diff --git a/src/MatrixElement.cc b/src/MatrixElement.cc
index 629ab4a..ab353ec 100644
--- a/src/MatrixElement.cc
+++ b/src/MatrixElement.cc
@@ -1,1747 +1,1747 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #include "HEJ/MatrixElement.hh"
 
 #include <algorithm>
 #include <assert.h>
 #include <limits>
 #include <math.h>
 #include <stddef.h>
 #include <unordered_map>
 #include <utility>
 
 #include "CLHEP/Vector/LorentzVector.h"
 
 #include "fastjet/ClusterSequence.hh"
 
 #include "HEJ/Constants.hh"
 #include "HEJ/currents.hh"
 #include "HEJ/PDG_codes.hh"
 #include "HEJ/event_types.hh"
 #include "HEJ/Event.hh"
 #include "HEJ/exceptions.hh"
 #include "HEJ/Particle.hh"
 #include "HEJ/utility.hh"
 
 namespace HEJ{
   double MatrixElement::omega0(
       double alpha_s, double mur,
       fastjet::PseudoJet const & q_j
   ) const {
     const double lambda = param_.regulator_lambda;
     const double result = - alpha_s*N_C/M_PI*log(q_j.perp2()/(lambda*lambda));
     if(! param_.log_correction) return result;
     // use alpha_s(sqrt(q_j*lambda)), evolved to mur
     return (
         1. + alpha_s/(4.*M_PI)*beta0*log(mur*mur/(q_j.perp()*lambda))
     )*result;
   }
 
   Weights MatrixElement::operator()(
       Event const & event
   ) const {
     return tree(event)*virtual_corrections(event);
   }
 
   Weights MatrixElement::tree(
       Event const & event
   ) const {
     return tree_param(event)*tree_kin(event);
   }
 
   Weights MatrixElement::tree_param(
       Event const & event
   ) const {
     if(! is_HEJ(event.type())) {
       return Weights{0., std::vector<double>(event.variations().size(), 0.)};
     }
     Weights result;
     // only compute once for each renormalisation scale
     std::unordered_map<double, double> known;
     result.central = tree_param(event, event.central().mur);
     known.emplace(event.central().mur, result.central);
     for(auto const & var: event.variations()) {
       const auto ME_it = known.find(var.mur);
       if(ME_it == end(known)) {
         const double wt = tree_param(event, var.mur);
         result.variations.emplace_back(wt);
         known.emplace(var.mur, wt);
       }
       else {
         result.variations.emplace_back(ME_it->second);
       }
     }
     return result;
   }
 
   Weights MatrixElement::virtual_corrections(
       Event const & event
   ) const {
     if(! is_HEJ(event.type())) {
       return Weights{0., std::vector<double>(event.variations().size(), 0.)};
     }
     Weights result;
     // only compute once for each renormalisation scale
     std::unordered_map<double, double> known;
     result.central = virtual_corrections(event, event.central().mur);
     known.emplace(event.central().mur, result.central);
     for(auto const & var: event.variations()) {
       const auto ME_it = known.find(var.mur);
       if(ME_it == end(known)) {
         const double wt = virtual_corrections(event, var.mur);
         result.variations.emplace_back(wt);
         known.emplace(var.mur, wt);
       }
       else {
         result.variations.emplace_back(ME_it->second);
       }
     }
     return result;
   }
 
   double MatrixElement::virtual_corrections_W(
       Event const & event,
       double mur,
       Particle const & WBoson
   ) const{
     auto const & in = event.incoming();
     const auto partons = filter_partons(event.outgoing());
     fastjet::PseudoJet const & pa = in.front().p;
 #ifndef NDEBUG
     fastjet::PseudoJet const & pb = in.back().p;
     double const norm = (in.front().p + in.back().p).E();
 #endif
 
     assert(std::is_sorted(partons.begin(), partons.end(), rapidity_less{}));
     assert(partons.size() >= 2);
     assert(pa.pz() < pb.pz());
 
     fastjet::PseudoJet q = pa - partons[0].p;
     size_t first_idx = 0;
     size_t last_idx = partons.size() - 1;
 
     bool wc = true;
     bool wqq = false;
 
     // With extremal qqx or unordered gluon outside the extremal
     // partons then it is not part of the FKL ladder and does not
     // contribute to the virtual corrections. W emitted from the
     // most backward leg must be taken into account in t-channel
     if (event.type() == event_type::FKL) {
       if (in[0].type != partons[0].type ){
         q -= WBoson.p;
         wc = false;
       }
     }
 
     else if (event.type() == event_type::unob) {
       q -= partons[1].p;
       ++first_idx;
       if (in[0].type != partons[1].type ){
         q -= WBoson.p;
         wc = false;
       }
     }
 
     else if (event.type() == event_type::qqxexb) {
       q -= partons[1].p;
       ++first_idx;
       if (abs(partons[0].type) != abs(partons[1].type)){
         q -= WBoson.p;
         wc = false;
       }
     }
 
     if(event.type() == event_type::unof
        || event.type() == event_type::qqxexf){
       --last_idx;
     }
 
     size_t first_idx_qqx = last_idx;
     size_t last_idx_qqx = last_idx;
 
     //if qqxMid event, virtual correction do not occur between
     //qqx pair.
     if(event.type() == event_type::qqxmid){
       const auto backquark = std::find_if(
         begin(partons) + 1, end(partons) - 1 ,
         [](Particle const & s){ return (s.type != pid::gluon); }
       );
       if(backquark == end(partons) || (backquark+1)->type==pid::gluon) return 0;
       if(abs(backquark->type) != abs((backquark+1)->type)) {
         wqq=true;
         wc=false;
       }
       last_idx = std::distance(begin(partons), backquark);
       first_idx_qqx = last_idx+1;
     }
     double exponent = 0;
     const double alpha_s = alpha_s_(mur);
     for(size_t j = first_idx; j < last_idx; ++j){
       exponent += omega0(alpha_s, mur, q)*(
           partons[j+1].rapidity() - partons[j].rapidity()
       );
       q -=partons[j+1].p;
     } // End Loop one
 
     if (last_idx != first_idx_qqx) q -= partons[last_idx+1].p;
     if (wqq)  q -= WBoson.p;
 
     for(size_t j = first_idx_qqx; j < last_idx_qqx; ++j){
       exponent += omega0(alpha_s, mur, q)*(
           partons[j+1].rapidity() - partons[j].rapidity()
       );
       q -= partons[j+1].p;
     }
 
     if (wc) q -= WBoson.p;
 
     assert(
         nearby(q, -1*pb, norm)
         || is_AWZH_boson(partons.back().type)
         || event.type() == event_type::unof
         || event.type() == event_type::qqxexf
     );
 
     return exp(exponent);
   }
 
   double MatrixElement::virtual_corrections(
       Event const & event,
       double mur
   ) const{
     auto const & in = event.incoming();
     auto const & out = event.outgoing();
     fastjet::PseudoJet const & pa = in.front().p;
 #ifndef NDEBUG
     fastjet::PseudoJet const & pb = in.back().p;
     double const norm = (in.front().p + in.back().p).E();
 #endif
 
     const auto AWZH_boson = std::find_if(
         begin(out), end(out),
         [](Particle const & p){ return is_AWZH_boson(p); }
     );
 
     if(AWZH_boson != end(out) && abs(AWZH_boson->type) == pid::Wp){
       return virtual_corrections_W(event, mur, *AWZH_boson);
     }
 
     assert(std::is_sorted(out.begin(), out.end(), rapidity_less{}));
     assert(out.size() >= 2);
     assert(pa.pz() < pb.pz());
 
     fastjet::PseudoJet q = pa - out[0].p;
     size_t first_idx = 0;
     size_t last_idx = out.size() - 1;
 
     // if there is a Higgs boson, extremal qqx or unordered gluon
     // outside the extremal partons then it is not part of the FKL
     // ladder and does not contribute to the virtual corrections
     if((out.front().type == pid::Higgs)
        || event.type() == event_type::unob
        || event.type() == event_type::qqxexb){
       q -= out[1].p;
       ++first_idx;
     }
     if((out.back().type == pid::Higgs)
        || event.type() == event_type::unof
        || event.type() == event_type::qqxexf){
       --last_idx;
     }
 
     size_t first_idx_qqx = last_idx;
     size_t last_idx_qqx = last_idx;
 
     //if qqxMid event, virtual correction do not occur between
     //qqx pair.
     if(event.type() == event_type::qqxmid){
       const auto backquark = std::find_if(
         begin(out) + 1, end(out) - 1 ,
         [](Particle const & s){ return (s.type != pid::gluon && is_parton(s.type)); }
       );
       if(backquark == end(out) || (backquark+1)->type==pid::gluon) return 0;
       last_idx = std::distance(begin(out), backquark);
       first_idx_qqx = last_idx+1;
     }
     double exponent = 0;
     const double alpha_s = alpha_s_(mur);
     for(size_t j = first_idx; j < last_idx; ++j){
       exponent += omega0(alpha_s, mur, q)*(
           out[j+1].rapidity() - out[j].rapidity()
       );
       q -= out[j+1].p;
     }
 
     if (last_idx != first_idx_qqx) q -= out[last_idx+1].p;
 
     for(size_t j = first_idx_qqx; j < last_idx_qqx; ++j){
       exponent += omega0(alpha_s, mur, q)*(
           out[j+1].rapidity() - out[j].rapidity()
       );
       q -= out[j+1].p;
     }
     assert(
         nearby(q, -1*pb, norm)
         || out.back().type == pid::Higgs
         || event.type() == event_type::unof
         || event.type() == event_type::qqxexf
     );
     return exp(exponent);
   }
 } // namespace HEJ
 
 namespace {
   //! Lipatov vertex for partons emitted into extremal jets
   double C2Lipatov(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv,
     CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2)
   {
     CLHEP::HepLorentzVector temptrans=-(qav+qbv);
     CLHEP::HepLorentzVector p5=qav-qbv;
     CLHEP::HepLorentzVector CL=temptrans
       + p1*(qav.m2()/p5.dot(p1) + 2.*p5.dot(p2)/p1.dot(p2))
       - p2*(qbv.m2()/p5.dot(p2) + 2.*p5.dot(p1)/p1.dot(p2));
     return -CL.dot(CL);
   }
 
   //! Lipatov vertex with soft subtraction for partons emitted into extremal jets
   double C2Lipatovots(
       CLHEP::HepLorentzVector qav,
       CLHEP::HepLorentzVector qbv,
       CLHEP::HepLorentzVector p1,
       CLHEP::HepLorentzVector p2,
       double lambda
   ) {
     double kperp=(qav-qbv).perp();
     if (kperp>lambda)
       return C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2());
     else {
       double Cls=(C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2()));
       return Cls-4./(kperp*kperp);
     }
   }
 
   //! Lipatov vertex
   double C2Lipatov(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv,
     CLHEP::HepLorentzVector pim, CLHEP::HepLorentzVector pip,
     CLHEP::HepLorentzVector pom, CLHEP::HepLorentzVector pop) // B
   {
     CLHEP::HepLorentzVector temptrans=-(qav+qbv);
     CLHEP::HepLorentzVector p5=qav-qbv;
     CLHEP::HepLorentzVector CL=temptrans
       + qav.m2()*(1./p5.dot(pip)*pip + 1./p5.dot(pop)*pop)/2.
       - qbv.m2()*(1./p5.dot(pim)*pim + 1./p5.dot(pom)*pom)/2.
       + ( pip*(p5.dot(pim)/pip.dot(pim) + p5.dot(pom)/pip.dot(pom))
         + pop*(p5.dot(pim)/pop.dot(pim) + p5.dot(pom)/pop.dot(pom))
         - pim*(p5.dot(pip)/pip.dot(pim) + p5.dot(pop)/pop.dot(pim))
         - pom*(p5.dot(pip)/pip.dot(pom) + p5.dot(pop)/pop.dot(pom)) )/2.;
 
     return -CL.dot(CL);
   }
 
   //! Lipatov vertex with soft subtraction
   double C2Lipatovots(
       CLHEP::HepLorentzVector qav,
       CLHEP::HepLorentzVector qbv,
       CLHEP::HepLorentzVector pa,
       CLHEP::HepLorentzVector pb,
       CLHEP::HepLorentzVector p1,
       CLHEP::HepLorentzVector p2,
       double lambda
   ) {
     double kperp=(qav-qbv).perp();
     if (kperp>lambda)
       return C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2());
     else {
       double Cls=(C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2()));
       double temp=Cls-4./(kperp*kperp);
       return temp;
     }
   }
 
   /** Matrix element squared for tree-level current-current scattering
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @returns               ME Squared for Tree-Level Current-Current Scattering
    */
   double ME_current(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa
   ){
     if (aptype==21&&bptype==21) {
       return jM2gg(pn,pb,p1,pa);
     } else if (aptype==21&&bptype!=21) {
       if (bptype > 0)
         return jM2qg(pn,pb,p1,pa);
       else
         return jM2qbarg(pn,pb,p1,pa);
     }
     else if (bptype==21&&aptype!=21) { // ----- || -----
       if (aptype > 0)
         return jM2qg(p1,pa,pn,pb);
       else
         return jM2qbarg(p1,pa,pn,pb);
     }
     else { // they are both quark
       if (bptype>0) {
         if (aptype>0)
           return jM2qQ(pn,pb,p1,pa);
         else
           return jM2qQbar(pn,pb,p1,pa);
       }
       else {
         if (aptype>0)
           return jM2qQbar(p1,pa,pn,pb);
         else
           return jM2qbarQbar(pn,pb,p1,pa);
       }
     }
     throw std::logic_error("unknown particle types");
   }
 
   /** Matrix element squared for tree-level current-current scattering With W+Jets
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param wc              Boolean. True->W Emitted from b. Else; emitted from leg a
    *  @returns               ME Squared for Tree-Level Current-Current Scattering
    */
   double ME_W_current(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & plbar,
       CLHEP::HepLorentzVector const & pl,
       bool const wc
   ){
     // We know it cannot be gg incoming.
     assert(!(aptype==21 && bptype==21));
     if (aptype==21&&bptype!=21) {
       if (bptype > 0)
         return jMWqg(pn,plbar,pl,pb,p1,pa);
       else
         return jMWqbarg(pn,plbar,pl,pb,p1,pa);
     }
     else if (bptype==21&&aptype!=21) { // ----- || -----
       if (aptype > 0)
         return jMWqg(p1,plbar,pl,pa,pn,pb);
       else
         return jMWqbarg(p1,plbar,pl,pa,pn,pb);
     }
     else { // they are both quark
       if (wc==true){ // emission off b, (first argument pbout)
         if (bptype>0) {
           if (aptype>0)
             return jMWqQ(pn,plbar,pl,pb,p1,pa);
           else
             return jMWqQbar(pn,plbar,pl,pb,p1,pa);
         }
         else {
           if (aptype>0)
             return jMWqbarQ(pn,plbar,pl,pb,p1,pa);
           else
             return jMWqbarQbar(pn,plbar,pl,pb,p1,pa);
         }
       }
       else{ // emission off a, (first argument paout)
         if (aptype > 0) {
           if (bptype > 0)
             return jMWqQ(p1,plbar,pl,pa,pn,pb);
           else
             return jMWqQbar(p1,plbar,pl,pa,pn,pb);
         }
         else {  // a is anti-quark
           if (bptype > 0)
             return jMWqbarQ(p1,plbar,pl,pa,pn,pb);
           else
             return jMWqbarQbar(p1,plbar,pl,pa,pn,pb);
         }
 
       }
     }
     throw std::logic_error("unknown particle types");
   }
 
   /** Matrix element squared for backwards uno tree-level current-current
    *  scattering With W+Jets
    *
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param pg              Unordered gluon momentum
    *  @param wc              Boolean. True->W Emitted from b. Else; emitted from leg a
    *  @returns               ME Squared for unob Tree-Level Current-Current Scattering
    */
   double ME_W_unob_current(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & pg,
       CLHEP::HepLorentzVector const & plbar,
       CLHEP::HepLorentzVector const & pl,
       bool const wc
   ){
     // we know they are not both gluons
     if (bptype == 21 && aptype != 21) { // b gluon => W emission off a
       if (aptype > 0)
         return jM2Wunogqg(pg,p1,plbar,pl,pa,pn,pb);
       else
         return jM2Wunogqbarg(pg,p1,plbar,pl,pa,pn,pb);
     }
 
     else { // they are both quark
       if (wc==true) {// emission off b, i.e. b is first current
         if (bptype>0){
           if (aptype>0)
-            return junobMWqQg(pn,plbar,pl,pb,p1,pa,pg);
+            return junobMWqQg(pg,p1,plbar,pl,pa,pn,pb);
           else
-            return junobMWqQbarg(pn,plbar,pl,pb,p1,pa,pg);
+            return junobMWqQbarg(pg,p1,plbar,pl,pa,pn,pb);
         }
         else{
           if (aptype>0)
-            return junobMWqbarQg(pn,plbar,pl,pb,p1,pa,pg);
+            return junobMWqbarQg(pg,p1,plbar,pl,pa,pn,pb);
           else
-            return junobMWqbarQbarg(pn,plbar,pl,pb,p1,pa,pg);
+            return junobMWqbarQbarg(pg,p1,plbar,pl,pa,pn,pb);
         }
       }
       else {// wc == false, emission off a, i.e. a is first current
         if (aptype > 0) {
           if (bptype > 0) //qq
             return jM2WunogqQ(pg,p1,plbar,pl,pa,pn,pb);
           else //qqbar
             return jM2WunogqQbar(pg,p1,plbar,pl,pa,pn,pb);
         }
         else {  // a is anti-quark
           if (bptype > 0) //qbarq
             return jM2WunogqbarQ(pg,p1,plbar,pl,pa,pn,pb);
           else //qbarqbar
             return jM2WunogqbarQbar(pg,p1,plbar,pl,pa,pn,pb);
         }
       }
     }
   }
 
   /** Matrix element squared for uno forward tree-level current-current
    *  scattering With W+Jets
    *
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param pg              Unordered gluon momentum
    *  @param wc              Boolean. True->W Emitted from b. Else; emitted from leg a
    *  @returns               ME Squared for unof Tree-Level Current-Current Scattering
    */
   double ME_W_unof_current(
                            int aptype, int bptype,
                            CLHEP::HepLorentzVector const & pn,
                            CLHEP::HepLorentzVector const & pb,
                            CLHEP::HepLorentzVector const & p1,
                            CLHEP::HepLorentzVector const & pa,
                            CLHEP::HepLorentzVector const & pg,
                            CLHEP::HepLorentzVector const & plbar,
                            CLHEP::HepLorentzVector const & pl,
                            bool const wc
                            ){
 
     // we know they are not both gluons
     if (aptype==21 && bptype!=21) {//a gluon => W emission off b
       if (bptype > 0)
         return jM2Wunogqg(pg, pn,plbar, pl, pb, p1, pa);
       else
         return jM2Wunogqbarg(pg, pn,plbar, pl, pb, p1, pa);
     }
     else { // they are both quark
       if (wc==true) {// emission off b, i.e. b is first current
         if (bptype>0){
           if (aptype>0)
             return jM2WunogqQ(pg,pn,plbar,pl,pb,p1,pa);
           else
             return jM2WunogqQbar(pg,pn,plbar,pl,pb,p1,pa);
         }
         else{
           if (aptype>0)
             return jM2WunogqbarQ(pg,pn,plbar,pl,pb,p1,pa);
           else
             return jM2WunogqbarQbar(pg,pn,plbar,pl,pb,p1,pa);
         }
       }
       else {// wc == false, emission off a, i.e. a is first current
         if (aptype > 0) {
           if (bptype > 0) //qq
             return junofMWgqQ(pg,pn,pb,p1,plbar,pl,pa);
           else //qqbar
             return junofMWgqQbar(pg,pn,pb,p1,plbar,pl,pa);
         }
         else {  // a is anti-quark
           if (bptype > 0) //qbarq
             return junofMWgqbarQ(pg,pn,pb,p1,plbar,pl,pa);
           else //qbarqbar
             return junofMWgqbarQbar(pg,pn,pb,p1,plbar,pl,pa);
         }
       }
     }
   }
 
   /** \brief Matrix element squared for backward qqx tree-level current-current
    *         scattering With W+Jets
    *
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pa              Initial state a Momentum
    *  @param pb              Initial state b Momentum
    *  @param pq              Final state q Momentum
    *  @param pqbar           Final state qbar Momentum
    *  @param pn              Final state n Momentum
    *  @param plbar           Final state anti-lepton momentum
    *  @param pl              Final state lepton momentum
    *  @param wc              Boolean. True->W Emitted from b. Else; emitted from leg a
    *  @returns               ME Squared for qqxb Tree-Level Current-Current Scattering
    */
   double ME_W_qqxb_current(
                            int aptype, int bptype,
                            CLHEP::HepLorentzVector const & pa,
                            CLHEP::HepLorentzVector const & pb,
                            CLHEP::HepLorentzVector const & pq,
                            CLHEP::HepLorentzVector const & pqbar,
                            CLHEP::HepLorentzVector const & pn,
                            CLHEP::HepLorentzVector const & plbar,
                            CLHEP::HepLorentzVector const & pl,
                            bool const wc
                            ){
     // CAM factors for the qqx amps, and qqbar ordering (default, qbar extremal)
     bool swapQuarkAntiquark=false;
     double CFbackward;
     if (pqbar.rapidity() > pq.rapidity()){
       swapQuarkAntiquark=true;
       CFbackward = (0.5*(3.-1./3.)*(pa.minus()/(pq.minus())+(pq.minus())/pa.minus())+1./3.)*3./4.;
     }
     else{
       CFbackward = (0.5*(3.-1./3.)*(pa.minus()/(pqbar.minus())+(pqbar.minus())/pa.minus())+1./3.)*3./4.;
     }
     // With qqbar we could have 2 incoming gluons and W Emission
     if (aptype==21&&bptype==21) {//a gluon, b gluon gg->qqbarWg
       // This will be a wqqx emission as there is no other possible W Emission Site.
       if (swapQuarkAntiquark){
         return jM2Wggtoqqbarg(pa, pqbar, plbar, pl, pq, pn,pb)*CFbackward;}
       else {
         return jM2Wggtoqbarqg(pa, pq, plbar, pl, pqbar, pn,pb)*CFbackward;}
     }
     else if (aptype==21&&bptype!=21 ) {//a gluon => W emission off b leg or qqx
       if (wc!=1){ // W Emitted from backwards qqx
         if (swapQuarkAntiquark){
           return jM2WgQtoqqbarQ(pa, pq, plbar, pl, pqbar, pn, pb)*CFbackward;}
         else{
           return jM2WgQtoqbarqQ(pa, pq, plbar, pl, pqbar, pn, pb)*CFbackward;}
       }
       else {   // W Must be emitted from forwards leg.
         if(bptype > 0){
           if (swapQuarkAntiquark){
             return jM2WgqtoQQqW(pb, pa, pn, pqbar, pq, plbar, pl, false)*CFbackward;}
           else{
             return jM2WgqtoQQqW(pb, pa, pn, pq, pqbar, plbar, pl, false)*CFbackward;}
         } else {
           if (swapQuarkAntiquark){
             return jM2WgqtoQQqW(pb, pa, pn, pqbar, pq, plbar, pl, true)*CFbackward;}
           else{
             return jM2WgqtoQQqW(pb, pa, pn, pq, pqbar, plbar, pl, true)*CFbackward;}
         }
       }
     }
     else{
       throw std::logic_error("Incompatible incoming particle types with qqxb");
     }
   }
 
   /*  \brief Matrix element squared for forward qqx tree-level current-current
    *         scattering With W+Jets
    *
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pa              Initial state a Momentum
    *  @param pb              Initial state b Momentum
    *  @param pq              Final state q Momentum
    *  @param pqbar           Final state qbar Momentum
    *  @param p1              Final state 1 Momentum
    *  @param plbar           Final state anti-lepton momentum
    *  @param pl              Final state lepton momentum
    *  @param wc              Boolean. True->W Emitted from b. Else; emitted from leg a
    *  @returns               ME Squared for qqxf Tree-Level Current-Current Scattering
    */
   double ME_W_qqxf_current(
                            int aptype, int bptype,
                            CLHEP::HepLorentzVector const & pa,
                            CLHEP::HepLorentzVector const & pb,
                            CLHEP::HepLorentzVector const & pq,
                            CLHEP::HepLorentzVector const & pqbar,
                            CLHEP::HepLorentzVector const & p1,
                            CLHEP::HepLorentzVector const & plbar,
                            CLHEP::HepLorentzVector const & pl,
                            bool const wc
                            ){
     // CAM factors for the qqx amps, and qqbar ordering (default, qbar extremal)
     bool swapQuarkAntiquark=false;
     double CFforward;
     if (pqbar.rapidity() < pq.rapidity()){
       swapQuarkAntiquark=true;
       CFforward = (0.5*(3.-1./3.)*(pb.plus()/(pq.plus())+(pq.plus())/pb.plus())+1./3.)*3./4.;
     }
     else{
       CFforward = (0.5*(3.-1./3.)*(pb.plus()/(pqbar.plus())+(pqbar.plus())/pb.plus())+1./3.)*3./4.;
     }
 
     // With qqbar we could have 2 incoming gluons and W Emission
     if (aptype==21&&bptype==21) {//a gluon, b gluon gg->qqbarWg
       // This will be a wqqx emission as there is no other possible W Emission Site.
       if (swapQuarkAntiquark){
         return jM2Wggtoqqbarg(pb, pqbar, plbar, pl, pq, p1,pa)*CFforward;}
       else {
         return jM2Wggtoqbarqg(pb, pq, plbar, pl, pqbar, p1,pa)*CFforward;}
     }
 
     else if (bptype==21&&aptype!=21) {// b gluon => W emission off a or qqx
       if (wc==1){ // W Emitted from forwards qqx
         if (swapQuarkAntiquark){
           return jM2WgQtoqbarqQ(pb, pq, plbar,pl, pqbar, p1, pa)*CFforward;}
         else {
           return jM2WgQtoqqbarQ(pb, pq, plbar,pl, pqbar, p1, pa)*CFforward;}
       }
       // W Must be emitted from backwards leg.
       if (aptype > 0){
         if (swapQuarkAntiquark){
           return jM2WgqtoQQqW(pa,pb, p1, pqbar, pq, plbar, pl, false)*CFforward;}
         else{
           return jM2WgqtoQQqW(pa,pb, p1, pq, pqbar, plbar, pl, false)*CFforward;}
       } else
         {
           if (swapQuarkAntiquark){
             return jM2WgqtoQQqW(pa,pb, p1, pqbar, pq, plbar, pl, true)*CFforward;}
         else{
           return jM2WgqtoQQqW(pa,pb, p1, pq, pqbar, plbar, pl, true)*CFforward;}
         }
     }
     else{
       throw std::logic_error("Incompatible incoming particle types with qqxf");
     }
   }
 
   /*  \brief Matrix element squared for central qqx tree-level current-current
    *         scattering With W+Jets
    *
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param nabove          Number of gluons emitted before central qqxpair
    *  @param nbelow          Number of gluons emitted after central qqxpair
    *  @param pa              Initial state a Momentum
    *  @param pb              Initial state b Momentum\
    *  @param pq              Final state qbar Momentum
    *  @param pqbar           Final state q Momentum
    *  @param partons         Vector of all outgoing partons
    *  @param plbar           Final state anti-lepton momentum
    *  @param pl              Final state lepton momentum
    *  @param wqq             Boolean. True siginfies W boson is emitted from Central qqx
    *  @param wc              Boolean. wc=true signifies w boson emitted from leg b; if wqq=false.
    *  @returns               ME Squared for qqxmid Tree-Level Current-Current Scattering
    */
   double ME_W_qqxmid_current(
                            int aptype, int bptype,
                            int nabove, int nbelow,
                            CLHEP::HepLorentzVector const & pa,
                            CLHEP::HepLorentzVector const & pb,
                            CLHEP::HepLorentzVector const & pq,
                            CLHEP::HepLorentzVector const & pqbar,
                            std::vector<HLV> partons,
                            CLHEP::HepLorentzVector const & plbar,
                            CLHEP::HepLorentzVector const & pl,
                            bool const wqq, bool const wc
                            ){
     // CAM factors for the qqx amps, and qqbar ordering (default, pq backwards)
     bool swapQuarkAntiquark=false;
     if (pqbar.rapidity() < pq.rapidity()){
       swapQuarkAntiquark=true;
     }
     double CFforward = (0.5*(3.-1./3.)*( pb.plus()/(partons[partons.size()-1].plus())
                         + (partons[partons.size()-1].plus())/pb.plus() )+1./3.)*3./4.;
     double CFbackward = (0.5*(3.-1./3.)*( pa.minus()/(partons[0].minus())
                         + (partons[0].minus())/pa.minus() )+1./3.)*3./4.;
     double wt=1.;
 
     if (aptype==21)  wt*=CFbackward;
     if (bptype==21)  wt*=CFforward;
 
     if (aptype <=0 && bptype <=0){ // Both External AntiQuark
       if (wqq==1){//emission from central qqbar
   return wt*jM2WqqtoqQQq(pa, pb, pl,plbar, partons,true,true, swapQuarkAntiquark, nabove);
       }
       else if (wc==1){//emission from b leg
   return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, true,true, swapQuarkAntiquark, nabove, nbelow, true);
       }
       else { // emission from a leg
   return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, true,true, swapQuarkAntiquark, nabove, nbelow, false);
       }
     } // end both antiquark
     else if (aptype<=0){ // a is antiquark
       if (wqq==1){//emission from central qqbar
   return wt*jM2WqqtoqQQq(pa, pb, pl,plbar, partons, false, true, swapQuarkAntiquark, nabove);
       }
       else if (wc==1){//emission from b leg
   return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons,false,true, swapQuarkAntiquark, nabove, nbelow, true);
       }
       else { // emission from a leg
   return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, false, true, swapQuarkAntiquark, nabove, nbelow, false);
       }
 
     } // end a is antiquark
 
     else if (bptype<=0){ // b is antiquark
       if (wqq==1){//emission from central qqbar
   return wt*jM2WqqtoqQQq(pa, pb, pl,plbar, partons, true, false, swapQuarkAntiquark, nabove);
       }
       else if (wc==1){//emission from b leg
   return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, true, false, swapQuarkAntiquark, nabove, nbelow, true);
       }
       else { // emission from a leg
   return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, true, false, swapQuarkAntiquark, nabove, nbelow, false);
       }
 
     } //end b is antiquark
     else{ //Both Quark or gluon
       if (wqq==1){//emission from central qqbar
         return wt*jM2WqqtoqQQq(pa, pb, pl, plbar, partons, false, false, swapQuarkAntiquark, nabove);}
       else if (wc==1){//emission from b leg
   return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, false, false, swapQuarkAntiquark, nabove, nbelow, true);
       }
       else { // emission from a leg
   return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, false, false, swapQuarkAntiquark, nabove, nbelow, false);
       }
 
     }
   }
 
   /** \brief Matrix element squared for tree-level current-current scattering with Higgs
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param qH              t-channel momentum before Higgs
    *  @param qHp1            t-channel momentum after Higgs
    *  @returns               ME Squared for Tree-Level Current-Current Scattering with Higgs
    */
   double ME_Higgs_current(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & qH,  // t-channel momentum before Higgs
       CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
       double mt, bool include_bottom, double mb
   ){
     if (aptype==21&&bptype==21) // gg initial state
       return MH2gg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
     else if (aptype==21&&bptype!=21) {
       if (bptype > 0)
         return MH2qg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4./9.;
       else
         return MH2qbarg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4./9.;
     }
     else if (bptype==21&&aptype!=21) {
       if (aptype > 0)
         return MH2qg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4./9.;
       else
         return MH2qbarg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4./9.;
     }
     else { // they are both quark
       if (bptype>0) {
         if (aptype>0)
           return MH2qQ(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.);
         else
           return MH2qQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.);
       }
       else {
         if (aptype>0)
           return MH2qQbar(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4.*4./(9.*9.);
         else
           return MH2qbarQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.);
       }
     }
     throw std::logic_error("unknown particle types");
   }
 
   /** \brief  Current matrix element squared with Higgs and unordered forward emission
    *  @param aptype          Particle A PDG ID
    *  @param bptype          Particle B PDG ID
    *  @param punof           Unordered Particle Momentum
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param qH              t-channel momentum before Higgs
    *  @param qHp1            t-channel momentum after Higgs
    *  @returns               ME Squared with Higgs and unordered forward emission
    */
   double ME_Higgs_current_unof(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & punof,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & qH,  // t-channel momentum before Higgs
       CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
       double mt, bool include_bottom, double mb
   ){
     if (aptype==21&&bptype!=21) {
       if (bptype > 0)
         return jM2unogqHg(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
       else
         return jM2unogqbarHg(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
     }
     else { // they are both quark
       if (bptype>0) {
         if (aptype>0)
           return jM2unogqHQ(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
         else
           return jM2unogqHQbar(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
       }
       else {
         if (aptype>0)
           return jM2unogqbarHQ(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
         else
           return jM2unogqbarHQbar(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
       }
     }
     throw std::logic_error("unknown particle types");
   }
 
   /** \brief Current matrix element squared with Higgs and unordered backward emission
    *  @param aptype          Particle A PDG ID
    *  @param bptype          Particle B PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param punob           Unordered back Particle Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param qH              t-channel momentum before Higgs
    *  @param qHp1            t-channel momentum after Higgs
    *  @returns               ME Squared with Higgs and unordered backward emission
    */
   double ME_Higgs_current_unob(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & punob,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & qH,  // t-channel momentum before Higgs
       CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
       double mt, bool include_bottom, double mb
   ){
     if (bptype==21&&aptype!=21) {
       if (aptype > 0)
         return jM2unobgHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
       else
         return jM2unobgHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
     }
     else { // they are both quark
       if (aptype>0) {
         if (bptype>0)
           return jM2unobqHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
         else
           return jM2unobqbarHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
       }
       else {
         if (bptype>0)
           return jM2unobqHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
         else
           return jM2unobqbarHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
       }
     }
     throw std::logic_error("unknown particle types");
   }
 
   CLHEP::HepLorentzVector to_HepLorentzVector(HEJ::Particle const & particle){
     return {particle.p.px(), particle.p.py(), particle.p.pz(), particle.p.E()};
   }
 
   void validate(HEJ::MatrixElementConfig const & config) {
 #ifndef HEJ_BUILD_WITH_QCDLOOP
     if(!config.Higgs_coupling.use_impact_factors) {
       throw std::invalid_argument{
         "Invalid Higgs coupling settings.\n"
         "HEJ without QCDloop support can only use impact factors.\n"
         "Set use_impact_factors to true or recompile HEJ.\n"
        };
     }
 #endif
     if(config.Higgs_coupling.use_impact_factors
       && config.Higgs_coupling.mt != std::numeric_limits<double>::infinity()) {
       throw std::invalid_argument{
         "Conflicting settings: "
           "impact factors may only be used in the infinite top mass limit"
       };
     }
   }
 } // namespace anonymous
 
 namespace HEJ{
   MatrixElement::MatrixElement(
       std::function<double (double)> alpha_s,
       MatrixElementConfig conf
   ):
     alpha_s_{std::move(alpha_s)},
     param_{std::move(conf)}
   {
     validate(param_);
   }
 
   double MatrixElement::tree_kin(
       Event const & ev
   ) const {
     if(! is_HEJ(ev.type())) return 0.;
 
     auto AWZH_boson = std::find_if(
         begin(ev.outgoing()), end(ev.outgoing()),
         [](Particle const & p){return is_AWZH_boson(p);}
     );
 
     if(AWZH_boson == end(ev.outgoing()))
       return tree_kin_jets(ev);
 
     switch(AWZH_boson->type){
     case pid::Higgs:
       return tree_kin_Higgs(ev);
     case pid::Wp:
     case pid::Wm:
       return tree_kin_W(ev);
     // TODO
     case pid::photon:
     case pid::Z:
     default:
       throw not_implemented("Emission of boson of unsupported type");
     }
   }
 
   namespace{
     constexpr int extremal_jet_idx = 1;
     constexpr int no_extremal_jet_idx = 0;
 
     bool treat_as_extremal(Particle const & parton){
       return parton.p.user_index() == extremal_jet_idx;
     }
 
     template<class InputIterator>
       double FKL_ladder_weight(
           InputIterator begin_gluon, InputIterator end_gluon,
           CLHEP::HepLorentzVector const & q0,
           CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb,
           CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pn,
           double lambda
       ){
       double wt = 1;
       auto qi = q0;
       for(auto gluon_it = begin_gluon; gluon_it != end_gluon; ++gluon_it){
         assert(gluon_it->type == pid::gluon);
         const auto g = to_HepLorentzVector(*gluon_it);
         const auto qip1 = qi - g;
 
         if(treat_as_extremal(*gluon_it)){
           wt *= C2Lipatovots(qip1, qi, pa, pb, lambda)*C_A;
         } else{
           wt *= C2Lipatovots(qip1, qi, pa, pb, p1, pn, lambda)*C_A;
         }
 
         qi = qip1;
       }
       return wt;
     }
 
   }  // namespace anonymous
 
   std::vector<Particle> MatrixElement::tag_extremal_jet_partons(
       Event const & ev
   ) const{
     auto out_partons = filter_partons(ev.outgoing());
     if(out_partons.size() == ev.jets().size()){
       // no additional emissions in extremal jets, don't need to tag anything
       for(auto & parton: out_partons){
         parton.p.set_user_index(no_extremal_jet_idx);
       }
       return out_partons;
     }
     // TODO: avoid reclustering
     fastjet::ClusterSequence cs(to_PseudoJet(out_partons), ev.jet_def());
     const auto jets = sorted_by_rapidity(cs.inclusive_jets(ev.min_jet_pt()));
     assert(jets.size() >= 2);
     auto most_backward = begin(jets);
     auto most_forward = end(jets) - 1;
     // skip jets caused by unordered emission or qqx
     if(ev.type() == event_type::unob || ev.type() == event_type::qqxexb){
       assert(jets.size() >= 3);
       ++most_backward;
     }
     else if(ev.type() == event_type::unof || ev.type() == event_type::qqxexf){
       assert(jets.size() >= 3);
       --most_forward;
     }
     const auto extremal_jet_indices = cs.particle_jet_indices(
         {*most_backward, *most_forward}
     );
     assert(extremal_jet_indices.size() == out_partons.size());
     for(size_t i = 0; i < out_partons.size(); ++i){
       assert(HEJ::is_parton(out_partons[i]));
       const int idx = (extremal_jet_indices[i]>=0)?
         extremal_jet_idx:
         no_extremal_jet_idx;
       out_partons[i].p.set_user_index(idx);
     }
     return out_partons;
   }
 
   double MatrixElement::tree_kin_jets(
       Event const & ev
   ) const {
     auto const & incoming = ev.incoming();
     const auto partons = tag_extremal_jet_partons(ev);
     if(is_uno(ev.type())){
       throw not_implemented("unordered emission not implemented for pure jets");
     }
 
     const auto pa = to_HepLorentzVector(incoming[0]);
     const auto pb = to_HepLorentzVector(incoming[1]);
 
     const auto p1 = to_HepLorentzVector(partons.front());
     const auto pn = to_HepLorentzVector(partons.back());
 
     return ME_current(
         incoming[0].type, incoming[1].type,
         pn, pb, p1, pa
     )/(4.*(N_C*N_C - 1.))*FKL_ladder_weight(
         begin(partons) + 1, end(partons) - 1,
         pa - p1, pa, pb, p1, pn,
         param_.regulator_lambda
     );
   }
 
   namespace{
     double tree_kin_W_FKL(
           int aptype, int bptype, HLV pa, HLV pb,
           std::vector<Particle> const & partons,
           HLV plbar, HLV pl,
           double lambda
     ) {
       auto p1 = to_HepLorentzVector(partons[0]);
       auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
 
       auto begin_ladder = begin(partons) + 1;
       auto end_ladder = end(partons) - 1;
 
       bool wc = true;
       auto q0 = pa - p1;
       if (aptype!=partons[0].type) { //leg a emits w
         wc = false;
         q0 -=pl + plbar;
       }
 
       const double current_factor = ME_W_current(
           aptype, bptype, pn, pb,
           p1, pa, plbar, pl, wc
       );
 
       const double ladder_factor = FKL_ladder_weight(
           begin_ladder, end_ladder,
           q0, pa, pb, p1, pn,
           lambda
       );
       return current_factor*ladder_factor;
     }
 
     double tree_kin_W_unob(
         int aptype, int bptype, HLV pa, HLV pb,
         std::vector<Particle> const & partons,
         HLV plbar, HLV pl,
         double lambda
     ) {
       auto pg = to_HepLorentzVector(partons[0]);
       auto p1 = to_HepLorentzVector(partons[1]);
       auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
 
       auto begin_ladder = begin(partons) + 2;
       auto end_ladder = end(partons) - 1;
 
       bool wc = true;
       auto q0 = pa - p1 -pg;
       if (aptype!=partons[1].type) { //leg a emits w
         wc = false;
         q0 -=pl + plbar;
       }
 
       const double current_factor = ME_W_unob_current(
           aptype, bptype, pn, pb,
           p1, pa, pg, plbar, pl, wc
       );
 
       const double ladder_factor = FKL_ladder_weight(
           begin_ladder, end_ladder,
           q0, pa, pb, p1, pn,
           lambda
       );
       return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
     }
 
     double tree_kin_W_unof(
         int aptype, int bptype, HLV pa, HLV pb,
         std::vector<Particle> const & partons,
         HLV plbar, HLV pl,
         double lambda
     ) {
       auto p1 = to_HepLorentzVector(partons[0]);
       auto pn = to_HepLorentzVector(partons[partons.size() - 2]);
       auto pg = to_HepLorentzVector(partons[partons.size() - 1]);
 
       auto begin_ladder = begin(partons) + 1;
       auto end_ladder = end(partons) - 2;
 
       bool wc = true;
       auto q0 = pa - p1;
       if (aptype!=partons[0].type) { //leg a emits w
         wc = false;
         q0 -=pl + plbar;
       }
 
       const double current_factor = ME_W_unof_current(
           aptype, bptype, pn, pb,
           p1, pa, pg, plbar, pl, wc
       );
 
       const double ladder_factor = FKL_ladder_weight(
           begin_ladder, end_ladder,
           q0, pa, pb, p1, pn,
           lambda
       );
       return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
     }
 
     double tree_kin_W_qqxb(
         int aptype, int bptype, HLV pa, HLV pb,
         std::vector<Particle> const & partons,
         HLV plbar, HLV pl,
         double lambda
     ) {
       HLV pq,pqbar;
       if(is_quark(partons[0])){
         pq = to_HepLorentzVector(partons[0]);
         pqbar = to_HepLorentzVector(partons[1]);
       }
       else{
         pq = to_HepLorentzVector(partons[1]);
         pqbar = to_HepLorentzVector(partons[0]);
       }
       auto p1 = to_HepLorentzVector(partons[0]);
       auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
 
       auto begin_ladder = begin(partons) + 2;
       auto end_ladder = end(partons) - 1;
 
       bool wc = true;
       auto q0 = pa - pq - pqbar;
       if (partons[1].type!=partons[0].type) { //leg a emits w
         wc = false;
         q0 -=pl + plbar;
       }
 
       const double current_factor = ME_W_qqxb_current(
           aptype, bptype, pa, pb,
           pq, pqbar, pn, plbar, pl, wc
       );
 
       const double ladder_factor = FKL_ladder_weight(
           begin_ladder, end_ladder,
           q0, pa, pb, p1, pn,
           lambda
       );
       return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
     }
 
     double tree_kin_W_qqxf(
         int aptype, int bptype, HLV pa, HLV pb,
         std::vector<Particle> const & partons,
         HLV plbar, HLV pl,
         double lambda
     ) {
       HLV pq,pqbar;
       if(is_quark(partons[partons.size() - 1])){
         pq = to_HepLorentzVector(partons[partons.size() - 1]);
         pqbar = to_HepLorentzVector(partons[partons.size() - 2]);
       }
       else{
         pq = to_HepLorentzVector(partons[partons.size() - 2]);
         pqbar = to_HepLorentzVector(partons[partons.size() - 1]);
       }
       auto p1 = to_HepLorentzVector(partons[0]);
       auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
 
       auto begin_ladder = begin(partons) + 1;
       auto end_ladder = end(partons) - 2;
 
       bool wc = true;
       auto q0 = pa - p1;
       if (aptype!=partons[0].type) { //leg a emits w
         wc = false;
         q0 -=pl + plbar;
       }
 
       const double current_factor = ME_W_qqxf_current(
           aptype, bptype, pa, pb,
           pq, pqbar, p1, plbar, pl, wc
       );
 
       const double ladder_factor = FKL_ladder_weight(
           begin_ladder, end_ladder,
           q0, pa, pb, p1, pn,
           lambda
       );
       return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
     }
 
     double tree_kin_W_qqxmid(
         int aptype, int bptype, HLV pa, HLV pb,
         std::vector<Particle> const & partons,
         HLV plbar, HLV pl,
         double lambda
     ) {
      HLV pq,pqbar;
       const auto backmidquark = std::find_if(
           begin(partons)+1, end(partons)-1,
           [](Particle const & s){ return s.type != pid::gluon; }
       );
 
       assert(backmidquark!=end(partons)-1);
 
       if (is_quark(backmidquark->type)){
         pq = to_HepLorentzVector(*backmidquark);
         pqbar = to_HepLorentzVector(*(backmidquark+1));
       }
       else {
         pqbar = to_HepLorentzVector(*backmidquark);
         pq = to_HepLorentzVector(*(backmidquark+1));
       }
 
       auto p1 = to_HepLorentzVector(partons[0]);
       auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
 
       auto q0 = pa - p1;
       // t-channel momentum after qqx
       auto qqxt = q0;
 
       bool wc, wqq;
       if (backmidquark->type == -(backmidquark+1)->type){ // Central qqx does not emit
         wqq=false;
         if (aptype==partons[0].type) {
           wc = true;
         }
         else{
           wc = false;
           q0-=pl+plbar;
         }
       }
       else{
         wqq = true;
         wc  = false;
         qqxt-=pl+plbar;
       }
 
       auto begin_ladder = begin(partons) + 1;
       auto end_ladder_1 = (backmidquark);
       auto begin_ladder_2 = (backmidquark+2);
       auto end_ladder = end(partons) - 1;
       for(auto parton_it = begin_ladder; parton_it < begin_ladder_2; ++parton_it){
         qqxt -= to_HepLorentzVector(*parton_it);
       }
 
       int nabove = std::distance(begin_ladder, backmidquark);
       int nbelow = std::distance(begin_ladder_2, end_ladder);
 
       std::vector<HLV> partonsHLV;
       partonsHLV.reserve(partons.size());
       for (size_t i = 0; i != partons.size(); ++i) {
         partonsHLV.push_back(to_HepLorentzVector(partons[i]));
       }
 
       const double current_factor = ME_W_qqxmid_current(
           aptype, bptype, nabove, nbelow, pa, pb,
           pq, pqbar, partonsHLV, plbar, pl, wqq, wc
       );
 
       const double ladder_factor = FKL_ladder_weight(
           begin_ladder, end_ladder_1,
           q0, pa, pb, p1, pn,
           lambda
       )*FKL_ladder_weight(
           begin_ladder_2, end_ladder,
           qqxt, pa, pb, p1, pn,
           lambda
         );
       return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
     }
   } // namespace anonymous
 
   double MatrixElement::tree_kin_W(Event const & ev) const {
     using namespace event_type;
     auto const & incoming(ev.incoming());
     auto const & decays(ev.decays());
     HLV plbar, pl;
     for (auto& x: decays) {
       if (x.second.at(0).type < 0){
         plbar = to_HepLorentzVector(x.second.at(0));
         pl = to_HepLorentzVector(x.second.at(1));
       }
       else{
         pl = to_HepLorentzVector(x.second.at(0));
         plbar = to_HepLorentzVector(x.second.at(1));
       }
     }
     const auto pa = to_HepLorentzVector(incoming[0]);
     const auto pb = to_HepLorentzVector(incoming[1]);
 
     const auto partons = tag_extremal_jet_partons(ev);
 
     if(ev.type() == unordered_backward){
       return tree_kin_W_unob(incoming[0].type, incoming[1].type,
                              pa, pb, partons, plbar, pl,
                              param_.regulator_lambda);
     }
     if(ev.type() == unordered_forward){
       return tree_kin_W_unof(incoming[0].type, incoming[1].type,
                              pa, pb, partons, plbar, pl,
                              param_.regulator_lambda);
     }
     if(ev.type() == extremal_qqxb){
       return tree_kin_W_qqxb(incoming[0].type, incoming[1].type,
                              pa, pb, partons, plbar, pl,
                              param_.regulator_lambda);
     }
     if(ev.type() == extremal_qqxf){
       return tree_kin_W_qqxf(incoming[0].type, incoming[1].type,
                              pa, pb, partons, plbar, pl,
                              param_.regulator_lambda);
     }
     if(ev.type() == central_qqx){
       return tree_kin_W_qqxmid(incoming[0].type, incoming[1].type,
              pa, pb, partons, plbar, pl,
              param_.regulator_lambda);
     }
     return tree_kin_W_FKL(incoming[0].type, incoming[1].type,
         pa, pb, partons, plbar, pl,
         param_.regulator_lambda);
   }
 
   double MatrixElement::tree_kin_Higgs(
       Event const & ev
   ) const {
     if(is_uno(ev.type())){
       return tree_kin_Higgs_between(ev);
     }
     if(ev.outgoing().front().type == pid::Higgs){
       return tree_kin_Higgs_first(ev);
     }
     if(ev.outgoing().back().type == pid::Higgs){
       return tree_kin_Higgs_last(ev);
     }
     return tree_kin_Higgs_between(ev);
   }
 
   namespace {
     // Colour acceleration multipliers, for gluons see eq. (7) in arXiv:0910.5113
 #ifdef HEJ_BUILD_WITH_QCDLOOP
     // TODO: code duplication with currents.cc
     double K_g(double p1minus, double paminus) {
       return 1./2.*(p1minus/paminus + paminus/p1minus)*(C_A - 1./C_A) + 1./C_A;
     }
     double K_g(
         CLHEP::HepLorentzVector const & pout,
         CLHEP::HepLorentzVector const & pin
     ) {
       if(pin.z() > 0) return K_g(pout.plus(), pin.plus());
       return K_g(pout.minus(), pin.minus());
     }
     double K(
         ParticleID type,
         CLHEP::HepLorentzVector const & pout,
         CLHEP::HepLorentzVector const & pin
     ) {
       if(type == ParticleID::gluon) return K_g(pout, pin);
       return C_F;
     }
 #endif
     // Colour factor in strict MRK limit
     double K_MRK(ParticleID type) {
       return (type == ParticleID::gluon)?C_A:C_F;
     }
   }
 
   double MatrixElement::MH2_forwardH(
       CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in,
       ParticleID type2,
       CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in,
       CLHEP::HepLorentzVector pH,
       double t1, double t2
   ) const{
     ignore(p2out, p2in);
     const double shat = p1in.invariantMass2(p2in);
     // gluon case
 #ifdef HEJ_BUILD_WITH_QCDLOOP
     if(!param_.Higgs_coupling.use_impact_factors){
       return K(type2, p2out, p2in)*C_A*1./(16*M_PI*M_PI)*t1/t2*MH2gq_outsideH(
           p1out, p1in, p2out, p2in, pH,
           param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom,
           param_.Higgs_coupling.mb
       )/(4*(N_C*N_C - 1));
     }
 #endif
     return K_MRK(type2)/C_A*9./2.*shat*shat*(
         C2gHgp(p1in,p1out,pH) + C2gHgm(p1in,p1out,pH)
     )/(t1*t2);
   }
 
   double MatrixElement::tree_kin_Higgs_first(
       Event const & ev
   ) const {
     auto const & incoming = ev.incoming();
     auto const & outgoing = ev.outgoing();
     assert(outgoing.front().type == pid::Higgs);
     if(outgoing[1].type != pid::gluon) {
       assert(incoming.front().type == outgoing[1].type);
       return tree_kin_Higgs_between(ev);
     }
     const auto pH = to_HepLorentzVector(outgoing.front());
     const auto partons = tag_extremal_jet_partons(
         ev
     );
 
     const auto pa = to_HepLorentzVector(incoming[0]);
     const auto pb = to_HepLorentzVector(incoming[1]);
 
     const auto p1 = to_HepLorentzVector(partons.front());
     const auto pn = to_HepLorentzVector(partons.back());
 
     const auto q0 = pa - p1 - pH;
 
     const double t1 = q0.m2();
     const double t2 = (pn - pb).m2();
 
     return MH2_forwardH(
         p1, pa, incoming[1].type, pn, pb, pH,
         t1, t2
     )*FKL_ladder_weight(
         begin(partons) + 1, end(partons) - 1,
         q0, pa, pb, p1, pn,
         param_.regulator_lambda
     );
   }
 
   double MatrixElement::tree_kin_Higgs_last(
       Event const & ev
   ) const {
     auto const & incoming = ev.incoming();
     auto const & outgoing = ev.outgoing();
     assert(outgoing.back().type == pid::Higgs);
     if(outgoing[outgoing.size()-2].type != pid::gluon) {
       assert(incoming.back().type == outgoing[outgoing.size()-2].type);
       return tree_kin_Higgs_between(ev);
     }
     const auto pH = to_HepLorentzVector(outgoing.back());
     const auto partons = tag_extremal_jet_partons(
         ev
     );
 
     const auto pa = to_HepLorentzVector(incoming[0]);
     const auto pb = to_HepLorentzVector(incoming[1]);
 
     auto p1 = to_HepLorentzVector(partons.front());
     const auto pn = to_HepLorentzVector(partons.back());
 
     auto q0 = pa - p1;
 
     const double t1 = q0.m2();
     const double t2 = (pn + pH - pb).m2();
 
     return MH2_forwardH(
         pn, pb, incoming[0].type, p1, pa, pH,
         t2, t1
     )*FKL_ladder_weight(
         begin(partons) + 1, end(partons) - 1,
         q0, pa, pb, p1, pn,
         param_.regulator_lambda
     );
   }
 
   double MatrixElement::tree_kin_Higgs_between(
       Event const & ev
   ) const {
     using namespace event_type;
     auto const & incoming = ev.incoming();
     auto const & outgoing = ev.outgoing();
 
     const auto the_Higgs = std::find_if(
         begin(outgoing), end(outgoing),
         [](Particle const & s){ return s.type == pid::Higgs; }
     );
     assert(the_Higgs != end(outgoing));
     const auto pH = to_HepLorentzVector(*the_Higgs);
     const auto partons = tag_extremal_jet_partons(ev);
 
     const auto pa = to_HepLorentzVector(incoming[0]);
     const auto pb = to_HepLorentzVector(incoming[1]);
 
     auto p1 = to_HepLorentzVector(
         partons[(ev.type() == unob)?1:0]
     );
     auto pn = to_HepLorentzVector(
         partons[partons.size() - ((ev.type() == unof)?2:1)]
     );
 
     auto first_after_Higgs = begin(partons) + (the_Higgs-begin(outgoing));
     assert(
         (first_after_Higgs == end(partons) && (
             (ev.type() == unob)
             || partons.back().type != pid::gluon
         ))
         || first_after_Higgs->rapidity() >= the_Higgs->rapidity()
     );
     assert(
         (first_after_Higgs == begin(partons) && (
             (ev.type() == unof)
             || partons.front().type != pid::gluon
         ))
         || (first_after_Higgs-1)->rapidity() <= the_Higgs->rapidity()
     );
     // always treat the Higgs as if it were in between the extremal FKL partons
     if(first_after_Higgs == begin(partons)) ++first_after_Higgs;
     else if(first_after_Higgs == end(partons)) --first_after_Higgs;
 
     // t-channel momentum before Higgs
     auto qH = pa;
     for(auto parton_it = begin(partons); parton_it != first_after_Higgs; ++parton_it){
       qH -= to_HepLorentzVector(*parton_it);
     }
 
     auto q0 = pa - p1;
     auto begin_ladder = begin(partons) + 1;
     auto end_ladder = end(partons) - 1;
 
     double current_factor;
     if(ev.type() == unob){
       current_factor = C_A*C_A/2.*ME_Higgs_current_unob( // 1/2 = "K_uno"
           incoming[0].type, incoming[1].type,
           pn, pb, to_HepLorentzVector(partons.front()), p1, pa, qH, qH - pH,
           param_.Higgs_coupling.mt,
           param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb
       );
       const auto p_unob = to_HepLorentzVector(partons.front());
       q0 -= p_unob;
       p1 += p_unob;
       ++begin_ladder;
     }
     else if(ev.type() == unof){
       current_factor = C_A*C_A/2.*ME_Higgs_current_unof( // 1/2 = "K_uno"
           incoming[0].type, incoming[1].type,
           to_HepLorentzVector(partons.back()), pn, pb, p1, pa, qH, qH - pH,
           param_.Higgs_coupling.mt,
           param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb
       );
       pn += to_HepLorentzVector(partons.back());
       --end_ladder;
     }
     else{
       current_factor = ME_Higgs_current(
           incoming[0].type, incoming[1].type,
           pn, pb, p1, pa, qH, qH - pH,
           param_.Higgs_coupling.mt,
           param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb
       );
     }
 
     const double ladder_factor = FKL_ladder_weight(
         begin_ladder, first_after_Higgs,
         q0, pa, pb, p1, pn,
         param_.regulator_lambda
     )*FKL_ladder_weight(
         first_after_Higgs, end_ladder,
         qH - pH, pa, pb, p1, pn,
         param_.regulator_lambda
     );
     return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
   }
 
   namespace {
     double get_AWZH_coupling(Event const & ev, double alpha_s) {
       const auto AWZH_boson = std::find_if(
           begin(ev.outgoing()), end(ev.outgoing()),
           [](auto const & p){return is_AWZH_boson(p);}
       );
       if(AWZH_boson == end(ev.outgoing())) return 1.;
       switch(AWZH_boson->type){
       case pid::Higgs:
         return alpha_s*alpha_s;
       case pid::Wp:
       case pid::Wm:
         return gw*gw*gw*gw/4.;
         // TODO
       case pid::photon:
       case pid::Z:
       default:
         throw not_implemented("Emission of boson of unsupported type");
       }
     }
   }
 
   double MatrixElement::tree_param(
       Event const & ev,
       double mur
   ) const{
     assert(is_HEJ(ev.type()));
 
     const auto begin_partons = ev.begin_partons();
     const auto end_partons = ev.end_partons();
     const auto num_partons = std::distance(begin_partons, end_partons);
     const double alpha_s = alpha_s_(mur);
     const double gs2 = 4.*M_PI*alpha_s;
     double res = std::pow(gs2, num_partons);
     if(param_.log_correction){
       // use alpha_s(q_perp), evolved to mur
       assert(num_partons >= 2);
       const auto first_emission = std::next(begin_partons);
       const auto last_emission = std::prev(end_partons);
       for(auto parton = first_emission; parton != last_emission; ++parton){
         res *= 1. + alpha_s/(2.*M_PI)*beta0*log(mur/parton->perp());
       }
     }
     return get_AWZH_coupling(ev, alpha_s)*res;
   }
 
 } // namespace HEJ
diff --git a/src/Wjets.cc b/src/Wjets.cc
index 9f75a85..bc76bcb 100644
--- a/src/Wjets.cc
+++ b/src/Wjets.cc
@@ -1,1689 +1,1697 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #include "HEJ/currents.hh"
 #include "HEJ/utility.hh"
 #include "HEJ/Tensor.hh"
 #include "HEJ/Constants.hh"
 
 #include <array>
 
 #include <iostream>
 
 namespace { // Helper Functions
   // FKL W Helper Functions
   void jW (HLV pout, bool helout, HLV pe, bool hele, HLV pnu, bool helnu,
            HLV pin, bool helin, current cur
   ){
     // NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is
     //            anti-lepton(5)
     // Need to swap e and nu for events with W- --> e- nubar!
     if (helin==helout && hele==helnu) {
       HLV qa=pout+pe+pnu;
       HLV qb=pin-pe-pnu;
       double ta(qa.m2()),tb(qb.m2());
 
       current t65,vout,vin,temp2,temp3,temp5;
       joo(pnu,helnu,pe,hele,t65);
       vout[0]=pout.e();
       vout[1]=pout.x();
       vout[2]=pout.y();
       vout[3]=pout.z();
       vin[0]=pin.e();
       vin[1]=pin.x();
       vin[2]=pin.y();
       vin[3]=pin.z();
 
       COM brac615=cdot(t65,vout);
       COM brac645=cdot(t65,vin);
 
       // prod1565 and prod6465 are zero for Ws (not Zs)!!
       joo(pout,helout,pnu,helout,temp2);
       COM prod1665=cdot(temp2,t65);
       joi(pe,helin,pin,helin,temp3);
       COM prod5465=cdot(temp3,t65);
 
       joo(pout,helout,pe,helout,temp2);
       joi(pnu,helnu,pin,helin,temp3);
       joi(pout,helout,pin,helin,temp5);
 
       current term1,term2,term3,sum;
       cmult(2.*brac615/ta+2.*brac645/tb,temp5,term1);
       cmult(prod1665/ta,temp3,term2);
       cmult(-prod5465/tb,temp2,term3);
 
       cadd(term1,term2,term3,sum);
       cur[0]=sum[0];
       cur[1]=sum[1];
       cur[2]=sum[2];
       cur[3]=sum[3];
     }
   }
 
   void jWbar (HLV pout, bool helout, HLV pe, bool hele, HLV pnu, bool helnu,
               HLV pin, bool helin, current cur
   ){
     // NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is
     //            anti-lepton(5)
     // Need to swap e and nu for events with W- --> e- nubar!
     if (helin==helout && hele==helnu) {
       HLV qa=pout+pe+pnu;
       HLV qb=pin-pe-pnu;
       double ta(qa.m2()),tb(qb.m2());
 
       current t65,vout,vin,temp2,temp3,temp5;
       joo(pnu,helnu,pe,hele,t65);
       vout[0]=pout.e();
       vout[1]=pout.x();
       vout[2]=pout.y();
       vout[3]=pout.z();
       vin[0]=pin.e();
       vin[1]=pin.x();
       vin[2]=pin.y();
       vin[3]=pin.z();
 
       COM brac615=cdot(t65,vout);
       COM brac645=cdot(t65,vin);
 
       // prod1565 and prod6465 are zero for Ws (not Zs)!!
       joo(pe,helout,pout,helout,temp2);  //  temp2 is <5|alpha|1>
       COM prod5165=cdot(temp2,t65);
       jio(pin,helin,pnu,helin,temp3);      // temp3 is <4|alpha|6>
       COM prod4665=cdot(temp3,t65);
 
       joo(pnu,helout,pout,helout,temp2);  // temp2 is now <6|mu|1>
       jio(pin,helin,pe,helin,temp3);        // temp3 is now <4|mu|5>
       jio(pin,helin,pout,helout,temp5);     //  temp5 is <4|mu|1>
 
       current term1,term2,term3,sum;
       cmult(-2.*brac615/ta-2.*brac645/tb,temp5,term1);
       cmult(-prod5165/ta,temp3,term2);
       cmult(prod4665/tb,temp2,term3);
 
       cadd(term1,term2,term3,sum);
       cur[0]=sum[0];
       cur[1]=sum[1];
       cur[2]=sum[2];
       cur[3]=sum[3];
     }
   }
 
   double WProp (const HLV & plbar, const HLV & pl){
     COM propW = COM(0.,-1.)/( (pl+plbar).m2() - HEJ::MW*HEJ::MW + COM(0.,1.)*HEJ::MW*HEJ::GammaW);
     double PropFactor=(propW*conj(propW)).real();
     return PropFactor;
   }
 
 CCurrent jW (HLV pout, bool helout, HLV pe, bool hele, HLV pnu, bool helnu,
              HLV pin, bool helin
 ){
 
   COM cur[4];
 
   cur[0]=0.;
   cur[1]=0.;
   cur[2]=0.;
   cur[3]=0.;
   CCurrent sum(0.,0.,0.,0.);
 
   // NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is
   //            anti-lepton(5)
   // Need to swap e and nu for events with W- --> e- nubar!
   if (helin==helout && hele==helnu) {
     HLV qa=pout+pe+pnu;
     HLV qb=pin-pe-pnu;
     double ta(qa.m2()),tb(qb.m2());
 
     CCurrent temp2,temp3,temp5;
     CCurrent t65 = joo(pnu,helnu,pe,hele);
     CCurrent vout(pout.e(),pout.x(),pout.y(),pout.z());
     CCurrent vin(pin.e(),pin.x(),pin.y(),pin.z());
 
     COM brac615=t65.dot(vout);
     COM brac645=t65.dot(vin);
 
     // prod1565 and prod6465 are zero for Ws (not Zs)!!
     temp2 = joo(pout,helout,pnu,helout);
     COM prod1665=temp2.dot(t65);
     temp3 = joi(pe,helin,pin,helin);
     COM prod5465=temp3.dot(t65);
 
     temp2=joo(pout,helout,pe,helout);
     temp3=joi(pnu,helnu,pin,helin);
     temp5=joi(pout,helout,pin,helin);
 
     CCurrent term1,term2,term3;
     term1=(2.*brac615/ta+2.*brac645/tb)*temp5;
     term2=(prod1665/ta)*temp3;
     term3=(-prod5465/tb)*temp2;
 
     sum=term1+term2+term3;
   }
 
   return sum;
 }
 
 CCurrent jWbar (HLV pout, bool helout, HLV pe, bool hele, HLV pnu, bool helnu,
                 HLV pin, bool helin
 ){
 
     COM cur[4];
 
     cur[0]=0.;
     cur[1]=0.;
     cur[2]=0.;
     cur[3]=0.;
     CCurrent sum(0.,0.,0.,0.);
 
   // NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is
   //            anti-lepton(5)
   // Need to swap e and nu for events with W- --> e- nubar!
   if (helin==helout && hele==helnu) {
     HLV qa=pout+pe+pnu;
     HLV qb=pin-pe-pnu;
     double ta(qa.m2()),tb(qb.m2());
 
     CCurrent temp2,temp3,temp5;
     CCurrent t65 = joo(pnu,helnu,pe,hele);
     CCurrent vout(pout.e(),pout.x(),pout.y(),pout.z());
     CCurrent vin(pin.e(),pin.x(),pin.y(),pin.z());
 
     COM brac615=t65.dot(vout);
     COM brac645=t65.dot(vin);
 
     // prod1565 and prod6465 are zero for Ws (not Zs)!!
     temp2 = joo(pe,helout,pout,helout);  //  temp2 is <5|alpha|1>
     COM prod5165=temp2.dot(t65);
     temp3 = jio(pin,helin,pnu,helin);      // temp3 is <4|alpha|6>
     COM prod4665=temp3.dot(t65);
 
     temp2=joo(pnu,helout,pout,helout);  // temp2 is now <6|mu|1>
     temp3=jio(pin,helin,pe,helin);        // temp3 is now <4|mu|5>
     temp5=jio(pin,helin,pout,helout);     //  temp5 is <4|mu|1>
 
     CCurrent term1,term2,term3;
     term1 =(-2.*brac615/ta-2.*brac645/tb)*temp5;
     term2 =(-prod5165/ta)*temp3;
     term3 =(prod4665/tb)*temp2;
 
     sum = term1 + term2 + term3;
   }
 
   return sum;
 }
 
   // Extremal quark current with W emission.
   // Using Tensor class rather than CCurrent
   Tensor <1> jW(HLV pin, HLV pout, HLV plbar, HLV pl, bool aqline){
     // Build the external quark line W Emmision
     Tensor<1> ABCurr = TCurrent(pl, false, plbar, false);
     Tensor<1> Tp4W = Construct1Tensor((pout+pl+plbar));//p4+pw
     Tensor<1> TpbW = Construct1Tensor((pin-pl-plbar));//pb-pw
 
     Tensor<3> J4bBlank;
     if (aqline){
       J4bBlank = T3Current(pin,false,pout,false);
     }
     else{
       J4bBlank = T3Current(pout,false,pin,false);
     }
     double t4AB = (pout+pl+plbar).m2();
     double tbAB = (pin-pl-plbar).m2();
 
     Tensor<2> J4b1 = (J4bBlank.contract(Tp4W,2))/t4AB;
     Tensor<2> J4b2 = (J4bBlank.contract(TpbW,2))/tbAB;
 
     Tensor<2> T4bmMom(0.);
 
     if (aqline){
       for(int mu=0; mu<4;mu++){
         for(int nu=0;nu<4;nu++){
           T4bmMom(mu, nu) = (J4b1(nu,mu) + J4b2(mu,nu))*COM(0,-1);
         }
       }
     }
     else{
       for(int mu=0; mu<4;mu++){
         for(int nu=0;nu<4;nu++){
           T4bmMom(nu,mu) = (J4b1(nu,mu) + J4b2(mu,nu))*COM(0,1);
         }
       }
     }
     Tensor<1> T4bm = T4bmMom.contract(ABCurr,1);
 
     return T4bm;
   }
 
   // Relevant W+Jets Unordered Contribution Helper Functions
   // W+Jets Uno
   double jM2Wuno(HLV pg, HLV p1,HLV plbar, HLV pl, HLV pa, bool h1,
                  HLV p2, HLV pb, bool h2, bool pol
   ){
     static bool is_sigma_index_set(false);
 
     if(!is_sigma_index_set){
       //std::cout<<"Setting sigma_index...." << std::endl;
       if(init_sigma_index())
   is_sigma_index_set = true;
       else
   return 0.;
     }
 
     HLV pW = pl+plbar;
     HLV q1g=pa-pW-p1-pg;
     HLV q1 = pa-p1-pW;
     HLV q2 = p2-pb;
 
     const double taW  = (pa-pW).m2();
     const double taW1 = (pa-pW-p1).m2();
     const double tb2  = (pb-p2).m2();
     const double tb2g = (pb-p2-pg).m2();
     const double s1W  = (p1+pW).m2();
     const double s1gW = (p1+pW+pg).m2();
     const double s1g  = (p1+pg).m2();
     const double tag  = (pa-pg).m2();
     const double taWg = (pa-pW-pg).m2();
 
     //use p1 as ref vec in pol tensor
     Tensor<1> epsg = eps(pg,p2,pol);
     Tensor<1> epsW = TCurrent(pl,false,plbar,false);
     Tensor<1> j2b = TCurrent(p2,h2,pb,h2);
 
     Tensor<1> Tq1q2 = Construct1Tensor((q1+q2)/taW1 + (pb/pb.dot(pg)
       + p2/p2.dot(pg)) * tb2/(2*tb2g));
     Tensor<1> Tq1g = Construct1Tensor((-pg-q1))/taW1;
     Tensor<1> Tq2g = Construct1Tensor((pg-q2));
     Tensor<1> TqaW = Construct1Tensor((pa-pW));//pa-pw
     Tensor<1> Tqag = Construct1Tensor((pa-pg));
     Tensor<1> TqaWg = Construct1Tensor((pa-pg-pW));
     Tensor<1> Tp1g = Construct1Tensor((p1+pg));
     Tensor<1> Tp1W = Construct1Tensor((p1+pW));//p1+pw
     Tensor<1> Tp1gW = Construct1Tensor((p1+pg+pW));//p1+pw+pg
 
     Tensor<2> g=Metric();
 
     Tensor<3> J31a = T3Current(p1, h1, pa, h1);
     Tensor<2> J2_qaW =J31a.contract(TqaW/taW, 2);
     Tensor<2> J2_p1W =J31a.contract(Tp1W/s1W, 2);
     Tensor<3> L1a = outer(Tq1q2, J2_qaW);
     Tensor<3> L1b = outer(Tq1q2, J2_p1W);
     Tensor<3> L2a = outer(Tq1g,J2_qaW);
     Tensor<3> L2b = outer(Tq1g, J2_p1W);
     Tensor<3> L3 = outer(g, J2_qaW.contract(Tq2g,1)+J2_p1W.contract(Tq2g,2))/taW1;
     Tensor<3> L(0.);
 
     Tensor<5> J51a = T5Current(p1, h1, pa, h1);
 
     Tensor<4> J_qaW = J51a.contract(TqaW,4);
     Tensor<4> J_qag = J51a.contract(Tqag,4);
     Tensor<4> J_p1gW = J51a.contract(Tp1gW,4);
 
     Tensor<3> U1a = J_qaW.contract(Tp1g,2);
     Tensor<3> U1b = J_p1gW.contract(Tp1g,2);
     Tensor<3> U1c = J_p1gW.contract(Tp1W,2);
     Tensor<3> U1(0.);
 
     Tensor<3> U2a = J_qaW.contract(TqaWg,2);
     Tensor<3> U2b = J_qag.contract(TqaWg,2);
     Tensor<3> U2c = J_qag.contract(Tp1W,2);
     Tensor<3> U2(0.);
 
     for(int nu=0; nu<4;nu++){
       for(int mu=0;mu<4;mu++){
         for(int rho=0;rho<4;rho++){
           L(nu, mu, rho) =  L1a(nu,mu,rho) + L1b(nu,rho,mu)
             + L2a(mu,nu,rho) + L2b(mu,rho,nu) + L3(mu,nu,rho);
           U1(nu, mu, rho) = U1a(nu, mu, rho) / (s1g*taW)
             + U1b(nu,rho,mu) / (s1g*s1gW) + U1c(rho,nu,mu) / (s1W*s1gW);
           U2(nu,mu,rho) = U2a(mu,nu,rho) / (taWg*taW)
             + U2b(mu,rho,nu) / (taWg*tag) + U2c(rho,mu,nu) / (s1W*tag);
         }
       }
     }
 
     COM X = ((((U1-L).contract(epsW,3)).contract(j2b,2)).contract(epsg,1));
     COM Y = ((((U2+L).contract(epsW,3)).contract(j2b,2)).contract(epsg,1));
 
     double amp = HEJ::C_A*HEJ::C_F*HEJ::C_F/2.*(norm(X)+norm(Y)) - HEJ::C_F/2.*(X*conj(Y)).real();
 
     double t1 = q1g.m2();
     double t2 = q2.m2();
 
     double WPropfact = WProp(plbar, pl);
 
     //Divide by WProp
     amp*=WPropfact;
 
     //Divide by t-channels
     amp/=(t1*t2);
 
     //Average over initial states
     amp/=(4.*HEJ::C_A*HEJ::C_A);
 
     return amp;
   }
 
   // Relevant Wqqx Helper Functions.
   //g->qxqlxl (Calculates gluon to qqx Current. See JV_\mu in WSubleading Notes)
   Tensor <1> gtqqxW(HLV pq,HLV pqbar,HLV pl,HLV plbar){
 
     double s2AB=(pl+plbar+pq).m2();
     double s3AB=(pl+plbar+pqbar).m2();
 
     Tensor<1> Tpq = Construct1Tensor(pq);
     Tensor<1> Tpqbar = Construct1Tensor(pqbar);
     Tensor<1> TAB = Construct1Tensor(pl+plbar);
 
     // Define llx current.
     Tensor<1> ABCur = TCurrent(pl, false, plbar, false);
 
     //blank 3 Gamma Current
     Tensor<3> JV23 = T3Current(pq,false,pqbar,false);
 
     // Components of g->qqW before W Contraction
     Tensor<2> JV1 = JV23.contract((Tpq + TAB),2)/(s2AB);
     Tensor<2> JV2 = JV23.contract((Tpqbar + TAB),2)/(s3AB);
 
     // g->qqW Current. Note Minus between terms due to momentum flow.
     // Also note: (-I)^2 from W vert. (I) from Quark prop.
     Tensor<1> JVCur = (JV1.contract(ABCur,1) - JV2.contract(ABCur,2))*COM(0.,-1.);
 
     return JVCur;
   }
 
   // Helper Functions Calculate the Crossed Contribution
   Tensor <2> MCrossW(HLV pa, HLV, HLV, HLV, HLV pq, HLV pqbar, HLV pl,
                     HLV plbar, std::vector<HLV> partons, int nabove
   ){
     // Useful propagator factors
     double s2AB=(pl+plbar+pq).m2();
     double s3AB=(pl+plbar+pqbar).m2();
 
     HLV q1, q3;
     q1=pa;
     for(int i=0; i<nabove+1;i++){
       q1=q1-partons.at(i);
     }
     q3 = q1 - pq - pqbar - pl - plbar;
 
     double tcro1=(q3+pq).m2();
     double tcro2=(q1-pqbar).m2();
 
     Tensor<1> Tpq = Construct1Tensor(pq);
     Tensor<1> Tpqbar = Construct1Tensor(pqbar);
     Tensor<1> TAB = Construct1Tensor(pl+plbar);
     Tensor<1> Tq1 = Construct1Tensor(q1);
     Tensor<1> Tq3 = Construct1Tensor(q3);
 
     // Define llx current.
     Tensor<1> ABCur = TCurrent(pl, false, plbar,false);
 
     //Blank 5 gamma Current
     Tensor<5> J523 = T5Current(pq,false,pqbar,false);
 
     // 4 gamma currents (with 1 contraction already).
     Tensor<4> J_q3q = J523.contract((Tq3+Tpq),2);
     Tensor<4> J_2AB = J523.contract((Tpq+TAB),2);
 
     // Components of Crossed Vertex Contribution
     Tensor<3> Xcro1 = J_q3q.contract((Tpqbar + TAB),3);
     Tensor<3> Xcro2 = J_q3q.contract((Tq1-Tpqbar),3);
     Tensor<3> Xcro3 = J_2AB.contract((Tq1-Tpqbar),3);
 
     // Term Denominators Taken Care of at this stage
     Tensor<2> Xcro1Cont = Xcro1.contract(ABCur,3)/(tcro1*s3AB);
     Tensor<2> Xcro2Cont = Xcro2.contract(ABCur,2)/(tcro1*tcro2);
     Tensor<2> Xcro3Cont = Xcro3.contract(ABCur,1)/(s2AB*tcro2);
 
     //Initialise the Crossed Vertex Object
     Tensor<2> Xcro(0.);
 
     for(int mu=0; mu<4;mu++){
       for(int nu=0;nu<4;nu++){
         Xcro(mu,nu) = -(-Xcro1Cont(nu,mu)+Xcro2Cont(nu,mu)+Xcro3Cont(nu,mu));
       }
     }
 
     return Xcro;
   }
 
   // Helper Functions Calculate the Uncrossed Contribution
   Tensor <2> MUncrossW(HLV pa, HLV, HLV, HLV, HLV pq, HLV pqbar,
                        HLV pl, HLV plbar, std::vector<HLV> partons, int nabove
   ){
 
     double s2AB=(pl+plbar+pq).m2();
     double s3AB=(pl+plbar+pqbar).m2();
 
     HLV q1, q3;
     q1=pa;
     for(int i=0; i<nabove+1;i++){
       q1=q1-partons.at(i);
     }
     q3 = q1 - pl - plbar - pq - pqbar;
     double tunc1 = (q1-pq).m2();
     double tunc2 = (q3+pqbar).m2();
 
     Tensor<1> Tpq = Construct1Tensor(pq);
     Tensor<1> Tpqbar = Construct1Tensor(pqbar);
     Tensor<1> TAB = Construct1Tensor(pl+plbar);
     Tensor<1> Tq1 = Construct1Tensor(q1);
     Tensor<1> Tq3 = Construct1Tensor(q3);
 
     // Define llx current.
     Tensor<1> ABCur = TCurrent(pl, false, plbar, false);
 
     //Blank 5 gamma Current
     Tensor<5> J523 = T5Current(pq,false,pqbar,false);
 
     // 4 gamma currents (with 1 contraction already).
     Tensor<4> J_2AB = J523.contract((Tpq+TAB),2);
     Tensor<4> J_q1q = J523.contract((Tq1-Tpq),2);
 
     // 2 Contractions taken care of.
     Tensor<3> Xunc1 = J_2AB.contract((Tq3+Tpqbar),3);
     Tensor<3> Xunc2 = J_q1q.contract((Tq3+Tpqbar),3);
     Tensor<3> Xunc3 = J_q1q.contract((Tpqbar+TAB),3);
 
     // Term Denominators Taken Care of at this stage
     Tensor<2> Xunc1Cont = Xunc1.contract(ABCur,1)/(s2AB*tunc2);
     Tensor<2> Xunc2Cont = Xunc2.contract(ABCur,2)/(tunc1*tunc2);
     Tensor<2> Xunc3Cont = Xunc3.contract(ABCur,3)/(tunc1*s3AB);
 
     //Initialise the Uncrossed Vertex Object
     Tensor<2> Xunc(0.);
 
     for(int mu=0; mu<4;mu++){
       for(int nu=0;nu<4;nu++){
         Xunc(mu,nu) = -(- Xunc1Cont(mu,nu)+Xunc2Cont(mu,nu) +Xunc3Cont(mu,nu));
       }
     }
 
     return Xunc;
   }
 
   // Helper Functions Calculate the g->qqxW (Eikonal) Contributions
   Tensor <2> MSymW(HLV pa, HLV p1, HLV pb, HLV p4, HLV pq, HLV pqbar,
                    HLV pl,HLV plbar, std::vector<HLV> partons, int nabove
   ){
 
     double sa2=(pa+pq).m2();
     double s12=(p1+pq).m2();
     double sa3=(pa+pqbar).m2();
     double s13=(p1+pqbar).m2();
     double saA=(pa+pl).m2();
     double s1A=(p1+pl).m2();
     double saB=(pa+plbar).m2();
     double s1B=(p1+plbar).m2();
     double sb2=(pb+pq).m2();
     double s42=(p4+pq).m2();
     double sb3=(pb+pqbar).m2();
     double s43=(p4+pqbar).m2();
     double sbA=(pb+pl).m2();
     double s4A=(p4+pl).m2();
     double sbB=(pb+plbar).m2();
     double s4B=(p4+plbar).m2();
     double s23AB=(pl+plbar+pq+pqbar).m2();
 
     HLV q1,q3;
     q1=pa;
     for(int i=0;i<nabove+1;i++){
       q1-=partons.at(i);
     }
     q3=q1-pq-pqbar-plbar-pl;
     double t1 = (q1).m2();
     double t3 = (q3).m2();
 
     //Define Tensors to be used
     Tensor<1> Tp1 = Construct1Tensor(p1);
     Tensor<1> Tp4 = Construct1Tensor(p4);
     Tensor<1> Tpa = Construct1Tensor(pa);
     Tensor<1> Tpb = Construct1Tensor(pb);
     Tensor<1> Tpq = Construct1Tensor(pq);
     Tensor<1> Tpqbar = Construct1Tensor(pqbar);
     Tensor<1> TAB = Construct1Tensor(pl+plbar);
     Tensor<1> Tq1 = Construct1Tensor(q1);
     Tensor<1> Tq3 = Construct1Tensor(q3);
     Tensor<2> g=Metric();
 
     // g->qqW Current (Factors of sqrt2 dealt with in this function.)
     Tensor<1> JV = gtqqxW(pq,pqbar,pl,plbar);
 
     // 1a gluon emisson Contribution
     Tensor<3> X1a = outer(g, Tp1*(t1/(s12+s13+s1A+s1B))
                                 + Tpa*(t1/(sa2+sa3+saA+saB)) );
     Tensor<2> X1aCont = X1a.contract(JV,3);
 
     //4b gluon emission Contribution
     Tensor<3> X4b = outer(g, Tp4*(t3/(s42+s43+s4A+s4B))
                                 + Tpb*(t3/(sb2+sb3+sbA+sbB)) );
     Tensor<2> X4bCont = X4b.contract(JV,3);
 
     //Set up each term of 3G diagram.
     Tensor<3> X3g1 = outer(Tq1+Tpq+Tpqbar+TAB, g);
     Tensor<3> X3g2 = outer(Tq3-Tpq-Tpqbar-TAB, g);
     Tensor<3> X3g3 = outer(Tq1+Tq3, g);
 
     // Note the contraction of indices changes term by term
     Tensor<2> X3g1Cont = X3g1.contract(JV,3);
     Tensor<2> X3g2Cont = X3g2.contract(JV,2);
     Tensor<2> X3g3Cont = X3g3.contract(JV,1);
 
     // XSym is an amalgamation of x1a, X4b and X3g.
     // Makes sense from a colour factor point of view.
     Tensor<2>Xsym(0.);
 
     for(int mu=0; mu<4;mu++){
       for(int nu=0;nu<4;nu++){
         Xsym(mu,nu) = (X3g1Cont(nu,mu) + X3g2Cont(mu,nu) - X3g3Cont(nu,mu))
           + (X1aCont(mu,nu) - X4bCont(mu,nu));
       }
     }
     return Xsym/s23AB;
   }
 
   Tensor <2> MCross(HLV pa, HLV pq, HLV pqbar, std::vector<HLV> partons,
                     bool hq, int nabove
   ){
 
     HLV q1;
     q1=pa;
     for(int i=0;i<nabove+1;i++){
       q1-=partons.at(i);
     }
 
     double t2=(q1-pqbar).m2();
 
     Tensor<1> Tq1 = Construct1Tensor(q1-pqbar);
 
     //Blank 3 gamma Current
     Tensor<3> J323 = T3Current(pq,hq,pqbar,hq);
 
     // 2 gamma current (with 1 contraction already).
     Tensor<2> XCroCont = J323.contract((Tq1),2)/(t2);
 
     //Initialise the Crossed Vertex
     Tensor<2> Xcro(0.);
 
     for(int mu=0; mu<4;mu++){
       for(int nu=0;nu<4;nu++){
         Xcro(mu,nu) = XCroCont(nu,mu);
       }
     }
 
     return Xcro;
   }
 
   // Helper Functions Calculate the Uncrossed Contribution
   Tensor <2> MUncross(HLV pa, HLV pq,HLV pqbar, std::vector<HLV> partons,
                       bool hq, int nabove
   ){
 
     HLV q1;
     q1=pa;
     for(int i=0;i<nabove+1;i++){
       q1-=partons.at(i);
     }
     double t2 = (q1-pq).m2();
 
     Tensor<1> Tq1 = Construct1Tensor(q1-pq);
 
     //Blank 3 gamma Current
     Tensor<3> J323 = T3Current(pq,hq,pqbar,hq);
 
     // 2 gamma currents (with 1 contraction already).
     Tensor<2> XUncCont = J323.contract((Tq1),2)/t2;
 
     //Initialise the Uncrossed Vertex
     Tensor<2> Xunc(0.);
 
     for(int mu=0; mu<4;mu++){
       for(int nu=0;nu<4;nu++){
         Xunc(mu,nu) = -XUncCont(mu,nu);
       }
     }
 
     return Xunc;
   }
 
   // Helper Functions Calculate the Eikonal Contributions
   Tensor <2> MSym(HLV pa, HLV p1, HLV pb, HLV p4, HLV pq, HLV pqbar,
                   std::vector<HLV> partons, bool hq, int nabove
   ){
 
     HLV q1, q3;
     q1=pa;
     for(int i=0;i<nabove+1;i++){
       q1-=partons.at(i);
     }
     q3 = q1-pq-pqbar;
     double t1 = (q1).m2();
     double t3 = (q3).m2();
 
     double s23 = (pq+pqbar).m2();
     double sa2 = (pa+pq).m2();
     double sa3 = (pa+pqbar).m2();
     double s12 = (p1+pq).m2();
     double s13 = (p1+pqbar).m2();
     double sb2 = (pb+pq).m2();
     double sb3 = (pb+pqbar).m2();
     double s42 = (p4+pq).m2();
     double s43 = (p4+pqbar).m2();
 
     //Define Tensors to be used
     Tensor<1> Tp1 = Construct1Tensor(p1);
     Tensor<1> Tp4 = Construct1Tensor(p4);
     Tensor<1> Tpa = Construct1Tensor(pa);
     Tensor<1> Tpb = Construct1Tensor(pb);
     Tensor<1> Tpq = Construct1Tensor(pq);
     Tensor<1> Tpqbar = Construct1Tensor(pqbar);
     Tensor<1> Tq1 = Construct1Tensor(q1);
     Tensor<1> Tq3 = Construct1Tensor(q3);
     Tensor<2> g=Metric();
 
     Tensor<1> qqxCur = TCurrent(pq, hq, pqbar, hq);
 
     // // 1a gluon emisson Contribution
     Tensor<3> X1a = outer(g, Tp1*(t1/(s12+s13))+Tpa*(t1/(sa2+sa3)));
     Tensor<2> X1aCont = X1a.contract(qqxCur,3);
 
     // //4b gluon emission Contribution
     Tensor<3> X4b = outer(g, Tp4*(t3/(s42+s43)) + Tpb*(t3/(sb2+sb3)));
     Tensor<2> X4bCont = X4b.contract(qqxCur,3);
 
     // New Formulation Corresponding to New Analytics
     Tensor<3> X3g1 = outer(Tq1+Tpq+Tpqbar, g);
     Tensor<3> X3g2 = outer(Tq3-Tpq-Tpqbar, g);
     Tensor<3> X3g3 = outer(Tq1+Tq3, g);
 
     // Note the contraction of indices changes term by term
     Tensor<2> X3g1Cont = X3g1.contract(qqxCur,3);
     Tensor<2> X3g2Cont = X3g2.contract(qqxCur,2);
     Tensor<2> X3g3Cont = X3g3.contract(qqxCur,1);
 
     Tensor<2>Xsym(0.);
 
     for(int mu=0; mu<4;mu++){
       for(int nu=0;nu<4;nu++){
         Xsym(mu, nu) = COM(0,1) * ( (X3g1Cont(nu,mu) + X3g2Cont(mu,nu)
           - X3g3Cont(nu,mu)) + (X1aCont(mu,nu) - X4bCont(mu,nu)) );
       }
     }
     return Xsym/s23;
   }
 } // Anonymous Namespace helper functions
 
 // W+Jets FKL Contributions
 // Calculates the square of the current contractions for qQ->qenuQ scattering
 // p1: quark (with W emittance)
 // p2: Quark
 double jMWqQ (HLV p1out, HLV pe, HLV pnu,HLV p1in, HLV p2out, HLV p2in){
   current mj1m,mj2p,mj2m;
   HLV q1=p1in-p1out-pe-pnu;
   HLV q2=-(p2in-p2out);
 
   jW(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
   joi(p2out,true,p2in,true,mj2p);
   joi(p2out,false,p2in,false,mj2m);
 
   COM Mmp=cdot(mj1m,mj2p);
 
   // mj1m.mj2m
   COM Mmm=cdot(mj1m,mj2m);
 
   // sum of spinor strings ||^2
   double a2Mmp=abs2(Mmp);
   double a2Mmm=abs2(Mmm);
 
   double WPropfact = WProp(pe, pnu);
 
   // Division by colour and Helicity average (Nc2-1)(4)
   // Multiply by Cf^2
   return HEJ::C_F*HEJ::C_F*WPropfact*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2()*(HEJ::N_C*HEJ::N_C - 1)*4);
 
 }
 
 // Calculates the square of the current contractions for qQ->qenuQ scattering
 // p1: quark (with W emittance)
 // p2: Quark
 double jMWqQbar (HLV p1out, HLV pe, HLV pnu,HLV p1in, HLV p2out, HLV p2in){
   current mj1m,mj2p,mj2m;
   HLV q1=p1in-p1out-pe-pnu;
   HLV q2=-(p2in-p2out);
 
   jW(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
   jio(p2in,true,p2out,true,mj2p);
   jio(p2in,false,p2out,false,mj2m);
 
   COM Mmp=cdot(mj1m,mj2p);
 
   // mj1m.mj2m
   COM Mmm=cdot(mj1m,mj2m);
 
   // sum of spinor strings ||^2
   double a2Mmp=abs2(Mmp);
   double a2Mmm=abs2(Mmm);
 
   double WPropfact = WProp(pe, pnu);
 
   // Division by colour and Helicity average (Nc2-1)(4)
   // Multiply by Cf^2
   return HEJ::C_F*HEJ::C_F*WPropfact*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2()*(HEJ::N_C*HEJ::N_C - 1)*4);
 
 }
 
 // Calculates the square of the current contractions for qQ->qenuQ scattering
 // p1: quark (with W emittance)
 // p2: Quark
 double jMWqbarQ (HLV p1out, HLV pe, HLV pnu,HLV p1in, HLV p2out, HLV p2in){
   current mj1m,mj2p,mj2m;
   HLV q1=p1in-p1out-pe-pnu;
   HLV q2=-(p2in-p2out);
 
   jWbar(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
   joi(p2out,true,p2in,true,mj2p);
   joi(p2out,false,p2in,false,mj2m);
 
   COM Mmp=cdot(mj1m,mj2p);
 
   // mj1m.mj2m
   COM Mmm=cdot(mj1m,mj2m);
 
   // sum of spinor strings ||^2
   double a2Mmp=abs2(Mmp);
   double a2Mmm=abs2(Mmm);
 
   double WPropfact = WProp(pe, pnu);
 
   // Division by colour and Helicity average (Nc2-1)(4)
   // Multiply by Cf^2
   return HEJ::C_F*HEJ::C_F*WPropfact*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2()*(HEJ::N_C*HEJ::N_C - 1)*4);
 
 }
 
 // Calculates the square of the current contractions for qQ->qenuQ scattering
 // p1: quark (with W emittance)
 // p2: Quark
 double jMWqbarQbar (HLV p1out, HLV pe, HLV pnu,HLV p1in, HLV p2out, HLV p2in){
   current mj1m,mj2p,mj2m;
   HLV q1=p1in-p1out-pe-pnu;
   HLV q2=-(p2in-p2out);
 
   jWbar(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
   jio(p2in,true,p2out,true,mj2p);
   jio(p2in,false,p2out,false,mj2m);
 
   COM Mmp=cdot(mj1m,mj2p);
 
   // mj1m.mj2m
   COM Mmm=cdot(mj1m,mj2m);
 
   // sum of spinor strings ||^2
   double a2Mmp=abs2(Mmp);
   double a2Mmm=abs2(Mmm);
 
   double WPropfact = WProp(pe, pnu);
 
   // Division by colour and Helicity average (Nc2-1)(4)
   // Multiply by Cf^2
   return HEJ::C_F*HEJ::C_F*WPropfact*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2()*(HEJ::N_C*HEJ::N_C - 1)*4);
 
 }
 
 // Calculates the square of the current contractions for qg->qenug scattering
 // p1: quark
 // p2: gluon
 double jMWqg (HLV p1out, HLV pe, HLV pnu,HLV p1in, HLV p2out, HLV p2in){
   HLV q1=p1in-p1out-pe-pnu;
   HLV q2=-(p2in-p2out);
   current mj1m,mj2p,mj2m;
 
   jW(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
 
   joi(p2out,true,p2in,true,mj2p);
   joi(p2out,false,p2in,false,mj2m);
 
   // mj1m.mj2p
   COM Mmp=cdot(mj1m,mj2p);
 
   // mj1m.mj2m
   COM Mmm=cdot(mj1m,mj2m);
 
   const double K = K_g(p2out, p2in);
 
   // sum of spinor strings ||^2
   double a2Mmp=abs2(Mmp);
   double a2Mmm=abs2(Mmm);
   double sst = K/HEJ::C_A*(a2Mmp+a2Mmm);
 
   double WPropfact = WProp(pe, pnu);
 
   // Division by colour and Helicity average (Nc2-1)(4)
   // Multiply by Cf*Ca=4
   return HEJ::C_F*HEJ::C_A*WPropfact*sst/(q1.m2()*q2.m2()*(HEJ::N_C*HEJ::N_C - 1)*4);
 
 }
 
 // Calculates the square of the current contractions for qg->qenug scattering
 // p1: quark
 // p2: gluon
 double jMWqbarg (HLV p1out, HLV pe, HLV pnu,HLV p1in, HLV p2out, HLV p2in){
   HLV q1=p1in-p1out-pe-pnu;
   HLV q2=-(p2in-p2out);
   current mj1m,mj2p,mj2m;
 
   jWbar(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
 
   joi(p2out,true,p2in,true,mj2p);
   joi(p2out,false,p2in,false,mj2m);
 
   // mj1m.mj2p
   COM Mmp=cdot(mj1m,mj2p);
 
   // mj1m.mj2m
   COM Mmm=cdot(mj1m,mj2m);
 
   const double K = K_g(p2out, p2in);
 
   // sum of spinor strings ||^2
   double a2Mmp=abs2(Mmp);
   double a2Mmm=abs2(Mmm);
   double sst = K/HEJ::C_A*(a2Mmp+a2Mmm);
 
   double WPropfact = WProp(pe, pnu);
 
   // Division by colour and Helicity average (Nc2-1)(4)
   // Multiply by Cf*Ca=4
   return HEJ::C_F*HEJ::C_A*WPropfact*sst/(q1.m2()*q2.m2()*(HEJ::N_C*HEJ::N_C - 1)*4);
 
 }
 
 /**
  * @brief W+Jets Unordered Contributions, function to handle all incoming types.
+ * @param p1out             Outgoing Particle 1. (W emission)
+ * @param pe                Outgoing election momenta
+ * @param pnu               Outgoing neutrino momenta
+ * @param p1in              Incoming Particle 1. (W emission)
+ * @param p2out             Outgoing Particle 2 (Quark, unordered emission this side.)
+ * @param p2in              Incoming Particle 2 (Quark, unordered emission this side.)
+ * @param pg                Unordered Gluon momenta
+ * @param aqlineb           Bool. Is Backwards quark line an anti-quark line?
+ * @param aqlinef           Bool. Is Forwards quark line an anti-quark line?
  *
  * Calculates j_W ^\mu    j_{uno}_\mu. Ie, unordered with W emission opposite side.
- * All possible incoming particles possible.
+ * Handles all possible incoming states.
  */
-
 double jWjuno (HLV p1out, HLV pe, HLV pnu,HLV p1in, HLV p2out,
                HLV p2in, HLV pg, bool aqlineb, bool aqlinef){
   CCurrent mj1m,mj2p,mj2m, jgbm,jgbp,j2gm,j2gp;
   HLV q1=p1in-p1out-pe-pnu;
   HLV q2=-(p2in-p2out-pg);
   HLV q3=-(p2in-p2out);
 
   if(aqlineb) mj1m=jWbar(p1out,false,pe,false,pnu,false,p1in,false);
   else        mj1m=jW(p1out,false,pe,false,pnu,false,p1in,false);
 
   if(aqlinef){
     mj2p=jio(p2in,true,p2out,true);
     mj2m=jio(p2in,false,p2out,false);
     j2gp=joo(pg,true,p2out,true);
     j2gm=joo(pg,false,p2out,false);
     jgbp=jio(p2in,true,pg,true);
     jgbm=jio(p2in,false,pg,false);
   } else{
     mj2p=joi(p2out,true,p2in,true);
     mj2m=joi(p2out,false,p2in,false);
     j2gp=joo(p2out,true,pg,true);
     j2gm=joo(p2out,false,pg,false);
     jgbp=joi(pg,true,p2in,true);
     jgbm=joi(pg,false,p2in,false);
   }
 
   // Dot products of these which occur again and again
   COM MWmp=mj1m.dot(mj2p);  // And now for the Higgs ones
   COM MWmm=mj1m.dot(mj2m);
 
   CCurrent qsum(q2+q3);
 
   CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
   CCurrent p2o(p2out);
   CCurrent p2i(p2in);
 
   Lmm=( (-1.)*qsum*(MWmm) + (-2.*mj1m.dot(pg))*mj2m + 2.*mj2m.dot(pg)*mj1m
         + ( p1o/pg.dot(p1out) + p1i/pg.dot(p1in) )*( q2.m2()*MWmm/2. ) )/q3.m2();
   Lmp=( (-1.)*qsum*(MWmp) + (-2.*mj1m.dot(pg))*mj2p + 2.*mj2p.dot(pg)*mj1m
         + ( p1o/pg.dot(p1out) + p1i/pg.dot(p1in) )*( q2.m2()*MWmp/2. ) )/q3.m2();
 
   U1mm=(jgbm.dot(mj1m)*j2gm+2.*p2o*MWmm)/(p2out+pg).m2();
   U1mp=(jgbp.dot(mj1m)*j2gp+2.*p2o*MWmp)/(p2out+pg).m2();
 
   U2mm=((-1.)*j2gm.dot(mj1m)*jgbm+2.*p2i*MWmm)/(p2in-pg).m2();
   U2mp=((-1.)*j2gp.dot(mj1m)*jgbp+2.*p2i*MWmp)/(p2in-pg).m2();
 
   double amm,amp;
 
   amm=HEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mm+U2mm);
   amp=HEJ::C_F*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mp+U2mp);
 
   double ampsq=-(amm+amp);
   //Divide by WProp
   ampsq*=WProp(pe, pnu);
 
   return ampsq/((16)*(q2.m2()*q1.m2()));
 }
 
 /** \brief Backwards unordered, W opposite side. qq incoming
   * \see jWjuno */
-double junobMWqQg (HLV p1out, HLV pe, HLV pnu,HLV p1in,
-                   HLV p2out, HLV p2in, HLV pg){
+double junobMWqQg(HLV pg, HLV p1out, HLV p1in, HLV p2out,
+                   HLV pe, HLV pnu, HLV p2in){
   return jWjuno(p1out, pe, pnu, p1in, p2out, p2in, pg, false, false);
 }
 
 /** \brief Backwards unordered, W opposite side. qqbar incoming
   * \see jWjuno */
-double junobMWqQbarg (HLV p1out, HLV pe, HLV pnu,HLV p1in,
-                      HLV p2out, HLV p2in, HLV pg){
+double junobMWqQbarg(HLV pg, HLV p1out, HLV p1in, HLV p2out,
+                   HLV pe, HLV pnu, HLV p2in){
   return jWjuno(p1out, pe, pnu, p1in, p2out, p2in, pg, false, true);
 }
 
 /** \brief Backwards unordered, W opposite side. qbarq incoming
   * \see jWjuno */
-double junobMWqbarQg (HLV p1out, HLV pe, HLV pnu,HLV p1in,
-                      HLV p2out, HLV p2in, HLV pg){
+double junobMWqbarQg(HLV pg, HLV p1out, HLV p1in, HLV p2out,
+                   HLV pe, HLV pnu, HLV p2in){
   return jWjuno(p1out, pe, pnu, p1in, p2out, p2in, pg, true, false);
 }
 
 /** \brief Backwards unordered, W opposite side. qbarqbar incoming
   * \see jWjuno */
-double junobMWqbarQbarg (HLV p1out, HLV pe, HLV pnu,HLV p1in,
-                         HLV p2out, HLV p2in, HLV pg){
+double junobMWqbarQbarg(HLV pg, HLV p1out, HLV p1in, HLV p2out,
+                   HLV pe, HLV pnu, HLV p2in){
   return jWjuno(p1out, pe, pnu, p1in, p2out, p2in, pg, true, true);
 }
 
 /** \brief Forwards unordered, W opposite side. qq incoming
   * \see jWjuno */
-double junofMWgqQ (HLV pg,HLV p1out,HLV p1in, HLV p2out,
+double junofMWgqQ(HLV pg, HLV p1out, HLV p1in, HLV p2out,
                    HLV pe, HLV pnu, HLV p2in){
   return jWjuno(p2out, pe, pnu, p2in, p1out, p1in, pg, false, false);
 }
 
 /** \brief Forwards unordered, W opposite side. qbarq incoming
   * \see jWjuno */
-double junofMWgqQbar (HLV pg,HLV p1out,HLV p1in, HLV p2out,
+double junofMWgqQbar(HLV pg, HLV p1out, HLV p1in, HLV p2out,
                       HLV pe, HLV pnu, HLV p2in){
   return jWjuno(p2out, pe, pnu, p2in, p1out, p1in, pg, true, false);
 }
 
 /** \brief Forwards unordered, W opposite side. qqbar incoming
   * \see jWjuno */
-double junofMWgqbarQ (HLV pg,HLV p1out,HLV p1in, HLV p2out,
+double junofMWgqbarQ(HLV pg, HLV p1out, HLV p1in, HLV p2out,
                       HLV pe, HLV pnu, HLV p2in){
   return jWjuno(p2out, pe, pnu, p2in, p1out, p1in, pg, false, true);
 }
 
 /** \brief Forwards unordered, W opposite side. qbarqbar incoming
   * \see jWjuno */
-double junofMWgqbarQbar (HLV pg,HLV p1out,HLV p1in, HLV p2out,
+double junofMWgqbarQbar(HLV pg, HLV p1out, HLV p1in, HLV p2out,
                          HLV pe, HLV pnu, HLV p2in){
   return jWjuno(p2out, pe, pnu, p2in, p1out, p1in, pg, true, true);
 }
 
 ///TODO make this comment more visible
 /// Naming scheme jM2-Wuno-g-({q/qbar}{Q/Qbar/g})
 ///TODO Spit naming for more complicated functions?
 /// e.g. jM2WqqtoqQQq -> jM2_Wqq_to_qQQq
 double jM2WunogqQ(HLV pg, HLV p1out,HLV plbar,HLV pl, HLV p1in,
                   HLV p2out, HLV p2in
 ){
   //COM temp;
   double ME2mpp=0.;
   double ME2mpm=0.;
   double ME2mmp=0.;
   double ME2mmm=0.;
   double ME2;
 
   ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true);
   ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false);
   ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true);
   ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false);
 
   //Helicity sum
   ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
 
   return ME2;
 
 }
 
 //same as function above but actually obtaining the antiquark line by crossing
 //symmetry, where p1out and p1in are expected to be negative.
 //should give same result as jM2WunogqbarQ below (verified)
 double jM2WunogqQ_crossqQ(HLV pg, HLV p1out,HLV plbar,HLV pl, HLV p1in,
                           HLV p2out, HLV p2in
 ){
   //COM temp;
   double ME2mpp=0.;
   double ME2mpm=0.;
   double ME2mmp=0.;
   double ME2mmm=0.;
   double ME2;
 
   ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true);
   ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false);
   ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true);
   ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false);
 
   //Helicity sum
   ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
 
   return ME2;
 
 }
 
 double jM2WunogqQbar(HLV pg, HLV p1out,HLV plbar,HLV pl, HLV p1in,
                      HLV p2out, HLV p2in
 ){
   //COM temp;
   double ME2mpp=0.;
   double ME2mpm=0.;
   double ME2mmp=0.;
   double ME2mmm=0.;
   double ME2;
 
   ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true);
   ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false);
   ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true);
   ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false);
 
   //Helicity sum
   ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
 
   return ME2;
 
 }
 
 double jM2Wunogqg(HLV pg, HLV p1out,HLV plbar,HLV pl, HLV p1in,
                   HLV p2out, HLV p2in
 ){
   //COM temp;
   double ME2mpp=0.;
   double ME2mpm=0.;
   double ME2mmp=0.;
   double ME2mmm=0.;
   double ME2;
 
   ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true);
   ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false);
   ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true);
   ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false);
 
   //Helicity sum
   ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
 
   double ratio; // p2-/pb- in the notes
   if (p2in.pz()>0.) // if the gluon is the positive
     ratio=p2out.plus()/p2in.plus();
   else // the gluon is the negative
     ratio=p2out.minus()/p2in.minus();
 
   double cam = ( (HEJ::C_A - 1/HEJ::C_A)*(ratio + 1./ratio)/2. + 1/HEJ::C_A)/HEJ::C_F;
   ME2*=cam;
 
   return ME2;
 
 }
 
 double jM2WunogqbarQ(HLV pg, HLV p1out,HLV plbar,HLV pl, HLV p1in,
                      HLV p2out, HLV p2in
 ){
   //COM temp;
   double ME2mpp=0.;
   double ME2mpm=0.;
   double ME2mmp=0.;
   double ME2mmm=0.;
   double ME2;
 
   ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,true);
   ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,false);
   ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,true);
   ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,false);
 
   //Helicity sum
   ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
 
   return ME2;
 
 }
 
 double jM2WunogqbarQbar(HLV pg, HLV p1out,HLV plbar,HLV pl, HLV p1in,
                         HLV p2out, HLV p2in
 ){
   //COM temp;
   double ME2mpp=0.;
   double ME2mpm=0.;
   double ME2mmp=0.;
   double ME2mmm=0.;
   double ME2;
 
   ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,true);
   ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,false);
   ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,true);
   ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,false);
 
   //Helicity sum
   ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
 
   return ME2;
 
 }
 
 double jM2Wunogqbarg(HLV pg, HLV p1out,HLV plbar,HLV pl, HLV p1in,
                      HLV p2out, HLV p2in
 ){
   //COM temp;
   double ME2mpp=0.;
   double ME2mpm=0.;
   double ME2mmp=0.;
   double ME2mmm=0.;
   double ME2;
 
   ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,true);
   ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,false);
   ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,true);
   ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,false);
 
   //Helicity sum
   ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
 
   double ratio; // p2-/pb- in the notes
   if (p2in.pz()>0.) // if the gluon is the positive
     ratio=p2out.plus()/p2in.plus();
   else // the gluon is the negative
     ratio=p2out.minus()/p2in.minus();
 
   double cam = ( (HEJ::C_A - 1/HEJ::C_A)*(ratio + 1./ratio)/2. + 1/HEJ::C_A)/HEJ::C_F;
   ME2*=cam;
 
   return ME2;
 
 }
 
 // W+Jets qqxExtremal
 // W+Jets qqxExtremal Currents - wqq emission
 double jM2WgQtoqbarqQ(HLV pgin, HLV pqout,HLV plbar,HLV pl,
                       HLV pqbarout, HLV p2out, HLV p2in
 ){
   //COM temp;
   double ME2mpp=0.;
   double ME2mpm=0.;
   double ME2mmp=0.;
   double ME2mmm=0.;
   double ME2;
 
   ME2mpp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,true);
   ME2mpm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,false);
   ME2mmp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,true);
   ME2mmm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,false);
 
   //Helicity sum
   ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
 
   //Correct colour averaging
   ME2*=(3.0/8.0);
 
   return ME2;
 
 }
 
 double jM2WgQtoqqbarQ(HLV pgin, HLV pqbarout,HLV plbar,HLV pl,
                       HLV pqout, HLV p2out, HLV p2in
 ){
 
   //COM temp;
   double ME2mpp=0.;
   double ME2mpm=0.;
   double ME2mmp=0.;
   double ME2mmm=0.;
   double ME2;
 
   ME2mpp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,true);
   ME2mpm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,false);
   ME2mmp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,true);
   ME2mmm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,false);
 
   //Helicity sum
   ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
 
   //Correct colour averaging
   ME2*=(3.0/8.0);
 
   return ME2;
 
 }
 
 double jM2Wggtoqbarqg(HLV pgin, HLV pqout,HLV plbar,HLV pl,
                       HLV pqbarout, HLV p2out, HLV p2in
 ){
   double ME2mpp=0.;
   double ME2mpm=0.;
   double ME2mmp=0.;
   double ME2mmm=0.;
   double ME2;
 
   ME2mpp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,true);
   ME2mpm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,false);
   ME2mmp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,true);
   ME2mmm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,false);
 
   //Helicity sum
   ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
 
   double ratio; // p2-/pb- in the notes
   if (p2in.pz()>0.) // if the gluon is the positive
     ratio=p2out.plus()/p2in.plus();
   else // the gluon is the negative
     ratio=p2out.minus()/p2in.minus();
 
   double cam = ( (HEJ::C_A - 1/HEJ::C_A)*(ratio + 1./ratio)/2. + 1/HEJ::C_A)/HEJ::C_F;
   ME2*=cam;
 
   //Correct colour averaging
   ME2*=(3.0/8.0);
 
   return ME2;
 }
 
 double jM2Wggtoqqbarg(HLV pgin, HLV pqbarout, HLV plbar, HLV pl,
                       HLV pqout, HLV p2out, HLV p2in
 ){
 
   //COM temp;
   double ME2mpp=0.;
   double ME2mpm=0.;
   double ME2mmp=0.;
   double ME2mmm=0.;
   double ME2;
 
   ME2mpp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,true);
   ME2mpm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,false);
   ME2mmp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,true);
   ME2mmm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,false);
 
   //Helicity sum
   ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
 
   double ratio; // p2-/pb- in the notes
   if (p2in.pz()>0.) // if the gluon is the positive
     ratio=p2out.plus()/p2in.plus();
   else // the gluon is the negative
     ratio=p2out.minus()/p2in.minus();
 
   double cam = ( (HEJ::C_A - 1/HEJ::C_A)*(ratio + 1./ratio)/2. + 1/HEJ::C_A)/HEJ::C_F;
   ME2*=cam;
 
   //Correct colour averaging
   ME2*=(3.0/8.0);
 
   return ME2;
 }
 
 namespace {
 //Function to calculate Term 1 in Equation 3.23 in James Cockburn's Thesis.
   Tensor<1> qggm1(HLV pb, HLV p2, HLV p3, bool hel2, bool helg, HLV refmom){
 
     double t1 = (p3-pb)*(p3-pb);
     Tensor<1> Tp3 = Construct1Tensor((p3));//p3
     Tensor<1> Tpb = Construct1Tensor((pb));//pb
     // Gauge choice in polarisation tensor. (see JC's Thesis)
     Tensor<1> epsg = eps(pb, refmom, helg);
     Tensor<3> qqCurBlank = T3Current(p2,hel2,p3,hel2);
     Tensor<2> qqCur = qqCurBlank.contract(Tp3-Tpb,2);
     Tensor<1> gqqCur = qqCur.contract(epsg,2)/t1;
 
     return gqqCur*(-1);
   }
 
 //Function to calculate Term 2 in Equation 3.23 in James Cockburn's Thesis.
   Tensor<1> qggm2(HLV pb, HLV p2, HLV p3, bool hel2, bool helg, HLV refmom){
 
     double t1 = (p2-pb)*(p2-pb);
     Tensor<1> Tp2 = Construct1Tensor((p2));//p2
     Tensor<1> Tpb = Construct1Tensor((pb));//pb
     // Gauge choice in polarisation tensor. (see JC's Thesis)
     Tensor<1> epsg = eps(pb,refmom, helg);
     Tensor<3> qqCurBlank = T3Current(p2,hel2,p3,hel2);
     Tensor<2> qqCur = qqCurBlank.contract(Tp2-Tpb,2);
     Tensor<1> gqqCur = qqCur.contract(epsg,1)/t1;
 
     return gqqCur;
   }
 
 //Function to calculate Term 3 in Equation 3.23 in James Cockburn's Thesis.
   Tensor<1> qggm3(HLV pb, HLV p2, HLV p3, bool hel2, bool helg, HLV refmom){
 
     double s23 = (p2+p3)*(p2+p3);
     Tensor<1> Tp2 = Construct1Tensor((p2));//p2
     Tensor<1> Tp3 = Construct1Tensor((p3));//p3
     Tensor<1> Tpb = Construct1Tensor((pb));//pb
     // Gauge choice in polarisation tensor. (see JC's Thesis)
     Tensor<1> epsg = eps(pb, refmom, helg);
     Tensor<2> g=Metric();
     Tensor<3> qqCurBlank1 = outer(Tp2+Tp3, g)/s23;
     Tensor<3> qqCurBlank2 = outer(Tpb, g)/s23;
     Tensor<1> Cur23 = TCurrent(p2,hel2, p3,hel2);
 
     Tensor<2> qqCur1 = qqCurBlank1.contract(Cur23,3);
     Tensor<2> qqCur2 = qqCurBlank2.contract(Cur23,3);
     Tensor<2> qqCur3 = qqCurBlank2.contract(Cur23,1);
 
     Tensor<1> gqqCur = (qqCur1.contract(epsg,1)
                           - qqCur2.contract(epsg,2)
                           + qqCur3.contract(epsg,1))*2*COM(0,1);
     return gqqCur;
   }
 }
 
 // no wqq emission
 double jM2WgqtoQQqW(HLV pa, HLV pb, HLV p1,  HLV p2, HLV p3,HLV plbar, HLV pl,
                     bool aqlinepa
 ){
 
   static bool is_sigma_index_set(false);
   if(!is_sigma_index_set){
     if(init_sigma_index())
       is_sigma_index_set = true;
     else
       return 0.;}
 
   // 2 independent helicity choices (complex conjugation related).
   Tensor<1> TMmmm1 = qggm1(pb,p2,p3,false,false, pa);
   Tensor<1> TMmmm2 = qggm2(pb,p2,p3,false,false, pa);
   Tensor<1> TMmmm3 = qggm3(pb,p2,p3,false,false, pa);
   Tensor<1> TMpmm1 = qggm1(pb,p2,p3,false,true, pa);
   Tensor<1> TMpmm2 = qggm2(pb,p2,p3,false,true, pa);
   Tensor<1> TMpmm3 = qggm3(pb,p2,p3,false,true, pa);
 
   // Build the external quark line W Emmision
   Tensor<1> cur1a = jW(pa,p1,plbar,pl, aqlinepa);
 
   //Contract with the qqxCurrent.
   COM Mmmm1 = TMmmm1.contract(cur1a,1);
   COM Mmmm2 = TMmmm2.contract(cur1a,1);
   COM Mmmm3 = TMmmm3.contract(cur1a,1);
   COM Mpmm1 = TMpmm1.contract(cur1a,1);
   COM Mpmm2 = TMpmm2.contract(cur1a,1);
   COM Mpmm3 = TMpmm3.contract(cur1a,1);
 
   //Colour factors:
   COM cm1m1,cm2m2,cm3m3,cm1m2,cm1m3,cm2m3;
   cm1m1=8./3.;
   cm2m2=8./3.;
   cm3m3=6.;
   cm1m2 =-1./3.;
   cm1m3 = -3.*COM(0.,1.);
   cm2m3 = 3.*COM(0.,1.);
 
   //Sqaure and sum for each helicity config:
   double Mmmm = real( cm1m1*pow(abs(Mmmm1),2) + cm2m2*pow(abs(Mmmm2),2)
                     + cm3m3*pow(abs(Mmmm3),2) + 2.*real(cm1m2*Mmmm1*conj(Mmmm2))
                     + 2.*real(cm1m3*Mmmm1*conj(Mmmm3))
                     + 2.*real(cm2m3*Mmmm2*conj(Mmmm3)) );
   double Mpmm = real( cm1m1*pow(abs(Mpmm1),2) + cm2m2*pow(abs(Mpmm2),2)
                     + cm3m3*pow(abs(Mpmm3),2) + 2.*real(cm1m2*Mpmm1*conj(Mpmm2))
                     + 2.*real(cm1m3*Mpmm1*conj(Mpmm3))
                     + 2.*real(cm2m3*Mpmm2*conj(Mpmm3)) );
 
   // Divide by WProp
   double WPropfact = WProp(plbar, pl);
 
   return (2*WPropfact*(Mmmm+Mpmm)/24./4.)/(pa-p1-pl-plbar).m2()/(p2+p3-pb).m2();
 }
 
 // W+Jets qqxCentral
 double jM2WqqtoqQQq(HLV pa, HLV pb,HLV pl, HLV plbar, std::vector<HLV> partons,
                     bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove
 ){
 
   static bool is_sigma_index_set(false);
   if(!is_sigma_index_set){
     if(init_sigma_index())
       is_sigma_index_set = true;
     else
       return 0.;}
 
   HLV pq, pqbar, p1, p4;
   if (qqxmarker){
     pqbar = partons[nabove+1];
     pq = partons[nabove+2];}
   else{
     pq = partons[nabove+1];
     pqbar = partons[nabove+2];}
 
   p1 = partons.front();
   p4 = partons.back();
 
   Tensor<1> T1am, T4bm, T1ap, T4bp;
   if(!(aqlinepa)){
     T1ap = TCurrent(p1, true, pa, true);
     T1am = TCurrent(p1, false, pa, false);}
   else if(aqlinepa){
     T1ap = TCurrent(pa, true, p1, true);
     T1am = TCurrent(pa, false, p1, false);}
   if(!(aqlinepb)){
     T4bp = TCurrent(p4, true, pb, true);
     T4bm = TCurrent(p4, false, pb, false);}
   else if(aqlinepb){
     T4bp = TCurrent(pb, true, p4, true);
     T4bm = TCurrent(pb, false, p4, false);}
 
   // Calculate the 3 separate contributions to the effective vertex
   Tensor<2> Xunc = MUncrossW(pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove);
   Tensor<2> Xcro = MCrossW(  pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove);
   Tensor<2> Xsym = MSymW(    pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove);
 
   // 4 Different Helicity Choices (Differs from Pure Jet Case, where there is
   // also the choice in qqbar helicity.
   // (- - hel choice)
   COM M_mmUnc = (((Xunc).contract(T1am,1)).contract(T4bm,1));
   COM M_mmCro = (((Xcro).contract(T1am,1)).contract(T4bm,1));
   COM M_mmSym = (((Xsym).contract(T1am,1)).contract(T4bm,1));
   // (- + hel choice)
   COM M_mpUnc = (((Xunc).contract(T1am,1)).contract(T4bp,1));
   COM M_mpCro = (((Xcro).contract(T1am,1)).contract(T4bp,1));
   COM M_mpSym = (((Xsym).contract(T1am,1)).contract(T4bp,1));
   // (+ - hel choice)
   COM M_pmUnc = (((Xunc).contract(T1ap,1)).contract(T4bm,1));
   COM M_pmCro = (((Xcro).contract(T1ap,1)).contract(T4bm,1));
   COM M_pmSym = (((Xsym).contract(T1ap,1)).contract(T4bm,1));
   // (+ + hel choice)
   COM M_ppUnc = (((Xunc).contract(T1ap,1)).contract(T4bp,1));
   COM M_ppCro = (((Xcro).contract(T1ap,1)).contract(T4bp,1));
   COM M_ppSym = (((Xsym).contract(T1ap,1)).contract(T4bp,1));
 
   //Colour factors:
   COM cmsms,cmumu,cmcmc,cmsmu,cmsmc,cmumc;
   cmsms=3.;
   cmumu=4./3.;
   cmcmc=4./3.;
   cmsmu =3./2.*COM(0.,1.);
   cmsmc = -3./2.*COM(0.,1.);
   cmumc = -1./6.;
 
   // Work Out Interference in each case of helicity:
   double amp_mm = real(cmsms*pow(abs(M_mmSym),2)
              +cmumu*pow(abs(M_mmUnc),2)
              +cmcmc*pow(abs(M_mmCro),2)
              +2.*real(cmsmu*M_mmSym*conj(M_mmUnc))
              +2.*real(cmsmc*M_mmSym*conj(M_mmCro))
              +2.*real(cmumc*M_mmUnc*conj(M_mmCro)));
 
   double amp_mp = real(cmsms*pow(abs(M_mpSym),2)
              +cmumu*pow(abs(M_mpUnc),2)
              +cmcmc*pow(abs(M_mpCro),2)
              +2.*real(cmsmu*M_mpSym*conj(M_mpUnc))
              +2.*real(cmsmc*M_mpSym*conj(M_mpCro))
              +2.*real(cmumc*M_mpUnc*conj(M_mpCro)));
 
   double amp_pm = real(cmsms*pow(abs(M_pmSym),2)
              +cmumu*pow(abs(M_pmUnc),2)
              +cmcmc*pow(abs(M_pmCro),2)
              +2.*real(cmsmu*M_pmSym*conj(M_pmUnc))
              +2.*real(cmsmc*M_pmSym*conj(M_pmCro))
              +2.*real(cmumc*M_pmUnc*conj(M_pmCro)));
 
   double amp_pp = real(cmsms*pow(abs(M_ppSym),2)
              +cmumu*pow(abs(M_ppUnc),2)
              +cmcmc*pow(abs(M_ppCro),2)
              +2.*real(cmsmu*M_ppSym*conj(M_ppUnc))
              +2.*real(cmsmc*M_ppSym*conj(M_ppCro))
              +2.*real(cmumc*M_ppUnc*conj(M_ppCro)));
 
   double amp=((amp_mm+amp_mp+amp_pm+amp_pp)/(9.*4.));
 
   HLV q1,q3;
   q1=pa;
   for(int i=0;i<nabove+1;i++){
     q1-=partons.at(i);
   }
   q3 = q1 - pq - pqbar - pl - plbar;
 
   double t1 = (q1).m2();
   double t3 = (q3).m2();
 
   //Divide by t-channels
   amp/=(t1*t1*t3*t3);
 
   //Divide by WProp
   double WPropfact = WProp(plbar, pl);
   amp*=WPropfact;
 
   return amp;
 }
 
 // no wqq emission
 double jM2WqqtoqQQqW(HLV pa, HLV pb,HLV pl,HLV plbar, std::vector<HLV> partons,
                       bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove,
                       int nbelow, bool forwards
 ){
 
   static bool is_sigma_index_set(false);
   if(!is_sigma_index_set){
     if(init_sigma_index())
       is_sigma_index_set = true;
     else
       return 0.;
   }
 
   if (!forwards){ //If Emission from Leg a instead, flip process.
     HLV dummymom = pa;
     bool dummybool= aqlinepa;
     int dummyint = nabove;
     pa = pb;
     pb = dummymom;
     std::reverse(partons.begin(),partons.end());
     qqxmarker = !(qqxmarker);
     aqlinepa = aqlinepb;
     aqlinepb = dummybool;
     nabove = nbelow;
     nbelow = dummyint;
   }
 
   HLV pq, pqbar, p1,p4;
   if (qqxmarker){
     pqbar = partons[nabove+1];
     pq = partons[nabove+2];}
   else{
     pq = partons[nabove+1];
     pqbar = partons[nabove+2];}
 
   p1 = partons.front();
   p4 = partons.back();
 
   Tensor<1> T1am(0.), T1ap(0.);
   if(!(aqlinepa)){
     T1ap = TCurrent(p1, true, pa, true);
     T1am = TCurrent(p1, false, pa, false);}
   else if(aqlinepa){
     T1ap = TCurrent(pa, true, p1, true);
     T1am = TCurrent(pa, false, p1, false);}
 
   Tensor <1> T4bm = jW(pb, p4, plbar, pl, aqlinepb);
 
   // Calculate the 3 separate contributions to the effective vertex
   Tensor<2> Xunc_m = MUncross(pa, pq, pqbar,partons, false, nabove);
   Tensor<2> Xcro_m = MCross(  pa, pq, pqbar,partons, false, nabove);
   Tensor<2> Xsym_m = MSym(    pa, p1, pb, p4, pq, pqbar, partons, false, nabove);
 
   Tensor<2> Xunc_p = MUncross(pa, pq, pqbar,partons, true, nabove);
   Tensor<2> Xcro_p = MCross(  pa, pq, pqbar,partons, true, nabove);
   Tensor<2> Xsym_p = MSym(    pa, p1, pb, p4, pq, pqbar, partons, true, nabove);
 
   // (- - hel choice)
   COM M_mmUnc = (((Xunc_m).contract(T1am,1)).contract(T4bm,1));
   COM M_mmCro = (((Xcro_m).contract(T1am,1)).contract(T4bm,1));
   COM M_mmSym = (((Xsym_m).contract(T1am,1)).contract(T4bm,1));
   // (- + hel choice)
   COM M_mpUnc = (((Xunc_p).contract(T1am,1)).contract(T4bm,1));
   COM M_mpCro = (((Xcro_p).contract(T1am,1)).contract(T4bm,1));
   COM M_mpSym = (((Xsym_p).contract(T1am,1)).contract(T4bm,1));
   // (+ - hel choice)
   COM M_pmUnc = (((Xunc_m).contract(T1ap,1)).contract(T4bm,1));
   COM M_pmCro = (((Xcro_m).contract(T1ap,1)).contract(T4bm,1));
   COM M_pmSym = (((Xsym_m).contract(T1ap,1)).contract(T4bm,1));
   // (+ + hel choice)
   COM M_ppUnc = (((Xunc_p).contract(T1ap,1)).contract(T4bm,1));
   COM M_ppCro = (((Xcro_p).contract(T1ap,1)).contract(T4bm,1));
   COM M_ppSym = (((Xsym_p).contract(T1ap,1)).contract(T4bm,1));
 
   //Colour factors:
   COM cmsms,cmumu,cmcmc,cmsmu,cmsmc,cmumc;
   cmsms=3.;
   cmumu=4./3.;
   cmcmc=4./3.;
   cmsmu =3./2.*COM(0.,1.);
   cmsmc = -3./2.*COM(0.,1.);
   cmumc = -1./6.;
 
   // Work Out Interference in each case of helicity:
   double amp_mm = real(cmsms*pow(abs(M_mmSym),2)
              +cmumu*pow(abs(M_mmUnc),2)
              +cmcmc*pow(abs(M_mmCro),2)
              +2.*real(cmsmu*M_mmSym*conj(M_mmUnc))
              +2.*real(cmsmc*M_mmSym*conj(M_mmCro))
              +2.*real(cmumc*M_mmUnc*conj(M_mmCro)));
 
   double amp_mp = real(cmsms*pow(abs(M_mpSym),2)
              +cmumu*pow(abs(M_mpUnc),2)
              +cmcmc*pow(abs(M_mpCro),2)
              +2.*real(cmsmu*M_mpSym*conj(M_mpUnc))
              +2.*real(cmsmc*M_mpSym*conj(M_mpCro))
              +2.*real(cmumc*M_mpUnc*conj(M_mpCro)));
 
   double amp_pm = real(cmsms*pow(abs(M_pmSym),2)
              +cmumu*pow(abs(M_pmUnc),2)
              +cmcmc*pow(abs(M_pmCro),2)
              +2.*real(cmsmu*M_pmSym*conj(M_pmUnc))
              +2.*real(cmsmc*M_pmSym*conj(M_pmCro))
              +2.*real(cmumc*M_pmUnc*conj(M_pmCro)));
 
   double amp_pp = real(cmsms*pow(abs(M_ppSym),2)
              +cmumu*pow(abs(M_ppUnc),2)
              +cmcmc*pow(abs(M_ppCro),2)
              +2.*real(cmsmu*M_ppSym*conj(M_ppUnc))
              +2.*real(cmsmc*M_ppSym*conj(M_ppCro))
              +2.*real(cmumc*M_ppUnc*conj(M_ppCro)));
 
   double amp=((amp_mm+amp_mp+amp_pm+amp_pp)/(9.*4.));
 
   HLV q1,q3;
   q1=pa;
   for(int i=0;i<nabove+1;i++){
     q1-=partons.at(i);
   }
   q3 = q1 - pq - pqbar;
 
   double t1 = (q1).m2();
   double t3 = (q3).m2();
 
   //Divide by t-channels
   amp/=(t1*t1*t3*t3);
 
   //Divide by WProp
   double WPropfact = WProp(plbar, pl);
   amp*=WPropfact;
 
   return amp;
 }