diff --git a/FixedOrderGen/include/PhaseSpacePoint.hh b/FixedOrderGen/include/PhaseSpacePoint.hh index 6d2e3be..330987d 100644 --- a/FixedOrderGen/include/PhaseSpacePoint.hh +++ b/FixedOrderGen/include/PhaseSpacePoint.hh @@ -1,215 +1,216 @@ /** \file PhaseSpacePoint.hh * \brief Contains the PhaseSpacePoint Class */ #pragma once #include #include #include "HEJ/utility.hh" #include "HEJ/Event.hh" #include "HEJ/PDG_codes.hh" #include "HEJ/PDF.hh" #include "HEJ/RNG.hh" #include "Status.hh" #include "JetParameters.hh" #include "ParticleProperties.hh" namespace HEJFOG{ class Process; using HEJ::Particle; //! A point in resummation phase space class PhaseSpacePoint{ public: //! Default PhaseSpacePoint Constructor PhaseSpacePoint() = default; //! PhaseSpacePoint Constructor /** * @param proc The process to generate * @param jet_properties Jet defintion & cuts * @param pdf The pdf set (used for sampling) * @param E_beam Energie of the beam * @param subl_chance Chance to turn a potentially unordered * emission into an actual one * @param subl_channels Possible subleading channels. * see HEJFOG::Subleading * @param particle_properties Properties of producted boson * * Initially, only FKL phase space points are generated. subl_chance gives * the change of turning one emissions into a subleading configuration, * i.e. either unordered or central quark/anti-quark pair. Unordered * emissions require that the most extremal emission in any direction is * a quark or anti-quark and the next emission is a gluon. Quark/anti-quark * pairs are only generated for W processes. At most one subleading * emission will be generated in this way. */ PhaseSpacePoint( Process const & proc, JetParameters const & jet_properties, HEJ::PDF & pdf, double E_beam, double subl_chance, unsigned int subl_channels, ParticlesPropMap const & particles_properties, HEJ::RNG & ran ); //! Get Weight Function /** * @returns Weight of Event */ double weight() const{ return weight_; } Status status() const{ return status_; } //! Get Incoming Function /** * @returns Incoming Particles */ std::array const & incoming() const{ return incoming_; } //! Get Outgoing Function /** * @returns Outgoing Particles */ std::vector const & outgoing() const{ return outgoing_; } std::unordered_map> const & decays() const{ return decays_; } private: /** * \internal * \brief Generate LO parton momentum * * @param count Number of partons to generate * @param is_pure_jets If true ensures momentum conservation in x and y * @param jet_param Jet properties to fulfil * @param max_pt max allowed pt for a parton (typically E_CMS) * @param ran Random Number Generator * * @returns Momentum of partons * * Ensures that each parton is in its own jet. * Generation is independent of parton flavour. Output is sorted in rapidity. */ std::vector gen_LO_partons( int count, bool is_pure_jets, JetParameters const & jet_param, double max_pt, HEJ::RNG & ran ); Particle gen_boson( HEJ::ParticleID bosonid, double mass, double width, HEJ::RNG & ran ); template fastjet::PseudoJet gen_last_momentum( ParticleMomenta const & other_momenta, double mass_square, double y ) const; bool jets_ok( std::vector const & Born_jets, std::vector const & partons ) const; /** * \internal * \brief Generate incoming partons according to the PDF * * @param uf Scale used in the PDF */ void reconstruct_incoming( - Process const & proc, + Process const & proc, unsigned int subl_channels, HEJ::PDF & pdf, double E_beam, double uf, HEJ::RNG & ran ); /** * @internal * @brief Returns list of all allowed initial states partons */ std::array,2> filter_partons( - Process const & proc,HEJ::RNG & ran + Process const & proc, unsigned int const subl_channels, + HEJ::RNG & ran ); HEJ::ParticleID generate_incoming_id( size_t beam_idx, double x, double uf, HEJ::PDF & pdf, std::bitset<11> allowed_partons, HEJ::RNG & ran ); bool momentum_conserved(double ep) const; HEJ::Particle const & most_backward_FKL( std::vector const & partons ) const; HEJ::Particle const & most_forward_FKL( std::vector const & partons ) const; HEJ::Particle & most_backward_FKL(std::vector & partons) const; HEJ::Particle & most_forward_FKL(std::vector & partons) const; bool extremal_FKL_ok( std::vector const & partons ) const; double random_normal(double stddev, HEJ::RNG & ran); /** * @internal * @brief Turns a FKL configuration into a subleading one * * @param chance Change to switch to subleading configuration * @param channels Allowed channels for subleading process * @param proc Process to decide which subleading * configurations are allowed * * With a chance of "chance" the FKL configuration is either turned into * a unordered configuration or, for A/W/Z bosons, a configuration with * a central quark/anti-quark pair. */ void maybe_turn_to_subl(double chance, unsigned int channels, Process const & proc, HEJ::RNG & ran); void turn_to_uno(bool can_be_uno_backward, bool can_be_uno_forward, HEJ::RNG & ran); void turn_to_qqx(bool allow_stange, HEJ::RNG & ran); std::vector decay_boson( HEJ::Particle const & parent, std::vector const & decays, HEJ::RNG & ran ); /// @brief setup outgoing partons to ensure correct coupling to boson void couple_boson(HEJ::ParticleID boson, HEJ::RNG & ran); Decay select_decay_channel( std::vector const & decays, HEJ::RNG & ran ); double gen_hard_pt( int np, double ptmin, double ptmax, double y, HEJ::RNG & ran ); double gen_soft_pt(int np, double ptmax, HEJ::RNG & ran); double gen_parton_pt( int count, JetParameters const & jet_param, double ptmax, double y, HEJ::RNG & ran ); double weight_; Status status_; std::array incoming_; std::vector outgoing_; //! Particle decays in the format {outgoing index, decay products} std::unordered_map> decays_; }; HEJ::UnclusteredEvent to_UnclusteredEvent(PhaseSpacePoint const & psp); } diff --git a/FixedOrderGen/include/Subleading.hh b/FixedOrderGen/include/Subleading.hh index 0edc565..57ea71a 100644 --- a/FixedOrderGen/include/Subleading.hh +++ b/FixedOrderGen/include/Subleading.hh @@ -1,14 +1,15 @@ #pragma once namespace HEJFOG{ /** * Bit position of different subleading channels * e.g. (unsigned int) 1 => only unordered */ enum Subleading: unsigned { none = 0u, all = ~0u, uno = 1u, - unordered = uno + unordered = uno, + qqx = 2u }; } diff --git a/FixedOrderGen/src/PhaseSpacePoint.cc b/FixedOrderGen/src/PhaseSpacePoint.cc index 0e984e7..b471662 100644 --- a/FixedOrderGen/src/PhaseSpacePoint.cc +++ b/FixedOrderGen/src/PhaseSpacePoint.cc @@ -1,650 +1,665 @@ #include "PhaseSpacePoint.hh" #include #include #include "HEJ/Constants.hh" #include "HEJ/kinematics.hh" #include "HEJ/utility.hh" #include "HEJ/exceptions.hh" #include "Process.hh" #include "Subleading.hh" #include #include using namespace HEJ; namespace HEJFOG{ static_assert( std::numeric_limits::has_quiet_NaN, "no quiet NaN for double" ); constexpr double NaN = std::numeric_limits::quiet_NaN(); HEJ::UnclusteredEvent to_UnclusteredEvent(PhaseSpacePoint const & psp){ HEJ::UnclusteredEvent result; result.incoming = psp.incoming(); std::sort( begin(result.incoming), end(result.incoming), [](Particle o1, Particle o2){return o1.p.pz()= 2); result.decays = psp.decays(); result.central.mur = NaN; result.central.muf = NaN; result.central.weight = psp.weight(); return result; } namespace{ bool can_swap_to_uno( HEJ::Particle const & p1, HEJ::Particle const & p2 ){ return is_parton(p1) && p1.type != pid::gluon && p2.type == pid::gluon; } size_t count_gluons(std::vector::const_iterator first, std::vector::const_iterator last){ return std::count_if(first, last, [](Particle const & p) {return p.type == pid::gluon;}); } /** assumes FKL configurations between first and last, * else there can be a quark in a non-extreme position * e.g. uno configuration gqg would pass */ bool can_change_to_qqx( std::vector::const_iterator first, std::vector::const_iterator last){ return 1 < count_gluons(first,last); } bool is_AWZ_proccess(Process const & proc){ return proc.boson && is_AWZ_boson(*proc.boson); } bool is_up_type(Particle const & part){ return HEJ::is_anyquark(part) && !(abs(part.type)%2); } bool is_down_type(Particle const & part){ return HEJ::is_anyquark(part) && abs(part.type)%2; } /// true iff parton can couple to a W bool can_couple_to_W(Particle const & part, int const sign_W){ return abs(part.type)<5 && ( (sign_W*part.type > 0 && is_up_type(part)) || (sign_W*part.type < 0 && is_down_type(part)) ); } } void PhaseSpacePoint::maybe_turn_to_subl( double chance, unsigned int const channels, Process const & proc, HEJ::RNG & ran ){ if(proc.njets <= 2) return; assert(outgoing_.size() >= 2); // decide what kind of subleading process is allowed bool allow_uno = false; bool allow_strange = true; const size_t nout = outgoing_.size(); - const bool can_be_uno_backward = channels&Subleading::uno?can_swap_to_uno( - outgoing_[0], outgoing_[1] - ):false; - const bool can_be_uno_forward = channels&Subleading::uno?can_swap_to_uno( - outgoing_[nout-1], outgoing_[nout-2] - ):false; + const bool can_be_uno_backward = channels&Subleading::uno? + can_swap_to_uno(outgoing_[0], outgoing_[1]):false; + const bool can_be_uno_forward = channels&Subleading::uno? + can_swap_to_uno(outgoing_[nout-1], outgoing_[nout-2]):false; allow_uno = can_be_uno_backward || can_be_uno_forward; bool allow_qqx = false; if(is_AWZ_proccess(proc)) { - allow_qqx = can_change_to_qqx(outgoing_.cbegin(), outgoing_.cend()); + allow_qqx = channels&Subleading::qqx? + can_change_to_qqx(outgoing_.cbegin(), outgoing_.cend()):false; const int sign_W = *proc.boson>0?1:-1; if(std::none_of(outgoing_.cbegin(), outgoing_.cend(), [sign_W](Particle const & p){ return can_couple_to_W(p, sign_W);})) { + if(!(channels&Subleading::qqx)) + throw std::logic_error( + "Invalid configuration, require qqx pair but channel forbidden"); // enforce qqx if A/W/Z can't couple somewhere else allow_uno = false; chance = 1.; // strange not allowed for W if(abs(*proc.boson)== pid::Wp) allow_strange = false; } } if(!allow_uno && !allow_qqx) return; if(ran.flat() < chance){ weight_ /= chance; if(allow_uno && !allow_qqx){ turn_to_uno(can_be_uno_backward, can_be_uno_forward, ran); } else if (!allow_uno && allow_qqx) { turn_to_qqx(allow_strange, ran); } else { assert( allow_uno && allow_qqx); if(ran.flat() < 0.5) turn_to_uno(can_be_uno_backward, can_be_uno_forward, ran); else turn_to_qqx(allow_strange, ran); weight_ *= 2.; } } else weight_ /= 1 - chance; } void PhaseSpacePoint::turn_to_uno( const bool can_be_uno_backward, const bool can_be_uno_forward, HEJ::RNG & ran ){ if(!can_be_uno_backward && !can_be_uno_forward) return; const size_t nout = outgoing_.size(); if(can_be_uno_backward && can_be_uno_forward){ if(ran.flat() < 0.5){ std::swap(outgoing_[0].type, outgoing_[1].type); } else { std::swap(outgoing_[nout-1].type, outgoing_[nout-2].type); } weight_ *= 2.; } else if(can_be_uno_backward){ std::swap(outgoing_[0].type, outgoing_[1].type); } else { assert(can_be_uno_forward); std::swap(outgoing_[nout-1].type, outgoing_[nout-2].type); } } void PhaseSpacePoint::turn_to_qqx(const bool allow_stange, HEJ::RNG & ran){ /// find first and last gluon in FKL chain auto first = std::find_if(outgoing_.begin(), outgoing_.end(), [](Particle const & p){return p.type == pid::gluon;}); std::vector FKL_gluons; for(auto p = first; ptype = ParticleID(flavour); FKL_gluons[idx+1]->type = ParticleID(-flavour); } template fastjet::PseudoJet PhaseSpacePoint::gen_last_momentum( ParticleMomenta const & other_momenta, const double mass_square, const double y ) const { std::array pt{0.,0.}; for (auto const & p: other_momenta) { pt[0]-= p.px(); pt[1]-= p.py(); } const double mperp = sqrt(pt[0]*pt[0]+pt[1]*pt[1]+mass_square); const double pz=mperp*sinh(y); const double E=mperp*cosh(y); return {pt[0], pt[1], pz, E}; } PhaseSpacePoint::PhaseSpacePoint( Process const & proc, JetParameters const & jet_param, HEJ::PDF & pdf, double E_beam, double const subl_chance, unsigned int const subl_channels, ParticlesPropMap const & particles_properties, HEJ::RNG & ran ) { assert(proc.njets >= 2); if(proc.boson && particles_properties.find(*(proc.boson)) == particles_properties.end()) throw HEJ::missing_option("Boson " +std::to_string(*(proc.boson))+" can't be generated: missing properties"); status_ = good; weight_ = 1; const int nout = proc.njets + (proc.boson?1:0); outgoing_.reserve(nout); // generate parton momenta const bool is_pure_jets = !proc.boson; auto partons = gen_LO_partons( proc.njets, is_pure_jets, jet_param, E_beam, ran ); // pre fill flavour with gluons for(auto&& p_out: partons) { outgoing_.emplace_back(Particle{pid::gluon, std::move(p_out)}); } if(status_ != good) return; // create boson if(proc.boson){ const auto & boson_prop = particles_properties.at(*proc.boson); auto boson(gen_boson(*proc.boson, boson_prop.mass, boson_prop.width, ran)); const auto pos = std::upper_bound( begin(outgoing_),end(outgoing_),boson,rapidity_less{} ); outgoing_.insert(pos, std::move(boson)); if(! boson_prop.decays.empty()){ const size_t boson_idx = std::distance(begin(outgoing_), pos); decays_.emplace( boson_idx, decay_boson(outgoing_[boson_idx], boson_prop.decays, ran) ); } } // normalisation of momentum-conserving delta function weight_ *= pow(2*M_PI, 4); - reconstruct_incoming(proc, pdf, E_beam, jet_param.min_pt, ran); + reconstruct_incoming(proc, subl_channels, pdf,E_beam,jet_param.min_pt, ran); if(status_ != good) return; // set outgoing states most_backward_FKL(outgoing_).type = incoming_[0].type; most_forward_FKL(outgoing_).type = incoming_[1].type; maybe_turn_to_subl(subl_chance, subl_channels, proc, ran); if(proc.boson) couple_boson(*proc.boson, ran); } double PhaseSpacePoint::gen_hard_pt( int np , double ptmin, double ptmax, double y, HEJ::RNG & ran ) { // heuristic parameters for pt sampling const double ptpar = ptmin + np/5.; const double arg_small_y = atan((ptmax - ptmin)/ptpar); const double y_cut = 3.; const double r1 = ran.flat(); if(y < y_cut){ const double pt = ptmin + ptpar*tan(r1*arg_small_y); const double temp = cos(r1*arg_small_y); weight_ *= pt*ptpar*arg_small_y/(temp*temp); return pt; } const double ptpar2 = ptpar/(1 + 5*(y-y_cut)); const double temp = 1. - std::exp((ptmin-ptmax)/ptpar2); const double pt = ptmin - ptpar2*std::log(1-r1*temp); weight_ *= pt*ptpar2*temp/(1-r1*temp); return pt; } double PhaseSpacePoint::gen_soft_pt(int np, double max_pt, HEJ::RNG & ran) { constexpr double ptpar = 4.; const double r = ran.flat(); const double pt = max_pt + ptpar/np*std::log(r); weight_ *= pt*ptpar/(np*r); return pt; } double PhaseSpacePoint::gen_parton_pt( int count, JetParameters const & jet_param, double max_pt, double y, HEJ::RNG & ran ) { constexpr double p_small_pt = 0.02; if(! jet_param.peak_pt) { return gen_hard_pt(count, jet_param.min_pt, max_pt, y, ran); } const double r = ran.flat(); if(r > p_small_pt) { weight_ /= 1. - p_small_pt; return gen_hard_pt(count, *jet_param.peak_pt, max_pt, y, ran); } weight_ /= p_small_pt; const double pt = gen_soft_pt(count, *jet_param.peak_pt, ran); if(pt < jet_param.min_pt) { weight_=0.0; status_ = not_enough_jets; return jet_param.min_pt; } return pt; } std::vector PhaseSpacePoint::gen_LO_partons( int np, bool is_pure_jets, JetParameters const & jet_param, double max_pt, HEJ::RNG & ran ){ if (np<2) throw std::invalid_argument{"Not enough partons in gen_LO_partons"}; weight_ /= pow(16.*pow(M_PI,3),np); weight_ /= std::tgamma(np+1); //remove rapidity ordering std::vector partons; partons.reserve(np); for(int i = 0; i < np; ++i){ const double y = -jet_param.max_y + 2*jet_param.max_y*ran.flat(); weight_ *= 2*jet_param.max_y; const bool is_last_parton = i+1 == np; if(is_pure_jets && is_last_parton) { constexpr double parton_mass_sq = 0.; partons.emplace_back(gen_last_momentum(partons, parton_mass_sq, y)); break; } const double phi = 2*M_PI*ran.flat(); weight_ *= 2.0*M_PI; const double pt = gen_parton_pt(np, jet_param, max_pt, y, ran); if(weight_ == 0.0) return {}; partons.emplace_back(fastjet::PtYPhiM(pt, y, phi)); assert(jet_param.min_pt <= partons[i].pt()); assert(partons[i].pt() <= max_pt+1e-5); } // Need to check that at LO, the number of jets = number of partons; fastjet::ClusterSequence cs(partons, jet_param.def); auto cluster_jets=cs.inclusive_jets(jet_param.min_pt); if (cluster_jets.size()!=unsigned(np)){ weight_=0.0; status_ = not_enough_jets; return {}; } std::sort(begin(partons), end(partons), rapidity_less{}); return partons; } Particle PhaseSpacePoint::gen_boson( HEJ::ParticleID bosonid, double mass, double width, HEJ::RNG & ran ){ // Usual phase space measure weight_ /= 16.*pow(M_PI, 3); // Generate a y Gaussian distributed around 0 /// @TODO: magic number only for Higgs /// @TODO better sampling for W const double y = random_normal(1.6, ran); const double r1 = ran.flat(); const double sH = mass*( mass + width*tan(M_PI/2.*r1 + (r1-1.)*atan(mass/width)) ); auto p = gen_last_momentum(outgoing_, sH, y); return Particle{bosonid, std::move(p)}; } Particle const & PhaseSpacePoint::most_backward_FKL( std::vector const & partons ) const{ if(!HEJ::is_parton(partons[0])) return partons[1]; return partons[0]; } Particle const & PhaseSpacePoint::most_forward_FKL( std::vector const & partons ) const{ const size_t last_idx = partons.size() - 1; if(!HEJ::is_parton(partons[last_idx])) return partons[last_idx-1]; return partons[last_idx]; } Particle & PhaseSpacePoint::most_backward_FKL( std::vector & partons ) const{ if(!HEJ::is_parton(partons[0])) return partons[1]; return partons[0]; } Particle & PhaseSpacePoint::most_forward_FKL( std::vector & partons ) const{ const size_t last_idx = partons.size() - 1; if(!HEJ::is_parton(partons[last_idx])) return partons[last_idx-1]; return partons[last_idx]; } namespace { /// partons are ordered: even = anti, 0 = gluon ParticleID index_to_pid(size_t i){ if(!i) return pid::gluon; return static_cast(i%2?(i+1)/2:-i/2); } /// partons are ordered: even = anti, 0 = gluon size_t pid_to_index(ParticleID id){ if(id==pid::gluon) return 0; return id>0?id*2-1:abs(id)*2; } std::bitset<11> init_allowed(ParticleID const id){ if(abs(id) == pid::proton) return ~0; std::bitset<11> out = 0; if(is_parton(id)) out[pid_to_index(id)] = 1; return out; } /// decides which "index" (see index_to_pid) are allowed for process std::bitset<11> allowed_quarks(ParticleID const boson){ std::bitset<11> allowed = ~0; if(abs(boson) == pid::Wp){ // special case W: // Wp: anti-down or up-type quark, no b/t -> 0001100110(1) = 205 // Wm: down or anti-up-type quark, no b/t -> 0010011001(1) = 307 allowed = boson>0?205:307; } return allowed; } } + /** + * checks which partons are allowed as initial state: + * 1. only allow what is given in the Runcard (p -> all) + * 2. A/W/Z require something to couple to + * a) no qqx => no incoming gluon + * b) 2j => no incoming gluon + * c) 3j => can couple OR is gluon => 2 gluons become qqx later + */ std::array,2> PhaseSpacePoint::filter_partons( - Process const & proc, HEJ::RNG & ran + Process const & proc, unsigned int const subl_channels, HEJ::RNG & ran ){ std::array,2> allowed_partons{ init_allowed(proc.incoming[0]), init_allowed(proc.incoming[1]) }; - // special case A/W/Z + 2/3 jets - if(is_AWZ_proccess(proc) && (proc.njets < 4)){ + bool const allow_qqx = subl_channels&Subleading::qqx; + // special case A/W/Z + if(is_AWZ_proccess(proc) && ((proc.njets < 4) || !allow_qqx)){ + // all possible incoming states auto allowed(allowed_quarks(*proc.boson)); - if(proc.njets == 2) allowed[0]=0; // no initial gluon for 2j + if(proc.njets == 2 || !allow_qqx) allowed[0]=0; + + // possible states per leg std::array,2> const maybe_partons{ allowed_partons[0]&allowed, allowed_partons[1]&allowed}; if(maybe_partons[0].any() && maybe_partons[1].any()){ // two options to get allowed initial state => choose one at random const size_t idx = ran.flat() < 0.5; allowed_partons[idx] = maybe_partons[idx]; } else if(maybe_partons[0].any()) { // only first possible => choose allowed_partons[0] = maybe_partons[0]; } else if(maybe_partons[1].any()) { // only second possible => choose allowed_partons[1] = maybe_partons[1]; } else{ throw std::invalid_argument{"Incoming state not allowed."}; } } return allowed_partons; } void PhaseSpacePoint::reconstruct_incoming( - Process const & proc, + Process const & proc, unsigned int const subl_channels, HEJ::PDF & pdf, double E_beam, double uf, HEJ::RNG & ran ){ std::tie(incoming_[0].p, incoming_[1].p) = incoming_momenta(outgoing_); // calculate xa, xb const double sqrts=2*E_beam; const double xa=(incoming_[0].p.e()-incoming_[0].p.pz())/sqrts; const double xb=(incoming_[1].p.e()+incoming_[1].p.pz())/sqrts; // abort if phase space point is outside of collider energy reach if (xa>1. || xb>1.){ weight_=0; status_ = too_much_energy; return; } // pick pdfs /** @TODO * ufa, ufb don't correspond to our final scale choice. * The HEJ scale generators currently expect a full event as input, * so fixing this is not completely trivial */ auto const & ids = proc.incoming; - std::array,2> allowed_partons(filter_partons(proc, ran)); + std::array,2> allowed_partons( + filter_partons(proc, subl_channels, ran)); for(size_t i = 0; i < 2; ++i){ if(ids[i] == pid::proton || ids[i] == pid::p_bar){ incoming_[i].type = generate_incoming_id(i, i?xb:xa, uf, pdf, allowed_partons[i], ran); } else { assert(allowed_partons[i][pid_to_index(ids[i])]); incoming_[i].type = ids[i]; } } assert(momentum_conserved(1e-7)); } HEJ::ParticleID PhaseSpacePoint::generate_incoming_id( size_t const beam_idx, double const x, double const uf, HEJ::PDF & pdf, std::bitset<11> allowed_partons, HEJ::RNG & ran ){ std::array pdf_wt; pdf_wt[0] = allowed_partons[0]?fabs(pdf.pdfpt(beam_idx,x,uf,pid::gluon)):0.; double pdftot = pdf_wt[0]; for(size_t i = 1; i < pdf_wt.size(); ++i){ pdf_wt[i] = allowed_partons[i]?4./9.*fabs(pdf.pdfpt(beam_idx,x,uf,index_to_pid(i))):0; pdftot += pdf_wt[i]; } const double r1 = pdftot * ran.flat(); double sum = 0; for(size_t i=0; i < pdf_wt.size(); ++i){ if (r1 < (sum+=pdf_wt[i])){ weight_*= pdftot/pdf_wt[i]; return index_to_pid(i); } } std::cerr << "Error in choosing incoming parton: "<0?1:-1; std::vector allowed_parts; for(auto & part: outgoing_){ // Wp -> up OR anti-down, Wm -> anti-up OR down, no bottom if ( can_couple_to_W(part, sign_W) ) allowed_parts.push_back(&part); } if(allowed_parts.size() == 0){ - throw std::logic_error{"Found not parton for coupling to boson"}; + throw std::logic_error{"Found no parton for coupling with boson"}; } // select one and flip it size_t idx = 0; if(allowed_parts.size() > 1){ /// @TODO more efficient sampling /// old code: probability[i] = exp(parton[i].y - W.y) idx = floor(ran.flat()*allowed_parts.size()); weight_ *= allowed_parts.size(); } allowed_parts[idx]->type = static_cast( allowed_parts[idx]->type - sign_W ); } double PhaseSpacePoint::random_normal( double stddev, HEJ::RNG & ran ){ const double r1 = ran.flat(); const double r2 = ran.flat(); const double lninvr1 = -log(r1); const double result = stddev*sqrt(2.*lninvr1)*cos(2.*M_PI*r2); weight_ *= exp(result*result/(2*stddev*stddev))*sqrt(2.*M_PI)*stddev; return result; } bool PhaseSpacePoint::momentum_conserved(double ep) const{ fastjet::PseudoJet diff; for(auto const & in: incoming()) diff += in.p; for(auto const & out: outgoing()) diff -= out.p; return nearby_ep(diff, fastjet::PseudoJet{}, ep); } Decay PhaseSpacePoint::select_decay_channel( std::vector const & decays, HEJ::RNG & ran ){ double br_total = 0.; for(auto const & decay: decays) br_total += decay.branching_ratio; // adjust weight // this is given by (channel branching ratio)/(chance to pick channel) // where (chance to pick channel) = // (channel branching ratio)/(total branching ratio) weight_ *= br_total; const double r1 = br_total*ran.flat(); double br_sum = 0.; for(auto const & decay: decays){ br_sum += decay.branching_ratio; if(r1 < br_sum) return decay; } throw std::logic_error{"unreachable"}; } std::vector PhaseSpacePoint::decay_boson( HEJ::Particle const & parent, std::vector const & decays, HEJ::RNG & ran ){ const auto channel = select_decay_channel(decays, ran); if(channel.products.size() != 2){ throw HEJ::not_implemented{ "only decays into two particles are implemented" }; } std::vector decay_products(channel.products.size()); for(size_t i = 0; i < channel.products.size(); ++i){ decay_products[i].type = channel.products[i]; } // choose polar and azimuth angle in parent rest frame const double E = parent.m()/2; const double theta = 2.*M_PI*ran.flat(); const double cos_phi = 2.*ran.flat()-1.; const double sin_phi = sqrt(1. - cos_phi*cos_phi); // Know 0 < phi < pi const double px = E*cos(theta)*sin_phi; const double py = E*sin(theta)*sin_phi; const double pz = E*cos_phi; decay_products[0].p.reset(px, py, pz, E); decay_products[1].p.reset(-px, -py, -pz, E); for(auto & particle: decay_products) particle.p.boost(parent.p); return decay_products; } } diff --git a/FixedOrderGen/src/config.cc b/FixedOrderGen/src/config.cc index 7fdca38..42db1eb 100644 --- a/FixedOrderGen/src/config.cc +++ b/FixedOrderGen/src/config.cc @@ -1,358 +1,360 @@ #include "config.hh" #include #include "Subleading.hh" #include "HEJ/config.hh" #include "HEJ/YAMLreader.hh" namespace HEJFOG{ using HEJ::set_from_yaml; using HEJ::set_from_yaml_if_defined; namespace{ //! Get YAML tree of supported options /** * The configuration file is checked against this tree of options * in assert_all_options_known. */ YAML::Node const & get_supported_options(){ const static YAML::Node supported = [](){ YAML::Node supported; static const auto opts = { "process", "events", "subleading fraction","subleading channels", "scales", "scale factors", "max scale ratio", "pdf", "event output", "analysis", "import scales" }; // add subnodes to "supported" - the assigned value is irrelevant for(auto && opt: opts) supported[opt] = ""; for(auto && jet_opt: {"min pt", "peak pt", "algorithm", "R", "max rapidity"}){ supported["jets"][jet_opt] = ""; } for(auto && particle_type: {"Higgs", "Wp", "Wm", "Z"}){ for(auto && particle_opt: {"mass", "width"}){ supported["particle properties"][particle_type][particle_opt] = ""; } supported["particle properties"][particle_type]["decays"]["into"] = ""; supported["particle properties"][particle_type]["decays"]["branching ratio"] = ""; } for(auto && opt: {"mt", "use impact factors", "include bottom", "mb"}){ supported["Higgs coupling"][opt] = ""; } for(auto && beam_opt: {"energy", "particles"}){ supported["beam"][beam_opt] = ""; } for(auto && unweight_opt: {"sample size", "max deviation"}){ supported["unweight"][unweight_opt] = ""; } for(auto && opt: {"name", "seed"}){ supported["random generator"][opt] = ""; } return supported; }(); return supported; } JetParameters get_jet_parameters( YAML::Node const & node, std::string const & entry ){ const auto p = HEJ::get_jet_parameters(node, entry); JetParameters result; result.def = p.def; result.min_pt = p.min_pt; set_from_yaml(result.max_y, node, entry, "max rapidity"); set_from_yaml_if_defined(result.peak_pt, node, entry, "peak pt"); return result; } Beam get_Beam( YAML::Node const & node, std::string const & entry ){ Beam beam; std::vector particles; set_from_yaml(beam.energy, node, entry, "energy"); set_from_yaml_if_defined(particles, node, entry, "particles"); if(! particles.empty()){ for(HEJ::ParticleID particle: particles){ if(particle != HEJ::pid::p && particle != HEJ::pid::p_bar){ throw std::invalid_argument{ "Unsupported value in option " + entry + ": particles:" " only proton ('p') and antiproton ('p_bar') beams are supported" }; } } if(particles.size() != 2){ throw std::invalid_argument{"Not exactly two beam particles"}; } beam.particles.front() = particles.front(); beam.particles.back() = particles.back(); } return beam; } std::vector split( std::string const & str, std::string const & delims ){ std::vector result; for(size_t begin, end = 0; end != str.npos;){ begin = str.find_first_not_of(delims, end); if(begin == str.npos) break; end = str.find_first_of(delims, begin + 1); result.emplace_back(str.substr(begin, end - begin)); } return result; } std::invalid_argument invalid_incoming(std::string const & what){ return std::invalid_argument{ "Incoming particle type " + what + " not supported," " incoming particles have to be 'p', 'p_bar' or partons" }; } std::invalid_argument invalid_outgoing(std::string const & what){ return std::invalid_argument{ "Outgoing particle type " + what + " not supported," " outgoing particles have to be 'j', 'photon', 'W+', 'W-', 'Z', 'H'" }; } Process get_process( YAML::Node const & node, std::string const & entry ){ Process result; std::string process_string; set_from_yaml(process_string, node, entry); assert(! process_string.empty()); const auto particles = split(process_string, " \n\t\v=>"); if(particles.size() < 3){ throw std::invalid_argument{ "Bad format in option process: '" + process_string + "', expected format is 'in1 in2 => out1 ...'" }; } result.incoming.front() = HEJ::to_ParticleID(particles[0]); result.incoming.back() = HEJ::to_ParticleID(particles[1]); for(size_t i = 0; i < result.incoming.size(); ++i){ const HEJ::ParticleID in = result.incoming[i]; if( in != HEJ::pid::proton && in != HEJ::pid::p_bar && !HEJ::is_parton(in) ){ throw invalid_incoming(particles[i]); } } result.njets = 0; for(size_t i = result.incoming.size(); i < particles.size(); ++i){ assert(! particles[i].empty()); if(particles[i] == "j") ++result.njets; else if(std::isdigit(particles[i].front()) && particles[i].back() == 'j') result.njets += std::stoi(particles[i]); else{ const auto pid = HEJ::to_ParticleID(particles[i]); if(!HEJ::is_AWZH_boson(pid)){ throw invalid_outgoing(particles[i]); } if(result.boson){ throw std::invalid_argument{ "More than one outgoing boson is not supported" }; } result.boson = pid; } } if(result.njets < 2){ throw std::invalid_argument{ "Process has to include at least two jets ('j')" }; } return result; } HEJFOG::Subleading to_subleading_channel(YAML::Node const & yaml){ std::string name; using HEJFOG::Subleading; set_from_yaml(name, yaml); if(name == "none") return none; if(name == "all") return all; if(name == "unordered" || name == "uno") return uno; + if(name == "qqx") + return qqx; throw HEJ::unknown_option("Unknown subleading channel '"+name+"'"); } unsigned int get_subleading_channels(YAML::Node const & node){ using YAML::NodeType; using HEJFOG::Subleading; // all channels allowed by default if(!node) return all; switch(node.Type()){ case NodeType::Undefined: return all; case NodeType::Null: return none; case NodeType::Scalar: return to_subleading_channel(node); case NodeType::Map: throw HEJ::invalid_type{"map is not a valid option for subleading channels"}; case NodeType::Sequence: unsigned int channels = HEJFOG::Subleading::none; for(auto && channel_node: node){ channels |= get_subleading_channels(channel_node); } return channels; } throw std::logic_error{"unreachable"}; } Decay get_decay(YAML::Node const & node){ Decay decay; set_from_yaml(decay.products, node, "into"); set_from_yaml(decay.branching_ratio, node, "branching ratio"); return decay; } std::vector get_decays(YAML::Node const & node){ using YAML::NodeType; if(!node) return {}; switch(node.Type()){ case NodeType::Null: case NodeType::Undefined: return {}; case NodeType::Scalar: throw HEJ::invalid_type{"value is not a list of decays"}; case NodeType::Map: return {get_decay(node)}; case NodeType::Sequence: std::vector result; for(auto && decay_str: node){ result.emplace_back(); set_from_yaml(result.back().products, decay_str, "into"); set_from_yaml(result.back().branching_ratio, decay_str, "branching ratio"); } return result; } throw std::logic_error{"unreachable"}; } ParticleProperties get_particle_properties( YAML::Node const & node, std::string const & entry ){ ParticleProperties result; set_from_yaml(result.mass, node, entry, "mass"); set_from_yaml(result.width, node, entry, "width"); try{ result.decays = get_decays(node[entry]["decays"]); } catch(HEJ::missing_option const & ex){ throw HEJ::missing_option{entry + ": decays: " + ex.what()}; } catch(HEJ::invalid_type const & ex){ throw HEJ::invalid_type{entry + ": decays: " + ex.what()}; } return result; } ParticlesPropMap get_all_particles_properties(YAML::Node const & node){ ParticlesPropMap result; using namespace HEJ; // @TODO allow more synonyms if(node["Higgs"]) result[pid::Higgs] = get_particle_properties(node,"Higgs"); if(node["Wp"]) result[pid::Wp] = get_particle_properties(node,"Wp"); if(node["Wm"]) result[pid::Wm] = get_particle_properties(node,"Wm"); if(node["Z"]) result[pid::Z] = get_particle_properties(node,"Z"); return result; } UnweightSettings get_unweight( YAML::Node const & node, std::string const & entry ){ UnweightSettings result; set_from_yaml(result.sample_size, node, entry, "sample size"); if(result.sample_size <= 0){ throw std::invalid_argument{ "negative sample size " + std::to_string(result.sample_size) }; } set_from_yaml(result.max_dev, node, entry, "max deviation"); return result; } Config to_Config(YAML::Node const & yaml){ try{ HEJ::assert_all_options_known(yaml, get_supported_options()); } catch(HEJ::unknown_option const & ex){ throw HEJ::unknown_option{std::string{"Unknown option '"} + ex.what() + "'"}; } Config config; config.process = get_process(yaml, "process"); set_from_yaml(config.events, yaml, "events"); config.jets = get_jet_parameters(yaml, "jets"); config.beam = get_Beam(yaml, "beam"); for(size_t i = 0; i < config.process.incoming.size(); ++i){ const auto & in = config.process.incoming[i]; using namespace HEJ::pid; if( (in == p || in == p_bar) && in != config.beam.particles[i]){ throw std::invalid_argument{ "Particle type of beam " + std::to_string(i+1) + " incompatible" + " with type of incoming particle " + std::to_string(i+1) }; } } set_from_yaml(config.pdf_id, yaml, "pdf"); set_from_yaml(config.subleading_fraction, yaml, "subleading fraction"); if(config.subleading_fraction < 0 || config.subleading_fraction > 1){ throw std::invalid_argument{ "subleading fraction has to be between 0 and 1" }; } if(config.subleading_fraction == 0) config.subleading_channels = Subleading::none; else config.subleading_channels = get_subleading_channels(yaml["subleading channels"]); if(!config.process.boson && config.subleading_channels != Subleading::none) throw HEJ::not_implemented("Subleading processes for pure Jet production not implemented yet"); if(yaml["particle properties"]){ config.particles_properties = get_all_particles_properties( yaml["particle properties"]); } if(config.process.boson && config.particles_properties.find(*(config.process.boson)) == config.particles_properties.end()) throw HEJ::missing_option("Process wants to generate boson " +std::to_string(*(config.process.boson))+", but boson properties are missing"); set_from_yaml_if_defined(config.analysis_parameters, yaml, "analysis"); config.scales = HEJ::to_ScaleConfig(yaml); set_from_yaml_if_defined(config.output, yaml, "event output"); config.rng = HEJ::to_RNGConfig(yaml, "random generator"); config.Higgs_coupling = HEJ::get_Higgs_coupling(yaml, "Higgs coupling"); if(yaml["unweight"]) config.unweight = get_unweight(yaml, "unweight"); return config; } } // namespace anonymous Config load_config(std::string const & config_file){ try{ return to_Config(YAML::LoadFile(config_file)); } catch(...){ std::cerr << "Error reading " << config_file << ":\n "; throw; } } } diff --git a/FixedOrderGen/t/W_nj_classify.cc b/FixedOrderGen/t/W_nj_classify.cc index ed6ba7b..b3cb317 100644 --- a/FixedOrderGen/t/W_nj_classify.cc +++ b/FixedOrderGen/t/W_nj_classify.cc @@ -1,131 +1,177 @@ #ifdef NDEBUG #undef NDEBUG #endif #include #include "JetParameters.hh" #include "ParticleProperties.hh" #include "PhaseSpacePoint.hh" #include "Process.hh" #include "Subleading.hh" #include "HEJ/Event.hh" #include "HEJ/Mixmax.hh" #include "HEJ/PDF.hh" #include "HEJ/utility.hh" using namespace HEJFOG; using namespace HEJ; namespace { void print_psp(PhaseSpacePoint const & psp){ std::cerr << "Process:\n" << psp.incoming()[0].type << " + "<< psp.incoming()[1].type << " -> "; for(auto const & out: psp.outgoing()){ std::cerr << out.type << " "; } std::cerr << "\n"; } void bail_out(PhaseSpacePoint const & psp, std::string msg){ print_psp(psp); throw std::logic_error{msg}; } } int main(){ constexpr size_t n_psp_base = 19375; const JetParameters jet_para{ fastjet::JetDefinition(fastjet::JetAlgorithm::antikt_algorithm, 0.4), 30, 5, 30}; PDF pdf(11000, pid::proton, pid::proton); constexpr double E_cms = 13000.; constexpr double subl_change = 0.8; const ParticlesPropMap boson_prop{ {pid::Wp, {91.1876, 2.085, {Decay{ {pid::e_bar, pid::nu_e}, 1.}} }}, {pid::Wm, {91.1876, 2.085, {Decay{ {pid::e, pid::nu_e_bar}, 1.}} }} }; HEJ::Mixmax ran{}; - constexpr auto subl_channels = Subleading::all; + auto subl_channels = Subleading::all; std::vector allowed_types{event_type::FKL, event_type::unob, event_type::unof, event_type::qqxexb, event_type::qqxexf}; + std::cout << "Wp3j" << std::endl; // Wp3j Process proc {{pid::proton,pid::proton}, 3, pid::Wp}; size_t n_psp = n_psp_base; - std::map type_counter; + std::unordered_map type_counter; for( size_t i = 0; i try again ++n_psp; } } std::cout << "Wp+3j: Took " << n_psp << " to generate " << n_psp_base << " successfully PSP (" << 1.*n_psp/n_psp_base << " trials/PSP)" << std::endl; std::cout << "States by classification:\n"; for(auto const & entry: type_counter){ const double fraction = static_cast(entry.second)/n_psp_base; const int percent = std::round(100*fraction); std::cout << std::left << std::setw(25) << (event_type::names[entry.first] + std::string(":")) << entry.second << " (" << percent << "%)\n"; } for(auto const & t: allowed_types){ if(type_counter[t] < 0.05 * n_psp_base){ std::cerr << "Less than 5% of the events are of type " << event_type::names[t] << std::endl; return EXIT_FAILURE; } } + // Wm3j - only uno + proc = Process{{pid::proton,pid::proton}, 3, pid::Wm}; + n_psp = n_psp_base; + + subl_channels = Subleading::uno; + allowed_types = {event_type::FKL, event_type::unob, event_type::unof}; + type_counter.clear(); + + for( size_t i = 0; i try again + ++n_psp; + } + } + std::cout << "Wm+3j (only uno): Took " << n_psp << " to generate " + << n_psp_base << " successfully PSP (" << 1.*n_psp/n_psp_base << " trials/PSP)" << std::endl; + std::cout << "States by classification:\n"; + for(auto const & entry: type_counter){ + const double fraction = static_cast(entry.second)/n_psp_base; + const int percent = std::round(100*fraction); + std::cout << std::left << std::setw(25) + << (event_type::names[entry.first] + std::string(":")) + << entry.second << " (" << percent << "%)\n"; + + } + for(auto const & t: allowed_types){ + if(type_counter[t] < 0.05 * n_psp_base){ + std::cerr << "Less than 5% of the events are of type " << event_type::names[t] << std::endl; + return EXIT_FAILURE; + } + } + // Wm4j proc = Process{{pid::proton,pid::proton}, 4, pid::Wm}; n_psp = n_psp_base; - allowed_types.push_back(event_type::qqxmid); - for(auto & entry: type_counter) - entry.second = 0; + + subl_channels = Subleading::all; + allowed_types = {event_type::FKL, + event_type::unob, event_type::unof, event_type::qqxexb, event_type::qqxexf, + event_type::qqxmid}; + type_counter.clear(); + for( size_t i = 0; i try again ++n_psp; } } std::cout << "Wm+4j: Took " << n_psp << " to generate " << n_psp_base << " successfully PSP (" << 1.*n_psp/n_psp_base << " trials/PSP)" << std::endl; std::cout << "States by classification:\n"; for(auto const & entry: type_counter){ const double fraction = static_cast(entry.second)/n_psp_base; const int percent = std::round(100*fraction); std::cout << std::left << std::setw(25) << (event_type::names[entry.first] + std::string(":")) << entry.second << " (" << percent << "%)\n"; } for(auto const & t: allowed_types){ if(type_counter[t] < 0.03 * n_psp_base){ std::cerr << "Less than 3% of the events are of type " << event_type::names[t] << std::endl; return EXIT_FAILURE; } } std::cout << "All processes passed." << std::endl; return EXIT_SUCCESS; }