diff --git a/src/MatrixElement.cc b/src/MatrixElement.cc index 629ab4a..ab353ec 100644 --- a/src/MatrixElement.cc +++ b/src/MatrixElement.cc @@ -1,1747 +1,1747 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019 * \copyright GPLv2 or later */ #include "HEJ/MatrixElement.hh" #include <algorithm> #include <assert.h> #include <limits> #include <math.h> #include <stddef.h> #include <unordered_map> #include <utility> #include "CLHEP/Vector/LorentzVector.h" #include "fastjet/ClusterSequence.hh" #include "HEJ/Constants.hh" #include "HEJ/currents.hh" #include "HEJ/PDG_codes.hh" #include "HEJ/event_types.hh" #include "HEJ/Event.hh" #include "HEJ/exceptions.hh" #include "HEJ/Particle.hh" #include "HEJ/utility.hh" namespace HEJ{ double MatrixElement::omega0( double alpha_s, double mur, fastjet::PseudoJet const & q_j ) const { const double lambda = param_.regulator_lambda; const double result = - alpha_s*N_C/M_PI*log(q_j.perp2()/(lambda*lambda)); if(! param_.log_correction) return result; // use alpha_s(sqrt(q_j*lambda)), evolved to mur return ( 1. + alpha_s/(4.*M_PI)*beta0*log(mur*mur/(q_j.perp()*lambda)) )*result; } Weights MatrixElement::operator()( Event const & event ) const { return tree(event)*virtual_corrections(event); } Weights MatrixElement::tree( Event const & event ) const { return tree_param(event)*tree_kin(event); } Weights MatrixElement::tree_param( Event const & event ) const { if(! is_HEJ(event.type())) { return Weights{0., std::vector<double>(event.variations().size(), 0.)}; } Weights result; // only compute once for each renormalisation scale std::unordered_map<double, double> known; result.central = tree_param(event, event.central().mur); known.emplace(event.central().mur, result.central); for(auto const & var: event.variations()) { const auto ME_it = known.find(var.mur); if(ME_it == end(known)) { const double wt = tree_param(event, var.mur); result.variations.emplace_back(wt); known.emplace(var.mur, wt); } else { result.variations.emplace_back(ME_it->second); } } return result; } Weights MatrixElement::virtual_corrections( Event const & event ) const { if(! is_HEJ(event.type())) { return Weights{0., std::vector<double>(event.variations().size(), 0.)}; } Weights result; // only compute once for each renormalisation scale std::unordered_map<double, double> known; result.central = virtual_corrections(event, event.central().mur); known.emplace(event.central().mur, result.central); for(auto const & var: event.variations()) { const auto ME_it = known.find(var.mur); if(ME_it == end(known)) { const double wt = virtual_corrections(event, var.mur); result.variations.emplace_back(wt); known.emplace(var.mur, wt); } else { result.variations.emplace_back(ME_it->second); } } return result; } double MatrixElement::virtual_corrections_W( Event const & event, double mur, Particle const & WBoson ) const{ auto const & in = event.incoming(); const auto partons = filter_partons(event.outgoing()); fastjet::PseudoJet const & pa = in.front().p; #ifndef NDEBUG fastjet::PseudoJet const & pb = in.back().p; double const norm = (in.front().p + in.back().p).E(); #endif assert(std::is_sorted(partons.begin(), partons.end(), rapidity_less{})); assert(partons.size() >= 2); assert(pa.pz() < pb.pz()); fastjet::PseudoJet q = pa - partons[0].p; size_t first_idx = 0; size_t last_idx = partons.size() - 1; bool wc = true; bool wqq = false; // With extremal qqx or unordered gluon outside the extremal // partons then it is not part of the FKL ladder and does not // contribute to the virtual corrections. W emitted from the // most backward leg must be taken into account in t-channel if (event.type() == event_type::FKL) { if (in[0].type != partons[0].type ){ q -= WBoson.p; wc = false; } } else if (event.type() == event_type::unob) { q -= partons[1].p; ++first_idx; if (in[0].type != partons[1].type ){ q -= WBoson.p; wc = false; } } else if (event.type() == event_type::qqxexb) { q -= partons[1].p; ++first_idx; if (abs(partons[0].type) != abs(partons[1].type)){ q -= WBoson.p; wc = false; } } if(event.type() == event_type::unof || event.type() == event_type::qqxexf){ --last_idx; } size_t first_idx_qqx = last_idx; size_t last_idx_qqx = last_idx; //if qqxMid event, virtual correction do not occur between //qqx pair. if(event.type() == event_type::qqxmid){ const auto backquark = std::find_if( begin(partons) + 1, end(partons) - 1 , [](Particle const & s){ return (s.type != pid::gluon); } ); if(backquark == end(partons) || (backquark+1)->type==pid::gluon) return 0; if(abs(backquark->type) != abs((backquark+1)->type)) { wqq=true; wc=false; } last_idx = std::distance(begin(partons), backquark); first_idx_qqx = last_idx+1; } double exponent = 0; const double alpha_s = alpha_s_(mur); for(size_t j = first_idx; j < last_idx; ++j){ exponent += omega0(alpha_s, mur, q)*( partons[j+1].rapidity() - partons[j].rapidity() ); q -=partons[j+1].p; } // End Loop one if (last_idx != first_idx_qqx) q -= partons[last_idx+1].p; if (wqq) q -= WBoson.p; for(size_t j = first_idx_qqx; j < last_idx_qqx; ++j){ exponent += omega0(alpha_s, mur, q)*( partons[j+1].rapidity() - partons[j].rapidity() ); q -= partons[j+1].p; } if (wc) q -= WBoson.p; assert( nearby(q, -1*pb, norm) || is_AWZH_boson(partons.back().type) || event.type() == event_type::unof || event.type() == event_type::qqxexf ); return exp(exponent); } double MatrixElement::virtual_corrections( Event const & event, double mur ) const{ auto const & in = event.incoming(); auto const & out = event.outgoing(); fastjet::PseudoJet const & pa = in.front().p; #ifndef NDEBUG fastjet::PseudoJet const & pb = in.back().p; double const norm = (in.front().p + in.back().p).E(); #endif const auto AWZH_boson = std::find_if( begin(out), end(out), [](Particle const & p){ return is_AWZH_boson(p); } ); if(AWZH_boson != end(out) && abs(AWZH_boson->type) == pid::Wp){ return virtual_corrections_W(event, mur, *AWZH_boson); } assert(std::is_sorted(out.begin(), out.end(), rapidity_less{})); assert(out.size() >= 2); assert(pa.pz() < pb.pz()); fastjet::PseudoJet q = pa - out[0].p; size_t first_idx = 0; size_t last_idx = out.size() - 1; // if there is a Higgs boson, extremal qqx or unordered gluon // outside the extremal partons then it is not part of the FKL // ladder and does not contribute to the virtual corrections if((out.front().type == pid::Higgs) || event.type() == event_type::unob || event.type() == event_type::qqxexb){ q -= out[1].p; ++first_idx; } if((out.back().type == pid::Higgs) || event.type() == event_type::unof || event.type() == event_type::qqxexf){ --last_idx; } size_t first_idx_qqx = last_idx; size_t last_idx_qqx = last_idx; //if qqxMid event, virtual correction do not occur between //qqx pair. if(event.type() == event_type::qqxmid){ const auto backquark = std::find_if( begin(out) + 1, end(out) - 1 , [](Particle const & s){ return (s.type != pid::gluon && is_parton(s.type)); } ); if(backquark == end(out) || (backquark+1)->type==pid::gluon) return 0; last_idx = std::distance(begin(out), backquark); first_idx_qqx = last_idx+1; } double exponent = 0; const double alpha_s = alpha_s_(mur); for(size_t j = first_idx; j < last_idx; ++j){ exponent += omega0(alpha_s, mur, q)*( out[j+1].rapidity() - out[j].rapidity() ); q -= out[j+1].p; } if (last_idx != first_idx_qqx) q -= out[last_idx+1].p; for(size_t j = first_idx_qqx; j < last_idx_qqx; ++j){ exponent += omega0(alpha_s, mur, q)*( out[j+1].rapidity() - out[j].rapidity() ); q -= out[j+1].p; } assert( nearby(q, -1*pb, norm) || out.back().type == pid::Higgs || event.type() == event_type::unof || event.type() == event_type::qqxexf ); return exp(exponent); } } // namespace HEJ namespace { //! Lipatov vertex for partons emitted into extremal jets double C2Lipatov(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2) { CLHEP::HepLorentzVector temptrans=-(qav+qbv); CLHEP::HepLorentzVector p5=qav-qbv; CLHEP::HepLorentzVector CL=temptrans + p1*(qav.m2()/p5.dot(p1) + 2.*p5.dot(p2)/p1.dot(p2)) - p2*(qbv.m2()/p5.dot(p2) + 2.*p5.dot(p1)/p1.dot(p2)); return -CL.dot(CL); } //! Lipatov vertex with soft subtraction for partons emitted into extremal jets double C2Lipatovots( CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2, double lambda ) { double kperp=(qav-qbv).perp(); if (kperp>lambda) return C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2()); else { double Cls=(C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2())); return Cls-4./(kperp*kperp); } } //! Lipatov vertex double C2Lipatov(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv, CLHEP::HepLorentzVector pim, CLHEP::HepLorentzVector pip, CLHEP::HepLorentzVector pom, CLHEP::HepLorentzVector pop) // B { CLHEP::HepLorentzVector temptrans=-(qav+qbv); CLHEP::HepLorentzVector p5=qav-qbv; CLHEP::HepLorentzVector CL=temptrans + qav.m2()*(1./p5.dot(pip)*pip + 1./p5.dot(pop)*pop)/2. - qbv.m2()*(1./p5.dot(pim)*pim + 1./p5.dot(pom)*pom)/2. + ( pip*(p5.dot(pim)/pip.dot(pim) + p5.dot(pom)/pip.dot(pom)) + pop*(p5.dot(pim)/pop.dot(pim) + p5.dot(pom)/pop.dot(pom)) - pim*(p5.dot(pip)/pip.dot(pim) + p5.dot(pop)/pop.dot(pim)) - pom*(p5.dot(pip)/pip.dot(pom) + p5.dot(pop)/pop.dot(pom)) )/2.; return -CL.dot(CL); } //! Lipatov vertex with soft subtraction double C2Lipatovots( CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv, CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2, double lambda ) { double kperp=(qav-qbv).perp(); if (kperp>lambda) return C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2()); else { double Cls=(C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2())); double temp=Cls-4./(kperp*kperp); return temp; } } /** Matrix element squared for tree-level current-current scattering * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @returns ME Squared for Tree-Level Current-Current Scattering */ double ME_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa ){ if (aptype==21&&bptype==21) { return jM2gg(pn,pb,p1,pa); } else if (aptype==21&&bptype!=21) { if (bptype > 0) return jM2qg(pn,pb,p1,pa); else return jM2qbarg(pn,pb,p1,pa); } else if (bptype==21&&aptype!=21) { // ----- || ----- if (aptype > 0) return jM2qg(p1,pa,pn,pb); else return jM2qbarg(p1,pa,pn,pb); } else { // they are both quark if (bptype>0) { if (aptype>0) return jM2qQ(pn,pb,p1,pa); else return jM2qQbar(pn,pb,p1,pa); } else { if (aptype>0) return jM2qQbar(p1,pa,pn,pb); else return jM2qbarQbar(pn,pb,p1,pa); } } throw std::logic_error("unknown particle types"); } /** Matrix element squared for tree-level current-current scattering With W+Jets * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param wc Boolean. True->W Emitted from b. Else; emitted from leg a * @returns ME Squared for Tree-Level Current-Current Scattering */ double ME_W_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, bool const wc ){ // We know it cannot be gg incoming. assert(!(aptype==21 && bptype==21)); if (aptype==21&&bptype!=21) { if (bptype > 0) return jMWqg(pn,plbar,pl,pb,p1,pa); else return jMWqbarg(pn,plbar,pl,pb,p1,pa); } else if (bptype==21&&aptype!=21) { // ----- || ----- if (aptype > 0) return jMWqg(p1,plbar,pl,pa,pn,pb); else return jMWqbarg(p1,plbar,pl,pa,pn,pb); } else { // they are both quark if (wc==true){ // emission off b, (first argument pbout) if (bptype>0) { if (aptype>0) return jMWqQ(pn,plbar,pl,pb,p1,pa); else return jMWqQbar(pn,plbar,pl,pb,p1,pa); } else { if (aptype>0) return jMWqbarQ(pn,plbar,pl,pb,p1,pa); else return jMWqbarQbar(pn,plbar,pl,pb,p1,pa); } } else{ // emission off a, (first argument paout) if (aptype > 0) { if (bptype > 0) return jMWqQ(p1,plbar,pl,pa,pn,pb); else return jMWqQbar(p1,plbar,pl,pa,pn,pb); } else { // a is anti-quark if (bptype > 0) return jMWqbarQ(p1,plbar,pl,pa,pn,pb); else return jMWqbarQbar(p1,plbar,pl,pa,pn,pb); } } } throw std::logic_error("unknown particle types"); } /** Matrix element squared for backwards uno tree-level current-current * scattering With W+Jets * * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param pg Unordered gluon momentum * @param wc Boolean. True->W Emitted from b. Else; emitted from leg a * @returns ME Squared for unob Tree-Level Current-Current Scattering */ double ME_W_unob_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pg, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, bool const wc ){ // we know they are not both gluons if (bptype == 21 && aptype != 21) { // b gluon => W emission off a if (aptype > 0) return jM2Wunogqg(pg,p1,plbar,pl,pa,pn,pb); else return jM2Wunogqbarg(pg,p1,plbar,pl,pa,pn,pb); } else { // they are both quark if (wc==true) {// emission off b, i.e. b is first current if (bptype>0){ if (aptype>0) - return junobMWqQg(pn,plbar,pl,pb,p1,pa,pg); + return junobMWqQg(pg,p1,plbar,pl,pa,pn,pb); else - return junobMWqQbarg(pn,plbar,pl,pb,p1,pa,pg); + return junobMWqQbarg(pg,p1,plbar,pl,pa,pn,pb); } else{ if (aptype>0) - return junobMWqbarQg(pn,plbar,pl,pb,p1,pa,pg); + return junobMWqbarQg(pg,p1,plbar,pl,pa,pn,pb); else - return junobMWqbarQbarg(pn,plbar,pl,pb,p1,pa,pg); + return junobMWqbarQbarg(pg,p1,plbar,pl,pa,pn,pb); } } else {// wc == false, emission off a, i.e. a is first current if (aptype > 0) { if (bptype > 0) //qq return jM2WunogqQ(pg,p1,plbar,pl,pa,pn,pb); else //qqbar return jM2WunogqQbar(pg,p1,plbar,pl,pa,pn,pb); } else { // a is anti-quark if (bptype > 0) //qbarq return jM2WunogqbarQ(pg,p1,plbar,pl,pa,pn,pb); else //qbarqbar return jM2WunogqbarQbar(pg,p1,plbar,pl,pa,pn,pb); } } } } /** Matrix element squared for uno forward tree-level current-current * scattering With W+Jets * * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param pg Unordered gluon momentum * @param wc Boolean. True->W Emitted from b. Else; emitted from leg a * @returns ME Squared for unof Tree-Level Current-Current Scattering */ double ME_W_unof_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pg, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, bool const wc ){ // we know they are not both gluons if (aptype==21 && bptype!=21) {//a gluon => W emission off b if (bptype > 0) return jM2Wunogqg(pg, pn,plbar, pl, pb, p1, pa); else return jM2Wunogqbarg(pg, pn,plbar, pl, pb, p1, pa); } else { // they are both quark if (wc==true) {// emission off b, i.e. b is first current if (bptype>0){ if (aptype>0) return jM2WunogqQ(pg,pn,plbar,pl,pb,p1,pa); else return jM2WunogqQbar(pg,pn,plbar,pl,pb,p1,pa); } else{ if (aptype>0) return jM2WunogqbarQ(pg,pn,plbar,pl,pb,p1,pa); else return jM2WunogqbarQbar(pg,pn,plbar,pl,pb,p1,pa); } } else {// wc == false, emission off a, i.e. a is first current if (aptype > 0) { if (bptype > 0) //qq return junofMWgqQ(pg,pn,pb,p1,plbar,pl,pa); else //qqbar return junofMWgqQbar(pg,pn,pb,p1,plbar,pl,pa); } else { // a is anti-quark if (bptype > 0) //qbarq return junofMWgqbarQ(pg,pn,pb,p1,plbar,pl,pa); else //qbarqbar return junofMWgqbarQbar(pg,pn,pb,p1,plbar,pl,pa); } } } } /** \brief Matrix element squared for backward qqx tree-level current-current * scattering With W+Jets * * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pa Initial state a Momentum * @param pb Initial state b Momentum * @param pq Final state q Momentum * @param pqbar Final state qbar Momentum * @param pn Final state n Momentum * @param plbar Final state anti-lepton momentum * @param pl Final state lepton momentum * @param wc Boolean. True->W Emitted from b. Else; emitted from leg a * @returns ME Squared for qqxb Tree-Level Current-Current Scattering */ double ME_W_qqxb_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & pq, CLHEP::HepLorentzVector const & pqbar, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, bool const wc ){ // CAM factors for the qqx amps, and qqbar ordering (default, qbar extremal) bool swapQuarkAntiquark=false; double CFbackward; if (pqbar.rapidity() > pq.rapidity()){ swapQuarkAntiquark=true; CFbackward = (0.5*(3.-1./3.)*(pa.minus()/(pq.minus())+(pq.minus())/pa.minus())+1./3.)*3./4.; } else{ CFbackward = (0.5*(3.-1./3.)*(pa.minus()/(pqbar.minus())+(pqbar.minus())/pa.minus())+1./3.)*3./4.; } // With qqbar we could have 2 incoming gluons and W Emission if (aptype==21&&bptype==21) {//a gluon, b gluon gg->qqbarWg // This will be a wqqx emission as there is no other possible W Emission Site. if (swapQuarkAntiquark){ return jM2Wggtoqqbarg(pa, pqbar, plbar, pl, pq, pn,pb)*CFbackward;} else { return jM2Wggtoqbarqg(pa, pq, plbar, pl, pqbar, pn,pb)*CFbackward;} } else if (aptype==21&&bptype!=21 ) {//a gluon => W emission off b leg or qqx if (wc!=1){ // W Emitted from backwards qqx if (swapQuarkAntiquark){ return jM2WgQtoqqbarQ(pa, pq, plbar, pl, pqbar, pn, pb)*CFbackward;} else{ return jM2WgQtoqbarqQ(pa, pq, plbar, pl, pqbar, pn, pb)*CFbackward;} } else { // W Must be emitted from forwards leg. if(bptype > 0){ if (swapQuarkAntiquark){ return jM2WgqtoQQqW(pb, pa, pn, pqbar, pq, plbar, pl, false)*CFbackward;} else{ return jM2WgqtoQQqW(pb, pa, pn, pq, pqbar, plbar, pl, false)*CFbackward;} } else { if (swapQuarkAntiquark){ return jM2WgqtoQQqW(pb, pa, pn, pqbar, pq, plbar, pl, true)*CFbackward;} else{ return jM2WgqtoQQqW(pb, pa, pn, pq, pqbar, plbar, pl, true)*CFbackward;} } } } else{ throw std::logic_error("Incompatible incoming particle types with qqxb"); } } /* \brief Matrix element squared for forward qqx tree-level current-current * scattering With W+Jets * * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pa Initial state a Momentum * @param pb Initial state b Momentum * @param pq Final state q Momentum * @param pqbar Final state qbar Momentum * @param p1 Final state 1 Momentum * @param plbar Final state anti-lepton momentum * @param pl Final state lepton momentum * @param wc Boolean. True->W Emitted from b. Else; emitted from leg a * @returns ME Squared for qqxf Tree-Level Current-Current Scattering */ double ME_W_qqxf_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & pq, CLHEP::HepLorentzVector const & pqbar, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, bool const wc ){ // CAM factors for the qqx amps, and qqbar ordering (default, qbar extremal) bool swapQuarkAntiquark=false; double CFforward; if (pqbar.rapidity() < pq.rapidity()){ swapQuarkAntiquark=true; CFforward = (0.5*(3.-1./3.)*(pb.plus()/(pq.plus())+(pq.plus())/pb.plus())+1./3.)*3./4.; } else{ CFforward = (0.5*(3.-1./3.)*(pb.plus()/(pqbar.plus())+(pqbar.plus())/pb.plus())+1./3.)*3./4.; } // With qqbar we could have 2 incoming gluons and W Emission if (aptype==21&&bptype==21) {//a gluon, b gluon gg->qqbarWg // This will be a wqqx emission as there is no other possible W Emission Site. if (swapQuarkAntiquark){ return jM2Wggtoqqbarg(pb, pqbar, plbar, pl, pq, p1,pa)*CFforward;} else { return jM2Wggtoqbarqg(pb, pq, plbar, pl, pqbar, p1,pa)*CFforward;} } else if (bptype==21&&aptype!=21) {// b gluon => W emission off a or qqx if (wc==1){ // W Emitted from forwards qqx if (swapQuarkAntiquark){ return jM2WgQtoqbarqQ(pb, pq, plbar,pl, pqbar, p1, pa)*CFforward;} else { return jM2WgQtoqqbarQ(pb, pq, plbar,pl, pqbar, p1, pa)*CFforward;} } // W Must be emitted from backwards leg. if (aptype > 0){ if (swapQuarkAntiquark){ return jM2WgqtoQQqW(pa,pb, p1, pqbar, pq, plbar, pl, false)*CFforward;} else{ return jM2WgqtoQQqW(pa,pb, p1, pq, pqbar, plbar, pl, false)*CFforward;} } else { if (swapQuarkAntiquark){ return jM2WgqtoQQqW(pa,pb, p1, pqbar, pq, plbar, pl, true)*CFforward;} else{ return jM2WgqtoQQqW(pa,pb, p1, pq, pqbar, plbar, pl, true)*CFforward;} } } else{ throw std::logic_error("Incompatible incoming particle types with qqxf"); } } /* \brief Matrix element squared for central qqx tree-level current-current * scattering With W+Jets * * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param nabove Number of gluons emitted before central qqxpair * @param nbelow Number of gluons emitted after central qqxpair * @param pa Initial state a Momentum * @param pb Initial state b Momentum\ * @param pq Final state qbar Momentum * @param pqbar Final state q Momentum * @param partons Vector of all outgoing partons * @param plbar Final state anti-lepton momentum * @param pl Final state lepton momentum * @param wqq Boolean. True siginfies W boson is emitted from Central qqx * @param wc Boolean. wc=true signifies w boson emitted from leg b; if wqq=false. * @returns ME Squared for qqxmid Tree-Level Current-Current Scattering */ double ME_W_qqxmid_current( int aptype, int bptype, int nabove, int nbelow, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & pq, CLHEP::HepLorentzVector const & pqbar, std::vector<HLV> partons, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, bool const wqq, bool const wc ){ // CAM factors for the qqx amps, and qqbar ordering (default, pq backwards) bool swapQuarkAntiquark=false; if (pqbar.rapidity() < pq.rapidity()){ swapQuarkAntiquark=true; } double CFforward = (0.5*(3.-1./3.)*( pb.plus()/(partons[partons.size()-1].plus()) + (partons[partons.size()-1].plus())/pb.plus() )+1./3.)*3./4.; double CFbackward = (0.5*(3.-1./3.)*( pa.minus()/(partons[0].minus()) + (partons[0].minus())/pa.minus() )+1./3.)*3./4.; double wt=1.; if (aptype==21) wt*=CFbackward; if (bptype==21) wt*=CFforward; if (aptype <=0 && bptype <=0){ // Both External AntiQuark if (wqq==1){//emission from central qqbar return wt*jM2WqqtoqQQq(pa, pb, pl,plbar, partons,true,true, swapQuarkAntiquark, nabove); } else if (wc==1){//emission from b leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, true,true, swapQuarkAntiquark, nabove, nbelow, true); } else { // emission from a leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, true,true, swapQuarkAntiquark, nabove, nbelow, false); } } // end both antiquark else if (aptype<=0){ // a is antiquark if (wqq==1){//emission from central qqbar return wt*jM2WqqtoqQQq(pa, pb, pl,plbar, partons, false, true, swapQuarkAntiquark, nabove); } else if (wc==1){//emission from b leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons,false,true, swapQuarkAntiquark, nabove, nbelow, true); } else { // emission from a leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, false, true, swapQuarkAntiquark, nabove, nbelow, false); } } // end a is antiquark else if (bptype<=0){ // b is antiquark if (wqq==1){//emission from central qqbar return wt*jM2WqqtoqQQq(pa, pb, pl,plbar, partons, true, false, swapQuarkAntiquark, nabove); } else if (wc==1){//emission from b leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, true, false, swapQuarkAntiquark, nabove, nbelow, true); } else { // emission from a leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, true, false, swapQuarkAntiquark, nabove, nbelow, false); } } //end b is antiquark else{ //Both Quark or gluon if (wqq==1){//emission from central qqbar return wt*jM2WqqtoqQQq(pa, pb, pl, plbar, partons, false, false, swapQuarkAntiquark, nabove);} else if (wc==1){//emission from b leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, false, false, swapQuarkAntiquark, nabove, nbelow, true); } else { // emission from a leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, false, false, swapQuarkAntiquark, nabove, nbelow, false); } } } /** \brief Matrix element squared for tree-level current-current scattering with Higgs * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param qH t-channel momentum before Higgs * @param qHp1 t-channel momentum after Higgs * @returns ME Squared for Tree-Level Current-Current Scattering with Higgs */ double ME_Higgs_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs double mt, bool include_bottom, double mb ){ if (aptype==21&&bptype==21) // gg initial state return MH2gg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb); else if (aptype==21&&bptype!=21) { if (bptype > 0) return MH2qg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4./9.; else return MH2qbarg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4./9.; } else if (bptype==21&&aptype!=21) { if (aptype > 0) return MH2qg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4./9.; else return MH2qbarg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4./9.; } else { // they are both quark if (bptype>0) { if (aptype>0) return MH2qQ(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.); else return MH2qQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.); } else { if (aptype>0) return MH2qQbar(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4.*4./(9.*9.); else return MH2qbarQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.); } } throw std::logic_error("unknown particle types"); } /** \brief Current matrix element squared with Higgs and unordered forward emission * @param aptype Particle A PDG ID * @param bptype Particle B PDG ID * @param punof Unordered Particle Momentum * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param qH t-channel momentum before Higgs * @param qHp1 t-channel momentum after Higgs * @returns ME Squared with Higgs and unordered forward emission */ double ME_Higgs_current_unof( int aptype, int bptype, CLHEP::HepLorentzVector const & punof, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs double mt, bool include_bottom, double mb ){ if (aptype==21&&bptype!=21) { if (bptype > 0) return jM2unogqHg(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb); else return jM2unogqbarHg(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb); } else { // they are both quark if (bptype>0) { if (aptype>0) return jM2unogqHQ(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb); else return jM2unogqHQbar(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb); } else { if (aptype>0) return jM2unogqbarHQ(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb); else return jM2unogqbarHQbar(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb); } } throw std::logic_error("unknown particle types"); } /** \brief Current matrix element squared with Higgs and unordered backward emission * @param aptype Particle A PDG ID * @param bptype Particle B PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param punob Unordered back Particle Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param qH t-channel momentum before Higgs * @param qHp1 t-channel momentum after Higgs * @returns ME Squared with Higgs and unordered backward emission */ double ME_Higgs_current_unob( int aptype, int bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & punob, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs double mt, bool include_bottom, double mb ){ if (bptype==21&&aptype!=21) { if (aptype > 0) return jM2unobgHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb); else return jM2unobgHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb); } else { // they are both quark if (aptype>0) { if (bptype>0) return jM2unobqHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb); else return jM2unobqbarHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb); } else { if (bptype>0) return jM2unobqHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb); else return jM2unobqbarHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb); } } throw std::logic_error("unknown particle types"); } CLHEP::HepLorentzVector to_HepLorentzVector(HEJ::Particle const & particle){ return {particle.p.px(), particle.p.py(), particle.p.pz(), particle.p.E()}; } void validate(HEJ::MatrixElementConfig const & config) { #ifndef HEJ_BUILD_WITH_QCDLOOP if(!config.Higgs_coupling.use_impact_factors) { throw std::invalid_argument{ "Invalid Higgs coupling settings.\n" "HEJ without QCDloop support can only use impact factors.\n" "Set use_impact_factors to true or recompile HEJ.\n" }; } #endif if(config.Higgs_coupling.use_impact_factors && config.Higgs_coupling.mt != std::numeric_limits<double>::infinity()) { throw std::invalid_argument{ "Conflicting settings: " "impact factors may only be used in the infinite top mass limit" }; } } } // namespace anonymous namespace HEJ{ MatrixElement::MatrixElement( std::function<double (double)> alpha_s, MatrixElementConfig conf ): alpha_s_{std::move(alpha_s)}, param_{std::move(conf)} { validate(param_); } double MatrixElement::tree_kin( Event const & ev ) const { if(! is_HEJ(ev.type())) return 0.; auto AWZH_boson = std::find_if( begin(ev.outgoing()), end(ev.outgoing()), [](Particle const & p){return is_AWZH_boson(p);} ); if(AWZH_boson == end(ev.outgoing())) return tree_kin_jets(ev); switch(AWZH_boson->type){ case pid::Higgs: return tree_kin_Higgs(ev); case pid::Wp: case pid::Wm: return tree_kin_W(ev); // TODO case pid::photon: case pid::Z: default: throw not_implemented("Emission of boson of unsupported type"); } } namespace{ constexpr int extremal_jet_idx = 1; constexpr int no_extremal_jet_idx = 0; bool treat_as_extremal(Particle const & parton){ return parton.p.user_index() == extremal_jet_idx; } template<class InputIterator> double FKL_ladder_weight( InputIterator begin_gluon, InputIterator end_gluon, CLHEP::HepLorentzVector const & q0, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pn, double lambda ){ double wt = 1; auto qi = q0; for(auto gluon_it = begin_gluon; gluon_it != end_gluon; ++gluon_it){ assert(gluon_it->type == pid::gluon); const auto g = to_HepLorentzVector(*gluon_it); const auto qip1 = qi - g; if(treat_as_extremal(*gluon_it)){ wt *= C2Lipatovots(qip1, qi, pa, pb, lambda)*C_A; } else{ wt *= C2Lipatovots(qip1, qi, pa, pb, p1, pn, lambda)*C_A; } qi = qip1; } return wt; } } // namespace anonymous std::vector<Particle> MatrixElement::tag_extremal_jet_partons( Event const & ev ) const{ auto out_partons = filter_partons(ev.outgoing()); if(out_partons.size() == ev.jets().size()){ // no additional emissions in extremal jets, don't need to tag anything for(auto & parton: out_partons){ parton.p.set_user_index(no_extremal_jet_idx); } return out_partons; } // TODO: avoid reclustering fastjet::ClusterSequence cs(to_PseudoJet(out_partons), ev.jet_def()); const auto jets = sorted_by_rapidity(cs.inclusive_jets(ev.min_jet_pt())); assert(jets.size() >= 2); auto most_backward = begin(jets); auto most_forward = end(jets) - 1; // skip jets caused by unordered emission or qqx if(ev.type() == event_type::unob || ev.type() == event_type::qqxexb){ assert(jets.size() >= 3); ++most_backward; } else if(ev.type() == event_type::unof || ev.type() == event_type::qqxexf){ assert(jets.size() >= 3); --most_forward; } const auto extremal_jet_indices = cs.particle_jet_indices( {*most_backward, *most_forward} ); assert(extremal_jet_indices.size() == out_partons.size()); for(size_t i = 0; i < out_partons.size(); ++i){ assert(HEJ::is_parton(out_partons[i])); const int idx = (extremal_jet_indices[i]>=0)? extremal_jet_idx: no_extremal_jet_idx; out_partons[i].p.set_user_index(idx); } return out_partons; } double MatrixElement::tree_kin_jets( Event const & ev ) const { auto const & incoming = ev.incoming(); const auto partons = tag_extremal_jet_partons(ev); if(is_uno(ev.type())){ throw not_implemented("unordered emission not implemented for pure jets"); } const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); const auto p1 = to_HepLorentzVector(partons.front()); const auto pn = to_HepLorentzVector(partons.back()); return ME_current( incoming[0].type, incoming[1].type, pn, pb, p1, pa )/(4.*(N_C*N_C - 1.))*FKL_ladder_weight( begin(partons) + 1, end(partons) - 1, pa - p1, pa, pb, p1, pn, param_.regulator_lambda ); } namespace{ double tree_kin_W_FKL( int aptype, int bptype, HLV pa, HLV pb, std::vector<Particle> const & partons, HLV plbar, HLV pl, double lambda ) { auto p1 = to_HepLorentzVector(partons[0]); auto pn = to_HepLorentzVector(partons[partons.size() - 1]); auto begin_ladder = begin(partons) + 1; auto end_ladder = end(partons) - 1; bool wc = true; auto q0 = pa - p1; if (aptype!=partons[0].type) { //leg a emits w wc = false; q0 -=pl + plbar; } const double current_factor = ME_W_current( aptype, bptype, pn, pb, p1, pa, plbar, pl, wc ); const double ladder_factor = FKL_ladder_weight( begin_ladder, end_ladder, q0, pa, pb, p1, pn, lambda ); return current_factor*ladder_factor; } double tree_kin_W_unob( int aptype, int bptype, HLV pa, HLV pb, std::vector<Particle> const & partons, HLV plbar, HLV pl, double lambda ) { auto pg = to_HepLorentzVector(partons[0]); auto p1 = to_HepLorentzVector(partons[1]); auto pn = to_HepLorentzVector(partons[partons.size() - 1]); auto begin_ladder = begin(partons) + 2; auto end_ladder = end(partons) - 1; bool wc = true; auto q0 = pa - p1 -pg; if (aptype!=partons[1].type) { //leg a emits w wc = false; q0 -=pl + plbar; } const double current_factor = ME_W_unob_current( aptype, bptype, pn, pb, p1, pa, pg, plbar, pl, wc ); const double ladder_factor = FKL_ladder_weight( begin_ladder, end_ladder, q0, pa, pb, p1, pn, lambda ); return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } double tree_kin_W_unof( int aptype, int bptype, HLV pa, HLV pb, std::vector<Particle> const & partons, HLV plbar, HLV pl, double lambda ) { auto p1 = to_HepLorentzVector(partons[0]); auto pn = to_HepLorentzVector(partons[partons.size() - 2]); auto pg = to_HepLorentzVector(partons[partons.size() - 1]); auto begin_ladder = begin(partons) + 1; auto end_ladder = end(partons) - 2; bool wc = true; auto q0 = pa - p1; if (aptype!=partons[0].type) { //leg a emits w wc = false; q0 -=pl + plbar; } const double current_factor = ME_W_unof_current( aptype, bptype, pn, pb, p1, pa, pg, plbar, pl, wc ); const double ladder_factor = FKL_ladder_weight( begin_ladder, end_ladder, q0, pa, pb, p1, pn, lambda ); return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } double tree_kin_W_qqxb( int aptype, int bptype, HLV pa, HLV pb, std::vector<Particle> const & partons, HLV plbar, HLV pl, double lambda ) { HLV pq,pqbar; if(is_quark(partons[0])){ pq = to_HepLorentzVector(partons[0]); pqbar = to_HepLorentzVector(partons[1]); } else{ pq = to_HepLorentzVector(partons[1]); pqbar = to_HepLorentzVector(partons[0]); } auto p1 = to_HepLorentzVector(partons[0]); auto pn = to_HepLorentzVector(partons[partons.size() - 1]); auto begin_ladder = begin(partons) + 2; auto end_ladder = end(partons) - 1; bool wc = true; auto q0 = pa - pq - pqbar; if (partons[1].type!=partons[0].type) { //leg a emits w wc = false; q0 -=pl + plbar; } const double current_factor = ME_W_qqxb_current( aptype, bptype, pa, pb, pq, pqbar, pn, plbar, pl, wc ); const double ladder_factor = FKL_ladder_weight( begin_ladder, end_ladder, q0, pa, pb, p1, pn, lambda ); return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } double tree_kin_W_qqxf( int aptype, int bptype, HLV pa, HLV pb, std::vector<Particle> const & partons, HLV plbar, HLV pl, double lambda ) { HLV pq,pqbar; if(is_quark(partons[partons.size() - 1])){ pq = to_HepLorentzVector(partons[partons.size() - 1]); pqbar = to_HepLorentzVector(partons[partons.size() - 2]); } else{ pq = to_HepLorentzVector(partons[partons.size() - 2]); pqbar = to_HepLorentzVector(partons[partons.size() - 1]); } auto p1 = to_HepLorentzVector(partons[0]); auto pn = to_HepLorentzVector(partons[partons.size() - 1]); auto begin_ladder = begin(partons) + 1; auto end_ladder = end(partons) - 2; bool wc = true; auto q0 = pa - p1; if (aptype!=partons[0].type) { //leg a emits w wc = false; q0 -=pl + plbar; } const double current_factor = ME_W_qqxf_current( aptype, bptype, pa, pb, pq, pqbar, p1, plbar, pl, wc ); const double ladder_factor = FKL_ladder_weight( begin_ladder, end_ladder, q0, pa, pb, p1, pn, lambda ); return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } double tree_kin_W_qqxmid( int aptype, int bptype, HLV pa, HLV pb, std::vector<Particle> const & partons, HLV plbar, HLV pl, double lambda ) { HLV pq,pqbar; const auto backmidquark = std::find_if( begin(partons)+1, end(partons)-1, [](Particle const & s){ return s.type != pid::gluon; } ); assert(backmidquark!=end(partons)-1); if (is_quark(backmidquark->type)){ pq = to_HepLorentzVector(*backmidquark); pqbar = to_HepLorentzVector(*(backmidquark+1)); } else { pqbar = to_HepLorentzVector(*backmidquark); pq = to_HepLorentzVector(*(backmidquark+1)); } auto p1 = to_HepLorentzVector(partons[0]); auto pn = to_HepLorentzVector(partons[partons.size() - 1]); auto q0 = pa - p1; // t-channel momentum after qqx auto qqxt = q0; bool wc, wqq; if (backmidquark->type == -(backmidquark+1)->type){ // Central qqx does not emit wqq=false; if (aptype==partons[0].type) { wc = true; } else{ wc = false; q0-=pl+plbar; } } else{ wqq = true; wc = false; qqxt-=pl+plbar; } auto begin_ladder = begin(partons) + 1; auto end_ladder_1 = (backmidquark); auto begin_ladder_2 = (backmidquark+2); auto end_ladder = end(partons) - 1; for(auto parton_it = begin_ladder; parton_it < begin_ladder_2; ++parton_it){ qqxt -= to_HepLorentzVector(*parton_it); } int nabove = std::distance(begin_ladder, backmidquark); int nbelow = std::distance(begin_ladder_2, end_ladder); std::vector<HLV> partonsHLV; partonsHLV.reserve(partons.size()); for (size_t i = 0; i != partons.size(); ++i) { partonsHLV.push_back(to_HepLorentzVector(partons[i])); } const double current_factor = ME_W_qqxmid_current( aptype, bptype, nabove, nbelow, pa, pb, pq, pqbar, partonsHLV, plbar, pl, wqq, wc ); const double ladder_factor = FKL_ladder_weight( begin_ladder, end_ladder_1, q0, pa, pb, p1, pn, lambda )*FKL_ladder_weight( begin_ladder_2, end_ladder, qqxt, pa, pb, p1, pn, lambda ); return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } } // namespace anonymous double MatrixElement::tree_kin_W(Event const & ev) const { using namespace event_type; auto const & incoming(ev.incoming()); auto const & decays(ev.decays()); HLV plbar, pl; for (auto& x: decays) { if (x.second.at(0).type < 0){ plbar = to_HepLorentzVector(x.second.at(0)); pl = to_HepLorentzVector(x.second.at(1)); } else{ pl = to_HepLorentzVector(x.second.at(0)); plbar = to_HepLorentzVector(x.second.at(1)); } } const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); const auto partons = tag_extremal_jet_partons(ev); if(ev.type() == unordered_backward){ return tree_kin_W_unob(incoming[0].type, incoming[1].type, pa, pb, partons, plbar, pl, param_.regulator_lambda); } if(ev.type() == unordered_forward){ return tree_kin_W_unof(incoming[0].type, incoming[1].type, pa, pb, partons, plbar, pl, param_.regulator_lambda); } if(ev.type() == extremal_qqxb){ return tree_kin_W_qqxb(incoming[0].type, incoming[1].type, pa, pb, partons, plbar, pl, param_.regulator_lambda); } if(ev.type() == extremal_qqxf){ return tree_kin_W_qqxf(incoming[0].type, incoming[1].type, pa, pb, partons, plbar, pl, param_.regulator_lambda); } if(ev.type() == central_qqx){ return tree_kin_W_qqxmid(incoming[0].type, incoming[1].type, pa, pb, partons, plbar, pl, param_.regulator_lambda); } return tree_kin_W_FKL(incoming[0].type, incoming[1].type, pa, pb, partons, plbar, pl, param_.regulator_lambda); } double MatrixElement::tree_kin_Higgs( Event const & ev ) const { if(is_uno(ev.type())){ return tree_kin_Higgs_between(ev); } if(ev.outgoing().front().type == pid::Higgs){ return tree_kin_Higgs_first(ev); } if(ev.outgoing().back().type == pid::Higgs){ return tree_kin_Higgs_last(ev); } return tree_kin_Higgs_between(ev); } namespace { // Colour acceleration multipliers, for gluons see eq. (7) in arXiv:0910.5113 #ifdef HEJ_BUILD_WITH_QCDLOOP // TODO: code duplication with currents.cc double K_g(double p1minus, double paminus) { return 1./2.*(p1minus/paminus + paminus/p1minus)*(C_A - 1./C_A) + 1./C_A; } double K_g( CLHEP::HepLorentzVector const & pout, CLHEP::HepLorentzVector const & pin ) { if(pin.z() > 0) return K_g(pout.plus(), pin.plus()); return K_g(pout.minus(), pin.minus()); } double K( ParticleID type, CLHEP::HepLorentzVector const & pout, CLHEP::HepLorentzVector const & pin ) { if(type == ParticleID::gluon) return K_g(pout, pin); return C_F; } #endif // Colour factor in strict MRK limit double K_MRK(ParticleID type) { return (type == ParticleID::gluon)?C_A:C_F; } } double MatrixElement::MH2_forwardH( CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, ParticleID type2, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector pH, double t1, double t2 ) const{ ignore(p2out, p2in); const double shat = p1in.invariantMass2(p2in); // gluon case #ifdef HEJ_BUILD_WITH_QCDLOOP if(!param_.Higgs_coupling.use_impact_factors){ return K(type2, p2out, p2in)*C_A*1./(16*M_PI*M_PI)*t1/t2*MH2gq_outsideH( p1out, p1in, p2out, p2in, pH, param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb )/(4*(N_C*N_C - 1)); } #endif return K_MRK(type2)/C_A*9./2.*shat*shat*( C2gHgp(p1in,p1out,pH) + C2gHgm(p1in,p1out,pH) )/(t1*t2); } double MatrixElement::tree_kin_Higgs_first( Event const & ev ) const { auto const & incoming = ev.incoming(); auto const & outgoing = ev.outgoing(); assert(outgoing.front().type == pid::Higgs); if(outgoing[1].type != pid::gluon) { assert(incoming.front().type == outgoing[1].type); return tree_kin_Higgs_between(ev); } const auto pH = to_HepLorentzVector(outgoing.front()); const auto partons = tag_extremal_jet_partons( ev ); const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); const auto p1 = to_HepLorentzVector(partons.front()); const auto pn = to_HepLorentzVector(partons.back()); const auto q0 = pa - p1 - pH; const double t1 = q0.m2(); const double t2 = (pn - pb).m2(); return MH2_forwardH( p1, pa, incoming[1].type, pn, pb, pH, t1, t2 )*FKL_ladder_weight( begin(partons) + 1, end(partons) - 1, q0, pa, pb, p1, pn, param_.regulator_lambda ); } double MatrixElement::tree_kin_Higgs_last( Event const & ev ) const { auto const & incoming = ev.incoming(); auto const & outgoing = ev.outgoing(); assert(outgoing.back().type == pid::Higgs); if(outgoing[outgoing.size()-2].type != pid::gluon) { assert(incoming.back().type == outgoing[outgoing.size()-2].type); return tree_kin_Higgs_between(ev); } const auto pH = to_HepLorentzVector(outgoing.back()); const auto partons = tag_extremal_jet_partons( ev ); const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); auto p1 = to_HepLorentzVector(partons.front()); const auto pn = to_HepLorentzVector(partons.back()); auto q0 = pa - p1; const double t1 = q0.m2(); const double t2 = (pn + pH - pb).m2(); return MH2_forwardH( pn, pb, incoming[0].type, p1, pa, pH, t2, t1 )*FKL_ladder_weight( begin(partons) + 1, end(partons) - 1, q0, pa, pb, p1, pn, param_.regulator_lambda ); } double MatrixElement::tree_kin_Higgs_between( Event const & ev ) const { using namespace event_type; auto const & incoming = ev.incoming(); auto const & outgoing = ev.outgoing(); const auto the_Higgs = std::find_if( begin(outgoing), end(outgoing), [](Particle const & s){ return s.type == pid::Higgs; } ); assert(the_Higgs != end(outgoing)); const auto pH = to_HepLorentzVector(*the_Higgs); const auto partons = tag_extremal_jet_partons(ev); const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); auto p1 = to_HepLorentzVector( partons[(ev.type() == unob)?1:0] ); auto pn = to_HepLorentzVector( partons[partons.size() - ((ev.type() == unof)?2:1)] ); auto first_after_Higgs = begin(partons) + (the_Higgs-begin(outgoing)); assert( (first_after_Higgs == end(partons) && ( (ev.type() == unob) || partons.back().type != pid::gluon )) || first_after_Higgs->rapidity() >= the_Higgs->rapidity() ); assert( (first_after_Higgs == begin(partons) && ( (ev.type() == unof) || partons.front().type != pid::gluon )) || (first_after_Higgs-1)->rapidity() <= the_Higgs->rapidity() ); // always treat the Higgs as if it were in between the extremal FKL partons if(first_after_Higgs == begin(partons)) ++first_after_Higgs; else if(first_after_Higgs == end(partons)) --first_after_Higgs; // t-channel momentum before Higgs auto qH = pa; for(auto parton_it = begin(partons); parton_it != first_after_Higgs; ++parton_it){ qH -= to_HepLorentzVector(*parton_it); } auto q0 = pa - p1; auto begin_ladder = begin(partons) + 1; auto end_ladder = end(partons) - 1; double current_factor; if(ev.type() == unob){ current_factor = C_A*C_A/2.*ME_Higgs_current_unob( // 1/2 = "K_uno" incoming[0].type, incoming[1].type, pn, pb, to_HepLorentzVector(partons.front()), p1, pa, qH, qH - pH, param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb ); const auto p_unob = to_HepLorentzVector(partons.front()); q0 -= p_unob; p1 += p_unob; ++begin_ladder; } else if(ev.type() == unof){ current_factor = C_A*C_A/2.*ME_Higgs_current_unof( // 1/2 = "K_uno" incoming[0].type, incoming[1].type, to_HepLorentzVector(partons.back()), pn, pb, p1, pa, qH, qH - pH, param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb ); pn += to_HepLorentzVector(partons.back()); --end_ladder; } else{ current_factor = ME_Higgs_current( incoming[0].type, incoming[1].type, pn, pb, p1, pa, qH, qH - pH, param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb ); } const double ladder_factor = FKL_ladder_weight( begin_ladder, first_after_Higgs, q0, pa, pb, p1, pn, param_.regulator_lambda )*FKL_ladder_weight( first_after_Higgs, end_ladder, qH - pH, pa, pb, p1, pn, param_.regulator_lambda ); return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } namespace { double get_AWZH_coupling(Event const & ev, double alpha_s) { const auto AWZH_boson = std::find_if( begin(ev.outgoing()), end(ev.outgoing()), [](auto const & p){return is_AWZH_boson(p);} ); if(AWZH_boson == end(ev.outgoing())) return 1.; switch(AWZH_boson->type){ case pid::Higgs: return alpha_s*alpha_s; case pid::Wp: case pid::Wm: return gw*gw*gw*gw/4.; // TODO case pid::photon: case pid::Z: default: throw not_implemented("Emission of boson of unsupported type"); } } } double MatrixElement::tree_param( Event const & ev, double mur ) const{ assert(is_HEJ(ev.type())); const auto begin_partons = ev.begin_partons(); const auto end_partons = ev.end_partons(); const auto num_partons = std::distance(begin_partons, end_partons); const double alpha_s = alpha_s_(mur); const double gs2 = 4.*M_PI*alpha_s; double res = std::pow(gs2, num_partons); if(param_.log_correction){ // use alpha_s(q_perp), evolved to mur assert(num_partons >= 2); const auto first_emission = std::next(begin_partons); const auto last_emission = std::prev(end_partons); for(auto parton = first_emission; parton != last_emission; ++parton){ res *= 1. + alpha_s/(2.*M_PI)*beta0*log(mur/parton->perp()); } } return get_AWZH_coupling(ev, alpha_s)*res; } } // namespace HEJ diff --git a/src/Wjets.cc b/src/Wjets.cc index 9f75a85..bc76bcb 100644 --- a/src/Wjets.cc +++ b/src/Wjets.cc @@ -1,1689 +1,1697 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019 * \copyright GPLv2 or later */ #include "HEJ/currents.hh" #include "HEJ/utility.hh" #include "HEJ/Tensor.hh" #include "HEJ/Constants.hh" #include <array> #include <iostream> namespace { // Helper Functions // FKL W Helper Functions void jW (HLV pout, bool helout, HLV pe, bool hele, HLV pnu, bool helnu, HLV pin, bool helin, current cur ){ // NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is // anti-lepton(5) // Need to swap e and nu for events with W- --> e- nubar! if (helin==helout && hele==helnu) { HLV qa=pout+pe+pnu; HLV qb=pin-pe-pnu; double ta(qa.m2()),tb(qb.m2()); current t65,vout,vin,temp2,temp3,temp5; joo(pnu,helnu,pe,hele,t65); vout[0]=pout.e(); vout[1]=pout.x(); vout[2]=pout.y(); vout[3]=pout.z(); vin[0]=pin.e(); vin[1]=pin.x(); vin[2]=pin.y(); vin[3]=pin.z(); COM brac615=cdot(t65,vout); COM brac645=cdot(t65,vin); // prod1565 and prod6465 are zero for Ws (not Zs)!! joo(pout,helout,pnu,helout,temp2); COM prod1665=cdot(temp2,t65); joi(pe,helin,pin,helin,temp3); COM prod5465=cdot(temp3,t65); joo(pout,helout,pe,helout,temp2); joi(pnu,helnu,pin,helin,temp3); joi(pout,helout,pin,helin,temp5); current term1,term2,term3,sum; cmult(2.*brac615/ta+2.*brac645/tb,temp5,term1); cmult(prod1665/ta,temp3,term2); cmult(-prod5465/tb,temp2,term3); cadd(term1,term2,term3,sum); cur[0]=sum[0]; cur[1]=sum[1]; cur[2]=sum[2]; cur[3]=sum[3]; } } void jWbar (HLV pout, bool helout, HLV pe, bool hele, HLV pnu, bool helnu, HLV pin, bool helin, current cur ){ // NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is // anti-lepton(5) // Need to swap e and nu for events with W- --> e- nubar! if (helin==helout && hele==helnu) { HLV qa=pout+pe+pnu; HLV qb=pin-pe-pnu; double ta(qa.m2()),tb(qb.m2()); current t65,vout,vin,temp2,temp3,temp5; joo(pnu,helnu,pe,hele,t65); vout[0]=pout.e(); vout[1]=pout.x(); vout[2]=pout.y(); vout[3]=pout.z(); vin[0]=pin.e(); vin[1]=pin.x(); vin[2]=pin.y(); vin[3]=pin.z(); COM brac615=cdot(t65,vout); COM brac645=cdot(t65,vin); // prod1565 and prod6465 are zero for Ws (not Zs)!! joo(pe,helout,pout,helout,temp2); // temp2 is <5|alpha|1> COM prod5165=cdot(temp2,t65); jio(pin,helin,pnu,helin,temp3); // temp3 is <4|alpha|6> COM prod4665=cdot(temp3,t65); joo(pnu,helout,pout,helout,temp2); // temp2 is now <6|mu|1> jio(pin,helin,pe,helin,temp3); // temp3 is now <4|mu|5> jio(pin,helin,pout,helout,temp5); // temp5 is <4|mu|1> current term1,term2,term3,sum; cmult(-2.*brac615/ta-2.*brac645/tb,temp5,term1); cmult(-prod5165/ta,temp3,term2); cmult(prod4665/tb,temp2,term3); cadd(term1,term2,term3,sum); cur[0]=sum[0]; cur[1]=sum[1]; cur[2]=sum[2]; cur[3]=sum[3]; } } double WProp (const HLV & plbar, const HLV & pl){ COM propW = COM(0.,-1.)/( (pl+plbar).m2() - HEJ::MW*HEJ::MW + COM(0.,1.)*HEJ::MW*HEJ::GammaW); double PropFactor=(propW*conj(propW)).real(); return PropFactor; } CCurrent jW (HLV pout, bool helout, HLV pe, bool hele, HLV pnu, bool helnu, HLV pin, bool helin ){ COM cur[4]; cur[0]=0.; cur[1]=0.; cur[2]=0.; cur[3]=0.; CCurrent sum(0.,0.,0.,0.); // NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is // anti-lepton(5) // Need to swap e and nu for events with W- --> e- nubar! if (helin==helout && hele==helnu) { HLV qa=pout+pe+pnu; HLV qb=pin-pe-pnu; double ta(qa.m2()),tb(qb.m2()); CCurrent temp2,temp3,temp5; CCurrent t65 = joo(pnu,helnu,pe,hele); CCurrent vout(pout.e(),pout.x(),pout.y(),pout.z()); CCurrent vin(pin.e(),pin.x(),pin.y(),pin.z()); COM brac615=t65.dot(vout); COM brac645=t65.dot(vin); // prod1565 and prod6465 are zero for Ws (not Zs)!! temp2 = joo(pout,helout,pnu,helout); COM prod1665=temp2.dot(t65); temp3 = joi(pe,helin,pin,helin); COM prod5465=temp3.dot(t65); temp2=joo(pout,helout,pe,helout); temp3=joi(pnu,helnu,pin,helin); temp5=joi(pout,helout,pin,helin); CCurrent term1,term2,term3; term1=(2.*brac615/ta+2.*brac645/tb)*temp5; term2=(prod1665/ta)*temp3; term3=(-prod5465/tb)*temp2; sum=term1+term2+term3; } return sum; } CCurrent jWbar (HLV pout, bool helout, HLV pe, bool hele, HLV pnu, bool helnu, HLV pin, bool helin ){ COM cur[4]; cur[0]=0.; cur[1]=0.; cur[2]=0.; cur[3]=0.; CCurrent sum(0.,0.,0.,0.); // NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is // anti-lepton(5) // Need to swap e and nu for events with W- --> e- nubar! if (helin==helout && hele==helnu) { HLV qa=pout+pe+pnu; HLV qb=pin-pe-pnu; double ta(qa.m2()),tb(qb.m2()); CCurrent temp2,temp3,temp5; CCurrent t65 = joo(pnu,helnu,pe,hele); CCurrent vout(pout.e(),pout.x(),pout.y(),pout.z()); CCurrent vin(pin.e(),pin.x(),pin.y(),pin.z()); COM brac615=t65.dot(vout); COM brac645=t65.dot(vin); // prod1565 and prod6465 are zero for Ws (not Zs)!! temp2 = joo(pe,helout,pout,helout); // temp2 is <5|alpha|1> COM prod5165=temp2.dot(t65); temp3 = jio(pin,helin,pnu,helin); // temp3 is <4|alpha|6> COM prod4665=temp3.dot(t65); temp2=joo(pnu,helout,pout,helout); // temp2 is now <6|mu|1> temp3=jio(pin,helin,pe,helin); // temp3 is now <4|mu|5> temp5=jio(pin,helin,pout,helout); // temp5 is <4|mu|1> CCurrent term1,term2,term3; term1 =(-2.*brac615/ta-2.*brac645/tb)*temp5; term2 =(-prod5165/ta)*temp3; term3 =(prod4665/tb)*temp2; sum = term1 + term2 + term3; } return sum; } // Extremal quark current with W emission. // Using Tensor class rather than CCurrent Tensor <1> jW(HLV pin, HLV pout, HLV plbar, HLV pl, bool aqline){ // Build the external quark line W Emmision Tensor<1> ABCurr = TCurrent(pl, false, plbar, false); Tensor<1> Tp4W = Construct1Tensor((pout+pl+plbar));//p4+pw Tensor<1> TpbW = Construct1Tensor((pin-pl-plbar));//pb-pw Tensor<3> J4bBlank; if (aqline){ J4bBlank = T3Current(pin,false,pout,false); } else{ J4bBlank = T3Current(pout,false,pin,false); } double t4AB = (pout+pl+plbar).m2(); double tbAB = (pin-pl-plbar).m2(); Tensor<2> J4b1 = (J4bBlank.contract(Tp4W,2))/t4AB; Tensor<2> J4b2 = (J4bBlank.contract(TpbW,2))/tbAB; Tensor<2> T4bmMom(0.); if (aqline){ for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ T4bmMom(mu, nu) = (J4b1(nu,mu) + J4b2(mu,nu))*COM(0,-1); } } } else{ for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ T4bmMom(nu,mu) = (J4b1(nu,mu) + J4b2(mu,nu))*COM(0,1); } } } Tensor<1> T4bm = T4bmMom.contract(ABCurr,1); return T4bm; } // Relevant W+Jets Unordered Contribution Helper Functions // W+Jets Uno double jM2Wuno(HLV pg, HLV p1,HLV plbar, HLV pl, HLV pa, bool h1, HLV p2, HLV pb, bool h2, bool pol ){ static bool is_sigma_index_set(false); if(!is_sigma_index_set){ //std::cout<<"Setting sigma_index...." << std::endl; if(init_sigma_index()) is_sigma_index_set = true; else return 0.; } HLV pW = pl+plbar; HLV q1g=pa-pW-p1-pg; HLV q1 = pa-p1-pW; HLV q2 = p2-pb; const double taW = (pa-pW).m2(); const double taW1 = (pa-pW-p1).m2(); const double tb2 = (pb-p2).m2(); const double tb2g = (pb-p2-pg).m2(); const double s1W = (p1+pW).m2(); const double s1gW = (p1+pW+pg).m2(); const double s1g = (p1+pg).m2(); const double tag = (pa-pg).m2(); const double taWg = (pa-pW-pg).m2(); //use p1 as ref vec in pol tensor Tensor<1> epsg = eps(pg,p2,pol); Tensor<1> epsW = TCurrent(pl,false,plbar,false); Tensor<1> j2b = TCurrent(p2,h2,pb,h2); Tensor<1> Tq1q2 = Construct1Tensor((q1+q2)/taW1 + (pb/pb.dot(pg) + p2/p2.dot(pg)) * tb2/(2*tb2g)); Tensor<1> Tq1g = Construct1Tensor((-pg-q1))/taW1; Tensor<1> Tq2g = Construct1Tensor((pg-q2)); Tensor<1> TqaW = Construct1Tensor((pa-pW));//pa-pw Tensor<1> Tqag = Construct1Tensor((pa-pg)); Tensor<1> TqaWg = Construct1Tensor((pa-pg-pW)); Tensor<1> Tp1g = Construct1Tensor((p1+pg)); Tensor<1> Tp1W = Construct1Tensor((p1+pW));//p1+pw Tensor<1> Tp1gW = Construct1Tensor((p1+pg+pW));//p1+pw+pg Tensor<2> g=Metric(); Tensor<3> J31a = T3Current(p1, h1, pa, h1); Tensor<2> J2_qaW =J31a.contract(TqaW/taW, 2); Tensor<2> J2_p1W =J31a.contract(Tp1W/s1W, 2); Tensor<3> L1a = outer(Tq1q2, J2_qaW); Tensor<3> L1b = outer(Tq1q2, J2_p1W); Tensor<3> L2a = outer(Tq1g,J2_qaW); Tensor<3> L2b = outer(Tq1g, J2_p1W); Tensor<3> L3 = outer(g, J2_qaW.contract(Tq2g,1)+J2_p1W.contract(Tq2g,2))/taW1; Tensor<3> L(0.); Tensor<5> J51a = T5Current(p1, h1, pa, h1); Tensor<4> J_qaW = J51a.contract(TqaW,4); Tensor<4> J_qag = J51a.contract(Tqag,4); Tensor<4> J_p1gW = J51a.contract(Tp1gW,4); Tensor<3> U1a = J_qaW.contract(Tp1g,2); Tensor<3> U1b = J_p1gW.contract(Tp1g,2); Tensor<3> U1c = J_p1gW.contract(Tp1W,2); Tensor<3> U1(0.); Tensor<3> U2a = J_qaW.contract(TqaWg,2); Tensor<3> U2b = J_qag.contract(TqaWg,2); Tensor<3> U2c = J_qag.contract(Tp1W,2); Tensor<3> U2(0.); for(int nu=0; nu<4;nu++){ for(int mu=0;mu<4;mu++){ for(int rho=0;rho<4;rho++){ L(nu, mu, rho) = L1a(nu,mu,rho) + L1b(nu,rho,mu) + L2a(mu,nu,rho) + L2b(mu,rho,nu) + L3(mu,nu,rho); U1(nu, mu, rho) = U1a(nu, mu, rho) / (s1g*taW) + U1b(nu,rho,mu) / (s1g*s1gW) + U1c(rho,nu,mu) / (s1W*s1gW); U2(nu,mu,rho) = U2a(mu,nu,rho) / (taWg*taW) + U2b(mu,rho,nu) / (taWg*tag) + U2c(rho,mu,nu) / (s1W*tag); } } } COM X = ((((U1-L).contract(epsW,3)).contract(j2b,2)).contract(epsg,1)); COM Y = ((((U2+L).contract(epsW,3)).contract(j2b,2)).contract(epsg,1)); double amp = HEJ::C_A*HEJ::C_F*HEJ::C_F/2.*(norm(X)+norm(Y)) - HEJ::C_F/2.*(X*conj(Y)).real(); double t1 = q1g.m2(); double t2 = q2.m2(); double WPropfact = WProp(plbar, pl); //Divide by WProp amp*=WPropfact; //Divide by t-channels amp/=(t1*t2); //Average over initial states amp/=(4.*HEJ::C_A*HEJ::C_A); return amp; } // Relevant Wqqx Helper Functions. //g->qxqlxl (Calculates gluon to qqx Current. See JV_\mu in WSubleading Notes) Tensor <1> gtqqxW(HLV pq,HLV pqbar,HLV pl,HLV plbar){ double s2AB=(pl+plbar+pq).m2(); double s3AB=(pl+plbar+pqbar).m2(); Tensor<1> Tpq = Construct1Tensor(pq); Tensor<1> Tpqbar = Construct1Tensor(pqbar); Tensor<1> TAB = Construct1Tensor(pl+plbar); // Define llx current. Tensor<1> ABCur = TCurrent(pl, false, plbar, false); //blank 3 Gamma Current Tensor<3> JV23 = T3Current(pq,false,pqbar,false); // Components of g->qqW before W Contraction Tensor<2> JV1 = JV23.contract((Tpq + TAB),2)/(s2AB); Tensor<2> JV2 = JV23.contract((Tpqbar + TAB),2)/(s3AB); // g->qqW Current. Note Minus between terms due to momentum flow. // Also note: (-I)^2 from W vert. (I) from Quark prop. Tensor<1> JVCur = (JV1.contract(ABCur,1) - JV2.contract(ABCur,2))*COM(0.,-1.); return JVCur; } // Helper Functions Calculate the Crossed Contribution Tensor <2> MCrossW(HLV pa, HLV, HLV, HLV, HLV pq, HLV pqbar, HLV pl, HLV plbar, std::vector<HLV> partons, int nabove ){ // Useful propagator factors double s2AB=(pl+plbar+pq).m2(); double s3AB=(pl+plbar+pqbar).m2(); HLV q1, q3; q1=pa; for(int i=0; i<nabove+1;i++){ q1=q1-partons.at(i); } q3 = q1 - pq - pqbar - pl - plbar; double tcro1=(q3+pq).m2(); double tcro2=(q1-pqbar).m2(); Tensor<1> Tpq = Construct1Tensor(pq); Tensor<1> Tpqbar = Construct1Tensor(pqbar); Tensor<1> TAB = Construct1Tensor(pl+plbar); Tensor<1> Tq1 = Construct1Tensor(q1); Tensor<1> Tq3 = Construct1Tensor(q3); // Define llx current. Tensor<1> ABCur = TCurrent(pl, false, plbar,false); //Blank 5 gamma Current Tensor<5> J523 = T5Current(pq,false,pqbar,false); // 4 gamma currents (with 1 contraction already). Tensor<4> J_q3q = J523.contract((Tq3+Tpq),2); Tensor<4> J_2AB = J523.contract((Tpq+TAB),2); // Components of Crossed Vertex Contribution Tensor<3> Xcro1 = J_q3q.contract((Tpqbar + TAB),3); Tensor<3> Xcro2 = J_q3q.contract((Tq1-Tpqbar),3); Tensor<3> Xcro3 = J_2AB.contract((Tq1-Tpqbar),3); // Term Denominators Taken Care of at this stage Tensor<2> Xcro1Cont = Xcro1.contract(ABCur,3)/(tcro1*s3AB); Tensor<2> Xcro2Cont = Xcro2.contract(ABCur,2)/(tcro1*tcro2); Tensor<2> Xcro3Cont = Xcro3.contract(ABCur,1)/(s2AB*tcro2); //Initialise the Crossed Vertex Object Tensor<2> Xcro(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xcro(mu,nu) = -(-Xcro1Cont(nu,mu)+Xcro2Cont(nu,mu)+Xcro3Cont(nu,mu)); } } return Xcro; } // Helper Functions Calculate the Uncrossed Contribution Tensor <2> MUncrossW(HLV pa, HLV, HLV, HLV, HLV pq, HLV pqbar, HLV pl, HLV plbar, std::vector<HLV> partons, int nabove ){ double s2AB=(pl+plbar+pq).m2(); double s3AB=(pl+plbar+pqbar).m2(); HLV q1, q3; q1=pa; for(int i=0; i<nabove+1;i++){ q1=q1-partons.at(i); } q3 = q1 - pl - plbar - pq - pqbar; double tunc1 = (q1-pq).m2(); double tunc2 = (q3+pqbar).m2(); Tensor<1> Tpq = Construct1Tensor(pq); Tensor<1> Tpqbar = Construct1Tensor(pqbar); Tensor<1> TAB = Construct1Tensor(pl+plbar); Tensor<1> Tq1 = Construct1Tensor(q1); Tensor<1> Tq3 = Construct1Tensor(q3); // Define llx current. Tensor<1> ABCur = TCurrent(pl, false, plbar, false); //Blank 5 gamma Current Tensor<5> J523 = T5Current(pq,false,pqbar,false); // 4 gamma currents (with 1 contraction already). Tensor<4> J_2AB = J523.contract((Tpq+TAB),2); Tensor<4> J_q1q = J523.contract((Tq1-Tpq),2); // 2 Contractions taken care of. Tensor<3> Xunc1 = J_2AB.contract((Tq3+Tpqbar),3); Tensor<3> Xunc2 = J_q1q.contract((Tq3+Tpqbar),3); Tensor<3> Xunc3 = J_q1q.contract((Tpqbar+TAB),3); // Term Denominators Taken Care of at this stage Tensor<2> Xunc1Cont = Xunc1.contract(ABCur,1)/(s2AB*tunc2); Tensor<2> Xunc2Cont = Xunc2.contract(ABCur,2)/(tunc1*tunc2); Tensor<2> Xunc3Cont = Xunc3.contract(ABCur,3)/(tunc1*s3AB); //Initialise the Uncrossed Vertex Object Tensor<2> Xunc(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xunc(mu,nu) = -(- Xunc1Cont(mu,nu)+Xunc2Cont(mu,nu) +Xunc3Cont(mu,nu)); } } return Xunc; } // Helper Functions Calculate the g->qqxW (Eikonal) Contributions Tensor <2> MSymW(HLV pa, HLV p1, HLV pb, HLV p4, HLV pq, HLV pqbar, HLV pl,HLV plbar, std::vector<HLV> partons, int nabove ){ double sa2=(pa+pq).m2(); double s12=(p1+pq).m2(); double sa3=(pa+pqbar).m2(); double s13=(p1+pqbar).m2(); double saA=(pa+pl).m2(); double s1A=(p1+pl).m2(); double saB=(pa+plbar).m2(); double s1B=(p1+plbar).m2(); double sb2=(pb+pq).m2(); double s42=(p4+pq).m2(); double sb3=(pb+pqbar).m2(); double s43=(p4+pqbar).m2(); double sbA=(pb+pl).m2(); double s4A=(p4+pl).m2(); double sbB=(pb+plbar).m2(); double s4B=(p4+plbar).m2(); double s23AB=(pl+plbar+pq+pqbar).m2(); HLV q1,q3; q1=pa; for(int i=0;i<nabove+1;i++){ q1-=partons.at(i); } q3=q1-pq-pqbar-plbar-pl; double t1 = (q1).m2(); double t3 = (q3).m2(); //Define Tensors to be used Tensor<1> Tp1 = Construct1Tensor(p1); Tensor<1> Tp4 = Construct1Tensor(p4); Tensor<1> Tpa = Construct1Tensor(pa); Tensor<1> Tpb = Construct1Tensor(pb); Tensor<1> Tpq = Construct1Tensor(pq); Tensor<1> Tpqbar = Construct1Tensor(pqbar); Tensor<1> TAB = Construct1Tensor(pl+plbar); Tensor<1> Tq1 = Construct1Tensor(q1); Tensor<1> Tq3 = Construct1Tensor(q3); Tensor<2> g=Metric(); // g->qqW Current (Factors of sqrt2 dealt with in this function.) Tensor<1> JV = gtqqxW(pq,pqbar,pl,plbar); // 1a gluon emisson Contribution Tensor<3> X1a = outer(g, Tp1*(t1/(s12+s13+s1A+s1B)) + Tpa*(t1/(sa2+sa3+saA+saB)) ); Tensor<2> X1aCont = X1a.contract(JV,3); //4b gluon emission Contribution Tensor<3> X4b = outer(g, Tp4*(t3/(s42+s43+s4A+s4B)) + Tpb*(t3/(sb2+sb3+sbA+sbB)) ); Tensor<2> X4bCont = X4b.contract(JV,3); //Set up each term of 3G diagram. Tensor<3> X3g1 = outer(Tq1+Tpq+Tpqbar+TAB, g); Tensor<3> X3g2 = outer(Tq3-Tpq-Tpqbar-TAB, g); Tensor<3> X3g3 = outer(Tq1+Tq3, g); // Note the contraction of indices changes term by term Tensor<2> X3g1Cont = X3g1.contract(JV,3); Tensor<2> X3g2Cont = X3g2.contract(JV,2); Tensor<2> X3g3Cont = X3g3.contract(JV,1); // XSym is an amalgamation of x1a, X4b and X3g. // Makes sense from a colour factor point of view. Tensor<2>Xsym(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xsym(mu,nu) = (X3g1Cont(nu,mu) + X3g2Cont(mu,nu) - X3g3Cont(nu,mu)) + (X1aCont(mu,nu) - X4bCont(mu,nu)); } } return Xsym/s23AB; } Tensor <2> MCross(HLV pa, HLV pq, HLV pqbar, std::vector<HLV> partons, bool hq, int nabove ){ HLV q1; q1=pa; for(int i=0;i<nabove+1;i++){ q1-=partons.at(i); } double t2=(q1-pqbar).m2(); Tensor<1> Tq1 = Construct1Tensor(q1-pqbar); //Blank 3 gamma Current Tensor<3> J323 = T3Current(pq,hq,pqbar,hq); // 2 gamma current (with 1 contraction already). Tensor<2> XCroCont = J323.contract((Tq1),2)/(t2); //Initialise the Crossed Vertex Tensor<2> Xcro(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xcro(mu,nu) = XCroCont(nu,mu); } } return Xcro; } // Helper Functions Calculate the Uncrossed Contribution Tensor <2> MUncross(HLV pa, HLV pq,HLV pqbar, std::vector<HLV> partons, bool hq, int nabove ){ HLV q1; q1=pa; for(int i=0;i<nabove+1;i++){ q1-=partons.at(i); } double t2 = (q1-pq).m2(); Tensor<1> Tq1 = Construct1Tensor(q1-pq); //Blank 3 gamma Current Tensor<3> J323 = T3Current(pq,hq,pqbar,hq); // 2 gamma currents (with 1 contraction already). Tensor<2> XUncCont = J323.contract((Tq1),2)/t2; //Initialise the Uncrossed Vertex Tensor<2> Xunc(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xunc(mu,nu) = -XUncCont(mu,nu); } } return Xunc; } // Helper Functions Calculate the Eikonal Contributions Tensor <2> MSym(HLV pa, HLV p1, HLV pb, HLV p4, HLV pq, HLV pqbar, std::vector<HLV> partons, bool hq, int nabove ){ HLV q1, q3; q1=pa; for(int i=0;i<nabove+1;i++){ q1-=partons.at(i); } q3 = q1-pq-pqbar; double t1 = (q1).m2(); double t3 = (q3).m2(); double s23 = (pq+pqbar).m2(); double sa2 = (pa+pq).m2(); double sa3 = (pa+pqbar).m2(); double s12 = (p1+pq).m2(); double s13 = (p1+pqbar).m2(); double sb2 = (pb+pq).m2(); double sb3 = (pb+pqbar).m2(); double s42 = (p4+pq).m2(); double s43 = (p4+pqbar).m2(); //Define Tensors to be used Tensor<1> Tp1 = Construct1Tensor(p1); Tensor<1> Tp4 = Construct1Tensor(p4); Tensor<1> Tpa = Construct1Tensor(pa); Tensor<1> Tpb = Construct1Tensor(pb); Tensor<1> Tpq = Construct1Tensor(pq); Tensor<1> Tpqbar = Construct1Tensor(pqbar); Tensor<1> Tq1 = Construct1Tensor(q1); Tensor<1> Tq3 = Construct1Tensor(q3); Tensor<2> g=Metric(); Tensor<1> qqxCur = TCurrent(pq, hq, pqbar, hq); // // 1a gluon emisson Contribution Tensor<3> X1a = outer(g, Tp1*(t1/(s12+s13))+Tpa*(t1/(sa2+sa3))); Tensor<2> X1aCont = X1a.contract(qqxCur,3); // //4b gluon emission Contribution Tensor<3> X4b = outer(g, Tp4*(t3/(s42+s43)) + Tpb*(t3/(sb2+sb3))); Tensor<2> X4bCont = X4b.contract(qqxCur,3); // New Formulation Corresponding to New Analytics Tensor<3> X3g1 = outer(Tq1+Tpq+Tpqbar, g); Tensor<3> X3g2 = outer(Tq3-Tpq-Tpqbar, g); Tensor<3> X3g3 = outer(Tq1+Tq3, g); // Note the contraction of indices changes term by term Tensor<2> X3g1Cont = X3g1.contract(qqxCur,3); Tensor<2> X3g2Cont = X3g2.contract(qqxCur,2); Tensor<2> X3g3Cont = X3g3.contract(qqxCur,1); Tensor<2>Xsym(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xsym(mu, nu) = COM(0,1) * ( (X3g1Cont(nu,mu) + X3g2Cont(mu,nu) - X3g3Cont(nu,mu)) + (X1aCont(mu,nu) - X4bCont(mu,nu)) ); } } return Xsym/s23; } } // Anonymous Namespace helper functions // W+Jets FKL Contributions // Calculates the square of the current contractions for qQ->qenuQ scattering // p1: quark (with W emittance) // p2: Quark double jMWqQ (HLV p1out, HLV pe, HLV pnu,HLV p1in, HLV p2out, HLV p2in){ current mj1m,mj2p,mj2m; HLV q1=p1in-p1out-pe-pnu; HLV q2=-(p2in-p2out); jW(p1out,false,pe,false,pnu,false,p1in,false,mj1m); joi(p2out,true,p2in,true,mj2p); joi(p2out,false,p2in,false,mj2m); COM Mmp=cdot(mj1m,mj2p); // mj1m.mj2m COM Mmm=cdot(mj1m,mj2m); // sum of spinor strings ||^2 double a2Mmp=abs2(Mmp); double a2Mmm=abs2(Mmm); double WPropfact = WProp(pe, pnu); // Division by colour and Helicity average (Nc2-1)(4) // Multiply by Cf^2 return HEJ::C_F*HEJ::C_F*WPropfact*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2()*(HEJ::N_C*HEJ::N_C - 1)*4); } // Calculates the square of the current contractions for qQ->qenuQ scattering // p1: quark (with W emittance) // p2: Quark double jMWqQbar (HLV p1out, HLV pe, HLV pnu,HLV p1in, HLV p2out, HLV p2in){ current mj1m,mj2p,mj2m; HLV q1=p1in-p1out-pe-pnu; HLV q2=-(p2in-p2out); jW(p1out,false,pe,false,pnu,false,p1in,false,mj1m); jio(p2in,true,p2out,true,mj2p); jio(p2in,false,p2out,false,mj2m); COM Mmp=cdot(mj1m,mj2p); // mj1m.mj2m COM Mmm=cdot(mj1m,mj2m); // sum of spinor strings ||^2 double a2Mmp=abs2(Mmp); double a2Mmm=abs2(Mmm); double WPropfact = WProp(pe, pnu); // Division by colour and Helicity average (Nc2-1)(4) // Multiply by Cf^2 return HEJ::C_F*HEJ::C_F*WPropfact*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2()*(HEJ::N_C*HEJ::N_C - 1)*4); } // Calculates the square of the current contractions for qQ->qenuQ scattering // p1: quark (with W emittance) // p2: Quark double jMWqbarQ (HLV p1out, HLV pe, HLV pnu,HLV p1in, HLV p2out, HLV p2in){ current mj1m,mj2p,mj2m; HLV q1=p1in-p1out-pe-pnu; HLV q2=-(p2in-p2out); jWbar(p1out,false,pe,false,pnu,false,p1in,false,mj1m); joi(p2out,true,p2in,true,mj2p); joi(p2out,false,p2in,false,mj2m); COM Mmp=cdot(mj1m,mj2p); // mj1m.mj2m COM Mmm=cdot(mj1m,mj2m); // sum of spinor strings ||^2 double a2Mmp=abs2(Mmp); double a2Mmm=abs2(Mmm); double WPropfact = WProp(pe, pnu); // Division by colour and Helicity average (Nc2-1)(4) // Multiply by Cf^2 return HEJ::C_F*HEJ::C_F*WPropfact*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2()*(HEJ::N_C*HEJ::N_C - 1)*4); } // Calculates the square of the current contractions for qQ->qenuQ scattering // p1: quark (with W emittance) // p2: Quark double jMWqbarQbar (HLV p1out, HLV pe, HLV pnu,HLV p1in, HLV p2out, HLV p2in){ current mj1m,mj2p,mj2m; HLV q1=p1in-p1out-pe-pnu; HLV q2=-(p2in-p2out); jWbar(p1out,false,pe,false,pnu,false,p1in,false,mj1m); jio(p2in,true,p2out,true,mj2p); jio(p2in,false,p2out,false,mj2m); COM Mmp=cdot(mj1m,mj2p); // mj1m.mj2m COM Mmm=cdot(mj1m,mj2m); // sum of spinor strings ||^2 double a2Mmp=abs2(Mmp); double a2Mmm=abs2(Mmm); double WPropfact = WProp(pe, pnu); // Division by colour and Helicity average (Nc2-1)(4) // Multiply by Cf^2 return HEJ::C_F*HEJ::C_F*WPropfact*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2()*(HEJ::N_C*HEJ::N_C - 1)*4); } // Calculates the square of the current contractions for qg->qenug scattering // p1: quark // p2: gluon double jMWqg (HLV p1out, HLV pe, HLV pnu,HLV p1in, HLV p2out, HLV p2in){ HLV q1=p1in-p1out-pe-pnu; HLV q2=-(p2in-p2out); current mj1m,mj2p,mj2m; jW(p1out,false,pe,false,pnu,false,p1in,false,mj1m); joi(p2out,true,p2in,true,mj2p); joi(p2out,false,p2in,false,mj2m); // mj1m.mj2p COM Mmp=cdot(mj1m,mj2p); // mj1m.mj2m COM Mmm=cdot(mj1m,mj2m); const double K = K_g(p2out, p2in); // sum of spinor strings ||^2 double a2Mmp=abs2(Mmp); double a2Mmm=abs2(Mmm); double sst = K/HEJ::C_A*(a2Mmp+a2Mmm); double WPropfact = WProp(pe, pnu); // Division by colour and Helicity average (Nc2-1)(4) // Multiply by Cf*Ca=4 return HEJ::C_F*HEJ::C_A*WPropfact*sst/(q1.m2()*q2.m2()*(HEJ::N_C*HEJ::N_C - 1)*4); } // Calculates the square of the current contractions for qg->qenug scattering // p1: quark // p2: gluon double jMWqbarg (HLV p1out, HLV pe, HLV pnu,HLV p1in, HLV p2out, HLV p2in){ HLV q1=p1in-p1out-pe-pnu; HLV q2=-(p2in-p2out); current mj1m,mj2p,mj2m; jWbar(p1out,false,pe,false,pnu,false,p1in,false,mj1m); joi(p2out,true,p2in,true,mj2p); joi(p2out,false,p2in,false,mj2m); // mj1m.mj2p COM Mmp=cdot(mj1m,mj2p); // mj1m.mj2m COM Mmm=cdot(mj1m,mj2m); const double K = K_g(p2out, p2in); // sum of spinor strings ||^2 double a2Mmp=abs2(Mmp); double a2Mmm=abs2(Mmm); double sst = K/HEJ::C_A*(a2Mmp+a2Mmm); double WPropfact = WProp(pe, pnu); // Division by colour and Helicity average (Nc2-1)(4) // Multiply by Cf*Ca=4 return HEJ::C_F*HEJ::C_A*WPropfact*sst/(q1.m2()*q2.m2()*(HEJ::N_C*HEJ::N_C - 1)*4); } /** * @brief W+Jets Unordered Contributions, function to handle all incoming types. + * @param p1out Outgoing Particle 1. (W emission) + * @param pe Outgoing election momenta + * @param pnu Outgoing neutrino momenta + * @param p1in Incoming Particle 1. (W emission) + * @param p2out Outgoing Particle 2 (Quark, unordered emission this side.) + * @param p2in Incoming Particle 2 (Quark, unordered emission this side.) + * @param pg Unordered Gluon momenta + * @param aqlineb Bool. Is Backwards quark line an anti-quark line? + * @param aqlinef Bool. Is Forwards quark line an anti-quark line? * * Calculates j_W ^\mu j_{uno}_\mu. Ie, unordered with W emission opposite side. - * All possible incoming particles possible. + * Handles all possible incoming states. */ - double jWjuno (HLV p1out, HLV pe, HLV pnu,HLV p1in, HLV p2out, HLV p2in, HLV pg, bool aqlineb, bool aqlinef){ CCurrent mj1m,mj2p,mj2m, jgbm,jgbp,j2gm,j2gp; HLV q1=p1in-p1out-pe-pnu; HLV q2=-(p2in-p2out-pg); HLV q3=-(p2in-p2out); if(aqlineb) mj1m=jWbar(p1out,false,pe,false,pnu,false,p1in,false); else mj1m=jW(p1out,false,pe,false,pnu,false,p1in,false); if(aqlinef){ mj2p=jio(p2in,true,p2out,true); mj2m=jio(p2in,false,p2out,false); j2gp=joo(pg,true,p2out,true); j2gm=joo(pg,false,p2out,false); jgbp=jio(p2in,true,pg,true); jgbm=jio(p2in,false,pg,false); } else{ mj2p=joi(p2out,true,p2in,true); mj2m=joi(p2out,false,p2in,false); j2gp=joo(p2out,true,pg,true); j2gm=joo(p2out,false,pg,false); jgbp=joi(pg,true,p2in,true); jgbm=joi(pg,false,p2in,false); } // Dot products of these which occur again and again COM MWmp=mj1m.dot(mj2p); // And now for the Higgs ones COM MWmm=mj1m.dot(mj2m); CCurrent qsum(q2+q3); CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in); CCurrent p2o(p2out); CCurrent p2i(p2in); Lmm=( (-1.)*qsum*(MWmm) + (-2.*mj1m.dot(pg))*mj2m + 2.*mj2m.dot(pg)*mj1m + ( p1o/pg.dot(p1out) + p1i/pg.dot(p1in) )*( q2.m2()*MWmm/2. ) )/q3.m2(); Lmp=( (-1.)*qsum*(MWmp) + (-2.*mj1m.dot(pg))*mj2p + 2.*mj2p.dot(pg)*mj1m + ( p1o/pg.dot(p1out) + p1i/pg.dot(p1in) )*( q2.m2()*MWmp/2. ) )/q3.m2(); U1mm=(jgbm.dot(mj1m)*j2gm+2.*p2o*MWmm)/(p2out+pg).m2(); U1mp=(jgbp.dot(mj1m)*j2gp+2.*p2o*MWmp)/(p2out+pg).m2(); U2mm=((-1.)*j2gm.dot(mj1m)*jgbm+2.*p2i*MWmm)/(p2in-pg).m2(); U2mp=((-1.)*j2gp.dot(mj1m)*jgbp+2.*p2i*MWmp)/(p2in-pg).m2(); double amm,amp; amm=HEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mm+U2mm); amp=HEJ::C_F*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mp+U2mp); double ampsq=-(amm+amp); //Divide by WProp ampsq*=WProp(pe, pnu); return ampsq/((16)*(q2.m2()*q1.m2())); } /** \brief Backwards unordered, W opposite side. qq incoming * \see jWjuno */ -double junobMWqQg (HLV p1out, HLV pe, HLV pnu,HLV p1in, - HLV p2out, HLV p2in, HLV pg){ +double junobMWqQg(HLV pg, HLV p1out, HLV p1in, HLV p2out, + HLV pe, HLV pnu, HLV p2in){ return jWjuno(p1out, pe, pnu, p1in, p2out, p2in, pg, false, false); } /** \brief Backwards unordered, W opposite side. qqbar incoming * \see jWjuno */ -double junobMWqQbarg (HLV p1out, HLV pe, HLV pnu,HLV p1in, - HLV p2out, HLV p2in, HLV pg){ +double junobMWqQbarg(HLV pg, HLV p1out, HLV p1in, HLV p2out, + HLV pe, HLV pnu, HLV p2in){ return jWjuno(p1out, pe, pnu, p1in, p2out, p2in, pg, false, true); } /** \brief Backwards unordered, W opposite side. qbarq incoming * \see jWjuno */ -double junobMWqbarQg (HLV p1out, HLV pe, HLV pnu,HLV p1in, - HLV p2out, HLV p2in, HLV pg){ +double junobMWqbarQg(HLV pg, HLV p1out, HLV p1in, HLV p2out, + HLV pe, HLV pnu, HLV p2in){ return jWjuno(p1out, pe, pnu, p1in, p2out, p2in, pg, true, false); } /** \brief Backwards unordered, W opposite side. qbarqbar incoming * \see jWjuno */ -double junobMWqbarQbarg (HLV p1out, HLV pe, HLV pnu,HLV p1in, - HLV p2out, HLV p2in, HLV pg){ +double junobMWqbarQbarg(HLV pg, HLV p1out, HLV p1in, HLV p2out, + HLV pe, HLV pnu, HLV p2in){ return jWjuno(p1out, pe, pnu, p1in, p2out, p2in, pg, true, true); } /** \brief Forwards unordered, W opposite side. qq incoming * \see jWjuno */ -double junofMWgqQ (HLV pg,HLV p1out,HLV p1in, HLV p2out, +double junofMWgqQ(HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV pe, HLV pnu, HLV p2in){ return jWjuno(p2out, pe, pnu, p2in, p1out, p1in, pg, false, false); } /** \brief Forwards unordered, W opposite side. qbarq incoming * \see jWjuno */ -double junofMWgqQbar (HLV pg,HLV p1out,HLV p1in, HLV p2out, +double junofMWgqQbar(HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV pe, HLV pnu, HLV p2in){ return jWjuno(p2out, pe, pnu, p2in, p1out, p1in, pg, true, false); } /** \brief Forwards unordered, W opposite side. qqbar incoming * \see jWjuno */ -double junofMWgqbarQ (HLV pg,HLV p1out,HLV p1in, HLV p2out, +double junofMWgqbarQ(HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV pe, HLV pnu, HLV p2in){ return jWjuno(p2out, pe, pnu, p2in, p1out, p1in, pg, false, true); } /** \brief Forwards unordered, W opposite side. qbarqbar incoming * \see jWjuno */ -double junofMWgqbarQbar (HLV pg,HLV p1out,HLV p1in, HLV p2out, +double junofMWgqbarQbar(HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV pe, HLV pnu, HLV p2in){ return jWjuno(p2out, pe, pnu, p2in, p1out, p1in, pg, true, true); } ///TODO make this comment more visible /// Naming scheme jM2-Wuno-g-({q/qbar}{Q/Qbar/g}) ///TODO Spit naming for more complicated functions? /// e.g. jM2WqqtoqQQq -> jM2_Wqq_to_qQQq double jM2WunogqQ(HLV pg, HLV p1out,HLV plbar,HLV pl, HLV p1in, HLV p2out, HLV p2in ){ //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true); ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false); ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true); ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; return ME2; } //same as function above but actually obtaining the antiquark line by crossing //symmetry, where p1out and p1in are expected to be negative. //should give same result as jM2WunogqbarQ below (verified) double jM2WunogqQ_crossqQ(HLV pg, HLV p1out,HLV plbar,HLV pl, HLV p1in, HLV p2out, HLV p2in ){ //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true); ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false); ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true); ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; return ME2; } double jM2WunogqQbar(HLV pg, HLV p1out,HLV plbar,HLV pl, HLV p1in, HLV p2out, HLV p2in ){ //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true); ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false); ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true); ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; return ME2; } double jM2Wunogqg(HLV pg, HLV p1out,HLV plbar,HLV pl, HLV p1in, HLV p2out, HLV p2in ){ //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true); ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false); ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true); ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; double ratio; // p2-/pb- in the notes if (p2in.pz()>0.) // if the gluon is the positive ratio=p2out.plus()/p2in.plus(); else // the gluon is the negative ratio=p2out.minus()/p2in.minus(); double cam = ( (HEJ::C_A - 1/HEJ::C_A)*(ratio + 1./ratio)/2. + 1/HEJ::C_A)/HEJ::C_F; ME2*=cam; return ME2; } double jM2WunogqbarQ(HLV pg, HLV p1out,HLV plbar,HLV pl, HLV p1in, HLV p2out, HLV p2in ){ //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,true); ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,false); ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,true); ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; return ME2; } double jM2WunogqbarQbar(HLV pg, HLV p1out,HLV plbar,HLV pl, HLV p1in, HLV p2out, HLV p2in ){ //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,true); ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,false); ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,true); ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; return ME2; } double jM2Wunogqbarg(HLV pg, HLV p1out,HLV plbar,HLV pl, HLV p1in, HLV p2out, HLV p2in ){ //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,true); ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,false); ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,true); ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; double ratio; // p2-/pb- in the notes if (p2in.pz()>0.) // if the gluon is the positive ratio=p2out.plus()/p2in.plus(); else // the gluon is the negative ratio=p2out.minus()/p2in.minus(); double cam = ( (HEJ::C_A - 1/HEJ::C_A)*(ratio + 1./ratio)/2. + 1/HEJ::C_A)/HEJ::C_F; ME2*=cam; return ME2; } // W+Jets qqxExtremal // W+Jets qqxExtremal Currents - wqq emission double jM2WgQtoqbarqQ(HLV pgin, HLV pqout,HLV plbar,HLV pl, HLV pqbarout, HLV p2out, HLV p2in ){ //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,true); ME2mpm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,false); ME2mmp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,true); ME2mmm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; //Correct colour averaging ME2*=(3.0/8.0); return ME2; } double jM2WgQtoqqbarQ(HLV pgin, HLV pqbarout,HLV plbar,HLV pl, HLV pqout, HLV p2out, HLV p2in ){ //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,true); ME2mpm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,false); ME2mmp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,true); ME2mmm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; //Correct colour averaging ME2*=(3.0/8.0); return ME2; } double jM2Wggtoqbarqg(HLV pgin, HLV pqout,HLV plbar,HLV pl, HLV pqbarout, HLV p2out, HLV p2in ){ double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,true); ME2mpm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,false); ME2mmp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,true); ME2mmm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; double ratio; // p2-/pb- in the notes if (p2in.pz()>0.) // if the gluon is the positive ratio=p2out.plus()/p2in.plus(); else // the gluon is the negative ratio=p2out.minus()/p2in.minus(); double cam = ( (HEJ::C_A - 1/HEJ::C_A)*(ratio + 1./ratio)/2. + 1/HEJ::C_A)/HEJ::C_F; ME2*=cam; //Correct colour averaging ME2*=(3.0/8.0); return ME2; } double jM2Wggtoqqbarg(HLV pgin, HLV pqbarout, HLV plbar, HLV pl, HLV pqout, HLV p2out, HLV p2in ){ //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,true); ME2mpm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,false); ME2mmp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,true); ME2mmm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; double ratio; // p2-/pb- in the notes if (p2in.pz()>0.) // if the gluon is the positive ratio=p2out.plus()/p2in.plus(); else // the gluon is the negative ratio=p2out.minus()/p2in.minus(); double cam = ( (HEJ::C_A - 1/HEJ::C_A)*(ratio + 1./ratio)/2. + 1/HEJ::C_A)/HEJ::C_F; ME2*=cam; //Correct colour averaging ME2*=(3.0/8.0); return ME2; } namespace { //Function to calculate Term 1 in Equation 3.23 in James Cockburn's Thesis. Tensor<1> qggm1(HLV pb, HLV p2, HLV p3, bool hel2, bool helg, HLV refmom){ double t1 = (p3-pb)*(p3-pb); Tensor<1> Tp3 = Construct1Tensor((p3));//p3 Tensor<1> Tpb = Construct1Tensor((pb));//pb // Gauge choice in polarisation tensor. (see JC's Thesis) Tensor<1> epsg = eps(pb, refmom, helg); Tensor<3> qqCurBlank = T3Current(p2,hel2,p3,hel2); Tensor<2> qqCur = qqCurBlank.contract(Tp3-Tpb,2); Tensor<1> gqqCur = qqCur.contract(epsg,2)/t1; return gqqCur*(-1); } //Function to calculate Term 2 in Equation 3.23 in James Cockburn's Thesis. Tensor<1> qggm2(HLV pb, HLV p2, HLV p3, bool hel2, bool helg, HLV refmom){ double t1 = (p2-pb)*(p2-pb); Tensor<1> Tp2 = Construct1Tensor((p2));//p2 Tensor<1> Tpb = Construct1Tensor((pb));//pb // Gauge choice in polarisation tensor. (see JC's Thesis) Tensor<1> epsg = eps(pb,refmom, helg); Tensor<3> qqCurBlank = T3Current(p2,hel2,p3,hel2); Tensor<2> qqCur = qqCurBlank.contract(Tp2-Tpb,2); Tensor<1> gqqCur = qqCur.contract(epsg,1)/t1; return gqqCur; } //Function to calculate Term 3 in Equation 3.23 in James Cockburn's Thesis. Tensor<1> qggm3(HLV pb, HLV p2, HLV p3, bool hel2, bool helg, HLV refmom){ double s23 = (p2+p3)*(p2+p3); Tensor<1> Tp2 = Construct1Tensor((p2));//p2 Tensor<1> Tp3 = Construct1Tensor((p3));//p3 Tensor<1> Tpb = Construct1Tensor((pb));//pb // Gauge choice in polarisation tensor. (see JC's Thesis) Tensor<1> epsg = eps(pb, refmom, helg); Tensor<2> g=Metric(); Tensor<3> qqCurBlank1 = outer(Tp2+Tp3, g)/s23; Tensor<3> qqCurBlank2 = outer(Tpb, g)/s23; Tensor<1> Cur23 = TCurrent(p2,hel2, p3,hel2); Tensor<2> qqCur1 = qqCurBlank1.contract(Cur23,3); Tensor<2> qqCur2 = qqCurBlank2.contract(Cur23,3); Tensor<2> qqCur3 = qqCurBlank2.contract(Cur23,1); Tensor<1> gqqCur = (qqCur1.contract(epsg,1) - qqCur2.contract(epsg,2) + qqCur3.contract(epsg,1))*2*COM(0,1); return gqqCur; } } // no wqq emission double jM2WgqtoQQqW(HLV pa, HLV pb, HLV p1, HLV p2, HLV p3,HLV plbar, HLV pl, bool aqlinepa ){ static bool is_sigma_index_set(false); if(!is_sigma_index_set){ if(init_sigma_index()) is_sigma_index_set = true; else return 0.;} // 2 independent helicity choices (complex conjugation related). Tensor<1> TMmmm1 = qggm1(pb,p2,p3,false,false, pa); Tensor<1> TMmmm2 = qggm2(pb,p2,p3,false,false, pa); Tensor<1> TMmmm3 = qggm3(pb,p2,p3,false,false, pa); Tensor<1> TMpmm1 = qggm1(pb,p2,p3,false,true, pa); Tensor<1> TMpmm2 = qggm2(pb,p2,p3,false,true, pa); Tensor<1> TMpmm3 = qggm3(pb,p2,p3,false,true, pa); // Build the external quark line W Emmision Tensor<1> cur1a = jW(pa,p1,plbar,pl, aqlinepa); //Contract with the qqxCurrent. COM Mmmm1 = TMmmm1.contract(cur1a,1); COM Mmmm2 = TMmmm2.contract(cur1a,1); COM Mmmm3 = TMmmm3.contract(cur1a,1); COM Mpmm1 = TMpmm1.contract(cur1a,1); COM Mpmm2 = TMpmm2.contract(cur1a,1); COM Mpmm3 = TMpmm3.contract(cur1a,1); //Colour factors: COM cm1m1,cm2m2,cm3m3,cm1m2,cm1m3,cm2m3; cm1m1=8./3.; cm2m2=8./3.; cm3m3=6.; cm1m2 =-1./3.; cm1m3 = -3.*COM(0.,1.); cm2m3 = 3.*COM(0.,1.); //Sqaure and sum for each helicity config: double Mmmm = real( cm1m1*pow(abs(Mmmm1),2) + cm2m2*pow(abs(Mmmm2),2) + cm3m3*pow(abs(Mmmm3),2) + 2.*real(cm1m2*Mmmm1*conj(Mmmm2)) + 2.*real(cm1m3*Mmmm1*conj(Mmmm3)) + 2.*real(cm2m3*Mmmm2*conj(Mmmm3)) ); double Mpmm = real( cm1m1*pow(abs(Mpmm1),2) + cm2m2*pow(abs(Mpmm2),2) + cm3m3*pow(abs(Mpmm3),2) + 2.*real(cm1m2*Mpmm1*conj(Mpmm2)) + 2.*real(cm1m3*Mpmm1*conj(Mpmm3)) + 2.*real(cm2m3*Mpmm2*conj(Mpmm3)) ); // Divide by WProp double WPropfact = WProp(plbar, pl); return (2*WPropfact*(Mmmm+Mpmm)/24./4.)/(pa-p1-pl-plbar).m2()/(p2+p3-pb).m2(); } // W+Jets qqxCentral double jM2WqqtoqQQq(HLV pa, HLV pb,HLV pl, HLV plbar, std::vector<HLV> partons, bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove ){ static bool is_sigma_index_set(false); if(!is_sigma_index_set){ if(init_sigma_index()) is_sigma_index_set = true; else return 0.;} HLV pq, pqbar, p1, p4; if (qqxmarker){ pqbar = partons[nabove+1]; pq = partons[nabove+2];} else{ pq = partons[nabove+1]; pqbar = partons[nabove+2];} p1 = partons.front(); p4 = partons.back(); Tensor<1> T1am, T4bm, T1ap, T4bp; if(!(aqlinepa)){ T1ap = TCurrent(p1, true, pa, true); T1am = TCurrent(p1, false, pa, false);} else if(aqlinepa){ T1ap = TCurrent(pa, true, p1, true); T1am = TCurrent(pa, false, p1, false);} if(!(aqlinepb)){ T4bp = TCurrent(p4, true, pb, true); T4bm = TCurrent(p4, false, pb, false);} else if(aqlinepb){ T4bp = TCurrent(pb, true, p4, true); T4bm = TCurrent(pb, false, p4, false);} // Calculate the 3 separate contributions to the effective vertex Tensor<2> Xunc = MUncrossW(pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove); Tensor<2> Xcro = MCrossW( pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove); Tensor<2> Xsym = MSymW( pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove); // 4 Different Helicity Choices (Differs from Pure Jet Case, where there is // also the choice in qqbar helicity. // (- - hel choice) COM M_mmUnc = (((Xunc).contract(T1am,1)).contract(T4bm,1)); COM M_mmCro = (((Xcro).contract(T1am,1)).contract(T4bm,1)); COM M_mmSym = (((Xsym).contract(T1am,1)).contract(T4bm,1)); // (- + hel choice) COM M_mpUnc = (((Xunc).contract(T1am,1)).contract(T4bp,1)); COM M_mpCro = (((Xcro).contract(T1am,1)).contract(T4bp,1)); COM M_mpSym = (((Xsym).contract(T1am,1)).contract(T4bp,1)); // (+ - hel choice) COM M_pmUnc = (((Xunc).contract(T1ap,1)).contract(T4bm,1)); COM M_pmCro = (((Xcro).contract(T1ap,1)).contract(T4bm,1)); COM M_pmSym = (((Xsym).contract(T1ap,1)).contract(T4bm,1)); // (+ + hel choice) COM M_ppUnc = (((Xunc).contract(T1ap,1)).contract(T4bp,1)); COM M_ppCro = (((Xcro).contract(T1ap,1)).contract(T4bp,1)); COM M_ppSym = (((Xsym).contract(T1ap,1)).contract(T4bp,1)); //Colour factors: COM cmsms,cmumu,cmcmc,cmsmu,cmsmc,cmumc; cmsms=3.; cmumu=4./3.; cmcmc=4./3.; cmsmu =3./2.*COM(0.,1.); cmsmc = -3./2.*COM(0.,1.); cmumc = -1./6.; // Work Out Interference in each case of helicity: double amp_mm = real(cmsms*pow(abs(M_mmSym),2) +cmumu*pow(abs(M_mmUnc),2) +cmcmc*pow(abs(M_mmCro),2) +2.*real(cmsmu*M_mmSym*conj(M_mmUnc)) +2.*real(cmsmc*M_mmSym*conj(M_mmCro)) +2.*real(cmumc*M_mmUnc*conj(M_mmCro))); double amp_mp = real(cmsms*pow(abs(M_mpSym),2) +cmumu*pow(abs(M_mpUnc),2) +cmcmc*pow(abs(M_mpCro),2) +2.*real(cmsmu*M_mpSym*conj(M_mpUnc)) +2.*real(cmsmc*M_mpSym*conj(M_mpCro)) +2.*real(cmumc*M_mpUnc*conj(M_mpCro))); double amp_pm = real(cmsms*pow(abs(M_pmSym),2) +cmumu*pow(abs(M_pmUnc),2) +cmcmc*pow(abs(M_pmCro),2) +2.*real(cmsmu*M_pmSym*conj(M_pmUnc)) +2.*real(cmsmc*M_pmSym*conj(M_pmCro)) +2.*real(cmumc*M_pmUnc*conj(M_pmCro))); double amp_pp = real(cmsms*pow(abs(M_ppSym),2) +cmumu*pow(abs(M_ppUnc),2) +cmcmc*pow(abs(M_ppCro),2) +2.*real(cmsmu*M_ppSym*conj(M_ppUnc)) +2.*real(cmsmc*M_ppSym*conj(M_ppCro)) +2.*real(cmumc*M_ppUnc*conj(M_ppCro))); double amp=((amp_mm+amp_mp+amp_pm+amp_pp)/(9.*4.)); HLV q1,q3; q1=pa; for(int i=0;i<nabove+1;i++){ q1-=partons.at(i); } q3 = q1 - pq - pqbar - pl - plbar; double t1 = (q1).m2(); double t3 = (q3).m2(); //Divide by t-channels amp/=(t1*t1*t3*t3); //Divide by WProp double WPropfact = WProp(plbar, pl); amp*=WPropfact; return amp; } // no wqq emission double jM2WqqtoqQQqW(HLV pa, HLV pb,HLV pl,HLV plbar, std::vector<HLV> partons, bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove, int nbelow, bool forwards ){ static bool is_sigma_index_set(false); if(!is_sigma_index_set){ if(init_sigma_index()) is_sigma_index_set = true; else return 0.; } if (!forwards){ //If Emission from Leg a instead, flip process. HLV dummymom = pa; bool dummybool= aqlinepa; int dummyint = nabove; pa = pb; pb = dummymom; std::reverse(partons.begin(),partons.end()); qqxmarker = !(qqxmarker); aqlinepa = aqlinepb; aqlinepb = dummybool; nabove = nbelow; nbelow = dummyint; } HLV pq, pqbar, p1,p4; if (qqxmarker){ pqbar = partons[nabove+1]; pq = partons[nabove+2];} else{ pq = partons[nabove+1]; pqbar = partons[nabove+2];} p1 = partons.front(); p4 = partons.back(); Tensor<1> T1am(0.), T1ap(0.); if(!(aqlinepa)){ T1ap = TCurrent(p1, true, pa, true); T1am = TCurrent(p1, false, pa, false);} else if(aqlinepa){ T1ap = TCurrent(pa, true, p1, true); T1am = TCurrent(pa, false, p1, false);} Tensor <1> T4bm = jW(pb, p4, plbar, pl, aqlinepb); // Calculate the 3 separate contributions to the effective vertex Tensor<2> Xunc_m = MUncross(pa, pq, pqbar,partons, false, nabove); Tensor<2> Xcro_m = MCross( pa, pq, pqbar,partons, false, nabove); Tensor<2> Xsym_m = MSym( pa, p1, pb, p4, pq, pqbar, partons, false, nabove); Tensor<2> Xunc_p = MUncross(pa, pq, pqbar,partons, true, nabove); Tensor<2> Xcro_p = MCross( pa, pq, pqbar,partons, true, nabove); Tensor<2> Xsym_p = MSym( pa, p1, pb, p4, pq, pqbar, partons, true, nabove); // (- - hel choice) COM M_mmUnc = (((Xunc_m).contract(T1am,1)).contract(T4bm,1)); COM M_mmCro = (((Xcro_m).contract(T1am,1)).contract(T4bm,1)); COM M_mmSym = (((Xsym_m).contract(T1am,1)).contract(T4bm,1)); // (- + hel choice) COM M_mpUnc = (((Xunc_p).contract(T1am,1)).contract(T4bm,1)); COM M_mpCro = (((Xcro_p).contract(T1am,1)).contract(T4bm,1)); COM M_mpSym = (((Xsym_p).contract(T1am,1)).contract(T4bm,1)); // (+ - hel choice) COM M_pmUnc = (((Xunc_m).contract(T1ap,1)).contract(T4bm,1)); COM M_pmCro = (((Xcro_m).contract(T1ap,1)).contract(T4bm,1)); COM M_pmSym = (((Xsym_m).contract(T1ap,1)).contract(T4bm,1)); // (+ + hel choice) COM M_ppUnc = (((Xunc_p).contract(T1ap,1)).contract(T4bm,1)); COM M_ppCro = (((Xcro_p).contract(T1ap,1)).contract(T4bm,1)); COM M_ppSym = (((Xsym_p).contract(T1ap,1)).contract(T4bm,1)); //Colour factors: COM cmsms,cmumu,cmcmc,cmsmu,cmsmc,cmumc; cmsms=3.; cmumu=4./3.; cmcmc=4./3.; cmsmu =3./2.*COM(0.,1.); cmsmc = -3./2.*COM(0.,1.); cmumc = -1./6.; // Work Out Interference in each case of helicity: double amp_mm = real(cmsms*pow(abs(M_mmSym),2) +cmumu*pow(abs(M_mmUnc),2) +cmcmc*pow(abs(M_mmCro),2) +2.*real(cmsmu*M_mmSym*conj(M_mmUnc)) +2.*real(cmsmc*M_mmSym*conj(M_mmCro)) +2.*real(cmumc*M_mmUnc*conj(M_mmCro))); double amp_mp = real(cmsms*pow(abs(M_mpSym),2) +cmumu*pow(abs(M_mpUnc),2) +cmcmc*pow(abs(M_mpCro),2) +2.*real(cmsmu*M_mpSym*conj(M_mpUnc)) +2.*real(cmsmc*M_mpSym*conj(M_mpCro)) +2.*real(cmumc*M_mpUnc*conj(M_mpCro))); double amp_pm = real(cmsms*pow(abs(M_pmSym),2) +cmumu*pow(abs(M_pmUnc),2) +cmcmc*pow(abs(M_pmCro),2) +2.*real(cmsmu*M_pmSym*conj(M_pmUnc)) +2.*real(cmsmc*M_pmSym*conj(M_pmCro)) +2.*real(cmumc*M_pmUnc*conj(M_pmCro))); double amp_pp = real(cmsms*pow(abs(M_ppSym),2) +cmumu*pow(abs(M_ppUnc),2) +cmcmc*pow(abs(M_ppCro),2) +2.*real(cmsmu*M_ppSym*conj(M_ppUnc)) +2.*real(cmsmc*M_ppSym*conj(M_ppCro)) +2.*real(cmumc*M_ppUnc*conj(M_ppCro))); double amp=((amp_mm+amp_mp+amp_pm+amp_pp)/(9.*4.)); HLV q1,q3; q1=pa; for(int i=0;i<nabove+1;i++){ q1-=partons.at(i); } q3 = q1 - pq - pqbar; double t1 = (q1).m2(); double t3 = (q3).m2(); //Divide by t-channels amp/=(t1*t1*t3*t3); //Divide by WProp double WPropfact = WProp(plbar, pl); amp*=WPropfact; return amp; }