out){ if(begin_out->type != pid::gluon) return non_resummable; } return possible | qqxmid; } return non_resummable; } /** * \brief Checks for all event types * @param ev Event * @returns Event Type * */ event_type::EventType classify(Event const & ev){ using namespace event_type; if(! has_2_jets(ev)) return no_2_jets; // currently we can't handle multiple boson states in the ME. So they are // considered "bad_final_state" even though the "classify" could work with // them. if(! final_state_ok(ev)) return bad_final_state; // initialise variables auto const & in = ev.incoming(); // range for current checks auto begin_out{ev.cbegin_partons()}; auto end_out{ev.crbegin_partons()}; assert(std::distance(begin(in), end(in)) == 2); assert(std::distance(begin_out, end_out.base()) >= 2); assert(std::is_sorted(begin_out, end_out.base(), rapidity_less{})); auto const boson{ filter_AWZH_bosons(ev.outgoing()) }; // we only allow one boson through final_state_ok assert(boson.size()<=1); // keep track of potential W couplings, at the end the sum should be 0 int remaining_Wp = 0; int remaining_Wm = 0; if(!boson.empty() && std::abs(boson.front().type) == ParticleID::Wp ){ if(boson.front().type>0) ++remaining_Wp; else ++remaining_Wm; } int W_change = 0; size_t final_type = ~(no_2_jets | bad_final_state); // check forward impact factor final_type &= possible_impact_factors( in.front().type, begin_out, end_out.base(), W_change, boson, true ); if( final_type == non_resummable ) return non_resummable; if(W_change>0) remaining_Wp-=W_change; else if(W_change<0) remaining_Wm+=W_change; W_change = 0; // check backward impact factor final_type &= possible_impact_factors( in.back().type, end_out, std::make_reverse_iterator(begin_out), W_change, boson, false ); if( final_type == non_resummable ) return non_resummable; if(W_change>0) remaining_Wp-=W_change; else if(W_change<0) remaining_Wm+=W_change; W_change = 0; // check central emissions final_type &= possible_central( begin_out, end_out.base(), W_change, boson ); if( final_type == non_resummable ) return non_resummable; if(W_change>0) remaining_Wp-=W_change; else if(W_change<0) remaining_Wm+=W_change; // Check whether the right number of Ws are present if( remaining_Wp != 0 || remaining_Wm != 0 ) return non_resummable; // result has to be unique if( (final_type & (final_type-1)) != 0) return non_resummable; // check that each sub processes is implemented // (has to be done at the end) if( (final_type & ~implemented_types(boson)) != 0 ) return non_resummable; return static_cast<EventType>(final_type); } //@} Particle extract_particle(LHEF::HEPEUP const & hepeup, size_t i){ const ParticleID id = static_cast<ParticleID>(hepeup.IDUP[i]); const fastjet::PseudoJet momentum{ hepeup.PUP[i][0], hepeup.PUP[i][1], hepeup.PUP[i][2], hepeup.PUP[i][3] }; if(is_parton(id)) return Particle{ id, std::move(momentum), hepeup.ICOLUP[i] }; return Particle{ id, std::move(momentum), {} }; } bool is_decay_product(std::pair<int, int> const & mothers){ if(mothers.first == 0) return false; return mothers.second == 0 || mothers.first == mothers.second; } } // namespace anonymous Event::EventData::EventData(LHEF::HEPEUP const & hepeup){ parameters.central = EventParameters{ hepeup.scales.mur, hepeup.scales.muf, hepeup.XWGTUP }; size_t in_idx = 0; for (int i = 0; i < hepeup.NUP; ++i) { // skip decay products // we will add them later on, but we have to ensure that // the decayed particle is added before if(is_decay_product(hepeup.MOTHUP[i])) continue; auto particle = extract_particle(hepeup, i); // needed to identify mother particles for decay products particle.p.set_user_index(i+1); if(hepeup.ISTUP[i] == status_in){ if(in_idx > incoming.size()) { throw std::invalid_argument{ "Event has too many incoming particles" }; } incoming[in_idx++] = std::move(particle); } else outgoing.emplace_back(std::move(particle)); } // add decay products for (int i = 0; i < hepeup.NUP; ++i) { if(!is_decay_product(hepeup.MOTHUP[i])) continue; const int mother_id = hepeup.MOTHUP[i].first; const auto mother = std::find_if( begin(outgoing), end(outgoing), [mother_id](Particle const & particle){ return particle.p.user_index() == mother_id; } ); if(mother == end(outgoing)){ throw std::invalid_argument{"invalid decay product parent"}; } const int mother_idx = std::distance(begin(outgoing), mother); assert(mother_idx >= 0); decays[mother_idx].emplace_back(extract_particle(hepeup, i)); } } Event::Event( UnclusteredEvent const & ev, fastjet::JetDefinition const & jet_def, double const min_jet_pt ): Event( Event::EventData{ ev.incoming, ev.outgoing, ev.decays, Parameters<EventParameters>{ev.central, ev.variations} }.cluster(jet_def, min_jet_pt) ) {} //! @TODO remove in HEJ 2.2.0 UnclusteredEvent::UnclusteredEvent(LHEF::HEPEUP const & hepeup){ Event::EventData const evData{hepeup}; incoming = evData.incoming; outgoing = evData.outgoing; decays = evData.decays; central = evData.parameters.central; variations = evData.parameters.variations; } void Event::EventData::sort(){ // sort particles std::sort( begin(incoming), end(incoming), [](Particle o1, Particle o2){return o1.p.pz()<o2.p.pz();} ); auto old_outgoing = std::move(outgoing); std::vector<size_t> idx(old_outgoing.size()); std::iota(idx.begin(), idx.end(), 0); std::sort(idx.begin(), idx.end(), [&old_outgoing](size_t i, size_t j){ return old_outgoing[i].rapidity() < old_outgoing[j].rapidity(); }); outgoing.clear(); outgoing.reserve(old_outgoing.size()); for(size_t i: idx) { outgoing.emplace_back(std::move(old_outgoing[i])); } // find decays again if(!decays.empty()){ auto old_decays = std::move(decays); decays.clear(); for(size_t i=0; i<idx.size(); ++i) { auto decay = old_decays.find(idx[i]); if(decay != old_decays.end()) decays.emplace(i, std::move(decay->second)); } assert(old_decays.size() == decays.size()); } } namespace { Particle reconstruct_boson(std::vector<Particle> const & leptons) { Particle decayed_boson; decayed_boson.p = leptons[0].p + leptons[1].p; const int pidsum = leptons[0].type + leptons[1].type; if(pidsum == +1) { assert(is_antilepton(leptons[0])); if(is_antineutrino(leptons[0])) { throw not_implemented{"lepton-flavour violating final state"}; } assert(is_neutrino(leptons[1])); // charged antilepton + neutrino means we had a W+ decayed_boson.type = pid::Wp; } else if(pidsum == -1) { assert(is_antilepton(leptons[0])); if(is_neutrino(leptons[1])) { throw not_implemented{"lepton-flavour violating final state"}; } assert(is_antineutrino(leptons[0])); // charged lepton + antineutrino means we had a W- decayed_boson.type = pid::Wm; } else { throw not_implemented{ "final state with leptons " + name(leptons[0].type) + " and " + name(leptons[1].type) }; } return decayed_boson; } } void Event::EventData::reconstruct_intermediate() { const auto begin_leptons = std::partition( begin(outgoing), end(outgoing), [](Particle const & p) {return !is_anylepton(p);} ); if(begin_leptons == end(outgoing)) return; assert(is_anylepton(*begin_leptons)); std::vector<Particle> leptons(begin_leptons, end(outgoing)); outgoing.erase(begin_leptons, end(outgoing)); if(leptons.size() != 2) { throw not_implemented{"Final states with one or more than two leptons"}; } std::sort( begin(leptons), end(leptons), [](Particle const & p0, Particle const & p1) { return p0.type < p1.type; } ); outgoing.emplace_back(reconstruct_boson(leptons)); decays.emplace(outgoing.size()-1, std::move(leptons)); } Event Event::EventData::cluster( fastjet::JetDefinition const & jet_def, double const min_jet_pt ){ sort(); return Event{ std::move(incoming), std::move(outgoing), std::move(decays), std::move(parameters), jet_def, min_jet_pt }; } Event::Event( std::array<Particle, 2> && incoming, std::vector<Particle> && outgoing, std::unordered_map<size_t, std::vector<Particle>> && decays, Parameters<EventParameters> && parameters, fastjet::JetDefinition const & jet_def, double const min_jet_pt ): incoming_{std::move(incoming)}, outgoing_{std::move(outgoing)}, decays_{std::move(decays)}, parameters_{std::move(parameters)}, cs_{ to_PseudoJet( filter_partons(outgoing_) ), jet_def }, min_jet_pt_{min_jet_pt} { jets_ = sorted_by_rapidity(cs_.inclusive_jets(min_jet_pt_)); assert(std::is_sorted(begin(outgoing_), end(outgoing_), rapidity_less{})); type_ = classify(*this); } namespace { //! check that Particles have a reasonable colour bool correct_colour(Particle const & part){ ParticleID id{ part.type }; if(!is_parton(id)) return !part.colour; if(!part.colour) return false; Colour const & col{ *part.colour }; if(is_quark(id)) return col.first != 0 && col.second == 0; if(is_antiquark(id)) return col.first == 0 && col.second != 0; assert(id==ParticleID::gluon); return col.first != 0 && col.second != 0 && col.first != col.second; } //! Connect parton to t-channel colour line & update the line //! returns false if connection not possible template<class OutIterator> bool try_connect_t(OutIterator const & it_part, Colour & line_colour){ if( line_colour.first == it_part->colour->second ){ line_colour.first = it_part->colour->first; return true; } if( line_colour.second == it_part->colour->first ){ line_colour.second = it_part->colour->second; return true; } return false; } //! Connect parton to u-channel colour line & update the line //! returns false if connection not possible template<class OutIterator> bool try_connect_u(OutIterator & it_part, Colour & line_colour){ auto it_next = std::next(it_part); if( try_connect_t(it_next, line_colour) && try_connect_t(it_part, line_colour) ){ it_part=it_next; return true; } return false; } } // namespace anonymous bool Event::is_leading_colour() const { if( !correct_colour(incoming()[0]) || !correct_colour(incoming()[1]) ) return false; Colour line_colour = *incoming()[0].colour; std::swap(line_colour.first, line_colour.second); // reasonable colour if(!std::all_of(outgoing().cbegin(), outgoing().cend(), correct_colour)) return false; for(auto it_part = cbegin_partons(); it_part!=cend_partons(); ++it_part){ switch (type()) { case event_type::FKL: if( !try_connect_t(it_part, line_colour) ) return false; break; case event_type::unob: case event_type::qqxexb: { if( !try_connect_t(it_part, line_colour) // u-channel only allowed at impact factor && (std::distance(cbegin_partons(), it_part)!=0 || !try_connect_u(it_part, line_colour))) return false; break; } case event_type::unof: case event_type::qqxexf: { if( !try_connect_t(it_part, line_colour) // u-channel only allowed at impact factor && (std::distance(it_part, cend_partons())!=2 || !try_connect_u(it_part, line_colour))) return false; break; } case event_type::qqxmid:{ auto it_next = std::next(it_part); if( !try_connect_t(it_part, line_colour) // u-channel only allowed at qqx/qxq pair && ( ( !(is_quark(*it_part) && is_antiquark(*it_next)) && !(is_antiquark(*it_part) && is_quark(*it_next))) || !try_connect_u(it_part, line_colour)) ) return false; break; } default: throw std::logic_error{"unreachable"}; } // no colour singlet exchange/disconnected diagram if(line_colour.first == line_colour.second) return false; } return (incoming()[1].colour->first == line_colour.first) && (incoming()[1].colour->second == line_colour.second); } namespace { //! connect incoming Particle to colour flow void connect_incoming(Particle & in, int & colour, int & anti_colour){ in.colour = std::make_pair(anti_colour, colour); // gluon if(in.type == pid::gluon) return; if(in.type > 0){ // quark assert(is_quark(in)); in.colour->second = 0; colour*=-1; return; } // anti-quark assert(is_antiquark(in)); in.colour->first = 0; anti_colour*=-1; return; } //! connect outgoing Particle to t-channel colour flow template<class OutIterator> void connect_tchannel( OutIterator & it_part, int & colour, int & anti_colour, RNG & ran ){ assert(colour>0 || anti_colour>0); if(it_part->type == ParticleID::gluon){ // gluon if(colour>0 && anti_colour>0){ // on g line => connect to colour OR anti-colour (random) if(ran.flat() < 0.5){ it_part->colour = std::make_pair(colour+2,colour); colour+=2; } else { it_part->colour = std::make_pair(anti_colour, anti_colour+2); anti_colour+=2; } } else if(colour > 0){ // on q line => connect to available colour it_part->colour = std::make_pair(colour+2, colour); colour+=2; } else { assert(colour<0 && anti_colour>0); // on qx line => connect to available anti-colour it_part->colour = std::make_pair(anti_colour, anti_colour+2); anti_colour+=2; } } else if(is_quark(*it_part)) { // quark assert(anti_colour>0); if(colour>0){ // on g line => connect and remove anti-colour it_part->colour = std::make_pair(anti_colour, 0); anti_colour+=2; anti_colour*=-1; } else { // on qx line => new colour colour*=-1; it_part->colour = std::make_pair(colour, 0); } } else if(is_antiquark(*it_part)) { // anti-quark assert(colour>0); if(anti_colour>0){ // on g line => connect and remove colour it_part->colour = std::make_pair(0, colour); colour+=2; colour*=-1; } else { // on q line => new anti-colour anti_colour*=-1; it_part->colour = std::make_pair(0, anti_colour); } } else { // not a parton assert(!is_parton(*it_part)); it_part->colour = {}; } } //! connect to t- or u-channel colour flow template<class OutIterator> void connect_utchannel( OutIterator & it_part, int & colour, int & anti_colour, RNG & ran ){ OutIterator it_first = it_part++; if(ran.flat()<.5) {// t-channel connect_tchannel(it_first, colour, anti_colour, ran); connect_tchannel(it_part, colour, anti_colour, ran); } else { // u-channel connect_tchannel(it_part, colour, anti_colour, ran); connect_tchannel(it_first, colour, anti_colour, ran); } } } // namespace anonymous bool Event::generate_colours(RNG & ran){ // generate only for HEJ events if(!event_type::is_resummable(type())) return false; assert(std::is_sorted( begin(outgoing()), end(outgoing()), rapidity_less{})); assert(incoming()[0].pz() < incoming()[1].pz()); // positive (anti-)colour -> can connect // negative (anti-)colour -> not available/used up by (anti-)quark int colour = COLOUR_OFFSET; int anti_colour = colour+1; // initialise first connect_incoming(incoming_[0], colour, anti_colour); // reset outgoing colours std::for_each(outgoing_.begin(), outgoing_.end(), [](Particle & part){ part.colour = {};}); for(auto it_part = begin_partons(); it_part!=end_partons(); ++it_part){ switch (type()) { // subleading can connect to t- or u-channel case event_type::unob: case event_type::qqxexb: { if( std::distance(begin_partons(), it_part)==0) connect_utchannel(it_part, colour, anti_colour, ran); else connect_tchannel(it_part, colour, anti_colour, ran); break; } case event_type::unof: case event_type::qqxexf: { if( std::distance(it_part, end_partons())==2) connect_utchannel(it_part, colour, anti_colour, ran); else connect_tchannel(it_part, colour, anti_colour, ran); break; } case event_type::qqxmid:{ auto it_next = std::next(it_part); if( std::distance(begin_partons(), it_part)>0 && std::distance(it_part, end_partons())>2 && ( (is_quark(*it_part) && is_antiquark(*it_next)) || (is_antiquark(*it_part) && is_quark(*it_next)) ) ) connect_utchannel(it_part, colour, anti_colour, ran); else connect_tchannel(it_part, colour, anti_colour, ran); break; } default: // rest has to be t-channel connect_tchannel(it_part, colour, anti_colour, ran); } } // Connect last connect_incoming(incoming_[1], anti_colour, colour); assert(is_leading_colour()); return true; } // generate_colours namespace { bool valid_parton( std::vector<fastjet::PseudoJet> const & jets, Particle const & parton, int const idx, double const max_ext_soft_pt_fraction, double const min_extparton_pt ){ // TODO code overlap with PhaseSpacePoint::pass_extremal_cuts if(min_extparton_pt > parton.pt()) return false; if(idx<0) return false; assert(static_cast<int>(jets.size())>=idx); auto const & jet{ jets[idx] }; if( (parton.p - jet).pt()/jet.pt() > max_ext_soft_pt_fraction) return false; return true; } } // this should work with multiple types bool Event::valid_hej_state(double const max_frac, double const min_pt ) const { using namespace event_type; if(!is_resummable(type())) return false; auto const & jet_idx{ particle_jet_indices() }; auto idx_begin{ jet_idx.cbegin() }; auto idx_end{ jet_idx.crbegin() }; auto part_begin{ cbegin_partons() }; auto part_end{ crbegin_partons() }; // always seperate extremal jets if( !valid_parton(jets(), *part_begin, *idx_begin, max_frac, min_pt) ) return false; ++part_begin; ++idx_begin; if( !valid_parton(jets(), *part_end, *idx_end, max_frac, min_pt) ) return false; ++part_end; ++idx_end; // unob -> second parton in own jet if( type() & (unob | qqxexb) ){ if( !valid_parton(jets(), *part_begin, *idx_begin, max_frac, min_pt) ) return false; ++part_begin; ++idx_begin; } if( type() & (unof | qqxexf) ){ if( !valid_parton(jets(), *part_end, *idx_end, max_frac, min_pt) ) return false; ++part_end; // ++idx_end; } if( type() & qqxmid ){ // find qqx pair auto begin_qqx{ std::find_if( part_begin, part_end.base(), [](Particle const & part) -> bool { return part.type != ParticleID::gluon; } )}; assert(begin_qqx != part_end.base()); long int qqx_pos{ std::distance(part_begin, begin_qqx) }; assert(qqx_pos >= 0); idx_begin+=qqx_pos; if( !( valid_parton(jets(),*begin_qqx, *idx_begin, max_frac,min_pt) && valid_parton(jets(),*(++begin_qqx),*(++idx_begin),max_frac,min_pt) )) return false; } return true; } Event::ConstPartonIterator Event::begin_partons() const { return cbegin_partons(); } Event::ConstPartonIterator Event::cbegin_partons() const { return boost::make_filter_iterator( static_cast<bool (*)(Particle const &)>(is_parton), cbegin(outgoing()), cend(outgoing()) ); } Event::ConstPartonIterator Event::end_partons() const { return cend_partons(); } Event::ConstPartonIterator Event::cend_partons() const { return boost::make_filter_iterator( static_cast<bool (*)(Particle const &)>(is_parton), cend(outgoing()), cend(outgoing()) ); } Event::ConstReversePartonIterator Event::rbegin_partons() const { return crbegin_partons(); } Event::ConstReversePartonIterator Event::crbegin_partons() const { return std::reverse_iterator<ConstPartonIterator>( cend_partons() ); } Event::ConstReversePartonIterator Event::rend_partons() const { return crend_partons(); } Event::ConstReversePartonIterator Event::crend_partons() const { return std::reverse_iterator<ConstPartonIterator>( cbegin_partons() ); } Event::PartonIterator Event::begin_partons() { return boost::make_filter_iterator( static_cast<bool (*)(Particle const &)>(is_parton), begin(outgoing_), end(outgoing_) ); } Event::PartonIterator Event::end_partons() { return boost::make_filter_iterator( static_cast<bool (*)(Particle const &)>(is_parton), end(outgoing_), end(outgoing_) ); } Event::ReversePartonIterator Event::rbegin_partons() { return std::reverse_iterator<PartonIterator>( end_partons() ); } Event::ReversePartonIterator Event::rend_partons() { return std::reverse_iterator<PartonIterator>( begin_partons() ); } namespace { void print_momentum(std::ostream & os, fastjet::PseudoJet const & part){ const std::streamsize orig_prec = os.precision(); os <<std::scientific<<std::setprecision(6) << "[" <<std::setw(13)<<std::right<< part.px() << ", " <<std::setw(13)<<std::right<< part.py() << ", " <<std::setw(13)<<std::right<< part.pz() << ", " <<std::setw(13)<<std::right<< part.E() << "]"<< std::fixed; os.precision(orig_prec); } void print_colour(std::ostream & os, optional<Colour> const & col){ if(!col) os << "(no color)"; // American spelling for better alignment else os << "(" <<std::setw(3)<<std::right<< col->first << ", " <<std::setw(3)<<std::right<< col->second << ")"; } } std::ostream& operator<<(std::ostream & os, Event const & ev){ const std::streamsize orig_prec = os.precision(); os <<std::setprecision(4)<<std::fixed; - os << "########## " << event_type::name(ev.type()) << " ##########" << std::endl; + os << "########## " << name(ev.type()) << " ##########" << std::endl; os << "Incoming particles:\n"; for(auto const & in: ev.incoming()){ os <<std::setw(3)<< in.type << ": "; print_colour(os, in.colour); os << " "; print_momentum(os, in.p); os << std::endl; } os << "\nOutgoing particles: " << ev.outgoing().size() << "\n"; for(auto const & out: ev.outgoing()){ os <<std::setw(3)<< out.type << ": "; print_colour(os, out.colour); os << " "; print_momentum(os, out.p); os << " => rapidity=" <<std::setw(7)<<std::right<< out.rapidity() << std::endl; } os << "\nForming Jets: " << ev.jets().size() << "\n"; for(auto const & jet: ev.jets()){ print_momentum(os, jet); os << " => rapidity=" <<std::setw(7)<<std::right<< jet.rapidity() << std::endl; } if(ev.decays().size() > 0 ){ os << "\nDecays: " << ev.decays().size() << "\n"; for(auto const & decay: ev.decays()){ os <<std::setw(3)<< ev.outgoing()[decay.first].type << " (" << decay.first << ") to:\n"; for(auto const & out: decay.second){ os <<" "<<std::setw(3)<< out.type << ": "; print_momentum(os, out.p); os << " => rapidity=" <<std::setw(7)<<std::right<< out.rapidity() << std::endl; } } } os << std::defaultfloat; os.precision(orig_prec); return os; } double shat(Event const & ev){ return (ev.incoming()[0].p + ev.incoming()[1].p).m2(); } LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP * heprup){ LHEF::HEPEUP result; result.heprup = heprup; result.weights = {{event.central().weight, nullptr}}; for(auto const & var: event.variations()){ result.weights.emplace_back(var.weight, nullptr); } size_t num_particles = event.incoming().size() + event.outgoing().size(); for(auto const & decay: event.decays()) num_particles += decay.second.size(); result.NUP = num_particles; // the following entries are pretty much meaningless result.IDPRUP = event.type(); // event type result.AQEDUP = 1./128.; // alpha_EW //result.AQCDUP = 0.118 // alpha_QCD // end meaningless part result.XWGTUP = event.central().weight; result.SCALUP = event.central().muf; result.scales.muf = event.central().muf; result.scales.mur = event.central().mur; result.scales.SCALUP = event.central().muf; result.pdfinfo.p1 = event.incoming().front().type; result.pdfinfo.p2 = event.incoming().back().type; result.pdfinfo.scale = event.central().muf; result.IDUP.reserve(num_particles); // PID result.ISTUP.reserve(num_particles); // status (in, out, decay) result.PUP.reserve(num_particles); // momentum result.MOTHUP.reserve(num_particles); // index mother particle result.ICOLUP.reserve(num_particles); // colour // incoming std::array<Particle, 2> incoming{ event.incoming() }; // First incoming should be positive pz according to LHE standard // (or at least most (everyone?) do it this way, and Pythia assumes it) if(incoming[0].pz() < incoming[1].pz()) std::swap(incoming[0], incoming[1]); for(Particle const & in: incoming){ result.IDUP.emplace_back(in.type); result.ISTUP.emplace_back(status_in); result.PUP.push_back({in.p[0], in.p[1], in.p[2], in.p[3], in.p.m()}); result.MOTHUP.emplace_back(0, 0); assert(in.colour); result.ICOLUP.emplace_back(*in.colour); } // outgoing for(size_t i = 0; i < event.outgoing().size(); ++i){ Particle const & out = event.outgoing()[i]; result.IDUP.emplace_back(out.type); const int status = event.decays().count(i)?status_decayed:status_out; result.ISTUP.emplace_back(status); result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()}); result.MOTHUP.emplace_back(1, 2); if(out.colour) result.ICOLUP.emplace_back(*out.colour); else{ result.ICOLUP.emplace_back(std::make_pair(0,0)); } } // decays for(auto const & decay: event.decays()){ for(auto const & out: decay.second){ result.IDUP.emplace_back(out.type); result.ISTUP.emplace_back(status_out); result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()}); const size_t mother_idx = 1 + event.incoming().size() + decay.first; result.MOTHUP.emplace_back(mother_idx, mother_idx); result.ICOLUP.emplace_back(0,0); } } assert(result.ICOLUP.size() == num_particles); static constexpr double unknown_spin = 9.; //per Les Houches accord result.VTIMUP = std::vector<double>(num_particles, unknown_spin); result.SPINUP = result.VTIMUP; return result; } } diff --git a/t/test_classify.cc b/t/test_classify.cc index 2098e21..d295be8 100644 --- a/t/test_classify.cc +++ b/t/test_classify.cc @@ -1,499 +1,499 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #include "hej_test.hh" #include <array> #include <cstdlib> #include <iostream> #include <random> #include <string> #include <vector> #include "fastjet/JetDefinition.hh" #include "HEJ/Event.hh" #include "HEJ/event_types.hh" #include "HEJ/exceptions.hh" #include "HEJ/PDG_codes.hh" namespace { const fastjet::JetDefinition jet_def{fastjet::JetAlgorithm::antikt_algorithm, 0.4}; const double min_jet_pt{30.}; const std::vector<std::string> all_quarks{"-4","-1","1","2","3","4"}; const std::vector<std::string> all_partons{"g","-2","-1","1","2","3","4"}; const std::vector<std::string> all_bosons{"h", "Wp", "Wm"}; const std::vector<std::string> all_gZ{"photon", "Z"}; const std::vector<std::string> all_w{"W+", "W-"}; static std::mt19937_64 ran{0}; bool couple_quark(std::string const & boson, std::string & quark){ if(std::abs(HEJ::to_ParticleID(boson)) == HEJ::ParticleID::Wp){ auto qflav{ HEJ::to_ParticleID(quark) }; if(!HEJ::is_anyquark(qflav)) return false; const int W_charge = HEJ::to_ParticleID(boson)>0?1:-1; if(W_charge*qflav < 0 && !(std::abs(qflav)%2)) return false; // not anti-down if(W_charge*qflav > 0 && (std::abs(qflav)%2)) return false; // not up quark=std::to_string(qflav-W_charge); } return true; } bool match_expectation( HEJ::event_type::EventType expected, std::array<std::string,2> const & in, std::vector<std::string> const & out, int const overwrite_boson = 0 ){ HEJ::Event ev{ parse_configuration( in,out,overwrite_boson ).cluster(jet_def, min_jet_pt)}; if(ev.type() != expected){ - std::cerr << "Expected type " << HEJ::event_type::name(expected) - << " but found " << HEJ::event_type::name(ev.type()) << "\n" << ev; + std::cerr << "Expected type " << name(expected) + << " but found " << name(ev.type()) << "\n" << ev; auto jet_idx{ ev.particle_jet_indices() }; std::cout << "Particle Jet indices: "; for(int const i: jet_idx) std::cout << i << " "; std::cout << std::endl; return false; } return true; } //! test FKL configurations //! if implemented==false : check processes that are not in HEJ yet bool check_fkl( bool const implemented=true ){ using namespace HEJ; auto const type{ implemented?event_type::FKL:event_type::non_resummable }; std::vector<std::string> bosons; if(implemented) bosons = all_bosons; else { bosons = all_gZ; } for(std::string const & first: all_partons) // all quark flavours for(std::string const & last: all_partons){ for(int njet=2; njet<=6; ++njet){ // all multiplicities if(njet==5) continue; std::array<std::string,2> base_in{first,last}; std::vector<std::string> base_out(njet, "g"); base_out.front() = first; base_out.back() = last; if(implemented && !match_expectation(type, base_in, base_out)) return false; for(auto const & boson: bosons) // any boson for(int pos=0; pos<=njet; ++pos){ // at any position auto in{base_in}; auto out{base_out}; // change quark flavours for W const bool couple_idx = std::uniform_int_distribution<int>{0,1}(ran); if(!couple_quark(boson, couple_idx?out.back():out.front())) continue; out.insert(out.begin()+pos, boson); if(!match_expectation(type, in, out)) return false; } } } return true; } //! test unordered configurations //! if implemented==false : check processes that are not in HEJ yet bool check_uno( bool const implemented=true ){ using namespace HEJ; auto const b{ implemented?event_type::unob:event_type::non_resummable }; auto const f{ implemented?event_type::unof:event_type::non_resummable }; std::vector<std::string> bosons; if(implemented) bosons = all_bosons; else { bosons = all_gZ; } for(std::string const & uno: all_quarks) // all quark flavours for(std::string const & fkl: all_partons){ for(int njet=3; njet<=6; ++njet){ // all multiplicities >2 if(njet==5) continue; for(int i=0; i<2; ++i){ // forward & backwards std::array<std::string,2> base_in; std::vector<std::string> base_out(njet, "g"); const int uno_pos = i?1:(njet-2); const int fkl_pos = i?(njet-1):0; base_in[i?0:1] = uno; base_in[i?1:0] = fkl; base_out[uno_pos] = uno; base_out[fkl_pos] = fkl; auto expectation{ i?b:f }; if( implemented && !match_expectation(expectation, base_in, base_out) ) return false; for(auto const & boson: bosons){ // any boson // at any position (higgs only inside FKL chain) int start = 0; int end = njet; if(to_ParticleID(boson) == pid::higgs){ start = i?(uno_pos+1):fkl_pos; end = i?(fkl_pos+1):uno_pos; } for(int pos=start; pos<=end; ++pos){ auto in{base_in}; auto out{base_out}; // change quark flavours for W const bool couple_idx = std::uniform_int_distribution<int>{0,1}(ran); if(!couple_quark(boson, couple_idx?out[fkl_pos]:out[uno_pos])) continue; out.insert(out.begin()+pos, boson); if(!match_expectation(expectation, in, out)) return false; } } } } } return true; } //! test extremal qqx configurations //! if implemented==false : check processes that are not in HEJ yet bool check_extremal_qqx( bool const implemented=true ){ using namespace HEJ; auto const b{ implemented?event_type::qqxexb:event_type::non_resummable }; auto const f{ implemented?event_type::qqxexf:event_type::non_resummable }; std::vector<std::string> bosons; if(implemented) bosons = all_w; else { bosons = all_gZ; bosons.push_back("h"); } for(std::string const & qqx: all_quarks) // all quark flavours for(std::string const & fkl: all_partons){ std::string const qqx2{ std::to_string(HEJ::to_ParticleID(qqx)*-1) }; for(int njet=3; njet<=6; ++njet){ // all multiplicities >2 if(njet==5) continue; for(int i=0; i<2; ++i){ // forward & backwards std::array<std::string,2> base_in; std::vector<std::string> base_out(njet, "g"); const int qqx_pos = i?0:(njet-2); const int fkl_pos = i?(njet-1):0; base_in[i?0:1] = "g"; base_in[i?1:0] = fkl; base_out[fkl_pos] = fkl; base_out[qqx_pos] = qqx; base_out[qqx_pos+1] = qqx2; auto expectation{ i?b:f }; if( implemented && !match_expectation(expectation, base_in, base_out) ) return false; for(auto const & boson: bosons){ // all bosons // at any position (higgs only inside FKL chain) int start = 0; int end = njet; if(to_ParticleID(boson) == pid::higgs){ start = i?(qqx_pos+2):fkl_pos; end = i?(fkl_pos+1):qqx_pos; } for(int pos=start; pos<=end; ++pos){ auto in{base_in}; auto out{base_out}; // change quark flavours for W const bool couple_idx = std::uniform_int_distribution<int>{0,1}(ran); if(couple_idx || !couple_quark(boson, out[fkl_pos]) ){ // (randomly) try couple to FKL, else fall-back to qqx if(!couple_quark(boson, out[qqx_pos])) couple_quark(boson, out[qqx_pos+1]); } out.insert(out.begin()+pos, boson); if(!match_expectation(expectation, in, out)) return false; } } } } // test allowed jet configurations if( implemented){ if( !( match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -3) && match_expectation(b,{"g",fkl},{qqx,qqx2,"g","g","g","g",fkl}, -4) && match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -5) && match_expectation(b,{"g",fkl},{qqx,qqx2,"g","g","g","g",fkl}, -5) && match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -6) && match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -7) && match_expectation(b,{"g",fkl},{qqx,qqx2,"g","g","g","g",fkl}, -7) && match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -8) && match_expectation(b,{"g",fkl},{qqx,qqx2,"g","g","g","g",fkl}, -8) && match_expectation(b,{"g",fkl},{qqx,qqx2,"g","g","g","g",fkl}, -9) && match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -10) && match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -11) && match_expectation(b,{"g",fkl},{qqx,qqx2,"g","g","g","g",fkl}, -11) && match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -12) && match_expectation(b,{"g",fkl},{qqx,qqx2,"g","g","g","g",fkl}, -12) )) return false; if (fkl == "2") { if( !( match_expectation(f,{"2","g"},{"1","Wp","g","g","g",qqx,qqx2}, -3) && match_expectation(b,{"g","2"},{qqx,qqx2,"g","Wp","g","g","1"}, -4) && match_expectation(f,{"2","g"},{"1","Wp","g","g","g",qqx,qqx2}, -5) && match_expectation(b,{"g","2"},{qqx,qqx2,"g","Wp","g","g","1"}, -5) && match_expectation(f,{"2","g"},{"1","g","Wp","g","g",qqx,qqx2}, -6) && match_expectation(f,{"2","g"},{"1","g","g","g","Wp",qqx,qqx2}, -7) && match_expectation(b,{"g","2"},{qqx,qqx2,"g","g","g","Wp","1"}, -7) && match_expectation(f,{"2","g"},{"1","Wp","g","g","g",qqx,qqx2}, -8) && match_expectation(b,{"g","2"},{qqx,qqx2,"Wp","g","g","g","1"}, -8) && match_expectation(b,{"g","2"},{qqx,qqx2,"g","Wp","g","g","1"}, -9) && match_expectation(f,{"2","g"},{"1","g","g","g","Wp",qqx,qqx2}, -10) && match_expectation(f,{"2","g"},{"1","g","g","g","Wp",qqx,qqx2}, -11) && match_expectation(b,{"g","2"},{qqx,qqx2,"g","g","g","Wp","1"}, -11) && match_expectation(f,{"2","g"},{"1","g","g","g","Wp",qqx,qqx2}, -12) && match_expectation(b,{"g","2"},{qqx,qqx2,"g","Wp","g","g","1"}, -12) )) return false; } } } return true; } //! test central qqx configurations //! if implemented==false : check processes that are not in HEJ yet bool check_central_qqx(bool const implemented=true){ using namespace HEJ; auto const t{ implemented?event_type::qqxmid:event_type::non_resummable }; std::vector<std::string> bosons; if(implemented) bosons = all_w; else { bosons = all_gZ; bosons.push_back("h"); } for(std::string const & qqx: all_quarks) // all quark flavours for(std::string const & fkl1: all_partons) for(std::string const & fkl2: all_partons){ std::string const qqx2{ std::to_string(HEJ::to_ParticleID(qqx)*-1) }; for(int njet=4; njet<=6; ++njet){ // all multiplicities >3 if(njet==5) continue; for(int qqx_pos=1; qqx_pos<njet-2; ++qqx_pos){ // any qqx position std::array<std::string,2> base_in; std::vector<std::string> base_out(njet, "g"); base_in[0] = fkl1; base_in[1] = fkl2; base_out.front() = fkl1; base_out.back() = fkl2; base_out[qqx_pos] = qqx; base_out[qqx_pos+1] = qqx2; if( implemented && !match_expectation(t, base_in, base_out) ) return false; for(auto const & boson: bosons) // any boson for(int pos=0; pos<=njet; ++pos){ // at any position if( to_ParticleID(boson) == pid::higgs && (pos==qqx_pos || pos==qqx_pos+1) ) continue; auto in{base_in}; auto out{base_out}; // change quark flavours for W const int couple_idx{ std::uniform_int_distribution<int>{0,2}(ran) }; // (randomly) try couple to FKL, else fall-back to qqx if( couple_idx == 0 && couple_quark(boson, out.front()) ){} else if( couple_idx == 1 && couple_quark(boson, out.back()) ){} else { if(!couple_quark(boson, out[qqx_pos])) couple_quark(boson, out[qqx_pos+1]); } out.insert(out.begin()+pos, boson); if(!match_expectation(t, in, out)) return false; } } } } return true; } // this checks a (non excessive) list of non-resummable states bool check_non_resummable(){ auto type{ HEJ::event_type::non_resummable}; return // 2j - crossing lines match_expectation(type, {"g","2"}, {"2","g"}) && match_expectation(type, {"-1","g"}, {"g","-1"}) && match_expectation(type, {"1","-1"}, {"-1","1"}) && match_expectation(type, {"g","2"}, {"2","g","h"}) && match_expectation(type, {"1","2"}, {"2","h","1"}) && match_expectation(type, {"1","-1"}, {"h","-1","1"}) && match_expectation(type, {"g","2"}, {"Wp","1","g"}) && match_expectation(type, {"1","-1"}, {"-2","Wp","1"}) && match_expectation(type, {"4","g"}, {"g","3","Wp"}) && match_expectation(type, {"1","-2"}, {"-1","Wm","1"}) && match_expectation(type, {"g","3"}, {"4","g","Wm"}) && match_expectation(type, {"1","3"}, {"Wm","4","1"}) // 2j - qqx && match_expectation(type, {"g","g"}, {"1","-1"}) && match_expectation(type, {"g","g"}, {"-2","2","h"}) && match_expectation(type, {"g","g"}, {"-4","Wp","3"}) && match_expectation(type, {"g","g"}, {"Wm","-1","2"}) // 3j - crossing lines && match_expectation(type, {"g","4"}, {"4","g","g"}) && match_expectation(type, {"-1","g"}, {"g","g","-1"}) && match_expectation(type, {"1","3"}, {"3","g","1"}) && match_expectation(type, {"-2","2"}, {"2","g","-2","h"}) && match_expectation(type, {"-3","g"}, {"g","g","Wp","-4"}) && match_expectation(type, {"1","-2"}, {"Wm","-1","g","1"}) && match_expectation(type, {"-1","g"}, {"1","-1","-1"}) // higgs inside uno && match_expectation(type, {"-1","g"}, {"g","h","-1","g"}) && match_expectation(type, {"-1","1"}, {"g","h","-1","1"}) && match_expectation(type, {"g","2"}, {"g","2","h","g"}) && match_expectation(type, {"-1","1"}, {"-1","1","h","g"}) // higgs outside uno && match_expectation(type, {"-1","g"}, {"h","g","-1","g"}) && match_expectation(type, {"-1","1"}, {"-1","1","g","h"}) // higgs inside qqx && match_expectation(type, {"g","g"}, {"-1","h","1","g","g"}) && match_expectation(type, {"g","g"}, {"g","-1","h","1","g"}) && match_expectation(type, {"g","g"}, {"g","g","2","h","-2"}) // higgs outside qqx && match_expectation(type, {"g","g"}, {"h","-1","1","g","g"}) && match_expectation(type, {"g","g"}, {"g","g","2","-2","h"}) // 4j - two uno && match_expectation(type, {"-2","2"}, {"g","-2","2","g"}) && match_expectation(type, {"1","3"}, {"g","1","h","3","g"}) && match_expectation(type, {"1","2"}, {"g","1","3","Wp","g"}) && match_expectation(type, {"1","-2"}, {"g","Wm","1","-1","g"}) // 4j - two gluon outside && match_expectation(type, {"g","4"}, {"g","4","g","g"}) && match_expectation(type, {"1","3"}, {"1","3","h","g","g"}) && match_expectation(type, {"1","2"}, {"1","3","g","Wp","g"}) && match_expectation(type, {"1","-2"}, {"1","Wm","-1","g","g"}) && match_expectation(type, {"-1","g"}, {"g","g","-1","g"}) && match_expectation(type, {"1","3"}, {"g","g","1","3","h"}) && match_expectation(type, {"1","2"}, {"g","g","1","Wp","3"}) && match_expectation(type, {"1","-2"}, {"Wm","g","g","1","-1"}) // 4j - ggx+uno && match_expectation(type, {"g","4"}, {"1","-1","4","g"}) && match_expectation(type, {"2","g"}, {"g","2","-3","3"}) && match_expectation(type, {"g","4"}, {"1","-1","h","4","g"}) && match_expectation(type, {"2","g"}, {"g","2","-3","3","h"}) && match_expectation(type, {"g","4"}, {"Wp","1","-1","3","g"}) && match_expectation(type, {"2","g"}, {"g","2","-4","Wp","3"}) && match_expectation(type, {"g","4"}, {"2","Wm","-1","4","g"}) && match_expectation(type, {"2","g"}, {"g","2","Wp","-3","4"}) // 3j - crossing+uno && match_expectation(type, {"1","4"}, {"g","4","1"}) && match_expectation(type, {"1","4"}, {"4","1","g"}) && match_expectation(type, {"1","4"}, {"g","h","4","1"}) && match_expectation(type, {"-1","-3"},{"Wm","g","-4","-1"}) && match_expectation(type, {"1","4"}, {"3","1","Wp","g"}) && match_expectation(type, {"1","4"}, {"3","1","g","h"}) // 3j - crossing+qqx && match_expectation(type, {"1","g"}, {"-1","1","g","1"}) && match_expectation(type, {"1","g"}, {"-1","1","1","g"}) && match_expectation(type, {"g","1"}, {"1","g","1","-1"}) && match_expectation(type, {"g","1"}, {"g","1","1","-1"}) && match_expectation(type, {"1","g"}, {"2","-2","g","1"}) && match_expectation(type, {"1","g"}, {"2","-2","1","g"}) && match_expectation(type, {"g","1"}, {"1","g","-2","2"}) && match_expectation(type, {"g","1"}, {"g","1","-2","2"}) && match_expectation(type, {"1","g"}, {"-1","1","h","g","1"}) && match_expectation(type, {"1","g"}, {"-1","h","1","1","g"}) && match_expectation(type, {"g","1"}, {"1","g","1","h","-1"}) && match_expectation(type, {"g","1"}, {"h","g","1","1","-1"}) && match_expectation(type, {"1","g"}, {"2","-2","1","g","h"}) && match_expectation(type, {"g","1"}, {"g","h","1","-2","2"}) && match_expectation(type, {"1","g"}, {"Wp","3","-4","g","1"}) && match_expectation(type, {"3","g"}, {"-2","Wm","1","3","g"}) && match_expectation(type, {"g","1"}, {"1","g","Wm","-3","4"}) && match_expectation(type, {"g","-3"}, {"g","-3","-1","Wp","2"}) // 4j- gluon in qqx && match_expectation(type, {"g","1"}, {"1","g","-1","1"}) && match_expectation(type, {"1","g"}, {"1","-1","g","1"}) && match_expectation(type, {"g","1"}, {"1","g","Wm","-2","1"}) && match_expectation(type, {"2","g"}, {"2","-2","g","Wp","1"}) && match_expectation(type, {"g","g"}, {"Wp","3","g","-4","g"}) && match_expectation(type, {"1","g"}, {"1","h","-1","g","1"}) // 6j - two qqx && match_expectation(type, {"g","g"}, {"1","-1","g","g","1","-1"}) && match_expectation(type, {"g","g"}, {"1","-1","g","1","-1","g"}) && match_expectation(type, {"g","g"}, {"g","1","-1","g","1","-1"}) && match_expectation(type, {"g","g"}, {"g","1","-1","1","-1","g"}) && match_expectation(type, {"g","g"}, {"g","1","1","-1","-1","g"}) && match_expectation(type, {"g","g"}, {"h","1","-1","g","g","1","-1"}) && match_expectation(type, {"g","g"}, {"1","Wp","-2","g","1","-1","g"}) && match_expectation(type, {"g","g"}, {"g","1","Wp","-1","g","1","-2"}) && match_expectation(type, {"g","g"}, {"g","1","-1","Wm","2","-1","g"}) && match_expectation(type, {"g","g"}, {"g","1","2","-1","Wm","-1","g"}) // random stuff (can be non-physical) && match_expectation(type, {"g","g"}, {"1","-2","2","-1"}) // != 2 qqx && match_expectation(type, {"g","g"}, {"1","-2","2","g"}) // could be qqx && match_expectation(type, {"e+","e-"},{"1","-1"}) // bad initial state && match_expectation(type, {"1","e-"}, {"g","1","Wm"}) // bad initial state && match_expectation(type, {"h","g"}, {"g","g"}) // bad initial state && match_expectation(type, {"-1","g"}, {"-1","1","1"}) // bad qqx && match_expectation(type, {"-1","g"}, {"1","1","-1"}) // crossing in bad qqx && match_expectation(type, {"-1","g"}, {"-2","1","1","Wp"}) // bad qqx && match_expectation(type, {"1","2"}, {"1","-1","g","g","g","2"}) // bad qqx && match_expectation(type, {"1","2"}, {"1","-1","-2","g","g","2"}) // gluon in bad qqx && match_expectation(type, {"g","g"}, {"-1","2","g","g"}) // wrong back qqx && match_expectation(type, {"g","g"}, {"g","g","2","1"}) // wrong forward qqx && match_expectation(type, {"g","g"}, {"g","-2","1","g"}) // wrong central qqx && match_expectation(type, {"1","g"}, {"1","-2","g","g","Wp"}) // extra quark && match_expectation(type, {"g","1"}, {"g","g","-2","1","Wp"}) // extra quark && match_expectation(type, {"g","1"}, {"g","g","Wp","-2","1"}) // extra quark && match_expectation(type, {"g","1"}, {"g","-2","1","g","Wp"}) // extra quark && match_expectation(type, {"g","g"}, {"g","g","g","-2","1","-1","Wp"}) // extra quark && match_expectation(type, {"1","g"}, {"g","Wp","1","-2","g"}) // extra quark && match_expectation(type, {"g","g"}, {"1","-1","-2","g","g","g","Wp"}) // extra quark ; } // Two boson states, that are currently not implemented bool check_bad_FS(){ auto type{ HEJ::event_type::bad_final_state}; return match_expectation(type, {"g","g"}, {"g","h","h","g"}) && match_expectation(type, {"g","g"}, {"h","g","h","g"}) && match_expectation(type, {"g","-1"}, {"g","h","Wp","-2"}) && match_expectation(type, {"-3","-1"},{"-4","g","Wp","Wp","-2"}) && match_expectation(type, {"-4","-1"},{"-3","Wp","g","Wm","-2"}) && match_expectation(type, {"-4","-1"},{"g","-3","Wp","Wm","-2"}) && match_expectation(type, {"-4","-1"},{"-4","g","11","-11","-2"}) && match_expectation(type, {"-4","-1"},{"-4","g","-13","g","-2"}) && match_expectation(type, {"3","-2"}, {"Wp","3","Wm","g","g","g","-2"}, -13) ; } // not 2 jets bool check_not_2_jets(){ auto type{ HEJ::event_type::no_2_jets}; return match_expectation(type, {"g","g"}, {}) && match_expectation(type, {"1","-1"}, {}) && match_expectation(type, {"g","-1"}, {"-1"}) && match_expectation(type, {"g","g"}, {"g"}) ; } // not implemented processes bool check_not_implemented(){ return check_fkl(false) && check_uno(false) && check_extremal_qqx(false) && check_central_qqx(false); } } int main() { // tests for "no false negatives" // i.e. all HEJ-configurations get classified correctly if(!check_fkl()) return EXIT_FAILURE; if(!check_uno()) return EXIT_FAILURE; if(!check_extremal_qqx()) return EXIT_FAILURE; if(!check_central_qqx()) return EXIT_FAILURE; // test for "no false positive" // i.e. non-resummable gives non-resummable if(!check_non_resummable()) return EXIT_FAILURE; if(!check_bad_FS()) return EXIT_FAILURE; if(!check_not_2_jets()) return EXIT_FAILURE; if(!check_not_implemented()) return EXIT_FAILURE; return EXIT_SUCCESS; } diff --git a/t/test_classify_ref.cc b/t/test_classify_ref.cc index 6e08432..fd11a46 100644 --- a/t/test_classify_ref.cc +++ b/t/test_classify_ref.cc @@ -1,78 +1,77 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #include "hej_test.hh" #include <cstdlib> #include <fstream> #include <iostream> #include <string> #include <fastjet/JetDefinition.hh> #include "HEJ/event_types.hh" #include "HEJ/Event.hh" #include "HEJ/EventReader.hh" namespace { // this is deliberately chosen bigger than in the generation, // to cluster multiple partons in one jet constexpr double min_jet_pt = 40.; const fastjet::JetDefinition jet_def{fastjet::kt_algorithm, 0.6}; } int main(int argn, char** argv) { if(argn != 3 && argn != 4){ std::cerr << "Usage: " << argv[0] << " reference_classification input_file.lhe\n"; return EXIT_FAILURE; } bool OUTPUT_MODE = false; if(argn == 4 && std::string("OUTPUT")==std::string(argv[3])) OUTPUT_MODE = true; std::fstream ref_file; if ( OUTPUT_MODE ) { std::cout << "_______________________USING OUTPUT MODE!_______________________" << std::endl; ref_file.open(argv[1], std::fstream::out); } else { ref_file.open(argv[1], std::fstream::in); } auto reader{ HEJ::make_reader(argv[2]) }; std::size_t nevent{0}; while(reader->read_event()){ ++nevent; // We don't need to test forever, the first "few" are enough if(nevent>4000) break; HEJ::Event::EventData data{ reader->hepeup() }; shuffle_particles(data); const HEJ::Event ev{ data.cluster( jet_def, min_jet_pt ) }; if ( OUTPUT_MODE ) { ref_file << ev.type() << std::endl; } else { std::string line; if(!std::getline(ref_file,line)) break; const auto expected{static_cast<HEJ::event_type::EventType>(std::stoi(line))}; if(ev.type() != expected){ - using HEJ::event_type::name; std::cerr << "wrong classification of event " << nevent << ":\n" << ev << "classified as " << name(ev.type()) << ", expected " << name(expected) << "\nJet indices: "; for(auto const & idx: ev.particle_jet_indices()) std::cerr << idx << " "; std::cerr << "\n"; return EXIT_FAILURE; } } } return EXIT_SUCCESS; }